aboutsummaryrefslogtreecommitdiff
path: root/src/share
diff options
context:
space:
mode:
Diffstat (limited to 'src/share')
-rw-r--r--src/share/algebra/browse.daase2016
-rw-r--r--src/share/algebra/category.daase5808
-rw-r--r--src/share/algebra/compress.daase1959
-rw-r--r--src/share/algebra/interp.daase9588
-rw-r--r--src/share/algebra/operation.daase32605
5 files changed, 26990 insertions, 24986 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index dc9d5f7a..cfbaa7fa 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2267936 . 3432506631)
+(2269608 . 3432784494)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4350 . T) (-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4346 . T) (-4351 . T) (-4345 . T) (-2368 . T))
+((-4350 . T) (-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4346 . T) (-4351 . T) (-4345 . T) (-3526 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,17 +56,17 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3428)
+(-32 R -3281)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))))
+((|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
((|HasAttribute| |#1| (QUOTE -4353)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-35)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4353 . T) (-4354 . T) (-2368 . T))
+((-4353 . T) (-4354 . T) (-3526 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -88,14 +88,14 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3428 UP UPUP -2943)
+(-40 -3281 UP UPUP -1531)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4346 |has| (-402 |#2|) (-358)) (-4351 |has| (-402 |#2|) (-358)) (-4345 |has| (-402 |#2|) (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-345))) (-3891 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-345)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-3891 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-345)))) (-3891 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-345))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3891 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))))
-(-41 R -3428)
+((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-344))) (-1523 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-1523 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (-1523 (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-344))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-1523 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))))
+(-41 R -3281)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,24 +106,24 @@ NIL
((|HasCategory| |#1| (QUOTE (-302))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4350 |has| |#1| (-545)) (-4348 . T) (-4347 . T))
-((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545))))
+((-4350 |has| |#1| (-544)) (-4348 . T) (-4347 . T))
+((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
((-4353 . T) (-4354 . T))
-((-3891 (-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-827)))) (-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-827))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-827))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-827))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|))))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-827))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-827))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-538)))))
+((|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-552)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
@@ -132,19 +132,19 @@ NIL
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
((-4350 . T))
NIL
-(-51)
-((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
+(-51 S)
+((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
NIL
NIL
-(-52 S)
-((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
+(-52)
+((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
NIL
NIL
(-53 R M P)
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3428)
+(-54 |Base| R -3281)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -154,133 +154,133 @@ NIL
NIL
(-56 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4353 . T) (-4354 . T) (-2368 . T))
+((-4353 . T) (-4354 . T) (-3526 . T))
NIL
-(-57 S)
-((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-58 A B)
+(-57 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
+(-58 S)
+((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
+((-4354 . T) (-4353 . T))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-59 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-60 -3905)
-((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
-NIL
-NIL
-(-61 -3905)
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
+(-60 -1288)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3905)
+(-61 -1288)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -3905)
+(-62 -1288)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3905)
+(-63 -1288)
+((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+NIL
+NIL
+(-64 -1288)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-65 -3905)
+(-65 -1288)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-66 -3905)
+(-66 -1288)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -3905)
+(-67 -1288)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3905)
+(-68 -1288)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-69 -3905)
+(-69 -1288)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-70 -3905)
+(-70 -1288)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-71 -3905)
+(-71 -1288)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-72 -3905)
+(-72 -1288)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-73 -3905)
+(-73 -1288)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-74 -3905)
-((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
-NIL
-NIL
-(-75 |nameOne| |nameTwo| |nameThree|)
+(-74 |nameOne| |nameTwo| |nameThree|)
((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-76 |nameOne| |nameTwo| |nameThree|)
+(-75 |nameOne| |nameTwo| |nameThree|)
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -3905)
+(-76 -1288)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -3905)
+(-77 -1288)
+((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+NIL
+NIL
+(-78 -1288)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -3905)
+(-79 -1288)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3905)
+(-80 -1288)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3905)
-((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
-NIL
-NIL
-(-82 -3905)
+(-81 -1288)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3905)
+(-82 -1288)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3905)
+(-83 -1288)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3905)
+(-84 -1288)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3905)
-((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
+(-85 -1288)
+((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -3905)
+(-86 -1288)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -3905)
+(-87 -1288)
+((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
+NIL
+NIL
+(-88 -1288)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -291,7 +291,7 @@ NIL
(-90 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-91 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -339,7 +339,7 @@ NIL
(-102 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-103 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
@@ -354,12 +354,12 @@ NIL
NIL
(-106 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4354 . T) (-2368 . T))
+((-4354 . T) (-3526 . T))
NIL
(-107)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-538) (QUOTE (-886))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-538) (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-145))) (|HasCategory| (-538) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-538) (QUOTE (-996))) (|HasCategory| (-538) (QUOTE (-800))) (-3891 (|HasCategory| (-538) (QUOTE (-800))) (|HasCategory| (-538) (QUOTE (-827)))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-1124))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-538) (QUOTE (-229))) (|HasCategory| (-538) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-538) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -304) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -281) (QUOTE (-538)) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-302))) (|HasCategory| (-538) (QUOTE (-537))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-538) (LIST (QUOTE -621) (QUOTE (-538)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (|HasCategory| (-538) (QUOTE (-143)))))
+((|HasCategory| (-552) (QUOTE (-885))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-552) (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-145))) (|HasCategory| (-552) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-998))) (|HasCategory| (-552) (QUOTE (-800))) (-1523 (|HasCategory| (-552) (QUOTE (-800))) (|HasCategory| (-552) (QUOTE (-827)))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1124))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-229))) (|HasCategory| (-552) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-552) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -304) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -281) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-302))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-552) (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (|HasCategory| (-552) (QUOTE (-143)))))
(-108)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -371,7 +371,7 @@ NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
((-4354 . T) (-4353 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1074))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-112) (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-112) (QUOTE (-1074))) (|HasCategory| (-112) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-112) (QUOTE (-1073))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-112) (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-112) (QUOTE (-1073))) (|HasCategory| (-112) (LIST (QUOTE -597) (QUOTE (-839)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
((-4348 . T) (-4347 . T))
@@ -380,15 +380,15 @@ NIL
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-113)
-((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
-NIL
-NIL
-(-114 A)
+(-113 A)
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
NIL
((|HasCategory| |#1| (QUOTE (-827))))
-(-115 -3428 UP)
+(-114)
+((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
+NIL
+NIL
+(-115 -3281 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
@@ -399,14 +399,14 @@ NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-886))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-116 |#1|) (QUOTE (-996))) (|HasCategory| (-116 |#1|) (QUOTE (-800))) (-3891 (|HasCategory| (-116 |#1|) (QUOTE (-800))) (|HasCategory| (-116 |#1|) (QUOTE (-827)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-1124))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-229))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-302))) (|HasCategory| (-116 |#1|) (QUOTE (-537))) (|HasCategory| (-116 |#1|) (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-886)))) (|HasCategory| (-116 |#1|) (QUOTE (-143)))))
+((|HasCategory| (-116 |#1|) (QUOTE (-885))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-116 |#1|) (QUOTE (-998))) (|HasCategory| (-116 |#1|) (QUOTE (-800))) (-1523 (|HasCategory| (-116 |#1|) (QUOTE (-800))) (|HasCategory| (-116 |#1|) (QUOTE (-827)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-116 |#1|) (QUOTE (-1124))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-116 |#1|) (QUOTE (-229))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-302))) (|HasCategory| (-116 |#1|) (QUOTE (-537))) (|HasCategory| (-116 |#1|) (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-885)))) (|HasCategory| (-116 |#1|) (QUOTE (-143)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
((|HasAttribute| |#1| (QUOTE -4354)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-120 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -415,14 +415,14 @@ NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,24 +430,24 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4353 . T) (-4354 . T) (-2368 . T))
+((-4353 . T) (-4354 . T) (-3526 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-128)
+((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
+((-4354 . T) (-4353 . T))
+((-1523 (-12 (|HasCategory| (-129) (QUOTE (-827))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1073))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129)))))) (-1523 (-12 (|HasCategory| (-129) (QUOTE (-1073))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-129) (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| (-129) (QUOTE (-827))) (|HasCategory| (-129) (QUOTE (-1073)))) (|HasCategory| (-129) (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-129) (QUOTE (-1073))) (-12 (|HasCategory| (-129) (QUOTE (-1073))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -597) (QUOTE (-839)))))
+(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} views \\spad{`c'} a a byte. In particular \\spad{`c'} is supposed to have a numerical value less than 256.") (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
NIL
-(-129)
-((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
-((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| (-128) (QUOTE (-827))) (|HasCategory| (-128) (LIST (QUOTE -304) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1074))) (|HasCategory| (-128) (LIST (QUOTE -304) (QUOTE (-128)))))) (-3891 (-12 (|HasCategory| (-128) (QUOTE (-1074))) (|HasCategory| (-128) (LIST (QUOTE -304) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-128) (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| (-128) (QUOTE (-827))) (|HasCategory| (-128) (QUOTE (-1074)))) (|HasCategory| (-128) (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-128) (QUOTE (-1074))) (-12 (|HasCategory| (-128) (QUOTE (-1074))) (|HasCategory| (-128) (LIST (QUOTE -304) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -597) (QUOTE (-840)))))
(-130)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
NIL
@@ -464,12 +464,12 @@ NIL
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
(((-4355 "*") . T))
NIL
-(-134 |minix| -2950 R)
-((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
+(-134 |minix| -2562 S T$)
+((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-135 |minix| -2950 S T$)
-((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
+(-135 |minix| -2562 R)
+((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
(-136)
@@ -487,7 +487,7 @@ NIL
(-139)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
((-4353 . T) (-4343 . T) (-4354 . T))
-((-3891 (-12 (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1074))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1073))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-839)))))
(-140 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -512,7 +512,7 @@ NIL
((|constructor| (NIL "Rings of Characteristic Zero.")))
((-4350 . T))
NIL
-(-146 -3428 UP UPUP)
+(-146 -3281 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -523,10 +523,10 @@ NIL
(-148 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasAttribute| |#1| (QUOTE -4353)))
+((|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasAttribute| |#1| (QUOTE -4353)))
(-149 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-150 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
@@ -552,7 +552,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-156 R -3428)
+(-156 R -3281)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -565,11 +565,11 @@ NIL
NIL
NIL
(-159)
-((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
+((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
NIL
NIL
(-160)
-((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
+((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
NIL
NIL
(-161)
@@ -583,23 +583,23 @@ NIL
(-163 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-996))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4349)) (|HasAttribute| |#2| (QUOTE -4352)) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-827))))
+((|HasCategory| |#2| (QUOTE (-885))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4349)) (|HasAttribute| |#2| (QUOTE -4352)) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-827))))
(-164 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4346 -3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4349 |has| |#1| (-6 -4349)) (-4352 |has| |#1| (-6 -4352)) (-1421 . T) (-2368 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((-4346 -1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4349 |has| |#1| (-6 -4349)) (-4352 |has| |#1| (-6 -4352)) (-3858 . T) (-3526 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-165 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
NIL
NIL
-(-166 R)
-((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4346 -3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4349 |has| |#1| (-6 -4349)) (-4352 |has| |#1| (-6 -4352)) (-1421 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-345))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-345)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-345)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-345)))) (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-345)))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-229))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-345)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-345)))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (QUOTE (-801)))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (QUOTE (-996))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-358)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (QUOTE (-886))))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1171)))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-996))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-345)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#1| (QUOTE (-1034))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-1171)))) (|HasCategory| |#1| (QUOTE (-537))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-886))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-358)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-229))) (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasAttribute| |#1| (QUOTE -4349)) (|HasAttribute| |#1| (QUOTE -4352)) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-345)))))
-(-167 R S)
+(-166 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
NIL
+(-167 R)
+((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
+((-4346 -1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4349 |has| |#1| (-6 -4349)) (-4352 |has| |#1| (-6 -4352)) (-3858 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-229))) (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-808)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-885))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-885)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-885))))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1171)))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-808))) (|HasCategory| |#1| (QUOTE (-1034))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-1171)))) (|HasCategory| |#1| (QUOTE (-537))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-229))) (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasAttribute| |#1| (QUOTE -4349)) (|HasAttribute| |#1| (QUOTE -4352)) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-344)))))
(-168 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -635,7 +635,7 @@ NIL
(-176 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-922 |#2|) (LIST (QUOTE -862) (|devaluate| |#1|))))
+((|HasCategory| (-928 |#2|) (LIST (QUOTE -862) (|devaluate| |#1|))))
(-177 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -653,18 +653,18 @@ NIL
NIL
NIL
(-181)
-((|constructor| (NIL "This domain provides implementations for constructors.")) (|arity| (((|SingleInteger|) $) "\\spad{arity(ctor)} returns the arity of the constructor `ctor'. \\indented{2}{A negative value means that the \\spad{ctor} takes a variable} \\indented{2}{length argument list,{} \\spadignore{e.g.} Mapping,{} Record,{} etc.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")) (|name| (((|Identifier|) $) "\\spad{name(ctor)} returns the name of the constructor `ctor'.")))
+((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
NIL
NIL
(-182)
-((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
+((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' designates package constructors.")) (|domain| (($) "`domain' designates domain constructors")) (|category| (($) "`category' designates category constructors")))
NIL
NIL
(-183)
-((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' designates package constructors.")) (|domain| (($) "`domain' designates domain constructors")) (|category| (($) "`category' designates category constructors")))
+((|constructor| (NIL "This domain provides implementations for constructors.")) (|arity| (((|SingleInteger|) $) "\\spad{arity(ctor)} returns the arity of the constructor `ctor'. \\indented{2}{A negative value means that the \\spad{ctor} takes a variable} \\indented{2}{length argument list,{} \\spadignore{e.g.} Mapping,{} Record,{} etc.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")) (|name| (((|Identifier|) $) "\\spad{name(ctor)} returns the name of the constructor `ctor'.")))
NIL
NIL
-(-184 R -3428)
+(-184 R -3281)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -772,28 +772,28 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-211 -3428 UP UPUP R)
+(-211 -3281 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-212 -3428 FP)
+(-212 -3281 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-213)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-538) (QUOTE (-886))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-538) (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-145))) (|HasCategory| (-538) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-538) (QUOTE (-996))) (|HasCategory| (-538) (QUOTE (-800))) (-3891 (|HasCategory| (-538) (QUOTE (-800))) (|HasCategory| (-538) (QUOTE (-827)))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-1124))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-538) (QUOTE (-229))) (|HasCategory| (-538) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-538) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -304) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -281) (QUOTE (-538)) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-302))) (|HasCategory| (-538) (QUOTE (-537))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-538) (LIST (QUOTE -621) (QUOTE (-538)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (|HasCategory| (-538) (QUOTE (-143)))))
+((|HasCategory| (-552) (QUOTE (-885))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-552) (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-145))) (|HasCategory| (-552) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-998))) (|HasCategory| (-552) (QUOTE (-800))) (-1523 (|HasCategory| (-552) (QUOTE (-800))) (|HasCategory| (-552) (QUOTE (-827)))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1124))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-229))) (|HasCategory| (-552) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-552) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -304) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -281) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-302))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-552) (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (|HasCategory| (-552) (QUOTE (-143)))))
(-214)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-215 R -3428)
-((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+(-215 R -3281)
+((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-216 R)
-((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-217 R1 R2)
@@ -803,18 +803,18 @@ NIL
(-218 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-219 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
((-4350 . T))
NIL
-(-220 R -3428)
+(-220 R -3281)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-221)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4129 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((-2874 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-222)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -823,14 +823,14 @@ NIL
(-223 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-545))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-224 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-225 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4354 . T) (-2368 . T))
+((-4354 . T) (-3526 . T))
NIL
(-226 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
@@ -854,28 +854,28 @@ NIL
((|HasAttribute| |#1| (QUOTE -4353)))
(-231 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4354 . T) (-2368 . T))
+((-4354 . T) (-3526 . T))
NIL
(-232)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-233 S -2950 R)
+(-233 S -2562 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825))) (|HasAttribute| |#3| (QUOTE -4350)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-1074))))
-(-234 -2950 R)
+((|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825))) (|HasAttribute| |#3| (QUOTE -4350)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-1073))))
+(-234 -2562 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T) (-2368 . T))
+((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T) (-3526 . T))
NIL
-(-235 -2950 R)
-((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-3891 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-236 -2950 A B)
+(-235 -2562 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
+(-236 -2562 R)
+((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
+((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T))
+((-1523 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-1523 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (|HasCategory| |#2| (QUOTE (-1025))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))))
(-237)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -890,84 +890,84 @@ NIL
NIL
(-240 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-241 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-242 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-243 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-545)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#2| (QUOTE (-886))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-544)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#2| (QUOTE (-885))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143)))))
(-244)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
(-245 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4350 -3891 (-3191 (|has| |#4| (-1025)) (|has| |#4| (-229))) (-3191 (|has| |#4| (-1025)) (|has| |#4| (-876 (-1149)))) (|has| |#4| (-6 -4350)) (-3191 (|has| |#4| (-1025)) (|has| |#4| (-621 (-538))))) (-4347 |has| |#4| (-1025)) (-4348 |has| |#4| (-1025)) ((-4355 "*") |has| |#4| (-170)) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-358))) (-3891 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-1025)))) (-3891 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358)))) (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (QUOTE (-773))) (-3891 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (QUOTE (-825)))) (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (QUOTE (-170))) (-3891 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1025)))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (-3891 (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (|HasCategory| |#4| (QUOTE (-707)))) (-3891 (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#4| (QUOTE (-1025)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasAttribute| |#4| (QUOTE -4350)) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-4350 -1523 (-3743 (|has| |#4| (-1025)) (|has| |#4| (-229))) (-3743 (|has| |#4| (-1025)) (|has| |#4| (-876 (-1149)))) (|has| |#4| (-6 -4350)) (-3743 (|has| |#4| (-1025)) (|has| |#4| (-621 (-552))))) (-4347 |has| |#4| (-1025)) (-4348 |has| |#4| (-1025)) ((-4355 "*") |has| |#4| (-170)) (-4353 . T))
+((-1523 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#4| (QUOTE (-358))) (-1523 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-1025)))) (-1523 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358)))) (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (QUOTE (-773))) (-1523 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (QUOTE (-825)))) (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (QUOTE (-170))) (-1523 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1025)))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-229)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-358)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-707)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-773)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-825)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1025)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (-1523 (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (|HasCategory| |#4| (QUOTE (-707))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (|HasCategory| |#4| (QUOTE (-1025))) (-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1073)))) (-1523 (|HasAttribute| |#4| (QUOTE -4350)) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839)))))
(-246 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4350 -3891 (-3191 (|has| |#3| (-1025)) (|has| |#3| (-229))) (-3191 (|has| |#3| (-1025)) (|has| |#3| (-876 (-1149)))) (|has| |#3| (-6 -4350)) (-3191 (|has| |#3| (-1025)) (|has| |#3| (-621 (-538))))) (-4347 |has| |#3| (-1025)) (-4348 |has| |#3| (-1025)) ((-4355 "*") |has| |#3| (-170)) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-358))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-773))) (-3891 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825)))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-170))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-707)))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasAttribute| |#3| (QUOTE -4350)) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-4350 -1523 (-3743 (|has| |#3| (-1025)) (|has| |#3| (-229))) (-3743 (|has| |#3| (-1025)) (|has| |#3| (-876 (-1149)))) (|has| |#3| (-6 -4350)) (-3743 (|has| |#3| (-1025)) (|has| |#3| (-621 (-552))))) (-4347 |has| |#3| (-1025)) (-4348 |has| |#3| (-1025)) ((-4355 "*") |has| |#3| (-170)) (-4353 . T))
+((-1523 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#3| (QUOTE (-358))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-773))) (-1523 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825)))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-170))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-229)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-358)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-707)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-773)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-825)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-707))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (|HasCategory| |#3| (QUOTE (-1025))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1073)))) (-1523 (|HasAttribute| |#3| (QUOTE -4350)) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-839)))))
(-247 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-229))))
(-248 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
NIL
(-249 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4353 . T) (-4354 . T) (-2368 . T))
+((-4353 . T) (-4354 . T) (-3526 . T))
NIL
-(-250 |Ex|)
-((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
-NIL
-NIL
-(-251)
+(-250)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-252 R |Ex|)
+(-251 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-253)
+(-252)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-254 R)
+(-253 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
+(-254 |Ex|)
+((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
+NIL
+NIL
(-255)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
(-256)
-((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
-NIL
-NIL
-(-257)
((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-258 S)
+(-257 S)
((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
+(-258)
+((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
+NIL
+NIL
(-259 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#3| (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#3| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#3| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#3| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#3| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-260 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1012,11 +1012,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-271 R -3428)
+(-271 R -3281)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-272 R -3428)
+(-272 R -3281)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1035,10 +1035,10 @@ NIL
(-276 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))))
+((|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))))
(-277 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4354 . T) (-2368 . T))
+((-4354 . T) (-3526 . T))
NIL
(-278 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1064,7 +1064,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-284 S R |Mod| -2152 -3872 |exactQuo|)
+(-284 S R |Mod| -3297 -3280 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
@@ -1080,58 +1080,58 @@ NIL
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-288 S)
-((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4350 -3891 (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4347 |has| |#1| (-1025)) (-4348 |has| |#1| (-1025)))
-((|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025)))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707)))) (|HasCategory| |#1| (QUOTE (-467))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-293))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467)))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707)))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
-(-289 S R)
+(-288 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
+(-289 S)
+((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
+((-4350 -1523 (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4347 |has| |#1| (-1025)) (-4348 |has| |#1| (-1025)))
+((|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707)))) (|HasCategory| |#1| (QUOTE (-467))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-1073)))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-297))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467)))) (-1523 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707)))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
(-290 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))))
(-291)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-292 S)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
-NIL
-((|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1025))))
-(-293)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
-NIL
-NIL
-(-294 -3428 S)
+(-292 -3281 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-295 E -3428)
+(-293 E -3281)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
-(-296)
-((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
+(-294 A B)
+((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
-(-297 A B)
-((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
+(-295)
+((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-298)
-((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
+(-296 S)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+NIL
+((|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-1025))))
+(-297)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-299 R1)
+(-298 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-300 R1 R2)
+(-299 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
+(-300)
+((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
+NIL
+NIL
(-301 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
@@ -1148,35 +1148,35 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-305 -3428)
+(-305 -3281)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
(-306)
-((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
+((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
(-307)
-((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
+((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
(-308 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-886))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-996))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-800))) (-3891 (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-800))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-827)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-1124))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-229))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -304) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -281) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-302))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-537))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-886)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-143)))))
-(-309 R)
-((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4350 -3891 (-3191 (|has| |#1| (-1025)) (|has| |#1| (-621 (-538)))) (-12 (|has| |#1| (-545)) (-3891 (-3191 (|has| |#1| (-1025)) (|has| |#1| (-621 (-538)))) (|has| |#1| (-1025)) (|has| |#1| (-467)))) (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) ((-4355 "*") |has| |#1| (-545)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-545)) (-4345 |has| |#1| (-545)))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1085)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1085)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1025)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-538)))))
-(-310 R S)
+((|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-885))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-998))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-800))) (-1523 (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-800))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-827)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-1124))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-229))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -304) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -281) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-302))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-537))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-827))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-885))) (|HasCategory| $ (QUOTE (-143)))) (-1523 (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-885))) (|HasCategory| $ (QUOTE (-143))))))
+(-309 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-311 R FE)
+(-310 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-312 R -3428)
+(-311 R)
+((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
+((-4350 -1523 (-3743 (|has| |#1| (-1025)) (|has| |#1| (-621 (-552)))) (-12 (|has| |#1| (-544)) (-1523 (-3743 (|has| |#1| (-1025)) (|has| |#1| (-621 (-552)))) (|has| |#1| (-1025)) (|has| |#1| (-467)))) (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) ((-4355 "*") |has| |#1| (-544)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-544)) (-4345 |has| |#1| (-544)))
+((-1523 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552))))) (-1523 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1085)))) (-1523 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))))) (-1523 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1085)))) (-1523 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-552)))))
+(-312 R -3281)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1186,8 +1186,8 @@ NIL
NIL
(-314 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-538)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-552)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))))
(-315 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1199,7 +1199,7 @@ NIL
(-317 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
((-4348 . T) (-4347 . T))
-((|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-772))))
+((|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-772))))
(-318 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1211,20 +1211,20 @@ NIL
(-320 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))))
+((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))))
(-321 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-322 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-323 S -3428)
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
+(-323 S -3281)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))))
-(-324 -3428)
+(-324 -3281)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
@@ -1240,22 +1240,22 @@ NIL
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
NIL
NIL
-(-328 -3428 UP UPUP R)
-((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
-NIL
-NIL
-(-329 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-328 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-330 S -3428 UP UPUP R)
+(-329 S -3281 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-331 -3428 UP UPUP R)
+(-330 -3281 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
+(-331 -3281 UP UPUP R)
+((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
+NIL
+NIL
(-332 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
@@ -1267,87 +1267,87 @@ NIL
(-334 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
((-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-373)))) (|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-538)))))
-(-335 |p| |n|)
-((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (|HasCategory| (-882 |#1|) (QUOTE (-143))) (|HasCategory| (-882 |#1|) (QUOTE (-363)))) (|HasCategory| (-882 |#1|) (QUOTE (-145))) (|HasCategory| (-882 |#1|) (QUOTE (-363))) (|HasCategory| (-882 |#1|) (QUOTE (-143))))
-(-336 S -3428 UP UPUP)
+((|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-374)))) (|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-552)))))
+(-335 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
+NIL
+NIL
+(-336 S -3281 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-358))))
-(-337 -3428 UP UPUP)
+(-337 -3281 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
((-4346 |has| (-402 |#2|) (-358)) (-4351 |has| (-402 |#2|) (-358)) (-4345 |has| (-402 |#2|) (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-338 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
-((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
-NIL
-NIL
-(-339 |p| |extdeg|)
+(-338 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (|HasCategory| (-882 |#1|) (QUOTE (-143))) (|HasCategory| (-882 |#1|) (QUOTE (-363)))) (|HasCategory| (-882 |#1|) (QUOTE (-145))) (|HasCategory| (-882 |#1|) (QUOTE (-363))) (|HasCategory| (-882 |#1|) (QUOTE (-143))))
-(-340 GF |defpol|)
+((-1523 (|HasCategory| (-886 |#1|) (QUOTE (-143))) (|HasCategory| (-886 |#1|) (QUOTE (-363)))) (|HasCategory| (-886 |#1|) (QUOTE (-145))) (|HasCategory| (-886 |#1|) (QUOTE (-363))) (|HasCategory| (-886 |#1|) (QUOTE (-143))))
+(-339 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
-(-341 GF |extdeg|)
+((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
+(-340 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
-(-342 GF)
+((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
+(-341 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-343 F1 GF F2)
+(-342 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-344 S)
+(-343 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-345)
+(-344)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-346 R UP -3428)
+(-345 R UP -3281)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-347 |p| |extdeg|)
+(-346 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (|HasCategory| (-882 |#1|) (QUOTE (-143))) (|HasCategory| (-882 |#1|) (QUOTE (-363)))) (|HasCategory| (-882 |#1|) (QUOTE (-145))) (|HasCategory| (-882 |#1|) (QUOTE (-363))) (|HasCategory| (-882 |#1|) (QUOTE (-143))))
-(-348 GF |uni|)
+((-1523 (|HasCategory| (-886 |#1|) (QUOTE (-143))) (|HasCategory| (-886 |#1|) (QUOTE (-363)))) (|HasCategory| (-886 |#1|) (QUOTE (-145))) (|HasCategory| (-886 |#1|) (QUOTE (-363))) (|HasCategory| (-886 |#1|) (QUOTE (-143))))
+(-347 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
-(-349 GF |extdeg|)
+((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
+(-348 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
+((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
+(-349 |p| |n|)
+((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
+((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((-1523 (|HasCategory| (-886 |#1|) (QUOTE (-143))) (|HasCategory| (-886 |#1|) (QUOTE (-363)))) (|HasCategory| (-886 |#1|) (QUOTE (-145))) (|HasCategory| (-886 |#1|) (QUOTE (-363))) (|HasCategory| (-886 |#1|) (QUOTE (-143))))
(-350 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
-(-351 GF)
-((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
+((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
+(-351 -3281 GF)
+((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-352 -3428 GF)
-((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
+(-352 GF)
+((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-353 -3428 FP FPP)
+(-353 -3281 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-354 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
+((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
(-355 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
@@ -1364,21 +1364,21 @@ NIL
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-359 S)
-((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
+(-359 |Name| S)
+((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-360 |Name| S)
-((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
+(-360 S)
+((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
(-361 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-545))))
+((|HasCategory| |#2| (QUOTE (-544))))
(-362 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4350 |has| |#1| (-545)) (-4348 . T) (-4347 . T))
+((-4350 |has| |#1| (-544)) (-4348 . T) (-4347 . T))
NIL
(-363)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1392,17 +1392,17 @@ NIL
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
((-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-366 A S)
-((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
+(-366 S A R B)
+((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))))
-(-367 S)
-((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4353 . T) (-2368 . T))
NIL
-(-368 S A R B)
-((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
+(-367 A S)
+((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
+((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))))
+(-368 S)
+((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
+((-4353 . T) (-3526 . T))
NIL
(-369 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
@@ -1415,43 +1415,43 @@ NIL
(-371 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))))
+((|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))))
(-372 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
((-4350 . T))
NIL
-(-373)
-((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4336 . T) (-4344 . T) (-4129 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-NIL
-(-374 |Par|)
+(-373 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
+(-374)
+((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
+((-4336 . T) (-4344 . T) (-2874 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+NIL
(-375 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
(-376 R S)
-((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4348 . T) (-4347 . T))
-((|HasCategory| |#1| (QUOTE (-170))))
-(-377 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
((-4348 . T) (-4347 . T))
((|HasCategory| |#1| (QUOTE (-170))))
-(-378)
-((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2368 . T))
-NIL
-(-379 R |Basis|)
+(-377 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
((-4348 . T) (-4347 . T))
NIL
-(-380)
+(-378)
+((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
+((-3526 . T))
+NIL
+(-379)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2368 . T))
+((-3526 . T))
NIL
+(-380 R S)
+((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
+((-4348 . T) (-4347 . T))
+((|HasCategory| |#1| (QUOTE (-170))))
(-381 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
@@ -1476,41 +1476,41 @@ NIL
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-387 -3428 UP UPUP R)
+(-387 -3281 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-388)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format.")))
+(-388 S)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-389 S)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
+(-389)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format.")))
NIL
NIL
(-390)
-((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
-NIL
+((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
+((-3526 . T))
NIL
(-391)
-((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-2368 . T))
+((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
+((-3526 . T))
NIL
(-392)
-((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2368 . T))
+((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
+NIL
NIL
-(-393 -3905 |returnType| -1466 |symbols|)
+(-393 -1288 |returnType| -1912 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-394 -3428 UP)
+(-394 -3281 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
(-395 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-2368 . T))
+((-3526 . T))
NIL
(-396 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
@@ -1526,121 +1526,121 @@ NIL
((|HasAttribute| |#1| (QUOTE -4336)) (|HasAttribute| |#1| (QUOTE -4344)))
(-399)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-4129 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((-2874 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-400 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -304) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -281) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-1190))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-996))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-446))))
-(-401 R S)
+(-400 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-402 S)
-((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4340 -12 (|has| |#1| (-6 -4351)) (|has| |#1| (-446)) (|has| |#1| (-6 -4340))) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-996))) (|HasCategory| |#1| (QUOTE (-800))) (-3891 (|HasCategory| |#1| (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-827)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1124))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-537))) (-12 (|HasAttribute| |#1| (QUOTE -4340)) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-403 A B)
+(-401 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-404 S R UP)
+(-402 S)
+((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
+((-4340 -12 (|has| |#1| (-6 -4351)) (|has| |#1| (-446)) (|has| |#1| (-6 -4340))) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-800))) (-1523 (|HasCategory| |#1| (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-827)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1124))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808))))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-537))) (-12 (|HasAttribute| |#1| (QUOTE -4351)) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-446)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-403 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-405 R UP)
+(-404 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
((-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-406 A S)
+(-405 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))))
-(-407 S)
+((|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))
+(-406 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-408 R -3428 UP A)
-((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4350 . T))
-NIL
-(-409 R1 F1 U1 A1 R2 F2 U2 A2)
+(-407 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-410 R -3428 UP A |ibasis|)
+(-408 R -3281 UP A)
+((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
+((-4350 . T))
+NIL
+(-409 R -3281 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1014) (|devaluate| |#2|))))
-(-411 AR R AS S)
+(-410 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-412 S R)
+(-411 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
((|HasCategory| |#2| (QUOTE (-358))))
-(-413 R)
+(-412 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4350 |has| |#1| (-545)) (-4348 . T) (-4347 . T))
+((-4350 |has| |#1| (-544)) (-4348 . T) (-4347 . T))
NIL
+(-413 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -304) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -281) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-1190))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-446))))
(-414 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
NIL
-(-415 S R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+(-415 R FE |x| |cen|)
+((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-1085))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))))
-(-416 R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4350 -3891 (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) ((-4355 "*") |has| |#1| (-545)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-545)) (-4345 |has| |#1| (-545)) (-2368 . T))
NIL
-(-417 R A S B)
+(-416 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-418 R FE |x| |cen|)
-((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
+(-417 R FE |Expon| UPS TRAN |x|)
+((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'")))
NIL
NIL
-(-419 R FE |Expon| UPS TRAN |x|)
-((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'")))
+(-418 S A R B)
+((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-420 A S)
+(-419 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
((|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-363))))
-(-421 S)
+(-420 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4353 . T) (-4343 . T) (-4354 . T) (-2368 . T))
-NIL
-(-422 S A R B)
-((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
-NIL
+((-4353 . T) (-4343 . T) (-4354 . T) (-3526 . T))
NIL
-(-423 R -3428)
+(-421 R -3281)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-424 R E)
+(-422 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
((-4340 -12 (|has| |#1| (-6 -4340)) (|has| |#2| (-6 -4340))) (-4347 . T) (-4348 . T) (-4350 . T))
((-12 (|HasAttribute| |#1| (QUOTE -4340)) (|HasAttribute| |#2| (QUOTE -4340))))
-(-425 R -3428)
+(-423 R -3281)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-426 R -3428)
+(-424 S R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+NIL
+((|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-1085))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))))
+(-425 R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+((-4350 -1523 (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) ((-4355 "*") |has| |#1| (-544)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-544)) (-4345 |has| |#1| (-544)) (-3526 . T))
+NIL
+(-426 R -3281)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-427 R -3428)
+(-427 R -3281)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-428 R -3428)
+(-428 R -3281)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1648,16 +1648,16 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-430 R -3428 UP)
+(-430 R -3281 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-48)))))
(-431)
-((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
+((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
(-432)
-((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
+((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
NIL
NIL
(-433 |f|)
@@ -1666,17 +1666,17 @@ NIL
NIL
(-434)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-435)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2368 . T))
+((-3526 . T))
NIL
(-436 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-437 R UP -3428)
+(-437 R UP -3281)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1693,21 +1693,21 @@ NIL
NIL
NIL
(-441 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-358))))
-(-442 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-443 |Dom| |Expon| |VarSet| |Dpol|)
+(-442 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-444 |Dom| |Expon| |VarSet| |Dpol|)
+(-443 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
+(-444 |Dom| |Expon| |VarSet| |Dpol|)
+((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-358))))
(-445 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
@@ -1718,12 +1718,12 @@ NIL
NIL
(-447 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4350 |has| (-402 (-922 |#1|)) (-545)) (-4348 . T) (-4347 . T))
-((|HasCategory| (-402 (-922 |#1|)) (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| (-402 (-922 |#1|)) (QUOTE (-545))))
+((-4350 |has| (-402 (-928 |#1|)) (-544)) (-4348 . T) (-4347 . T))
+((|HasCategory| (-402 (-928 |#1|)) (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| (-402 (-928 |#1|)) (QUOTE (-544))))
(-448 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-545)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#2| (QUOTE (-886))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-544)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#2| (QUOTE (-885))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143)))))
(-449 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1759,7 +1759,7 @@ NIL
(-457 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
((-4354 . T) (-4353 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839)))))
(-458 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1788,7 +1788,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-465 |lv| -3428 R)
+(-465 |lv| -3281 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1802,16 +1802,16 @@ NIL
NIL
(-468 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-538)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-552)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))))
(-469 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-827))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-827))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))))
(-470 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
((-4354 . T) (-4353 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839)))))
(-471)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
@@ -1823,19 +1823,19 @@ NIL
(-473 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))))
(-474)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-475 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-545)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#2| (QUOTE (-886))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-476 -2950 S)
+(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-544)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#2| (QUOTE (-885))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(-476 -2562 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-3891 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-1523 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (|HasCategory| |#2| (QUOTE (-1025))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))))
(-477)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
@@ -1843,8 +1843,8 @@ NIL
(-478 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-479 -3428 UP UPUP R)
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
+(-479 -3281 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1855,14 +1855,14 @@ NIL
(-481)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-538) (QUOTE (-886))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-538) (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-145))) (|HasCategory| (-538) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-538) (QUOTE (-996))) (|HasCategory| (-538) (QUOTE (-800))) (-3891 (|HasCategory| (-538) (QUOTE (-800))) (|HasCategory| (-538) (QUOTE (-827)))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-1124))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-538) (QUOTE (-229))) (|HasCategory| (-538) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-538) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -304) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -281) (QUOTE (-538)) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-302))) (|HasCategory| (-538) (QUOTE (-537))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-538) (LIST (QUOTE -621) (QUOTE (-538)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (|HasCategory| (-538) (QUOTE (-143)))))
+((|HasCategory| (-552) (QUOTE (-885))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-552) (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-145))) (|HasCategory| (-552) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-998))) (|HasCategory| (-552) (QUOTE (-800))) (-1523 (|HasCategory| (-552) (QUOTE (-800))) (|HasCategory| (-552) (QUOTE (-827)))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1124))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-229))) (|HasCategory| (-552) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-552) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -304) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -281) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-302))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-552) (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (|HasCategory| (-552) (QUOTE (-143)))))
(-482 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4353)) (|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))))
+((|HasAttribute| |#1| (QUOTE -4353)) (|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))))
(-483 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-484)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
@@ -1876,34 +1876,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-487 -3428 UP |AlExt| |AlPol|)
+(-487 -3281 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-488)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-538)))))
+((|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-552)))))
(-489 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-490 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-491 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-492 R UP -3428)
+(-492 R UP -3281)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-493 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
((-4354 . T) (-4353 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1074))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-112) (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-112) (QUOTE (-1074))) (|HasCategory| (-112) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-112) (QUOTE (-1073))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-112) (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-112) (QUOTE (-1073))) (|HasCategory| (-112) (LIST (QUOTE -597) (QUOTE (-839)))))
(-494 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1916,7 +1916,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-497 -3428 |Expon| |VarSet| |DPoly|)
+(-497 -3281 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-1149)))))
@@ -1941,15 +1941,15 @@ NIL
NIL
NIL
(-503 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-504 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-505 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
(-506 S A B)
@@ -1967,7 +1967,7 @@ NIL
(-509 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-510)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
@@ -1975,15 +1975,15 @@ NIL
(-511 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (|HasCategory| (-567 |#1|) (QUOTE (-143))) (|HasCategory| (-567 |#1|) (QUOTE (-363)))) (|HasCategory| (-567 |#1|) (QUOTE (-145))) (|HasCategory| (-567 |#1|) (QUOTE (-363))) (|HasCategory| (-567 |#1|) (QUOTE (-143))))
+((-1523 (|HasCategory| (-567 |#1|) (QUOTE (-143))) (|HasCategory| (-567 |#1|) (QUOTE (-363)))) (|HasCategory| (-567 |#1|) (QUOTE (-145))) (|HasCategory| (-567 |#1|) (QUOTE (-363))) (|HasCategory| (-567 |#1|) (QUOTE (-143))))
(-512 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-513 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-514 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
@@ -1995,7 +1995,7 @@ NIL
(-516 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-545))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-517)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2028,7 +2028,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-525 K -3428 |Par|)
+(-525 K -3281 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2036,19 +2036,19 @@ NIL
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-527)
-((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
+(-527 R)
+((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-528 R)
-((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
+(-528)
+((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
(-529 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-530 K -3428 |Par|)
+(-530 K -3281 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2069,7 +2069,7 @@ NIL
NIL
NIL
(-535 R UP)
-((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
+((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
(-536 S)
@@ -2080,79 +2080,79 @@ NIL
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
((-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-538)
-((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4335 . T) (-4341 . T) (-4345 . T) (-4340 . T) (-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-NIL
-(-539 |Key| |Entry| |addDom|)
+(-538 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))))
-(-540 R -3428)
+((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))))
+(-539 R -3281)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-541 R0 -3428 UP UPUP R)
+(-540 R0 -3281 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-542)
+(-541)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-543 R)
+(-542 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-4129 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((-2874 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-544 S)
+(-543 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-545)
+(-544)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-546 R -3428)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
+(-545 R -3281)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-547 I)
+(-546 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-548)
-((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
+(-547)
+((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-549 R -3428 L)
-((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
+(-548 R -3281 L)
+((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -638) (|devaluate| |#2|))))
-(-550)
+((|HasCategory| |#3| (LIST (QUOTE -636) (|devaluate| |#2|))))
+(-549)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-551 -3428 UP UPUP R)
+(-550 -3281 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-552 -3428 UP)
+(-551 -3281 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
+(-552)
+((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
+((-4335 . T) (-4341 . T) (-4345 . T) (-4340 . T) (-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+NIL
(-553)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-554 R -3428 L)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
+(-554 R -3281 L)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -638) (|devaluate| |#2|))))
-(-555 R -3428)
+((|HasCategory| |#3| (LIST (QUOTE -636) (|devaluate| |#2|))))
+(-555 R -3281)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-612)))))
-(-556 -3428 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-611)))))
+(-556 -3281 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2160,27 +2160,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-558 -3428)
+(-558 -3281)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-559 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-4129 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((-2874 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-560)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-561 R -3428)
+(-561 R -3281)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-279))) (|HasCategory| |#2| (QUOTE (-612))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-279)))) (|HasCategory| |#1| (QUOTE (-545))))
-(-562 -3428 UP)
-((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
+((-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-279))) (|HasCategory| |#2| (QUOTE (-611))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-279)))) (|HasCategory| |#1| (QUOTE (-544))))
+(-562 -3281 UP)
+((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-563 R -3428)
+(-563 R -3281)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2204,18 +2204,18 @@ NIL
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-569 -3428)
-((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4348 . T) (-4347 . T))
-((|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-1149)))))
-(-570 E -3428)
-((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
+(-569 R -3281)
+((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-571 R -3428)
-((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
+(-570 E -3281)
+((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
+(-571 -3281)
+((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
+((-4348 . T) (-4347 . T))
+((|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-1149)))))
(-572 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2243,19 +2243,19 @@ NIL
(-578 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (-3891 (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1074)))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1074))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (-1523 (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-839)))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1073)))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1073))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-839)))))
(-579 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-580 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|)))) (|HasCategory| (-538) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))) (|HasCategory| (-552) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))))
(-581 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4348 |has| |#1| (-545)) (-4347 |has| |#1| (-545)) ((-4355 "*") |has| |#1| (-545)) (-4346 |has| |#1| (-545)) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-545))))
+((-4348 |has| |#1| (-544)) (-4347 |has| |#1| (-544)) ((-4355 "*") |has| |#1| (-544)) (-4346 |has| |#1| (-544)) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-544))))
(-582 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
@@ -2264,7 +2264,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-584 R -3428 FG)
+(-584 R -3281 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2275,14 +2275,14 @@ NIL
(-586 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-587 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-827))) (|HasAttribute| |#1| (QUOTE -4353)) (|HasCategory| |#3| (QUOTE (-1074))))
+((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-827))) (|HasAttribute| |#1| (QUOTE -4353)) (|HasCategory| |#3| (QUOTE (-1073))))
(-588 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-589)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode.")))
@@ -2294,28 +2294,28 @@ NIL
NIL
(-591 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4350 -3891 (-3191 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))) (-4348 . T) (-4347 . T))
-((-3891 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))))
+((-4350 -1523 (-3743 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))) (-4348 . T) (-4347 . T))
+((-1523 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))))
(-592 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| (-1131) (QUOTE (-827))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| (-1131) (QUOTE (-827))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -597) (QUOTE (-839)))))
(-593 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-594 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4354 . T) (-2368 . T))
-NIL
-(-595 S)
-((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
+((-4354 . T) (-3526 . T))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))))
-(-596 R S)
+(-595 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
+(-596 S)
+((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
+NIL
+((|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))))
(-597 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
@@ -2324,7 +2324,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-599 -3428 UP)
+(-599 -3281 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2332,26 +2332,26 @@ NIL
((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value")))
NIL
NIL
-(-601 A R S)
-((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-825))))
-(-602 S R)
+(-601 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-603 R)
+(-602 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
((-4350 . T))
NIL
-(-604 R -3428)
+(-603 A R S)
+((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-825))))
+(-604 R -3281)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-605 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
((-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4346 . T) (-4350 . T))
-((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))))
+((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))))
(-606 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2372,66 +2372,66 @@ NIL
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-611 R -3428)
-((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
+(-611)
+((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-612)
-((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
+(-612 R -3281)
+((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-613 |lv| -3428)
+(-613 |lv| -3281)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-614)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
((-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -2191) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -304) (QUOTE (-51))))) (|HasCategory| (-1131) (QUOTE (-827))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))))
-(-615 R A)
-((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4350 -3891 (-3191 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))) (-4348 . T) (-4347 . T))
-((-3891 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))))
-(-616 S R)
+((-12 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -4120) (QUOTE (-52))))))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-52) (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-1131) (QUOTE (-827))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))))
+(-615 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-358))))
-(-617 R)
+(-616 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
((|JacobiIdentity| . T) (|NullSquare| . T) (-4348 . T) (-4347 . T))
NIL
+(-617 R A)
+((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
+((-4350 -1523 (-3743 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))) (-4348 . T) (-4347 . T))
+((-1523 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))))
(-618 R FE)
-((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
+((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
(-619 R)
-((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
+((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
(-620 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-3676 (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-358))))
+((-2960 (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-358))))
(-621 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
((-4350 . T))
NIL
-(-622 S)
-((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-623 A B)
-((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
+(-622 A B)
+((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-624 A B)
-((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
+(-623 A B)
+((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-625 A B C)
+(-624 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
+(-625 S)
+((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
+((-4354 . T) (-4353 . T))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-808))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-626 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
@@ -2439,7 +2439,7 @@ NIL
(-627 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-628 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2454,52 +2454,52 @@ NIL
((|HasAttribute| |#1| (QUOTE -4354)))
(-631 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-2368 . T))
+((-3526 . T))
NIL
-(-632 M R S)
-((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4348 . T) (-4347 . T))
-((|HasCategory| |#1| (QUOTE (-771))))
-(-633 R -3428 L)
+(-632 R -3281 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-634 A -2748)
-((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
-(-635 A)
+(-633 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
-(-636 A M)
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
+(-634 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
((-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
-(-637 S A)
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
+(-635 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-358))))
-(-638 A)
+(-636 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
((-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-639 -3428 UP)
+(-637 -3281 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-640 A L)
+(-638 A -3261)
+((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
+((-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
+(-639 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-641 S)
+(-640 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-642)
+(-641)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
+(-642 M R S)
+((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4348 . T) (-4347 . T))
+((|HasCategory| |#1| (QUOTE (-771))))
(-643 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
@@ -2514,14 +2514,14 @@ NIL
NIL
(-646 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
-(-647 -3428 |Row| |Col| M)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-647 -3281)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-648 -3428)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-648 -3281 |Row| |Col| M)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
(-649 R E OV P)
@@ -2531,7 +2531,7 @@ NIL
(-650 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
((-4350 . T) (-4353 . T) (-4347 . T) (-4348 . T))
-((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4355 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-545))) (-3891 (|HasAttribute| |#2| (QUOTE (-4355 #1#))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-170))))
+((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (-1523 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-544))) (-1523 (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-170))))
(-651)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2546,12 +2546,12 @@ NIL
NIL
(-654 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-655 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-656)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2588,26 +2588,26 @@ NIL
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-665 S R |Row| |Col|)
-((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
+(-665 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-545))))
-(-666 R |Row| |Col|)
-((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4353 . T) (-4354 . T) (-2368 . T))
NIL
-(-667 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
-((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
+(-666 S R |Row| |Col|)
+((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
+((|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-544))))
+(-667 R |Row| |Col|)
+((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
+((-4353 . T) (-4354 . T) (-3526 . T))
NIL
(-668 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-545))))
+((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-544))))
(-669 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
((-4353 . T) (-4354 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-545))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-670 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2616,7 +2616,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")))
NIL
NIL
-(-672 S -3428 FLAF FLAS)
+(-672 S -3281 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2626,27 +2626,27 @@ NIL
NIL
(-674)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4346 . T) (-4351 |has| (-679) (-358)) (-4345 |has| (-679) (-358)) (-1421 . T) (-4352 |has| (-679) (-6 -4352)) (-4349 |has| (-679) (-6 -4349)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-679) (QUOTE (-145))) (|HasCategory| (-679) (QUOTE (-143))) (|HasCategory| (-679) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-679) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-679) (QUOTE (-363))) (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-679) (QUOTE (-229))) (-3891 (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-345)))) (|HasCategory| (-679) (QUOTE (-345))) (|HasCategory| (-679) (LIST (QUOTE -281) (QUOTE (-679)) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -304) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-679) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-679) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-679) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (-3891 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-345)))) (|HasCategory| (-679) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-679) (QUOTE (-996))) (|HasCategory| (-679) (QUOTE (-1171))) (-12 (|HasCategory| (-679) (QUOTE (-978))) (|HasCategory| (-679) (QUOTE (-1171)))) (-3891 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (-12 (|HasCategory| (-679) (QUOTE (-345))) (|HasCategory| (-679) (QUOTE (-886)))) (|HasCategory| (-679) (QUOTE (-358)))) (-3891 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (-12 (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-886)))) (-12 (|HasCategory| (-679) (QUOTE (-345))) (|HasCategory| (-679) (QUOTE (-886))))) (|HasCategory| (-679) (QUOTE (-537))) (-12 (|HasCategory| (-679) (QUOTE (-1034))) (|HasCategory| (-679) (QUOTE (-1171)))) (|HasCategory| (-679) (QUOTE (-1034))) (-3891 (|HasCategory| (-679) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-679) (QUOTE (-358)))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886))) (-3891 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (|HasCategory| (-679) (QUOTE (-358)))) (-3891 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (|HasCategory| (-679) (QUOTE (-545)))) (-12 (|HasCategory| (-679) (QUOTE (-229))) (|HasCategory| (-679) (QUOTE (-358)))) (-12 (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| (-679) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-679) (QUOTE (-827))) (|HasCategory| (-679) (QUOTE (-545))) (|HasAttribute| (-679) (QUOTE -4352)) (|HasAttribute| (-679) (QUOTE -4349)) (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (|HasCategory| (-679) (QUOTE (-143)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (|HasCategory| (-679) (QUOTE (-345)))))
+((-4346 . T) (-4351 |has| (-679) (-358)) (-4345 |has| (-679) (-358)) (-3858 . T) (-4352 |has| (-679) (-6 -4352)) (-4349 |has| (-679) (-6 -4349)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| (-679) (QUOTE (-145))) (|HasCategory| (-679) (QUOTE (-143))) (|HasCategory| (-679) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-679) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-679) (QUOTE (-363))) (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-679) (QUOTE (-229))) (-1523 (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-344)))) (|HasCategory| (-679) (QUOTE (-344))) (|HasCategory| (-679) (LIST (QUOTE -281) (QUOTE (-679)) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -304) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-679) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-679) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-679) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (-1523 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-344)))) (|HasCategory| (-679) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-679) (QUOTE (-998))) (|HasCategory| (-679) (QUOTE (-1171))) (-12 (|HasCategory| (-679) (QUOTE (-978))) (|HasCategory| (-679) (QUOTE (-1171)))) (-1523 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (|HasCategory| (-679) (QUOTE (-358))) (-12 (|HasCategory| (-679) (QUOTE (-344))) (|HasCategory| (-679) (QUOTE (-885))))) (-1523 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (-12 (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-885)))) (-12 (|HasCategory| (-679) (QUOTE (-344))) (|HasCategory| (-679) (QUOTE (-885))))) (|HasCategory| (-679) (QUOTE (-537))) (-12 (|HasCategory| (-679) (QUOTE (-1034))) (|HasCategory| (-679) (QUOTE (-1171)))) (|HasCategory| (-679) (QUOTE (-1034))) (-1523 (|HasCategory| (-679) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-679) (QUOTE (-358)))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885))) (-1523 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (|HasCategory| (-679) (QUOTE (-358)))) (-1523 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (|HasCategory| (-679) (QUOTE (-544)))) (-12 (|HasCategory| (-679) (QUOTE (-229))) (|HasCategory| (-679) (QUOTE (-358)))) (-12 (|HasCategory| (-679) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-679) (QUOTE (-358)))) (|HasCategory| (-679) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-679) (QUOTE (-827))) (|HasCategory| (-679) (QUOTE (-544))) (|HasAttribute| (-679) (QUOTE -4352)) (|HasAttribute| (-679) (QUOTE -4349)) (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (|HasCategory| (-679) (QUOTE (-143)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (|HasCategory| (-679) (QUOTE (-344)))))
(-675 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4354 . T) (-2368 . T))
+((-4354 . T) (-3526 . T))
NIL
(-676 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
(-677)
-((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
+((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-678 OV E -3428 PG)
+(-678 OV E -3281 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-679)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-4129 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((-2874 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-680 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2676,7 +2676,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-687 S -3002 I)
+(-687 S -3768 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2696,14 +2696,14 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-692 R |Mod| -2152 -3872 |exactQuo|)
+(-692 R |Mod| -3297 -3280 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-693 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-345))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-344))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-694 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
@@ -2712,7 +2712,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T))
((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))))
-(-696 R |Mod| -2152 -3872 |exactQuo|)
+(-696 R |Mod| -3297 -3280 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4350 . T))
NIL
@@ -2724,7 +2724,7 @@ NIL
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
((-4348 . T) (-4347 . T))
NIL
-(-699 -3428)
+(-699 -3281)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
((-4350 . T))
NIL
@@ -2747,7 +2747,7 @@ NIL
(-704 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-345))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))))
+((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))))
(-705 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
((-4346 |has| |#1| (-358)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
@@ -2760,7 +2760,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-708 -3428 UP)
+(-708 -3281 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2778,8 +2778,8 @@ NIL
NIL
(-712 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-545)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#2| (QUOTE (-886))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-544)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#2| (QUOTE (-885))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143)))))
(-713 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2797,13 +2797,13 @@ NIL
((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T))
((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-827))))
(-717 S)
-((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4353 . T) (-4343 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-718 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4343 . T) (-4354 . T) (-2368 . T))
+((-4343 . T) (-4354 . T) (-3526 . T))
NIL
+(-718 S)
+((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
+((-4353 . T) (-4343 . T) (-4354 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-719)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
@@ -2814,7 +2814,7 @@ NIL
NIL
(-721 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4348 . T) (-4347 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4348 . T) (-4347 . T) (-4350 . T))
NIL
(-722 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2912,15 +2912,15 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-746 -3428)
+(-746 -3281)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-747 P -3428)
+(-747 P -3281)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-748 UP -3428)
+(-748 UP -3281)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2936,16 +2936,16 @@ NIL
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
(((-4355 "*") . T))
NIL
-(-752 R -3428)
+(-752 R -3281)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-753)
-((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
+(-753 S)
+((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-754 S)
-((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
+(-754)
+((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
(-755 R |PolR| E |PolE|)
@@ -2956,7 +2956,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-757 -3428 |ExtF| |SUEx| |ExtP| |n|)
+(-757 -3281 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -2970,28 +2970,28 @@ NIL
NIL
(-760 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149))))) (-3891 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))))) (-3891 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-3676 (|HasCategory| |#1| (QUOTE (-537)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-538))))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-538))))))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-761 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-762 R S)
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-2960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-2960 (|HasCategory| |#1| (QUOTE (-537)))) (-2960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-2960 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552))))) (-2960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-2960 (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-552))))))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-761 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
+(-762 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-763 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))))
(-764 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
(-765 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-827)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-170))))
+((-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-827)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-170))))
(-766)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -3028,43 +3028,43 @@ NIL
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-775 S R)
+(-775)
+((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
+NIL
+NIL
+(-776 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-363))))
-(-776 R)
+((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-363))))
+(-777 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
((-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-777)
-((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
+(-778 -1523 R OS S)
+((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-778 R)
+(-779 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
((-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-3891 (|HasCategory| (-972 |#1|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-972 |#1|) (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-972 |#1|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-972 |#1|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))))
-(-779 -3891 R OS S)
-((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
-NIL
-NIL
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-1523 (|HasCategory| (-975 |#1|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (|HasCategory| (-975 |#1|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-975 |#1|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-975 |#1|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))))
(-780)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-781 R -3428 L)
+(-781 R -3281 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-782 R -3428)
-((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
+(-782 R -3281)
+((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
(-783)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-784 R -3428)
+(-784 R -3281)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3072,11 +3072,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-786 -3428 UP UPUP R)
+(-786 -3281 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-787 -3428 UP L LQ)
+(-787 -3281 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3084,38 +3084,38 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-789 -3428 UP L LQ)
+(-789 -3281 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-790 -3428 UP)
-((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
+(-790 -3281 UP)
+((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-791 -3428 L UP A LO)
+(-791 -3281 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-792 -3428 UP)
+(-792 -3281 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-793 -3428 LO)
+(-793 -3281 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-794 -3428 LODO)
+(-794 -3281 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-795 -2950 S |f|)
+(-795 -2562 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-3891 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-1523 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (|HasCategory| |#2| (QUOTE (-1025))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))))
(-796 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-798 (-1149)) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-798 (-1149)) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-798 (-1149)) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-798 (-1149)) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-797 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
(((-4355 "*") |has| |#2| (-358)) (-4346 |has| |#2| (-358)) (-4351 |has| |#2| (-358)) (-4345 |has| |#2| (-358)) (-4350 . T) (-4348 . T) (-4347 . T))
@@ -3133,57 +3133,57 @@ NIL
((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-801)
-((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
+((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
(-802)
-((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
+((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
(-803)
-((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
+((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
(-804)
-((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
+((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
(-805)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-806)
-((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
-NIL
-NIL
-(-807 R)
+(-806 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-808 P R)
+(-807 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
((-4347 . T) (-4348 . T) (-4350 . T))
((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-229))))
+(-808)
+((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
+NIL
+NIL
(-809)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
(-810 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4353 . T) (-4343 . T) (-4354 . T) (-2368 . T))
+((-4353 . T) (-4343 . T) (-4354 . T) (-3526 . T))
NIL
(-811)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-812 R)
-((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4350 |has| |#1| (-825)))
-((|HasCategory| |#1| (QUOTE (-825))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-537))) (-3891 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-21))))
-(-813 R S)
+(-812 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
+(-813 R)
+((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
+((-4350 |has| |#1| (-825)))
+((|HasCategory| |#1| (QUOTE (-825))) (-1523 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-537))) (-1523 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-21))))
(-814 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T))
@@ -3204,19 +3204,19 @@ NIL
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-819 R)
-((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4350 |has| |#1| (-825)))
-((|HasCategory| |#1| (QUOTE (-825))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-537))) (-3891 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-21))))
-(-820 R S)
+(-819 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
+(-820 R)
+((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
+((-4350 |has| |#1| (-825)))
+((|HasCategory| |#1| (QUOTE (-825))) (-1523 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-537))) (-1523 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-21))))
(-821)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-822 -2950 S)
+(-822 -2562 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3243,7 +3243,7 @@ NIL
(-828 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))))
+((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))))
(-829 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
((-4347 . T) (-4348 . T) (-4350 . T))
@@ -3251,19 +3251,19 @@ NIL
(-830 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545))))
-(-831 R |sigma| -3595)
+((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544))))
+(-831 R |sigma| -4057)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
((-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
-(-832 |x| R |sigma| -3595)
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
+(-832 |x| R |sigma| -4057)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
((-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-358))))
+((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-358))))
(-833 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))))
(-834)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
@@ -3272,24 +3272,24 @@ NIL
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-836)
-((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
+(-836 S)
+((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}")))
NIL
NIL
-(-837 S)
+(-837)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}")))
NIL
NIL
(-838)
-((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}")))
+((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
(-839)
-((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
+((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
(-840)
-((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
+((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
(-841 |VariableList|)
@@ -3309,25 +3309,25 @@ NIL
NIL
NIL
(-845 |p|)
-((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
+((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-846 |p|)
-((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
+((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-847 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-845 |#1|) (QUOTE (-886))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-845 |#1|) (QUOTE (-143))) (|HasCategory| (-845 |#1|) (QUOTE (-145))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-845 |#1|) (QUOTE (-996))) (|HasCategory| (-845 |#1|) (QUOTE (-800))) (-3891 (|HasCategory| (-845 |#1|) (QUOTE (-800))) (|HasCategory| (-845 |#1|) (QUOTE (-827)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-845 |#1|) (QUOTE (-1124))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-845 |#1|) (QUOTE (-229))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -845) (|devaluate| |#1|)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -845) (|devaluate| |#1|)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -845) (|devaluate| |#1|)) (LIST (QUOTE -845) (|devaluate| |#1|)))) (|HasCategory| (-845 |#1|) (QUOTE (-302))) (|HasCategory| (-845 |#1|) (QUOTE (-537))) (|HasCategory| (-845 |#1|) (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-845 |#1|) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-845 |#1|) (QUOTE (-886)))) (|HasCategory| (-845 |#1|) (QUOTE (-143)))))
+((|HasCategory| (-846 |#1|) (QUOTE (-885))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-846 |#1|) (QUOTE (-143))) (|HasCategory| (-846 |#1|) (QUOTE (-145))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-846 |#1|) (QUOTE (-998))) (|HasCategory| (-846 |#1|) (QUOTE (-800))) (-1523 (|HasCategory| (-846 |#1|) (QUOTE (-800))) (|HasCategory| (-846 |#1|) (QUOTE (-827)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-846 |#1|) (QUOTE (-1124))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-846 |#1|) (QUOTE (-229))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -846) (|devaluate| |#1|)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -846) (|devaluate| |#1|)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -846) (|devaluate| |#1|)) (LIST (QUOTE -846) (|devaluate| |#1|)))) (|HasCategory| (-846 |#1|) (QUOTE (-302))) (|HasCategory| (-846 |#1|) (QUOTE (-537))) (|HasCategory| (-846 |#1|) (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-846 |#1|) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-846 |#1|) (QUOTE (-885)))) (|HasCategory| (-846 |#1|) (QUOTE (-143)))))
(-848 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-996))) (|HasCategory| |#2| (QUOTE (-800))) (-3891 (|HasCategory| |#2| (QUOTE (-800))) (|HasCategory| |#2| (QUOTE (-827)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
+((|HasCategory| |#2| (QUOTE (-885))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-800))) (-1523 (|HasCategory| |#2| (QUOTE (-800))) (|HasCategory| |#2| (QUOTE (-827)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143)))))
(-849 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1074)))) (-3891 (-12 (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1074))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))))
(-850)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3383,27 +3383,27 @@ NIL
(-863 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-3676 (|HasCategory| |#2| (QUOTE (-1025)))) (-3676 (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (-3676 (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))
-(-864 R S)
-((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
-NIL
-NIL
-(-865 R A B)
+((-12 (-2960 (|HasCategory| |#2| (QUOTE (-1025)))) (-2960 (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (-2960 (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))
+(-864 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-866 R)
-((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
+(-865 R S)
+((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-867 R -3002)
+(-866 R -3768)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-868 R S)
+(-867 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
+(-868 R)
+((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
+NIL
+NIL
(-869 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
@@ -3416,7 +3416,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-872 UP -3428)
+(-872 UP -3281)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3439,44 +3439,44 @@ NIL
(-877 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-878 S)
-((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4350 . T))
-((-3891 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-827)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-827))))
-(-879 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
+(-878 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-880 S)
+(-879 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
((-4350 . T))
NIL
-(-881 S)
+(-880 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-882 |p|)
-((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-363))))
-(-883 R E |VarSet| S)
+(-881 S)
+((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
+((-4350 . T))
+((-1523 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-827)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-827))))
+(-882 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-884 R S)
+(-883 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-885 S)
+(-884 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-143))))
-(-886)
+(-885)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-887 R0 -3428 UP UPUP R)
+(-886 |p|)
+((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
+((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-363))))
+(-887 R0 -3281 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3504,63 +3504,63 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-894 -3428)
+(-894 -3281)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-895)
-((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4355 "*") . T))
-NIL
-(-896 R)
+(-895 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-897)
+(-896)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-898 |xx| -3428)
-((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
-NIL
+(-897)
+((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
+(((-4355 "*") . T))
NIL
-(-899 -3428 P)
+(-898 -3281 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
+(-899 |xx| -3281)
+((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
+NIL
+NIL
(-900 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-901)
-((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
+(-901 S)
+((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-902 S)
-((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
+(-902)
+((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
(-903)
-((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
+((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
(-904)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-905)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
+(-905 R -3281)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-906 R -3428)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
+(-906)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
(-907 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-908 S R -3428)
+(-908 S R -3281)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3580,12 +3580,12 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -862) (|devaluate| |#1|))))
-(-913 -3002)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
+(-913 R -3281 -3768)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-914 R -3428 -3002)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
+(-914 -3768)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
(-915 S R Q)
@@ -3607,7 +3607,7 @@ NIL
(-919 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-920 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3616,35 +3616,35 @@ NIL
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
((|HasCategory| |#1| (QUOTE (-825))))
-(-922 R)
-((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1149) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1149) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1149) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1149) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1149) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-923 R S)
+(-922 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-924 |x| R)
+(-923 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-925 S R E |VarSet|)
+(-924 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-886))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#4| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#4| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#4| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-827))))
-(-926 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-885))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#4| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#4| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-827))))
+(-925 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
NIL
-(-927 E V R P -3428)
+(-926 E V R P -3281)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-928 E |Vars| R P S)
+(-927 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-929 E V R P -3428)
+(-928 R)
+((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1149) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1149) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1149) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1149) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1149) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-929 E V R P -3281)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-446))))
@@ -3656,42 +3656,42 @@ NIL
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-932 R E)
-((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-130)))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)))
-(-933 R L)
+(-932 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-934 S)
-((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-935 A B)
+(-933 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-936)
+(-934 S)
+((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
+((-4354 . T) (-4353 . T))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
+(-935)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-937 -3428)
+(-936 -3281)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-938 I)
+(-937 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-939)
+(-938)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
+(-939 R E)
+((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-130)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)))
(-940 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
((-4350 -12 (|has| |#2| (-467)) (|has| |#1| (-467))))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707))))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-827)))))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-827)))))
(-941)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3706,7 +3706,7 @@ NIL
NIL
(-944 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4353 . T) (-4354 . T) (-2368 . T))
+((-4353 . T) (-4354 . T) (-3526 . T))
NIL
(-945 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3726,7 +3726,7 @@ NIL
NIL
(-949 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-950)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3735,10 +3735,10 @@ NIL
(-951 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-545))))
+((|HasCategory| |#2| (QUOTE (-544))))
(-952 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4353 . T) (-2368 . T))
+((-4353 . T) (-3526 . T))
NIL
(-953 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3754,7 +3754,7 @@ NIL
NIL
(-956 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
(-957 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
@@ -3772,18 +3772,18 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-961 K R UP -3428)
+(-961 K R UP -3281)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-962 R |Var| |Expon| |Dpoly|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
-NIL
-((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-302)))))
-(-963 |vl| |nv|)
+(-962 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
+(-963 R |Var| |Expon| |Dpoly|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
+NIL
+((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-302)))))
(-964 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
@@ -3792,17 +3792,17 @@ NIL
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-966 A S)
-((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
+(-966 A B R S)
+((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-996))) (|HasCategory| |#2| (QUOTE (-800))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1124))))
-(-967 S)
-((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-2368 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-968 A B R S)
-((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
+(-967 A S)
+((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
+((|HasCategory| |#2| (QUOTE (-885))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-800))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1124))))
+(-968 S)
+((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
+((-3526 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-969 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -3814,28 +3814,28 @@ NIL
NIL
(-971 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4353 . T) (-4354 . T) (-2368 . T))
+((-4353 . T) (-4354 . T) (-3526 . T))
NIL
-(-972 R)
-((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4346 |has| |#1| (-285)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-537))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))))
-(-973 S R)
+(-972 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-285))))
-(-974 R)
+((|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-285))))
+(-973 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
((-4346 |has| |#1| (-285)) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-975 QR R QS S)
+(-974 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
+(-975 R)
+((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
+((-4346 |has| |#1| (-285)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-537))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))))
(-976 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-977 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3844,14 +3844,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-979 -3428 UP UPUP |radicnd| |n|)
+(-979 -3281 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
((-4346 |has| (-402 |#2|) (-358)) (-4351 |has| (-402 |#2|) (-358)) (-4345 |has| (-402 |#2|) (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-345))) (-3891 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-345)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-3891 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-345)))) (-3891 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-345))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3891 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))))
+((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-344))) (-1523 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-1523 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (-1523 (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-344))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-1523 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))))
(-980 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-538) (QUOTE (-886))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-538) (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-145))) (|HasCategory| (-538) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-538) (QUOTE (-996))) (|HasCategory| (-538) (QUOTE (-800))) (-3891 (|HasCategory| (-538) (QUOTE (-800))) (|HasCategory| (-538) (QUOTE (-827)))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-1124))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-538) (QUOTE (-229))) (|HasCategory| (-538) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-538) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -304) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -281) (QUOTE (-538)) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-302))) (|HasCategory| (-538) (QUOTE (-537))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-538) (LIST (QUOTE -621) (QUOTE (-538)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (|HasCategory| (-538) (QUOTE (-143)))))
+((|HasCategory| (-552) (QUOTE (-885))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-552) (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-145))) (|HasCategory| (-552) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-998))) (|HasCategory| (-552) (QUOTE (-800))) (-1523 (|HasCategory| (-552) (QUOTE (-800))) (|HasCategory| (-552) (QUOTE (-827)))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1124))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-229))) (|HasCategory| (-552) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-552) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -304) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -281) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-302))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-552) (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (|HasCategory| (-552) (QUOTE (-143)))))
(-981)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3871,10 +3871,10 @@ NIL
(-985 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-1074))))
+((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-1073))))
(-986 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-987 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
@@ -3884,19 +3884,19 @@ NIL
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
((-4346 . T) (-4351 . T) (-4345 . T) (-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4350 . T))
NIL
-(-989 R -3428)
+(-989 R -3281)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-990 R -3428)
+(-990 R -3281)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-991 -3428 UP)
+(-991 -3281 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-992 -3428 UP)
+(-992 -3281 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -3912,16 +3912,16 @@ NIL
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-996)
-((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
+(-996 |Pol|)
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
(-997 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-998 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+(-998)
+((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
(-999)
@@ -3931,35 +3931,35 @@ NIL
(-1000 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
((-4346 . T) (-4351 . T) (-4345 . T) (-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4350 . T))
-((-3891 (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-402 (-538)) (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-402 (-538)) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-402 (-538)) (LIST (QUOTE -1014) (QUOTE (-538)))))
-(-1001 -3428 L)
+((-1523 (|HasCategory| (-402 (-552)) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-402 (-552)) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-402 (-552)) (LIST (QUOTE -1014) (QUOTE (-552)))))
+(-1001 -3281 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
(-1002 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1074))))
+((|HasCategory| |#1| (QUOTE (-1073))))
(-1003 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
((-4354 . T) (-4353 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-1004)
-((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
-NIL
-NIL
-(-1005 R)
+((-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839)))))
+(-1004 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
((|HasAttribute| |#1| (QUOTE (-4355 "*"))))
-(-1006 R)
+(-1005 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302))))
-(-1007 S)
+(-1006 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
+(-1007)
+((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
+NIL
+NIL
(-1008 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
@@ -3968,14 +3968,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1010 -3428 |Expon| |VarSet| |FPol| |LFPol|)
+(-1010 -3281 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
(((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-1011)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (QUOTE (-1149))) (LIST (QUOTE |:|) (QUOTE -2191) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -304) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074))) (|HasCategory| (-1149) (QUOTE (-827))) (|HasCategory| (-51) (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (QUOTE (-1149))) (LIST (QUOTE |:|) (QUOTE -4120) (QUOTE (-52))))))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-52) (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-1149) (QUOTE (-827))) (|HasCategory| (-52) (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))))
(-1012)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -3992,22 +3992,22 @@ NIL
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1016 R)
-((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
-NIL
-NIL
-(-1017)
+(-1016)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1018 UP)
+(-1017 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1019 R)
+(-1018 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
+(-1019 R)
+((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
+NIL
+NIL
(-1020 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
@@ -4019,7 +4019,7 @@ NIL
(-1022 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
((-4354 . T) (-4353 . T))
-((-12 (|HasCategory| (-760 |#1| (-841 |#2|)) (QUOTE (-1074))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -760) (|devaluate| |#1|) (LIST (QUOTE -841) (|devaluate| |#2|)))))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-760 |#1| (-841 |#2|)) (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| (-841 |#2|) (QUOTE (-363))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-760 |#1| (-841 |#2|)) (QUOTE (-1073))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -760) (|devaluate| |#1|) (LIST (QUOTE -841) (|devaluate| |#2|)))))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-760 |#1| (-841 |#2|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| (-841 |#2|) (QUOTE (-363))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))))
(-1023)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
@@ -4032,22 +4032,22 @@ NIL
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
((-4350 . T))
NIL
-(-1026 |xx| -3428)
+(-1026 |xx| -3281)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
(-1027 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-302))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-545))) (|HasCategory| |#4| (QUOTE (-170))))
+((|HasCategory| |#4| (QUOTE (-302))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-544))) (|HasCategory| |#4| (QUOTE (-170))))
(-1028 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4353 . T) (-2368 . T) (-4348 . T) (-4347 . T))
+((-4353 . T) (-3526 . T) (-4348 . T) (-4347 . T))
NIL
(-1029 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
((-4353 . T) (-4348 . T) (-4347 . T))
-((-3891 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-302))) (|HasCategory| |#3| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-840)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))))
+((-1523 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (QUOTE (-302))) (|HasCategory| |#3| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-839)))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))))
(-1030 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4079,14 +4079,14 @@ NIL
(-1037)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (QUOTE (-1149))) (LIST (QUOTE |:|) (QUOTE -2191) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -304) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074))) (|HasCategory| (-1149) (QUOTE (-827))) (|HasCategory| (-51) (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (QUOTE (-1149))) (LIST (QUOTE |:|) (QUOTE -4120) (QUOTE (-52))))))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-52) (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-1149) (QUOTE (-827))) (|HasCategory| (-52) (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))))
(-1038 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-1149)))))
+((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-1149)))))
(-1039 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
NIL
(-1040)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4110,7 +4110,7 @@ NIL
NIL
(-1045 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
(-1046 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -4120,15 +4120,15 @@ NIL
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1048 |Base| R -3428)
-((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
+(-1048 |f|)
+((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1049 |f|)
-((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
+(-1049 |Base| R -3281)
+((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1050 |Base| R -3428)
+(-1050 |Base| R -3281)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -4136,14 +4136,14 @@ NIL
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1052 R UP M)
-((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4346 |has| |#1| (-358)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-345))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-345)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-345)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))))
-(-1053 UP SAE UPA)
+(-1052 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
+(-1053 R UP M)
+((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
+((-4346 |has| |#1| (-358)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-344)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))))
(-1054 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4170,74 +4170,74 @@ NIL
NIL
(-1060 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-1061 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1062 S)
-((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1074))))
-(-1063 R S)
+(-1062 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-825))))
-(-1064)
+(-1063)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
+(-1064 R S)
+((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
+NIL
+NIL
(-1065 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1074))))
-(-1066 R S)
-((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
-NIL
+((|HasCategory| |#1| (QUOTE (-1073))))
+(-1066 S)
+((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
+((-3526 . T))
NIL
(-1067 S)
-((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-2368 . T))
+((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
+((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1073))))
(-1068 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-1069)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1070 S)
-((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4353 . T) (-4343 . T) (-4354 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-827))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-1071 A S)
+(-1070 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1072 S)
+(-1071 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4343 . T) (-2368 . T))
+((-4343 . T) (-3526 . T))
NIL
-(-1073 S)
+(-1072 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1074)
+(-1073)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1075 |m| |n|)
-((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
+(-1074 |m| |n|)
+((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1076)
-((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
+(-1075 S)
+((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
+((-4353 . T) (-4343 . T) (-4354 . T))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-827))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
+(-1076 |Str| |Sym| |Int| |Flt| |Expr|)
+((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1077 |Str| |Sym| |Int| |Flt| |Expr|)
-((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
+(-1077)
+((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
(-1078 |Str| |Sym| |Int| |Flt| |Expr|)
@@ -4258,7 +4258,7 @@ NIL
NIL
(-1082 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
(-1083)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4275,25 +4275,25 @@ NIL
(-1086 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4347 |has| |#3| (-1025)) (-4348 |has| |#3| (-1025)) (-4350 |has| |#3| (-6 -4350)) ((-4355 "*") |has| |#3| (-170)) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#3| (QUOTE (-358))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-773))) (-3891 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825)))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-170))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#3| (QUOTE -4350)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1073)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#3| (QUOTE (-358))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-773))) (-1523 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825)))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-170))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-1073)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-229)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-358)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-707)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-773)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-825)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (|HasCategory| |#3| (QUOTE (-1025))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1073)))) (|HasAttribute| |#3| (QUOTE -4350)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-839)))))
(-1087 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-446))))
(-1088)
-((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
+((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1089)
-((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
+(-1089 R -3281)
+((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1090 R -3428)
-((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1090 R)
+((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1091 R)
-((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1091)
+((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
(-1092)
@@ -4306,7 +4306,7 @@ NIL
NIL
(-1094 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4353 . T) (-4354 . T) (-2368 . T))
+((-4353 . T) (-4354 . T) (-3526 . T))
NIL
(-1095 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
@@ -4314,7 +4314,7 @@ NIL
((|HasCategory| |#3| (QUOTE (-358))) (|HasAttribute| |#3| (QUOTE (-4355 "*"))) (|HasCategory| |#3| (QUOTE (-170))))
(-1096 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-2368 . T) (-4353 . T) (-4347 . T) (-4348 . T) (-4350 . T))
+((-3526 . T) (-4353 . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-1097 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4322,17 +4322,17 @@ NIL
NIL
(-1098 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-1099 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-358))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-358))))
(-1100 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
-(-1101 UP -3428)
+(-1101 UP -3281)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4370,7 +4370,7 @@ NIL
NIL
(-1110)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-1111)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
@@ -4387,18 +4387,18 @@ NIL
(-1114 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1113) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1074)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1074))) (-3891 (-12 (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1113) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1074)))) (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1113) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1073)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1073))) (-1523 (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -597) (QUOTE (-839)))) (-12 (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1113) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1073))))) (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -597) (QUOTE (-839)))))
(-1115 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
((-4350 . T) (-4342 |has| |#2| (-6 (-4355 "*"))) (-4353 . T) (-4347 . T) (-4348 . T))
-((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-170))))
+((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (-1523 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-170))))
(-1116 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1117)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
(-1118 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4407,23 +4407,23 @@ NIL
(-1119 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
((-4354 . T) (-4353 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839)))))
(-1120 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-1121 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
(-1122 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-1123 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-827))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-827))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))))
(-1124)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4433,43 +4433,43 @@ NIL
NIL
NIL
(-1126 S)
-((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4354 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-1127 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1128 A B)
+(-1127 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1129 A B C)
+(-1128 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
+(-1129 S)
+((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
+((-4354 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-1130)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
(-1131)
NIL
((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1074))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-1523 (-12 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1073))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-839)))))
(-1132 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074))) (|HasCategory| (-1131) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#1|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| (-1131) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -597) (QUOTE (-839)))))
(-1133 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))))
+((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))))
(-1134 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
(-1135 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
(-1136 R UP)
@@ -4490,9 +4490,9 @@ NIL
NIL
(-1140 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4355 "*") -3891 (-3191 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-800))) (|has| |#1| (-170)) (-3191 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-886)))) (-4346 -3891 (-3191 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-800))) (|has| |#1| (-545)) (-3191 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-886)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-996)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1124)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-229)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|))))) (|HasCategory| (-538) (QUOTE (-1085))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-996)))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-302)))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1141 R -3428)
+(((-4355 "*") -1523 (-3743 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-800))) (|has| |#1| (-170)) (-3743 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-885)))) (-4346 -1523 (-3743 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-800))) (|has| |#1| (-544)) (-3743 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-885)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+((-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1085))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358))))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-1141 R -3281)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4500,26 +4500,26 @@ NIL
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1143 R)
-((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1144 R S)
+(-1143 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1145 E OV R P)
+(-1144 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
+(-1145 R)
+((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-1146 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-538)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-552)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))))
(-1147 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|)))) (|HasCategory| (-751) (QUOTE (-1085))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|)))) (|HasCategory| (-751) (QUOTE (-1085))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))))
(-1148)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4534,10 +4534,10 @@ NIL
NIL
(-1151 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| (-947) (QUOTE (-130)))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| (-947) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)))
(-1152)
-((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
+((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
(-1153)
@@ -4560,14 +4560,14 @@ NIL
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1158 |Key| |Entry|)
-((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4353 . T) (-4354 . T))
-((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))))
-(-1159 S)
+(-1158 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
+(-1159 |Key| |Entry|)
+((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
+((-4353 . T) (-4354 . T))
+((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))))
(-1160 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
@@ -4578,7 +4578,7 @@ NIL
NIL
(-1162 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4354 . T) (-2368 . T))
+((-4354 . T) (-3526 . T))
NIL
(-1163 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
@@ -4588,12 +4588,12 @@ NIL
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1165)
-((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
+(-1165 S)
+((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1166 S)
-((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
+(-1166)
+((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
(-1167)
@@ -4619,7 +4619,7 @@ NIL
(-1172 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
((-4354 . T) (-4353 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-1173 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4628,7 +4628,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1175 R -3428)
+(-1175 R -3281)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4636,22 +4636,22 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1177 R -3428)
+(-1177 R -3281)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -862) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -862) (|devaluate| |#1|)))))
-(-1178 |Coef|)
-((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-358))))
-(-1179 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -862) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -862) (|devaluate| |#1|)))))
+(-1178 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-363))))
-(-1180 R E V P)
+(-1179 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
+(-1180 |Coef|)
+((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-358))))
(-1181 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4663,19 +4663,19 @@ NIL
(-1183 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-1184 -3428)
+((|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
+(-1184 -3281)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
(-1185)
-((|constructor| (NIL "The fundamental Type.")))
-((-2368 . T))
-NIL
-(-1186)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
+(-1186)
+((|constructor| (NIL "The fundamental Type.")))
+((-3526 . T))
+NIL
(-1187 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
@@ -4692,153 +4692,153 @@ NIL
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-1191 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4355 "*") -3891 (-3191 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-800))) (|has| |#1| (-170)) (-3191 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-886)))) (-4346 -3891 (-3191 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-800))) (|has| |#1| (-545)) (-3191 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-886)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-996)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-1124)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-229)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|))))) (|HasCategory| (-538) (QUOTE (-1085))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-996)))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-800)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-302)))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-800)))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-800)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-827)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1192 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1191 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1193 |Coef|)
+(-1192 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-1194 S |Coef| UTS)
+(-1193 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-358))))
-(-1195 |Coef| UTS)
+(-1194 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-2368 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-3526 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-1196 |Coef| UTS)
+(-1195 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-996)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143))))) (-3891 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-145))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|)))))) (-3891 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-229))))) (|HasCategory| (-538) (QUOTE (-1085))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-996)))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827)))) (|HasCategory| |#2| (QUOTE (-886))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-302)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143))))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+((-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-885)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143))))) (-1523 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-145))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-229)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1085))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-885)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-998)))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827)))) (|HasCategory| |#2| (QUOTE (-885))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-302)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143))))))
+(-1196 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
+(((-4355 "*") -1523 (-3743 (|has| |#1| (-358)) (|has| (-1224 |#1| |#2| |#3|) (-800))) (|has| |#1| (-170)) (-3743 (|has| |#1| (-358)) (|has| (-1224 |#1| |#2| |#3|) (-885)))) (-4346 -1523 (-3743 (|has| |#1| (-358)) (|has| (-1224 |#1| |#2| |#3|) (-800))) (|has| |#1| (-544)) (-3743 (|has| |#1| (-358)) (|has| (-1224 |#1| |#2| |#3|) (-885)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+((-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1085))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358))))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-1197 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1198 S)
-((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1074))))
-(-1199 R S)
+(-1198 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-825))))
-(-1200 |x| R)
-((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-545)) (-4349 |has| |#2| (-358)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-1201 |x| R |y| S)
+(-1199 S)
+((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1073))))
+(-1200 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1202 R Q UP)
+(-1201 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1203 R UP)
+(-1202 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1204 R UP)
+(-1203 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1205 R U)
+(-1204 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1206 S R)
-((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
+(-1205 |x| R)
+((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
+(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-544)) (-4349 |has| |#2| (-358)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#2| (QUOTE (-885))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(-1206 R PR S PS)
+((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1124))))
-(-1207 R)
-((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
NIL
-(-1208 R PR S PS)
-((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
+(-1207 S R)
+((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1124))))
+(-1208 R)
+((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T))
NIL
(-1209 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1085))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4317) (LIST (|devaluate| |#2|) (QUOTE (-1149))))))
+((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1085))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1683) (LIST (|devaluate| |#2|) (QUOTE (-1149))))))
(-1210 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
(-1211 RC P)
-((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
+((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1212 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-538)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))))
-(-1213 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1212 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1214 |Coef|)
+(-1213 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-1215 S |Coef| ULS)
+(-1214 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1216 |Coef| ULS)
+(-1215 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-1217 |Coef| ULS)
+(-1216 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-538)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-552)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))))
+(-1217 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-552)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))))
(-1218 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4355 "*") |has| (-1212 |#2| |#3| |#4|) (-170)) (-4346 |has| (-1212 |#2| |#3| |#4|) (-545)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-358))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-446))) (-3891 (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-545))))
+(((-4355 "*") |has| (-1217 |#2| |#3| |#4|) (-170)) (-4346 |has| (-1217 |#2| |#3| |#4|) (-544)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| (-1217 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1217 |#2| |#3| |#4|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-1217 |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-358))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-446))) (-1523 (|HasCategory| (-1217 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-1217 |#2| |#3| |#4|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-544))))
(-1219 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
((|HasAttribute| |#1| (QUOTE -4354)))
(-1220 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-2368 . T))
+((-3526 . T))
NIL
-(-1221 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|)))) (|HasCategory| (-751) (QUOTE (-1085))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))))
-(-1222 |Coef1| |Coef2| UTS1 UTS2)
+(-1221 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1223 S |Coef|)
+(-1222 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-936))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasSignature| |#2| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4172) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1149))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))))
-(-1224 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasSignature| |#2| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2481) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1149))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))))
+(-1223 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
+(-1224 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
+(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|)))) (|HasCategory| (-751) (QUOTE (-1085))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))))
(-1225 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1226 -3428 UP L UTS)
+(-1226 -3281 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-545))))
+((|HasCategory| |#1| (QUOTE (-544))))
(-1227)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
-((-2368 . T))
+((-3526 . T))
NIL
(-1228 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
@@ -4850,30 +4850,30 @@ NIL
((|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1230 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4354 . T) (-4353 . T) (-2368 . T))
+((-4354 . T) (-4353 . T) (-3526 . T))
NIL
-(-1231 R)
-((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4354 . T) (-4353 . T))
-((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))))
-(-1232 A B)
+(-1231 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
+(-1232 R)
+((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
+((-4354 . T) (-4353 . T))
+((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))))
(-1233)
-((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
+((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
(-1234)
-((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
+((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
(-1235)
-((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
+((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
(-1236)
-((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
+((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
(-1237)
@@ -4892,7 +4892,7 @@ NIL
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1241 K R UP -3428)
+(-1241 K R UP -3281)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -4911,7 +4911,7 @@ NIL
(-1245 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
((-4354 . T) (-4353 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839)))))
(-1246 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
((-4347 . T) (-4348 . T) (-4350 . T))
@@ -4924,30 +4924,30 @@ NIL
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1249 S -3428)
+(-1249 |vl| R)
+((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
+((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T))
+NIL
+(-1250 S -3281)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))))
-(-1250 -3428)
+(-1251 -3281)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T))
NIL
-(-1251 |vl| R)
-((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T))
-NIL
(-1252 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -698) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasAttribute| |#2| (QUOTE -4346)))
-(-1253 R)
-((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4346 |has| |#1| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4346)))
-(-1254 |vl| R)
+((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -698) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasAttribute| |#2| (QUOTE -4346)))
+(-1253 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T))
NIL
+(-1254 R)
+((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
+((-4346 |has| |#1| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4346)))
(-1255 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
((-4350 . T) (-4351 |has| |#1| (-6 -4351)) (-4346 |has| |#1| (-6 -4346)) (-4348 . T) (-4347 . T))
@@ -4988,4 +4988,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2267916 2267921 2267926 2267931) (-2 NIL 2267896 2267901 2267906 2267911) (-1 NIL 2267876 2267881 2267886 2267891) (0 NIL 2267856 2267861 2267866 2267871) (-1260 "ZMOD.spad" 2267665 2267678 2267794 2267851) (-1259 "ZLINDEP.spad" 2266709 2266720 2267655 2267660) (-1258 "ZDSOLVE.spad" 2256558 2256580 2266699 2266704) (-1257 "YSTREAM.spad" 2256051 2256062 2256548 2256553) (-1256 "XRPOLY.spad" 2255271 2255291 2255907 2255976) (-1255 "XPR.spad" 2253000 2253013 2254989 2255088) (-1254 "XPOLYC.spad" 2252317 2252333 2252926 2252995) (-1253 "XPOLY.spad" 2251872 2251883 2252173 2252242) (-1252 "XPBWPOLY.spad" 2250309 2250329 2251652 2251721) (-1251 "XFALG.spad" 2247333 2247349 2250235 2250304) (-1250 "XF.spad" 2245794 2245809 2247235 2247328) (-1249 "XF.spad" 2244235 2244252 2245678 2245683) (-1248 "XEXPPKG.spad" 2243486 2243512 2244225 2244230) (-1247 "XDPOLY.spad" 2243100 2243116 2243342 2243411) (-1246 "XALG.spad" 2242698 2242709 2243056 2243095) (-1245 "WUTSET.spad" 2238537 2238554 2242344 2242371) (-1244 "WP.spad" 2237551 2237595 2238395 2238462) (-1243 "WHILEAST.spad" 2237349 2237358 2237541 2237546) (-1242 "WHEREAST.spad" 2237020 2237029 2237339 2237344) (-1241 "WFFINTBS.spad" 2234583 2234605 2237010 2237015) (-1240 "WEIER.spad" 2232797 2232808 2234573 2234578) (-1239 "VSPACE.spad" 2232470 2232481 2232765 2232792) (-1238 "VSPACE.spad" 2232163 2232176 2232460 2232465) (-1237 "VOID.spad" 2231753 2231762 2232153 2232158) (-1236 "VIEWDEF.spad" 2226950 2226959 2231743 2231748) (-1235 "VIEW3D.spad" 2210785 2210794 2226940 2226945) (-1234 "VIEW2D.spad" 2198522 2198531 2210775 2210780) (-1233 "VIEW.spad" 2196144 2196153 2198512 2198517) (-1232 "VECTOR2.spad" 2194771 2194784 2196134 2196139) (-1231 "VECTOR.spad" 2193446 2193457 2193697 2193724) (-1230 "VECTCAT.spad" 2191334 2191345 2193402 2193441) (-1229 "VECTCAT.spad" 2189042 2189055 2191112 2191117) (-1228 "VARIABLE.spad" 2188822 2188837 2189032 2189037) (-1227 "UTYPE.spad" 2188456 2188465 2188802 2188817) (-1226 "UTSODETL.spad" 2187749 2187773 2188412 2188417) (-1225 "UTSODE.spad" 2185937 2185957 2187739 2187744) (-1224 "UTSCAT.spad" 2183388 2183404 2185835 2185932) (-1223 "UTSCAT.spad" 2180483 2180501 2182932 2182937) (-1222 "UTS2.spad" 2180076 2180111 2180473 2180478) (-1221 "UTS.spad" 2174865 2174893 2178543 2178640) (-1220 "URAGG.spad" 2169487 2169498 2174845 2174860) (-1219 "URAGG.spad" 2164083 2164096 2169443 2169448) (-1218 "UPXSSING.spad" 2161726 2161752 2163164 2163297) (-1217 "UPXSCONS.spad" 2159483 2159503 2159858 2160007) (-1216 "UPXSCCA.spad" 2157941 2157961 2159329 2159478) (-1215 "UPXSCCA.spad" 2156541 2156563 2157931 2157936) (-1214 "UPXSCAT.spad" 2155122 2155138 2156387 2156536) (-1213 "UPXS2.spad" 2154663 2154716 2155112 2155117) (-1212 "UPXS.spad" 2151690 2151718 2152795 2152944) (-1211 "UPSQFREE.spad" 2150103 2150117 2151680 2151685) (-1210 "UPSCAT.spad" 2147696 2147720 2150001 2150098) (-1209 "UPSCAT.spad" 2144995 2145021 2147302 2147307) (-1208 "UPOLYC2.spad" 2144464 2144483 2144985 2144990) (-1207 "UPOLYC.spad" 2139442 2139453 2144306 2144459) (-1206 "UPOLYC.spad" 2134312 2134325 2139178 2139183) (-1205 "UPMP.spad" 2133202 2133215 2134302 2134307) (-1204 "UPDIVP.spad" 2132765 2132779 2133192 2133197) (-1203 "UPDECOMP.spad" 2131002 2131016 2132755 2132760) (-1202 "UPCDEN.spad" 2130209 2130225 2130992 2130997) (-1201 "UP2.spad" 2129571 2129592 2130199 2130204) (-1200 "UP.spad" 2126613 2126628 2127121 2127274) (-1199 "UNISEG2.spad" 2126106 2126119 2126569 2126574) (-1198 "UNISEG.spad" 2125459 2125470 2126025 2126030) (-1197 "UNIFACT.spad" 2124560 2124572 2125449 2125454) (-1196 "ULSCONS.spad" 2118599 2118619 2118971 2119120) (-1195 "ULSCCAT.spad" 2116196 2116216 2118419 2118594) (-1194 "ULSCCAT.spad" 2113927 2113949 2116152 2116157) (-1193 "ULSCAT.spad" 2112143 2112159 2113773 2113922) (-1192 "ULS2.spad" 2111655 2111708 2112133 2112138) (-1191 "ULS.spad" 2102209 2102237 2103302 2103731) (-1190 "UFD.spad" 2101274 2101283 2102135 2102204) (-1189 "UFD.spad" 2100401 2100412 2101264 2101269) (-1188 "UDVO.spad" 2099248 2099257 2100391 2100396) (-1187 "UDPO.spad" 2096675 2096686 2099204 2099209) (-1186 "TYPEAST.spad" 2096594 2096603 2096665 2096670) (-1185 "TYPE.spad" 2096516 2096525 2096574 2096589) (-1184 "TWOFACT.spad" 2095166 2095181 2096506 2096511) (-1183 "TUPLE.spad" 2094552 2094563 2095065 2095070) (-1182 "TUBETOOL.spad" 2091389 2091398 2094542 2094547) (-1181 "TUBE.spad" 2090030 2090047 2091379 2091384) (-1180 "TSETCAT.spad" 2077145 2077162 2089986 2090025) (-1179 "TSETCAT.spad" 2064258 2064277 2077101 2077106) (-1178 "TS.spad" 2062847 2062863 2063823 2063920) (-1177 "TRMANIP.spad" 2057213 2057230 2062553 2062558) (-1176 "TRIMAT.spad" 2056172 2056197 2057203 2057208) (-1175 "TRIGMNIP.spad" 2054689 2054706 2056162 2056167) (-1174 "TRIGCAT.spad" 2054201 2054210 2054679 2054684) (-1173 "TRIGCAT.spad" 2053711 2053722 2054191 2054196) (-1172 "TREE.spad" 2052282 2052293 2053318 2053345) (-1171 "TRANFUN.spad" 2052113 2052122 2052272 2052277) (-1170 "TRANFUN.spad" 2051942 2051953 2052103 2052108) (-1169 "TOPSP.spad" 2051616 2051625 2051932 2051937) (-1168 "TOOLSIGN.spad" 2051279 2051290 2051606 2051611) (-1167 "TEXTFILE.spad" 2049836 2049845 2051269 2051274) (-1166 "TEX1.spad" 2049392 2049403 2049826 2049831) (-1165 "TEX.spad" 2046409 2046418 2049382 2049387) (-1164 "TEMUTL.spad" 2045964 2045973 2046399 2046404) (-1163 "TBCMPPK.spad" 2044057 2044080 2045954 2045959) (-1162 "TBAGG.spad" 2043081 2043104 2044025 2044052) (-1161 "TBAGG.spad" 2042125 2042150 2043071 2043076) (-1160 "TANEXP.spad" 2041501 2041512 2042115 2042120) (-1159 "TABLEAU.spad" 2040982 2040993 2041491 2041496) (-1158 "TABLE.spad" 2039393 2039416 2039663 2039690) (-1157 "TABLBUMP.spad" 2036176 2036187 2039383 2039388) (-1156 "SYSTEM.spad" 2035450 2035459 2036166 2036171) (-1155 "SYSSOLP.spad" 2032923 2032934 2035440 2035445) (-1154 "SYNTAX.spad" 2029115 2029124 2032913 2032918) (-1153 "SYMTAB.spad" 2027171 2027180 2029105 2029110) (-1152 "SYMS.spad" 2023162 2023171 2027161 2027166) (-1151 "SYMPOLY.spad" 2022169 2022180 2022251 2022378) (-1150 "SYMFUNC.spad" 2021644 2021655 2022159 2022164) (-1149 "SYMBOL.spad" 2018980 2018989 2021634 2021639) (-1148 "SWITCH.spad" 2015737 2015746 2018970 2018975) (-1147 "SUTS.spad" 2012636 2012664 2014204 2014301) (-1146 "SUPXS.spad" 2009650 2009678 2010768 2010917) (-1145 "SUPFRACF.spad" 2008755 2008773 2009640 2009645) (-1144 "SUP2.spad" 2008145 2008158 2008745 2008750) (-1143 "SUP.spad" 2004914 2004925 2005695 2005848) (-1142 "SUMRF.spad" 2003880 2003891 2004904 2004909) (-1141 "SUMFS.spad" 2003513 2003530 2003870 2003875) (-1140 "SULS.spad" 1994054 1994082 1995160 1995589) (-1139 "SUCHTAST.spad" 1993823 1993832 1994044 1994049) (-1138 "SUCH.spad" 1993503 1993518 1993813 1993818) (-1137 "SUBSPACE.spad" 1985510 1985525 1993493 1993498) (-1136 "SUBRESP.spad" 1984670 1984684 1985466 1985471) (-1135 "STTFNC.spad" 1981138 1981154 1984660 1984665) (-1134 "STTF.spad" 1977237 1977253 1981128 1981133) (-1133 "STTAYLOR.spad" 1969635 1969646 1977118 1977123) (-1132 "STRTBL.spad" 1968140 1968157 1968289 1968316) (-1131 "STRING.spad" 1967549 1967558 1967563 1967590) (-1130 "STRICAT.spad" 1967325 1967334 1967505 1967544) (-1129 "STREAM3.spad" 1966870 1966885 1967315 1967320) (-1128 "STREAM2.spad" 1965938 1965951 1966860 1966865) (-1127 "STREAM1.spad" 1965642 1965653 1965928 1965933) (-1126 "STREAM.spad" 1962410 1962421 1965167 1965182) (-1125 "STINPROD.spad" 1961316 1961332 1962400 1962405) (-1124 "STEP.spad" 1960517 1960526 1961306 1961311) (-1123 "STBL.spad" 1959043 1959071 1959210 1959225) (-1122 "STAGG.spad" 1958108 1958119 1959023 1959038) (-1121 "STAGG.spad" 1957181 1957194 1958098 1958103) (-1120 "STACK.spad" 1956532 1956543 1956788 1956815) (-1119 "SREGSET.spad" 1954236 1954253 1956178 1956205) (-1118 "SRDCMPK.spad" 1952781 1952801 1954226 1954231) (-1117 "SRAGG.spad" 1947866 1947875 1952737 1952776) (-1116 "SRAGG.spad" 1942983 1942994 1947856 1947861) (-1115 "SQMATRIX.spad" 1940599 1940617 1941515 1941602) (-1114 "SPLTREE.spad" 1935151 1935164 1940035 1940062) (-1113 "SPLNODE.spad" 1931739 1931752 1935141 1935146) (-1112 "SPFCAT.spad" 1930516 1930525 1931729 1931734) (-1111 "SPECOUT.spad" 1929066 1929075 1930506 1930511) (-1110 "SPADXPT.spad" 1921195 1921204 1929046 1929061) (-1109 "spad-parser.spad" 1920660 1920669 1921185 1921190) (-1108 "SPADAST.spad" 1920361 1920370 1920650 1920655) (-1107 "SPACEC.spad" 1904374 1904385 1920351 1920356) (-1106 "SPACE3.spad" 1904150 1904161 1904364 1904369) (-1105 "SORTPAK.spad" 1903695 1903708 1904106 1904111) (-1104 "SOLVETRA.spad" 1901452 1901463 1903685 1903690) (-1103 "SOLVESER.spad" 1899972 1899983 1901442 1901447) (-1102 "SOLVERAD.spad" 1895982 1895993 1899962 1899967) (-1101 "SOLVEFOR.spad" 1894402 1894420 1895972 1895977) (-1100 "SNTSCAT.spad" 1893990 1894007 1894358 1894397) (-1099 "SMTS.spad" 1892250 1892276 1893555 1893652) (-1098 "SMP.spad" 1889689 1889709 1890079 1890206) (-1097 "SMITH.spad" 1888532 1888557 1889679 1889684) (-1096 "SMATCAT.spad" 1886630 1886660 1888464 1888527) (-1095 "SMATCAT.spad" 1884672 1884704 1886508 1886513) (-1094 "SKAGG.spad" 1883621 1883632 1884628 1884667) (-1093 "SINT.spad" 1881929 1881938 1883487 1883616) (-1092 "SIMPAN.spad" 1881657 1881666 1881919 1881924) (-1091 "SIGNRF.spad" 1880772 1880783 1881647 1881652) (-1090 "SIGNEF.spad" 1880048 1880065 1880762 1880767) (-1089 "SIGAST.spad" 1879429 1879438 1880038 1880043) (-1088 "SIG.spad" 1878757 1878766 1879419 1879424) (-1087 "SHP.spad" 1876675 1876690 1878713 1878718) (-1086 "SHDP.spad" 1867660 1867687 1868169 1868300) (-1085 "SGROUP.spad" 1867268 1867277 1867650 1867655) (-1084 "SGROUP.spad" 1866874 1866885 1867258 1867263) (-1083 "SGCF.spad" 1859755 1859764 1866864 1866869) (-1082 "SFRTCAT.spad" 1858671 1858688 1859711 1859750) (-1081 "SFRGCD.spad" 1857734 1857754 1858661 1858666) (-1080 "SFQCMPK.spad" 1852371 1852391 1857724 1857729) (-1079 "SFORT.spad" 1851806 1851820 1852361 1852366) (-1078 "SEXOF.spad" 1851649 1851689 1851796 1851801) (-1077 "SEXCAT.spad" 1848753 1848793 1851639 1851644) (-1076 "SEX.spad" 1848645 1848654 1848743 1848748) (-1075 "SETMN.spad" 1847081 1847098 1848635 1848640) (-1074 "SETCAT.spad" 1846566 1846575 1847071 1847076) (-1073 "SETCAT.spad" 1846049 1846060 1846556 1846561) (-1072 "SETAGG.spad" 1842558 1842569 1846017 1846044) (-1071 "SETAGG.spad" 1839087 1839100 1842548 1842553) (-1070 "SET.spad" 1837387 1837398 1838508 1838547) (-1069 "SEQAST.spad" 1837090 1837099 1837377 1837382) (-1068 "SEGXCAT.spad" 1836202 1836215 1837070 1837085) (-1067 "SEGCAT.spad" 1835021 1835032 1836182 1836197) (-1066 "SEGBIND2.spad" 1834717 1834730 1835011 1835016) (-1065 "SEGBIND.spad" 1833789 1833800 1834672 1834677) (-1064 "SEGAST.spad" 1833503 1833512 1833779 1833784) (-1063 "SEG2.spad" 1832928 1832941 1833459 1833464) (-1062 "SEG.spad" 1832741 1832752 1832847 1832852) (-1061 "SDVAR.spad" 1832017 1832028 1832731 1832736) (-1060 "SDPOL.spad" 1829407 1829418 1829698 1829825) (-1059 "SCPKG.spad" 1827486 1827497 1829397 1829402) (-1058 "SCOPE.spad" 1826631 1826640 1827476 1827481) (-1057 "SCACHE.spad" 1825313 1825324 1826621 1826626) (-1056 "SASTCAT.spad" 1825222 1825231 1825303 1825308) (-1055 "SAOS.spad" 1825094 1825103 1825212 1825217) (-1054 "SAERFFC.spad" 1824807 1824827 1825084 1825089) (-1053 "SAEFACT.spad" 1824508 1824528 1824797 1824802) (-1052 "SAE.spad" 1822683 1822699 1823294 1823429) (-1051 "RURPK.spad" 1820324 1820340 1822673 1822678) (-1050 "RULESET.spad" 1819765 1819789 1820314 1820319) (-1049 "RULECOLD.spad" 1819617 1819630 1819755 1819760) (-1048 "RULE.spad" 1817821 1817845 1819607 1819612) (-1047 "RSTRCAST.spad" 1817538 1817547 1817811 1817816) (-1046 "RSETGCD.spad" 1813916 1813936 1817528 1817533) (-1045 "RSETCAT.spad" 1803688 1803705 1813872 1813911) (-1044 "RSETCAT.spad" 1793492 1793511 1803678 1803683) (-1043 "RSDCMPK.spad" 1791944 1791964 1793482 1793487) (-1042 "RRCC.spad" 1790328 1790358 1791934 1791939) (-1041 "RRCC.spad" 1788710 1788742 1790318 1790323) (-1040 "RPTAST.spad" 1788412 1788421 1788700 1788705) (-1039 "RPOLCAT.spad" 1767772 1767787 1788280 1788407) (-1038 "RPOLCAT.spad" 1746846 1746863 1767356 1767361) (-1037 "ROUTINE.spad" 1742709 1742718 1745493 1745520) (-1036 "ROMAN.spad" 1741941 1741950 1742575 1742704) (-1035 "ROIRC.spad" 1741021 1741053 1741931 1741936) (-1034 "RNS.spad" 1739924 1739933 1740923 1741016) (-1033 "RNS.spad" 1738913 1738924 1739914 1739919) (-1032 "RNG.spad" 1738648 1738657 1738903 1738908) (-1031 "RMODULE.spad" 1738286 1738297 1738638 1738643) (-1030 "RMCAT2.spad" 1737694 1737751 1738276 1738281) (-1029 "RMATRIX.spad" 1736373 1736392 1736861 1736900) (-1028 "RMATCAT.spad" 1731894 1731925 1736317 1736368) (-1027 "RMATCAT.spad" 1727317 1727350 1731742 1731747) (-1026 "RINTERP.spad" 1727205 1727225 1727307 1727312) (-1025 "RING.spad" 1726562 1726571 1727185 1727200) (-1024 "RING.spad" 1725927 1725938 1726552 1726557) (-1023 "RIDIST.spad" 1725311 1725320 1725917 1725922) (-1022 "RGCHAIN.spad" 1723890 1723906 1724796 1724823) (-1021 "RGBCSPC.spad" 1723671 1723683 1723880 1723885) (-1020 "RGBCMDL.spad" 1723201 1723213 1723661 1723666) (-1019 "RFFACTOR.spad" 1722663 1722674 1723191 1723196) (-1018 "RFFACT.spad" 1722398 1722410 1722653 1722658) (-1017 "RFDIST.spad" 1721386 1721395 1722388 1722393) (-1016 "RF.spad" 1719000 1719011 1721376 1721381) (-1015 "RETSOL.spad" 1718417 1718430 1718990 1718995) (-1014 "RETRACT.spad" 1717766 1717777 1718407 1718412) (-1013 "RETRACT.spad" 1717113 1717126 1717756 1717761) (-1012 "RETAST.spad" 1716925 1716934 1717103 1717108) (-1011 "RESULT.spad" 1714985 1714994 1715572 1715599) (-1010 "RESRING.spad" 1714332 1714379 1714923 1714980) (-1009 "RESLATC.spad" 1713656 1713667 1714322 1714327) (-1008 "REPSQ.spad" 1713385 1713396 1713646 1713651) (-1007 "REPDB.spad" 1713090 1713101 1713375 1713380) (-1006 "REP2.spad" 1702662 1702673 1712932 1712937) (-1005 "REP1.spad" 1696652 1696663 1702612 1702617) (-1004 "REP.spad" 1694204 1694213 1696642 1696647) (-1003 "REGSET.spad" 1692001 1692018 1693850 1693877) (-1002 "REF.spad" 1691330 1691341 1691956 1691961) (-1001 "REDORDER.spad" 1690506 1690523 1691320 1691325) (-1000 "RECLOS.spad" 1689289 1689309 1689993 1690086) (-999 "REALSOLV.spad" 1688422 1688430 1689279 1689284) (-998 "REAL0Q.spad" 1685705 1685719 1688412 1688417) (-997 "REAL0.spad" 1682534 1682548 1685695 1685700) (-996 "REAL.spad" 1682407 1682415 1682524 1682529) (-995 "RDUCEAST.spad" 1682129 1682137 1682397 1682402) (-994 "RDIV.spad" 1681781 1681805 1682119 1682124) (-993 "RDIST.spad" 1681345 1681355 1681771 1681776) (-992 "RDETRS.spad" 1680142 1680159 1681335 1681340) (-991 "RDETR.spad" 1678250 1678267 1680132 1680137) (-990 "RDEEFS.spad" 1677324 1677340 1678240 1678245) (-989 "RDEEF.spad" 1676321 1676337 1677314 1677319) (-988 "RCFIELD.spad" 1673508 1673516 1676223 1676316) (-987 "RCFIELD.spad" 1670781 1670791 1673498 1673503) (-986 "RCAGG.spad" 1668684 1668694 1670761 1670776) (-985 "RCAGG.spad" 1666524 1666536 1668603 1668608) (-984 "RATRET.spad" 1665885 1665895 1666514 1666519) (-983 "RATFACT.spad" 1665578 1665589 1665875 1665880) (-982 "RANDSRC.spad" 1664898 1664906 1665568 1665573) (-981 "RADUTIL.spad" 1664653 1664661 1664888 1664893) (-980 "RADIX.spad" 1661444 1661457 1663121 1663214) (-979 "RADFF.spad" 1659858 1659894 1659976 1660132) (-978 "RADCAT.spad" 1659452 1659460 1659848 1659853) (-977 "RADCAT.spad" 1659044 1659054 1659442 1659447) (-976 "QUEUE.spad" 1658387 1658397 1658651 1658678) (-975 "QUATCT2.spad" 1658006 1658024 1658377 1658382) (-974 "QUATCAT.spad" 1656171 1656181 1657936 1658001) (-973 "QUATCAT.spad" 1654087 1654099 1655854 1655859) (-972 "QUAT.spad" 1652669 1652679 1653011 1653076) (-971 "QUAGG.spad" 1651483 1651493 1652625 1652664) (-970 "QQUTAST.spad" 1651252 1651260 1651473 1651478) (-969 "QFORM.spad" 1650715 1650729 1651242 1651247) (-968 "QFCAT2.spad" 1650406 1650422 1650705 1650710) (-967 "QFCAT.spad" 1649097 1649107 1650296 1650401) (-966 "QFCAT.spad" 1647392 1647404 1648593 1648598) (-965 "QEQUAT.spad" 1646949 1646957 1647382 1647387) (-964 "QCMPACK.spad" 1641696 1641715 1646939 1646944) (-963 "QALGSET2.spad" 1639692 1639710 1641686 1641691) (-962 "QALGSET.spad" 1635769 1635801 1639606 1639611) (-961 "PWFFINTB.spad" 1633079 1633100 1635759 1635764) (-960 "PUSHVAR.spad" 1632408 1632427 1633069 1633074) (-959 "PTRANFN.spad" 1628534 1628544 1632398 1632403) (-958 "PTPACK.spad" 1625622 1625632 1628524 1628529) (-957 "PTFUNC2.spad" 1625443 1625457 1625612 1625617) (-956 "PTCAT.spad" 1624525 1624535 1625399 1625438) (-955 "PSQFR.spad" 1623832 1623856 1624515 1624520) (-954 "PSEUDLIN.spad" 1622690 1622700 1623822 1623827) (-953 "PSETPK.spad" 1608123 1608139 1622568 1622573) (-952 "PSETCAT.spad" 1602031 1602054 1608091 1608118) (-951 "PSETCAT.spad" 1595925 1595950 1601987 1601992) (-950 "PSCURVE.spad" 1594908 1594916 1595915 1595920) (-949 "PSCAT.spad" 1593675 1593704 1594806 1594903) (-948 "PSCAT.spad" 1592532 1592563 1593665 1593670) (-947 "PRTITION.spad" 1591375 1591383 1592522 1592527) (-946 "PRTDAST.spad" 1591094 1591102 1591365 1591370) (-945 "PRS.spad" 1580656 1580673 1591050 1591055) (-944 "PRQAGG.spad" 1580075 1580085 1580612 1580651) (-943 "PROPLOG.spad" 1579478 1579486 1580065 1580070) (-942 "PROPFRML.spad" 1577396 1577407 1579468 1579473) (-941 "PROPERTY.spad" 1576890 1576898 1577386 1577391) (-940 "PRODUCT.spad" 1574570 1574582 1574856 1574911) (-939 "PRINT.spad" 1574322 1574330 1574560 1574565) (-938 "PRIMES.spad" 1572573 1572583 1574312 1574317) (-937 "PRIMELT.spad" 1570554 1570568 1572563 1572568) (-936 "PRIMCAT.spad" 1570177 1570185 1570544 1570549) (-935 "PRIMARR2.spad" 1568900 1568912 1570167 1570172) (-934 "PRIMARR.spad" 1567905 1567915 1568083 1568110) (-933 "PREASSOC.spad" 1567277 1567289 1567895 1567900) (-932 "PR.spad" 1565663 1565675 1566368 1566495) (-931 "PPCURVE.spad" 1564800 1564808 1565653 1565658) (-930 "PORTNUM.spad" 1564575 1564583 1564790 1564795) (-929 "POLYROOT.spad" 1563347 1563369 1564531 1564536) (-928 "POLYLIFT.spad" 1562608 1562631 1563337 1563342) (-927 "POLYCATQ.spad" 1560710 1560732 1562598 1562603) (-926 "POLYCAT.spad" 1554116 1554137 1560578 1560705) (-925 "POLYCAT.spad" 1546824 1546847 1553288 1553293) (-924 "POLY2UP.spad" 1546272 1546286 1546814 1546819) (-923 "POLY2.spad" 1545867 1545879 1546262 1546267) (-922 "POLY.spad" 1543164 1543174 1543681 1543808) (-921 "POLUTIL.spad" 1542105 1542134 1543120 1543125) (-920 "POLTOPOL.spad" 1540853 1540868 1542095 1542100) (-919 "POINT.spad" 1539692 1539702 1539779 1539806) (-918 "PNTHEORY.spad" 1536358 1536366 1539682 1539687) (-917 "PMTOOLS.spad" 1535115 1535129 1536348 1536353) (-916 "PMSYM.spad" 1534660 1534670 1535105 1535110) (-915 "PMQFCAT.spad" 1534247 1534261 1534650 1534655) (-914 "PMPREDFS.spad" 1533691 1533713 1534237 1534242) (-913 "PMPRED.spad" 1533160 1533174 1533681 1533686) (-912 "PMPLCAT.spad" 1532230 1532248 1533092 1533097) (-911 "PMLSAGG.spad" 1531811 1531825 1532220 1532225) (-910 "PMKERNEL.spad" 1531378 1531390 1531801 1531806) (-909 "PMINS.spad" 1530954 1530964 1531368 1531373) (-908 "PMFS.spad" 1530527 1530545 1530944 1530949) (-907 "PMDOWN.spad" 1529813 1529827 1530517 1530522) (-906 "PMASSFS.spad" 1528782 1528798 1529803 1529808) (-905 "PMASS.spad" 1527794 1527802 1528772 1528777) (-904 "PLOTTOOL.spad" 1527574 1527582 1527784 1527789) (-903 "PLOT3D.spad" 1523994 1524002 1527564 1527569) (-902 "PLOT1.spad" 1523135 1523145 1523984 1523989) (-901 "PLOT.spad" 1517966 1517974 1523125 1523130) (-900 "PLEQN.spad" 1505182 1505209 1517956 1517961) (-899 "PINTERPA.spad" 1504964 1504980 1505172 1505177) (-898 "PINTERP.spad" 1504580 1504599 1504954 1504959) (-897 "PID.spad" 1503536 1503544 1504506 1504575) (-896 "PICOERCE.spad" 1503193 1503203 1503526 1503531) (-895 "PI.spad" 1502800 1502808 1503167 1503188) (-894 "PGROEB.spad" 1501397 1501411 1502790 1502795) (-893 "PGE.spad" 1492650 1492658 1501387 1501392) (-892 "PGCD.spad" 1491532 1491549 1492640 1492645) (-891 "PFRPAC.spad" 1490675 1490685 1491522 1491527) (-890 "PFR.spad" 1487332 1487342 1490577 1490670) (-889 "PFOTOOLS.spad" 1486590 1486606 1487322 1487327) (-888 "PFOQ.spad" 1485960 1485978 1486580 1486585) (-887 "PFO.spad" 1485379 1485406 1485950 1485955) (-886 "PFECAT.spad" 1483045 1483053 1485305 1485374) (-885 "PFECAT.spad" 1480739 1480749 1483001 1483006) (-884 "PFBRU.spad" 1478609 1478621 1480729 1480734) (-883 "PFBR.spad" 1476147 1476170 1478599 1478604) (-882 "PF.spad" 1475721 1475733 1475952 1476045) (-881 "PERMGRP.spad" 1470457 1470467 1475711 1475716) (-880 "PERMCAT.spad" 1469009 1469019 1470437 1470452) (-879 "PERMAN.spad" 1467541 1467555 1468999 1469004) (-878 "PERM.spad" 1463222 1463232 1467371 1467386) (-877 "PENDTREE.spad" 1462495 1462505 1462851 1462856) (-876 "PDRING.spad" 1460986 1460996 1462475 1462490) (-875 "PDRING.spad" 1459485 1459497 1460976 1460981) (-874 "PDEPROB.spad" 1458442 1458450 1459475 1459480) (-873 "PDEPACK.spad" 1452444 1452452 1458432 1458437) (-872 "PDECOMP.spad" 1451906 1451923 1452434 1452439) (-871 "PDECAT.spad" 1450260 1450268 1451896 1451901) (-870 "PCOMP.spad" 1450111 1450124 1450250 1450255) (-869 "PBWLB.spad" 1448693 1448710 1450101 1450106) (-868 "PATTERN2.spad" 1448429 1448441 1448683 1448688) (-867 "PATTERN1.spad" 1446731 1446747 1448419 1448424) (-866 "PATTERN.spad" 1441162 1441172 1446721 1446726) (-865 "PATRES2.spad" 1440824 1440838 1441152 1441157) (-864 "PATRES.spad" 1438371 1438383 1440814 1440819) (-863 "PATMATCH.spad" 1436528 1436559 1438079 1438084) (-862 "PATMAB.spad" 1435953 1435963 1436518 1436523) (-861 "PATLRES.spad" 1435037 1435051 1435943 1435948) (-860 "PATAB.spad" 1434801 1434811 1435027 1435032) (-859 "PARTPERM.spad" 1432163 1432171 1434791 1434796) (-858 "PARSURF.spad" 1431591 1431619 1432153 1432158) (-857 "PARSU2.spad" 1431386 1431402 1431581 1431586) (-856 "script-parser.spad" 1430906 1430914 1431376 1431381) (-855 "PARSCURV.spad" 1430334 1430362 1430896 1430901) (-854 "PARSC2.spad" 1430123 1430139 1430324 1430329) (-853 "PARPCURV.spad" 1429581 1429609 1430113 1430118) (-852 "PARPC2.spad" 1429370 1429386 1429571 1429576) (-851 "PAN2EXPR.spad" 1428782 1428790 1429360 1429365) (-850 "PALETTE.spad" 1427752 1427760 1428772 1428777) (-849 "PAIR.spad" 1426735 1426748 1427340 1427345) (-848 "PADICRC.spad" 1424066 1424084 1425241 1425334) (-847 "PADICRAT.spad" 1422082 1422094 1422303 1422396) (-846 "PADICCT.spad" 1420623 1420635 1422008 1422077) (-845 "PADIC.spad" 1420318 1420330 1420549 1420618) (-844 "PADEPAC.spad" 1418997 1419016 1420308 1420313) (-843 "PADE.spad" 1417737 1417753 1418987 1418992) (-842 "OWP.spad" 1416721 1416751 1417595 1417662) (-841 "OVAR.spad" 1416502 1416525 1416711 1416716) (-840 "OUTFORM.spad" 1405798 1405806 1416492 1416497) (-839 "OUTBFILE.spad" 1405216 1405224 1405788 1405793) (-838 "OUTBCON.spad" 1404495 1404503 1405206 1405211) (-837 "OUTBCON.spad" 1403772 1403782 1404485 1404490) (-836 "OUT.spad" 1402856 1402864 1403762 1403767) (-835 "OSI.spad" 1402331 1402339 1402846 1402851) (-834 "OSGROUP.spad" 1402249 1402257 1402321 1402326) (-833 "ORTHPOL.spad" 1400710 1400720 1402166 1402171) (-832 "OREUP.spad" 1400068 1400096 1400390 1400429) (-831 "ORESUP.spad" 1399367 1399391 1399748 1399787) (-830 "OREPCTO.spad" 1397186 1397198 1399287 1399292) (-829 "OREPCAT.spad" 1391243 1391253 1397142 1397181) (-828 "OREPCAT.spad" 1385190 1385202 1391091 1391096) (-827 "ORDSET.spad" 1384356 1384364 1385180 1385185) (-826 "ORDSET.spad" 1383520 1383530 1384346 1384351) (-825 "ORDRING.spad" 1382910 1382918 1383500 1383515) (-824 "ORDRING.spad" 1382308 1382318 1382900 1382905) (-823 "ORDMON.spad" 1382163 1382171 1382298 1382303) (-822 "ORDFUNS.spad" 1381289 1381305 1382153 1382158) (-821 "ORDFIN.spad" 1381223 1381231 1381279 1381284) (-820 "ORDCOMP2.spad" 1380508 1380520 1381213 1381218) (-819 "ORDCOMP.spad" 1378973 1378983 1380055 1380084) (-818 "OPTPROB.spad" 1377553 1377561 1378963 1378968) (-817 "OPTPACK.spad" 1369938 1369946 1377543 1377548) (-816 "OPTCAT.spad" 1367613 1367621 1369928 1369933) (-815 "OPQUERY.spad" 1367162 1367170 1367603 1367608) (-814 "OP.spad" 1366904 1366914 1366984 1367051) (-813 "ONECOMP2.spad" 1366322 1366334 1366894 1366899) (-812 "ONECOMP.spad" 1365067 1365077 1365869 1365898) (-811 "OMSERVER.spad" 1364069 1364077 1365057 1365062) (-810 "OMSAGG.spad" 1363845 1363855 1364013 1364064) (-809 "OMPKG.spad" 1362457 1362465 1363835 1363840) (-808 "OMLO.spad" 1361882 1361894 1362343 1362382) (-807 "OMEXPR.spad" 1361716 1361726 1361872 1361877) (-806 "OMERRK.spad" 1360750 1360758 1361706 1361711) (-805 "OMERR.spad" 1360293 1360301 1360740 1360745) (-804 "OMENC.spad" 1359637 1359645 1360283 1360288) (-803 "OMDEV.spad" 1353926 1353934 1359627 1359632) (-802 "OMCONN.spad" 1353335 1353343 1353916 1353921) (-801 "OM.spad" 1352300 1352308 1353325 1353330) (-800 "OINTDOM.spad" 1352063 1352071 1352226 1352295) (-799 "OFMONOID.spad" 1348250 1348260 1352053 1352058) (-798 "ODVAR.spad" 1347511 1347521 1348240 1348245) (-797 "ODR.spad" 1346959 1346985 1347323 1347472) (-796 "ODPOL.spad" 1344305 1344315 1344645 1344772) (-795 "ODP.spad" 1335426 1335446 1335799 1335930) (-794 "ODETOOLS.spad" 1334009 1334028 1335416 1335421) (-793 "ODESYS.spad" 1331659 1331676 1333999 1334004) (-792 "ODERTRIC.spad" 1327600 1327617 1331616 1331621) (-791 "ODERED.spad" 1326987 1327011 1327590 1327595) (-790 "ODERAT.spad" 1324540 1324557 1326977 1326982) (-789 "ODEPRRIC.spad" 1321431 1321453 1324530 1324535) (-788 "ODEPROB.spad" 1320630 1320638 1321421 1321426) (-787 "ODEPRIM.spad" 1317904 1317926 1320620 1320625) (-786 "ODEPAL.spad" 1317280 1317304 1317894 1317899) (-785 "ODEPACK.spad" 1303882 1303890 1317270 1317275) (-784 "ODEINT.spad" 1303313 1303329 1303872 1303877) (-783 "ODEIFTBL.spad" 1300708 1300716 1303303 1303308) (-782 "ODEEF.spad" 1296079 1296095 1300698 1300703) (-781 "ODECONST.spad" 1295598 1295616 1296069 1296074) (-780 "ODECAT.spad" 1294194 1294202 1295588 1295593) (-779 "OCTCT2.spad" 1293838 1293859 1294184 1294189) (-778 "OCT.spad" 1291976 1291986 1292692 1292731) (-777 "OCAMON.spad" 1291824 1291832 1291966 1291971) (-776 "OC.spad" 1289598 1289608 1291780 1291819) (-775 "OC.spad" 1287097 1287109 1289281 1289286) (-774 "OASGP.spad" 1286912 1286920 1287087 1287092) (-773 "OAMONS.spad" 1286432 1286440 1286902 1286907) (-772 "OAMON.spad" 1286293 1286301 1286422 1286427) (-771 "OAGROUP.spad" 1286155 1286163 1286283 1286288) (-770 "NUMTUBE.spad" 1285742 1285758 1286145 1286150) (-769 "NUMQUAD.spad" 1273604 1273612 1285732 1285737) (-768 "NUMODE.spad" 1264740 1264748 1273594 1273599) (-767 "NUMINT.spad" 1262298 1262306 1264730 1264735) (-766 "NUMFMT.spad" 1261138 1261146 1262288 1262293) (-765 "NUMERIC.spad" 1253210 1253220 1260943 1260948) (-764 "NTSCAT.spad" 1251700 1251716 1253166 1253205) (-763 "NTPOLFN.spad" 1251245 1251255 1251617 1251622) (-762 "NSUP2.spad" 1250637 1250649 1251235 1251240) (-761 "NSUP.spad" 1243647 1243657 1248187 1248340) (-760 "NSMP.spad" 1239842 1239861 1240150 1240277) (-759 "NREP.spad" 1238214 1238228 1239832 1239837) (-758 "NPCOEF.spad" 1237460 1237480 1238204 1238209) (-757 "NORMRETR.spad" 1237058 1237097 1237450 1237455) (-756 "NORMPK.spad" 1234960 1234979 1237048 1237053) (-755 "NORMMA.spad" 1234648 1234674 1234950 1234955) (-754 "NONE1.spad" 1234324 1234334 1234638 1234643) (-753 "NONE.spad" 1234065 1234073 1234314 1234319) (-752 "NODE1.spad" 1233534 1233550 1234055 1234060) (-751 "NNI.spad" 1232421 1232429 1233508 1233529) (-750 "NLINSOL.spad" 1231043 1231053 1232411 1232416) (-749 "NIPROB.spad" 1229526 1229534 1231033 1231038) (-748 "NFINTBAS.spad" 1226986 1227003 1229516 1229521) (-747 "NCODIV.spad" 1225184 1225200 1226976 1226981) (-746 "NCNTFRAC.spad" 1224826 1224840 1225174 1225179) (-745 "NCEP.spad" 1222986 1223000 1224816 1224821) (-744 "NASRING.spad" 1222582 1222590 1222976 1222981) (-743 "NASRING.spad" 1222176 1222186 1222572 1222577) (-742 "NARNG.spad" 1221520 1221528 1222166 1222171) (-741 "NARNG.spad" 1220862 1220872 1221510 1221515) (-740 "NAGSP.spad" 1219935 1219943 1220852 1220857) (-739 "NAGS.spad" 1209460 1209468 1219925 1219930) (-738 "NAGF07.spad" 1207853 1207861 1209450 1209455) (-737 "NAGF04.spad" 1202085 1202093 1207843 1207848) (-736 "NAGF02.spad" 1195894 1195902 1202075 1202080) (-735 "NAGF01.spad" 1191497 1191505 1195884 1195889) (-734 "NAGE04.spad" 1184957 1184965 1191487 1191492) (-733 "NAGE02.spad" 1175299 1175307 1184947 1184952) (-732 "NAGE01.spad" 1171183 1171191 1175289 1175294) (-731 "NAGD03.spad" 1169103 1169111 1171173 1171178) (-730 "NAGD02.spad" 1161634 1161642 1169093 1169098) (-729 "NAGD01.spad" 1155747 1155755 1161624 1161629) (-728 "NAGC06.spad" 1151534 1151542 1155737 1155742) (-727 "NAGC05.spad" 1150003 1150011 1151524 1151529) (-726 "NAGC02.spad" 1149258 1149266 1149993 1149998) (-725 "NAALG.spad" 1148793 1148803 1149226 1149253) (-724 "NAALG.spad" 1148348 1148360 1148783 1148788) (-723 "MULTSQFR.spad" 1145306 1145323 1148338 1148343) (-722 "MULTFACT.spad" 1144689 1144706 1145296 1145301) (-721 "MTSCAT.spad" 1142723 1142744 1144587 1144684) (-720 "MTHING.spad" 1142380 1142390 1142713 1142718) (-719 "MSYSCMD.spad" 1141814 1141822 1142370 1142375) (-718 "MSETAGG.spad" 1141647 1141657 1141770 1141809) (-717 "MSET.spad" 1139589 1139599 1141353 1141392) (-716 "MRING.spad" 1136560 1136572 1139297 1139364) (-715 "MRF2.spad" 1136128 1136142 1136550 1136555) (-714 "MRATFAC.spad" 1135674 1135691 1136118 1136123) (-713 "MPRFF.spad" 1133704 1133723 1135664 1135669) (-712 "MPOLY.spad" 1131139 1131154 1131498 1131625) (-711 "MPCPF.spad" 1130403 1130422 1131129 1131134) (-710 "MPC3.spad" 1130218 1130258 1130393 1130398) (-709 "MPC2.spad" 1129860 1129893 1130208 1130213) (-708 "MONOTOOL.spad" 1128195 1128212 1129850 1129855) (-707 "MONOID.spad" 1127514 1127522 1128185 1128190) (-706 "MONOID.spad" 1126831 1126841 1127504 1127509) (-705 "MONOGEN.spad" 1125577 1125590 1126691 1126826) (-704 "MONOGEN.spad" 1124345 1124360 1125461 1125466) (-703 "MONADWU.spad" 1122359 1122367 1124335 1124340) (-702 "MONADWU.spad" 1120371 1120381 1122349 1122354) (-701 "MONAD.spad" 1119515 1119523 1120361 1120366) (-700 "MONAD.spad" 1118657 1118667 1119505 1119510) (-699 "MOEBIUS.spad" 1117343 1117357 1118637 1118652) (-698 "MODULE.spad" 1117213 1117223 1117311 1117338) (-697 "MODULE.spad" 1117103 1117115 1117203 1117208) (-696 "MODRING.spad" 1116434 1116473 1117083 1117098) (-695 "MODOP.spad" 1115093 1115105 1116256 1116323) (-694 "MODMONOM.spad" 1114625 1114643 1115083 1115088) (-693 "MODMON.spad" 1111327 1111343 1112103 1112256) (-692 "MODFIELD.spad" 1110685 1110724 1111229 1111322) (-691 "MMLFORM.spad" 1109545 1109553 1110675 1110680) (-690 "MMAP.spad" 1109285 1109319 1109535 1109540) (-689 "MLO.spad" 1107712 1107722 1109241 1109280) (-688 "MLIFT.spad" 1106284 1106301 1107702 1107707) (-687 "MKUCFUNC.spad" 1105817 1105835 1106274 1106279) (-686 "MKRECORD.spad" 1105419 1105432 1105807 1105812) (-685 "MKFUNC.spad" 1104800 1104810 1105409 1105414) (-684 "MKFLCFN.spad" 1103756 1103766 1104790 1104795) (-683 "MKCHSET.spad" 1103532 1103542 1103746 1103751) (-682 "MKBCFUNC.spad" 1103017 1103035 1103522 1103527) (-681 "MINT.spad" 1102456 1102464 1102919 1103012) (-680 "MHROWRED.spad" 1100957 1100967 1102446 1102451) (-679 "MFLOAT.spad" 1099473 1099481 1100847 1100952) (-678 "MFINFACT.spad" 1098873 1098895 1099463 1099468) (-677 "MESH.spad" 1096610 1096618 1098863 1098868) (-676 "MDDFACT.spad" 1094803 1094813 1096600 1096605) (-675 "MDAGG.spad" 1094078 1094088 1094771 1094798) (-674 "MCMPLX.spad" 1090053 1090061 1090667 1090868) (-673 "MCDEN.spad" 1089261 1089273 1090043 1090048) (-672 "MCALCFN.spad" 1086363 1086389 1089251 1089256) (-671 "MAYBE.spad" 1085612 1085623 1086353 1086358) (-670 "MATSTOR.spad" 1082888 1082898 1085602 1085607) (-669 "MATRIX.spad" 1081592 1081602 1082076 1082103) (-668 "MATLIN.spad" 1078918 1078942 1081476 1081481) (-667 "MATCAT2.spad" 1078186 1078234 1078908 1078913) (-666 "MATCAT.spad" 1069759 1069781 1078142 1078181) (-665 "MATCAT.spad" 1061216 1061240 1069601 1069606) (-664 "MAPPKG3.spad" 1060115 1060129 1061206 1061211) (-663 "MAPPKG2.spad" 1059449 1059461 1060105 1060110) (-662 "MAPPKG1.spad" 1058267 1058277 1059439 1059444) (-661 "MAPPAST.spad" 1057580 1057588 1058257 1058262) (-660 "MAPHACK3.spad" 1057388 1057402 1057570 1057575) (-659 "MAPHACK2.spad" 1057153 1057165 1057378 1057383) (-658 "MAPHACK1.spad" 1056783 1056793 1057143 1057148) (-657 "MAGMA.spad" 1054573 1054590 1056773 1056778) (-656 "MACROAST.spad" 1054152 1054160 1054563 1054568) (-655 "M3D.spad" 1051848 1051858 1053530 1053535) (-654 "LZSTAGG.spad" 1049066 1049076 1051828 1051843) (-653 "LZSTAGG.spad" 1046292 1046304 1049056 1049061) (-652 "LWORD.spad" 1042997 1043014 1046282 1046287) (-651 "LSTAST.spad" 1042781 1042789 1042987 1042992) (-650 "LSQM.spad" 1041004 1041018 1041402 1041453) (-649 "LSPP.spad" 1040537 1040554 1040994 1040999) (-648 "LSMP1.spad" 1038358 1038372 1040527 1040532) (-647 "LSMP.spad" 1037205 1037233 1038348 1038353) (-646 "LSAGG.spad" 1036862 1036872 1037161 1037200) (-645 "LSAGG.spad" 1036551 1036563 1036852 1036857) (-644 "LPOLY.spad" 1035505 1035524 1036407 1036476) (-643 "LPEFRAC.spad" 1034762 1034772 1035495 1035500) (-642 "LOGIC.spad" 1034364 1034372 1034752 1034757) (-641 "LOGIC.spad" 1033964 1033974 1034354 1034359) (-640 "LODOOPS.spad" 1032882 1032894 1033954 1033959) (-639 "LODOF.spad" 1031926 1031943 1032839 1032844) (-638 "LODOCAT.spad" 1030584 1030594 1031882 1031921) (-637 "LODOCAT.spad" 1029240 1029252 1030540 1030545) (-636 "LODO2.spad" 1028513 1028525 1028920 1028959) (-635 "LODO1.spad" 1027913 1027923 1028193 1028232) (-634 "LODO.spad" 1027297 1027313 1027593 1027632) (-633 "LODEEF.spad" 1026069 1026087 1027287 1027292) (-632 "LO.spad" 1025470 1025484 1026003 1026030) (-631 "LNAGG.spad" 1021262 1021272 1025450 1025465) (-630 "LNAGG.spad" 1017028 1017040 1021218 1021223) (-629 "LMOPS.spad" 1013764 1013781 1017018 1017023) (-628 "LMODULE.spad" 1013406 1013416 1013754 1013759) (-627 "LMDICT.spad" 1012689 1012699 1012957 1012984) (-626 "LITERAL.spad" 1012595 1012606 1012679 1012684) (-625 "LIST3.spad" 1011886 1011900 1012585 1012590) (-624 "LIST2MAP.spad" 1008763 1008775 1011876 1011881) (-623 "LIST2.spad" 1007403 1007415 1008753 1008758) (-622 "LIST.spad" 1005121 1005131 1006550 1006577) (-621 "LINEXP.spad" 1004553 1004563 1005101 1005116) (-620 "LINDEP.spad" 1003330 1003342 1004465 1004470) (-619 "LIMITRF.spad" 1001263 1001273 1003320 1003325) (-618 "LIMITPS.spad" 1000153 1000166 1001253 1001258) (-617 "LIECAT.spad" 999629 999639 1000079 1000148) (-616 "LIECAT.spad" 999133 999145 999585 999590) (-615 "LIE.spad" 997147 997159 998423 998568) (-614 "LIB.spad" 995195 995203 995806 995821) (-613 "LGROBP.spad" 992548 992567 995185 995190) (-612 "LFCAT.spad" 991567 991575 992538 992543) (-611 "LF.spad" 990486 990502 991557 991562) (-610 "LEXTRIPK.spad" 985989 986004 990476 990481) (-609 "LEXP.spad" 983992 984019 985969 985984) (-608 "LETAST.spad" 983691 983699 983982 983987) (-607 "LEADCDET.spad" 982075 982092 983681 983686) (-606 "LAZM3PK.spad" 980779 980801 982065 982070) (-605 "LAUPOL.spad" 979468 979481 980372 980441) (-604 "LAPLACE.spad" 979041 979057 979458 979463) (-603 "LALG.spad" 978817 978827 979021 979036) (-602 "LALG.spad" 978601 978613 978807 978812) (-601 "LA.spad" 978041 978055 978523 978562) (-600 "KTVLOGIC.spad" 977464 977472 978031 978036) (-599 "KOVACIC.spad" 976177 976194 977454 977459) (-598 "KONVERT.spad" 975899 975909 976167 976172) (-597 "KOERCE.spad" 975636 975646 975889 975894) (-596 "KERNEL2.spad" 975339 975351 975626 975631) (-595 "KERNEL.spad" 973874 973884 975123 975128) (-594 "KDAGG.spad" 972965 972987 973842 973869) (-593 "KDAGG.spad" 972076 972100 972955 972960) (-592 "KAFILE.spad" 971039 971055 971274 971301) (-591 "JORDAN.spad" 968866 968878 970329 970474) (-590 "JOINAST.spad" 968560 968568 968856 968861) (-589 "JAVACODE.spad" 968326 968334 968550 968555) (-588 "IXAGG.spad" 966439 966463 968306 968321) (-587 "IXAGG.spad" 964417 964443 966286 966291) (-586 "IVECTOR.spad" 963188 963203 963343 963370) (-585 "ITUPLE.spad" 962333 962343 963178 963183) (-584 "ITRIGMNP.spad" 961144 961163 962323 962328) (-583 "ITFUN3.spad" 960638 960652 961134 961139) (-582 "ITFUN2.spad" 960368 960380 960628 960633) (-581 "ITAYLOR.spad" 958160 958175 960204 960329) (-580 "ISUPS.spad" 950571 950586 957134 957231) (-579 "ISUMP.spad" 950068 950084 950561 950566) (-578 "ISTRING.spad" 949071 949084 949237 949264) (-577 "ISAST.spad" 948790 948798 949061 949066) (-576 "IRURPK.spad" 947503 947522 948780 948785) (-575 "IRSN.spad" 945463 945471 947493 947498) (-574 "IRRF2F.spad" 943938 943948 945419 945424) (-573 "IRREDFFX.spad" 943539 943550 943928 943933) (-572 "IROOT.spad" 941870 941880 943529 943534) (-571 "IR2F.spad" 941070 941086 941860 941865) (-570 "IR2.spad" 940090 940106 941060 941065) (-569 "IR.spad" 937879 937893 939945 939972) (-568 "IPRNTPK.spad" 937639 937647 937869 937874) (-567 "IPF.spad" 937204 937216 937444 937537) (-566 "IPADIC.spad" 936965 936991 937130 937199) (-565 "IOMODE.spad" 936586 936594 936955 936960) (-564 "IOBCON.spad" 936451 936459 936576 936581) (-563 "INVLAPLA.spad" 936096 936112 936441 936446) (-562 "INTTR.spad" 929354 929371 936086 936091) (-561 "INTTOOLS.spad" 927065 927081 928928 928933) (-560 "INTSLPE.spad" 926371 926379 927055 927060) (-559 "INTRVL.spad" 925937 925947 926285 926366) (-558 "INTRF.spad" 924301 924315 925927 925932) (-557 "INTRET.spad" 923733 923743 924291 924296) (-556 "INTRAT.spad" 922408 922425 923723 923728) (-555 "INTPM.spad" 920771 920787 922051 922056) (-554 "INTPAF.spad" 918546 918564 920703 920708) (-553 "INTPACK.spad" 908856 908864 918536 918541) (-552 "INTHERTR.spad" 908122 908139 908846 908851) (-551 "INTHERAL.spad" 907788 907812 908112 908117) (-550 "INTHEORY.spad" 904201 904209 907778 907783) (-549 "INTG0.spad" 897682 897700 904133 904138) (-548 "INTFTBL.spad" 893136 893144 897672 897677) (-547 "INTFACT.spad" 892195 892205 893126 893131) (-546 "INTEF.spad" 890512 890528 892185 892190) (-545 "INTDOM.spad" 889127 889135 890438 890507) (-544 "INTDOM.spad" 887804 887814 889117 889122) (-543 "INTCAT.spad" 886057 886067 887718 887799) (-542 "INTBIT.spad" 885560 885568 886047 886052) (-541 "INTALG.spad" 884742 884769 885550 885555) (-540 "INTAF.spad" 884234 884250 884732 884737) (-539 "INTABL.spad" 882752 882783 882915 882942) (-538 "INT.spad" 882113 882121 882606 882747) (-537 "INS.spad" 879580 879588 882015 882108) (-536 "INS.spad" 877133 877143 879570 879575) (-535 "INPSIGN.spad" 876589 876602 877123 877128) (-534 "INPRODPF.spad" 875655 875674 876579 876584) (-533 "INPRODFF.spad" 874713 874737 875645 875650) (-532 "INNMFACT.spad" 873684 873701 874703 874708) (-531 "INMODGCD.spad" 873168 873198 873674 873679) (-530 "INFSP.spad" 871453 871475 873158 873163) (-529 "INFPROD0.spad" 870503 870522 871443 871448) (-528 "INFORM1.spad" 870128 870138 870493 870498) (-527 "INFORM.spad" 867289 867297 870118 870123) (-526 "INFINITY.spad" 866841 866849 867279 867284) (-525 "INEP.spad" 865373 865395 866831 866836) (-524 "INDE.spad" 865102 865119 865363 865368) (-523 "INCRMAPS.spad" 864523 864533 865092 865097) (-522 "INBFILE.spad" 863852 863860 864513 864518) (-521 "INBFF.spad" 859622 859633 863842 863847) (-520 "INBCON.spad" 858922 858930 859612 859617) (-519 "INBCON.spad" 858220 858230 858912 858917) (-518 "INAST.spad" 857885 857893 858210 858215) (-517 "IMPTAST.spad" 857593 857601 857875 857880) (-516 "IMATRIX.spad" 856538 856564 857050 857077) (-515 "IMATQF.spad" 855632 855676 856494 856499) (-514 "IMATLIN.spad" 854237 854261 855588 855593) (-513 "ILIST.spad" 852893 852908 853420 853447) (-512 "IIARRAY2.spad" 852281 852319 852500 852527) (-511 "IFF.spad" 851691 851707 851962 852055) (-510 "IFAST.spad" 851305 851313 851681 851686) (-509 "IFARRAY.spad" 848792 848807 850488 850515) (-508 "IFAMON.spad" 848654 848671 848748 848753) (-507 "IEVALAB.spad" 848043 848055 848644 848649) (-506 "IEVALAB.spad" 847430 847444 848033 848038) (-505 "IDPOAMS.spad" 847186 847198 847420 847425) (-504 "IDPOAM.spad" 846906 846918 847176 847181) (-503 "IDPO.spad" 846704 846716 846896 846901) (-502 "IDPC.spad" 845638 845650 846694 846699) (-501 "IDPAM.spad" 845383 845395 845628 845633) (-500 "IDPAG.spad" 845130 845142 845373 845378) (-499 "IDENT.spad" 845047 845055 845120 845125) (-498 "IDECOMP.spad" 842284 842302 845037 845042) (-497 "IDEAL.spad" 837207 837246 842219 842224) (-496 "ICDEN.spad" 836358 836374 837197 837202) (-495 "ICARD.spad" 835547 835555 836348 836353) (-494 "IBPTOOLS.spad" 834140 834157 835537 835542) (-493 "IBITS.spad" 833339 833352 833776 833803) (-492 "IBATOOL.spad" 830214 830233 833329 833334) (-491 "IBACHIN.spad" 828701 828716 830204 830209) (-490 "IARRAY2.spad" 827689 827715 828308 828335) (-489 "IARRAY1.spad" 826734 826749 826872 826899) (-488 "IAN.spad" 824947 824955 826550 826643) (-487 "IALGFACT.spad" 824548 824581 824937 824942) (-486 "HYPCAT.spad" 823972 823980 824538 824543) (-485 "HYPCAT.spad" 823394 823404 823962 823967) (-484 "HOSTNAME.spad" 823202 823210 823384 823389) (-483 "HOAGG.spad" 820460 820470 823182 823197) (-482 "HOAGG.spad" 817503 817515 820227 820232) (-481 "HEXADEC.spad" 815373 815381 815971 816064) (-480 "HEUGCD.spad" 814388 814399 815363 815368) (-479 "HELLFDIV.spad" 813978 814002 814378 814383) (-478 "HEAP.spad" 813370 813380 813585 813612) (-477 "HEADAST.spad" 812901 812909 813360 813365) (-476 "HDP.spad" 804018 804034 804395 804526) (-475 "HDMP.spad" 801194 801209 801812 801939) (-474 "HB.spad" 799431 799439 801184 801189) (-473 "HASHTBL.spad" 797901 797932 798112 798139) (-472 "HASAST.spad" 797617 797625 797891 797896) (-471 "HACKPI.spad" 797100 797108 797519 797612) (-470 "GTSET.spad" 796039 796055 796746 796773) (-469 "GSTBL.spad" 794558 794593 794732 794747) (-468 "GSERIES.spad" 791725 791752 792690 792839) (-467 "GROUP.spad" 790994 791002 791705 791720) (-466 "GROUP.spad" 790271 790281 790984 790989) (-465 "GROEBSOL.spad" 788759 788780 790261 790266) (-464 "GRMOD.spad" 787330 787342 788749 788754) (-463 "GRMOD.spad" 785899 785913 787320 787325) (-462 "GRIMAGE.spad" 778504 778512 785889 785894) (-461 "GRDEF.spad" 776883 776891 778494 778499) (-460 "GRAY.spad" 775342 775350 776873 776878) (-459 "GRALG.spad" 774389 774401 775332 775337) (-458 "GRALG.spad" 773434 773448 774379 774384) (-457 "GPOLSET.spad" 772888 772911 773116 773143) (-456 "GOSPER.spad" 772153 772171 772878 772883) (-455 "GMODPOL.spad" 771291 771318 772121 772148) (-454 "GHENSEL.spad" 770360 770374 771281 771286) (-453 "GENUPS.spad" 766461 766474 770350 770355) (-452 "GENUFACT.spad" 766038 766048 766451 766456) (-451 "GENPGCD.spad" 765622 765639 766028 766033) (-450 "GENMFACT.spad" 765074 765093 765612 765617) (-449 "GENEEZ.spad" 763013 763026 765064 765069) (-448 "GDMP.spad" 760031 760048 760807 760934) (-447 "GCNAALG.spad" 753926 753953 759825 759892) (-446 "GCDDOM.spad" 753098 753106 753852 753921) (-445 "GCDDOM.spad" 752332 752342 753088 753093) (-444 "GBINTERN.spad" 748352 748390 752322 752327) (-443 "GBF.spad" 744109 744147 748342 748347) (-442 "GBEUCLID.spad" 741983 742021 744099 744104) (-441 "GB.spad" 739501 739539 741939 741944) (-440 "GAUSSFAC.spad" 738798 738806 739491 739496) (-439 "GALUTIL.spad" 737120 737130 738754 738759) (-438 "GALPOLYU.spad" 735566 735579 737110 737115) (-437 "GALFACTU.spad" 733731 733750 735556 735561) (-436 "GALFACT.spad" 723864 723875 733721 733726) (-435 "FVFUN.spad" 720877 720885 723844 723859) (-434 "FVC.spad" 719919 719927 720857 720872) (-433 "FUNCTION.spad" 719768 719780 719909 719914) (-432 "FTEM.spad" 718931 718939 719758 719763) (-431 "FT.spad" 717146 717154 718921 718926) (-430 "FSUPFACT.spad" 716046 716065 717082 717087) (-429 "FST.spad" 714132 714140 716036 716041) (-428 "FSRED.spad" 713610 713626 714122 714127) (-427 "FSPRMELT.spad" 712434 712450 713567 713572) (-426 "FSPECF.spad" 710511 710527 712424 712429) (-425 "FSINT.spad" 710169 710185 710501 710506) (-424 "FSERIES.spad" 709356 709368 709989 710088) (-423 "FSCINT.spad" 708669 708685 709346 709351) (-422 "FSAGG2.spad" 707368 707384 708659 708664) (-421 "FSAGG.spad" 706473 706483 707312 707363) (-420 "FSAGG.spad" 705552 705564 706393 706398) (-419 "FS2UPS.spad" 699941 699975 705542 705547) (-418 "FS2EXPXP.spad" 699064 699087 699931 699936) (-417 "FS2.spad" 698709 698725 699054 699059) (-416 "FS.spad" 692759 692769 698472 698704) (-415 "FS.spad" 686599 686611 692314 692319) (-414 "FRUTIL.spad" 685541 685551 686589 686594) (-413 "FRNAALG.spad" 680628 680638 685483 685536) (-412 "FRNAALG.spad" 675727 675739 680584 680589) (-411 "FRNAAF2.spad" 675181 675199 675717 675722) (-410 "FRMOD.spad" 674575 674605 675112 675117) (-409 "FRIDEAL2.spad" 674177 674209 674565 674570) (-408 "FRIDEAL.spad" 673372 673393 674157 674172) (-407 "FRETRCT.spad" 672883 672893 673362 673367) (-406 "FRETRCT.spad" 672260 672272 672741 672746) (-405 "FRAMALG.spad" 670588 670601 672216 672255) (-404 "FRAMALG.spad" 668948 668963 670578 670583) (-403 "FRAC2.spad" 668551 668563 668938 668943) (-402 "FRAC.spad" 665651 665661 666054 666227) (-401 "FR2.spad" 664985 664997 665641 665646) (-400 "FR.spad" 658707 658717 664010 664079) (-399 "FPS.spad" 655516 655524 658597 658702) (-398 "FPS.spad" 652353 652363 655436 655441) (-397 "FPC.spad" 651395 651403 652255 652348) (-396 "FPC.spad" 650523 650533 651385 651390) (-395 "FPATMAB.spad" 650275 650285 650503 650518) (-394 "FPARFRAC.spad" 648748 648765 650265 650270) (-393 "FORTRAN.spad" 647254 647297 648738 648743) (-392 "FORTFN.spad" 644414 644422 647234 647249) (-391 "FORTCAT.spad" 644088 644096 644394 644409) (-390 "FORT.spad" 643017 643025 644078 644083) (-389 "FORMULA1.spad" 642496 642506 643007 643012) (-388 "FORMULA.spad" 639834 639842 642486 642491) (-387 "FORDER.spad" 639525 639549 639824 639829) (-386 "FOP.spad" 638726 638734 639515 639520) (-385 "FNLA.spad" 638150 638172 638694 638721) (-384 "FNCAT.spad" 636478 636486 638140 638145) (-383 "FNAME.spad" 636370 636378 636468 636473) (-382 "FMTC.spad" 636168 636176 636296 636365) (-381 "FMONOID.spad" 633223 633233 636124 636129) (-380 "FMFUN.spad" 630243 630251 633203 633218) (-379 "FMCAT.spad" 627897 627915 630211 630238) (-378 "FMC.spad" 626939 626947 627877 627892) (-377 "FM1.spad" 626296 626308 626873 626900) (-376 "FM.spad" 625991 626003 626230 626257) (-375 "FLOATRP.spad" 623712 623726 625981 625986) (-374 "FLOATCP.spad" 621129 621143 623702 623707) (-373 "FLOAT.spad" 614293 614301 620995 621124) (-372 "FLINEXP.spad" 614005 614015 614273 614288) (-371 "FLINEXP.spad" 613671 613683 613941 613946) (-370 "FLASORT.spad" 612991 613003 613661 613666) (-369 "FLALG.spad" 610637 610656 612917 612986) (-368 "FLAGG2.spad" 609318 609334 610627 610632) (-367 "FLAGG.spad" 606324 606334 609286 609313) (-366 "FLAGG.spad" 603243 603255 606207 606212) (-365 "FINRALG.spad" 601272 601285 603199 603238) (-364 "FINRALG.spad" 599227 599242 601156 601161) (-363 "FINITE.spad" 598379 598387 599217 599222) (-362 "FINAALG.spad" 587360 587370 598321 598374) (-361 "FINAALG.spad" 576353 576365 587316 587321) (-360 "FILECAT.spad" 574871 574888 576343 576348) (-359 "FILE.spad" 574454 574464 574861 574866) (-358 "FIELD.spad" 573860 573868 574356 574449) (-357 "FIELD.spad" 573352 573362 573850 573855) (-356 "FGROUP.spad" 571961 571971 573332 573347) (-355 "FGLMICPK.spad" 570748 570763 571951 571956) (-354 "FFX.spad" 570123 570138 570464 570557) (-353 "FFSLPE.spad" 569612 569633 570113 570118) (-352 "FFPOLY2.spad" 568672 568689 569602 569607) (-351 "FFPOLY.spad" 559924 559935 568662 568667) (-350 "FFP.spad" 559321 559341 559640 559733) (-349 "FFNBX.spad" 557833 557853 559037 559130) (-348 "FFNBP.spad" 556346 556363 557549 557642) (-347 "FFNB.spad" 554811 554832 556027 556120) (-346 "FFINTBAS.spad" 552225 552244 554801 554806) (-345 "FFIELDC.spad" 549800 549808 552127 552220) (-344 "FFIELDC.spad" 547461 547471 549790 549795) (-343 "FFHOM.spad" 546209 546226 547451 547456) (-342 "FFF.spad" 543644 543655 546199 546204) (-341 "FFCGX.spad" 542491 542511 543360 543453) (-340 "FFCGP.spad" 541380 541400 542207 542300) (-339 "FFCG.spad" 540172 540193 541061 541154) (-338 "FFCAT2.spad" 539917 539957 540162 540167) (-337 "FFCAT.spad" 532944 532966 539756 539912) (-336 "FFCAT.spad" 526050 526074 532864 532869) (-335 "FF.spad" 525498 525514 525731 525824) (-334 "FEXPR.spad" 517207 517253 525254 525293) (-333 "FEVALAB.spad" 516913 516923 517197 517202) (-332 "FEVALAB.spad" 516404 516416 516690 516695) (-331 "FDIVCAT.spad" 514446 514470 516394 516399) (-330 "FDIVCAT.spad" 512486 512512 514436 514441) (-329 "FDIV2.spad" 512140 512180 512476 512481) (-328 "FDIV.spad" 511582 511606 512130 512135) (-327 "FCPAK1.spad" 510135 510143 511572 511577) (-326 "FCOMP.spad" 509514 509524 510125 510130) (-325 "FC.spad" 499339 499347 509504 509509) (-324 "FAXF.spad" 492274 492288 499241 499334) (-323 "FAXF.spad" 485261 485277 492230 492235) (-322 "FARRAY.spad" 483407 483417 484444 484471) (-321 "FAMR.spad" 481527 481539 483305 483402) (-320 "FAMR.spad" 479631 479645 481411 481416) (-319 "FAMONOID.spad" 479281 479291 479585 479590) (-318 "FAMONC.spad" 477503 477515 479271 479276) (-317 "FAGROUP.spad" 477109 477119 477399 477426) (-316 "FACUTIL.spad" 475305 475322 477099 477104) (-315 "FACTFUNC.spad" 474481 474491 475295 475300) (-314 "EXPUPXS.spad" 471314 471337 472613 472762) (-313 "EXPRTUBE.spad" 468542 468550 471304 471309) (-312 "EXPRODE.spad" 465414 465430 468532 468537) (-311 "EXPR2UPS.spad" 461506 461519 465404 465409) (-310 "EXPR2.spad" 461209 461221 461496 461501) (-309 "EXPR.spad" 456484 456494 457198 457605) (-308 "EXPEXPAN.spad" 453423 453448 454057 454150) (-307 "EXITAST.spad" 453159 453167 453413 453418) (-306 "EXIT.spad" 452830 452838 453149 453154) (-305 "EVALCYC.spad" 452288 452302 452820 452825) (-304 "EVALAB.spad" 451852 451862 452278 452283) (-303 "EVALAB.spad" 451414 451426 451842 451847) (-302 "EUCDOM.spad" 448956 448964 451340 451409) (-301 "EUCDOM.spad" 446560 446570 448946 448951) (-300 "ESTOOLS2.spad" 446161 446175 446550 446555) (-299 "ESTOOLS1.spad" 445846 445857 446151 446156) (-298 "ESTOOLS.spad" 437686 437694 445836 445841) (-297 "ESCONT1.spad" 437435 437447 437676 437681) (-296 "ESCONT.spad" 434208 434216 437425 437430) (-295 "ES2.spad" 433703 433719 434198 434203) (-294 "ES1.spad" 433269 433285 433693 433698) (-293 "ES.spad" 425816 425824 433259 433264) (-292 "ES.spad" 418269 418279 425714 425719) (-291 "ERROR.spad" 415590 415598 418259 418264) (-290 "EQTBL.spad" 414062 414084 414271 414298) (-289 "EQ2.spad" 413778 413790 414052 414057) (-288 "EQ.spad" 408652 408662 411451 411563) (-287 "EP.spad" 404966 404976 408642 408647) (-286 "ENV.spad" 403668 403676 404956 404961) (-285 "ENTIRER.spad" 403336 403344 403612 403663) (-284 "EMR.spad" 402537 402578 403262 403331) (-283 "ELTAGG.spad" 400777 400796 402527 402532) (-282 "ELTAGG.spad" 398981 399002 400733 400738) (-281 "ELTAB.spad" 398428 398446 398971 398976) (-280 "ELFUTS.spad" 397807 397826 398418 398423) (-279 "ELEMFUN.spad" 397496 397504 397797 397802) (-278 "ELEMFUN.spad" 397183 397193 397486 397491) (-277 "ELAGG.spad" 395114 395124 397151 397178) (-276 "ELAGG.spad" 392994 393006 395033 395038) (-275 "ELABEXPR.spad" 391925 391933 392984 392989) (-274 "EFUPXS.spad" 388701 388731 391881 391886) (-273 "EFULS.spad" 385537 385560 388657 388662) (-272 "EFSTRUC.spad" 383492 383508 385527 385532) (-271 "EF.spad" 378258 378274 383482 383487) (-270 "EAB.spad" 376534 376542 378248 378253) (-269 "E04UCFA.spad" 376070 376078 376524 376529) (-268 "E04NAFA.spad" 375647 375655 376060 376065) (-267 "E04MBFA.spad" 375227 375235 375637 375642) (-266 "E04JAFA.spad" 374763 374771 375217 375222) (-265 "E04GCFA.spad" 374299 374307 374753 374758) (-264 "E04FDFA.spad" 373835 373843 374289 374294) (-263 "E04DGFA.spad" 373371 373379 373825 373830) (-262 "E04AGNT.spad" 369213 369221 373361 373366) (-261 "DVARCAT.spad" 365898 365908 369203 369208) (-260 "DVARCAT.spad" 362581 362593 365888 365893) (-259 "DSMP.spad" 360012 360026 360317 360444) (-258 "DROPT1.spad" 359675 359685 360002 360007) (-257 "DROPT0.spad" 354502 354510 359665 359670) (-256 "DROPT.spad" 348447 348455 354492 354497) (-255 "DRAWPT.spad" 346602 346610 348437 348442) (-254 "DRAWHACK.spad" 345910 345920 346592 346597) (-253 "DRAWCX.spad" 343352 343360 345900 345905) (-252 "DRAWCURV.spad" 342889 342904 343342 343347) (-251 "DRAWCFUN.spad" 332061 332069 342879 342884) (-250 "DRAW.spad" 324661 324674 332051 332056) (-249 "DQAGG.spad" 322817 322827 324617 324656) (-248 "DPOLCAT.spad" 318158 318174 322685 322812) (-247 "DPOLCAT.spad" 313585 313603 318114 318119) (-246 "DPMO.spad" 306888 306904 307026 307327) (-245 "DPMM.spad" 300204 300222 300329 300630) (-244 "DOMAIN.spad" 299475 299483 300194 300199) (-243 "DMP.spad" 296697 296712 297269 297396) (-242 "DLP.spad" 296045 296055 296687 296692) (-241 "DLIST.spad" 294457 294467 295228 295255) (-240 "DLAGG.spad" 292858 292868 294437 294452) (-239 "DIVRING.spad" 292400 292408 292802 292853) (-238 "DIVRING.spad" 291986 291996 292390 292395) (-237 "DISPLAY.spad" 290166 290174 291976 291981) (-236 "DIRPROD2.spad" 288974 288992 290156 290161) (-235 "DIRPROD.spad" 279828 279844 280468 280599) (-234 "DIRPCAT.spad" 278758 278774 279680 279823) (-233 "DIRPCAT.spad" 277429 277447 278353 278358) (-232 "DIOSP.spad" 276254 276262 277419 277424) (-231 "DIOPS.spad" 275226 275236 276222 276249) (-230 "DIOPS.spad" 274184 274196 275182 275187) (-229 "DIFRING.spad" 273476 273484 274164 274179) (-228 "DIFRING.spad" 272776 272786 273466 273471) (-227 "DIFEXT.spad" 271935 271945 272756 272771) (-226 "DIFEXT.spad" 271011 271023 271834 271839) (-225 "DIAGG.spad" 270629 270639 270979 271006) (-224 "DIAGG.spad" 270267 270279 270619 270624) (-223 "DHMATRIX.spad" 268571 268581 269724 269751) (-222 "DFSFUN.spad" 261979 261987 268561 268566) (-221 "DFLOAT.spad" 258700 258708 261869 261974) (-220 "DFINTTLS.spad" 256909 256925 258690 258695) (-219 "DERHAM.spad" 254819 254851 256889 256904) (-218 "DEQUEUE.spad" 254137 254147 254426 254453) (-217 "DEGRED.spad" 253752 253766 254127 254132) (-216 "DEFINTRF.spad" 251322 251332 253742 253747) (-215 "DEFINTEF.spad" 249846 249862 251312 251317) (-214 "DEFAST.spad" 249214 249222 249836 249841) (-213 "DECIMAL.spad" 247096 247104 247682 247775) (-212 "DDFACT.spad" 244895 244912 247086 247091) (-211 "DBLRESP.spad" 244493 244517 244885 244890) (-210 "DBASE.spad" 243065 243075 244483 244488) (-209 "DATABUF.spad" 242553 242566 243055 243060) (-208 "D03FAFA.spad" 242381 242389 242543 242548) (-207 "D03EEFA.spad" 242201 242209 242371 242376) (-206 "D03AGNT.spad" 241281 241289 242191 242196) (-205 "D02EJFA.spad" 240743 240751 241271 241276) (-204 "D02CJFA.spad" 240221 240229 240733 240738) (-203 "D02BHFA.spad" 239711 239719 240211 240216) (-202 "D02BBFA.spad" 239201 239209 239701 239706) (-201 "D02AGNT.spad" 234005 234013 239191 239196) (-200 "D01WGTS.spad" 232324 232332 233995 234000) (-199 "D01TRNS.spad" 232301 232309 232314 232319) (-198 "D01GBFA.spad" 231823 231831 232291 232296) (-197 "D01FCFA.spad" 231345 231353 231813 231818) (-196 "D01ASFA.spad" 230813 230821 231335 231340) (-195 "D01AQFA.spad" 230259 230267 230803 230808) (-194 "D01APFA.spad" 229683 229691 230249 230254) (-193 "D01ANFA.spad" 229177 229185 229673 229678) (-192 "D01AMFA.spad" 228687 228695 229167 229172) (-191 "D01ALFA.spad" 228227 228235 228677 228682) (-190 "D01AKFA.spad" 227753 227761 228217 228222) (-189 "D01AJFA.spad" 227276 227284 227743 227748) (-188 "D01AGNT.spad" 223335 223343 227266 227271) (-187 "CYCLOTOM.spad" 222841 222849 223325 223330) (-186 "CYCLES.spad" 219673 219681 222831 222836) (-185 "CVMP.spad" 219090 219100 219663 219668) (-184 "CTRIGMNP.spad" 217580 217596 219080 219085) (-183 "CTORKIND.spad" 217195 217203 217570 217575) (-182 "CTORCALL.spad" 216783 216791 217185 217190) (-181 "CTOR.spad" 216226 216234 216773 216778) (-180 "CSTTOOLS.spad" 215469 215482 216216 216221) (-179 "CRFP.spad" 209173 209186 215459 215464) (-178 "CRCEAST.spad" 208893 208901 209163 209168) (-177 "CRAPACK.spad" 207936 207946 208883 208888) (-176 "CPMATCH.spad" 207436 207451 207861 207866) (-175 "CPIMA.spad" 207141 207160 207426 207431) (-174 "COORDSYS.spad" 202034 202044 207131 207136) (-173 "CONTOUR.spad" 201436 201444 202024 202029) (-172 "CONTFRAC.spad" 197048 197058 201338 201431) (-171 "CONDUIT.spad" 196806 196814 197038 197043) (-170 "COMRING.spad" 196480 196488 196744 196801) (-169 "COMPPROP.spad" 195994 196002 196470 196475) (-168 "COMPLPAT.spad" 195761 195776 195984 195989) (-167 "COMPLEX2.spad" 195474 195486 195751 195756) (-166 "COMPLEX.spad" 189500 189510 189744 190005) (-165 "COMPFACT.spad" 189102 189116 189490 189495) (-164 "COMPCAT.spad" 187158 187168 188824 189097) (-163 "COMPCAT.spad" 184920 184932 186588 186593) (-162 "COMMUPC.spad" 184666 184684 184910 184915) (-161 "COMMONOP.spad" 184199 184207 184656 184661) (-160 "COMMAAST.spad" 183962 183970 184189 184194) (-159 "COMM.spad" 183771 183779 183952 183957) (-158 "COMBOPC.spad" 182676 182684 183761 183766) (-157 "COMBINAT.spad" 181421 181431 182666 182671) (-156 "COMBF.spad" 178789 178805 181411 181416) (-155 "COLOR.spad" 177626 177634 178779 178784) (-154 "COLONAST.spad" 177292 177300 177616 177621) (-153 "CMPLXRT.spad" 177001 177018 177282 177287) (-152 "CLLCTAST.spad" 176663 176671 176991 176996) (-151 "CLIP.spad" 172755 172763 176653 176658) (-150 "CLIF.spad" 171394 171410 172711 172750) (-149 "CLAGG.spad" 167869 167879 171374 171389) (-148 "CLAGG.spad" 164225 164237 167732 167737) (-147 "CINTSLPE.spad" 163550 163563 164215 164220) (-146 "CHVAR.spad" 161628 161650 163540 163545) (-145 "CHARZ.spad" 161543 161551 161608 161623) (-144 "CHARPOL.spad" 161051 161061 161533 161538) (-143 "CHARNZ.spad" 160804 160812 161031 161046) (-142 "CHAR.spad" 158672 158680 160794 160799) (-141 "CFCAT.spad" 157988 157996 158662 158667) (-140 "CDEN.spad" 157146 157160 157978 157983) (-139 "CCLASS.spad" 155295 155303 156557 156596) (-138 "CATEGORY.spad" 155074 155082 155285 155290) (-137 "CATAST.spad" 154701 154709 155064 155069) (-136 "CASEAST.spad" 154415 154423 154691 154696) (-135 "CARTEN2.spad" 153801 153828 154405 154410) (-134 "CARTEN.spad" 148904 148928 153791 153796) (-133 "CARD.spad" 146193 146201 148878 148899) (-132 "CAPSLAST.spad" 145967 145975 146183 146188) (-131 "CACHSET.spad" 145589 145597 145957 145962) (-130 "CABMON.spad" 145142 145150 145579 145584) (-129 "BYTEARY.spad" 144217 144225 144311 144338) (-128 "BYTE.spad" 143391 143399 144207 144212) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP1.spad" 127919 127929 130489 130494) (-113 "BOP.spad" 123383 123391 127909 127914) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP80.spad" 98366 98379 99034 99039) (-86 "ASP8.spad" 97409 97422 98356 98361) (-85 "ASP78.spad" 96860 96873 97399 97404) (-84 "ASP77.spad" 96229 96242 96850 96855) (-83 "ASP74.spad" 95321 95334 96219 96224) (-82 "ASP73.spad" 94592 94605 95311 95316) (-81 "ASP7.spad" 93752 93765 94582 94587) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP49.spad" 87709 87722 88700 88705) (-76 "ASP42.spad" 86116 86155 87699 87704) (-75 "ASP41.spad" 84695 84734 86106 86111) (-74 "ASP4.spad" 83990 84003 84685 84690) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP19.spad" 62496 62509 67800 67805) (-62 "ASP12.spad" 61910 61923 62486 62491) (-61 "ASP10.spad" 61181 61194 61900 61905) (-60 "ASP1.spad" 60562 60575 61171 61176) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY12.spad" 58591 58602 59912 59917) (-57 "ARRAY1.spad" 57426 57435 57774 57801) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY1.spad" 46688 46697 47607 47612) (-51 "ANY.spad" 45030 45037 46678 46683) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2269588 2269593 2269598 2269603) (-2 NIL 2269568 2269573 2269578 2269583) (-1 NIL 2269548 2269553 2269558 2269563) (0 NIL 2269528 2269533 2269538 2269543) (-1260 "ZMOD.spad" 2269337 2269350 2269466 2269523) (-1259 "ZLINDEP.spad" 2268381 2268392 2269327 2269332) (-1258 "ZDSOLVE.spad" 2258230 2258252 2268371 2268376) (-1257 "YSTREAM.spad" 2257723 2257734 2258220 2258225) (-1256 "XRPOLY.spad" 2256943 2256963 2257579 2257648) (-1255 "XPR.spad" 2254672 2254685 2256661 2256760) (-1254 "XPOLY.spad" 2254227 2254238 2254528 2254597) (-1253 "XPOLYC.spad" 2253544 2253560 2254153 2254222) (-1252 "XPBWPOLY.spad" 2251981 2252001 2253324 2253393) (-1251 "XF.spad" 2250442 2250457 2251883 2251976) (-1250 "XF.spad" 2248883 2248900 2250326 2250331) (-1249 "XFALG.spad" 2245907 2245923 2248809 2248878) (-1248 "XEXPPKG.spad" 2245158 2245184 2245897 2245902) (-1247 "XDPOLY.spad" 2244772 2244788 2245014 2245083) (-1246 "XALG.spad" 2244370 2244381 2244728 2244767) (-1245 "WUTSET.spad" 2240209 2240226 2244016 2244043) (-1244 "WP.spad" 2239223 2239267 2240067 2240134) (-1243 "WHILEAST.spad" 2239021 2239030 2239213 2239218) (-1242 "WHEREAST.spad" 2238692 2238701 2239011 2239016) (-1241 "WFFINTBS.spad" 2236255 2236277 2238682 2238687) (-1240 "WEIER.spad" 2234469 2234480 2236245 2236250) (-1239 "VSPACE.spad" 2234142 2234153 2234437 2234464) (-1238 "VSPACE.spad" 2233835 2233848 2234132 2234137) (-1237 "VOID.spad" 2233425 2233434 2233825 2233830) (-1236 "VIEW.spad" 2231047 2231056 2233415 2233420) (-1235 "VIEWDEF.spad" 2226244 2226253 2231037 2231042) (-1234 "VIEW3D.spad" 2210079 2210088 2226234 2226239) (-1233 "VIEW2D.spad" 2197816 2197825 2210069 2210074) (-1232 "VECTOR.spad" 2196491 2196502 2196742 2196769) (-1231 "VECTOR2.spad" 2195118 2195131 2196481 2196486) (-1230 "VECTCAT.spad" 2193006 2193017 2195074 2195113) (-1229 "VECTCAT.spad" 2190714 2190727 2192784 2192789) (-1228 "VARIABLE.spad" 2190494 2190509 2190704 2190709) (-1227 "UTYPE.spad" 2190128 2190137 2190474 2190489) (-1226 "UTSODETL.spad" 2189421 2189445 2190084 2190089) (-1225 "UTSODE.spad" 2187609 2187629 2189411 2189416) (-1224 "UTS.spad" 2182398 2182426 2186076 2186173) (-1223 "UTSCAT.spad" 2179849 2179865 2182296 2182393) (-1222 "UTSCAT.spad" 2176944 2176962 2179393 2179398) (-1221 "UTS2.spad" 2176537 2176572 2176934 2176939) (-1220 "URAGG.spad" 2171159 2171170 2176517 2176532) (-1219 "URAGG.spad" 2165755 2165768 2171115 2171120) (-1218 "UPXSSING.spad" 2163398 2163424 2164836 2164969) (-1217 "UPXS.spad" 2160425 2160453 2161530 2161679) (-1216 "UPXSCONS.spad" 2158182 2158202 2158557 2158706) (-1215 "UPXSCCA.spad" 2156640 2156660 2158028 2158177) (-1214 "UPXSCCA.spad" 2155240 2155262 2156630 2156635) (-1213 "UPXSCAT.spad" 2153821 2153837 2155086 2155235) (-1212 "UPXS2.spad" 2153362 2153415 2153811 2153816) (-1211 "UPSQFREE.spad" 2151774 2151788 2153352 2153357) (-1210 "UPSCAT.spad" 2149367 2149391 2151672 2151769) (-1209 "UPSCAT.spad" 2146666 2146692 2148973 2148978) (-1208 "UPOLYC.spad" 2141644 2141655 2146508 2146661) (-1207 "UPOLYC.spad" 2136514 2136527 2141380 2141385) (-1206 "UPOLYC2.spad" 2135983 2136002 2136504 2136509) (-1205 "UP.spad" 2133025 2133040 2133533 2133686) (-1204 "UPMP.spad" 2131915 2131928 2133015 2133020) (-1203 "UPDIVP.spad" 2131478 2131492 2131905 2131910) (-1202 "UPDECOMP.spad" 2129715 2129729 2131468 2131473) (-1201 "UPCDEN.spad" 2128922 2128938 2129705 2129710) (-1200 "UP2.spad" 2128284 2128305 2128912 2128917) (-1199 "UNISEG.spad" 2127637 2127648 2128203 2128208) (-1198 "UNISEG2.spad" 2127130 2127143 2127593 2127598) (-1197 "UNIFACT.spad" 2126231 2126243 2127120 2127125) (-1196 "ULS.spad" 2116785 2116813 2117878 2118307) (-1195 "ULSCONS.spad" 2110824 2110844 2111196 2111345) (-1194 "ULSCCAT.spad" 2108421 2108441 2110644 2110819) (-1193 "ULSCCAT.spad" 2106152 2106174 2108377 2108382) (-1192 "ULSCAT.spad" 2104368 2104384 2105998 2106147) (-1191 "ULS2.spad" 2103880 2103933 2104358 2104363) (-1190 "UFD.spad" 2102945 2102954 2103806 2103875) (-1189 "UFD.spad" 2102072 2102083 2102935 2102940) (-1188 "UDVO.spad" 2100919 2100928 2102062 2102067) (-1187 "UDPO.spad" 2098346 2098357 2100875 2100880) (-1186 "TYPE.spad" 2098268 2098277 2098326 2098341) (-1185 "TYPEAST.spad" 2098187 2098196 2098258 2098263) (-1184 "TWOFACT.spad" 2096837 2096852 2098177 2098182) (-1183 "TUPLE.spad" 2096223 2096234 2096736 2096741) (-1182 "TUBETOOL.spad" 2093060 2093069 2096213 2096218) (-1181 "TUBE.spad" 2091701 2091718 2093050 2093055) (-1180 "TS.spad" 2090290 2090306 2091266 2091363) (-1179 "TSETCAT.spad" 2077405 2077422 2090246 2090285) (-1178 "TSETCAT.spad" 2064518 2064537 2077361 2077366) (-1177 "TRMANIP.spad" 2058884 2058901 2064224 2064229) (-1176 "TRIMAT.spad" 2057843 2057868 2058874 2058879) (-1175 "TRIGMNIP.spad" 2056360 2056377 2057833 2057838) (-1174 "TRIGCAT.spad" 2055872 2055881 2056350 2056355) (-1173 "TRIGCAT.spad" 2055382 2055393 2055862 2055867) (-1172 "TREE.spad" 2053953 2053964 2054989 2055016) (-1171 "TRANFUN.spad" 2053784 2053793 2053943 2053948) (-1170 "TRANFUN.spad" 2053613 2053624 2053774 2053779) (-1169 "TOPSP.spad" 2053287 2053296 2053603 2053608) (-1168 "TOOLSIGN.spad" 2052950 2052961 2053277 2053282) (-1167 "TEXTFILE.spad" 2051507 2051516 2052940 2052945) (-1166 "TEX.spad" 2048524 2048533 2051497 2051502) (-1165 "TEX1.spad" 2048080 2048091 2048514 2048519) (-1164 "TEMUTL.spad" 2047635 2047644 2048070 2048075) (-1163 "TBCMPPK.spad" 2045728 2045751 2047625 2047630) (-1162 "TBAGG.spad" 2044752 2044775 2045696 2045723) (-1161 "TBAGG.spad" 2043796 2043821 2044742 2044747) (-1160 "TANEXP.spad" 2043172 2043183 2043786 2043791) (-1159 "TABLE.spad" 2041583 2041606 2041853 2041880) (-1158 "TABLEAU.spad" 2041064 2041075 2041573 2041578) (-1157 "TABLBUMP.spad" 2037847 2037858 2041054 2041059) (-1156 "SYSTEM.spad" 2037121 2037130 2037837 2037842) (-1155 "SYSSOLP.spad" 2034594 2034605 2037111 2037116) (-1154 "SYNTAX.spad" 2030786 2030795 2034584 2034589) (-1153 "SYMTAB.spad" 2028842 2028851 2030776 2030781) (-1152 "SYMS.spad" 2024827 2024836 2028832 2028837) (-1151 "SYMPOLY.spad" 2023834 2023845 2023916 2024043) (-1150 "SYMFUNC.spad" 2023309 2023320 2023824 2023829) (-1149 "SYMBOL.spad" 2020645 2020654 2023299 2023304) (-1148 "SWITCH.spad" 2017402 2017411 2020635 2020640) (-1147 "SUTS.spad" 2014301 2014329 2015869 2015966) (-1146 "SUPXS.spad" 2011315 2011343 2012433 2012582) (-1145 "SUP.spad" 2008084 2008095 2008865 2009018) (-1144 "SUPFRACF.spad" 2007189 2007207 2008074 2008079) (-1143 "SUP2.spad" 2006579 2006592 2007179 2007184) (-1142 "SUMRF.spad" 2005545 2005556 2006569 2006574) (-1141 "SUMFS.spad" 2005178 2005195 2005535 2005540) (-1140 "SULS.spad" 1995719 1995747 1996825 1997254) (-1139 "SUCHTAST.spad" 1995488 1995497 1995709 1995714) (-1138 "SUCH.spad" 1995168 1995183 1995478 1995483) (-1137 "SUBSPACE.spad" 1987175 1987190 1995158 1995163) (-1136 "SUBRESP.spad" 1986335 1986349 1987131 1987136) (-1135 "STTF.spad" 1982434 1982450 1986325 1986330) (-1134 "STTFNC.spad" 1978902 1978918 1982424 1982429) (-1133 "STTAYLOR.spad" 1971300 1971311 1978783 1978788) (-1132 "STRTBL.spad" 1969805 1969822 1969954 1969981) (-1131 "STRING.spad" 1969214 1969223 1969228 1969255) (-1130 "STRICAT.spad" 1968990 1968999 1969170 1969209) (-1129 "STREAM.spad" 1965758 1965769 1968515 1968530) (-1128 "STREAM3.spad" 1965303 1965318 1965748 1965753) (-1127 "STREAM2.spad" 1964371 1964384 1965293 1965298) (-1126 "STREAM1.spad" 1964075 1964086 1964361 1964366) (-1125 "STINPROD.spad" 1962981 1962997 1964065 1964070) (-1124 "STEP.spad" 1962182 1962191 1962971 1962976) (-1123 "STBL.spad" 1960708 1960736 1960875 1960890) (-1122 "STAGG.spad" 1959773 1959784 1960688 1960703) (-1121 "STAGG.spad" 1958846 1958859 1959763 1959768) (-1120 "STACK.spad" 1958197 1958208 1958453 1958480) (-1119 "SREGSET.spad" 1955901 1955918 1957843 1957870) (-1118 "SRDCMPK.spad" 1954446 1954466 1955891 1955896) (-1117 "SRAGG.spad" 1949531 1949540 1954402 1954441) (-1116 "SRAGG.spad" 1944648 1944659 1949521 1949526) (-1115 "SQMATRIX.spad" 1942264 1942282 1943180 1943267) (-1114 "SPLTREE.spad" 1936816 1936829 1941700 1941727) (-1113 "SPLNODE.spad" 1933404 1933417 1936806 1936811) (-1112 "SPFCAT.spad" 1932181 1932190 1933394 1933399) (-1111 "SPECOUT.spad" 1930731 1930740 1932171 1932176) (-1110 "SPADXPT.spad" 1922860 1922869 1930711 1930726) (-1109 "spad-parser.spad" 1922325 1922334 1922850 1922855) (-1108 "SPADAST.spad" 1922026 1922035 1922315 1922320) (-1107 "SPACEC.spad" 1906039 1906050 1922016 1922021) (-1106 "SPACE3.spad" 1905815 1905826 1906029 1906034) (-1105 "SORTPAK.spad" 1905360 1905373 1905771 1905776) (-1104 "SOLVETRA.spad" 1903117 1903128 1905350 1905355) (-1103 "SOLVESER.spad" 1901637 1901648 1903107 1903112) (-1102 "SOLVERAD.spad" 1897647 1897658 1901627 1901632) (-1101 "SOLVEFOR.spad" 1896067 1896085 1897637 1897642) (-1100 "SNTSCAT.spad" 1895655 1895672 1896023 1896062) (-1099 "SMTS.spad" 1893915 1893941 1895220 1895317) (-1098 "SMP.spad" 1891354 1891374 1891744 1891871) (-1097 "SMITH.spad" 1890197 1890222 1891344 1891349) (-1096 "SMATCAT.spad" 1888295 1888325 1890129 1890192) (-1095 "SMATCAT.spad" 1886337 1886369 1888173 1888178) (-1094 "SKAGG.spad" 1885286 1885297 1886293 1886332) (-1093 "SINT.spad" 1883594 1883603 1885152 1885281) (-1092 "SIMPAN.spad" 1883322 1883331 1883584 1883589) (-1091 "SIG.spad" 1882650 1882659 1883312 1883317) (-1090 "SIGNRF.spad" 1881758 1881769 1882640 1882645) (-1089 "SIGNEF.spad" 1881027 1881044 1881748 1881753) (-1088 "SIGAST.spad" 1880408 1880417 1881017 1881022) (-1087 "SHP.spad" 1878326 1878341 1880364 1880369) (-1086 "SHDP.spad" 1869311 1869338 1869820 1869951) (-1085 "SGROUP.spad" 1868919 1868928 1869301 1869306) (-1084 "SGROUP.spad" 1868525 1868536 1868909 1868914) (-1083 "SGCF.spad" 1861406 1861415 1868515 1868520) (-1082 "SFRTCAT.spad" 1860322 1860339 1861362 1861401) (-1081 "SFRGCD.spad" 1859385 1859405 1860312 1860317) (-1080 "SFQCMPK.spad" 1854022 1854042 1859375 1859380) (-1079 "SFORT.spad" 1853457 1853471 1854012 1854017) (-1078 "SEXOF.spad" 1853300 1853340 1853447 1853452) (-1077 "SEX.spad" 1853192 1853201 1853290 1853295) (-1076 "SEXCAT.spad" 1850296 1850336 1853182 1853187) (-1075 "SET.spad" 1848596 1848607 1849717 1849756) (-1074 "SETMN.spad" 1847030 1847047 1848586 1848591) (-1073 "SETCAT.spad" 1846515 1846524 1847020 1847025) (-1072 "SETCAT.spad" 1845998 1846009 1846505 1846510) (-1071 "SETAGG.spad" 1842507 1842518 1845966 1845993) (-1070 "SETAGG.spad" 1839036 1839049 1842497 1842502) (-1069 "SEQAST.spad" 1838739 1838748 1839026 1839031) (-1068 "SEGXCAT.spad" 1837851 1837864 1838719 1838734) (-1067 "SEG.spad" 1837664 1837675 1837770 1837775) (-1066 "SEGCAT.spad" 1836483 1836494 1837644 1837659) (-1065 "SEGBIND.spad" 1835555 1835566 1836438 1836443) (-1064 "SEGBIND2.spad" 1835251 1835264 1835545 1835550) (-1063 "SEGAST.spad" 1834965 1834974 1835241 1835246) (-1062 "SEG2.spad" 1834390 1834403 1834921 1834926) (-1061 "SDVAR.spad" 1833666 1833677 1834380 1834385) (-1060 "SDPOL.spad" 1831056 1831067 1831347 1831474) (-1059 "SCPKG.spad" 1829135 1829146 1831046 1831051) (-1058 "SCOPE.spad" 1828280 1828289 1829125 1829130) (-1057 "SCACHE.spad" 1826962 1826973 1828270 1828275) (-1056 "SASTCAT.spad" 1826871 1826880 1826952 1826957) (-1055 "SAOS.spad" 1826743 1826752 1826861 1826866) (-1054 "SAERFFC.spad" 1826456 1826476 1826733 1826738) (-1053 "SAE.spad" 1824631 1824647 1825242 1825377) (-1052 "SAEFACT.spad" 1824332 1824352 1824621 1824626) (-1051 "RURPK.spad" 1821973 1821989 1824322 1824327) (-1050 "RULESET.spad" 1821414 1821438 1821963 1821968) (-1049 "RULE.spad" 1819618 1819642 1821404 1821409) (-1048 "RULECOLD.spad" 1819470 1819483 1819608 1819613) (-1047 "RSTRCAST.spad" 1819187 1819196 1819460 1819465) (-1046 "RSETGCD.spad" 1815565 1815585 1819177 1819182) (-1045 "RSETCAT.spad" 1805337 1805354 1815521 1815560) (-1044 "RSETCAT.spad" 1795141 1795160 1805327 1805332) (-1043 "RSDCMPK.spad" 1793593 1793613 1795131 1795136) (-1042 "RRCC.spad" 1791977 1792007 1793583 1793588) (-1041 "RRCC.spad" 1790359 1790391 1791967 1791972) (-1040 "RPTAST.spad" 1790061 1790070 1790349 1790354) (-1039 "RPOLCAT.spad" 1769421 1769436 1789929 1790056) (-1038 "RPOLCAT.spad" 1748495 1748512 1769005 1769010) (-1037 "ROUTINE.spad" 1744358 1744367 1747142 1747169) (-1036 "ROMAN.spad" 1743590 1743599 1744224 1744353) (-1035 "ROIRC.spad" 1742670 1742702 1743580 1743585) (-1034 "RNS.spad" 1741573 1741582 1742572 1742665) (-1033 "RNS.spad" 1740562 1740573 1741563 1741568) (-1032 "RNG.spad" 1740297 1740306 1740552 1740557) (-1031 "RMODULE.spad" 1739935 1739946 1740287 1740292) (-1030 "RMCAT2.spad" 1739343 1739400 1739925 1739930) (-1029 "RMATRIX.spad" 1738022 1738041 1738510 1738549) (-1028 "RMATCAT.spad" 1733543 1733574 1737966 1738017) (-1027 "RMATCAT.spad" 1728966 1728999 1733391 1733396) (-1026 "RINTERP.spad" 1728854 1728874 1728956 1728961) (-1025 "RING.spad" 1728211 1728220 1728834 1728849) (-1024 "RING.spad" 1727576 1727587 1728201 1728206) (-1023 "RIDIST.spad" 1726960 1726969 1727566 1727571) (-1022 "RGCHAIN.spad" 1725539 1725555 1726445 1726472) (-1021 "RGBCSPC.spad" 1725320 1725332 1725529 1725534) (-1020 "RGBCMDL.spad" 1724850 1724862 1725310 1725315) (-1019 "RF.spad" 1722464 1722475 1724840 1724845) (-1018 "RFFACTOR.spad" 1721926 1721937 1722454 1722459) (-1017 "RFFACT.spad" 1721661 1721673 1721916 1721921) (-1016 "RFDIST.spad" 1720649 1720658 1721651 1721656) (-1015 "RETSOL.spad" 1720066 1720079 1720639 1720644) (-1014 "RETRACT.spad" 1719415 1719426 1720056 1720061) (-1013 "RETRACT.spad" 1718762 1718775 1719405 1719410) (-1012 "RETAST.spad" 1718574 1718583 1718752 1718757) (-1011 "RESULT.spad" 1716634 1716643 1717221 1717248) (-1010 "RESRING.spad" 1715981 1716028 1716572 1716629) (-1009 "RESLATC.spad" 1715305 1715316 1715971 1715976) (-1008 "REPSQ.spad" 1715034 1715045 1715295 1715300) (-1007 "REP.spad" 1712586 1712595 1715024 1715029) (-1006 "REPDB.spad" 1712291 1712302 1712576 1712581) (-1005 "REP2.spad" 1701863 1701874 1712133 1712138) (-1004 "REP1.spad" 1695853 1695864 1701813 1701818) (-1003 "REGSET.spad" 1693650 1693667 1695499 1695526) (-1002 "REF.spad" 1692979 1692990 1693605 1693610) (-1001 "REDORDER.spad" 1692155 1692172 1692969 1692974) (-1000 "RECLOS.spad" 1690938 1690958 1691642 1691735) (-999 "REALSOLV.spad" 1690071 1690079 1690928 1690933) (-998 "REAL.spad" 1689944 1689952 1690061 1690066) (-997 "REAL0Q.spad" 1687227 1687241 1689934 1689939) (-996 "REAL0.spad" 1684056 1684070 1687217 1687222) (-995 "RDUCEAST.spad" 1683778 1683786 1684046 1684051) (-994 "RDIV.spad" 1683430 1683454 1683768 1683773) (-993 "RDIST.spad" 1682994 1683004 1683420 1683425) (-992 "RDETRS.spad" 1681791 1681808 1682984 1682989) (-991 "RDETR.spad" 1679899 1679916 1681781 1681786) (-990 "RDEEFS.spad" 1678973 1678989 1679889 1679894) (-989 "RDEEF.spad" 1677970 1677986 1678963 1678968) (-988 "RCFIELD.spad" 1675157 1675165 1677872 1677965) (-987 "RCFIELD.spad" 1672430 1672440 1675147 1675152) (-986 "RCAGG.spad" 1670333 1670343 1672410 1672425) (-985 "RCAGG.spad" 1668173 1668185 1670252 1670257) (-984 "RATRET.spad" 1667534 1667544 1668163 1668168) (-983 "RATFACT.spad" 1667227 1667238 1667524 1667529) (-982 "RANDSRC.spad" 1666547 1666555 1667217 1667222) (-981 "RADUTIL.spad" 1666302 1666310 1666537 1666542) (-980 "RADIX.spad" 1663093 1663106 1664770 1664863) (-979 "RADFF.spad" 1661507 1661543 1661625 1661781) (-978 "RADCAT.spad" 1661101 1661109 1661497 1661502) (-977 "RADCAT.spad" 1660693 1660703 1661091 1661096) (-976 "QUEUE.spad" 1660036 1660046 1660300 1660327) (-975 "QUAT.spad" 1658618 1658628 1658960 1659025) (-974 "QUATCT2.spad" 1658237 1658255 1658608 1658613) (-973 "QUATCAT.spad" 1656402 1656412 1658167 1658232) (-972 "QUATCAT.spad" 1654318 1654330 1656085 1656090) (-971 "QUAGG.spad" 1653132 1653142 1654274 1654313) (-970 "QQUTAST.spad" 1652901 1652909 1653122 1653127) (-969 "QFORM.spad" 1652364 1652378 1652891 1652896) (-968 "QFCAT.spad" 1651055 1651065 1652254 1652359) (-967 "QFCAT.spad" 1649350 1649362 1650551 1650556) (-966 "QFCAT2.spad" 1649041 1649057 1649340 1649345) (-965 "QEQUAT.spad" 1648598 1648606 1649031 1649036) (-964 "QCMPACK.spad" 1643345 1643364 1648588 1648593) (-963 "QALGSET.spad" 1639420 1639452 1643259 1643264) (-962 "QALGSET2.spad" 1637416 1637434 1639410 1639415) (-961 "PWFFINTB.spad" 1634726 1634747 1637406 1637411) (-960 "PUSHVAR.spad" 1634055 1634074 1634716 1634721) (-959 "PTRANFN.spad" 1630181 1630191 1634045 1634050) (-958 "PTPACK.spad" 1627269 1627279 1630171 1630176) (-957 "PTFUNC2.spad" 1627090 1627104 1627259 1627264) (-956 "PTCAT.spad" 1626172 1626182 1627046 1627085) (-955 "PSQFR.spad" 1625479 1625503 1626162 1626167) (-954 "PSEUDLIN.spad" 1624337 1624347 1625469 1625474) (-953 "PSETPK.spad" 1609770 1609786 1624215 1624220) (-952 "PSETCAT.spad" 1603678 1603701 1609738 1609765) (-951 "PSETCAT.spad" 1597572 1597597 1603634 1603639) (-950 "PSCURVE.spad" 1596555 1596563 1597562 1597567) (-949 "PSCAT.spad" 1595322 1595351 1596453 1596550) (-948 "PSCAT.spad" 1594179 1594210 1595312 1595317) (-947 "PRTITION.spad" 1593022 1593030 1594169 1594174) (-946 "PRTDAST.spad" 1592741 1592749 1593012 1593017) (-945 "PRS.spad" 1582303 1582320 1592697 1592702) (-944 "PRQAGG.spad" 1581722 1581732 1582259 1582298) (-943 "PROPLOG.spad" 1581125 1581133 1581712 1581717) (-942 "PROPFRML.spad" 1579043 1579054 1581115 1581120) (-941 "PROPERTY.spad" 1578537 1578545 1579033 1579038) (-940 "PRODUCT.spad" 1576217 1576229 1576503 1576558) (-939 "PR.spad" 1574603 1574615 1575308 1575435) (-938 "PRINT.spad" 1574355 1574363 1574593 1574598) (-937 "PRIMES.spad" 1572606 1572616 1574345 1574350) (-936 "PRIMELT.spad" 1570587 1570601 1572596 1572601) (-935 "PRIMCAT.spad" 1570210 1570218 1570577 1570582) (-934 "PRIMARR.spad" 1569215 1569225 1569393 1569420) (-933 "PRIMARR2.spad" 1567938 1567950 1569205 1569210) (-932 "PREASSOC.spad" 1567310 1567322 1567928 1567933) (-931 "PPCURVE.spad" 1566447 1566455 1567300 1567305) (-930 "PORTNUM.spad" 1566222 1566230 1566437 1566442) (-929 "POLYROOT.spad" 1564994 1565016 1566178 1566183) (-928 "POLY.spad" 1562291 1562301 1562808 1562935) (-927 "POLYLIFT.spad" 1561552 1561575 1562281 1562286) (-926 "POLYCATQ.spad" 1559654 1559676 1561542 1561547) (-925 "POLYCAT.spad" 1553060 1553081 1559522 1559649) (-924 "POLYCAT.spad" 1545768 1545791 1552232 1552237) (-923 "POLY2UP.spad" 1545216 1545230 1545758 1545763) (-922 "POLY2.spad" 1544811 1544823 1545206 1545211) (-921 "POLUTIL.spad" 1543752 1543781 1544767 1544772) (-920 "POLTOPOL.spad" 1542500 1542515 1543742 1543747) (-919 "POINT.spad" 1541339 1541349 1541426 1541453) (-918 "PNTHEORY.spad" 1538005 1538013 1541329 1541334) (-917 "PMTOOLS.spad" 1536762 1536776 1537995 1538000) (-916 "PMSYM.spad" 1536307 1536317 1536752 1536757) (-915 "PMQFCAT.spad" 1535894 1535908 1536297 1536302) (-914 "PMPRED.spad" 1535363 1535377 1535884 1535889) (-913 "PMPREDFS.spad" 1534807 1534829 1535353 1535358) (-912 "PMPLCAT.spad" 1533877 1533895 1534739 1534744) (-911 "PMLSAGG.spad" 1533458 1533472 1533867 1533872) (-910 "PMKERNEL.spad" 1533025 1533037 1533448 1533453) (-909 "PMINS.spad" 1532601 1532611 1533015 1533020) (-908 "PMFS.spad" 1532174 1532192 1532591 1532596) (-907 "PMDOWN.spad" 1531460 1531474 1532164 1532169) (-906 "PMASS.spad" 1530472 1530480 1531450 1531455) (-905 "PMASSFS.spad" 1529441 1529457 1530462 1530467) (-904 "PLOTTOOL.spad" 1529221 1529229 1529431 1529436) (-903 "PLOT.spad" 1524052 1524060 1529211 1529216) (-902 "PLOT3D.spad" 1520472 1520480 1524042 1524047) (-901 "PLOT1.spad" 1519613 1519623 1520462 1520467) (-900 "PLEQN.spad" 1506829 1506856 1519603 1519608) (-899 "PINTERP.spad" 1506445 1506464 1506819 1506824) (-898 "PINTERPA.spad" 1506227 1506243 1506435 1506440) (-897 "PI.spad" 1505834 1505842 1506201 1506222) (-896 "PID.spad" 1504790 1504798 1505760 1505829) (-895 "PICOERCE.spad" 1504447 1504457 1504780 1504785) (-894 "PGROEB.spad" 1503044 1503058 1504437 1504442) (-893 "PGE.spad" 1494297 1494305 1503034 1503039) (-892 "PGCD.spad" 1493179 1493196 1494287 1494292) (-891 "PFRPAC.spad" 1492322 1492332 1493169 1493174) (-890 "PFR.spad" 1488979 1488989 1492224 1492317) (-889 "PFOTOOLS.spad" 1488237 1488253 1488969 1488974) (-888 "PFOQ.spad" 1487607 1487625 1488227 1488232) (-887 "PFO.spad" 1487026 1487053 1487597 1487602) (-886 "PF.spad" 1486600 1486612 1486831 1486924) (-885 "PFECAT.spad" 1484266 1484274 1486526 1486595) (-884 "PFECAT.spad" 1481960 1481970 1484222 1484227) (-883 "PFBRU.spad" 1479830 1479842 1481950 1481955) (-882 "PFBR.spad" 1477368 1477391 1479820 1479825) (-881 "PERM.spad" 1473049 1473059 1477198 1477213) (-880 "PERMGRP.spad" 1467785 1467795 1473039 1473044) (-879 "PERMCAT.spad" 1466337 1466347 1467765 1467780) (-878 "PERMAN.spad" 1464869 1464883 1466327 1466332) (-877 "PENDTREE.spad" 1464142 1464152 1464498 1464503) (-876 "PDRING.spad" 1462633 1462643 1464122 1464137) (-875 "PDRING.spad" 1461132 1461144 1462623 1462628) (-874 "PDEPROB.spad" 1460089 1460097 1461122 1461127) (-873 "PDEPACK.spad" 1454091 1454099 1460079 1460084) (-872 "PDECOMP.spad" 1453553 1453570 1454081 1454086) (-871 "PDECAT.spad" 1451907 1451915 1453543 1453548) (-870 "PCOMP.spad" 1451758 1451771 1451897 1451902) (-869 "PBWLB.spad" 1450340 1450357 1451748 1451753) (-868 "PATTERN.spad" 1444771 1444781 1450330 1450335) (-867 "PATTERN2.spad" 1444507 1444519 1444761 1444766) (-866 "PATTERN1.spad" 1442809 1442825 1444497 1444502) (-865 "PATRES.spad" 1440356 1440368 1442799 1442804) (-864 "PATRES2.spad" 1440018 1440032 1440346 1440351) (-863 "PATMATCH.spad" 1438175 1438206 1439726 1439731) (-862 "PATMAB.spad" 1437600 1437610 1438165 1438170) (-861 "PATLRES.spad" 1436684 1436698 1437590 1437595) (-860 "PATAB.spad" 1436448 1436458 1436674 1436679) (-859 "PARTPERM.spad" 1433810 1433818 1436438 1436443) (-858 "PARSURF.spad" 1433238 1433266 1433800 1433805) (-857 "PARSU2.spad" 1433033 1433049 1433228 1433233) (-856 "script-parser.spad" 1432553 1432561 1433023 1433028) (-855 "PARSCURV.spad" 1431981 1432009 1432543 1432548) (-854 "PARSC2.spad" 1431770 1431786 1431971 1431976) (-853 "PARPCURV.spad" 1431228 1431256 1431760 1431765) (-852 "PARPC2.spad" 1431017 1431033 1431218 1431223) (-851 "PAN2EXPR.spad" 1430429 1430437 1431007 1431012) (-850 "PALETTE.spad" 1429399 1429407 1430419 1430424) (-849 "PAIR.spad" 1428382 1428395 1428987 1428992) (-848 "PADICRC.spad" 1425713 1425731 1426888 1426981) (-847 "PADICRAT.spad" 1423729 1423741 1423950 1424043) (-846 "PADIC.spad" 1423424 1423436 1423655 1423724) (-845 "PADICCT.spad" 1421965 1421977 1423350 1423419) (-844 "PADEPAC.spad" 1420644 1420663 1421955 1421960) (-843 "PADE.spad" 1419384 1419400 1420634 1420639) (-842 "OWP.spad" 1418368 1418398 1419242 1419309) (-841 "OVAR.spad" 1418149 1418172 1418358 1418363) (-840 "OUT.spad" 1417233 1417241 1418139 1418144) (-839 "OUTFORM.spad" 1406529 1406537 1417223 1417228) (-838 "OUTBFILE.spad" 1405947 1405955 1406519 1406524) (-837 "OUTBCON.spad" 1405226 1405234 1405937 1405942) (-836 "OUTBCON.spad" 1404503 1404513 1405216 1405221) (-835 "OSI.spad" 1403978 1403986 1404493 1404498) (-834 "OSGROUP.spad" 1403896 1403904 1403968 1403973) (-833 "ORTHPOL.spad" 1402357 1402367 1403813 1403818) (-832 "OREUP.spad" 1401715 1401743 1402037 1402076) (-831 "ORESUP.spad" 1401014 1401038 1401395 1401434) (-830 "OREPCTO.spad" 1398833 1398845 1400934 1400939) (-829 "OREPCAT.spad" 1392890 1392900 1398789 1398828) (-828 "OREPCAT.spad" 1386837 1386849 1392738 1392743) (-827 "ORDSET.spad" 1386003 1386011 1386827 1386832) (-826 "ORDSET.spad" 1385167 1385177 1385993 1385998) (-825 "ORDRING.spad" 1384557 1384565 1385147 1385162) (-824 "ORDRING.spad" 1383955 1383965 1384547 1384552) (-823 "ORDMON.spad" 1383810 1383818 1383945 1383950) (-822 "ORDFUNS.spad" 1382936 1382952 1383800 1383805) (-821 "ORDFIN.spad" 1382870 1382878 1382926 1382931) (-820 "ORDCOMP.spad" 1381335 1381345 1382417 1382446) (-819 "ORDCOMP2.spad" 1380620 1380632 1381325 1381330) (-818 "OPTPROB.spad" 1379200 1379208 1380610 1380615) (-817 "OPTPACK.spad" 1371585 1371593 1379190 1379195) (-816 "OPTCAT.spad" 1369260 1369268 1371575 1371580) (-815 "OPQUERY.spad" 1368809 1368817 1369250 1369255) (-814 "OP.spad" 1368551 1368561 1368631 1368698) (-813 "ONECOMP.spad" 1367296 1367306 1368098 1368127) (-812 "ONECOMP2.spad" 1366714 1366726 1367286 1367291) (-811 "OMSERVER.spad" 1365716 1365724 1366704 1366709) (-810 "OMSAGG.spad" 1365492 1365502 1365660 1365711) (-809 "OMPKG.spad" 1364104 1364112 1365482 1365487) (-808 "OM.spad" 1363069 1363077 1364094 1364099) (-807 "OMLO.spad" 1362494 1362506 1362955 1362994) (-806 "OMEXPR.spad" 1362328 1362338 1362484 1362489) (-805 "OMERR.spad" 1361871 1361879 1362318 1362323) (-804 "OMERRK.spad" 1360905 1360913 1361861 1361866) (-803 "OMENC.spad" 1360249 1360257 1360895 1360900) (-802 "OMDEV.spad" 1354538 1354546 1360239 1360244) (-801 "OMCONN.spad" 1353947 1353955 1354528 1354533) (-800 "OINTDOM.spad" 1353710 1353718 1353873 1353942) (-799 "OFMONOID.spad" 1349897 1349907 1353700 1353705) (-798 "ODVAR.spad" 1349158 1349168 1349887 1349892) (-797 "ODR.spad" 1348606 1348632 1348970 1349119) (-796 "ODPOL.spad" 1345952 1345962 1346292 1346419) (-795 "ODP.spad" 1337073 1337093 1337446 1337577) (-794 "ODETOOLS.spad" 1335656 1335675 1337063 1337068) (-793 "ODESYS.spad" 1333306 1333323 1335646 1335651) (-792 "ODERTRIC.spad" 1329247 1329264 1333263 1333268) (-791 "ODERED.spad" 1328634 1328658 1329237 1329242) (-790 "ODERAT.spad" 1326185 1326202 1328624 1328629) (-789 "ODEPRRIC.spad" 1323076 1323098 1326175 1326180) (-788 "ODEPROB.spad" 1322275 1322283 1323066 1323071) (-787 "ODEPRIM.spad" 1319549 1319571 1322265 1322270) (-786 "ODEPAL.spad" 1318925 1318949 1319539 1319544) (-785 "ODEPACK.spad" 1305527 1305535 1318915 1318920) (-784 "ODEINT.spad" 1304958 1304974 1305517 1305522) (-783 "ODEIFTBL.spad" 1302353 1302361 1304948 1304953) (-782 "ODEEF.spad" 1297720 1297736 1302343 1302348) (-781 "ODECONST.spad" 1297239 1297257 1297710 1297715) (-780 "ODECAT.spad" 1295835 1295843 1297229 1297234) (-779 "OCT.spad" 1293973 1293983 1294689 1294728) (-778 "OCTCT2.spad" 1293617 1293638 1293963 1293968) (-777 "OC.spad" 1291391 1291401 1293573 1293612) (-776 "OC.spad" 1288890 1288902 1291074 1291079) (-775 "OCAMON.spad" 1288738 1288746 1288880 1288885) (-774 "OASGP.spad" 1288553 1288561 1288728 1288733) (-773 "OAMONS.spad" 1288073 1288081 1288543 1288548) (-772 "OAMON.spad" 1287934 1287942 1288063 1288068) (-771 "OAGROUP.spad" 1287796 1287804 1287924 1287929) (-770 "NUMTUBE.spad" 1287383 1287399 1287786 1287791) (-769 "NUMQUAD.spad" 1275245 1275253 1287373 1287378) (-768 "NUMODE.spad" 1266381 1266389 1275235 1275240) (-767 "NUMINT.spad" 1263939 1263947 1266371 1266376) (-766 "NUMFMT.spad" 1262779 1262787 1263929 1263934) (-765 "NUMERIC.spad" 1254851 1254861 1262584 1262589) (-764 "NTSCAT.spad" 1253341 1253357 1254807 1254846) (-763 "NTPOLFN.spad" 1252886 1252896 1253258 1253263) (-762 "NSUP.spad" 1245896 1245906 1250436 1250589) (-761 "NSUP2.spad" 1245288 1245300 1245886 1245891) (-760 "NSMP.spad" 1241483 1241502 1241791 1241918) (-759 "NREP.spad" 1239855 1239869 1241473 1241478) (-758 "NPCOEF.spad" 1239101 1239121 1239845 1239850) (-757 "NORMRETR.spad" 1238699 1238738 1239091 1239096) (-756 "NORMPK.spad" 1236601 1236620 1238689 1238694) (-755 "NORMMA.spad" 1236289 1236315 1236591 1236596) (-754 "NONE.spad" 1236030 1236038 1236279 1236284) (-753 "NONE1.spad" 1235706 1235716 1236020 1236025) (-752 "NODE1.spad" 1235175 1235191 1235696 1235701) (-751 "NNI.spad" 1234062 1234070 1235149 1235170) (-750 "NLINSOL.spad" 1232684 1232694 1234052 1234057) (-749 "NIPROB.spad" 1231167 1231175 1232674 1232679) (-748 "NFINTBAS.spad" 1228627 1228644 1231157 1231162) (-747 "NCODIV.spad" 1226825 1226841 1228617 1228622) (-746 "NCNTFRAC.spad" 1226467 1226481 1226815 1226820) (-745 "NCEP.spad" 1224627 1224641 1226457 1226462) (-744 "NASRING.spad" 1224223 1224231 1224617 1224622) (-743 "NASRING.spad" 1223817 1223827 1224213 1224218) (-742 "NARNG.spad" 1223161 1223169 1223807 1223812) (-741 "NARNG.spad" 1222503 1222513 1223151 1223156) (-740 "NAGSP.spad" 1221576 1221584 1222493 1222498) (-739 "NAGS.spad" 1211101 1211109 1221566 1221571) (-738 "NAGF07.spad" 1209494 1209502 1211091 1211096) (-737 "NAGF04.spad" 1203726 1203734 1209484 1209489) (-736 "NAGF02.spad" 1197535 1197543 1203716 1203721) (-735 "NAGF01.spad" 1193138 1193146 1197525 1197530) (-734 "NAGE04.spad" 1186598 1186606 1193128 1193133) (-733 "NAGE02.spad" 1176940 1176948 1186588 1186593) (-732 "NAGE01.spad" 1172824 1172832 1176930 1176935) (-731 "NAGD03.spad" 1170744 1170752 1172814 1172819) (-730 "NAGD02.spad" 1163275 1163283 1170734 1170739) (-729 "NAGD01.spad" 1157388 1157396 1163265 1163270) (-728 "NAGC06.spad" 1153175 1153183 1157378 1157383) (-727 "NAGC05.spad" 1151644 1151652 1153165 1153170) (-726 "NAGC02.spad" 1150899 1150907 1151634 1151639) (-725 "NAALG.spad" 1150434 1150444 1150867 1150894) (-724 "NAALG.spad" 1149989 1150001 1150424 1150429) (-723 "MULTSQFR.spad" 1146947 1146964 1149979 1149984) (-722 "MULTFACT.spad" 1146330 1146347 1146937 1146942) (-721 "MTSCAT.spad" 1144364 1144385 1146228 1146325) (-720 "MTHING.spad" 1144021 1144031 1144354 1144359) (-719 "MSYSCMD.spad" 1143455 1143463 1144011 1144016) (-718 "MSET.spad" 1141397 1141407 1143161 1143200) (-717 "MSETAGG.spad" 1141230 1141240 1141353 1141392) (-716 "MRING.spad" 1138201 1138213 1140938 1141005) (-715 "MRF2.spad" 1137769 1137783 1138191 1138196) (-714 "MRATFAC.spad" 1137315 1137332 1137759 1137764) (-713 "MPRFF.spad" 1135345 1135364 1137305 1137310) (-712 "MPOLY.spad" 1132780 1132795 1133139 1133266) (-711 "MPCPF.spad" 1132044 1132063 1132770 1132775) (-710 "MPC3.spad" 1131859 1131899 1132034 1132039) (-709 "MPC2.spad" 1131501 1131534 1131849 1131854) (-708 "MONOTOOL.spad" 1129836 1129853 1131491 1131496) (-707 "MONOID.spad" 1129155 1129163 1129826 1129831) (-706 "MONOID.spad" 1128472 1128482 1129145 1129150) (-705 "MONOGEN.spad" 1127218 1127231 1128332 1128467) (-704 "MONOGEN.spad" 1125986 1126001 1127102 1127107) (-703 "MONADWU.spad" 1124000 1124008 1125976 1125981) (-702 "MONADWU.spad" 1122012 1122022 1123990 1123995) (-701 "MONAD.spad" 1121156 1121164 1122002 1122007) (-700 "MONAD.spad" 1120298 1120308 1121146 1121151) (-699 "MOEBIUS.spad" 1118984 1118998 1120278 1120293) (-698 "MODULE.spad" 1118854 1118864 1118952 1118979) (-697 "MODULE.spad" 1118744 1118756 1118844 1118849) (-696 "MODRING.spad" 1118075 1118114 1118724 1118739) (-695 "MODOP.spad" 1116734 1116746 1117897 1117964) (-694 "MODMONOM.spad" 1116266 1116284 1116724 1116729) (-693 "MODMON.spad" 1112968 1112984 1113744 1113897) (-692 "MODFIELD.spad" 1112326 1112365 1112870 1112963) (-691 "MMLFORM.spad" 1111186 1111194 1112316 1112321) (-690 "MMAP.spad" 1110926 1110960 1111176 1111181) (-689 "MLO.spad" 1109353 1109363 1110882 1110921) (-688 "MLIFT.spad" 1107925 1107942 1109343 1109348) (-687 "MKUCFUNC.spad" 1107458 1107476 1107915 1107920) (-686 "MKRECORD.spad" 1107060 1107073 1107448 1107453) (-685 "MKFUNC.spad" 1106441 1106451 1107050 1107055) (-684 "MKFLCFN.spad" 1105397 1105407 1106431 1106436) (-683 "MKCHSET.spad" 1105173 1105183 1105387 1105392) (-682 "MKBCFUNC.spad" 1104658 1104676 1105163 1105168) (-681 "MINT.spad" 1104097 1104105 1104560 1104653) (-680 "MHROWRED.spad" 1102598 1102608 1104087 1104092) (-679 "MFLOAT.spad" 1101114 1101122 1102488 1102593) (-678 "MFINFACT.spad" 1100514 1100536 1101104 1101109) (-677 "MESH.spad" 1098246 1098254 1100504 1100509) (-676 "MDDFACT.spad" 1096439 1096449 1098236 1098241) (-675 "MDAGG.spad" 1095714 1095724 1096407 1096434) (-674 "MCMPLX.spad" 1091689 1091697 1092303 1092504) (-673 "MCDEN.spad" 1090897 1090909 1091679 1091684) (-672 "MCALCFN.spad" 1087999 1088025 1090887 1090892) (-671 "MAYBE.spad" 1087248 1087259 1087989 1087994) (-670 "MATSTOR.spad" 1084524 1084534 1087238 1087243) (-669 "MATRIX.spad" 1083228 1083238 1083712 1083739) (-668 "MATLIN.spad" 1080554 1080578 1083112 1083117) (-667 "MATCAT.spad" 1072127 1072149 1080510 1080549) (-666 "MATCAT.spad" 1063584 1063608 1071969 1071974) (-665 "MATCAT2.spad" 1062852 1062900 1063574 1063579) (-664 "MAPPKG3.spad" 1061751 1061765 1062842 1062847) (-663 "MAPPKG2.spad" 1061085 1061097 1061741 1061746) (-662 "MAPPKG1.spad" 1059903 1059913 1061075 1061080) (-661 "MAPPAST.spad" 1059216 1059224 1059893 1059898) (-660 "MAPHACK3.spad" 1059024 1059038 1059206 1059211) (-659 "MAPHACK2.spad" 1058789 1058801 1059014 1059019) (-658 "MAPHACK1.spad" 1058419 1058429 1058779 1058784) (-657 "MAGMA.spad" 1056209 1056226 1058409 1058414) (-656 "MACROAST.spad" 1055788 1055796 1056199 1056204) (-655 "M3D.spad" 1053484 1053494 1055166 1055171) (-654 "LZSTAGG.spad" 1050702 1050712 1053464 1053479) (-653 "LZSTAGG.spad" 1047928 1047940 1050692 1050697) (-652 "LWORD.spad" 1044633 1044650 1047918 1047923) (-651 "LSTAST.spad" 1044417 1044425 1044623 1044628) (-650 "LSQM.spad" 1042643 1042657 1043041 1043092) (-649 "LSPP.spad" 1042176 1042193 1042633 1042638) (-648 "LSMP.spad" 1041016 1041044 1042166 1042171) (-647 "LSMP1.spad" 1038820 1038834 1041006 1041011) (-646 "LSAGG.spad" 1038477 1038487 1038776 1038815) (-645 "LSAGG.spad" 1038166 1038178 1038467 1038472) (-644 "LPOLY.spad" 1037120 1037139 1038022 1038091) (-643 "LPEFRAC.spad" 1036377 1036387 1037110 1037115) (-642 "LO.spad" 1035778 1035792 1036311 1036338) (-641 "LOGIC.spad" 1035380 1035388 1035768 1035773) (-640 "LOGIC.spad" 1034980 1034990 1035370 1035375) (-639 "LODOOPS.spad" 1033898 1033910 1034970 1034975) (-638 "LODO.spad" 1033282 1033298 1033578 1033617) (-637 "LODOF.spad" 1032326 1032343 1033239 1033244) (-636 "LODOCAT.spad" 1030984 1030994 1032282 1032321) (-635 "LODOCAT.spad" 1029640 1029652 1030940 1030945) (-634 "LODO2.spad" 1028913 1028925 1029320 1029359) (-633 "LODO1.spad" 1028313 1028323 1028593 1028632) (-632 "LODEEF.spad" 1027085 1027103 1028303 1028308) (-631 "LNAGG.spad" 1022877 1022887 1027065 1027080) (-630 "LNAGG.spad" 1018643 1018655 1022833 1022838) (-629 "LMOPS.spad" 1015379 1015396 1018633 1018638) (-628 "LMODULE.spad" 1015021 1015031 1015369 1015374) (-627 "LMDICT.spad" 1014304 1014314 1014572 1014599) (-626 "LITERAL.spad" 1014210 1014221 1014294 1014299) (-625 "LIST.spad" 1011928 1011938 1013357 1013384) (-624 "LIST3.spad" 1011219 1011233 1011918 1011923) (-623 "LIST2.spad" 1009859 1009871 1011209 1011214) (-622 "LIST2MAP.spad" 1006736 1006748 1009849 1009854) (-621 "LINEXP.spad" 1006168 1006178 1006716 1006731) (-620 "LINDEP.spad" 1004945 1004957 1006080 1006085) (-619 "LIMITRF.spad" 1002859 1002869 1004935 1004940) (-618 "LIMITPS.spad" 1001742 1001755 1002849 1002854) (-617 "LIE.spad" 999756 999768 1001032 1001177) (-616 "LIECAT.spad" 999232 999242 999682 999751) (-615 "LIECAT.spad" 998736 998748 999188 999193) (-614 "LIB.spad" 996784 996792 997395 997410) (-613 "LGROBP.spad" 994137 994156 996774 996779) (-612 "LF.spad" 993056 993072 994127 994132) (-611 "LFCAT.spad" 992075 992083 993046 993051) (-610 "LEXTRIPK.spad" 987578 987593 992065 992070) (-609 "LEXP.spad" 985581 985608 987558 987573) (-608 "LETAST.spad" 985280 985288 985571 985576) (-607 "LEADCDET.spad" 983664 983681 985270 985275) (-606 "LAZM3PK.spad" 982368 982390 983654 983659) (-605 "LAUPOL.spad" 981057 981070 981961 982030) (-604 "LAPLACE.spad" 980630 980646 981047 981052) (-603 "LA.spad" 980070 980084 980552 980591) (-602 "LALG.spad" 979846 979856 980050 980065) (-601 "LALG.spad" 979630 979642 979836 979841) (-600 "KTVLOGIC.spad" 979053 979061 979620 979625) (-599 "KOVACIC.spad" 977766 977783 979043 979048) (-598 "KONVERT.spad" 977488 977498 977756 977761) (-597 "KOERCE.spad" 977225 977235 977478 977483) (-596 "KERNEL.spad" 975760 975770 977009 977014) (-595 "KERNEL2.spad" 975463 975475 975750 975755) (-594 "KDAGG.spad" 974554 974576 975431 975458) (-593 "KDAGG.spad" 973665 973689 974544 974549) (-592 "KAFILE.spad" 972628 972644 972863 972890) (-591 "JORDAN.spad" 970455 970467 971918 972063) (-590 "JOINAST.spad" 970149 970157 970445 970450) (-589 "JAVACODE.spad" 969915 969923 970139 970144) (-588 "IXAGG.spad" 968028 968052 969895 969910) (-587 "IXAGG.spad" 966006 966032 967875 967880) (-586 "IVECTOR.spad" 964777 964792 964932 964959) (-585 "ITUPLE.spad" 963922 963932 964767 964772) (-584 "ITRIGMNP.spad" 962733 962752 963912 963917) (-583 "ITFUN3.spad" 962227 962241 962723 962728) (-582 "ITFUN2.spad" 961957 961969 962217 962222) (-581 "ITAYLOR.spad" 959749 959764 961793 961918) (-580 "ISUPS.spad" 952160 952175 958723 958820) (-579 "ISUMP.spad" 951657 951673 952150 952155) (-578 "ISTRING.spad" 950660 950673 950826 950853) (-577 "ISAST.spad" 950379 950387 950650 950655) (-576 "IRURPK.spad" 949092 949111 950369 950374) (-575 "IRSN.spad" 947052 947060 949082 949087) (-574 "IRRF2F.spad" 945527 945537 947008 947013) (-573 "IRREDFFX.spad" 945128 945139 945517 945522) (-572 "IROOT.spad" 943459 943469 945118 945123) (-571 "IR.spad" 941248 941262 943314 943341) (-570 "IR2.spad" 940268 940284 941238 941243) (-569 "IR2F.spad" 939468 939484 940258 940263) (-568 "IPRNTPK.spad" 939228 939236 939458 939463) (-567 "IPF.spad" 938793 938805 939033 939126) (-566 "IPADIC.spad" 938554 938580 938719 938788) (-565 "IOMODE.spad" 938175 938183 938544 938549) (-564 "IOBCON.spad" 938040 938048 938165 938170) (-563 "INVLAPLA.spad" 937685 937701 938030 938035) (-562 "INTTR.spad" 930931 930948 937675 937680) (-561 "INTTOOLS.spad" 928642 928658 930505 930510) (-560 "INTSLPE.spad" 927948 927956 928632 928637) (-559 "INTRVL.spad" 927514 927524 927862 927943) (-558 "INTRF.spad" 925878 925892 927504 927509) (-557 "INTRET.spad" 925310 925320 925868 925873) (-556 "INTRAT.spad" 923985 924002 925300 925305) (-555 "INTPM.spad" 922348 922364 923628 923633) (-554 "INTPAF.spad" 920116 920134 922280 922285) (-553 "INTPACK.spad" 910426 910434 920106 920111) (-552 "INT.spad" 909787 909795 910280 910421) (-551 "INTHERTR.spad" 909053 909070 909777 909782) (-550 "INTHERAL.spad" 908719 908743 909043 909048) (-549 "INTHEORY.spad" 905132 905140 908709 908714) (-548 "INTG0.spad" 898595 898613 905064 905069) (-547 "INTFTBL.spad" 892624 892632 898585 898590) (-546 "INTFACT.spad" 891683 891693 892614 892619) (-545 "INTEF.spad" 889998 890014 891673 891678) (-544 "INTDOM.spad" 888613 888621 889924 889993) (-543 "INTDOM.spad" 887290 887300 888603 888608) (-542 "INTCAT.spad" 885543 885553 887204 887285) (-541 "INTBIT.spad" 885046 885054 885533 885538) (-540 "INTALG.spad" 884228 884255 885036 885041) (-539 "INTAF.spad" 883720 883736 884218 884223) (-538 "INTABL.spad" 882238 882269 882401 882428) (-537 "INS.spad" 879705 879713 882140 882233) (-536 "INS.spad" 877258 877268 879695 879700) (-535 "INPSIGN.spad" 876692 876705 877248 877253) (-534 "INPRODPF.spad" 875758 875777 876682 876687) (-533 "INPRODFF.spad" 874816 874840 875748 875753) (-532 "INNMFACT.spad" 873787 873804 874806 874811) (-531 "INMODGCD.spad" 873271 873301 873777 873782) (-530 "INFSP.spad" 871556 871578 873261 873266) (-529 "INFPROD0.spad" 870606 870625 871546 871551) (-528 "INFORM.spad" 867767 867775 870596 870601) (-527 "INFORM1.spad" 867392 867402 867757 867762) (-526 "INFINITY.spad" 866944 866952 867382 867387) (-525 "INEP.spad" 865476 865498 866934 866939) (-524 "INDE.spad" 865205 865222 865466 865471) (-523 "INCRMAPS.spad" 864626 864636 865195 865200) (-522 "INBFILE.spad" 863955 863963 864616 864621) (-521 "INBFF.spad" 859725 859736 863945 863950) (-520 "INBCON.spad" 859025 859033 859715 859720) (-519 "INBCON.spad" 858323 858333 859015 859020) (-518 "INAST.spad" 857988 857996 858313 858318) (-517 "IMPTAST.spad" 857696 857704 857978 857983) (-516 "IMATRIX.spad" 856641 856667 857153 857180) (-515 "IMATQF.spad" 855735 855779 856597 856602) (-514 "IMATLIN.spad" 854340 854364 855691 855696) (-513 "ILIST.spad" 852996 853011 853523 853550) (-512 "IIARRAY2.spad" 852384 852422 852603 852630) (-511 "IFF.spad" 851794 851810 852065 852158) (-510 "IFAST.spad" 851408 851416 851784 851789) (-509 "IFARRAY.spad" 848895 848910 850591 850618) (-508 "IFAMON.spad" 848757 848774 848851 848856) (-507 "IEVALAB.spad" 848146 848158 848747 848752) (-506 "IEVALAB.spad" 847533 847547 848136 848141) (-505 "IDPO.spad" 847331 847343 847523 847528) (-504 "IDPOAMS.spad" 847087 847099 847321 847326) (-503 "IDPOAM.spad" 846807 846819 847077 847082) (-502 "IDPC.spad" 845741 845753 846797 846802) (-501 "IDPAM.spad" 845486 845498 845731 845736) (-500 "IDPAG.spad" 845233 845245 845476 845481) (-499 "IDENT.spad" 845150 845158 845223 845228) (-498 "IDECOMP.spad" 842387 842405 845140 845145) (-497 "IDEAL.spad" 837310 837349 842322 842327) (-496 "ICDEN.spad" 836461 836477 837300 837305) (-495 "ICARD.spad" 835650 835658 836451 836456) (-494 "IBPTOOLS.spad" 834243 834260 835640 835645) (-493 "IBITS.spad" 833442 833455 833879 833906) (-492 "IBATOOL.spad" 830317 830336 833432 833437) (-491 "IBACHIN.spad" 828804 828819 830307 830312) (-490 "IARRAY2.spad" 827792 827818 828411 828438) (-489 "IARRAY1.spad" 826837 826852 826975 827002) (-488 "IAN.spad" 825050 825058 826653 826746) (-487 "IALGFACT.spad" 824651 824684 825040 825045) (-486 "HYPCAT.spad" 824075 824083 824641 824646) (-485 "HYPCAT.spad" 823497 823507 824065 824070) (-484 "HOSTNAME.spad" 823305 823313 823487 823492) (-483 "HOAGG.spad" 820563 820573 823285 823300) (-482 "HOAGG.spad" 817606 817618 820330 820335) (-481 "HEXADEC.spad" 815476 815484 816074 816167) (-480 "HEUGCD.spad" 814491 814502 815466 815471) (-479 "HELLFDIV.spad" 814081 814105 814481 814486) (-478 "HEAP.spad" 813473 813483 813688 813715) (-477 "HEADAST.spad" 813004 813012 813463 813468) (-476 "HDP.spad" 804121 804137 804498 804629) (-475 "HDMP.spad" 801297 801312 801915 802042) (-474 "HB.spad" 799534 799542 801287 801292) (-473 "HASHTBL.spad" 798004 798035 798215 798242) (-472 "HASAST.spad" 797720 797728 797994 797999) (-471 "HACKPI.spad" 797203 797211 797622 797715) (-470 "GTSET.spad" 796142 796158 796849 796876) (-469 "GSTBL.spad" 794661 794696 794835 794850) (-468 "GSERIES.spad" 791828 791855 792793 792942) (-467 "GROUP.spad" 791097 791105 791808 791823) (-466 "GROUP.spad" 790374 790384 791087 791092) (-465 "GROEBSOL.spad" 788862 788883 790364 790369) (-464 "GRMOD.spad" 787433 787445 788852 788857) (-463 "GRMOD.spad" 786002 786016 787423 787428) (-462 "GRIMAGE.spad" 778607 778615 785992 785997) (-461 "GRDEF.spad" 776986 776994 778597 778602) (-460 "GRAY.spad" 775445 775453 776976 776981) (-459 "GRALG.spad" 774492 774504 775435 775440) (-458 "GRALG.spad" 773537 773551 774482 774487) (-457 "GPOLSET.spad" 772991 773014 773219 773246) (-456 "GOSPER.spad" 772256 772274 772981 772986) (-455 "GMODPOL.spad" 771394 771421 772224 772251) (-454 "GHENSEL.spad" 770463 770477 771384 771389) (-453 "GENUPS.spad" 766564 766577 770453 770458) (-452 "GENUFACT.spad" 766141 766151 766554 766559) (-451 "GENPGCD.spad" 765725 765742 766131 766136) (-450 "GENMFACT.spad" 765177 765196 765715 765720) (-449 "GENEEZ.spad" 763116 763129 765167 765172) (-448 "GDMP.spad" 760134 760151 760910 761037) (-447 "GCNAALG.spad" 754029 754056 759928 759995) (-446 "GCDDOM.spad" 753201 753209 753955 754024) (-445 "GCDDOM.spad" 752435 752445 753191 753196) (-444 "GB.spad" 749953 749991 752391 752396) (-443 "GBINTERN.spad" 745973 746011 749943 749948) (-442 "GBF.spad" 741730 741768 745963 745968) (-441 "GBEUCLID.spad" 739604 739642 741720 741725) (-440 "GAUSSFAC.spad" 738901 738909 739594 739599) (-439 "GALUTIL.spad" 737223 737233 738857 738862) (-438 "GALPOLYU.spad" 735669 735682 737213 737218) (-437 "GALFACTU.spad" 733834 733853 735659 735664) (-436 "GALFACT.spad" 723967 723978 733824 733829) (-435 "FVFUN.spad" 720980 720988 723947 723962) (-434 "FVC.spad" 720022 720030 720960 720975) (-433 "FUNCTION.spad" 719871 719883 720012 720017) (-432 "FT.spad" 718083 718091 719861 719866) (-431 "FTEM.spad" 717246 717254 718073 718078) (-430 "FSUPFACT.spad" 716146 716165 717182 717187) (-429 "FST.spad" 714232 714240 716136 716141) (-428 "FSRED.spad" 713710 713726 714222 714227) (-427 "FSPRMELT.spad" 712534 712550 713667 713672) (-426 "FSPECF.spad" 710611 710627 712524 712529) (-425 "FS.spad" 704661 704671 710374 710606) (-424 "FS.spad" 698501 698513 704216 704221) (-423 "FSINT.spad" 698159 698175 698491 698496) (-422 "FSERIES.spad" 697346 697358 697979 698078) (-421 "FSCINT.spad" 696659 696675 697336 697341) (-420 "FSAGG.spad" 695764 695774 696603 696654) (-419 "FSAGG.spad" 694843 694855 695684 695689) (-418 "FSAGG2.spad" 693542 693558 694833 694838) (-417 "FS2UPS.spad" 687931 687965 693532 693537) (-416 "FS2.spad" 687576 687592 687921 687926) (-415 "FS2EXPXP.spad" 686699 686722 687566 687571) (-414 "FRUTIL.spad" 685641 685651 686689 686694) (-413 "FR.spad" 679336 679346 684666 684735) (-412 "FRNAALG.spad" 674423 674433 679278 679331) (-411 "FRNAALG.spad" 669522 669534 674379 674384) (-410 "FRNAAF2.spad" 668976 668994 669512 669517) (-409 "FRMOD.spad" 668370 668400 668907 668912) (-408 "FRIDEAL.spad" 667565 667586 668350 668365) (-407 "FRIDEAL2.spad" 667167 667199 667555 667560) (-406 "FRETRCT.spad" 666678 666688 667157 667162) (-405 "FRETRCT.spad" 666055 666067 666536 666541) (-404 "FRAMALG.spad" 664383 664396 666011 666050) (-403 "FRAMALG.spad" 662743 662758 664373 664378) (-402 "FRAC.spad" 659843 659853 660246 660419) (-401 "FRAC2.spad" 659446 659458 659833 659838) (-400 "FR2.spad" 658780 658792 659436 659441) (-399 "FPS.spad" 655589 655597 658670 658775) (-398 "FPS.spad" 652426 652436 655509 655514) (-397 "FPC.spad" 651468 651476 652328 652421) (-396 "FPC.spad" 650596 650606 651458 651463) (-395 "FPATMAB.spad" 650348 650358 650576 650591) (-394 "FPARFRAC.spad" 648821 648838 650338 650343) (-393 "FORTRAN.spad" 647327 647370 648811 648816) (-392 "FORT.spad" 646256 646264 647317 647322) (-391 "FORTFN.spad" 643416 643424 646236 646251) (-390 "FORTCAT.spad" 643090 643098 643396 643411) (-389 "FORMULA.spad" 640428 640436 643080 643085) (-388 "FORMULA1.spad" 639907 639917 640418 640423) (-387 "FORDER.spad" 639598 639622 639897 639902) (-386 "FOP.spad" 638799 638807 639588 639593) (-385 "FNLA.spad" 638223 638245 638767 638794) (-384 "FNCAT.spad" 636551 636559 638213 638218) (-383 "FNAME.spad" 636443 636451 636541 636546) (-382 "FMTC.spad" 636241 636249 636369 636438) (-381 "FMONOID.spad" 633296 633306 636197 636202) (-380 "FM.spad" 632991 633003 633230 633257) (-379 "FMFUN.spad" 630011 630019 632971 632986) (-378 "FMC.spad" 629053 629061 629991 630006) (-377 "FMCAT.spad" 626707 626725 629021 629048) (-376 "FM1.spad" 626064 626076 626641 626668) (-375 "FLOATRP.spad" 623785 623799 626054 626059) (-374 "FLOAT.spad" 616949 616957 623651 623780) (-373 "FLOATCP.spad" 614366 614380 616939 616944) (-372 "FLINEXP.spad" 614078 614088 614346 614361) (-371 "FLINEXP.spad" 613744 613756 614014 614019) (-370 "FLASORT.spad" 613064 613076 613734 613739) (-369 "FLALG.spad" 610710 610729 612990 613059) (-368 "FLAGG.spad" 607716 607726 610678 610705) (-367 "FLAGG.spad" 604635 604647 607599 607604) (-366 "FLAGG2.spad" 603316 603332 604625 604630) (-365 "FINRALG.spad" 601345 601358 603272 603311) (-364 "FINRALG.spad" 599300 599315 601229 601234) (-363 "FINITE.spad" 598452 598460 599290 599295) (-362 "FINAALG.spad" 587433 587443 598394 598447) (-361 "FINAALG.spad" 576426 576438 587389 587394) (-360 "FILE.spad" 576009 576019 576416 576421) (-359 "FILECAT.spad" 574527 574544 575999 576004) (-358 "FIELD.spad" 573933 573941 574429 574522) (-357 "FIELD.spad" 573425 573435 573923 573928) (-356 "FGROUP.spad" 572034 572044 573405 573420) (-355 "FGLMICPK.spad" 570821 570836 572024 572029) (-354 "FFX.spad" 570196 570211 570537 570630) (-353 "FFSLPE.spad" 569685 569706 570186 570191) (-352 "FFPOLY.spad" 560937 560948 569675 569680) (-351 "FFPOLY2.spad" 559997 560014 560927 560932) (-350 "FFP.spad" 559394 559414 559713 559806) (-349 "FF.spad" 558842 558858 559075 559168) (-348 "FFNBX.spad" 557354 557374 558558 558651) (-347 "FFNBP.spad" 555867 555884 557070 557163) (-346 "FFNB.spad" 554332 554353 555548 555641) (-345 "FFINTBAS.spad" 551746 551765 554322 554327) (-344 "FFIELDC.spad" 549321 549329 551648 551741) (-343 "FFIELDC.spad" 546982 546992 549311 549316) (-342 "FFHOM.spad" 545730 545747 546972 546977) (-341 "FFF.spad" 543165 543176 545720 545725) (-340 "FFCGX.spad" 542012 542032 542881 542974) (-339 "FFCGP.spad" 540901 540921 541728 541821) (-338 "FFCG.spad" 539693 539714 540582 540675) (-337 "FFCAT.spad" 532720 532742 539532 539688) (-336 "FFCAT.spad" 525826 525850 532640 532645) (-335 "FFCAT2.spad" 525571 525611 525816 525821) (-334 "FEXPR.spad" 517280 517326 525327 525366) (-333 "FEVALAB.spad" 516986 516996 517270 517275) (-332 "FEVALAB.spad" 516477 516489 516763 516768) (-331 "FDIV.spad" 515919 515943 516467 516472) (-330 "FDIVCAT.spad" 513961 513985 515909 515914) (-329 "FDIVCAT.spad" 512001 512027 513951 513956) (-328 "FDIV2.spad" 511655 511695 511991 511996) (-327 "FCPAK1.spad" 510208 510216 511645 511650) (-326 "FCOMP.spad" 509587 509597 510198 510203) (-325 "FC.spad" 499412 499420 509577 509582) (-324 "FAXF.spad" 492347 492361 499314 499407) (-323 "FAXF.spad" 485334 485350 492303 492308) (-322 "FARRAY.spad" 483480 483490 484517 484544) (-321 "FAMR.spad" 481600 481612 483378 483475) (-320 "FAMR.spad" 479704 479718 481484 481489) (-319 "FAMONOID.spad" 479354 479364 479658 479663) (-318 "FAMONC.spad" 477576 477588 479344 479349) (-317 "FAGROUP.spad" 477182 477192 477472 477499) (-316 "FACUTIL.spad" 475378 475395 477172 477177) (-315 "FACTFUNC.spad" 474554 474564 475368 475373) (-314 "EXPUPXS.spad" 471387 471410 472686 472835) (-313 "EXPRTUBE.spad" 468615 468623 471377 471382) (-312 "EXPRODE.spad" 465487 465503 468605 468610) (-311 "EXPR.spad" 460762 460772 461476 461883) (-310 "EXPR2UPS.spad" 456854 456867 460752 460757) (-309 "EXPR2.spad" 456557 456569 456844 456849) (-308 "EXPEXPAN.spad" 453496 453521 454130 454223) (-307 "EXIT.spad" 453167 453175 453486 453491) (-306 "EXITAST.spad" 452903 452911 453157 453162) (-305 "EVALCYC.spad" 452361 452375 452893 452898) (-304 "EVALAB.spad" 451925 451935 452351 452356) (-303 "EVALAB.spad" 451487 451499 451915 451920) (-302 "EUCDOM.spad" 449029 449037 451413 451482) (-301 "EUCDOM.spad" 446633 446643 449019 449024) (-300 "ESTOOLS.spad" 438473 438481 446623 446628) (-299 "ESTOOLS2.spad" 438074 438088 438463 438468) (-298 "ESTOOLS1.spad" 437759 437770 438064 438069) (-297 "ES.spad" 430306 430314 437749 437754) (-296 "ES.spad" 422759 422769 430204 430209) (-295 "ESCONT.spad" 419532 419540 422749 422754) (-294 "ESCONT1.spad" 419281 419293 419522 419527) (-293 "ES2.spad" 418776 418792 419271 419276) (-292 "ES1.spad" 418342 418358 418766 418771) (-291 "ERROR.spad" 415663 415671 418332 418337) (-290 "EQTBL.spad" 414135 414157 414344 414371) (-289 "EQ.spad" 409009 409019 411808 411920) (-288 "EQ2.spad" 408725 408737 408999 409004) (-287 "EP.spad" 405039 405049 408715 408720) (-286 "ENV.spad" 403741 403749 405029 405034) (-285 "ENTIRER.spad" 403409 403417 403685 403736) (-284 "EMR.spad" 402610 402651 403335 403404) (-283 "ELTAGG.spad" 400850 400869 402600 402605) (-282 "ELTAGG.spad" 399054 399075 400806 400811) (-281 "ELTAB.spad" 398501 398519 399044 399049) (-280 "ELFUTS.spad" 397880 397899 398491 398496) (-279 "ELEMFUN.spad" 397569 397577 397870 397875) (-278 "ELEMFUN.spad" 397256 397266 397559 397564) (-277 "ELAGG.spad" 395187 395197 397224 397251) (-276 "ELAGG.spad" 393067 393079 395106 395111) (-275 "ELABEXPR.spad" 391998 392006 393057 393062) (-274 "EFUPXS.spad" 388774 388804 391954 391959) (-273 "EFULS.spad" 385610 385633 388730 388735) (-272 "EFSTRUC.spad" 383565 383581 385600 385605) (-271 "EF.spad" 378331 378347 383555 383560) (-270 "EAB.spad" 376607 376615 378321 378326) (-269 "E04UCFA.spad" 376143 376151 376597 376602) (-268 "E04NAFA.spad" 375720 375728 376133 376138) (-267 "E04MBFA.spad" 375300 375308 375710 375715) (-266 "E04JAFA.spad" 374836 374844 375290 375295) (-265 "E04GCFA.spad" 374372 374380 374826 374831) (-264 "E04FDFA.spad" 373908 373916 374362 374367) (-263 "E04DGFA.spad" 373444 373452 373898 373903) (-262 "E04AGNT.spad" 369286 369294 373434 373439) (-261 "DVARCAT.spad" 365971 365981 369276 369281) (-260 "DVARCAT.spad" 362654 362666 365961 365966) (-259 "DSMP.spad" 360085 360099 360390 360517) (-258 "DROPT.spad" 354030 354038 360075 360080) (-257 "DROPT1.spad" 353693 353703 354020 354025) (-256 "DROPT0.spad" 348520 348528 353683 353688) (-255 "DRAWPT.spad" 346675 346683 348510 348515) (-254 "DRAW.spad" 339275 339288 346665 346670) (-253 "DRAWHACK.spad" 338583 338593 339265 339270) (-252 "DRAWCX.spad" 336025 336033 338573 338578) (-251 "DRAWCURV.spad" 335562 335577 336015 336020) (-250 "DRAWCFUN.spad" 324734 324742 335552 335557) (-249 "DQAGG.spad" 322890 322900 324690 324729) (-248 "DPOLCAT.spad" 318231 318247 322758 322885) (-247 "DPOLCAT.spad" 313658 313676 318187 318192) (-246 "DPMO.spad" 306961 306977 307099 307400) (-245 "DPMM.spad" 300277 300295 300402 300703) (-244 "DOMAIN.spad" 299548 299556 300267 300272) (-243 "DMP.spad" 296770 296785 297342 297469) (-242 "DLP.spad" 296118 296128 296760 296765) (-241 "DLIST.spad" 294530 294540 295301 295328) (-240 "DLAGG.spad" 292931 292941 294510 294525) (-239 "DIVRING.spad" 292473 292481 292875 292926) (-238 "DIVRING.spad" 292059 292069 292463 292468) (-237 "DISPLAY.spad" 290239 290247 292049 292054) (-236 "DIRPROD.spad" 281093 281109 281733 281864) (-235 "DIRPROD2.spad" 279901 279919 281083 281088) (-234 "DIRPCAT.spad" 278831 278847 279753 279896) (-233 "DIRPCAT.spad" 277502 277520 278426 278431) (-232 "DIOSP.spad" 276327 276335 277492 277497) (-231 "DIOPS.spad" 275299 275309 276295 276322) (-230 "DIOPS.spad" 274257 274269 275255 275260) (-229 "DIFRING.spad" 273549 273557 274237 274252) (-228 "DIFRING.spad" 272849 272859 273539 273544) (-227 "DIFEXT.spad" 272008 272018 272829 272844) (-226 "DIFEXT.spad" 271084 271096 271907 271912) (-225 "DIAGG.spad" 270702 270712 271052 271079) (-224 "DIAGG.spad" 270340 270352 270692 270697) (-223 "DHMATRIX.spad" 268644 268654 269797 269824) (-222 "DFSFUN.spad" 262052 262060 268634 268639) (-221 "DFLOAT.spad" 258773 258781 261942 262047) (-220 "DFINTTLS.spad" 256982 256998 258763 258768) (-219 "DERHAM.spad" 254892 254924 256962 256977) (-218 "DEQUEUE.spad" 254210 254220 254499 254526) (-217 "DEGRED.spad" 253825 253839 254200 254205) (-216 "DEFINTRF.spad" 251350 251360 253815 253820) (-215 "DEFINTEF.spad" 249846 249862 251340 251345) (-214 "DEFAST.spad" 249214 249222 249836 249841) (-213 "DECIMAL.spad" 247096 247104 247682 247775) (-212 "DDFACT.spad" 244895 244912 247086 247091) (-211 "DBLRESP.spad" 244493 244517 244885 244890) (-210 "DBASE.spad" 243065 243075 244483 244488) (-209 "DATABUF.spad" 242553 242566 243055 243060) (-208 "D03FAFA.spad" 242381 242389 242543 242548) (-207 "D03EEFA.spad" 242201 242209 242371 242376) (-206 "D03AGNT.spad" 241281 241289 242191 242196) (-205 "D02EJFA.spad" 240743 240751 241271 241276) (-204 "D02CJFA.spad" 240221 240229 240733 240738) (-203 "D02BHFA.spad" 239711 239719 240211 240216) (-202 "D02BBFA.spad" 239201 239209 239701 239706) (-201 "D02AGNT.spad" 234005 234013 239191 239196) (-200 "D01WGTS.spad" 232324 232332 233995 234000) (-199 "D01TRNS.spad" 232301 232309 232314 232319) (-198 "D01GBFA.spad" 231823 231831 232291 232296) (-197 "D01FCFA.spad" 231345 231353 231813 231818) (-196 "D01ASFA.spad" 230813 230821 231335 231340) (-195 "D01AQFA.spad" 230259 230267 230803 230808) (-194 "D01APFA.spad" 229683 229691 230249 230254) (-193 "D01ANFA.spad" 229177 229185 229673 229678) (-192 "D01AMFA.spad" 228687 228695 229167 229172) (-191 "D01ALFA.spad" 228227 228235 228677 228682) (-190 "D01AKFA.spad" 227753 227761 228217 228222) (-189 "D01AJFA.spad" 227276 227284 227743 227748) (-188 "D01AGNT.spad" 223335 223343 227266 227271) (-187 "CYCLOTOM.spad" 222841 222849 223325 223330) (-186 "CYCLES.spad" 219673 219681 222831 222836) (-185 "CVMP.spad" 219090 219100 219663 219668) (-184 "CTRIGMNP.spad" 217580 217596 219080 219085) (-183 "CTOR.spad" 217023 217031 217570 217575) (-182 "CTORKIND.spad" 216638 216646 217013 217018) (-181 "CTORCALL.spad" 216226 216234 216628 216633) (-180 "CSTTOOLS.spad" 215469 215482 216216 216221) (-179 "CRFP.spad" 209173 209186 215459 215464) (-178 "CRCEAST.spad" 208893 208901 209163 209168) (-177 "CRAPACK.spad" 207936 207946 208883 208888) (-176 "CPMATCH.spad" 207436 207451 207861 207866) (-175 "CPIMA.spad" 207141 207160 207426 207431) (-174 "COORDSYS.spad" 202034 202044 207131 207136) (-173 "CONTOUR.spad" 201436 201444 202024 202029) (-172 "CONTFRAC.spad" 197048 197058 201338 201431) (-171 "CONDUIT.spad" 196806 196814 197038 197043) (-170 "COMRING.spad" 196480 196488 196744 196801) (-169 "COMPPROP.spad" 195994 196002 196470 196475) (-168 "COMPLPAT.spad" 195761 195776 195984 195989) (-167 "COMPLEX.spad" 189787 189797 190031 190292) (-166 "COMPLEX2.spad" 189500 189512 189777 189782) (-165 "COMPFACT.spad" 189102 189116 189490 189495) (-164 "COMPCAT.spad" 187158 187168 188824 189097) (-163 "COMPCAT.spad" 184920 184932 186588 186593) (-162 "COMMUPC.spad" 184666 184684 184910 184915) (-161 "COMMONOP.spad" 184199 184207 184656 184661) (-160 "COMM.spad" 184008 184016 184189 184194) (-159 "COMMAAST.spad" 183771 183779 183998 184003) (-158 "COMBOPC.spad" 182676 182684 183761 183766) (-157 "COMBINAT.spad" 181421 181431 182666 182671) (-156 "COMBF.spad" 178789 178805 181411 181416) (-155 "COLOR.spad" 177626 177634 178779 178784) (-154 "COLONAST.spad" 177292 177300 177616 177621) (-153 "CMPLXRT.spad" 177001 177018 177282 177287) (-152 "CLLCTAST.spad" 176663 176671 176991 176996) (-151 "CLIP.spad" 172755 172763 176653 176658) (-150 "CLIF.spad" 171394 171410 172711 172750) (-149 "CLAGG.spad" 167869 167879 171374 171389) (-148 "CLAGG.spad" 164225 164237 167732 167737) (-147 "CINTSLPE.spad" 163550 163563 164215 164220) (-146 "CHVAR.spad" 161628 161650 163540 163545) (-145 "CHARZ.spad" 161543 161551 161608 161623) (-144 "CHARPOL.spad" 161051 161061 161533 161538) (-143 "CHARNZ.spad" 160804 160812 161031 161046) (-142 "CHAR.spad" 158672 158680 160794 160799) (-141 "CFCAT.spad" 157988 157996 158662 158667) (-140 "CDEN.spad" 157146 157160 157978 157983) (-139 "CCLASS.spad" 155295 155303 156557 156596) (-138 "CATEGORY.spad" 155074 155082 155285 155290) (-137 "CATAST.spad" 154701 154709 155064 155069) (-136 "CASEAST.spad" 154415 154423 154691 154696) (-135 "CARTEN.spad" 149518 149542 154405 154410) (-134 "CARTEN2.spad" 148904 148931 149508 149513) (-133 "CARD.spad" 146193 146201 148878 148899) (-132 "CAPSLAST.spad" 145967 145975 146183 146188) (-131 "CACHSET.spad" 145589 145597 145957 145962) (-130 "CABMON.spad" 145142 145150 145579 145584) (-129 "BYTE.spad" 144316 144324 145132 145137) (-128 "BYTEARY.spad" 143391 143399 143485 143512) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP.spad" 125997 126005 130523 130528) (-113 "BOP1.spad" 123383 123393 125953 125958) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP8.spad" 98087 98100 99034 99039) (-86 "ASP80.spad" 97409 97422 98077 98082) (-85 "ASP7.spad" 96569 96582 97399 97404) (-84 "ASP78.spad" 96020 96033 96559 96564) (-83 "ASP77.spad" 95389 95402 96010 96015) (-82 "ASP74.spad" 94481 94494 95379 95384) (-81 "ASP73.spad" 93752 93765 94471 94476) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP4.spad" 88005 88018 88700 88705) (-76 "ASP49.spad" 87004 87017 87995 88000) (-75 "ASP42.spad" 85411 85450 86994 86999) (-74 "ASP41.spad" 83990 84029 85401 85406) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP1.spad" 67191 67204 67800 67805) (-62 "ASP19.spad" 61877 61890 67181 67186) (-61 "ASP12.spad" 61291 61304 61867 61872) (-60 "ASP10.spad" 60562 60575 61281 61286) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY1.spad" 58757 58766 59105 59132) (-57 "ARRAY12.spad" 57426 57437 58747 58752) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY.spad" 45959 45966 47607 47612) (-51 "ANY1.spad" 45030 45039 45949 45954) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index a43fd8c7..07562a96 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,3271 +1,3271 @@
-(145111 . 3432506637)
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-402 |#2|) |#3|) . T))
-((((-402 (-538))) |has| #1=(-402 |#2|) (-1014 (-402 (-538)))) (((-538)) |has| #1# (-1014 (-538))) ((#1#) . T))
-((((-402 |#2|)) . T))
-((((-538)) |has| #1=(-402 |#2|) (-621 (-538))) ((#1#) . T))
-((((-402 |#2|)) . T))
-((((-402 |#2|) |#3|) . T))
-(|has| (-402 |#2|) (-145))
-((((-402 |#2|) |#3|) . T))
-(|has| (-402 |#2|) (-143))
-((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T))
-((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T))
-(|has| (-402 |#2|) (-229))
-((((-1149)) |has| (-402 |#2|) (-876 (-1149))))
-((((-402 |#2|)) . T))
-(((|#3|) . T))
-(((#1=(-402 |#2|) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T))
-((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T))
+(145091 . 3432784499)
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+(((|#2| |#2|) . T))
+((((-552)) . T))
+((($ $) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) ((|#2| |#2|) . T) ((#0=(-402 (-552)) #0#) |has| |#2| (-38 (-402 (-552)))))
+((($) . T))
+(((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#2|) . T))
+((($) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) ((|#2|) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))))
+(|has| |#1| (-885))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((($) . T) (((-402 (-552))) . T))
+((($) . T))
+((($) . T))
+(((|#2| |#2|) . T))
+((((-142)) . T))
+((((-528)) . T) (((-1131)) . T) (((-221)) . T) (((-374)) . T) (((-868 (-374))) . T))
+(((|#1|) . T))
+((((-221)) . T) (((-839)) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1|) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-825)))
+((($ $) . T) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1| |#1|) . T))
+(-1523 (|has| |#1| (-800)) (|has| |#1| (-827)))
+((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T))
+((((-839)) . T))
+((((-839)) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+(|has| |#1| (-825))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
(((|#1| |#2| |#3|) . T))
+(((|#4|) . T))
+((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
+((((-839)) . T))
+((((-839)) |has| |#1| (-1073)))
+((((-839)) . T) (((-1154)) . T))
+(((|#1|) . T) ((|#2|) . T))
+(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(((|#2| (-476 (-1471 |#1|) (-751))) . T))
+(((|#1| (-524 (-1149))) . T))
+(((#0=(-846 |#1|) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(|has| |#4| (-363))
+(|has| |#3| (-363))
+(((|#1|) . T))
+((((-846 |#1|)) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1| |#2|) . T))
+((($) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(|has| |#1| (-544))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+((($) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+((($) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T))
+((($) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-839)) . T))
+((((-839)) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T))
+((((-839)) . T))
+(((|#1|) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1|) . T) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) . T))
+(((|#1| |#2|) . T))
+((((-839)) . T))
(((|#1|) . T))
+(((#0=(-402 (-552)) #0#) |has| |#2| (-38 (-402 (-552)))) ((|#2| |#2|) . T) (($ $) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
(((|#1|) . T))
-((((-1115 |#2| |#1|)) . T) ((|#1|) . T))
-((((-840)) . T))
+(((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) (($) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))) ((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))))
+((($ $) . T))
+(((|#2|) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T) (($) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))))
+((($) . T))
+(|has| |#1| (-363))
(((|#1|) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1| |#2|) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
(((|#1| |#1|) . T))
+(|has| |#1| (-544))
+(((|#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) (((-1149) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|))))
+((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-825)))
+((($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(|has| |#1| (-1073))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(|has| |#1| (-1073))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(|has| |#1| (-825))
+((($) . T) (((-402 (-552))) . T))
(((|#1|) . T))
-(((|#1|) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-840)) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-344)))
+(-1523 (|has| |#4| (-773)) (|has| |#4| (-825)))
+(-1523 (|has| |#4| (-773)) (|has| |#4| (-825)))
+(-1523 (|has| |#3| (-773)) (|has| |#3| (-825)))
+(-1523 (|has| |#3| (-773)) (|has| |#3| (-825)))
(((|#1| |#2|) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
(((|#1| |#2|) . T))
-((((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((|#1| |#2|) . T))
-((((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((|#1| |#2|) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((|#2|) . T))
-(((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) ((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-((((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((|#1| |#2|) . T))
+(|has| |#1| (-1073))
+(|has| |#1| (-1073))
+(((|#1| (-1149) (-1061 (-1149)) (-524 (-1061 (-1149)))) . T))
+((((-552) |#1|) . T))
+((((-552)) . T))
+((((-552)) . T))
+((((-886 |#1|)) . T))
+(((|#1| (-524 |#2|)) . T))
+((((-552)) . T))
+((((-552)) . T))
+(((|#1|) . T))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(((|#1| (-751)) . T))
+(|has| |#2| (-773))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+(|has| |#2| (-825))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-166 (-373))) . T) (((-221)) . T) (((-373)) . T))
-((((-402 (-538))) . T) (((-538)) . T))
-((($) . T) (((-402 (-538))) . T))
-((($) . T) (((-402 (-538))) . T))
-((($) . T) (((-402 (-538))) . T))
-((((-402 (-538))) . T) (($) . T))
-(((#1=(-402 (-538)) #1#) . T) (($ $) . T))
-((($) . T))
-((($ $) . T) (((-595 $) $) . T))
-((((-840)) . T))
-((((-402 (-538))) . T) (((-538)) . T) (((-595 $)) . T))
-((((-840)) . T))
-(((|#1|) . T))
-((((-840)) . T))
+((((-1131) |#1|) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(((|#1|) . T))
+(((|#3| (-751)) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544)))
+(|has| |#1| (-1073))
+((((-402 (-552))) . T) (((-552)) . T))
+((((-1149) |#2|) |has| |#2| (-507 (-1149) |#2|)) ((|#2| |#2|) |has| |#2| (-304 |#2|)))
+((((-402 (-552))) . T) (((-552)) . T))
(((|#1|) . T) (($) . T))
+((((-552)) . T))
+((((-552)) . T))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
+((((-552)) . T))
+((((-552)) . T))
+(((#0=(-679) (-1145 #0#)) . T))
+((((-402 (-552))) . T) (($) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+((((-552) |#1|) . T))
+((($) . T) (((-552)) . T) (((-402 (-552))) . T))
(((|#1|) . T))
-((((-840)) . T))
+(|has| |#2| (-358))
(((|#1|) . T))
+(((|#1| |#2|) . T))
+((((-839)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-1131) |#1|) . T))
+(((|#3| |#3|) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1| |#1|) . T))
+(((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))) ((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
+(((|#1|) . T))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((($) -1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-552) |#1|) . T))
+((((-839)) . T))
+((((-167 (-221))) |has| |#1| (-998)) (((-167 (-374))) |has| |#1| (-998)) (((-528)) |has| |#1| (-598 (-528))) (((-1145 |#1|)) . T) (((-868 (-552))) |has| |#1| (-598 (-868 (-552)))) (((-868 (-374))) |has| |#1| (-598 (-868 (-374)))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1|) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-825)))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-825)))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))))
+(|has| |#1| (-358))
+(-12 (|has| |#4| (-229)) (|has| |#4| (-1025)))
+(-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))
+(-1523 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025)))
+(-1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T))
+(((|#1|) . T))
+((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T))
+(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552))))
+(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
+(|has| |#1| (-544))
+(|has| |#1| (-544))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(((|#1|) . T))
+(|has| |#1| (-544))
+(|has| |#1| (-544))
+(|has| |#1| (-544))
+((((-679)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-978)) (|has| |#1| (-1171)))
+(((|#2|) . T) (($) . T) (((-402 (-552))) . T))
+(-12 (|has| |#1| (-1073)) (|has| |#2| (-1073)))
+((($) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) . T))
+(((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) (($) . T))
+(((|#4| |#4|) -1523 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025))) (($ $) |has| |#4| (-170)))
+(((|#3| |#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($ $) |has| |#3| (-170)))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-528)) |has| |#2| (-598 (-528))) (((-868 (-374))) |has| |#2| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#2| (-598 (-868 (-552)))))
+((((-839)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-839)) . T))
+((((-528)) |has| |#1| (-598 (-528))) (((-868 (-374))) |has| |#1| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#1| (-598 (-868 (-552)))))
+(((|#4|) -1523 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025))) (($) |has| |#4| (-170)))
+(((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($) |has| |#3| (-170)))
+((((-839)) . T))
+((((-839)) . T))
+((((-528)) . T) (((-552)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T))
+(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))))
+((($) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T))
+((((-402 $) (-402 $)) |has| |#2| (-544)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-885))
+((((-1131) (-52)) . T))
+((((-552)) |has| #0=(-402 |#2|) (-621 (-552))) ((#0#) . T))
+((((-528)) . T) (((-221)) . T) (((-374)) . T) (((-868 (-374))) . T))
+((((-839)) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
+((((-839)) . T))
+((((-839)) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-839)) . T))
(|has| |#1| (-827))
+(|has| |#1| (-1073))
+(((|#1|) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-839)) . T) (((-1154)) . T))
+((((-129)) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+((((-129)) . T))
+((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(|has| |#1| (-229))
+((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#1| (-524 (-798 (-1149)))) . T))
+(((|#1| (-947)) . T))
+(((#0=(-846 |#1|) $) |has| #0# (-281 #0# #0#)))
+((((-552) |#4|) . T))
+((((-552) |#3|) . T))
(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1| (-57 |#1|) (-57 |#1|)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T))
-(((|#1| |#1|) . T))
-((((-840)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-538)) . T))
-((((-538)) . T) (($) . T) (((-402 (-538))) . T))
-((($) . T) (((-538)) . T) (((-402 (-538))) . T))
-((((-538)) . T) (($) . T) (((-402 (-538))) . T))
-((((-538)) . T) (((-402 (-538))) . T) (($) . T))
-(((#1=(-538) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-527)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T))
-((((-402 (-538))) . T) (((-538)) . T))
-((((-538)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-383) (-1093)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-538) (-112)) . T))
-((((-538) (-112)) . T))
-((((-538) (-112)) . T))
-((((-527)) . T))
-((((-112)) . T))
-((((-840)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-527)) . T))
-((((-840)) . T))
-((((-840)) . T))
+(((|#2| |#2|) . T))
+(|has| |#1| (-1124))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
+(|has| (-1218 |#1| |#2| |#3| |#4|) (-143))
+(|has| (-1218 |#1| |#2| |#3| |#4|) (-145))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(((|#1|) |has| |#1| (-170)))
+((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025))))
+(((|#2|) . T))
+(|has| |#1| (-1073))
+((((-1131) |#1|) . T))
+(((|#1|) . T))
+(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552))))
+(|has| |#2| (-363))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((($) . T) ((|#1|) . T))
+(((|#2|) |has| |#2| (-1025)))
+((((-839)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+(((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((#0=(-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) #0#) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))))
+((((-552) |#1|) . T))
+((((-839)) . T))
+((((-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#2| (-598 (-528)))) (((-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374))))) (((-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552))))))
+((((-839)) . T))
((($) . T))
-((((-840)) . T))
+((((-839)) . T))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
((($) . T))
-((($ $) . T))
((($) . T))
((($) . T))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-839)) . T))
+((((-839)) . T))
+(|has| (-1217 |#2| |#3| |#4|) (-145))
+(|has| (-1217 |#2| |#3| |#4|) (-143))
+(((|#2|) |has| |#2| (-1073)) (((-552)) -12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (((-402 (-552))) -12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073))))
(((|#1|) . T))
-((((-840)) . T))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-402 (-538))) . T))
-((($) . T) (((-116 |#1|)) . T) (((-402 (-538))) . T))
-((((-116 |#1|)) . T) (($) . T) (((-402 (-538))) . T))
-((((-116 |#1|)) . T) (((-402 (-538))) . T) (($) . T))
-(((#1=(-116 |#1|) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T))
-((((-116 |#1|)) . T))
-((((-1149) #1=(-116 |#1|)) |has| #1# (-507 (-1149) #1#)) ((#1# #1#) |has| #1# (-304 #1#)))
-(((#1=(-116 |#1|)) |has| #1# (-304 #1#)))
-(((#1=(-116 |#1|) $) |has| #1# (-281 #1# #1#)))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) . T))
-(((|#1|) . T))
+(|has| |#1| (-1073))
+((((-839)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
(((|#1|) . T))
+((((-552) |#1|) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-825)))
+((((-839)) |has| |#1| (-1073)))
+(-1523 (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-344)))
+((((-886 |#1|)) . T))
+((((-402 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-552) |#1|)))
+((((-402 (-552))) . T) (($) . T))
+(|has| |#1| (-827))
+(((|#1|) . T) (($) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-839)) . T))
(((|#1|) . T))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544)))
+(|has| |#1| (-358))
+(-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))
+(|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))
+(|has| |#1| (-358))
+((((-552)) . T))
+(|has| |#1| (-15 * (|#1| (-751) |#1|)))
+((((-1115 |#2| (-402 (-928 |#1|)))) . T) (((-402 (-928 |#1|))) . T))
+((($) . T))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+(((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) (($) . T))
(((|#1|) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
+((((-552) |#1|) . T))
+((((-839)) . T))
+(((|#2|) . T))
+(-1523 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
(((|#1|) . T))
+((((-1149)) -12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
+(-1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-544)))
+(((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))) ((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))))
+((($ $) |has| |#1| (-544)))
+(((#0=(-679) (-1145 #0#)) . T))
+((((-839)) . T))
+((((-839)) . T) (((-1232 |#4|)) . T))
+((((-839)) . T) (((-1232 |#3|)) . T))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))))
+((($) |has| |#1| (-544)))
+((((-839)) . T))
+((($) . T))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((#1=(-1224 |#1| |#2| |#3|) #1#) |has| |#1| (-358)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T))
+(((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))))
+(((|#3|) |has| |#3| (-1025)))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(|has| |#1| (-1073))
+(((|#2| (-799 |#1|)) . T))
(((|#1|) . T))
-((((-142)) . T) (((-751)) . T) (((-840)) . T))
-((((-128)) . T))
-((((-128)) . T))
-((((-840)) . T))
-((((-128)) . T))
-((((-538) (-128)) . T))
-((((-538) (-128)) . T))
-((((-538) (-128)) . T))
-((((-128)) . T))
-((((-128)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-751)) . T))
-((((-840)) . T))
-((((-538) (-751)) . T) ((|#3| (-751)) . T))
-((((-840)) . T))
-(((|#3|) . T))
-(((|#3| (-751)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T))
-((((-142)) . T))
-((((-142)) . T))
-((((-142)) . T))
-((((-142)) . T))
-((((-142)) . T))
+(|has| |#1| (-358))
+((((-402 $) (-402 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T))
+(((#0=(-1055) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-886 |#1|)) . T))
((((-142)) . T))
((((-142)) . T))
-((((-622 (-142))) . T) (((-1131)) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T) (($) . T))
-((((-840)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T) (((-1154)) . T))
-(|has| |#1| (-801))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-345)))
-((((-840)) . T))
-(|has| |#1| (-145))
-(((|#1|) . T))
-((((-1149)) |has| |#1| (-876 (-1149))))
-(-3891 (|has| |#1| (-229)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)) (|has| |#1| (-545)))
-(-3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)) (|has| |#1| (-545)))
-(-3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-345)))
+(((|#3|) |has| |#3| (-1073)) (((-552)) -12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073))) (((-402 (-552))) -12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073))))
+((((-839)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
(((|#1|) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T))
+(|has| |#1| (-358))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-825)))
((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
-(((|#1|) |has| |#1| (-304 |#1|)))
-(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
+(|has| |#2| (-800))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-825))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+((((-839)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-528)) |has| |#1| (-598 (-528))))
+(((|#1| |#2|) . T))
+((((-1149)) -12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149)))))
+((((-1131) |#1|) . T))
+(((|#1| |#2| |#3| (-524 |#3|)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+((((-839)) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538))))
-(((|#1|) . T))
-((((-538)) |has| |#1| (-862 (-538))) (((-373)) |has| |#1| (-862 (-373))))
-(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))))
-(((|#1| (-1143 |#1|)) . T))
-(((|#1| (-1143 |#1|)) . T))
-((($) -3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T))
-((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T))
-((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T))
-((($ $) . T) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1| |#1|) . T))
-((($) -3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T))
-(((|#1| (-1143 |#1|)) . T))
-(|has| |#1| (-345))
-(|has| |#1| (-345))
-(|has| |#1| (-345))
-(-3891 (|has| |#1| (-363)) (|has| |#1| (-345)))
-(|has| |#1| (-827))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+(|has| |#1| (-363))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+((((-552)) . T))
+((((-552)) . T))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+((((-839)) . T))
+((((-839)) . T))
+(-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))
+((((-1149) #0=(-846 |#1|)) |has| #0# (-507 (-1149) #0#)) ((#0# #0#) |has| #0# (-304 #0#)))
(((|#1|) . T))
-((((-166 (-221))) |has| |#1| . #1=((-996))) (((-166 (-373))) |has| |#1| . #1#) (((-527)) |has| |#1| (-598 (-527))) (((-1143 |#1|)) . T) (((-866 (-538))) |has| |#1| (-598 (-866 (-538)))) (((-866 (-373))) |has| |#1| (-598 (-866 (-373)))))
-(-12 (|has| |#1| (-302)) (|has| |#1| (-886)))
-(-12 (|has| |#1| (-978)) (|has| |#1| (-1171)))
-(|has| |#1| (-1171))
-(|has| |#1| (-1171))
-(|has| |#1| (-1171))
-(|has| |#1| (-1171))
-(|has| |#1| (-1171))
-(|has| |#1| (-1171))
+((((-552) |#4|) . T))
+((((-552) |#3|) . T))
+(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552))))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+((((-1218 |#1| |#2| |#3| |#4|)) . T))
+((((-402 (-552))) . T) (((-552)) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-840)) . T))
-((((-402 (-538))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T))
-((((-840)) . T))
-((($) . T) (((-402 (-538))) . T) (((-402 |#1|)) . T) ((|#1|) . T))
-((($ $) . T) ((#1=(-402 (-538)) #1#) . T) ((#2=(-402 |#1|) #2#) . T) ((|#1| |#1|) . T))
-((((-402 (-538))) . T) (((-402 |#1|)) . T) ((|#1|) . T) (($) . T))
-((((-402 (-538))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-538)) . T))
-((((-538)) . T) (($) . T) (((-402 (-538))) . T))
-((($) . T) (((-538)) . T) (((-402 (-538))) . T))
-((((-538)) . T) (($) . T) (((-402 (-538))) . T))
-((((-538)) . T) (((-402 (-538))) . T) (($) . T))
-(((#1=(-538) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-527)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T))
-((((-402 (-538))) . T) (((-538)) . T))
-((((-538)) . T))
-((((-840)) . T) (((-1154)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-309 |#1|)) . T))
-((((-840)) . T))
-((((-309 |#1|)) . T) (($) . T))
-((((-309 |#1|)) . T))
-((((-538)) . T) (((-402 (-538))) . T))
-((((-373)) . T))
-((($) . T) (((-402 (-538))) . T))
-((($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-527)) . T) (((-221)) . T) (((-373)) . T) (((-866 (-373))) . T))
-((((-840)) . T))
-((((-402 (-538))) . T) (($) . T))
-(((|#1| (-1231 |#1|) (-1231 |#1|)) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1|) . T))
-(((|#1| (-1231 |#1|) (-1231 |#1|)) . T))
-(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074)))
-(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074)))
-(((|#2|) |has| |#2| (-170)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-((($) -3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))))
-(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358))))
-((((-840)) -3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-840))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) (((-1231 |#2|)) . T))
-(|has| |#2| (-170))
-(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170)))
-(((|#2| |#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170)))
-(((|#2|) |has| |#2| (-1025)))
-((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025))))
-(-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))
-(|has| |#2| (-363))
-(((|#2|) |has| |#2| (-1025)))
-(((|#2|) |has| |#2| (-1025)) (((-538)) -12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025))))
-(((|#2|) |has| |#2| (-1074)))
-(((|#2|) |has| |#2| (-1074)) (((-538)) -12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (((-402 (-538))) -12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074))))
-((((-538) |#2|) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-(((|#2|) . T))
-((((-538) |#2|) . T))
-((((-538) |#2|) . T))
-(|has| |#2| (-773))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(|has| |#2| (-825))
-(|has| |#2| (-825))
-(((|#2|) |has| |#2| (-358)))
-(((|#1| |#2|) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
(((|#1|) . T))
(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
+((($) . T) (((-552)) . T) (((-402 (-552))) . T))
+((((-552)) . T))
+((((-552)) . T))
+((($) . T) (((-552)) . T) (((-402 (-552))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T))
(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-827))
+(((#0=(-552) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))))
+(((|#1|) . T) (($) . T) (((-402 (-552))) . T))
+(((|#1|) |has| |#1| (-544)))
+((((-552) |#4|) . T))
+((((-552) |#3|) . T))
+((((-839)) . T))
+((((-552)) . T) (((-402 (-552))) . T) (($) . T))
+((((-839)) . T))
+((((-552) |#1|) . T))
(((|#1|) . T))
+((($ $) . T) ((#0=(-841 |#1|) $) . T) ((#0# |#2|) . T))
+((($) . T))
+((($ $) . T) ((#0=(-1149) $) . T) ((#0# |#1|) . T))
+(((|#2|) |has| |#2| (-170)))
+((($) -1523 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) ((|#2|) |has| |#2| (-170)) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))))
+(((|#2| |#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170)))
+((((-142)) . T))
(((|#1|) . T))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-363)))
+((((-839)) . T))
+(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170)))
+(((|#1|) . T))
+((((-839)) . T))
+(|has| |#1| (-1073))
+(|has| $ (-145))
+((((-552) |#1|) . T))
+((($) -1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
+((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149)))))
+(|has| |#1| (-358))
+(-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))
+(|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))
+(|has| |#1| (-358))
+(|has| |#1| (-15 * (|#1| (-751) |#1|)))
(((|#1|) . T))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+((((-839)) . T))
+((((-552) (-129)) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+(((|#2| (-524 (-841 |#1|))) . T))
+((((-839)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
(((|#1|) . T))
-((((-527)) |has| |#2| (-598 (-527))) (((-866 (-373))) |has| |#2| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#2| (-598 (-866 (-538)))))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+((((-567 |#1|)) . T))
((($) . T))
-(((|#2| (-235 (-4316 |#1|) (-751))) . T))
-(((|#2|) . T))
-((((-840)) . T))
-((($) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T) (($) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(((#1=(-402 (-538)) #1#) |has| |#2| (-38 (-402 (-538)))) ((|#2| |#2|) . T) (($ $) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(((|#2| (-235 (-4316 |#1|) (-751))) . T))
-(((|#2|) . T))
-(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538))))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-886)))
-((($ $) . T) ((#1=(-841 |#1|) $) . T) ((#1# |#2|) . T))
-(|has| |#2| (-827))
-((((-841 |#1|)) . T))
-(|has| |#2| (-886))
-(|has| |#2| (-886))
-((((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))) (((-538)) |has| |#2| (-1014 (-538))) ((|#2|) . T) (((-841 |#1|)) . T))
-(((|#2| (-235 (-4316 |#1|) (-751)) (-841 |#1|)) . T))
-((((-840)) . T))
-(((|#4|) |has| |#4| (-170)))
-(-3891 (|has| |#4| (-170)) (|has| |#4| (-707)) (|has| |#4| (-825)) (|has| |#4| (-1025)))
-(-3891 (|has| |#4| (-170)) (|has| |#4| (-707)) (|has| |#4| (-825)) (|has| |#4| (-1025)))
-(-3891 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025)))
-(-3891 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025)))
-(((|#3|) . T) ((|#2|) . T) (($) -3891 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025))) ((|#4|) -3891 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025))))
-(((|#4|) -3891 (|has| |#4| (-170)) (|has| |#4| (-358))))
-((((-840)) . T) (((-1231 |#4|)) . T))
-(|has| |#4| (-170))
-(((|#4|) -3891 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025))) (($) |has| |#4| (-170)))
-(((|#4| |#4|) -3891 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025))) (($ $) |has| |#4| (-170)))
-(((|#4|) |has| |#4| (-1025)))
-((((-1149)) -12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025))))
-(-12 (|has| |#4| (-229)) (|has| |#4| (-1025)))
-(|has| |#4| (-363))
-(((|#4|) |has| |#4| (-1025)))
-(((|#4|) |has| |#4| (-1025)) (((-538)) -12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))))
-(((|#4|) |has| |#4| (-1074)))
-(((|#4|) |has| |#4| (-1074)) (((-538)) -12 (|has| |#4| (-1014 (-538))) (|has| |#4| (-1074))) (((-402 (-538))) -12 (|has| |#4| (-1014 (-402 (-538)))) (|has| |#4| (-1074))))
-((((-538) |#4|) . T))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
+(((|#1|) . T) (($) . T))
+((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T))
(((|#4|) . T))
-((((-538) |#4|) . T))
-((((-538) |#4|) . T))
-(|has| |#4| (-773))
-(-3891 (|has| |#4| (-773)) (|has| |#4| (-825)))
-(-3891 (|has| |#4| (-773)) (|has| |#4| (-825)))
-(-3891 (|has| |#4| (-773)) (|has| |#4| (-825)))
-(-3891 (|has| |#4| (-773)) (|has| |#4| (-825)))
-(|has| |#4| (-825))
-(|has| |#4| (-825))
-(((|#4|) |has| |#4| (-358)))
-(((|#1| |#4|) . T))
-(((|#3|) |has| |#3| (-170)))
-(-3891 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(-3891 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(-3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(-3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(((|#2|) . T) (($) -3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) ((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))))
-(((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358))))
-((((-840)) . T) (((-1231 |#3|)) . T))
-(|has| |#3| (-170))
-(((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($) |has| |#3| (-170)))
-(((|#3| |#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($ $) |has| |#3| (-170)))
-(((|#3|) |has| |#3| (-1025)))
-((((-1149)) -12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025))))
-(-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))
-(|has| |#3| (-363))
-(((|#3|) |has| |#3| (-1025)))
-(((|#3|) |has| |#3| (-1025)) (((-538)) -12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))))
-(((|#3|) |has| |#3| (-1074)))
-(((|#3|) |has| |#3| (-1074)) (((-538)) -12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074))) (((-402 (-538))) -12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074))))
-((((-538) |#3|) . T))
-(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))
-(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))
(((|#3|) . T))
-((((-538) |#3|) . T))
-((((-538) |#3|) . T))
-(|has| |#3| (-773))
-(-3891 (|has| |#3| (-773)) (|has| |#3| (-825)))
-(-3891 (|has| |#3| (-773)) (|has| |#3| (-825)))
-(-3891 (|has| |#3| (-773)) (|has| |#3| (-825)))
-(-3891 (|has| |#3| (-773)) (|has| |#3| (-825)))
-(|has| |#3| (-825))
-(|has| |#3| (-825))
-(((|#3|) |has| |#3| (-358)))
-(((|#1| |#3|) . T))
-((((-840)) . T))
+((((-846 |#1|)) . T) (($) . T) (((-402 (-552))) . T))
+((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025))))
(((|#1|) . T))
-((((-840)) . T))
-(|has| |#1| (-229))
+((((-839)) . T))
+((((-839)) . T))
+((((-552) |#2|) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1| |#2| |#3| |#4| |#5|) . T))
+(((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))) ((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((#1=(-1147 |#1| |#2| |#3|) #1#) |has| |#1| (-358)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
+(((|#2|) |has| |#2| (-1025)))
+(|has| |#1| (-1073))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T))
+(((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+(((|#1|) . T))
+(((#0=(-402 (-552)) #0#) |has| |#2| (-38 (-402 (-552)))) ((|#2| |#2|) . T) (($ $) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+((((-839)) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))))
+(((#0=(-1055) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T) (($) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
((($) . T))
-(((|#1| (-524 |#3|) |#3|) . T))
-(|has| |#1| (-886))
-(|has| |#1| (-886))
-((((-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#3| (-862 (-538)))) (((-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#3| (-862 (-373)))))
-((((-1149)) |has| |#1| (-876 (-1149))) ((|#3|) . T))
-(|has| |#1| (-827))
-((($ $) . T) ((|#2| $) |has| |#1| . #1=((-229))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-886)))
-((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T))
+(((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) (($) . T))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
(((|#1|) . T))
-(((|#1| (-524 |#3|)) . T))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(|has| |#1| (-145))
+(((|#2|) |has| |#1| (-358)))
+(((|#2|) |has| |#2| (-1073)) (((-552)) -12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (((-402 (-552))) -12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073))))
+((((-552) |#1|) . T))
+((((-839)) . T))
+((((-402 |#2|) |#3|) . T))
+(((|#1| (-402 (-552))) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-402 (-552))) . T) (($) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+((((-839)) . T) (((-1154)) . T))
(|has| |#1| (-143))
-((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
+(|has| |#1| (-145))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-402 (-552))) . T) (($) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-402 (-552))) . T) (($) . T))
+(((|#2| |#3| (-841 |#1|)) . T))
+((((-1149)) |has| |#2| (-876 (-1149))))
(((|#1|) . T))
-(((|#1| (-524 |#3|)) . T))
-((((-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#3| (-598 (-866 (-538))))) (((-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#3| (-598 (-866 (-373))))) (((-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#3| (-598 (-527)))))
-((((-1098 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((|#2|) . T))
-(((|#1| |#2| |#3| (-524 |#3|)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-((((-840)) . T))
-((($) . T))
-((($) . T))
-((((-840)) . T))
-((($) . T))
+(((|#1| (-524 |#2|) |#2|) . T))
+(((|#1| (-751) (-1055)) . T))
+((((-402 (-552))) |has| |#2| (-358)) (($) . T))
+(((|#1| (-524 (-1061 (-1149))) (-1061 (-1149))) . T))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(((|#1|) . T))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(|has| |#2| (-773))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#2| (-825))
+((((-869 |#1|)) . T) (((-799 |#1|)) . T))
+((((-799 (-1149))) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-625 (-552))) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-528)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T))
+(|has| |#1| (-229))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
((($ $) . T))
-((($) . T))
-((((-840)) . T))
-(((|#1|) |has| |#1| (-358)))
-((((-1149)) |has| |#1| (-876 (-1149))))
-(((|#1|) -3891 (|has| |#1| (-170)) (|has| |#1| (-358))))
-(((|#1|) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025))))
-(((|#1| |#1|) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025))))
-(((|#1|) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025))) (($) -3891 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))))
-(-3891 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
-(-3891 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
-(|has| |#1| (-467))
-(-3891 (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
-(-3891 (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1074)))
-((((-112)) |has| |#1| (-1074)) (((-840)) -3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1074))))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1074)))
-((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)))
-(((|#1| |#2|) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
+(((|#1| |#1|) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-1224 |#1| |#2| |#3|) $) -12 (|has| (-1224 |#1| |#2| |#3|) (-281 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358))) (($ $) . T))
+((($ $) . T))
+((($ $) . T))
+(((|#1|) . T))
+((((-1113 |#1| |#2|)) |has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+(((|#2|) . T) (((-552)) |has| |#2| (-1014 (-552))) (((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))))
+(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-840)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T))
-(|has| (-1218 |#1| |#2| |#3| |#4|) (-143))
-(|has| (-1218 |#1| |#2| |#3| |#4|) (-145))
-((((-1218 |#1| |#2| |#3| |#4|)) . T))
-((((-1218 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-538))) . T))
-((($) . T) (((-1218 |#1| |#2| |#3| |#4|)) . T) (((-402 (-538))) . T))
-((((-1218 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-538))) . T))
-((((-1218 |#1| |#2| |#3| |#4|)) . T) (((-402 (-538))) . T) (($) . T))
-(((#1=(-1218 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T))
-((((-1218 |#1| |#2| |#3| |#4|)) . T))
-((((-1149) #1=(-1218 |#1| |#2| |#3| |#4|)) |has| #1# (-507 (-1149) #1#)) ((#1# #1#) |has| #1# (-304 #1#)))
-(((#1=(-1218 |#1| |#2| |#3| |#4|)) |has| #1# (-304 #1#)))
-(((#1=(-1218 |#1| |#2| |#3| |#4|) $) |has| #1# (-281 #1# #1#)))
-((((-1218 |#1| |#2| |#3| |#4|)) . T))
-((((-1218 |#1| |#2| |#3| |#4|)) . T))
-((((-1218 |#1| |#2| |#3| |#4|)) . T))
-((((-1218 |#1| |#2| |#3| |#4|)) . T))
-((((-1212 |#2| |#3| |#4|)) . T) (((-1218 |#1| |#2| |#3| |#4|)) . T))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+(((|#3|) . T))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+(((|#2|) . T))
+((((-839)) -1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-839))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) (((-1232 |#2|)) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-552)) . T))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-552) (-142)) . T))
+((($) -1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025)))
+(((|#1|) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025)))
+(((|#2|) |has| |#1| (-358)))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| |#1|) . T) (($ $) . T))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| (-524 #0=(-1149)) #0#) . T))
+(((|#1|) . T) (($) . T))
+(|has| |#4| (-170))
+(|has| |#3| (-170))
+(((#0=(-402 (-928 |#1|)) #0#) . T))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(|has| |#1| (-1073))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(|has| |#1| (-1073))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+((((-839)) . T) (((-1154)) . T))
+(((|#1| |#1|) |has| |#1| (-170)))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1|) . T))
+((((-402 (-928 |#1|))) . T))
+((((-552) (-129)) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-129)) . T))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+((((-839)) . T))
((((-1218 |#1| |#2| |#3| |#4|)) . T))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(((|#1|) |has| |#1| (-545)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025)))
-((((-840)) . T))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025)))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-545)) (|has| |#1| (-1025)) (|has| |#1| (-1085)))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-545)) (|has| |#1| (-1025)) (|has| |#1| (-1085)))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025)))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025)))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-((((-595 $) $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545)) (((-402 (-538))) |has| |#1| (-545)))
-((($) -3891 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-545)))
-(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545)) (((-402 (-538))) |has| |#1| (-545)))
-(|has| |#1| (-545))
-(((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-545)) (($) |has| |#1| (-545)))
-(((|#1| |#1|) |has| |#1| (-170)) ((#1=(-402 (-538)) #1#) |has| |#1| (-545)) (($ $) |has| |#1| (-545)))
-(|has| |#1| (-545))
-(((|#1|) |has| |#1| (-1025)))
-(((|#1|) |has| |#1| (-1025)) (((-538)) -12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))
+(((|#1|) |has| |#1| (-1025)) (((-552)) -12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))
+(((|#1| |#2|) . T))
+(-1523 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+(|has| |#3| (-773))
+(-1523 (|has| |#3| (-773)) (|has| |#3| (-825)))
+(|has| |#3| (-825))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))))
+(((|#2|) . T))
+((((-552) (-129)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-552) |#2|) . T))
+(((|#1| (-1129 |#1|)) |has| |#1| (-825)))
+(|has| |#1| (-1073))
(((|#1|) . T))
-((((-538)) |has| |#1| (-862 (-538))) (((-373)) |has| |#1| (-862 (-373))))
+(-12 (|has| |#1| (-358)) (|has| |#2| (-1124)))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(|has| |#1| (-1073))
+(((|#2|) . T))
+((((-528)) |has| |#2| (-598 (-528))) (((-868 (-374))) |has| |#2| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#2| (-598 (-868 (-552)))))
+(((|#4|) -1523 (|has| |#4| (-170)) (|has| |#4| (-358))))
+(((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358))))
+((((-839)) . T))
+(((|#1|) . T))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-885)))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-885)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-885)))
+((($ $) . T) ((#0=(-1149) $) |has| |#1| (-229)) ((#0# |#1|) |has| |#1| (-229)) ((#1=(-798 (-1149)) |#1|) . T) ((#1# $) . T))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-885)))
+((((-552) |#2|) . T))
+((((-839)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((($) -1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) ((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))))
+((((-552) |#1|) . T))
+(|has| (-402 |#2|) (-145))
+(|has| (-402 |#2|) (-143))
+(((|#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))))
+(|has| |#1| (-38 (-402 (-552))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-402 (-552))) . T))
+((((-839)) . T))
+(|has| |#1| (-544))
+(|has| |#1| (-544))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-839)) . T))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
+(|has| |#1| (-38 (-402 (-552))))
+((((-383) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#2| (-1124))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-1185)) . T) (((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
(((|#1|) . T))
-(|has| |#1| (-467))
-((((-1149)) |has| |#1| (-1025)))
+((((-383) (-1131)) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+((((-116 |#1|)) . T))
+(|has| |#1| (-544))
+((((-129)) . T))
+((((-552) |#1|) . T))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(((|#2|) . T))
+((((-839)) . T))
+((((-799 |#1|)) . T))
+(((|#2|) |has| |#2| (-170)))
+((((-1149) (-52)) . T))
(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))) (((-866 (-538))) |has| |#1| (-598 (-866 (-538)))) (((-866 (-373))) |has| |#1| (-598 (-866 (-373)))))
-((((-48)) -12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538)))) (((-595 $)) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) -3891 (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538)))) (|has| |#1| (-1014 (-402 (-538))))) (((-402 (-922 |#1|))) |has| |#1| (-545)) (((-922 |#1|)) |has| |#1| (-1025)) (((-1149)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-544))
+(((|#1|) |has| |#1| (-170)))
+((((-839)) . T))
+((((-528)) |has| |#1| (-598 (-528))))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(((|#2|) |has| |#2| (-304 |#2|)))
+(((#0=(-552) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-((((-840)) . T))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(((|#1| (-402 (-538))) . T))
-(((|#1| (-402 (-538))) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
-((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#1|) . T))
-(((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#1| |#1|) . T))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
-(((|#1| (-402 (-538)) (-1055)) . T))
-((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))))
+(((|#1| (-1145 |#1|)) . T))
+(|has| $ (-145))
+(((|#2|) . T))
+(((#0=(-552) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T))
+((($) . T) (((-552)) . T) (((-402 (-552))) . T))
+(|has| |#2| (-363))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+((((-552)) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-552)) . T) (((-402 (-552))) . T) (($) . T))
+((((-1147 |#1| |#2| |#3|) $) -12 (|has| (-1147 |#1| |#2| |#3|) (-281 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))) (($ $) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
+((($ $) . T))
((($ $) . T))
-(|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))
+((((-839)) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((#0=(-1224 |#1| |#2| |#3|) #0#) -12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358))) (((-1149) #0#) -12 (|has| (-1224 |#1| |#2| |#3|) (-507 (-1149) (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358))))
+(-12 (|has| |#1| (-1073)) (|has| |#2| (-1073)))
(((|#1|) . T))
-(|has| |#1| (-827))
(((|#1|) . T))
-(((|#1| (-538)) . T))
-(((#1=(-538) #1#) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-840)) . T))
-((((-840)) . T))
(((|#1|) . T))
-(((|#1| (-751)) . T))
+((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-402 (-552))) . T) (((-552)) . T))
+((((-552) (-142)) . T))
+((((-142)) . T))
(((|#1|) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025)))
+((((-112)) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-112)) . T))
(((|#1|) . T))
+((((-528)) |has| |#1| (-598 (-528))) (((-221)) . #0=(|has| |#1| (-998))) (((-374)) . #0#))
+((((-839)) . T))
+(|has| |#1| (-800))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
(|has| |#1| (-827))
-(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-1149)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-(((|#3| |#3|) . T))
-(((|#3|) . T) (($) . T))
-(((|#3|) . T))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-544)))
+(|has| |#1| (-544))
+(|has| |#1| (-885))
+(((|#1|) . T))
+(|has| |#1| (-1073))
+((((-839)) . T))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-544)))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1| (-1232 |#1|) (-1232 |#1|)) . T))
+((((-552) (-142)) . T))
+((($) . T))
+(-1523 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025)))
+(-1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+((((-1154)) . T) (((-839)) . T))
+((((-839)) . T))
+(|has| |#1| (-1073))
+(((|#1| (-947)) . T))
+(((|#1| |#1|) . T))
((($) . T))
-((($ $) . T) (((-595 $) $) . T))
-((((-840)) . T))
-(((|#3|) . T) (((-595 $)) . T))
-((((-882 |#1|)) . T))
-((((-882 |#1|)) . T))
-((((-882 |#1|)) . T))
-((((-882 |#1|)) . T) (($) . T) (((-402 (-538))) . T))
-(((#1=(-882 |#1|) #1#) . T) (($ $) . T) ((#2=(-402 (-538)) #2#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T))
-(|has| $ (-145))
-((((-882 |#1|)) . T))
-((((-882 |#1|)) . T))
-((((-882 |#1|)) . T))
-((((-882 |#1|)) . T))
-((((-882 |#1|)) . T) (($) . T) (((-402 (-538))) . T))
-(((#1=(-882 |#1|) #1#) . T) (($ $) . T) ((#2=(-402 (-538)) #2#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T))
-(|has| $ (-145))
-((((-882 |#1|)) . T))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+(-12 (|has| |#1| (-467)) (|has| |#2| (-467)))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))))
(((|#1|) . T))
+(|has| |#2| (-773))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+(((|#1| |#2|) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(|has| |#2| (-825))
+(-12 (|has| |#1| (-773)) (|has| |#2| (-773)))
+(-12 (|has| |#1| (-773)) (|has| |#2| (-773)))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#1|) |has| |#1| (-170)))
+((((-839)) . T))
+(|has| |#1| (-344))
(((|#1|) . T))
(((|#1|) . T))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(((|#1|) . T) (($) . T) (((-402 (-538))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
(((|#1|) . T))
+((((-402 (-552))) . T) (($) . T))
+((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) . T))
+(|has| |#1| (-808))
+((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T))
+(|has| |#1| (-1073))
+(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544)))
+((($) |has| |#1| (-544)))
+(((|#4|) |has| |#4| (-1073)))
+(((|#3|) |has| |#3| (-1073)))
+(|has| |#3| (-363))
+(((|#1|) . T) (((-839)) . T))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
+((((-839)) . T))
+(((|#2|) . T))
+(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))))
+(((|#1| |#2|) . T))
+((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#1| |#1|) |has| |#1| (-170)))
+(|has| |#2| (-358))
(((|#1|) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-402 (-552))) . T) (((-552)) . T))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
+((((-142)) . T))
(((|#1|) . T))
+((($) -1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))))
+((((-142)) . T))
+((((-142)) . T))
+(((|#1| |#2| |#3|) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025)))
+(|has| $ (-145))
+(|has| $ (-145))
+(|has| |#1| (-1073))
+((((-839)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-544)) (|has| |#1| (-1025)) (|has| |#1| (-1085)))
+((($ $) |has| |#1| (-281 $ $)) ((|#1| $) |has| |#1| (-281 |#1| |#1|)))
+(((|#1| (-402 (-552))) . T))
(((|#1|) . T))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(((|#1|) . T) (($) . T) (((-402 (-538))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
+((((-1149)) . T))
+(|has| |#1| (-544))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+(|has| |#1| (-544))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+((((-839)) . T))
+(|has| |#2| (-143))
+(|has| |#2| (-145))
+(((|#2|) . T) (($) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+(|has| |#4| (-825))
+(((|#2| (-236 (-1471 |#1|) (-751)) (-841 |#1|)) . T))
+(|has| |#3| (-825))
+(((|#1| (-524 |#3|) |#3|) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+(((#0=(-402 (-552)) #0#) |has| |#2| (-358)) (($ $) . T))
+((((-846 |#1|)) . T))
(|has| |#1| (-145))
(|has| |#1| (-363))
(|has| |#1| (-363))
(|has| |#1| (-363))
-(|has| |#1| (-363))
-(((|#1|) . T))
-((((-882 |#1|)) . T))
-((((-882 |#1|)) . T))
-((((-882 |#1|)) . T))
-((((-882 |#1|)) . T) (($) . T) (((-402 (-538))) . T))
-(((#1=(-882 |#1|) #1#) . T) (($ $) . T) ((#2=(-402 (-538)) #2#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T))
-(|has| $ (-145))
-((((-882 |#1|)) . T))
-(((|#1|) . T))
+(|has| |#1| (-143))
+((((-402 (-552))) |has| |#2| (-358)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+(-1523 (|has| |#1| (-344)) (|has| |#1| (-363)))
+((((-1115 |#2| |#1|)) . T) ((|#1|) . T))
+(|has| |#2| (-170))
+(((|#1| |#2|) . T))
+(-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))
+(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(-1523 (|has| |#3| (-773)) (|has| |#3| (-825)))
+(-1523 (|has| |#3| (-773)) (|has| |#3| (-825)))
+((((-839)) . T))
(((|#1|) . T))
+(((|#2|) . T) (($) . T))
+(((|#1|) . T) (($) . T))
+((((-679)) . T))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(|has| |#1| (-544))
(((|#1|) . T))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(((|#1|) . T) (($) . T) (((-402 (-538))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(((|#1|) . T) (($) . T) (((-402 (-538))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
(((|#1|) . T))
+((((-1149) (-52)) . T))
+((((-839)) . T))
+((((-528)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T))
(((|#1|) . T))
+((((-839)) . T))
+((((-528)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T))
+(((|#1| (-552)) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1| |#2|) . T))
(((|#1|) . T))
+(((|#1| (-402 (-552))) . T))
+(((|#3|) . T) (((-596 $)) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
(((|#1|) . T))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(((|#1|) . T) (($) . T) (((-402 (-538))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((($ $) . T) ((|#2| $) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(((#0=(-1147 |#1| |#2| |#3|) #0#) -12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))) (((-1149) #0#) -12 (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))))
+((((-552)) . T) (($) . T) (((-402 (-552))) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1| |#1|) . T))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))))
+((((-839)) . T))
(((|#1|) . T))
+(((|#3| |#3|) . T))
(((|#1|) . T))
+((($) . T) ((|#2|) . T))
+((((-1149) (-52)) . T))
+(((|#3|) . T))
+((($ $) . T) ((#0=(-841 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-808))
+(|has| |#1| (-1073))
+(((|#2| |#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170)))
+(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358))))
+((((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170)))
+((((-751)) . T))
+((((-552)) . T))
+(|has| |#1| (-544))
+((((-839)) . T))
+(((|#1| (-402 (-552)) (-1055)) . T))
+(|has| |#1| (-143))
(((|#1|) . T))
+(|has| |#1| (-544))
+((((-552)) . T))
+((((-116 |#1|)) . T))
(((|#1|) . T))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(((|#1|) . T) (($) . T) (((-402 (-538))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
(|has| |#1| (-145))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-544)))
+((((-868 (-552))) . T) (((-868 (-374))) . T) (((-528)) . T) (((-1149)) . T))
+((((-839)) . T))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+((((-839)) . T) (((-1154)) . T))
+((($) . T))
+((((-839)) . T))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+(((|#2|) |has| |#2| (-170)))
+((($) -1523 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) ((|#2|) |has| |#2| (-170)) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))))
+((((-846 |#1|)) . T))
+(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073)))
+(-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))
+(|has| |#2| (-1124))
+(((#0=(-52)) . T) (((-2 (|:| -2971 (-1149)) (|:| -4120 #0#))) . T))
+(((|#1| |#2|) . T))
+(-1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+(((|#1| (-552) (-1055)) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| (-402 (-552)) (-1055)) . T))
+((($) -1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
+((((-552) |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(|has| |#2| (-363))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-363)))
+((((-839)) . T))
+((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(((|#1|) . T))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544)))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))))
+((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-839)) . T))
+(|has| |#1| (-344))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+(|has| |#1| (-544))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-839)) . T))
+(((|#1| |#2|) . T))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-885)))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-885)))
+((((-402 (-552))) . T) (((-552)) . T))
+((((-552)) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+((($) . T))
+((((-839)) . T))
+(((|#1|) . T))
+((((-846 |#1|)) . T) (($) . T) (((-402 (-552))) . T))
+((((-839)) . T))
+(((|#3| |#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($ $) |has| |#3| (-170)))
+(|has| |#1| (-998))
+((((-839)) . T))
+(((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($) |has| |#3| (-170)))
+((((-552) (-112)) . T))
+(((|#1|) |has| |#1| (-304 |#1|)))
(|has| |#1| (-363))
(|has| |#1| (-363))
(|has| |#1| (-363))
-(|has| |#1| (-363))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
+((((-1149) $) |has| |#1| (-507 (-1149) $)) (($ $) |has| |#1| (-304 $)) ((|#1| |#1|) |has| |#1| (-304 |#1|)) (((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)))
+((((-1149)) |has| |#1| (-876 (-1149))))
+(-1523 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))
+((((-383) (-1093)) . T))
+(((|#1| |#4|) . T))
+(((|#1| |#3|) . T))
((((-383) |#1|) . T))
-((((-538)) . T) (((-402 (-538))) . T))
-((((-373)) . T))
-((($) . T) (((-402 (-538))) . T))
-((($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-527)) . T) (((-1131)) . T) (((-221)) . T) (((-373)) . T) (((-866 (-373))) . T))
-((((-221)) . T) (((-840)) . T))
-((((-402 (-538))) . T) (($) . T))
-(((|#1|) |has| |#1| (-170)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-344)))
+(|has| |#1| (-1073))
+((((-839)) . T))
+((((-839)) . T))
+((((-886 |#1|)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))))
(((|#1| |#2|) . T))
-(((|#1|) . T))
-((((-840)) . T))
-(((|#1|) . T))
-(((|#1| |#1|) . T))
+((($) . T))
(((|#1| |#1|) . T))
+(((#0=(-846 |#1|)) |has| #0# (-304 #0#)))
+(((|#1| |#2|) . T))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+(-12 (|has| |#1| (-773)) (|has| |#2| (-773)))
(((|#1|) . T))
-((((-840)) . T))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#2|) . T))
+(-12 (|has| |#1| (-773)) (|has| |#2| (-773)))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(((|#2|) . T) (($) . T))
+(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(|has| |#1| (-1171))
+(((#0=(-552) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T))
+((((-402 (-552))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1025)))
+(((|#3|) |has| |#3| (-1025)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+(|has| |#1| (-358))
+((((-552)) . T) (((-402 (-552))) . T) (($) . T))
+((($ $) . T) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1| |#1|) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(((|#1|) . T) (($) . T) (((-402 (-552))) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1|) . T) (($) . T) (((-402 (-552))) . T))
+(((|#1|) . T) (($) . T) (((-402 (-552))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-552) |#3|) . T))
+((((-839)) . T))
+((((-528)) |has| |#3| (-598 (-528))))
+((((-669 |#3|)) . T) (((-839)) . T))
(((|#1| |#2|) . T))
+(|has| |#1| (-825))
+(|has| |#1| (-825))
+((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-544)))
+((($) . T))
+(((#0=(-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) #0#) |has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))))
+(|has| |#2| (-827))
+((($) . T))
+(((|#2|) |has| |#2| (-1073)))
+((((-839)) -1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-839))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) (((-1232 |#2|)) . T))
(|has| |#1| (-827))
-(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-((((-840)) . T))
-(((|#3|) . T))
-(((|#3| |#3|) . T))
-(((|#3|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-402 |#2|)) . T))
-((((-840)) . T))
-(|has| |#1| (-1190))
-((((-527)) |has| |#1| (-598 (-527))) (((-221)) . #1=(|has| |#1| (-996))) (((-373)) . #1#))
-(|has| |#1| (-996))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-1190)))
-((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T))
-(((|#1|) . T))
-((($ $) |has| |#1| (-281 $ $)) ((|#1| $) |has| |#1| (-281 |#1| |#1|)))
-((($) |has| |#1| (-304 $)) ((|#1|) |has| |#1| (-304 |#1|)))
-((((-1149) $) |has| |#1| (-507 (-1149) $)) (($ $) |has| |#1| (-304 $)) ((|#1| |#1|) |has| |#1| (-304 |#1|)) (((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)))
-(((|#1|) . T))
-(|has| |#1| (-229))
-((((-1149)) |has| |#1| (-876 (-1149))))
-(((|#1|) . T))
-(((|#1|) . T) (($) . T))
-(((|#1| |#1|) . T) (($ $) . T))
-(((|#1|) . T) (($) . T))
-((((-840)) . T))
-(((|#1|) . T) (($) . T))
+(|has| |#1| (-827))
+((((-1131) (-52)) . T))
+(|has| |#1| (-827))
+((((-839)) . T))
+((((-552)) |has| #0=(-402 |#2|) (-621 (-552))) ((#0#) . T))
+((((-552) (-142)) . T))
+((((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((|#1| |#2|) . T))
+((((-402 (-552))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-839)) . T))
+((((-886 |#1|)) . T))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
+(|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))
+(|has| |#1| (-825))
+(|has| |#1| (-358))
+(|has| |#1| (-825))
(((|#1|) . T) (($) . T))
-(-12 (|has| |#1| (-537)) (|has| |#1| (-801)))
-((((-840)) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(((|#1|) . T))
+(|has| |#1| (-825))
((((-1149)) |has| |#1| (-876 (-1149))))
-(|has| |#1| (-229))
-(((|#1|) . T) (($) . T) (((-402 (-538))) . T))
-((($) . T) ((|#1|) . T) (((-402 (-538))) . T))
-(((|#1|) . T) (($) . T) (((-402 (-538))) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-(((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) . T) (($ $) . T))
-(((|#1|) . T))
-((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
-(((|#1|) |has| |#1| (-304 |#1|)))
-(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
+(((|#1| (-1149)) . T))
+(((|#1| (-1232 |#1|) (-1232 |#1|)) . T))
+((((-839)) . T) (((-1154)) . T))
+(((|#1| |#2|) . T))
+((($ $) . T))
+(|has| |#1| (-1073))
+(((|#1| (-1149) (-798 (-1149)) (-524 (-798 (-1149)))) . T))
+((((-402 (-928 |#1|))) . T))
+((((-528)) . T))
+((((-839)) . T))
+((($) . T))
+(((|#2|) . T) (($) . T))
+((((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538))))
+(((|#1|) |has| |#1| (-170)))
+((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#3|) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
(((|#1|) . T))
-((((-538)) |has| |#1| (-862 (-538))) (((-373)) |has| |#1| (-862 (-373))))
-(|has| |#1| (-800))
-(|has| |#1| (-800))
-(|has| |#1| (-800))
-(-3891 (|has| |#1| (-800)) (|has| |#1| (-827)))
-(|has| |#1| (-800))
-(|has| |#1| (-800))
-(|has| |#1| (-800))
(((|#1|) . T))
-(|has| |#1| (-886))
-(|has| |#1| (-996))
-((((-527)) |has| |#1| (-598 (-527))) (((-866 (-538))) |has| |#1| (-598 (-866 (-538)))) (((-866 (-373))) |has| |#1| (-598 (-866 (-373)))) (((-373)) . #1=(|has| |#1| (-996))) (((-221)) . #1#))
-((((-402 (-538))) |has| |#1| . #1=((-1014 (-538)))) (((-538)) |has| |#1| . #1#) (((-1149)) |has| |#1| (-1014 (-1149))) ((|#1|) . T))
+((((-528)) |has| |#1| (-598 (-528))) (((-868 (-374))) |has| |#1| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#1| (-598 (-868 (-552)))))
+((((-839)) . T))
+(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(|has| |#2| (-825))
+(-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))
+(|has| |#1| (-544))
(|has| |#1| (-1124))
+((((-1131) |#1|) . T))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#1| |#1|) . T))
+((((-402 (-552))) |has| |#1| (-1014 (-552))) (((-552)) |has| |#1| (-1014 (-552))) (((-1149)) |has| |#1| (-1014 (-1149))) ((|#1|) . T))
+((((-552) |#2|) . T))
+((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T))
+((((-552)) |has| |#1| (-862 (-552))) (((-374)) |has| |#1| (-862 (-374))))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#1|) . T))
+(((|#1|) . T))
+((((-625 |#4|)) . T) (((-839)) . T))
+((((-528)) |has| |#4| (-598 (-528))))
+((((-528)) |has| |#4| (-598 (-528))))
+((((-839)) . T) (((-625 |#4|)) . T))
+((($) |has| |#1| (-825)))
(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
+((((-625 |#4|)) . T) (((-839)) . T))
+((((-528)) |has| |#4| (-598 (-528))))
(((|#1|) . T))
-((((-840)) . T))
+(((|#2|) . T))
+((((-1149)) |has| (-402 |#2|) (-876 (-1149))))
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-839)) -1523 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-597 (-839))) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1073))) (((-1232 |#3|)) . T))
+((((-552) |#2|) . T))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(((|#2| |#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170)))
+((((-839)) . T))
+((((-839)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((|#2|) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-1131) (-1149) (-552) (-221) (-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+((((-839)) . T))
+((((-552) (-112)) . T))
+(((|#1|) . T))
+((((-839)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-112)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+((((-839)) . T))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170)))
+(|has| $ (-145))
+((((-402 |#2|)) . T))
+((((-402 (-552))) |has| #0=(-402 |#2|) (-1014 (-402 (-552)))) (((-552)) |has| #0# (-1014 (-552))) ((#0#) . T))
+(((|#2| |#2|) . T))
+(((|#4|) |has| |#4| (-170)))
+(|has| |#2| (-143))
+(|has| |#2| (-145))
+(((|#3|) |has| |#3| (-170)))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(|has| |#1| (-145))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(|has| |#1| (-145))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(|has| |#1| (-145))
(((|#1|) . T))
+(((|#2|) . T))
+(|has| |#2| (-229))
+((((-839)) . T) (((-1154)) . T))
+((((-1149) (-52)) . T))
+((((-839)) . T))
+((((-839)) . T) (((-1154)) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (($) . T))
+((((-1149)) |has| |#2| (-876 (-1149))))
+((((-552) (-112)) . T))
+(|has| |#1| (-544))
+(((|#2|) . T))
+(((|#2|) . T))
(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-383) (-1131)) . T))
-((((-840)) . T))
-((((-402 (-922 |#1|))) . T))
-((((-402 (-922 |#1|))) . T))
-((((-1115 |#2| (-402 (-922 |#1|)))) . T) (((-402 (-922 |#1|))) . T))
-((((-840)) . T))
-((((-402 (-922 |#1|))) . T))
-(((#1=(-402 (-922 |#1|)) #1#) . T))
-((((-402 (-922 |#1|))) . T))
-((((-402 (-922 |#1|))) . T))
-((((-527)) |has| |#2| (-598 (-527))) (((-866 (-373))) |has| |#2| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#2| (-598 (-866 (-538)))))
-((($) . T))
-(((|#2| |#3|) . T))
+(((|#2| |#2|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(((|#3|) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(((|#1|) . T))
+((((-839)) . T))
+((((-528)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-975 |#1|)) . T) ((|#1|) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-402 (-552))) . T) (((-402 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1145 |#1|)) . T))
+((((-552)) . T) (($) . T) (((-402 (-552))) . T))
+(((|#3|) . T) (($) . T))
+(|has| |#1| (-827))
(((|#2|) . T))
-((((-840)) . T))
-((($) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T) (($) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(((#1=(-402 (-538)) #1#) |has| |#2| (-38 (-402 (-538)))) ((|#2| |#2|) . T) (($ $) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(((|#2| |#3|) . T))
+((((-552)) . T) (($) . T) (((-402 (-552))) . T))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
+((((-552) |#2|) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
(((|#2|) . T))
-(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538))))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-886)))
-((($ $) . T) ((#1=(-841 |#1|) $) . T) ((#1# |#2|) . T))
-(|has| |#2| (-827))
-((((-841 |#1|)) . T))
-(|has| |#2| (-886))
-(|has| |#2| (-886))
-((((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))) (((-538)) |has| |#2| (-1014 (-538))) ((|#2|) . T) (((-841 |#1|)) . T))
-(((|#2| |#3| (-841 |#1|)) . T))
-(((|#2| |#2|) . T) ((|#6| |#6|) . T))
-(((|#2|) . T) ((|#6|) . T))
-((((-840)) . T))
-(((|#2|) . T) ((|#6|) . T))
-(((|#2|) . T) ((|#6|) . T))
-(((|#4|) . T))
-((((-622 |#4|)) . T) (((-840)) . T))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
-(((|#4|) . T))
-((((-527)) |has| |#4| (-598 (-527))))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-840)) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-((((-840)) . T))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(((|#1| (-402 (-538))) . T))
-(((|#1| (-402 (-538))) . T))
+((((-552) |#3|) . T))
+(((|#2|) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)))
+(|has| |#1| (-38 (-402 (-552))))
+((((-839)) . T))
+(|has| |#1| (-1073))
+(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))
+(|has| |#1| (-38 (-402 (-552))))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+(((|#2| |#2|) . T))
+(|has| |#2| (-358))
+(((|#2|) . T) (((-552)) |has| |#2| (-1014 (-552))) (((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))))
+(((|#2|) . T))
+((((-1131) (-52)) . T))
+(((|#2|) |has| |#2| (-170)))
+((((-552) |#3|) . T))
+((((-552) (-142)) . T))
+((((-142)) . T))
+((((-839)) . T))
+((((-112)) . T))
(|has| |#1| (-145))
+(((|#1|) . T))
(|has| |#1| (-143))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
-((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#1|) . T))
-(((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#1| |#1|) . T))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
-(((|#1| (-402 (-538)) (-1055)) . T))
-((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))))
-((($ $) . T))
-(|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))
+((($) . T))
+(|has| |#1| (-544))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((($) . T))
(((|#1|) . T))
+(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552))))
+((((-839)) . T))
+((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T))
+((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T))
+((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T))
+((((-1131) (-52)) . T))
+(((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
(((|#1| |#2|) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
+((((-552) (-142)) . T))
+(((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
+((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(|has| |#1| (-827))
+(((|#2| (-751) (-1055)) . T))
(((|#1| |#2|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-527)) |has| |#4| (-598 (-527))))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-544)))
+(|has| |#1| (-771))
+(((|#1|) |has| |#1| (-170)))
(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
(((|#4|) . T))
-((((-840)) . T) (((-622 |#4|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-527)) . T) (((-402 (-1143 (-538)))) . T) (((-221)) . T) (((-373)) . T))
-((((-402 (-538))) . T) (((-538)) . T))
-((((-373)) . T) (((-221)) . T) (((-840)) . T))
-((($) . T) (((-402 (-538))) . T))
-((($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-840)) . T) (((-1154)) . T))
-(((|#1| |#2|) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
+(-1523 (|has| |#1| (-145)) (-12 (|has| |#1| (-358)) (|has| |#2| (-145))))
+(-1523 (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| |#2| (-143))))
+(((|#4|) . T))
+(|has| |#1| (-143))
+((((-1131) |#1|) . T))
+(|has| |#1| (-145))
+(((|#1|) . T))
+((((-552)) . T))
+((((-839)) . T))
(((|#1| |#2|) . T))
-((((-527)) |has| |#2| (-598 (-527))) (((-866 (-373))) |has| |#2| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#2| (-598 (-866 (-538)))))
+((((-839)) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#3|) . T))
+((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)))
+((((-839)) . T))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(((|#1|) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))) (((-934 |#1|)) . T))
+(|has| |#1| (-825))
+(|has| |#1| (-825))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(|has| |#2| (-358))
+(((|#1|) |has| |#1| (-170)))
+(((|#2|) |has| |#2| (-1025)))
+((((-1131) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))
+(((|#2| (-869 |#1|)) . T))
((($) . T))
-(((|#2| (-476 (-4316 |#1|) (-751))) . T))
-(((|#2|) . T))
-((((-840)) . T))
-((($) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T))
+((((-383) (-1131)) . T))
+((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-839)) -1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-839))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) (((-1232 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -2971 (-1131)) (|:| -4120 #0#))) . T))
+(((|#1|) . T))
+((((-839)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
+((((-142)) . T))
(|has| |#2| (-143))
(|has| |#2| (-145))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T) (($) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(((#1=(-402 (-538)) #1#) |has| |#2| (-38 (-402 (-538)))) ((|#2| |#2|) . T) (($ $) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(((|#2| (-476 (-4316 |#1|) (-751))) . T))
-(((|#2|) . T))
-(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538))))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-886)))
-((($ $) . T) ((#1=(-841 |#1|) $) . T) ((#1# |#2|) . T))
-(|has| |#2| (-827))
-((((-841 |#1|)) . T))
-(|has| |#2| (-886))
-(|has| |#2| (-886))
-((((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))) (((-538)) |has| |#2| (-1014 (-538))) ((|#2|) . T) (((-841 |#1|)) . T))
-(((|#2| (-476 (-4316 |#1|) (-751)) (-841 |#1|)) . T))
-(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074)))
-(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074)))
-(((|#2|) |has| |#2| (-170)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-((($) -3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))))
-(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358))))
-((((-840)) -3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-840))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) (((-1231 |#2|)) . T))
-(|has| |#2| (-170))
-(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170)))
-(((|#2| |#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170)))
-(((|#2|) |has| |#2| (-1025)))
-((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025))))
-(-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))
-(|has| |#2| (-363))
-(((|#2|) |has| |#2| (-1025)))
-(((|#2|) |has| |#2| (-1025)) (((-538)) -12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025))))
-(((|#2|) |has| |#2| (-1074)))
-(((|#2|) |has| |#2| (-1074)) (((-538)) -12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (((-402 (-538))) -12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074))))
-((((-538) |#2|) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-(((|#2|) . T))
-((((-538) |#2|) . T))
-((((-538) |#2|) . T))
-(|has| |#2| (-773))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(|has| |#2| (-825))
-(|has| |#2| (-825))
-(((|#2|) |has| |#2| (-358)))
+(|has| |#1| (-467))
+(-1523 (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
+(|has| |#1| (-358))
+((((-839)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544)))
+((($) |has| |#1| (-544)))
+(|has| |#1| (-825))
+(|has| |#1| (-825))
+((((-839)) . T))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))))
+((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
(((|#1| |#2|) . T))
-((((-840)) . T) (((-1154)) . T))
-(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-840)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-840)) . T))
-((((-538)) . T))
-((((-538)) . T) (($) . T) (((-402 (-538))) . T))
-((($) . T) (((-538)) . T) (((-402 (-538))) . T))
-((((-538)) . T) (($) . T) (((-402 (-538))) . T))
-((((-538)) . T) (((-402 (-538))) . T) (($) . T))
-(((#1=(-538) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-527)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T))
-((((-402 (-538))) . T) (((-538)) . T))
-((((-538)) . T))
-((((-1131)) . T) (((-840)) . T))
-((((-166 (-373))) . T) (((-221)) . T) (((-373)) . T))
-((((-402 (-538))) . T) (((-538)) . T))
-((($) . T) (((-402 (-538))) . T))
-((($) . T) (((-402 (-538))) . T))
-((($) . T) (((-402 (-538))) . T))
-((((-402 (-538))) . T) (($) . T))
-(((#1=(-402 (-538)) #1#) . T) (($ $) . T))
-((($) . T))
-((($ $) . T) (((-595 $) $) . T))
-((((-840)) . T))
-((((-402 (-538))) . T) (((-538)) . T) (((-595 $)) . T))
-(((|#1|) . T))
-(|has| |#1| (-827))
+((((-1149)) |has| |#1| (-876 (-1149))))
+((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T))
+((((-839)) . T))
+((((-839)) . T))
+(|has| |#1| (-1073))
+(((|#2| (-476 (-1471 |#1|) (-751)) (-841 |#1|)) . T))
+((((-402 (-552))) . #0=(|has| |#2| (-358))) (($) . #0#))
+(((|#1| (-524 (-1149)) (-1149)) . T))
(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T))
+(|has| |#2| (-170))
+(((|#2| |#2|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-538) (-112)) . T))
-((((-538) (-112)) . T))
-((((-538) (-112)) . T))
-((((-527)) . T))
-((((-112)) . T))
-((((-840)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-1149)) . T) (((-840)) . T) (((-1154)) . T))
-(((|#1| |#2|) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-((((-840)) . T))
-((((-840)) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
(((|#1|) . T))
+(((|#2|) . T))
+(((|#1|) . T) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-1149) (-52)) . T))
+((($ $) . T))
+(((|#1| (-552)) . T))
+((((-886 |#1|)) . T))
+(((|#1|) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025))) (($) -1523 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))))
+(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))))
+(|has| |#1| (-827))
+(|has| |#1| (-827))
+((((-552) |#2|) . T))
+((((-552)) . T))
+((((-1224 |#1| |#2| |#3|)) -12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358))))
+(|has| |#1| (-827))
+((((-669 |#2|)) . T) (((-839)) . T))
(((|#1| |#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
+((((-402 (-928 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+(((|#1|) |has| |#1| (-170)))
+(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+(((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358))))
+(|has| |#2| (-827))
(|has| |#1| (-827))
+(-1523 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-885)))
+((($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+((((-552) |#2|) . T))
+(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358))))
+(|has| |#1| (-344))
+(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))
+((($) . T) (((-402 (-552))) . T))
+((((-552) (-112)) . T))
+(|has| |#1| (-800))
+(|has| |#1| (-800))
(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-(((|#1|) . T))
+(-1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)))
+(|has| |#1| (-825))
+(|has| |#1| (-825))
+(|has| |#1| (-825))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(|has| |#1| (-38 (-402 (-552))))
+((((-552)) . T) (($) . T) (((-402 (-552))) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-344)))
+(|has| |#1| (-38 (-402 (-552))))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T))
(((|#1|) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-567 |#1|)) . T))
-((((-567 |#1|)) . T))
-((((-567 |#1|)) . T))
-((((-567 |#1|)) . T) (($) . T) (((-402 (-538))) . T))
-(((#1=(-567 |#1|) #1#) . T) (($ $) . T) ((#2=(-402 (-538)) #2#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-567 |#1|)) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-((((-567 |#1|)) . T) (((-402 (-538))) . T) (($) . T))
-(|has| $ (-145))
-((((-567 |#1|)) . T))
+(|has| |#1| (-825))
+(((#0=(-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) #0#) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(|has| |#1| (-1073))
+((((-839)) . T) (((-1154)) . T))
(((|#1|) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1| |#4| |#5|) . T))
+(((|#2| |#2|) . T))
(((|#1|) . T))
+(((|#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) . T))
(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
+(((|#3| |#3|) . T))
+(((|#2|) . T))
(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
+(((|#1| (-524 |#2|) |#2|) . T))
+((((-839)) . T))
+((((-142)) . T) (((-751)) . T) (((-839)) . T))
+(((|#1| (-751) (-1055)) . T))
+(((|#3|) . T))
(((|#1|) . T))
+((((-142)) . T))
+(((|#2|) |has| |#2| (-170)))
+(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073)))
(((|#1|) . T))
-(|has| |#1| (-827))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(|has| |#3| (-170))
+(((|#4|) |has| |#4| (-358)))
+(((|#3|) |has| |#3| (-358)))
(((|#1|) . T))
+(((|#2|) |has| |#1| (-358)))
+((((-839)) . T))
+(((|#2|) . T))
+(((|#1| (-1145 |#1|)) . T))
+((((-1055)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))))
+((($) . T) ((|#1|) . T) (((-402 (-552))) . T))
+(((|#2|) . T))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
+((($) |has| |#1| (-825)))
+(|has| |#1| (-885))
+((((-839)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
(((|#1|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((#0=(-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) #0#) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-885)))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-885)))
+(((|#1|) . T) (($) . T))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
+(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
(((|#1|) . T))
-(((|#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T))
-((((-751) |#1|) . T))
-((((-840)) . T))
-((((-1076)) . T))
-((((-840)) . T))
-((((-1131) (-1149) (-538) (-221) (-840)) . T))
-((($) . T))
-((((-840)) . T))
-((($) . T))
-((($ $) . T))
-((($) . T))
-((($) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-1131)) . T) (((-527)) . T) (((-538)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T))
-((((-538)) . T))
-(((|#1| |#2|) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#1| |#2|) . T))
-((($) . T))
-((($ $) . T))
-((($) . T))
-((((-840)) . T))
-((($) . T))
+(((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358))))
+(|has| |#1| (-827))
+(|has| |#1| (-544))
+((((-567 |#1|)) . T))
((($) . T))
-((((-538)) . T))
+(((|#2|) . T))
+(-1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-800))) (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+((((-886 |#1|)) . T))
+(((|#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) . T))
+(((|#1| |#4| |#5|) . T))
+(((|#1| (-751)) . T))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544)))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))))
+((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T))
+((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T))
+((((-652 |#1|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-528)) . T))
+((((-839)) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-839)) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#2|) . T))
+(-1523 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1073)))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T))
+(|has| |#1| (-1171))
+(|has| |#1| (-1171))
+(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073)))
+(|has| |#1| (-1171))
+(|has| |#1| (-1171))
+(((|#3| |#3|) . T))
+((((-552)) . T) (($) . T) (((-402 (-552))) . T))
+((($) . T) (((-402 (-552))) . T) (((-402 |#1|)) . T) ((|#1|) . T))
+((($ $) . T) ((#0=(-402 (-552)) #0#) . T) ((#1=(-402 |#1|) #1#) . T) ((|#1| |#1|) . T))
+(((|#3|) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+((((-1131) (-52)) . T))
+(|has| |#1| (-1073))
+(-1523 (|has| |#2| (-800)) (|has| |#2| (-827)))
(((|#1|) . T))
-((((-840)) . T))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
((($) . T))
-((((-840)) . T))
+((((-1147 |#1| |#2| |#3|)) -12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))))
+((((-839)) . T))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
((($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+((((-839)) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(|has| |#2| (-885))
+(|has| |#1| (-358))
+(((|#2|) |has| |#2| (-1073)))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-885)))
+((($) . T) ((|#2|) . T))
+((((-528)) . T) (((-402 (-1145 (-552)))) . T) (((-221)) . T) (((-374)) . T))
+((((-374)) . T) (((-221)) . T) (((-839)) . T))
+(|has| |#1| (-885))
+(|has| |#1| (-885))
+(|has| |#1| (-885))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-885)))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
((($ $) . T))
-((($) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((($ $) . T))
+((((-552) (-112)) . T))
((($) . T))
(((|#1|) . T))
-((((-538)) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-(|has| $ (-145))
+((((-552)) . T))
+((((-112)) . T))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544)))
+(|has| |#1| (-38 (-402 (-552))))
+(((|#1| (-552)) . T))
((($) . T))
-((((-840)) . T))
-((($) . T) (((-402 (-538))) . T))
-((($) . T) (((-402 (-538))) . T))
-((($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-402 (-538))) . T) (($) . T))
-(((|#1|) . T))
-(((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T))
-((((-840)) . T))
-((((-402 (-538))) . T))
-((((-402 (-538))) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-142)) . T))
-((((-142)) . T))
-((((-538) (-142)) . T))
-((((-538) (-142)) . T))
-((((-538) (-142)) . T))
-((((-142)) . T))
-((((-840)) . T))
-((((-142)) . T))
-((((-142)) . T))
-(|has| |#1| (-15 * (|#1| (-538) |#1|)))
-((((-840)) . T))
-((($ $) . T))
-((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))
-(((|#1| (-538) (-1055)) . T))
-((($) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-545)))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))))
-(((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))) ((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545)))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545)))
-(((|#1| (-538)) . T))
-(((|#1| (-538)) . T))
-((($) |has| |#1| (-545)))
-((($ $) |has| |#1| (-545)))
-((($) |has| |#1| (-545)))
-((($) |has| |#1| (-545)))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-((($) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-(((|#1|) . T))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
+(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552))))
+((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-827))
+((((-552)) . T))
+(((|#1| |#2|) . T))
+((((-1149)) |has| |#1| (-1025)))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
(((|#1|) . T))
+((((-839)) . T))
+(((|#1| (-552)) . T))
+(((|#1| (-1224 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-((((-128)) . T) (((-840)) . T))
-((((-1186)) . T) (((-840)) . T) (((-1154)) . T))
-(((|#1|) -3891 (|has| |#2| (-362 |#1|)) (|has| |#2| (-413 |#1|))))
-(((|#1|) |has| |#2| (-413 |#1|)))
+(((|#1| (-402 (-552))) . T))
+(((|#1| (-1196 |#1| |#2| |#3|)) . T))
+(((|#1| (-751)) . T))
(((|#1|) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-839)) . T))
+(|has| |#1| (-1073))
+((((-1131) |#1|) . T))
+((($) . T))
+(|has| |#2| (-145))
+(|has| |#2| (-143))
+(((|#1| (-524 (-798 (-1149))) (-798 (-1149))) . T))
+((((-839)) . T))
+((((-1218 |#1| |#2| |#3| |#4|)) . T))
+((((-1218 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1025)))
+((((-552) (-112)) . T))
+((((-839)) |has| |#1| (-1073)))
+(|has| |#2| (-170))
+((((-552)) . T))
+(|has| |#2| (-825))
(((|#1|) . T))
-(((|#2|) . T) (((-840)) . T))
+((((-552)) . T))
+((((-839)) . T))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-344)))
+(|has| |#1| (-145))
+((((-839)) . T))
+(((|#3|) . T))
+(-1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+((((-839)) . T))
+((((-1217 |#2| |#3| |#4|)) . T) (((-1218 |#1| |#2| |#3| |#4|)) . T))
+((((-839)) . T))
+((((-48)) -12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552)))) (((-596 $)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) -1523 (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552)))) (|has| |#1| (-1014 (-402 (-552))))) (((-402 (-928 |#1|))) |has| |#1| (-544)) (((-928 |#1|)) |has| |#1| (-1025)) (((-1149)) . T))
+(((|#1|) . T) (($) . T))
+(((|#1| (-751)) . T))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-304 |#1|)))
+((((-1218 |#1| |#2| |#3| |#4|)) . T))
+((((-552)) |has| |#1| (-862 (-552))) (((-374)) |has| |#1| (-862 (-374))))
(((|#1|) . T))
-(((|#1| |#1|) . T))
+(|has| |#1| (-544))
(((|#1|) . T))
-((((-1131) |#1|) . T))
-((((-1131) |#1|) . T))
-((((-1131) |#1|) . T))
-((((-1131) |#1|) . T))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-(((|#1|) . T) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((#1=(-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) #1#) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-((((-1131) |#1|) . T))
-((((-840)) . T))
-((((-383) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-((((-527)) |has| |#1| (-598 (-527))) (((-866 (-373))) |has| |#1| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#1| (-598 (-866 (-538)))))
+((((-839)) . T))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+(((|#1|) |has| |#1| (-170)))
+((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
+(((|#3|) |has| |#3| (-1073)))
+(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358))))
+((((-1217 |#2| |#3| |#4|)) . T))
+((((-112)) . T))
+(|has| |#1| (-800))
+(|has| |#1| (-800))
+(((|#1| (-552) (-1055)) . T))
+((($) |has| |#1| (-304 $)) ((|#1|) |has| |#1| (-304 |#1|)))
(|has| |#1| (-825))
(|has| |#1| (-825))
+(((|#1| (-552) (-1055)) . T))
+(-1523 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(((|#1| (-402 (-552)) (-1055)) . T))
+(((|#1| (-751) (-1055)) . T))
+(|has| |#1| (-827))
+(((#0=(-886 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-552)) #1#) . T))
+(|has| |#2| (-143))
+(|has| |#2| (-145))
(((|#2|) . T))
-((((-840)) . T))
-(((|#2|) . T))
-(((|#2| |#2|) . T))
-(((|#2|) . T) (($) . T))
-(((|#2|) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(((|#2|) . T) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T))
-(((|#1|) . T))
-((((-402 |#2|)) . T))
-((($) . T))
-((($ $) . T))
-((($) . T))
-((($) . T))
-(|has| |#2| (-229))
-((($) . T))
-((((-840)) . T))
-((((-1149)) |has| |#2| (-876 (-1149))))
-(((|#2|) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T))
-((((-1131) (-51)) . T))
-((((-840)) . T))
-((((-1131) (-51)) . T))
-((((-1131) (-51)) . T))
-((((-1131) (-51)) . T))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) . T))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) . T))
-(((#1=(-51)) . T) (((-2 (|:| -4220 (-1131)) (|:| -2191 #1#))) . T))
-(((#1=(-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) #1#) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) . T))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) . T))
-((((-1131) (-51)) . T))
-(((|#1|) -3891 (|has| |#2| (-362 |#1|)) (|has| |#2| (-413 |#1|))))
-(((|#1|) |has| |#2| (-413 |#1|)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-840)) . T))
-(((|#1|) . T))
-(((|#1| |#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-801))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-(((|#1|) . T))
+(|has| |#1| (-1073))
+((((-886 |#1|)) . T) (($) . T) (((-402 (-552))) . T))
+(|has| |#1| (-1073))
(((|#1|) . T))
+(|has| |#1| (-1073))
+((((-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-621 (-552)))) ((|#2|) |has| |#1| (-358)))
+(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073)))
+(((|#2|) |has| |#2| (-170)))
+(((|#1|) |has| |#1| (-170)))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
+((((-839)) . T))
+(|has| |#3| (-825))
+((((-839)) . T))
+((((-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T))
+((((-839)) . T))
+(((|#1| |#1|) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025))))
+(((|#1|) . T))
+((((-552)) . T))
+((((-552)) . T))
+(((|#1|) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025))))
+(((|#2|) |has| |#2| (-358)))
+((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-358)))
(|has| |#1| (-827))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) |has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-885)))
+(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552))))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-528)) . T) (((-552)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T))
+((((-839)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+((((-552)) . T) (($) . T) (((-402 (-552))) . T))
+((((-552)) . T) (($) . T) (((-402 (-552))) . T))
+(|has| |#1| (-229))
(((|#1|) . T))
+(((|#1| (-552)) . T))
+(|has| |#1| (-825))
+(((|#1| (-1147 |#1| |#2| |#3|)) . T))
+(((|#1| |#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
+(((|#1| (-402 (-552))) . T))
+(((|#1| (-1140 |#1| |#2| |#3|)) . T))
+(((|#1| (-751)) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-840)) . T) (((-1154)) . T))
-(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-840)) . T))
-(|has| |#1| (-771))
-(|has| |#1| (-771))
-(|has| |#1| (-771))
-(|has| |#1| (-771))
-(|has| |#1| (-771))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-((((-840)) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#1| |#1|) . T))
+(((|#1| |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T))
(((|#1|) . T))
-((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+(((|#1| |#2|) . T))
+((((-129)) . T))
+((((-142)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(((|#1|) . T))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) . T) (($ $) . T))
+((((-839)) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
+(|has| (-402 |#2|) (-229))
+(|has| |#1| (-885))
+(((|#2|) |has| |#2| (-1025)))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+(|has| |#1| (-358))
(((|#1|) |has| |#1| (-170)))
-((((-840)) . T))
-(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (($) . T))
-(((|#1|) |has| |#1| (-170)))
+((((-846 |#1|)) . T))
+((((-839)) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
+(((|#2|) |has| |#2| (-1073)))
+(|has| |#2| (-827))
(((|#1|) . T))
-((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T))
+((((-402 (-552))) . T) (((-552)) . T) (((-596 $)) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-840)) . T))
+((((-839)) . T))
+((($) . T))
+(|has| |#1| (-827))
+((((-839)) . T))
+(((|#1| (-524 |#2|) |#2|) . T))
+(((|#1| (-552) (-1055)) . T))
+((((-886 |#1|)) . T))
+((((-839)) . T))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
-(((|#1|) . T) (($) . T))
+(((|#1| (-402 (-552)) (-1055)) . T))
+(((|#1| (-751) (-1055)) . T))
+(((#0=(-402 |#2|) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-552)) -1523 (|has| (-402 (-552)) (-1014 (-552))) (|has| |#1| (-1014 (-552)))) (((-402 (-552))) . T))
+(((|#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
-(((|#2| |#2|) . T) ((|#1| |#1|) . T))
(((|#1|) . T))
-((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T))
(((|#1|) . T))
+((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T))
+(|has| |#2| (-229))
+(((|#2| (-524 (-841 |#1|)) (-841 |#1|)) . T))
+((((-839)) . T))
+((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-839)) . T))
+(((|#1| |#3|) . T))
+((((-839)) . T))
(((|#1|) |has| |#1| (-170)))
-((((-840)) . T))
-(((|#1|) . T))
-(((|#1| |#1|) . T))
+((((-679)) . T))
+((((-679)) . T))
+(((|#2|) |has| |#2| (-170)))
+(|has| |#2| (-825))
+((((-112)) |has| |#1| (-1073)) (((-839)) -1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1073))))
(((|#1|) . T) (($) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) . T))
-((((-652 |#1|)) . T))
-(((|#2| (-652 |#1|)) . T))
-(((|#2|) . T))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-((((-840)) . T))
-(((|#2|) . T))
-(((|#2|) . T))
(((|#1| |#2|) . T))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) . T))
+((((-839)) . T))
+((((-552) |#1|) . T))
+((((-679)) . T) (((-402 (-552))) . T) (((-552)) . T))
+(((|#1| |#1|) |has| |#1| (-170)))
(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) |has| |#2| (-6 (-4355 "*"))))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+((((-374)) . T))
+((((-679)) . T))
+((((-402 (-552))) . #0=(|has| |#2| (-358))) (($) . #0#))
+(((|#1|) |has| |#1| (-170)))
+((((-402 (-928 |#1|))) . T))
(((|#2| |#2|) . T))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
(((|#2|) . T))
-((((-669 |#2|)) . T) (((-840)) . T))
-((($) . T) ((|#2|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
+(|has| |#2| (-827))
+(((|#3|) |has| |#3| (-1025)))
+(|has| |#2| (-885))
+(|has| |#1| (-885))
+(|has| |#1| (-358))
+(|has| |#1| (-827))
((((-1149)) |has| |#2| (-876 (-1149))))
-(|has| |#2| (-229))
+((((-839)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-402 (-552))) . T) (($) . T))
+(|has| |#1| (-467))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-358))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-544)) (|has| |#1| (-1025)) (|has| |#1| (-1085)))
+(|has| |#1| (-38 (-402 (-552))))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+(|has| |#1| (-344))
+((((-142)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+((($) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(((|#2|) . T) (((-839)) . T))
+(((|#2|) . T) (((-839)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-827))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
+(((|#1| |#2|) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) ((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
(((|#2|) . T))
-(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538))))
-(((|#2|) . T))
-(((|#2|) . T) (((-538)) |has| |#2| (-1014 (-538))) (((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))))
-(((|#1| |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-(((|#2|) . T))
-(((|#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T))
-((((-840)) . T) (((-1154)) . T))
-(((|#1|) . T))
-((((-840)) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1|) . T))
-((((-840)) . T) (((-1154)) . T))
-(((|#1|) . T))
-((((-840)) . T))
-((((-1186)) . T) (((-840)) . T) (((-1154)) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-(((|#1| (-1231 |#1|) (-1231 |#1|)) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1|) . T))
-(((|#1| (-1231 |#1|) (-1231 |#1|)) . T))
-((((-840)) . T))
-((((-679)) . T))
-((((-679)) . T))
-((((-679)) . T))
-((((-679)) . T))
-((((-679)) . T))
-((((-373)) . T))
-((((-679)) . T))
-(((#1=(-679) (-1143 #1#)) . T))
-(((#1=(-679) (-1143 #1#)) . T))
-(((#1=(-679) (-1143 #1#)) . T))
-((((-679)) . T))
-((((-166 (-221))) . T) (((-166 (-373))) . T) (((-1143 (-679))) . T) (((-866 (-373))) . T))
-((((-679)) . T))
-((((-402 (-538))) . T) (((-679)) . T) (($) . T))
-((((-402 (-538))) . T) (((-679)) . T) (($) . T))
-((((-840)) . T))
-((((-402 (-538))) . T) (((-679)) . T) (($) . T))
-(((#1=(-402 (-538)) #1#) . T) ((#2=(-679) #2#) . T) (($ $) . T))
-((((-402 (-538))) . T) (((-679)) . T) (($) . T))
-((((-679)) . T) (((-402 (-538))) . T) (((-538)) . T))
-((((-373)) . T) (((-538)) . T) (((-402 (-538))) . T))
-((((-373)) . T))
-((($) . T) (((-402 (-538))) . T))
-((($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-221)) . T) (((-373)) . T) (((-866 (-373))) . T))
-((((-840)) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-527)) . T) (((-538)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T))
-((($) . T))
-((($) . T))
-((((-840)) . T))
-((($) . T))
-((($ $) . T))
-((($) . T))
-((((-538)) . T))
-(((|#1|) . T) (((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((($) . T) (((-402 (-538))) . T))
-((($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-402 (-538))) . T) (($) . T))
+(((|#3|) . T))
+((((-116 |#1|)) . T))
(|has| |#1| (-363))
+(|has| |#1| (-827))
+(((|#2|) . T) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T))
+((((-116 |#1|)) . T))
+(((|#2|) |has| |#2| (-170)))
(((|#1|) . T))
-((((-840)) . T))
-((((-402 $) (-402 $)) |has| |#1| (-545)) (($ $) . T) ((|#1| |#1|) . T))
+((((-552)) . T))
(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
(|has| |#1| (-358))
-(((|#1| (-751) (-1055)) . T))
-(|has| |#1| (-886))
-(|has| |#1| (-886))
-((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T))
-(|has| |#1| (-827))
-((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-528)) |has| |#1| (-598 (-528))) (((-868 (-552))) |has| |#1| (-598 (-868 (-552)))) (((-868 (-374))) |has| |#1| (-598 (-868 (-374)))) (((-374)) . #0=(|has| |#1| (-998))) (((-221)) . #0#))
+(((|#1|) |has| |#1| (-358)))
+((((-839)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((($ $) . T) (((-596 $) $) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+((($) . T) (((-1218 |#1| |#2| |#3| |#4|)) . T) (((-402 (-552))) . T))
+((($) -1523 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-544)))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
+((((-374)) . T) (((-552)) . T) (((-402 (-552))) . T))
+((((-625 (-760 |#1| (-841 |#2|)))) . T) (((-839)) . T))
+((((-528)) |has| (-760 |#1| (-841 |#2|)) (-598 (-528))))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-374)) . T))
+(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))
+((((-839)) . T))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-885)))
(((|#1|) . T))
-(((|#1| (-751)) . T))
+(|has| |#1| (-827))
+(|has| |#1| (-827))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
+(|has| |#1| (-1073))
+((((-839)) . T))
+((((-1149)) . T) (((-839)) . T) (((-1154)) . T))
+((((-402 (-552))) . T) (((-552)) . T) (((-596 $)) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+((((-552)) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+(((#0=(-1217 |#2| |#3| |#4|)) . T) (((-402 (-552))) |has| #0# (-38 (-402 (-552)))) (($) . T))
+((((-552)) . T))
+(|has| |#1| (-358))
+(-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-145)) (|has| |#1| (-358))) (|has| |#1| (-145)))
+(-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143)))
+(|has| |#1| (-358))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
(|has| |#1| (-145))
(|has| |#1| (-143))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
+(|has| |#1| (-229))
+(|has| |#1| (-358))
+(((|#3|) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-552)) |has| |#2| (-621 (-552))) ((|#2|) . T))
+(((|#2|) . T))
+(|has| |#1| (-1073))
+(((|#1| |#2|) . T))
+(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552))))
+(((|#3|) |has| |#3| (-170)))
+(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073)))
+((((-839)) . T))
+((((-552)) . T))
+(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
+((((-402 (-552))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T))
+((((-839)) . T))
+(((|#3|) . T))
+(((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-285)) (|has| |#1| (-358))) ((#0=(-402 (-552)) #0#) |has| |#1| (-358)))
+((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T))
+((($) . T))
+((((-552) |#1|) . T))
+((((-1149)) |has| (-402 |#2|) (-876 (-1149))))
+(((|#1|) . T) (($) -1523 (|has| |#1| (-285)) (|has| |#1| (-358))) (((-402 (-552))) |has| |#1| (-358)))
+((((-528)) |has| |#2| (-598 (-528))))
+((((-669 |#2|)) . T) (((-839)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+((((-846 |#1|)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(-1523 (|has| |#4| (-773)) (|has| |#4| (-825)))
+(-1523 (|has| |#3| (-773)) (|has| |#3| (-825)))
+((((-839)) . T))
+((((-839)) . T))
+(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+(((|#2|) |has| |#2| (-1025)))
+(((|#1|) . T))
+((((-402 |#2|)) . T))
+(((|#1|) . T))
+(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))
+((((-552) |#1|) . T))
(((|#1|) . T))
-((((-1055)) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))))
+((($) . T))
+((((-552)) . T) (($) . T) (((-402 (-552))) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-402 (-552))) . T) (($) . T))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-1190)))
+((($) . T))
+((((-402 (-552))) |has| #0=(-402 |#2|) (-1014 (-402 (-552)))) (((-552)) |has| #0# (-1014 (-552))) ((#0#) . T))
+(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552))))
(((|#1| (-751)) . T))
-(((#1=(-1055) |#1|) . T) ((#1# $) . T) (($ $) . T))
+(|has| |#1| (-827))
+(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552))))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
+((((-552)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(|has| |#1| (-825))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-344))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(((|#1| |#2|) . T))
+((((-142)) . T))
+((((-760 |#1| (-841 |#2|))) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(|has| |#1| (-1171))
+((((-839)) . T))
+(((|#1|) . T))
+(-1523 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1073)))
+((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)))
+(((|#2|) . T))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-886 |#1|)) . T))
((($) . T))
-(|has| |#1| (-1124))
+((((-402 (-928 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-528)) |has| |#4| (-598 (-528))))
+((((-839)) . T) (((-625 |#4|)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
(((|#1|) . T))
-((((-840)) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| |#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)))
+(|has| |#1| (-825))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))))
+(|has| |#1| (-1073))
+(|has| |#1| (-358))
+(|has| |#1| (-827))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((($) . T) (((-402 (-552))) . T))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(((|#2| |#2|) . T))
-((((-113)) . T) ((|#1|) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-((((-840)) . T))
-((($) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-527)) |has| |#2| (-598 (-527))) (((-866 (-373))) |has| |#2| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#2| (-598 (-866 (-538)))))
-((($) . T))
-(((|#2| (-524 (-841 |#1|))) . T))
-(((|#2|) . T))
-((((-840)) . T))
-((($) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T))
+(-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-145)) (|has| |#1| (-358))) (|has| |#1| (-145)))
+(-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143)))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)))
+(|has| |#1| (-825))
+(((|#1| |#2|) . T))
+(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552))))
+((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T))
+((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T))
+(|has| |#1| (-1073))
+(((|#1|) . T) (($) . T) (((-402 (-552))) . T) (((-552)) . T))
(|has| |#2| (-143))
(|has| |#2| (-145))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T) (($) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(((#1=(-402 (-538)) #1#) |has| |#2| (-38 (-402 (-538)))) ((|#2| |#2|) . T) (($ $) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))))
-(((|#2| (-524 (-841 |#1|))) . T))
+((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T))
+(|has| |#1| (-1073))
+(((|#2|) |has| |#2| (-170)))
(((|#2|) . T))
-(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538))))
-(-3891 (|has| |#2| (-446)) (|has| |#2| (-886)))
-((($ $) . T) ((#1=(-841 |#1|) $) . T) ((#1# |#2|) . T))
-(|has| |#2| (-827))
+(((|#1| |#1|) . T))
+(((|#3|) |has| |#3| (-358)))
+((((-402 |#2|)) . T))
+((((-839)) . T))
+(((|#1|) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
+(((|#1|) -1523 (|has| |#1| (-170)) (|has| |#1| (-358))))
+((((-311 |#1|)) . T))
+(((|#2|) |has| |#2| (-358)))
+(((|#2|) . T))
+((((-402 (-552))) . T) (((-679)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((#0=(-760 |#1| (-841 |#2|)) #0#) |has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))))
((((-841 |#1|)) . T))
-(|has| |#2| (-886))
-(|has| |#2| (-886))
-((((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))) (((-538)) |has| |#2| (-1014 (-538))) ((|#2|) . T) (((-841 |#1|)) . T))
-(((|#2| (-524 (-841 |#1|)) (-841 |#1|)) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-363)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| |#1|) |has| |#1| (-170)))
+(((|#2|) |has| |#2| (-170)))
(((|#1|) |has| |#1| (-170)))
+(((|#2|) . T))
+((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T))
+((((-1149)) |has| |#1| (-876 (-1149))) (((-1061 (-1149))) . T))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(|has| |#1| (-38 (-402 (-552))))
+(((|#4|) |has| |#4| (-1025)) (((-552)) -12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))))
+(((|#3|) |has| |#3| (-1025)) (((-552)) -12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(((|#1|) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-((((-840)) . T))
+((($ $) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1073)))
+(|has| |#1| (-544))
+(((|#2|) . T))
+((((-552)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
(((|#1|) . T))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025)))
+((((-567 |#1|)) . T))
+((($) . T))
+(((|#1| (-58 |#1|) (-58 |#1|)) . T))
(((|#1|) . T))
-((((-840)) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
(((|#1|) . T))
+((($) . T))
(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
+((((-839)) . T))
+(((|#2|) |has| |#2| (-6 (-4355 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#1| (-524 |#2|) |#2|) . T))
-(|has| |#1| (-886))
-(|has| |#1| (-886))
-((((-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#2| (-862 (-538)))) (((-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#2| (-862 (-373)))))
-(((|#2|) . T))
-(|has| |#1| (-827))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-886)))
-((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-524 |#2|)) . T))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
+((((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))) (((-552)) |has| |#2| (-1014 (-552))) ((|#2|) . T) (((-841 |#1|)) . T))
+((($) . T) (((-116 |#1|)) . T) (((-402 (-552))) . T))
+((((-1098 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))))
+((((-1145 |#1|)) . T) (((-1055)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))))
+((((-1098 |#1| (-1149))) . T) (((-1061 (-1149))) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-1149)) . T))
+(|has| |#1| (-1073))
+((($) . T))
+(|has| |#1| (-1073))
+((((-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#2| (-862 (-552)))) (((-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#2| (-862 (-374)))))
+(((|#1| |#2|) . T))
+((((-1149) |#1|) . T))
+(((|#4|) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-344)))
+((((-1149) (-52)) . T))
+((((-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T))
+((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T))
+((((-839)) . T))
+(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073)))
+(((#0=(-1218 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-170)) ((#0=(-402 (-552)) #0#) |has| |#1| (-544)) (($ $) |has| |#1| (-544)))
+(((|#1|) . T) (($) . T) (((-402 (-552))) . T))
+(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
+((((-1218 |#1| |#2| |#3| |#4|)) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-544)) (($) |has| |#1| (-544)))
+(|has| |#1| (-358))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
(|has| |#1| (-145))
(|has| |#1| (-143))
-((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((((-1098 |#1| |#2|)) . T) (((-922 |#1|)) |has| |#2| (-598 (-1149))) (((-840)) . T))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-(((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) (($) . T))
-((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-(((|#1|) . T))
-((((-1098 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))))
+((((-402 (-552))) . T) (($) . T))
+(((|#3|) |has| |#3| (-358)))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
+((((-1149)) . T))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
+(((|#2| |#3|) . T))
+(-1523 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
(((|#1| (-524 |#2|)) . T))
-(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-((($) . T))
-((((-922 |#1|)) |has| |#2| (-598 (-1149))) (((-1131)) -12 (|has| |#1| (-1014 (-538))) (|has| |#2| (-598 (-1149)))) (((-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538))))) (((-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373))))) (((-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#2| (-598 (-527)))))
-(((|#1| (-524 |#2|) |#2|) . T))
+(((|#1| (-751)) . T))
+(((|#1| (-524 (-1061 (-1149)))) . T))
+(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
-((((-1143 |#1|)) . T) (((-840)) . T))
-((((-402 $) (-402 $)) |has| |#1| (-545)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-885))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+((((-839)) . T))
+((($ $) . T) ((#0=(-1217 |#2| |#3| |#4|) #0#) . T) ((#1=(-402 (-552)) #1#) |has| #0# (-38 (-402 (-552)))))
+((((-886 |#1|)) . T))
+(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
+((($) . T) (((-402 (-552))) . T))
+((($) . T))
+((($) . T))
(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
+(-1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-544)))
(|has| |#1| (-358))
-(((|#1| (-751) (-1055)) . T))
-(|has| |#1| (-886))
-(|has| |#1| (-886))
-((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T))
+((($) . T) ((#0=(-1217 |#2| |#3| |#4|)) . T) (((-402 (-552))) |has| #0# (-38 (-402 (-552)))))
+(((|#1| |#2|) . T))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
+(-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358)) (|has| |#1| (-344)))
+(-1523 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))
+((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T))
+(((|#1| |#2|) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-112)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T))
+(|has| |#2| (-358))
(|has| |#1| (-827))
-((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-751)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
(((|#1|) . T))
-((((-1143 |#1|)) . T) (((-1055)) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))))
-(((|#1| (-751)) . T))
-(((#1=(-1055) |#1|) . T) ((#1# $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-1124))
(((|#1|) . T))
+((((-839)) . T))
+(|has| |#1| (-1073))
+(((|#4|) . T))
+(((|#4|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-402 $) (-402 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-800))
+(((|#4|) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((((-839)) . T))
+(((|#1| (-524 (-1149))) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-839)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+(((|#2|) -1523 (|has| |#2| (-6 (-4355 "*"))) (|has| |#2| (-170))))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(|has| |#2| (-827))
+(|has| |#2| (-885))
+(|has| |#1| (-885))
+(((|#2|) |has| |#2| (-170)))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)))
+((((-839)) . T))
+((((-839)) . T))
+((((-528)) . T) (((-552)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
+((((-839)) . T))
+(((|#1| |#2|) . T))
+(((|#1| (-402 (-552))) . T))
(((|#1|) . T))
-((((-840)) . T))
-((($) . T) ((|#1|) . T))
+(-1523 (|has| |#1| (-285)) (|has| |#1| (-358)))
+((((-142)) . T))
+((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T))
+(|has| |#1| (-825))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T))
(((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-((((-527)) |has| |#1| (-598 (-527))))
-(|has| |#1| (-363))
(((|#1|) . T))
-((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
-(((|#1|) |has| |#1| (-304 |#1|)))
-(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
-((((-972 |#1|)) . T) ((|#1|) . T))
-((((-972 |#1|)) . T) ((|#1|) . T) (((-538)) -3891 (|has| |#1| (-1014 (-538))) (|has| (-972 |#1|) (-1014 (-538)))) (((-402 (-538))) -3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| (-972 |#1|) (-1014 (-402 (-538))))))
-(|has| |#1| (-827))
(((|#1|) . T))
-((((-840)) . T))
-(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074)))
-(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074)))
-(((|#2|) |has| |#2| (-170)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
-((($) -3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))))
-(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358))))
-((((-840)) -3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-840))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) (((-1231 |#2|)) . T))
-(|has| |#2| (-170))
-(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170)))
-(((|#2| |#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170)))
-(((|#2|) |has| |#2| (-1025)))
-((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025))))
-(-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))
-(|has| |#2| (-363))
-(((|#2|) |has| |#2| (-1025)))
-(((|#2|) |has| |#2| (-1025)) (((-538)) -12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025))))
-(((|#2|) |has| |#2| (-1074)))
-(((|#2|) |has| |#2| (-1074)) (((-538)) -12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (((-402 (-538))) -12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074))))
-((((-538) |#2|) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-(((|#2|) . T))
-((((-538) |#2|) . T))
-((((-538) |#2|) . T))
-(|has| |#2| (-773))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(-3891 (|has| |#2| (-773)) (|has| |#2| (-825)))
-(|has| |#2| (-825))
-(|has| |#2| (-825))
-(((|#2|) |has| |#2| (-358)))
(((|#1| |#2|) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(((|#2| |#2|) . T) ((|#1| |#1|) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-528)) |has| |#1| (-598 (-528))) (((-868 (-552))) |has| |#1| (-598 (-868 (-552)))) (((-868 (-374))) |has| |#1| (-598 (-868 (-374)))))
+((((-1149) (-52)) . T))
+(((|#2|) . T))
(((|#1|) . T))
-((((-840)) . T))
-(|has| |#1| (-229))
-((($) . T))
-(((|#1| (-524 (-798 (-1149))) (-798 (-1149))) . T))
-(|has| |#1| (-886))
-(|has| |#1| (-886))
-((((-1149)) |has| |#1| (-876 (-1149))) (((-798 (-1149))) . T))
-(|has| |#1| (-827))
-((($ $) . T) ((#1=(-1149) $) |has| |#1| . #2=((-229))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-798 (-1149)) |#1|) . T) ((#3# $) . T))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-886)))
-((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-524 (-798 (-1149)))) . T))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
+((((-839)) . T))
+((((-625 (-142))) . T) (((-1131)) . T))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
+((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
+(|has| |#1| (-827))
+((((-839)) . T))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-839)) . T))
+(((|#2|) |has| |#2| (-358)))
+((((-839)) . T))
+((((-528)) |has| |#4| (-598 (-528))))
+((((-839)) . T) (((-625 |#4|)) . T))
+(((|#2|) . T))
+((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T))
+(-1523 (|has| |#4| (-170)) (|has| |#4| (-707)) (|has| |#4| (-825)) (|has| |#4| (-1025)))
+(-1523 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+((((-1149) (-52)) . T))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(|has| |#1| (-885))
+(|has| |#1| (-885))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-839)) . T))
+((((-552)) . T))
+(((#0=(-402 (-552)) #0#) . T) (($ $) . T))
+((((-402 (-552))) . T) (($) . T))
+(((|#1| (-402 (-552)) (-1055)) . T))
+(|has| |#1| (-1073))
+(|has| |#1| (-544))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(|has| |#1| (-800))
+(((#0=(-886 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-552)) #1#) . T))
+((((-402 |#2|)) . T))
+(|has| |#1| (-825))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) . T) ((#1=(-552) #1#) . T) (($ $) . T))
+((((-886 |#1|)) . T) (($) . T) (((-402 (-552))) . T))
+(((|#2|) |has| |#2| (-1025)) (((-552)) -12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025))))
+(((|#1|) . T) (((-402 (-552))) . T) (((-552)) . T) (($) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-145))
(|has| |#1| (-143))
-((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
+(((|#2|) . T))
+((((-839)) . T))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -2971 (-1149)) (|:| -4120 #0#))) . T))
+(|has| |#1| (-344))
+((((-552)) . T))
+((((-839)) . T))
+(((#0=(-1218 |#1| |#2| |#3| |#4|) $) |has| #0# (-281 #0# #0#)))
+(|has| |#1| (-358))
+(((#0=(-1055) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-344)))
+(((#0=(-402 (-552)) #0#) . T) ((#1=(-679) #1#) . T) (($ $) . T))
+((((-311 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-402 (-552))) |has| |#1| (-358)))
+(|has| |#1| (-1073))
(((|#1|) . T))
-(((|#1| (-524 (-798 (-1149)))) . T))
-((((-1098 |#1| (-1149))) . T) (((-798 (-1149))) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-1149)) . T))
-(((|#1| (-1149) (-798 (-1149)) (-524 (-798 (-1149)))) . T))
-(|has| |#2| (-358))
-(|has| |#2| (-358))
-(|has| |#2| (-358))
-(|has| |#2| (-358))
-((((-402 (-538))) . #1=(|has| |#2| (-358))) (($) . #1#))
-((((-402 (-538))) . #1=(|has| |#2| (-358))) (($) . #1#))
-(|has| |#2| (-358))
-(|has| |#2| (-358))
-(|has| |#2| (-358))
-(|has| |#2| (-358))
-(|has| |#2| (-358))
-((((-402 (-538))) |has| |#2| (-358)) (($) . T))
-((((-840)) . T))
-((((-402 (-538))) |has| |#2| (-358)) (($) . T))
-(((#1=(-402 (-538)) #1#) |has| |#2| (-358)) (($ $) . T))
-((((-840)) . T))
+(((|#1|) -1523 (|has| |#2| (-362 |#1|)) (|has| |#2| (-412 |#1|))))
+(((|#1|) -1523 (|has| |#2| (-362 |#1|)) (|has| |#2| (-412 |#1|))))
+(((|#2|) . T))
+((((-402 (-552))) . T) (((-679)) . T) (($) . T))
+(((|#3| |#3|) . T))
+(|has| |#2| (-229))
+((((-841 |#1|)) . T))
+((((-1149)) |has| |#1| (-876 (-1149))) ((|#3|) . T))
+(-12 (|has| |#1| (-358)) (|has| |#2| (-998)))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
+((((-839)) . T))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
+((((-402 (-552))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T))
+((((-552)) . T))
+(|has| |#1| (-1073))
+(((|#3|) . T))
+(((|#2|) . T))
(((|#1|) . T))
+((((-552)) . T))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552))))
+(((|#1| |#2|) . T))
+((($) . T))
+((((-567 |#1|)) . T) (((-402 (-552))) . T) (($) . T))
+((($) . T) (((-402 (-552))) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1|) . T) (($) . T))
+(((|#1| (-1232 |#1|) (-1232 |#1|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((#0=(-116 |#1|) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T))
+((((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))) (((-552)) |has| |#2| (-1014 (-552))) ((|#2|) . T) (((-841 |#1|)) . T))
+((((-1098 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-(|has| |#1| (-229))
-(((|#2|) |has| |#2| (-170)))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-((((-840)) . T))
-((($) . T) ((|#2|) . T))
-(((|#2|) |has| |#2| (-170)))
+(((|#1|) . T))
+((($ $) . T))
+((((-652 |#1|)) . T))
+((($) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T))
+((((-116 |#1|)) . T) (((-402 (-552))) . T) (($) . T))
+((((-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#3| (-862 (-552)))) (((-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#3| (-862 (-374)))))
+(((|#2|) . T) ((|#6|) . T))
+(((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) (($) . T))
+((((-142)) . T))
+((($) . T))
+((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#1|) . T))
+(|has| |#2| (-885))
+(|has| |#1| (-885))
+(|has| |#1| (-885))
+(((|#4|) . T))
+(|has| |#2| (-998))
+((($) . T))
+(|has| |#1| (-885))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((($) . T))
(((|#2|) . T))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-((($) |has| |#1| (-825)))
-(|has| |#1| (-825))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-825)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-825)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-825)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-825)))
-((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T))
(((|#1|) . T))
-((((-840)) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| |#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(((|#1| |#1|) . T))
-((((-113)) . T) ((|#1|) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-((((-840)) . T))
-((((-840)) . T))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-(|has| |#1| (-825))
-((($) |has| |#1| (-825)))
-(|has| |#1| (-825))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-825)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-825)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-825)))
-(-3891 (|has| |#1| (-21)) (|has| |#1| (-825)))
-((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T))
+(((|#1|) . T) (($) . T))
+((($) . T))
+(|has| |#1| (-358))
+((((-886 |#1|)) . T))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+(-1523 (|has| |#1| (-363)) (|has| |#1| (-827)))
(((|#1|) . T))
-((((-840)) . T))
-(((|#1|) |has| |#1| (-170)))
+((((-839)) . T))
+((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149)))))
+((((-402 |#2|) |#3|) . T))
+((($) . T) (((-402 (-552))) . T))
+((((-751) |#1|) . T))
+(((|#2| (-236 (-1471 |#1|) (-751))) . T))
+(((|#1| (-524 |#3|)) . T))
+((((-402 (-552))) . T))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+((((-839)) . T))
+(((#0=(-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) #0#) |has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))))
+(|has| |#1| (-885))
+(|has| |#2| (-358))
+(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+((((-167 (-374))) . T) (((-221)) . T) (((-374)) . T))
+((((-839)) . T))
+(((|#1|) . T))
+((((-374)) . T) (((-552)) . T))
+(((#0=(-402 (-552)) #0#) . T) (($ $) . T))
+((($ $) . T))
+((($ $) . T))
(((|#1| |#1|) . T))
+((((-839)) . T))
+(|has| |#1| (-544))
+((((-402 (-552))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(-1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)))
+(|has| |#1| (-38 (-402 (-552))))
+(-12 (|has| |#1| (-537)) (|has| |#1| (-808)))
+((((-839)) . T))
+((((-1149)) -1523 (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149))))))
+(|has| |#1| (-358))
+((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149)))))
+(|has| |#1| (-358))
+((((-402 (-552))) . T) (($) . T))
+((($) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T))
+((((-552) |#1|) . T))
(((|#1|) . T))
-((((-840)) . T))
-((($) . T) ((|#1|) . T))
-(((|#1|) |has| |#1| (-170)))
+(((|#2|) |has| |#1| (-358)))
+(((|#2|) |has| |#1| (-358)))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))))
+(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-((((-840)) . T))
-((($) . T) ((|#2|) . T))
-(((|#2|) |has| |#2| (-170)))
+(((|#2|) . T) (((-1149)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))) (((-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-552)))) (((-402 (-552))) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-552)))))
(((|#2|) . T))
-(((|#2|) . T) (((-538)) |has| |#2| (-1014 (-538))) (((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))))
-(((|#2|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-866 (-538))) . T) (((-866 (-373))) . T) (((-527)) . T) (((-1149)) . T))
-((((-840)) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| |#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-((((-840)) . T))
-((($) . T))
-((((-840)) . T))
-((($) . T))
+((((-1149) #0=(-1218 |#1| |#2| |#3| |#4|)) |has| #0# (-507 (-1149) #0#)) ((#0# #0#) |has| #0# (-304 #0#)))
+((((-596 $) $) . T) (($ $) . T))
+((((-167 (-221))) . T) (((-167 (-374))) . T) (((-1145 (-679))) . T) (((-868 (-374))) . T))
+((((-839)) . T))
+(|has| |#1| (-544))
+(|has| |#1| (-544))
+(|has| (-402 |#2|) (-229))
+(((|#1| (-402 (-552))) . T))
((($ $) . T))
+((((-1149)) |has| |#2| (-876 (-1149))))
((($) . T))
-((($) . T))
+((((-839)) . T))
+((((-402 (-552))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-839)) . T))
+(((|#2|) |has| |#1| (-358)))
+((((-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-374)))) (((-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-552)))))
+(|has| |#1| (-358))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+(|has| |#1| (-358))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+(|has| |#1| (-358))
+(|has| |#1| (-544))
+(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+(((|#3|) . T))
(((|#1|) . T))
-((((-840)) . T))
-((((-845 |#1|)) . T))
-((((-845 |#1|)) . T) (($) . T) (((-402 (-538))) . T))
-((($) . T) (((-845 |#1|)) . T) (((-402 (-538))) . T))
-((((-845 |#1|)) . T) (($) . T) (((-402 (-538))) . T))
-((((-845 |#1|)) . T) (((-402 (-538))) . T) (($) . T))
-(((#1=(-845 |#1|) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T))
-((((-845 |#1|)) . T))
-((((-1149) #1=(-845 |#1|)) |has| #1# (-507 (-1149) #1#)) ((#1# #1#) |has| #1# (-304 #1#)))
-(((#1=(-845 |#1|)) |has| #1# (-304 #1#)))
-(((#1=(-845 |#1|) $) |has| #1# (-281 #1# #1#)))
-((((-845 |#1|)) . T))
-((((-845 |#1|)) . T))
-((((-845 |#1|)) . T))
-((((-845 |#1|)) . T))
-((((-845 |#1|)) . T))
-((((-845 |#1|)) . T))
-((((-840)) . T))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
-(((|#2|) . T))
-((((-1149)) |has| |#2| (-876 (-1149))))
-(|has| |#2| (-229))
-(((|#2|) . T) (($) . T) (((-402 (-538))) . T))
-((($) . T) ((|#2|) . T) (((-402 (-538))) . T))
-(((|#2|) . T) (($) . T) (((-402 (-538))) . T))
-(((|#2|) . T) (((-402 (-538))) . T) (($) . T))
-(((|#2| |#2|) . T) ((#1=(-402 (-538)) #1#) . T) (($ $) . T))
+(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
(((|#2|) . T))
-((((-1149) |#2|) |has| |#2| (-507 (-1149) |#2|)) ((|#2| |#2|) |has| |#2| (-304 |#2|)))
-(((|#2|) |has| |#2| (-304 |#2|)))
-(((|#2| $) |has| |#2| (-281 |#2| |#2|)))
(((|#2|) . T))
-(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538))))
-(((|#2|) . T))
-((((-538)) |has| |#2| (-862 (-538))) (((-373)) |has| |#2| (-862 (-373))))
-(|has| |#2| (-800))
-(|has| |#2| (-800))
-(|has| |#2| (-800))
-(-3891 (|has| |#2| (-800)) (|has| |#2| (-827)))
-(|has| |#2| (-800))
-(|has| |#2| (-800))
-(|has| |#2| (-800))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(((|#1| |#2|) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(|has| |#1| (-145))
+((((-1131) |#1|) . T))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(|has| |#1| (-145))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))
+(|has| |#1| (-145))
+((((-567 |#1|)) . T))
+((($) . T))
+((((-402 |#2|)) . T))
+(|has| |#1| (-544))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-344)))
+(|has| |#1| (-145))
+((((-839)) . T))
+((($) . T))
+((((-402 (-552))) |has| |#2| (-1014 (-552))) (((-552)) |has| |#2| (-1014 (-552))) (((-1149)) |has| |#2| (-1014 (-1149))) ((|#2|) . T))
+(((#0=(-402 |#2|) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T))
+((((-1113 |#1| |#2|)) . T))
+(((|#1| (-552)) . T))
+(((|#1| (-402 (-552))) . T))
+((((-552)) |has| |#2| (-862 (-552))) (((-374)) |has| |#2| (-862 (-374))))
(((|#2|) . T))
-(|has| |#2| (-886))
-(|has| |#2| (-996))
-((((-527)) |has| |#2| (-598 (-527))) (((-866 (-538))) |has| |#2| (-598 (-866 (-538)))) (((-866 (-373))) |has| |#2| (-598 (-866 (-373)))) (((-373)) . #1=(|has| |#2| (-996))) (((-221)) . #1#))
-((((-402 (-538))) |has| |#2| . #1=((-1014 (-538)))) (((-538)) |has| |#2| . #1#) (((-1149)) |has| |#2| (-1014 (-1149))) ((|#2|) . T))
-(|has| |#2| (-1124))
+((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T))
+((((-112)) . T))
+(((|#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T))
(((|#2|) . T))
-(-12 (|has| |#1| (-1074)) (|has| |#2| (-1074)))
-(-12 (|has| |#1| (-1074)) (|has| |#2| (-1074)))
-((((-840)) -3891 (-12 (|has| |#1| (-597 (-840))) (|has| |#2| (-597 (-840)))) (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074)))))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-1149)) . T) ((|#1|) . T))
-((((-840)) . T))
-((((-652 |#1|)) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
+((((-839)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-1149) (-52)) . T))
+((((-402 |#2|)) . T))
+((((-839)) . T))
(((|#1|) . T))
+(|has| |#1| (-1073))
+(|has| |#1| (-771))
+(|has| |#1| (-771))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((((-114)) . T) ((|#1|) . T))
(((|#1|) . T))
-((((-840)) . T))
-(-3891 (|has| |#1| (-363)) (|has| |#1| (-827)))
(((|#1|) . T))
-((((-840)) . T))
-((((-538)) . T))
-((($) . T))
-((($) . T))
-((($) . T))
-(|has| $ (-145))
-((($) . T))
-((((-840)) . T))
-((($) . T) (((-402 (-538))) . T))
-((($) . T) (((-402 (-538))) . T))
-((($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-(((|#1|) . T) (($) . T) (((-402 (-538))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
+((((-221)) . T) (((-374)) . T) (((-868 (-374))) . T))
+((((-839)) . T))
+((((-1218 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-552))) . T))
+(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544)) (((-402 (-552))) |has| |#1| (-544)))
+((((-839)) . T))
+((((-839)) . T))
+(((|#2|) . T))
+((((-839)) . T))
+(((#0=(-886 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-552)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-827))
+((((-886 |#1|)) . T) (($) . T) (((-402 (-552))) . T))
+(|has| |#1| (-358))
+(((|#2|) . T))
+((((-552)) . T))
+((((-839)) . T))
+((((-552)) . T))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+((((-167 (-374))) . T) (((-221)) . T) (((-374)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-1131)) . T) (((-528)) . T) (((-552)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T))
+((((-839)) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) . T) ((#0=(-1217 |#2| |#3| |#4|)) |has| #0# (-170)) (((-402 (-552))) |has| #0# (-38 (-402 (-552)))))
+(((|#1|) . T) (($) . T) (((-402 (-552))) . T))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1073)))
+(|has| |#1| (-1124))
+((((-552) |#1|) . T))
(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
+(((#0=(-116 |#1|) $) |has| #0# (-281 #0# #0#)))
+(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
+((((-114)) . T) ((|#1|) . T))
+((((-839)) . T))
+(((|#1| |#2|) . T))
+((((-1149) |#1|) . T))
+(((|#1|) |has| |#1| (-304 |#1|)))
+((((-552) |#1|) . T))
(((|#1|) . T))
+((((-552)) . T) (((-402 (-552))) . T))
(((|#1|) . T))
+(|has| |#1| (-544))
+((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+((((-374)) . T))
(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))) (((-866 (-373))) |has| |#1| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#1| (-598 (-866 (-538)))))
-((($) . T))
-(((|#1| (-524 (-1149))) . T))
(((|#1|) . T))
-((((-840)) . T))
-((($) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))))
-(((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))) ((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))))
-(((|#1| (-524 (-1149))) . T))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
+(|has| |#1| (-544))
+(|has| |#1| (-1073))
+((((-760 |#1| (-841 |#2|))) |has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538))))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-886)))
-((($ $) . T) ((#1=(-1149) $) . T) ((#1# |#1|) . T))
-(|has| |#1| (-827))
-((((-1149)) . T))
-((((-373)) |has| |#1| (-862 (-373))) (((-538)) |has| |#1| (-862 (-538))))
-(|has| |#1| (-886))
-(|has| |#1| (-886))
-((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T) (((-1149)) . T))
-(((|#1| (-524 (-1149)) (-1149)) . T))
-((((-1093)) . T) (((-840)) . T))
-(((|#1| |#2|) . T))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-545)))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((((-840)) . T))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-(((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) (($) . T))
-((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))))
-(((|#1| |#2|) . T))
+(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-827))
+(|has| |#2| (-885))
+(((|#1| (-524 |#2|)) . T))
+(((|#1| (-751)) . T))
+(|has| |#1| (-229))
+(((|#1| (-524 (-1061 (-1149)))) . T))
+(|has| |#2| (-358))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) . T))
(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-839)) . T))
+((((-839)) . T))
+(-1523 (|has| |#3| (-773)) (|has| |#3| (-825)))
+((((-839)) . T))
+((((-1093)) . T) (((-839)) . T))
+((((-839)) . T))
(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
+((($ $) . T) (((-596 $) $) . T))
(((|#1|) . T))
+((((-552)) . T))
+(((|#3|) . T))
+((((-839)) . T))
+(-1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)))
+(-1523 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025)))
+(((#0=(-567 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-552)) #1#) . T))
+((($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| (-1232 |#1|) (-1232 |#1|)) . T))
+((((-567 |#1|)) . T) (($) . T) (((-402 (-552))) . T))
+((($) . T) (((-402 (-552))) . T))
+((($) . T) (((-402 (-552))) . T))
+(((|#2|) |has| |#2| (-6 (-4355 "*"))))
(((|#1|) . T))
-(-12 (|has| |#1| (-773)) (|has| |#2| (-773)))
-(-12 (|has| |#1| (-773)) (|has| |#2| (-773)))
-(-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827))))
-(-12 (|has| |#1| (-773)) (|has| |#2| (-773)))
-(-12 (|has| |#1| (-773)) (|has| |#2| (-773)))
-(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-(-12 (|has| |#1| (-467)) (|has| |#2| (-467)))
-(-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))
-(-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))
-(-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))
-(-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))))
-(-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-363)))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-622 (-538))) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-((((-527)) |has| |#1| (-598 (-527))))
(((|#1|) . T))
-((((-1149)) |has| |#1| (-876 (-1149))))
-(|has| |#1| (-229))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-285)) (|has| |#1| (-358)))
-(((|#1|) . T) (((-402 (-538))) |has| |#1| (-358)))
-((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-358)))
-(((|#1|) . T) (($) -3891 (|has| |#1| (-285)) (|has| |#1| (-358))) (((-402 (-538))) |has| |#1| (-358)))
-(((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-285)) (|has| |#1| (-358))) ((#1=(-402 (-538)) #1#) |has| |#1| (-358)))
-(((|#1|) . T) (((-402 (-538))) |has| |#1| (-358)))
+((((-839)) . T))
+((((-289 |#3|)) . T))
+(((#0=(-402 (-552)) #0#) |has| |#2| (-38 (-402 (-552)))) ((|#2| |#2|) . T) (($ $) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
-(((|#1|) |has| |#1| (-304 |#1|)))
-(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
+((($) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (($) . T))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
+(((|#2|) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T) (($) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+(((|#2|) . T) ((|#6|) . T))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
+((((-839)) . T))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(|has| |#2| (-885))
+(|has| |#1| (-885))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538))))
+((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))))
-(|has| |#1| (-827))
(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
(((|#1|) . T))
+(|has| |#1| (-1073))
(((|#1|) . T))
-((((-402 |#2|) |#3|) . T))
-((((-402 (-538))) |has| #1=(-402 |#2|) (-1014 (-402 (-538)))) (((-538)) |has| #1# (-1014 (-538))) ((#1#) . T))
-((((-402 |#2|)) . T))
-((((-538)) |has| #1=(-402 |#2|) (-621 (-538))) ((#1#) . T))
-((((-402 |#2|)) . T))
-((((-402 |#2|) |#3|) . T))
-(|has| (-402 |#2|) (-145))
-((((-402 |#2|) |#3|) . T))
-(|has| (-402 |#2|) (-143))
-((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T))
-((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T))
-(|has| (-402 |#2|) (-229))
-((((-1149)) |has| (-402 |#2|) (-876 (-1149))))
-((((-402 |#2|)) . T))
-(((|#3|) . T))
-(((#1=(-402 |#2|) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T))
-((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T))
-((((-840)) . T))
-((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T))
-(((|#1| |#2| |#3|) . T))
-((((-840)) . T))
-((((-538)) . T))
-((((-538)) . T) (($) . T) (((-402 (-538))) . T))
-((($) . T) (((-538)) . T) (((-402 (-538))) . T))
-((((-538)) . T) (($) . T) (((-402 (-538))) . T))
-((((-538)) . T) (((-402 (-538))) . T) (($) . T))
-(((#1=(-538) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-527)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T))
-((((-402 (-538))) . T) (((-538)) . T))
-((((-538)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T))
-(((|#1|) . T) (($) . T) (((-402 (-538))) . T) (((-538)) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (((-538)) . T) (($) . T))
-(((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) . T) ((#2=(-538) #2#) . T) (($ $) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (((-538)) . T) (($) . T))
-(((|#1|) . T) (((-402 (-538))) . T) (((-538)) . T) (($) . T))
-(((|#1|) . T) (((-402 (-538))) . T))
-(((|#1|) . T) (((-538)) -3891 (|has| |#1| (-1014 (-538))) (|has| (-402 (-538)) (-1014 (-538)))) (((-402 (-538))) . T))
-(|has| |#1| (-1074))
-((((-840)) |has| |#1| (-1074)))
-(|has| |#1| (-1074))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#4|) . T))
-((((-622 |#4|)) . T) (((-840)) . T))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
-(((|#4|) . T))
-((((-527)) |has| |#4| (-598 (-527))))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
+((((-1149)) . T) ((|#1|) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))
+(((#0=(-402 (-552)) #0#) . T))
+((((-402 (-552))) . T))
+(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T) (($ $) . T))
-(((|#1|) . T) (($) . T))
-((((-840)) . T))
-(((|#1|) . T) (($) . T))
-((((-1149) (-51)) . T))
-((((-840)) . T))
-((((-1149) (-51)) . T))
-((((-1149) (-51)) . T))
-((((-1149) (-51)) . T))
-((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T))
-((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T))
-(((#1=(-51)) . T) (((-2 (|:| -4220 (-1149)) (|:| -2191 #1#))) . T))
-(((#1=(-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) #1#) |has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))))
-((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) |has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))))
-((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T))
-((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T))
-((((-1149) (-51)) . T))
-((((-840)) . T) (((-1154)) . T))
-(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T))
-((((-760 |#1| (-841 |#2|))) . T))
-((((-622 (-760 |#1| (-841 |#2|)))) . T) (((-840)) . T))
-((((-760 |#1| (-841 |#2|))) |has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))))
-(((#1=(-760 |#1| (-841 |#2|)) #1#) |has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))))
-((((-760 |#1| (-841 |#2|))) . T))
-((((-527)) |has| (-760 |#1| (-841 |#2|)) (-598 (-527))))
-(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T))
-(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T))
-((((-527)) |has| |#3| (-598 (-527))))
-(((|#3|) |has| |#3| (-358)))
-(((|#3| |#3|) . T))
-(((|#3|) . T))
-((((-669 |#3|)) . T) (((-840)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))
-(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))
-(((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358))))
-(((|#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-((($) . T))
-((((-840)) . T))
-((($) . T))
-((($ $) . T))
-((($) . T))
-((($) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-527)) . T) (((-538)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T))
-((((-538)) . T))
-((((-1149) (-51)) . T))
-((((-840)) . T))
-((((-1149) (-51)) . T))
-((((-1149) (-51)) . T))
-((((-1149) (-51)) . T))
-((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T))
-((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T))
-(((#1=(-51)) . T) (((-2 (|:| -4220 (-1149)) (|:| -2191 #1#))) . T))
-(((#1=(-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) #1#) |has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))))
-((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) |has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))))
-((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T))
-((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T))
-((((-1149) (-51)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-288 |#3|)) . T))
-(((|#3| |#3|) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#3| |#3|) . T))
-((((-840)) . T))
-((((-840)) . T))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+((((-528)) . T))
+((((-839)) . T))
+((((-1149)) |has| |#2| (-876 (-1149))) (((-1055)) . T))
+((((-1217 |#2| |#3| |#4|)) . T))
+((((-886 |#1|)) . T))
+((($) . T) (((-402 (-552))) . T))
+(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
+(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
+((((-839)) . T))
+(|has| |#1| (-1190))
(((|#2|) . T))
+((($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+((((-1149)) |has| |#1| (-876 (-1149))))
+((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T))
+((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) . T))
+(((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))) ((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))))
+((($) . T) (((-402 (-552))) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (((-552)) . T) (($) . T))
+(((|#2|) |has| |#2| (-1025)) (((-552)) -12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025))))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))))
+(|has| |#1| (-544))
(((|#1|) |has| |#1| (-358)))
-((((-1149)) -12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149)))))
-(-3891 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-345)))
-(-3891 (|has| |#1| (-363)) (|has| |#1| (-345)))
-(|has| |#1| (-345))
-(|has| |#1| (-345))
-(-3891 (|has| |#1| (-143)) (|has| |#1| (-345)))
-(|has| |#1| (-345))
-(((|#1| |#2|) . T))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T))
-((($ $) . T) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1| |#1|) . T))
-((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T))
-((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T))
-(|has| |#1| (-145))
-(((|#1| |#2|) . T))
+((((-552)) . T))
+(|has| |#1| (-771))
+(|has| |#1| (-771))
+((((-1149) #0=(-116 |#1|)) |has| #0# (-507 (-1149) #0#)) ((#0# #0#) |has| #0# (-304 #0#)))
+(((|#2|) . T) (((-552)) |has| |#2| (-1014 (-552))) (((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))))
+((((-1055)) . T) ((|#2|) . T) (((-552)) |has| |#2| (-1014 (-552))) (((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))))
(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538))))
(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))))
-(((|#1| |#2|) . T))
-((((-840)) . T))
-((((-840)) . T))
(((|#1|) . T))
-((((-840)) . T))
-(|has| |#1| (-229))
-((($) . T))
-(((|#1| (-524 (-1061 (-1149))) (-1061 (-1149))) . T))
-(|has| |#1| (-886))
-(|has| |#1| (-886))
-((((-1149)) |has| |#1| (-876 (-1149))) (((-1061 (-1149))) . T))
-(|has| |#1| (-827))
-((($ $) . T) ((#1=(-1149) $) |has| |#1| . #2=((-229))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1061 (-1149)) |#1|) . T) ((#3# $) . T))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-886)))
-((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T))
+((((-552) (-751)) . T) ((|#3| (-751)) . T))
(((|#1|) . T))
-(((|#1| (-524 (-1061 (-1149)))) . T))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
+(((|#1| |#2|) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-839)) . T))
+(|has| |#2| (-800))
+(|has| |#2| (-800))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))))
+((((-552)) |has| |#1| (-862 (-552))) (((-374)) |has| |#1| (-862 (-374))))
+(((|#1|) . T))
+((((-846 |#1|)) . T))
+((((-846 |#1|)) . T))
+(-12 (|has| |#1| (-358)) (|has| |#2| (-885)))
+((((-402 (-552))) . T) (((-679)) . T) (($) . T))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
(((|#1|) . T))
-(((|#1| (-524 (-1061 (-1149)))) . T))
-((((-1098 |#1| (-1149))) . T) (((-1061 (-1149))) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-1149)) . T))
-(((|#1| (-1149) (-1061 (-1149)) (-524 (-1061 (-1149)))) . T))
-((((-840)) . T))
(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+(|has| |#1| (-358))
+(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-622 |#1|)) |has| |#1| (-825)))
-(|has| |#1| (-1074))
-((((-840)) |has| |#1| (-1074)))
-(|has| |#1| (-1074))
(((|#1|) . T))
-((((-840)) . T) (((-1154)) . T))
-(|has| |#1| (-1074))
-((((-840)) |has| |#1| (-1074)))
-(|has| |#1| (-1074))
-((((-840)) . T) (((-1154)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-840)) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
+((((-841 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
+(((|#2| (-751)) . T))
+((((-1149)) . T))
+((((-846 |#1|)) . T))
+(-1523 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+(-1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+((((-839)) . T))
+(((|#1|) . T))
+(-1523 (|has| |#2| (-773)) (|has| |#2| (-825)))
+(-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827))))
+((((-846 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+((($ $) . T) (((-596 $) $) . T))
+((($) . T))
+((((-839)) . T))
+((((-552)) . T))
+(((|#2|) . T))
+((((-839)) . T))
+(((|#1|) . T) (((-402 (-552))) |has| |#1| (-358)))
+((((-839)) . T))
+(((|#1|) . T))
+((((-839)) . T))
+((($) . T) ((|#2|) . T) (((-402 (-552))) . T))
+(|has| |#1| (-1073))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-839)) . T))
+(|has| |#2| (-885))
+((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T))
+((((-528)) |has| |#2| (-598 (-528))) (((-868 (-374))) |has| |#2| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#2| (-598 (-868 (-552)))))
+((((-839)) . T))
+((((-839)) . T))
+(((|#3|) |has| |#3| (-1025)) (((-552)) -12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))))
+((((-1098 |#1| |#2|)) . T) (((-928 |#1|)) |has| |#2| (-598 (-1149))) (((-839)) . T))
+((((-928 |#1|)) |has| |#2| (-598 (-1149))) (((-1131)) -12 (|has| |#1| (-1014 (-552))) (|has| |#2| (-598 (-1149)))) (((-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552))))) (((-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374))))) (((-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#2| (-598 (-528)))))
+((((-1145 |#1|)) . T) (((-839)) . T))
+((((-839)) . T))
+((((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))) (((-552)) |has| |#2| (-1014 (-552))) ((|#2|) . T) (((-841 |#1|)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-402 (-552))) . T))
+((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T) (((-1149)) . T))
+((((-839)) . T))
+((((-552)) . T))
+((($) . T))
+((((-374)) |has| |#1| (-862 (-374))) (((-552)) |has| |#1| (-862 (-552))))
+((((-552)) . T))
+(((|#1|) . T))
+((((-839)) . T))
+(((|#1|) . T))
+((((-839)) . T))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+((((-552)) . T) (((-402 (-552))) . T))
+(((|#1|) |has| |#1| (-304 |#1|)))
+((((-839)) . T))
+((((-374)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-1131) (-1149) (-538) (-221) (-840)) . T))
-((((-840)) . T))
-(((|#1| |#2| |#3| |#4| |#5|) . T))
-((((-840)) . T))
-(-3891 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(-3891 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1074)))
-(-3891 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1074)))
-(((|#3|) |has| |#3| (-170)))
-(-3891 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(-3891 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(-3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(-3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(-3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(-3891 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-(-3891 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
-((($) -3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) ((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))))
-(((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358))))
-((((-840)) -3891 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-597 (-840))) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1074))) (((-1231 |#3|)) . T))
-(|has| |#3| (-170))
-(((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($) |has| |#3| (-170)))
-(((|#3| |#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($ $) |has| |#3| (-170)))
-(((|#3|) |has| |#3| (-1025)))
-((((-1149)) -12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025))))
-(-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))
-(|has| |#3| (-363))
-(((|#3|) |has| |#3| (-1025)))
-(((|#3|) |has| |#3| (-1025)) (((-538)) -12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))))
-(((|#3|) |has| |#3| (-1074)))
-(((|#3|) |has| |#3| (-1074)) (((-538)) -12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074))) (((-402 (-538))) -12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074))))
-((((-538) |#3|) . T))
-(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))
-(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))
-(((|#3|) . T))
-((((-538) |#3|) . T))
-((((-538) |#3|) . T))
-(|has| |#3| (-773))
-(-3891 (|has| |#3| (-773)) (|has| |#3| (-825)))
-(-3891 (|has| |#3| (-773)) (|has| |#3| (-825)))
-(-3891 (|has| |#3| (-773)) (|has| |#3| (-825)))
-(-3891 (|has| |#3| (-773)) (|has| |#3| (-825)))
-(|has| |#3| (-825))
-(|has| |#3| (-825))
-(((|#3|) |has| |#3| (-358)))
-(((|#1| |#3|) . T))
-((((-840)) . T))
-((((-840)) . T) (((-1154)) . T))
-((($) . T))
-((((-840)) . T))
-((($) . T))
-((($ $) . T))
-((($) . T))
+((((-839)) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-402 |#2|) |#3|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1073))
+(((|#2| (-476 (-1471 |#1|) (-751))) . T))
+((((-552) |#1|) . T))
+((((-1131)) . T) (((-839)) . T))
+(((|#2| |#2|) . T))
+(((|#1| (-524 (-1149))) . T))
+(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+((((-552)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T))
+(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552))))
+(|has| |#1| (-544))
+((($) . T) (((-402 (-552))) . T))
((($) . T))
-((((-538)) . T))
-((((-538)) . T))
-((((-527)) . T) (((-538)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T))
-((((-538)) . T))
-((((-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#2| (-598 (-527)))) (((-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373))))) (((-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538))))))
((($) . T))
-(((|#1| (-524 |#2|)) . T))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
(((|#1|) . T))
-((((-840)) . T))
-((($) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))))
-(((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))) ((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))))
-(((|#1| (-524 |#2|)) . T))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-839)) . T))
+((((-142)) . T))
+(((|#1|) . T) (((-402 (-552))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538))))
-(-3891 (|has| |#1| (-446)) (|has| |#1| (-886)))
-((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-(|has| |#1| (-827))
-(((|#2|) . T))
-((((-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#2| (-862 (-373)))) (((-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#2| (-862 (-538)))))
-(|has| |#1| (-886))
-(|has| |#1| (-886))
-((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T) ((|#2|) . T))
-(((|#1| (-524 |#2|) |#2|) . T))
+(((|#1|) . T))
+((((-839)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1124))
+(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T))
+(((|#1|) . T))
+((((-402 $) (-402 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))))
+((((-839)) . T))
+((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T) ((|#2|) . T))
+((((-1055)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))))
+((((-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#2| (-862 (-374)))) (((-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#2| (-862 (-552)))))
+((((-1218 |#1| |#2| |#3| |#4|)) . T))
+((((-552) |#1|) . T))
+(((|#1| |#1|) . T))
+((($) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-170)) (($) . T))
((($) . T))
-((($ $) . T) ((|#2| $) . T))
-(((|#2|) . T))
-((((-840)) . T))
-(((|#1| (-524 |#2|) |#2|) . T))
-((($) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-545)))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))))
-(((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))) ((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545)))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545)))
+((((-679)) . T))
+((((-760 |#1| (-841 |#2|))) . T))
+((($) . T))
+((((-402 (-552))) . T) (($) . T))
+(|has| |#1| (-1073))
+(|has| |#1| (-1073))
+(|has| |#2| (-358))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
+(|has| |#1| (-38 (-402 (-552))))
+((((-552)) . T))
+((((-1149)) -12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025))))
+((((-1149)) -12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025))))
+(((|#1|) . T))
+(|has| |#1| (-229))
+(((|#1| (-524 |#3|)) . T))
+(|has| |#1| (-363))
+(((|#2| (-236 (-1471 |#1|) (-751))) . T))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(((|#1|) . T) (($) . T))
(((|#1| (-524 |#2|)) . T))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(((|#1| |#2|) . T))
-((((-840)) . T))
+(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(((|#1| (-751)) . T))
+(|has| |#1| (-544))
+(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
+((((-839)) . T))
+(-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))
+(-1523 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(((|#1|) |has| |#1| (-170)))
+(((|#4|) |has| |#4| (-1025)))
+(((|#3|) |has| |#3| (-1025)))
+(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
+(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T))
+((($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+((((-839)) . T))
+((($) . T) (((-402 (-552))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1073)) (((-552)) -12 (|has| |#4| (-1014 (-552))) (|has| |#4| (-1073))) (((-402 (-552))) -12 (|has| |#4| (-1014 (-402 (-552)))) (|has| |#4| (-1073))))
+(((|#3|) |has| |#3| (-1073)) (((-552)) -12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073))) (((-402 (-552))) -12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073))))
+(|has| |#2| (-358))
+(((|#2|) |has| |#2| (-1025)) (((-552)) -12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025))))
(((|#1|) . T))
-((((-1154)) . T) (((-840)) . T))
-((((-840)) . T))
-((((-1113 |#1| |#2|)) . T))
-(((#1=(-1113 |#1| |#2|) #1#) |has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))))
-((((-1113 |#1| |#2|)) |has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))))
-((((-840)) . T))
-((((-1113 |#1| |#2|)) . T))
-((((-527)) |has| |#2| (-598 (-527))))
-(((|#2|) |has| |#2| (-6 (-4355 "*"))))
+(|has| |#2| (-358))
+(((#0=(-402 (-552)) #0#) |has| |#2| (-38 (-402 (-552)))) ((|#2| |#2|) . T) (($ $) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T))
(((|#2| |#2|) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T) (($) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#1|) . T) (($) . T) (((-402 (-552))) . T))
+(((|#1|) . T) (($) . T) (((-402 (-552))) . T))
+(((|#1|) . T) (($) . T) (((-402 (-552))) . T))
(((|#2|) . T))
-((((-669 |#2|)) . T) (((-840)) . T))
-((($) . T) ((|#2|) . T))
-(((|#2|) -3891 (|has| |#2| (-6 (-4355 "*"))) (|has| |#2| (-170))))
-(((|#2|) . T))
-((((-1149)) |has| |#2| (-876 (-1149))))
-(|has| |#2| (-229))
-(((|#2|) . T))
-(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538))))
-(((|#2|) . T))
-(((|#2|) . T) (((-538)) |has| |#2| (-1014 (-538))) (((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))))
-(((|#1| |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))
-(((|#2|) . T))
-(((|#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-527)) |has| |#4| (-598 (-527))))
-(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
-(((|#4|) . T))
-((((-840)) . T) (((-622 |#4|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
+((((-839)) |has| |#1| (-1073)))
+((($) . T))
+((((-1218 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
+(|has| |#2| (-800))
+(|has| |#2| (-800))
+(|has| |#1| (-358))
+(|has| |#1| (-358))
+(|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))
+(|has| |#1| (-358))
+(((|#1|) |has| |#2| (-412 |#1|)))
+(((|#1|) |has| |#2| (-412 |#1|)))
+((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-1185)) . T) (((-839)) . T) (((-1154)) . T))
+((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) |has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+((((-552) |#1|) . T))
+((((-552) |#1|) . T))
+((((-552) |#1|) . T))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+((((-552) |#1|) . T))
+(((|#1|) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+((((-1149)) |has| |#1| (-876 (-1149))) (((-798 (-1149))) . T))
+(-1523 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+((((-799 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
+((((-839)) . T))
+(-1523 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
(((|#1| |#2|) . T))
+(|has| |#1| (-38 (-402 (-552))))
+((((-839)) . T))
+((((-1218 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-552))) . T))
+(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544)) (((-402 (-552))) |has| |#1| (-544)))
+(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552))))
+(|has| |#1| (-358))
+(-1523 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (-12 (|has| |#1| (-358)) (|has| |#2| (-229))))
+(|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))
+(|has| |#1| (-358))
(((|#1|) . T))
+(((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#1| |#1|) . T))
+((((-552) |#1|) . T))
+((((-311 |#1|)) . T))
+(((#0=(-679) (-1145 #0#)) . T))
+((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#1|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(|has| |#1| (-825))
+((($ $) . T) ((#0=(-841 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1098 |#1| (-1149))) . T) (((-798 (-1149))) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-1149)) . T))
+((($) . T))
+(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
+(((#0=(-1055) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1149) $) |has| |#1| (-229)) ((#0# |#1|) |has| |#1| (-229)) ((#1=(-1061 (-1149)) |#1|) . T) ((#1# $) . T))
+((($) . T) ((|#2|) . T))
+((($) . T) ((|#2|) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))))
+(|has| |#2| (-885))
+((($) . T) ((#0=(-1217 |#2| |#3| |#4|)) |has| #0# (-170)) (((-402 (-552))) |has| #0# (-38 (-402 (-552)))))
+((((-552) |#1|) . T))
+(((#0=(-1218 |#1| |#2| |#3| |#4|)) |has| #0# (-304 #0#)))
+((($) . T))
(((|#1|) . T))
+((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#2| |#2|) |has| |#1| (-358)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))))
+(|has| |#2| (-229))
+(|has| $ (-145))
+((((-839)) . T))
+((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
+((((-839)) . T))
+(|has| |#1| (-825))
+((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))
+((((-402 |#2|) |#3|) . T))
(((|#1|) . T))
+((((-839)) . T))
+(((|#2| (-652 |#1|)) . T))
+(-12 (|has| |#1| (-302)) (|has| |#1| (-885)))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#4|) . T))
+(|has| |#1| (-544))
+((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) ((|#1|) . T))
+((((-1149)) -1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))
+(((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))))
+((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149)))))
+((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149)))))
+(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))
+((((-552) |#1|) . T))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
(((|#1|) . T))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
+(((|#1| (-524 (-798 (-1149)))) . T))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
(((|#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
(((|#1|) . T))
+(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))
+((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)))
+((($) . T) (((-846 |#1|)) . T) (((-402 (-552))) . T))
+((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)))
+(|has| |#1| (-544))
(((|#1|) . T))
-((((-840)) . T))
-((((-142)) . T))
-((((-142)) . T))
-((((-142)) . T))
-((((-538) (-142)) . T))
-((((-538) (-142)) . T))
-((((-538) (-142)) . T))
-((((-142)) . T))
-((((-142)) . T))
-((((-1131) |#1|) . T))
-((((-840)) . T))
-((((-1131) |#1|) . T))
-((((-1131) |#1|) . T))
-((((-1131) |#1|) . T))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-(((|#1|) . T) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((#1=(-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) #1#) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T))
-((((-1131) |#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-1147 |#1| |#2| |#3|)) . T))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(|has| |#1| (-358))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-1147 |#1| |#2| |#3|)) -12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|)))))
-(((#1=(-1147 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|)))) (((-1149) #1#) -12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|)))))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-402 |#2|)) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-344)))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-402 (-552)) #0#) . T) (($ $) . T))
+((((-552)) . T))
+((((-839)) . T))
+(((|#2|) . T) (((-402 (-552))) . T) (($) . T))
+((((-567 |#1|)) . T) (((-402 (-552))) . T) (($) . T))
+((((-839)) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-552) |#1|) . T))
+((((-839)) . T))
+((($ $) . T) (((-1149) $) . T))
+((((-1224 |#1| |#2| |#3|)) . T))
+((((-528)) |has| |#2| (-598 (-528))) (((-868 (-374))) |has| |#2| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#2| (-598 (-868 (-552)))))
+((((-839)) . T))
+((((-839)) . T))
+((((-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#3| (-598 (-868 (-552))))) (((-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#3| (-598 (-868 (-374))))) (((-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#3| (-598 (-528)))))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1|) . T) (((-839)) . T) (((-1154)) . T))
+((((-839)) . T))
+(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T))
+(((|#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T))
+((((-839)) . T))
+((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)))
(|has| |#1| (-358))
-(-3891 (-12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))
-((((-1149)) -3891 (-12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149)))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(-3891 (|has| |#1| (-145)) (-12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-145))))
-(-3891 (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-143))))
-((((-840)) . T))
-(((|#1|) . T))
-((((-1147 |#1| |#2| |#3|) $) -12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-281 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)))) (($ $) . T))
-(((|#1| (-538) (-1055)) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((#2=(-1147 |#1| |#2| |#3|) #2#) |has| |#1| (-358)) ((|#1| |#1|) . T))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-(((|#1| (-538)) . T))
-(((|#1| (-538)) . T))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(((|#1| (-1147 |#1| |#2| |#3|)) . T))
+((((-1224 |#1| |#2| |#3|)) . T) (((-1196 |#1| |#2| |#3|)) . T))
+((((-1149)) . T) (((-839)) . T))
+((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))))
+(((|#2|) . T) ((|#6|) . T))
+((($) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T))
+((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((((-1077)) . T))
+((((-839)) . T))
+((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+((($) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T))
+((($) . T))
+((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(|has| |#2| (-885))
+(|has| |#1| (-885))
(((|#1|) . T))
-((((-840)) . T))
-((((-402 $) (-402 $)) |has| |#1| (-545)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T))
+(((|#1| |#1|) |has| |#1| (-170)))
+((((-679)) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
+((((-402 (-552))) . T) (($) . T))
+(((|#1| (-552)) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-344)))
(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))
(|has| |#1| (-358))
-(((|#1| (-751) (-1055)) . T))
-(|has| |#1| (-886))
-(|has| |#1| (-886))
-((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T))
-(|has| |#1| (-827))
-((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T))
-(((|#1|) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-344)))
+(-1523 (|has| |#1| (-170)) (|has| |#1| (-544)))
+(((|#1| (-552)) . T))
+(((|#1| (-402 (-552))) . T))
(((|#1| (-751)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
+((((-402 (-552))) . T))
+(((|#1| (-524 |#2|) |#2|) . T))
+((((-552) |#1|) . T))
+((((-552) |#1|) . T))
+(|has| |#1| (-1073))
+((((-552) |#1|) . T))
(((|#1|) . T))
-((((-1055)) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))))
-(((|#1| (-751)) . T))
-(((#1=(-1055) |#1|) . T) ((#1# $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-1124))
(((|#1|) . T))
-((((-1147 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T))
+((((-868 (-374))) . T) (((-868 (-552))) . T) (((-1149)) . T) (((-528)) . T))
(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))
-((($ $) . T))
-((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))))
-(((|#1| (-402 (-538)) (-1055)) . T))
+((((-839)) . T))
+(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+(-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))
+((((-552)) . T))
+((((-552)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(((|#1| |#2|) . T))
+(((|#1|) . T))
+(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025)))
+((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025))))
+(-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(((|#1| (-402 (-538))) . T))
-(((|#1| (-402 (-538))) . T))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-((((-840)) . T))
-(((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))))
-(((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))))
-(((|#1|) . T) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))))
-(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(((|#1| (-1140 |#1| |#2| |#3|)) . T))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(((|#1| (-751)) . T))
-(((|#1| (-751)) . T))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-545)))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-(((|#1| (-751) (-1055)) . T))
-((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|)))))
-((($ $) . T))
-((((-840)) . T))
-(((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) (($) . T))
-(|has| |#1| (-15 * (|#1| (-751) |#1|)))
-(((|#1|) . T))
-((((-840)) . T))
-((((-373)) . T) (((-538)) . T))
-((((-866 (-373))) . T) (((-866 (-538))) . T) (((-1149)) . T) (((-527)) . T))
-((((-840)) . T))
-(((|#1| (-947)) . T))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-545)))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((((-840)) . T))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-(((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) (($) . T))
-((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))))
-(((|#1| (-947)) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-((((-840)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
+(|has| |#1| (-229))
+((((-839)) . T))
+(((|#1| (-751) (-1055)) . T))
+((((-552) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-552) |#1|) . T))
+((((-552) |#1|) . T))
+((((-116 |#1|)) . T))
+((((-402 (-552))) . T) (((-552)) . T))
+(((|#2|) |has| |#2| (-1025)))
+((((-402 (-552))) . T) (($) . T))
+(((|#2|) . T))
+((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544)))
+((((-552)) . T))
+((((-552)) . T))
+((((-1131) (-1149) (-552) (-221) (-839)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
-((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T))
+(-1523 (|has| |#1| (-344)) (|has| |#1| (-363)))
(((|#1| |#2|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-383) (-1131)) . T))
+((($) . T) ((|#1|) . T))
+((((-839)) . T))
+((($) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))))
+(((|#2|) |has| |#2| (-1073)) (((-552)) -12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (((-402 (-552))) -12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073))))
+((((-528)) |has| |#1| (-598 (-528))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073))))
+((($) . T) (((-402 (-552))) . T))
+(|has| |#1| (-885))
+(|has| |#1| (-885))
+((((-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-998))) (((-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-998))) (((-868 (-374))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-868 (-374))))) (((-868 (-552))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-868 (-552))))) (((-528)) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-528)))))
+((((-839)) . T))
+((((-839)) . T))
+(((|#2| |#2|) . T))
+(((|#1| |#1|) |has| |#1| (-170)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-544)))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-825)))
+(((|#2|) . T))
+(-1523 (|has| |#1| (-21)) (|has| |#1| (-825)))
+(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))))
(((|#1|) . T))
-((($) . T))
-((($ $) . T) (((-1149) $) . T))
-((((-1149)) . T))
-((((-840)) . T))
-(((|#1| (-524 #1=(-1149)) #1#) . T))
-((($) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-545)))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))))
-(((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))) ((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545)))
-((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545)))
-(((|#1| (-524 (-1149))) . T))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(((|#1| (-1149)) . T))
-(|has| |#1| (-1074))
-(|has| |#1| (-1074))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))) (((-934 |#1|)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-1221 |#1| |#2| |#3|)) . T))
-((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(|has| |#1| (-358))
-((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-1221 |#1| |#2| |#3|)) -12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|)))))
-(((#1=(-1221 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|)))) (((-1149) #1#) -12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-507 (-1149) (-1221 |#1| |#2| |#3|)))))
-((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(-3891 (-12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))
-((((-1149)) -3891 (-12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149)))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))
-((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(-3891 (|has| |#1| (-145)) (-12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-145))))
-(-3891 (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-143))))
-((((-840)) . T))
-(((|#1|) . T))
-((((-1221 |#1| |#2| |#3|) $) -12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-281 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)))) (($ $) . T))
-(((|#1| (-538) (-1055)) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((#2=(-1221 |#1| |#2| |#3|) #2#) |has| |#1| (-358)) ((|#1| |#1|) . T))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-(((|#1| (-538)) . T))
-(((|#1| (-538)) . T))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(((|#1| (-1221 |#1| |#2| |#3|)) . T))
-(((|#2|) |has| |#1| (-358)))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-1124)))
-(((|#2|) . T) (((-1149)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))) (((-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538)))) (((-402 (-538))) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538)))))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-996)))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-886)))
-(((|#2|) |has| |#1| (-358)))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
-(-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-800))) (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-800)))
-((((-373)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-373)))) (((-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-538)))))
-(|has| |#1| (-358))
-(((|#2|) |has| |#1| (-358)))
-((((-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-621 (-538)))) ((|#2|) |has| |#1| (-358)))
-(((|#2|) |has| |#1| (-358)))
-(((|#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))))
-(((|#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) (((-1149) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|))))
-(((|#2|) |has| |#1| (-358)))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
+((((-839)) -1523 (-12 (|has| |#1| (-597 (-839))) (|has| |#2| (-597 (-839)))) (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073)))))
+((((-402 |#2|) |#3|) . T))
+((((-402 (-552))) . T) (($) . T))
+(|has| |#1| (-38 (-402 (-552))))
(|has| |#1| (-358))
-(-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))
-((((-1149)) -3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))
-(((|#2|) |has| |#1| (-358)))
-((((-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-996))) (((-373)) -12 (|has| |#1| (-358)) (|has| |#2| (-996))) (((-866 (-373))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-373))))) (((-866 (-538))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-538))))) (((-527)) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-527)))))
-(-3891 (|has| |#1| (-145)) (-12 (|has| |#1| (-358)) (|has| |#2| (-145))))
-(-3891 (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| |#2| (-143))))
-((((-840)) . T))
+((($ $) . T) ((#0=(-402 (-552)) #0#) . T))
+(|has| (-402 |#2|) (-145))
+(|has| (-402 |#2|) (-143))
+((((-679)) . T))
+(((|#1|) . T) (((-402 (-552))) . T) (((-552)) . T) (($) . T))
+(((#0=(-552) #0#) . T))
+((($) . T) (((-402 (-552))) . T))
+(-1523 (|has| |#4| (-170)) (|has| |#4| (-707)) (|has| |#4| (-825)) (|has| |#4| (-1025)))
+(-1523 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025)))
+((((-839)) . T) (((-1154)) . T))
+(|has| |#4| (-773))
+(-1523 (|has| |#4| (-773)) (|has| |#4| (-825)))
+(|has| |#4| (-825))
+(|has| |#3| (-773))
+(-1523 (|has| |#3| (-773)) (|has| |#3| (-825)))
+(|has| |#3| (-825))
+((((-552)) . T))
+(((|#2|) . T))
+((((-1149)) -1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))
+((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149)))))
+((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149)))))
+(((|#1| |#1|) . T) (($ $) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) (($ $) . T))
-(((|#1| (-538) (-1055)) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#2| |#2|) |has| |#1| (-358)) ((|#1| |#1|) . T))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) ((|#1|) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) (($) . T) ((|#1|) . T))
-((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-(((|#1| (-538)) . T))
-(((|#1| (-538)) . T))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(((|#1| |#2|) . T))
-(((|#1| (-1126 |#1|)) |has| |#1| (-825)))
-(|has| |#1| (-1074))
-((((-840)) |has| |#1| (-1074)))
-(|has| |#1| (-1074))
(((|#1|) . T))
-(((|#2|) . T))
-((((-840)) . T))
-((((-402 $) (-402 $)) |has| |#2| (-545)) (($ $) . T) ((|#2| |#2|) . T))
-(|has| |#2| (-358))
-(-3891 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-886)))
-(-3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-(-3891 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-(-3891 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))
-(|has| |#2| (-358))
-(((|#2| (-751) (-1055)) . T))
-(|has| |#2| (-886))
-(|has| |#2| (-886))
-((((-1149)) |has| |#2| (-876 (-1149))) (((-1055)) . T))
-(|has| |#2| (-827))
-((((-538)) |has| |#2| (-621 (-538))) ((|#2|) . T))
-(((|#2|) . T))
-(((|#2| (-751)) . T))
-(|has| |#2| (-145))
-(|has| |#2| (-143))
-((($) -3891 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) ((|#2|) |has| |#2| (-170)) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))))
-((($) . T) ((|#2|) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) ((|#2|) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) ((|#2| |#2|) . T) ((#1=(-402 (-538)) #1#) |has| |#2| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) ((|#2|) |has| |#2| (-170)) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))))
-(((|#2|) . T))
-((((-1055)) . T) ((|#2|) . T) (((-538)) |has| |#2| (-1014 (-538))) (((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))))
-(((|#2| (-751)) . T))
-(((#1=(-1055) |#2|) . T) ((#1# $) . T) (($ $) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T))
+((((-841 |#1|)) . T))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
+((((-1113 |#1| |#2|)) . T))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
+(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T))
((($) . T))
-(|has| |#2| (-1124))
+(|has| |#1| (-998))
+(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+((((-839)) . T))
+((((-528)) |has| |#2| (-598 (-528))) (((-868 (-552))) |has| |#2| (-598 (-868 (-552)))) (((-868 (-374))) |has| |#2| (-598 (-868 (-374)))) (((-374)) . #0=(|has| |#2| (-998))) (((-221)) . #0#))
+((((-1149) (-52)) . T))
+(|has| |#1| (-38 (-402 (-552))))
+(|has| |#1| (-38 (-402 (-552))))
(((|#2|) . T))
-((((-1221 |#1| |#2| |#3|)) . T) (((-1191 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))
((($ $) . T))
-((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))))
-(((|#1| (-402 (-538)) (-1055)) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(((|#1| (-402 (-538))) . T))
-(((|#1| (-402 (-538))) . T))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-((((-840)) . T))
-(((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))))
-(((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))))
-(((|#1|) . T) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))))
-(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(((|#1| (-1191 |#1| |#2| |#3|)) . T))
+((((-402 (-552))) . T) (((-679)) . T) (($) . T))
+((((-1147 |#1| |#2| |#3|)) . T))
+((((-1147 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T))
+((((-839)) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+((((-552) |#1|) . T))
+((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1|) . T))
(((|#2|) . T))
+(|has| |#2| (-358))
+(((|#3|) . T) ((|#2|) . T) (($) -1523 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025))) ((|#4|) -1523 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025))))
+(((|#2|) . T) (($) -1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) ((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))))
(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))
-((($ $) . T))
-((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))))
-(((|#1| (-402 (-538)) (-1055)) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(((|#1| (-402 (-538))) . T))
-(((|#1| (-402 (-538))) . T))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-358))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-((((-840)) . T))
-(((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))))
-(((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))))
-(((|#1|) . T) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))))
-(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545)))
-(-3891 (|has| |#1| (-358)) (|has| |#1| (-545)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(((|#1| |#2|) . T))
-((((-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T))
-(|has| (-1212 |#2| |#3| |#4|) (-145))
-(|has| (-1212 |#2| |#3| |#4|) (-143))
-((($) . T) ((#1=(-1212 |#2| |#3| |#4|)) |has| #1# (-170)) (((-402 (-538))) |has| #1# (-38 (-402 (-538)))))
-((((-840)) . T))
-((($) . T) ((#1=(-1212 |#2| |#3| |#4|)) . T) (((-402 (-538))) |has| #1# (-38 (-402 (-538)))))
-((($ $) . T) ((#1=(-1212 |#2| |#3| |#4|) #1#) . T) ((#2=(-402 (-538)) #2#) |has| #1# (-38 (-402 (-538)))))
-(((#1=(-1212 |#2| |#3| |#4|)) . T) (((-402 (-538))) |has| #1# (-38 (-402 (-538)))) (($) . T))
-((($) . T) ((#1=(-1212 |#2| |#3| |#4|)) |has| #1# (-170)) (((-402 (-538))) |has| #1# (-38 (-402 (-538)))))
-((((-1212 |#2| |#3| |#4|)) . T))
-((((-1212 |#2| |#3| |#4|)) . T))
-((((-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(|has| |#1| (-38 (-402 (-538))))
-(((|#1| (-751)) . T))
-(((|#1| (-751)) . T))
-(|has| |#1| (-545))
-(|has| |#1| (-545))
-(-3891 (|has| |#1| (-170)) (|has| |#1| (-545)))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))))
-((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))))
-(((|#1| (-751) (-1055)) . T))
-((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|)))))
-((($ $) . T))
-((((-840)) . T))
-(((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) (($) . T))
-(|has| |#1| (-15 * (|#1| (-751) |#1|)))
(((|#1|) . T))
-((((-1149)) . T) (((-840)) . T))
+(|has| |#1| (-358))
+((((-116 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-538) |#1|) . T))
-((((-527)) |has| |#1| (-598 (-527))))
+((((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))) (((-552)) |has| |#2| (-1014 (-552))) ((|#2|) . T) (((-841 |#1|)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
(((|#1|) . T))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074)))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))
-((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074))))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+((((-129)) . T) (((-839)) . T))
+((((-552) |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-827))
(((|#1|) . T))
(((|#1|) . T))
-((((-840)) . T))
-((((-840)) . T))
-((((-840)) . T) (((-1154)) . T))
-((((-840)) . T) (((-1154)) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| |#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-((((-840)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-527)) |has| |#4| (-598 (-527))))
-(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))
-(((|#4|) . T))
-((((-840)) . T) (((-622 |#4|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-170)))
+(((|#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) (($ $) . T))
+((($ $) . T))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-885)))
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+((((-839)) . T))
+((((-839)) . T))
+((((-839)) . T))
+(((|#1| (-524 |#2|)) . T))
+((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T))
+(((|#1| (-552)) . T))
+(((|#1| (-402 (-552))) . T))
+(((|#1| (-751)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-402 (-552))) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))
+(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))
+((($) . T))
+(((|#2| (-524 (-841 |#1|))) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-839)) . T) (((-1154)) . T))
+((((-552) |#1|) . T))
+((((-839)) . T) (((-1154)) . T))
(((|#2|) . T))
+(((|#2| (-751)) . T))
+((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))))
+(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-((((-840)) . T))
+((((-1131) |#1|) . T))
+((((-402 |#2|)) . T))
+((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T))
+(|has| |#1| (-544))
+(|has| |#1| (-544))
((($) . T) ((|#2|) . T))
-(((|#2|) |has| |#2| (-170)))
-((((-799 |#1|)) . T))
-(((|#2| (-799 |#1|)) . T))
-(((|#2| (-869 |#1|)) . T))
-(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#2|) . T))
-(((|#2|) . T) (($) . T))
-((((-840)) . T))
-((((-869 |#1|)) . T) (((-799 |#1|)) . T))
-(((|#1| |#2|) . T))
-((((-1149) |#1|) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| |#1|) . T))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
-(((|#1|) . T) (($) . T))
-((((-840)) . T))
-((((-799 (-1149))) . T))
-((((-1149) |#1|) . T))
-(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| |#1|) . T))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)))
+(((|#2| $) |has| |#2| (-281 |#2| |#2|)))
+(((|#1| (-625 |#1|)) |has| |#1| (-825)))
+(-1523 (|has| |#1| (-229)) (|has| |#1| (-344)))
+(-1523 (|has| |#1| (-358)) (|has| |#1| (-344)))
+(|has| |#1| (-1073))
+(((|#1|) . T))
+((((-402 (-552))) . T) (($) . T))
+((((-975 |#1|)) . T) ((|#1|) . T) (((-552)) -1523 (|has| (-975 |#1|) (-1014 (-552))) (|has| |#1| (-1014 (-552)))) (((-402 (-552))) -1523 (|has| (-975 |#1|) (-1014 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+((((-1149)) |has| |#1| (-876 (-1149))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))
+(((|#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) . T))
(((|#1|) . T))
-(((|#1|) . T) (($) . T))
-((((-840)) . T))
-(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#2| |#2|) . T))
-(((|#2|) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#2|) . T))
-(((|#2|) . T) (($) . T))
-((((-840)) . T))
-((((-799 |#1|)) . T))
-(((|#1| |#2|) . T))
-((((-538)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((#0=(-1113 |#1| |#2|) #0#) |has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))))
+(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))))
+(((#0=(-116 |#1|)) |has| #0# (-304 #0#)))
((($ $) . T))
-((($) . T))
-((((-840)) . T))
-((($) . T))
-(((-1260 . -170) T) ((-1260 . -707) T) ((-1260 . -1085) T) ((-1260 . -1032) T) ((-1260 . -1025) T) ((-1260 . -628) 145098) ((-1260 . -130) T) ((-1260 . -25) T) ((-1260 . -101) T) ((-1260 . -597) 145080) ((-1260 . -1074) T) ((-1260 . -23) T) ((-1260 . -21) T) ((-1260 . -1031) 145067) ((-1260 . -111) 145052) ((-1260 . -363) T) ((-1260 . -598) 145034) ((-1260 . -1124) T) ((-1256 . -1254) 145013) ((-1256 . -1014) 144990) ((-1256 . -1025) T) ((-1256 . -1032) T) ((-1256 . -1085) T) ((-1256 . -707) T) ((-1256 . -21) T) ((-1256 . -23) T) ((-1256 . -1074) T) ((-1256 . -597) 144972) ((-1256 . -101) T) ((-1256 . -25) T) ((-1256 . -130) T) ((-1256 . -628) 144946) ((-1256 . -1246) 144930) ((-1256 . -698) 144900) ((-1256 . -1031) 144884) ((-1256 . -111) 144863) ((-1256 . -38) 144833) ((-1256 . -1251) 144812) ((-1255 . -1025) T) ((-1255 . -1032) T) ((-1255 . -1085) T) ((-1255 . -707) T) ((-1255 . -21) T) ((-1255 . -23) T) ((-1255 . -1074) T) ((-1255 . -597) 144794) ((-1255 . -101) T) ((-1255 . -25) T) ((-1255 . -130) T) ((-1255 . -628) 144768) ((-1255 . -1246) 144752) ((-1255 . -698) 144722) ((-1255 . -1031) 144706) ((-1255 . -111) 144685) ((-1255 . -38) 144655) ((-1255 . -379) 144634) ((-1255 . -1014) 144618) ((-1253 . -1254) 144594) ((-1253 . -1014) 144568) ((-1253 . -1025) T) ((-1253 . -1032) T) ((-1253 . -1085) T) ((-1253 . -707) T) ((-1253 . -21) T) ((-1253 . -23) T) ((-1253 . -1074) T) ((-1253 . -597) 144550) ((-1253 . -101) T) ((-1253 . -25) T) ((-1253 . -130) T) ((-1253 . -628) 144524) ((-1253 . -1246) 144508) ((-1253 . -698) 144478) ((-1253 . -1031) 144462) ((-1253 . -111) 144441) ((-1253 . -38) 144411) ((-1253 . -1251) 144387) ((-1252 . -1254) 144366) ((-1252 . -1014) 144323) ((-1252 . -1025) T) ((-1252 . -1032) T) ((-1252 . -1085) T) ((-1252 . -707) T) ((-1252 . -21) T) ((-1252 . -23) T) ((-1252 . -1074) T) ((-1252 . -597) 144305) ((-1252 . -101) T) ((-1252 . -25) T) ((-1252 . -130) T) ((-1252 . -628) 144279) ((-1252 . -1246) 144263) ((-1252 . -698) 144233) ((-1252 . -1031) 144217) ((-1252 . -111) 144196) ((-1252 . -38) 144166) ((-1252 . -1251) 144145) ((-1252 . -379) 144117) ((-1247 . -379) 144089) ((-1247 . -1014) 144066) ((-1247 . -698) 144036) ((-1247 . -628) 144010) ((-1247 . -130) T) ((-1247 . -25) T) ((-1247 . -101) T) ((-1247 . -597) 143992) ((-1247 . -1074) T) ((-1247 . -23) T) ((-1247 . -21) T) ((-1247 . -1031) 143976) ((-1247 . -111) 143955) ((-1247 . -1254) 143934) ((-1247 . -1025) T) ((-1247 . -1032) T) ((-1247 . -1085) T) ((-1247 . -707) T) ((-1247 . -1246) 143918) ((-1247 . -38) 143888) ((-1247 . -1251) 143867) ((-1245 . -1180) 143836) ((-1245 . -597) 143798) ((-1245 . -149) 143782) ((-1245 . -34) T) ((-1245 . -1185) T) ((-1245 . -304) 143720) ((-1245 . -507) 143653) ((-1245 . -1074) T) ((-1245 . -101) T) ((-1245 . -483) 143637) ((-1245 . -598) 143598) ((-1245 . -952) 143567) ((-1244 . -1025) T) ((-1244 . -1032) T) ((-1244 . -1085) T) ((-1244 . -707) T) ((-1244 . -21) T) ((-1244 . -23) T) ((-1244 . -1074) T) ((-1244 . -597) 143549) ((-1244 . -101) T) ((-1244 . -25) T) ((-1244 . -130) T) ((-1244 . -628) 143509) ((-1244 . -38) 143479) ((-1244 . -111) 143444) ((-1244 . -1031) 143414) ((-1244 . -698) 143384) ((-1243 . -1056) T) ((-1243 . -597) 143350) ((-1243 . -1074) T) ((-1243 . -101) T) ((-1243 . -92) T) ((-1242 . -1056) T) ((-1242 . -597) 143316) ((-1242 . -1074) T) ((-1242 . -101) T) ((-1242 . -92) T) ((-1235 . -1074) T) ((-1235 . -597) 143298) ((-1235 . -101) T) ((-1234 . -1074) T) ((-1234 . -597) 143280) ((-1234 . -101) T) ((-1231 . -1230) 143264) ((-1231 . -367) 143248) ((-1231 . -827) 143227) ((-1231 . -149) 143211) ((-1231 . -34) T) ((-1231 . -1185) T) ((-1231 . -597) 143123) ((-1231 . -304) 143061) ((-1231 . -507) 142994) ((-1231 . -1074) 142944) ((-1231 . -101) 142894) ((-1231 . -483) 142878) ((-1231 . -598) 142839) ((-1231 . -588) 142816) ((-1231 . -281) 142793) ((-1231 . -283) 142770) ((-1231 . -631) 142754) ((-1231 . -19) 142738) ((-1228 . -1074) T) ((-1228 . -597) 142704) ((-1228 . -101) T) ((-1221 . -1224) 142688) ((-1221 . -229) 142647) ((-1221 . -628) 142572) ((-1221 . -130) T) ((-1221 . -25) T) ((-1221 . -101) T) ((-1221 . -597) 142554) ((-1221 . -1074) T) ((-1221 . -23) T) ((-1221 . -21) T) ((-1221 . -707) T) ((-1221 . -1085) T) ((-1221 . -1032) T) ((-1221 . -1025) T) ((-1221 . -281) 142539) ((-1221 . -876) 142452) ((-1221 . -949) 142421) ((-1221 . -38) 142318) ((-1221 . -111) 142187) ((-1221 . -1031) 142070) ((-1221 . -698) 141967) ((-1221 . -143) 141946) ((-1221 . -145) 141925) ((-1221 . -170) 141876) ((-1221 . -545) 141855) ((-1221 . -285) 141834) ((-1221 . -47) 141811) ((-1221 . -1210) 141788) ((-1221 . -35) 141754) ((-1221 . -94) 141720) ((-1221 . -279) 141686) ((-1221 . -486) 141652) ((-1221 . -1174) 141618) ((-1221 . -1171) 141584) ((-1221 . -978) 141550) ((-1218 . -321) 141494) ((-1218 . -1014) 141460) ((-1218 . -407) 141426) ((-1218 . -38) 141318) ((-1218 . -628) 141223) ((-1218 . -707) T) ((-1218 . -1085) T) ((-1218 . -1032) T) ((-1218 . -1025) T) ((-1218 . -111) 141115) ((-1218 . -1031) 141020) ((-1218 . -21) T) ((-1218 . -23) T) ((-1218 . -1074) T) ((-1218 . -597) 141002) ((-1218 . -101) T) ((-1218 . -25) T) ((-1218 . -130) T) ((-1218 . -698) 140894) ((-1218 . -143) 140855) ((-1218 . -145) 140816) ((-1218 . -170) T) ((-1218 . -545) T) ((-1218 . -285) T) ((-1218 . -47) 140760) ((-1217 . -1216) 140739) ((-1217 . -358) 140718) ((-1217 . -1190) 140697) ((-1217 . -897) 140676) ((-1217 . -545) 140627) ((-1217 . -170) 140558) ((-1217 . -698) 140399) ((-1217 . -38) 140240) ((-1217 . -446) 140219) ((-1217 . -302) 140198) ((-1217 . -628) 140095) ((-1217 . -707) T) ((-1217 . -1085) T) ((-1217 . -1032) T) ((-1217 . -1025) T) ((-1217 . -111) 139916) ((-1217 . -1031) 139751) ((-1217 . -21) T) ((-1217 . -23) T) ((-1217 . -1074) T) ((-1217 . -597) 139733) ((-1217 . -101) T) ((-1217 . -25) T) ((-1217 . -130) T) ((-1217 . -285) 139684) ((-1217 . -239) 139663) ((-1217 . -978) 139629) ((-1217 . -1171) 139595) ((-1217 . -1174) 139561) ((-1217 . -486) 139527) ((-1217 . -279) 139493) ((-1217 . -94) 139459) ((-1217 . -35) 139425) ((-1217 . -1210) 139395) ((-1217 . -47) 139365) ((-1217 . -145) 139344) ((-1217 . -143) 139323) ((-1217 . -949) 139285) ((-1217 . -876) 139191) ((-1217 . -281) 139176) ((-1217 . -229) 139128) ((-1217 . -1214) 139112) ((-1217 . -1014) 139096) ((-1212 . -1216) 139057) ((-1212 . -358) 139036) ((-1212 . -1190) 139015) ((-1212 . -897) 138994) ((-1212 . -545) 138945) ((-1212 . -170) 138876) ((-1212 . -698) 138717) ((-1212 . -38) 138558) ((-1212 . -446) 138537) ((-1212 . -302) 138516) ((-1212 . -628) 138413) ((-1212 . -707) T) ((-1212 . -1085) T) ((-1212 . -1032) T) ((-1212 . -1025) T) ((-1212 . -111) 138234) ((-1212 . -1031) 138069) ((-1212 . -21) T) ((-1212 . -23) T) ((-1212 . -1074) T) ((-1212 . -597) 138051) ((-1212 . -101) T) ((-1212 . -25) T) ((-1212 . -130) T) ((-1212 . -285) 138002) ((-1212 . -239) 137981) ((-1212 . -978) 137947) ((-1212 . -1171) 137913) ((-1212 . -1174) 137879) ((-1212 . -486) 137845) ((-1212 . -279) 137811) ((-1212 . -94) 137777) ((-1212 . -35) 137743) ((-1212 . -1210) 137713) ((-1212 . -47) 137683) ((-1212 . -145) 137662) ((-1212 . -143) 137641) ((-1212 . -949) 137603) ((-1212 . -876) 137509) ((-1212 . -281) 137494) ((-1212 . -229) 137446) ((-1212 . -1214) 137430) ((-1212 . -1014) 137365) ((-1200 . -1207) 137349) ((-1200 . -1124) 137327) ((-1200 . -598) NIL) ((-1200 . -304) 137314) ((-1200 . -507) 137261) ((-1200 . -321) 137238) ((-1200 . -1014) 137118) ((-1200 . -407) 137102) ((-1200 . -38) 136931) ((-1200 . -111) 136740) ((-1200 . -1031) 136563) ((-1200 . -628) 136488) ((-1200 . -698) 136317) ((-1200 . -143) 136296) ((-1200 . -145) 136275) ((-1200 . -47) 136252) ((-1200 . -372) 136236) ((-1200 . -621) 136184) ((-1200 . -827) 136163) ((-1200 . -876) 136106) ((-1200 . -862) NIL) ((-1200 . -886) 136085) ((-1200 . -1190) 136064) ((-1200 . -926) 136033) ((-1200 . -897) 136012) ((-1200 . -545) 135923) ((-1200 . -285) 135834) ((-1200 . -170) 135725) ((-1200 . -446) 135656) ((-1200 . -302) 135635) ((-1200 . -281) 135562) ((-1200 . -229) T) ((-1200 . -130) T) ((-1200 . -25) T) ((-1200 . -101) T) ((-1200 . -597) 135544) ((-1200 . -1074) T) ((-1200 . -23) T) ((-1200 . -21) T) ((-1200 . -707) T) ((-1200 . -1085) T) ((-1200 . -1032) T) ((-1200 . -1025) T) ((-1200 . -227) 135528) ((-1198 . -1067) 135512) ((-1198 . -1185) T) ((-1198 . -1074) 135490) ((-1198 . -597) 135457) ((-1198 . -101) 135435) ((-1198 . -1068) 135392) ((-1196 . -1195) 135371) ((-1196 . -978) 135337) ((-1196 . -1171) 135303) ((-1196 . -1174) 135269) ((-1196 . -486) 135235) ((-1196 . -279) 135201) ((-1196 . -94) 135167) ((-1196 . -35) 135133) ((-1196 . -1210) 135110) ((-1196 . -47) 135087) ((-1196 . -698) 134901) ((-1196 . -628) 134771) ((-1196 . -1031) 134579) ((-1196 . -111) 134368) ((-1196 . -38) 134182) ((-1196 . -949) 134151) ((-1196 . -281) 134071) ((-1196 . -1193) 134055) ((-1196 . -707) T) ((-1196 . -1085) T) ((-1196 . -1032) T) ((-1196 . -1025) T) ((-1196 . -21) T) ((-1196 . -23) T) ((-1196 . -1074) T) ((-1196 . -597) 134037) ((-1196 . -101) T) ((-1196 . -25) T) ((-1196 . -130) T) ((-1196 . -143) 133962) ((-1196 . -145) 133887) ((-1196 . -598) 133560) ((-1196 . -227) 133530) ((-1196 . -876) 133381) ((-1196 . -229) 133286) ((-1196 . -358) 133265) ((-1196 . -1190) 133244) ((-1196 . -897) 133223) ((-1196 . -545) 133174) ((-1196 . -170) 133105) ((-1196 . -446) 133084) ((-1196 . -302) 133063) ((-1196 . -285) 133014) ((-1196 . -239) 132993) ((-1196 . -333) 132963) ((-1196 . -507) 132823) ((-1196 . -304) 132762) ((-1196 . -372) 132732) ((-1196 . -621) 132640) ((-1196 . -395) 132610) ((-1196 . -1185) 132589) ((-1196 . -862) 132462) ((-1196 . -800) 132415) ((-1196 . -771) 132368) ((-1196 . -772) 132321) ((-1196 . -827) 132220) ((-1196 . -774) 132173) ((-1196 . -777) 132126) ((-1196 . -825) 132079) ((-1196 . -860) 132049) ((-1196 . -886) 132002) ((-1196 . -996) 131955) ((-1196 . -1014) 131741) ((-1196 . -1124) 131693) ((-1196 . -967) 131663) ((-1191 . -1195) 131624) ((-1191 . -978) 131590) ((-1191 . -1171) 131556) ((-1191 . -1174) 131522) ((-1191 . -486) 131488) ((-1191 . -279) 131454) ((-1191 . -94) 131420) ((-1191 . -35) 131386) ((-1191 . -1210) 131363) ((-1191 . -47) 131340) ((-1191 . -698) 131136) ((-1191 . -628) 130988) ((-1191 . -1031) 130778) ((-1191 . -111) 130547) ((-1191 . -38) 130343) ((-1191 . -949) 130312) ((-1191 . -281) 130160) ((-1191 . -1193) 130144) ((-1191 . -707) T) ((-1191 . -1085) T) ((-1191 . -1032) T) ((-1191 . -1025) T) ((-1191 . -21) T) ((-1191 . -23) T) ((-1191 . -1074) T) ((-1191 . -597) 130126) ((-1191 . -101) T) ((-1191 . -25) T) ((-1191 . -130) T) ((-1191 . -143) 130033) ((-1191 . -145) 129940) ((-1191 . -598) NIL) ((-1191 . -227) 129892) ((-1191 . -876) 129725) ((-1191 . -229) 129612) ((-1191 . -358) 129591) ((-1191 . -1190) 129570) ((-1191 . -897) 129549) ((-1191 . -545) 129500) ((-1191 . -170) 129431) ((-1191 . -446) 129410) ((-1191 . -302) 129389) ((-1191 . -285) 129340) ((-1191 . -239) 129319) ((-1191 . -333) 129271) ((-1191 . -507) 129040) ((-1191 . -304) 128925) ((-1191 . -372) 128877) ((-1191 . -621) 128829) ((-1191 . -395) 128781) ((-1191 . -1185) 128760) ((-1191 . -862) NIL) ((-1191 . -800) NIL) ((-1191 . -771) NIL) ((-1191 . -772) NIL) ((-1191 . -827) NIL) ((-1191 . -774) NIL) ((-1191 . -777) NIL) ((-1191 . -825) NIL) ((-1191 . -860) 128712) ((-1191 . -886) NIL) ((-1191 . -996) NIL) ((-1191 . -1014) 128678) ((-1191 . -1124) NIL) ((-1191 . -967) 128630) ((-1186 . -1056) T) ((-1186 . -597) 128596) ((-1186 . -1074) T) ((-1186 . -101) T) ((-1186 . -92) T) ((-1183 . -597) 128508) ((-1183 . -1074) 128486) ((-1183 . -101) 128464) ((-1178 . -721) 128440) ((-1178 . -35) 128406) ((-1178 . -94) 128372) ((-1178 . -279) 128338) ((-1178 . -486) 128304) ((-1178 . -1174) 128270) ((-1178 . -1171) 128236) ((-1178 . -978) 128202) ((-1178 . -47) 128171) ((-1178 . -38) 128068) ((-1178 . -698) 127965) ((-1178 . -285) 127944) ((-1178 . -545) 127923) ((-1178 . -111) 127792) ((-1178 . -1031) 127675) ((-1178 . -170) 127626) ((-1178 . -145) 127605) ((-1178 . -143) 127584) ((-1178 . -628) 127509) ((-1178 . -949) 127471) ((-1178 . -1025) T) ((-1178 . -1032) T) ((-1178 . -1085) T) ((-1178 . -707) T) ((-1178 . -21) T) ((-1178 . -23) T) ((-1178 . -1074) T) ((-1178 . -597) 127453) ((-1178 . -101) T) ((-1178 . -25) T) ((-1178 . -130) T) ((-1178 . -876) 127434) ((-1178 . -507) 127401) ((-1178 . -304) 127388) ((-1172 . -986) 127372) ((-1172 . -34) T) ((-1172 . -1185) T) ((-1172 . -597) 127304) ((-1172 . -304) 127242) ((-1172 . -507) 127175) ((-1172 . -1074) 127153) ((-1172 . -101) 127131) ((-1172 . -483) 127115) ((-1167 . -360) 127089) ((-1167 . -101) T) ((-1167 . -597) 127071) ((-1167 . -1074) T) ((-1165 . -1074) T) ((-1165 . -597) 127053) ((-1165 . -101) T) ((-1158 . -1162) 127032) ((-1158 . -225) 126982) ((-1158 . -106) 126932) ((-1158 . -304) 126736) ((-1158 . -507) 126528) ((-1158 . -483) 126465) ((-1158 . -149) 126415) ((-1158 . -598) NIL) ((-1158 . -231) 126365) ((-1158 . -594) 126344) ((-1158 . -283) 126323) ((-1158 . -281) 126302) ((-1158 . -101) T) ((-1158 . -1074) T) ((-1158 . -597) 126284) ((-1158 . -1185) T) ((-1158 . -34) T) ((-1158 . -588) 126263) ((-1154 . -1227) T) ((-1154 . -1074) T) ((-1154 . -597) 126245) ((-1154 . -101) T) ((-1153 . -597) 126227) ((-1152 . -597) 126209) ((-1151 . -321) 126186) ((-1151 . -1014) 126082) ((-1151 . -407) 126066) ((-1151 . -38) 125963) ((-1151 . -628) 125888) ((-1151 . -707) T) ((-1151 . -1085) T) ((-1151 . -1032) T) ((-1151 . -1025) T) ((-1151 . -111) 125757) ((-1151 . -1031) 125640) ((-1151 . -21) T) ((-1151 . -23) T) ((-1151 . -1074) T) ((-1151 . -597) 125622) ((-1151 . -101) T) ((-1151 . -25) T) ((-1151 . -130) T) ((-1151 . -698) 125519) ((-1151 . -143) 125498) ((-1151 . -145) 125477) ((-1151 . -170) 125428) ((-1151 . -545) 125407) ((-1151 . -285) 125386) ((-1151 . -47) 125363) ((-1149 . -827) T) ((-1149 . -101) T) ((-1149 . -597) 125345) ((-1149 . -1074) T) ((-1149 . -598) 125267) ((-1149 . -801) T) ((-1149 . -862) 125234) ((-1148 . -597) 125216) ((-1147 . -1224) 125200) ((-1147 . -229) 125159) ((-1147 . -628) 125084) ((-1147 . -130) T) ((-1147 . -25) T) ((-1147 . -101) T) ((-1147 . -597) 125066) ((-1147 . -1074) T) ((-1147 . -23) T) ((-1147 . -21) T) ((-1147 . -707) T) ((-1147 . -1085) T) ((-1147 . -1032) T) ((-1147 . -1025) T) ((-1147 . -281) 125051) ((-1147 . -876) 124964) ((-1147 . -949) 124933) ((-1147 . -38) 124830) ((-1147 . -111) 124699) ((-1147 . -1031) 124582) ((-1147 . -698) 124479) ((-1147 . -143) 124458) ((-1147 . -145) 124437) ((-1147 . -170) 124388) ((-1147 . -545) 124367) ((-1147 . -285) 124346) ((-1147 . -47) 124323) ((-1147 . -1210) 124300) ((-1147 . -35) 124266) ((-1147 . -94) 124232) ((-1147 . -279) 124198) ((-1147 . -486) 124164) ((-1147 . -1174) 124130) ((-1147 . -1171) 124096) ((-1147 . -978) 124062) ((-1146 . -1216) 124023) ((-1146 . -358) 124002) ((-1146 . -1190) 123981) ((-1146 . -897) 123960) ((-1146 . -545) 123911) ((-1146 . -170) 123842) ((-1146 . -698) 123683) ((-1146 . -38) 123524) ((-1146 . -446) 123503) ((-1146 . -302) 123482) ((-1146 . -628) 123379) ((-1146 . -707) T) ((-1146 . -1085) T) ((-1146 . -1032) T) ((-1146 . -1025) T) ((-1146 . -111) 123200) ((-1146 . -1031) 123035) ((-1146 . -21) T) ((-1146 . -23) T) ((-1146 . -1074) T) ((-1146 . -597) 123017) ((-1146 . -101) T) ((-1146 . -25) T) ((-1146 . -130) T) ((-1146 . -285) 122968) ((-1146 . -239) 122947) ((-1146 . -978) 122913) ((-1146 . -1171) 122879) ((-1146 . -1174) 122845) ((-1146 . -486) 122811) ((-1146 . -279) 122777) ((-1146 . -94) 122743) ((-1146 . -35) 122709) ((-1146 . -1210) 122679) ((-1146 . -47) 122649) ((-1146 . -145) 122628) ((-1146 . -143) 122607) ((-1146 . -949) 122569) ((-1146 . -876) 122475) ((-1146 . -281) 122460) ((-1146 . -229) 122412) ((-1146 . -1214) 122396) ((-1146 . -1014) 122331) ((-1143 . -1207) 122315) ((-1143 . -1124) 122293) ((-1143 . -598) NIL) ((-1143 . -304) 122280) ((-1143 . -507) 122227) ((-1143 . -321) 122204) ((-1143 . -1014) 122084) ((-1143 . -407) 122068) ((-1143 . -38) 121897) ((-1143 . -111) 121706) ((-1143 . -1031) 121529) ((-1143 . -628) 121454) ((-1143 . -698) 121283) ((-1143 . -143) 121262) ((-1143 . -145) 121241) ((-1143 . -47) 121218) ((-1143 . -372) 121202) ((-1143 . -621) 121150) ((-1143 . -827) 121129) ((-1143 . -876) 121072) ((-1143 . -862) NIL) ((-1143 . -886) 121051) ((-1143 . -1190) 121030) ((-1143 . -926) 120999) ((-1143 . -897) 120978) ((-1143 . -545) 120889) ((-1143 . -285) 120800) ((-1143 . -170) 120691) ((-1143 . -446) 120622) ((-1143 . -302) 120601) ((-1143 . -281) 120528) ((-1143 . -229) T) ((-1143 . -130) T) ((-1143 . -25) T) ((-1143 . -101) T) ((-1143 . -597) 120510) ((-1143 . -1074) T) ((-1143 . -23) T) ((-1143 . -21) T) ((-1143 . -707) T) ((-1143 . -1085) T) ((-1143 . -1032) T) ((-1143 . -1025) T) ((-1143 . -227) 120494) ((-1140 . -1195) 120455) ((-1140 . -978) 120421) ((-1140 . -1171) 120387) ((-1140 . -1174) 120353) ((-1140 . -486) 120319) ((-1140 . -279) 120285) ((-1140 . -94) 120251) ((-1140 . -35) 120217) ((-1140 . -1210) 120194) ((-1140 . -47) 120171) ((-1140 . -698) 119967) ((-1140 . -628) 119819) ((-1140 . -1031) 119609) ((-1140 . -111) 119378) ((-1140 . -38) 119174) ((-1140 . -949) 119143) ((-1140 . -281) 118991) ((-1140 . -1193) 118975) ((-1140 . -707) T) ((-1140 . -1085) T) ((-1140 . -1032) T) ((-1140 . -1025) T) ((-1140 . -21) T) ((-1140 . -23) T) ((-1140 . -1074) T) ((-1140 . -597) 118957) ((-1140 . -101) T) ((-1140 . -25) T) ((-1140 . -130) T) ((-1140 . -143) 118864) ((-1140 . -145) 118771) ((-1140 . -598) NIL) ((-1140 . -227) 118723) ((-1140 . -876) 118556) ((-1140 . -229) 118443) ((-1140 . -358) 118422) ((-1140 . -1190) 118401) ((-1140 . -897) 118380) ((-1140 . -545) 118331) ((-1140 . -170) 118262) ((-1140 . -446) 118241) ((-1140 . -302) 118220) ((-1140 . -285) 118171) ((-1140 . -239) 118150) ((-1140 . -333) 118102) ((-1140 . -507) 117871) ((-1140 . -304) 117756) ((-1140 . -372) 117708) ((-1140 . -621) 117660) ((-1140 . -395) 117612) ((-1140 . -1185) 117591) ((-1140 . -862) NIL) ((-1140 . -800) NIL) ((-1140 . -771) NIL) ((-1140 . -772) NIL) ((-1140 . -827) NIL) ((-1140 . -774) NIL) ((-1140 . -777) NIL) ((-1140 . -825) NIL) ((-1140 . -860) 117543) ((-1140 . -886) NIL) ((-1140 . -996) NIL) ((-1140 . -1014) 117509) ((-1140 . -1124) NIL) ((-1140 . -967) 117461) ((-1139 . -1056) T) ((-1139 . -597) 117427) ((-1139 . -1074) T) ((-1139 . -101) T) ((-1139 . -92) T) ((-1138 . -1074) T) ((-1138 . -597) 117409) ((-1138 . -101) T) ((-1137 . -1074) T) ((-1137 . -597) 117391) ((-1137 . -101) T) ((-1132 . -1162) 117367) ((-1132 . -225) 117314) ((-1132 . -106) 117261) ((-1132 . -304) 117056) ((-1132 . -507) 116839) ((-1132 . -483) 116773) ((-1132 . -149) 116720) ((-1132 . -598) NIL) ((-1132 . -231) 116667) ((-1132 . -594) 116643) ((-1132 . -283) 116619) ((-1132 . -281) 116595) ((-1132 . -101) T) ((-1132 . -1074) T) ((-1132 . -597) 116577) ((-1132 . -1185) T) ((-1132 . -34) T) ((-1132 . -588) 116553) ((-1131 . -1130) T) ((-1131 . -19) 116535) ((-1131 . -631) 116517) ((-1131 . -283) 116492) ((-1131 . -281) 116467) ((-1131 . -588) 116442) ((-1131 . -598) NIL) ((-1131 . -483) 116424) ((-1131 . -507) NIL) ((-1131 . -304) NIL) ((-1131 . -1185) T) ((-1131 . -34) T) ((-1131 . -149) 116406) ((-1131 . -827) T) ((-1131 . -367) 116388) ((-1131 . -1117) T) ((-1131 . -101) T) ((-1131 . -597) 116370) ((-1131 . -1074) T) ((-1131 . -801) T) ((-1126 . -654) 116354) ((-1126 . -631) 116338) ((-1126 . -283) 116315) ((-1126 . -281) 116292) ((-1126 . -588) 116269) ((-1126 . -598) 116230) ((-1126 . -483) 116214) ((-1126 . -101) 116192) ((-1126 . -1074) 116170) ((-1126 . -507) 116103) ((-1126 . -304) 116041) ((-1126 . -597) 115973) ((-1126 . -1185) T) ((-1126 . -34) T) ((-1126 . -149) 115957) ((-1126 . -1220) 115941) ((-1126 . -986) 115925) ((-1126 . -1122) 115909) ((-1123 . -1162) 115888) ((-1123 . -225) 115838) ((-1123 . -106) 115788) ((-1123 . -304) 115592) ((-1123 . -507) 115384) ((-1123 . -483) 115321) ((-1123 . -149) 115271) ((-1123 . -598) NIL) ((-1123 . -231) 115221) ((-1123 . -594) 115200) ((-1123 . -283) 115179) ((-1123 . -281) 115158) ((-1123 . -101) T) ((-1123 . -1074) T) ((-1123 . -597) 115140) ((-1123 . -1185) T) ((-1123 . -34) T) ((-1123 . -588) 115119) ((-1120 . -1094) 115103) ((-1120 . -483) 115087) ((-1120 . -101) 115065) ((-1120 . -1074) 115043) ((-1120 . -507) 114976) ((-1120 . -304) 114914) ((-1120 . -597) 114846) ((-1120 . -1185) T) ((-1120 . -34) T) ((-1120 . -106) 114830) ((-1119 . -1082) 114799) ((-1119 . -1180) 114768) ((-1119 . -597) 114730) ((-1119 . -149) 114714) ((-1119 . -34) T) ((-1119 . -1185) T) ((-1119 . -304) 114652) ((-1119 . -507) 114585) ((-1119 . -1074) T) ((-1119 . -101) T) ((-1119 . -483) 114569) ((-1119 . -598) 114530) ((-1119 . -952) 114499) ((-1119 . -1045) 114468) ((-1115 . -1096) 114413) ((-1115 . -483) 114397) ((-1115 . -507) 114330) ((-1115 . -304) 114268) ((-1115 . -1185) T) ((-1115 . -34) T) ((-1115 . -1028) 114208) ((-1115 . -1014) 114104) ((-1115 . -407) 114088) ((-1115 . -621) 114036) ((-1115 . -372) 114020) ((-1115 . -229) 113999) ((-1115 . -876) 113958) ((-1115 . -227) 113942) ((-1115 . -698) 113874) ((-1115 . -628) 113848) ((-1115 . -130) T) ((-1115 . -25) T) ((-1115 . -101) T) ((-1115 . -597) 113810) ((-1115 . -1074) T) ((-1115 . -23) T) ((-1115 . -21) T) ((-1115 . -1031) 113794) ((-1115 . -111) 113773) ((-1115 . -1025) T) ((-1115 . -1032) T) ((-1115 . -1085) T) ((-1115 . -707) T) ((-1115 . -38) 113733) ((-1115 . -598) 113694) ((-1114 . -986) 113665) ((-1114 . -34) T) ((-1114 . -1185) T) ((-1114 . -597) 113647) ((-1114 . -304) 113573) ((-1114 . -507) 113492) ((-1114 . -1074) T) ((-1114 . -101) T) ((-1114 . -483) 113463) ((-1113 . -1074) T) ((-1113 . -597) 113445) ((-1113 . -101) T) ((-1108 . -1110) T) ((-1108 . -1227) T) ((-1108 . -92) T) ((-1108 . -101) T) ((-1108 . -597) 113411) ((-1108 . -1074) T) ((-1108 . -1056) T) ((-1106 . -1107) 113395) ((-1106 . -101) T) ((-1106 . -597) 113377) ((-1106 . -1074) T) ((-1099 . -721) 113356) ((-1099 . -35) 113322) ((-1099 . -94) 113288) ((-1099 . -279) 113254) ((-1099 . -486) 113220) ((-1099 . -1174) 113186) ((-1099 . -1171) 113152) ((-1099 . -978) 113118) ((-1099 . -47) 113090) ((-1099 . -38) 112987) ((-1099 . -698) 112884) ((-1099 . -285) 112863) ((-1099 . -545) 112842) ((-1099 . -111) 112711) ((-1099 . -1031) 112594) ((-1099 . -170) 112545) ((-1099 . -145) 112524) ((-1099 . -143) 112503) ((-1099 . -628) 112428) ((-1099 . -949) 112395) ((-1099 . -1025) T) ((-1099 . -1032) T) ((-1099 . -1085) T) ((-1099 . -707) T) ((-1099 . -21) T) ((-1099 . -23) T) ((-1099 . -1074) T) ((-1099 . -597) 112377) ((-1099 . -101) T) ((-1099 . -25) T) ((-1099 . -130) T) ((-1099 . -876) 112361) ((-1099 . -507) 112331) ((-1099 . -304) 112318) ((-1098 . -926) 112285) ((-1098 . -1014) 112168) ((-1098 . -1190) 112147) ((-1098 . -886) 112126) ((-1098 . -862) 111985) ((-1098 . -876) 111969) ((-1098 . -827) 111948) ((-1098 . -507) 111900) ((-1098 . -446) 111851) ((-1098 . -621) 111799) ((-1098 . -372) 111783) ((-1098 . -47) 111755) ((-1098 . -38) 111604) ((-1098 . -698) 111453) ((-1098 . -285) 111384) ((-1098 . -545) 111315) ((-1098 . -111) 111144) ((-1098 . -1031) 110987) ((-1098 . -170) 110898) ((-1098 . -145) 110877) ((-1098 . -143) 110856) ((-1098 . -628) 110781) ((-1098 . -130) T) ((-1098 . -25) T) ((-1098 . -101) T) ((-1098 . -597) 110763) ((-1098 . -1074) T) ((-1098 . -23) T) ((-1098 . -21) T) ((-1098 . -1025) T) ((-1098 . -1032) T) ((-1098 . -1085) T) ((-1098 . -707) T) ((-1098 . -407) 110747) ((-1098 . -321) 110719) ((-1098 . -304) 110706) ((-1098 . -598) 110454) ((-1093 . -537) T) ((-1093 . -1190) T) ((-1093 . -1124) T) ((-1093 . -1014) 110436) ((-1093 . -598) 110351) ((-1093 . -996) T) ((-1093 . -862) 110333) ((-1093 . -825) T) ((-1093 . -777) T) ((-1093 . -774) T) ((-1093 . -827) T) ((-1093 . -772) T) ((-1093 . -771) T) ((-1093 . -800) T) ((-1093 . -621) 110315) ((-1093 . -897) T) ((-1093 . -545) T) ((-1093 . -285) T) ((-1093 . -170) T) ((-1093 . -698) 110302) ((-1093 . -1031) 110289) ((-1093 . -111) 110274) ((-1093 . -38) 110261) ((-1093 . -446) T) ((-1093 . -302) T) ((-1093 . -229) T) ((-1093 . -141) T) ((-1093 . -1025) T) ((-1093 . -1032) T) ((-1093 . -1085) T) ((-1093 . -707) T) ((-1093 . -21) T) ((-1093 . -23) T) ((-1093 . -1074) T) ((-1093 . -597) 110243) ((-1093 . -101) T) ((-1093 . -25) T) ((-1093 . -130) T) ((-1093 . -628) 110230) ((-1093 . -145) T) ((-1093 . -642) T) ((-1093 . -801) T) ((-1089 . -1056) T) ((-1089 . -597) 110196) ((-1089 . -1074) T) ((-1089 . -101) T) ((-1089 . -92) T) ((-1088 . -1074) T) ((-1088 . -597) 110178) ((-1088 . -101) T) ((-1086 . -234) 110157) ((-1086 . -1239) 110127) ((-1086 . -771) 110106) ((-1086 . -825) 110085) ((-1086 . -777) 110036) ((-1086 . -774) 109987) ((-1086 . -827) 109938) ((-1086 . -772) 109889) ((-1086 . -773) 109868) ((-1086 . -283) 109845) ((-1086 . -281) 109822) ((-1086 . -483) 109806) ((-1086 . -507) 109739) ((-1086 . -304) 109677) ((-1086 . -1185) T) ((-1086 . -34) T) ((-1086 . -588) 109654) ((-1086 . -1014) 109481) ((-1086 . -407) 109450) ((-1086 . -621) 109356) ((-1086 . -372) 109325) ((-1086 . -363) 109304) ((-1086 . -229) 109256) ((-1086 . -876) 109188) ((-1086 . -227) 109157) ((-1086 . -111) 109047) ((-1086 . -1031) 108944) ((-1086 . -170) 108923) ((-1086 . -597) 108654) ((-1086 . -698) 108596) ((-1086 . -628) 108444) ((-1086 . -130) 108314) ((-1086 . -23) 108184) ((-1086 . -21) 108094) ((-1086 . -1025) 108024) ((-1086 . -1032) 107954) ((-1086 . -1085) 107864) ((-1086 . -707) 107774) ((-1086 . -38) 107744) ((-1086 . -1074) 107534) ((-1086 . -101) 107324) ((-1086 . -25) 107175) ((-1079 . -391) T) ((-1079 . -1185) T) ((-1079 . -597) 107157) ((-1078 . -1077) 107121) ((-1078 . -101) T) ((-1078 . -597) 107103) ((-1078 . -1074) T) ((-1076 . -1077) 107055) ((-1076 . -101) T) ((-1076 . -597) 107037) ((-1076 . -1074) T) ((-1075 . -363) T) ((-1075 . -101) T) ((-1075 . -597) 107019) ((-1075 . -1074) T) ((-1070 . -421) 107003) ((-1070 . -1072) 106987) ((-1070 . -363) 106966) ((-1070 . -231) 106950) ((-1070 . -598) 106911) ((-1070 . -149) 106895) ((-1070 . -483) 106879) ((-1070 . -101) T) ((-1070 . -1074) T) ((-1070 . -507) 106812) ((-1070 . -304) 106750) ((-1070 . -597) 106732) ((-1070 . -1185) T) ((-1070 . -34) T) ((-1070 . -106) 106716) ((-1070 . -225) 106700) ((-1069 . -1056) T) ((-1069 . -597) 106666) ((-1069 . -1074) T) ((-1069 . -101) T) ((-1069 . -92) T) ((-1065 . -1185) T) ((-1065 . -1074) 106644) ((-1065 . -597) 106611) ((-1065 . -101) 106589) ((-1064 . -1056) T) ((-1064 . -597) 106555) ((-1064 . -1074) T) ((-1064 . -101) T) ((-1064 . -92) T) ((-1062 . -1067) 106539) ((-1062 . -1185) T) ((-1062 . -1074) 106517) ((-1062 . -597) 106484) ((-1062 . -101) 106462) ((-1062 . -1068) 106420) ((-1061 . -261) 106404) ((-1061 . -1014) 106388) ((-1061 . -1074) T) ((-1061 . -597) 106370) ((-1061 . -101) T) ((-1061 . -827) T) ((-1060 . -248) 106307) ((-1060 . -1014) 106134) ((-1060 . -598) NIL) ((-1060 . -321) 106095) ((-1060 . -407) 106079) ((-1060 . -38) 105928) ((-1060 . -111) 105757) ((-1060 . -1031) 105600) ((-1060 . -628) 105525) ((-1060 . -698) 105374) ((-1060 . -143) 105353) ((-1060 . -145) 105332) ((-1060 . -170) 105243) ((-1060 . -545) 105174) ((-1060 . -285) 105105) ((-1060 . -47) 105066) ((-1060 . -372) 105050) ((-1060 . -621) 104998) ((-1060 . -446) 104949) ((-1060 . -507) 104816) ((-1060 . -827) 104795) ((-1060 . -876) 104730) ((-1060 . -862) NIL) ((-1060 . -886) 104709) ((-1060 . -1190) 104688) ((-1060 . -926) 104633) ((-1060 . -304) 104620) ((-1060 . -229) 104599) ((-1060 . -130) T) ((-1060 . -25) T) ((-1060 . -101) T) ((-1060 . -597) 104581) ((-1060 . -1074) T) ((-1060 . -23) T) ((-1060 . -21) T) ((-1060 . -707) T) ((-1060 . -1085) T) ((-1060 . -1032) T) ((-1060 . -1025) T) ((-1060 . -227) 104565) ((-1058 . -597) 104547) ((-1055 . -827) T) ((-1055 . -101) T) ((-1055 . -597) 104529) ((-1055 . -1074) T) ((-1052 . -705) 104508) ((-1052 . -1014) 104404) ((-1052 . -407) 104388) ((-1052 . -621) 104336) ((-1052 . -372) 104320) ((-1052 . -365) 104299) ((-1052 . -145) 104278) ((-1052 . -698) 104146) ((-1052 . -628) 104056) ((-1052 . -1031) 103966) ((-1052 . -111) 103862) ((-1052 . -38) 103730) ((-1052 . -405) 103709) ((-1052 . -397) 103688) ((-1052 . -143) 103639) ((-1052 . -1124) 103618) ((-1052 . -345) 103597) ((-1052 . -363) 103548) ((-1052 . -239) 103499) ((-1052 . -285) 103450) ((-1052 . -302) 103401) ((-1052 . -446) 103352) ((-1052 . -545) 103303) ((-1052 . -897) 103254) ((-1052 . -1190) 103205) ((-1052 . -358) 103156) ((-1052 . -229) 103081) ((-1052 . -876) 103014) ((-1052 . -227) 102984) ((-1052 . -598) 102968) ((-1052 . -21) T) ((-1052 . -23) T) ((-1052 . -1074) T) ((-1052 . -597) 102950) ((-1052 . -101) T) ((-1052 . -25) T) ((-1052 . -130) T) ((-1052 . -1025) T) ((-1052 . -1032) T) ((-1052 . -1085) T) ((-1052 . -707) T) ((-1052 . -170) T) ((-1050 . -1074) T) ((-1050 . -597) 102932) ((-1050 . -101) T) ((-1050 . -281) 102911) ((-1049 . -1074) T) ((-1049 . -597) 102893) ((-1049 . -101) T) ((-1048 . -1074) T) ((-1048 . -597) 102875) ((-1048 . -101) T) ((-1048 . -281) 102854) ((-1048 . -1014) 102831) ((-1047 . -1056) T) ((-1047 . -597) 102797) ((-1047 . -1074) T) ((-1047 . -101) T) ((-1047 . -92) T) ((-1040 . -1056) T) ((-1040 . -597) 102763) ((-1040 . -1074) T) ((-1040 . -101) T) ((-1040 . -92) T) ((-1037 . -1162) 102738) ((-1037 . -225) 102684) ((-1037 . -106) 102630) ((-1037 . -304) 102481) ((-1037 . -507) 102325) ((-1037 . -483) 102256) ((-1037 . -149) 102202) ((-1037 . -598) NIL) ((-1037 . -231) 102148) ((-1037 . -594) 102123) ((-1037 . -283) 102098) ((-1037 . -281) 102073) ((-1037 . -101) T) ((-1037 . -1074) T) ((-1037 . -597) 102055) ((-1037 . -1185) T) ((-1037 . -34) T) ((-1037 . -588) 102030) ((-1036 . -537) T) ((-1036 . -1190) T) ((-1036 . -1124) T) ((-1036 . -1014) 102012) ((-1036 . -598) 101927) ((-1036 . -996) T) ((-1036 . -862) 101909) ((-1036 . -825) T) ((-1036 . -777) T) ((-1036 . -774) T) ((-1036 . -827) T) ((-1036 . -772) T) ((-1036 . -771) T) ((-1036 . -800) T) ((-1036 . -621) 101891) ((-1036 . -897) T) ((-1036 . -545) T) ((-1036 . -285) T) ((-1036 . -170) T) ((-1036 . -698) 101878) ((-1036 . -1031) 101865) ((-1036 . -111) 101850) ((-1036 . -38) 101837) ((-1036 . -446) T) ((-1036 . -302) T) ((-1036 . -229) T) ((-1036 . -141) T) ((-1036 . -1025) T) ((-1036 . -1032) T) ((-1036 . -1085) T) ((-1036 . -707) T) ((-1036 . -21) T) ((-1036 . -23) T) ((-1036 . -1074) T) ((-1036 . -597) 101819) ((-1036 . -101) T) ((-1036 . -25) T) ((-1036 . -130) T) ((-1036 . -628) 101806) ((-1036 . -145) T) ((-1035 . -1042) 101785) ((-1035 . -101) T) ((-1035 . -597) 101767) ((-1035 . -1074) T) ((-1029 . -1028) 101707) ((-1029 . -698) 101649) ((-1029 . -34) T) ((-1029 . -1185) T) ((-1029 . -304) 101587) ((-1029 . -507) 101520) ((-1029 . -483) 101504) ((-1029 . -628) 101488) ((-1029 . -130) T) ((-1029 . -25) T) ((-1029 . -101) T) ((-1029 . -597) 101450) ((-1029 . -1074) T) ((-1029 . -23) T) ((-1029 . -21) T) ((-1029 . -1031) 101434) ((-1029 . -111) 101413) ((-1029 . -1239) 101383) ((-1029 . -598) 101344) ((-1022 . -1045) 101273) ((-1022 . -952) 101202) ((-1022 . -598) 101144) ((-1022 . -483) 101109) ((-1022 . -101) T) ((-1022 . -1074) T) ((-1022 . -507) 101010) ((-1022 . -304) 100918) ((-1022 . -597) 100861) ((-1022 . -1185) T) ((-1022 . -34) T) ((-1022 . -149) 100826) ((-1022 . -1180) 100755) ((-1012 . -1056) T) ((-1012 . -597) 100721) ((-1012 . -1074) T) ((-1012 . -101) T) ((-1012 . -92) T) ((-1011 . -1162) 100696) ((-1011 . -225) 100642) ((-1011 . -106) 100588) ((-1011 . -304) 100439) ((-1011 . -507) 100283) ((-1011 . -483) 100214) ((-1011 . -149) 100160) ((-1011 . -598) NIL) ((-1011 . -231) 100106) ((-1011 . -594) 100081) ((-1011 . -283) 100056) ((-1011 . -281) 100031) ((-1011 . -101) T) ((-1011 . -1074) T) ((-1011 . -597) 100013) ((-1011 . -1185) T) ((-1011 . -34) T) ((-1011 . -588) 99988) ((-1010 . -170) T) ((-1010 . -707) T) ((-1010 . -1085) T) ((-1010 . -1032) T) ((-1010 . -1025) T) ((-1010 . -628) 99962) ((-1010 . -130) T) ((-1010 . -25) T) ((-1010 . -101) T) ((-1010 . -597) 99944) ((-1010 . -1074) T) ((-1010 . -23) T) ((-1010 . -21) T) ((-1010 . -1031) 99918) ((-1010 . -111) 99885) ((-1010 . -38) 99869) ((-1010 . -698) 99853) ((-1003 . -1045) 99822) ((-1003 . -952) 99791) ((-1003 . -598) 99752) ((-1003 . -483) 99736) ((-1003 . -101) T) ((-1003 . -1074) T) ((-1003 . -507) 99669) ((-1003 . -304) 99607) ((-1003 . -597) 99569) ((-1003 . -1185) T) ((-1003 . -34) T) ((-1003 . -149) 99553) ((-1003 . -1180) 99522) ((-1002 . -1185) T) ((-1002 . -1074) 99500) ((-1002 . -597) 99467) ((-1002 . -101) 99445) ((-1000 . -988) T) ((-1000 . -978) T) ((-1000 . -771) T) ((-1000 . -772) T) ((-1000 . -827) T) ((-1000 . -774) T) ((-1000 . -777) T) ((-1000 . -825) T) ((-1000 . -1014) 99325) ((-1000 . -407) 99287) ((-1000 . -239) T) ((-1000 . -285) T) ((-1000 . -302) T) ((-1000 . -446) T) ((-1000 . -38) 99224) ((-1000 . -698) 99161) ((-1000 . -545) T) ((-1000 . -897) T) ((-1000 . -1190) T) ((-1000 . -358) T) ((-1000 . -111) 99077) ((-1000 . -1031) 99014) ((-1000 . -170) T) ((-1000 . -145) T) ((-1000 . -628) 98951) ((-1000 . -130) T) ((-1000 . -25) T) ((-1000 . -101) T) ((-1000 . -597) 98933) ((-1000 . -1074) T) ((-1000 . -23) T) ((-1000 . -21) T) ((-1000 . -1025) T) ((-1000 . -1032) T) ((-1000 . -1085) T) ((-1000 . -707) T) ((-995 . -1056) T) ((-995 . -597) 98899) ((-995 . -1074) T) ((-995 . -101) T) ((-995 . -92) T) ((-980 . -967) 98881) ((-980 . -1124) T) ((-980 . -1014) 98841) ((-980 . -598) 98771) ((-980 . -996) T) ((-980 . -886) NIL) ((-980 . -860) 98753) ((-980 . -825) T) ((-980 . -777) T) ((-980 . -774) T) ((-980 . -827) T) ((-980 . -772) T) ((-980 . -771) T) ((-980 . -800) T) ((-980 . -862) 98735) ((-980 . -1185) T) ((-980 . -395) 98717) ((-980 . -621) 98699) ((-980 . -372) 98681) ((-980 . -281) NIL) ((-980 . -304) NIL) ((-980 . -507) NIL) ((-980 . -333) 98663) ((-980 . -239) T) ((-980 . -111) 98597) ((-980 . -1031) 98547) ((-980 . -285) T) ((-980 . -698) 98497) ((-980 . -628) 98447) ((-980 . -38) 98397) ((-980 . -302) T) ((-980 . -446) T) ((-980 . -170) T) ((-980 . -545) T) ((-980 . -897) T) ((-980 . -1190) T) ((-980 . -358) T) ((-980 . -229) T) ((-980 . -876) NIL) ((-980 . -227) 98379) ((-980 . -145) T) ((-980 . -143) NIL) ((-980 . -130) T) ((-980 . -25) T) ((-980 . -101) T) ((-980 . -597) 98361) ((-980 . -1074) T) ((-980 . -23) T) ((-980 . -21) T) ((-980 . -1025) T) ((-980 . -1032) T) ((-980 . -1085) T) ((-980 . -707) T) ((-979 . -337) 98335) ((-979 . -170) T) ((-979 . -707) T) ((-979 . -1085) T) ((-979 . -1032) T) ((-979 . -1025) T) ((-979 . -628) 98280) ((-979 . -130) T) ((-979 . -25) T) ((-979 . -101) T) ((-979 . -597) 98262) ((-979 . -1074) T) ((-979 . -23) T) ((-979 . -21) T) ((-979 . -1031) 98207) ((-979 . -111) 98136) ((-979 . -598) 98120) ((-979 . -227) 98097) ((-979 . -876) 98049) ((-979 . -229) 98021) ((-979 . -358) T) ((-979 . -1190) T) ((-979 . -897) T) ((-979 . -545) T) ((-979 . -698) 97966) ((-979 . -38) 97911) ((-979 . -446) T) ((-979 . -302) T) ((-979 . -285) T) ((-979 . -239) T) ((-979 . -363) NIL) ((-979 . -345) NIL) ((-979 . -1124) NIL) ((-979 . -143) 97883) ((-979 . -397) NIL) ((-979 . -405) 97855) ((-979 . -145) 97827) ((-979 . -365) 97799) ((-979 . -372) 97776) ((-979 . -621) 97715) ((-979 . -407) 97692) ((-979 . -1014) 97580) ((-979 . -705) 97552) ((-976 . -971) 97536) ((-976 . -483) 97520) ((-976 . -101) 97498) ((-976 . -1074) 97476) ((-976 . -507) 97409) ((-976 . -304) 97347) ((-976 . -597) 97279) ((-976 . -1185) T) ((-976 . -34) T) ((-976 . -106) 97263) ((-972 . -974) 97247) ((-972 . -827) 97226) ((-972 . -1014) 97122) ((-972 . -407) 97106) ((-972 . -621) 97054) ((-972 . -372) 97038) ((-972 . -281) 96996) ((-972 . -304) 96961) ((-972 . -507) 96873) ((-972 . -333) 96857) ((-972 . -38) 96805) ((-972 . -111) 96687) ((-972 . -1031) 96583) ((-972 . -628) 96521) ((-972 . -698) 96469) ((-972 . -285) 96420) ((-972 . -239) 96399) ((-972 . -229) 96378) ((-972 . -876) 96337) ((-972 . -227) 96321) ((-972 . -598) 96282) ((-972 . -145) 96261) ((-972 . -143) 96240) ((-972 . -130) T) ((-972 . -25) T) ((-972 . -101) T) ((-972 . -597) 96222) ((-972 . -1074) T) ((-972 . -23) T) ((-972 . -21) T) ((-972 . -1025) T) ((-972 . -1032) T) ((-972 . -1085) T) ((-972 . -707) T) ((-970 . -1056) T) ((-970 . -597) 96188) ((-970 . -1074) T) ((-970 . -101) T) ((-970 . -92) T) ((-969 . -21) T) ((-969 . -23) T) ((-969 . -1074) T) ((-969 . -597) 96170) ((-969 . -101) T) ((-969 . -25) T) ((-969 . -130) T) ((-965 . -597) 96152) ((-962 . -1074) T) ((-962 . -597) 96134) ((-962 . -101) T) ((-947 . -777) T) ((-947 . -774) T) ((-947 . -827) T) ((-947 . -772) T) ((-947 . -23) T) ((-947 . -1074) T) ((-947 . -597) 96116) ((-947 . -101) T) ((-947 . -25) T) ((-947 . -130) T) ((-947 . -598) 96091) ((-946 . -1056) T) ((-946 . -597) 96057) ((-946 . -1074) T) ((-946 . -101) T) ((-946 . -92) T) ((-942 . -943) T) ((-942 . -101) T) ((-942 . -597) 96039) ((-942 . -1074) T) ((-941 . -597) 96021) ((-940 . -1074) T) ((-940 . -597) 96003) ((-940 . -101) T) ((-940 . -363) 95956) ((-940 . -707) 95855) ((-940 . -1085) 95754) ((-940 . -23) 95565) ((-940 . -25) 95376) ((-940 . -130) 95231) ((-940 . -467) 95184) ((-940 . -21) 95139) ((-940 . -773) 95092) ((-940 . -772) 95045) ((-940 . -827) 94944) ((-940 . -774) 94897) ((-940 . -777) 94850) ((-934 . -19) 94834) ((-934 . -631) 94818) ((-934 . -283) 94795) ((-934 . -281) 94772) ((-934 . -588) 94749) ((-934 . -598) 94710) ((-934 . -483) 94694) ((-934 . -101) 94644) ((-934 . -1074) 94594) ((-934 . -507) 94527) ((-934 . -304) 94465) ((-934 . -597) 94377) ((-934 . -1185) T) ((-934 . -34) T) ((-934 . -149) 94361) ((-934 . -827) 94340) ((-934 . -367) 94324) ((-932 . -321) 94303) ((-932 . -1014) 94199) ((-932 . -407) 94183) ((-932 . -38) 94080) ((-932 . -628) 94005) ((-932 . -707) T) ((-932 . -1085) T) ((-932 . -1032) T) ((-932 . -1025) T) ((-932 . -111) 93874) ((-932 . -1031) 93757) ((-932 . -21) T) ((-932 . -23) T) ((-932 . -1074) T) ((-932 . -597) 93739) ((-932 . -101) T) ((-932 . -25) T) ((-932 . -130) T) ((-932 . -698) 93636) ((-932 . -143) 93615) ((-932 . -145) 93594) ((-932 . -170) 93545) ((-932 . -545) 93524) ((-932 . -285) 93503) ((-932 . -47) 93482) ((-930 . -1074) T) ((-930 . -597) 93448) ((-930 . -101) T) ((-922 . -926) 93409) ((-922 . -1014) 93289) ((-922 . -1190) 93268) ((-922 . -886) 93247) ((-922 . -862) 93172) ((-922 . -876) 93153) ((-922 . -827) 93132) ((-922 . -507) 93079) ((-922 . -446) 93030) ((-922 . -621) 92978) ((-922 . -372) 92962) ((-922 . -47) 92931) ((-922 . -38) 92780) ((-922 . -698) 92629) ((-922 . -285) 92560) ((-922 . -545) 92491) ((-922 . -111) 92320) ((-922 . -1031) 92163) ((-922 . -170) 92074) ((-922 . -145) 92053) ((-922 . -143) 92032) ((-922 . -628) 91957) ((-922 . -130) T) ((-922 . -25) T) ((-922 . -101) T) ((-922 . -597) 91939) ((-922 . -1074) T) ((-922 . -23) T) ((-922 . -21) T) ((-922 . -1025) T) ((-922 . -1032) T) ((-922 . -1085) T) ((-922 . -707) T) ((-922 . -407) 91923) ((-922 . -321) 91892) ((-922 . -304) 91879) ((-922 . -598) 91740) ((-919 . -956) 91724) ((-919 . -19) 91708) ((-919 . -631) 91692) ((-919 . -283) 91669) ((-919 . -281) 91646) ((-919 . -588) 91623) ((-919 . -598) 91584) ((-919 . -483) 91568) ((-919 . -101) 91518) ((-919 . -1074) 91468) ((-919 . -507) 91401) ((-919 . -304) 91339) ((-919 . -597) 91251) ((-919 . -1185) T) ((-919 . -34) T) ((-919 . -149) 91235) ((-919 . -827) 91214) ((-919 . -367) 91198) ((-919 . -1230) 91182) ((-903 . -950) T) ((-903 . -597) 91164) ((-901 . -931) T) ((-901 . -597) 91146) ((-895 . -774) T) ((-895 . -827) T) ((-895 . -1074) T) ((-895 . -597) 91128) ((-895 . -101) T) ((-895 . -25) T) ((-895 . -707) T) ((-895 . -1085) T) ((-890 . -358) T) ((-890 . -1190) T) ((-890 . -897) T) ((-890 . -545) T) ((-890 . -170) T) ((-890 . -698) 91080) ((-890 . -38) 91032) ((-890 . -446) T) ((-890 . -302) T) ((-890 . -628) 90984) ((-890 . -707) T) ((-890 . -1085) T) ((-890 . -1032) T) ((-890 . -1025) T) ((-890 . -111) 90922) ((-890 . -1031) 90874) ((-890 . -21) T) ((-890 . -23) T) ((-890 . -1074) T) ((-890 . -597) 90856) ((-890 . -101) T) ((-890 . -25) T) ((-890 . -130) T) ((-890 . -285) T) ((-890 . -239) T) ((-882 . -345) T) ((-882 . -1124) T) ((-882 . -363) T) ((-882 . -143) T) ((-882 . -358) T) ((-882 . -1190) T) ((-882 . -897) T) ((-882 . -545) T) ((-882 . -170) T) ((-882 . -698) 90821) ((-882 . -38) 90786) ((-882 . -446) T) ((-882 . -302) T) ((-882 . -111) 90742) ((-882 . -1031) 90707) ((-882 . -628) 90672) ((-882 . -285) T) ((-882 . -239) T) ((-882 . -397) T) ((-882 . -1025) T) ((-882 . -1032) T) ((-882 . -1085) T) ((-882 . -707) T) ((-882 . -21) T) ((-882 . -23) T) ((-882 . -1074) T) ((-882 . -597) 90654) ((-882 . -101) T) ((-882 . -25) T) ((-882 . -130) T) ((-882 . -229) T) ((-882 . -324) 90641) ((-882 . -145) 90623) ((-882 . -1014) 90610) ((-882 . -1239) 90597) ((-882 . -1250) 90584) ((-882 . -598) 90566) ((-881 . -1074) T) ((-881 . -597) 90548) ((-881 . -101) T) ((-878 . -880) 90532) ((-878 . -827) 90483) ((-878 . -707) T) ((-878 . -1074) T) ((-878 . -597) 90465) ((-878 . -101) T) ((-878 . -1085) T) ((-878 . -467) T) ((-877 . -119) 90449) ((-877 . -483) 90433) ((-877 . -101) 90411) ((-877 . -1074) 90389) ((-877 . -507) 90322) ((-877 . -304) 90260) ((-877 . -597) 90192) ((-877 . -1185) T) ((-877 . -34) T) ((-877 . -986) 90176) ((-874 . -1074) T) ((-874 . -597) 90158) ((-874 . -101) T) ((-869 . -827) T) ((-869 . -101) T) ((-869 . -597) 90140) ((-869 . -1074) T) ((-869 . -1014) 90117) ((-866 . -1074) T) ((-866 . -597) 90099) ((-866 . -101) T) ((-866 . -1014) 90067) ((-864 . -1074) T) ((-864 . -597) 90049) ((-864 . -101) T) ((-861 . -1074) T) ((-861 . -597) 90031) ((-861 . -101) T) ((-850 . -1074) T) ((-850 . -597) 90013) ((-850 . -101) T) ((-849 . -1185) T) ((-849 . -597) 89885) ((-849 . -1074) 89836) ((-849 . -101) 89787) ((-848 . -967) 89771) ((-848 . -1124) 89749) ((-848 . -1014) 89615) ((-848 . -598) 89423) ((-848 . -996) 89402) ((-848 . -886) 89381) ((-848 . -860) 89365) ((-848 . -825) 89344) ((-848 . -777) 89323) ((-848 . -774) 89302) ((-848 . -827) 89253) ((-848 . -772) 89232) ((-848 . -771) 89211) ((-848 . -800) 89190) ((-848 . -862) 89115) ((-848 . -1185) T) ((-848 . -395) 89099) ((-848 . -621) 89047) ((-848 . -372) 89031) ((-848 . -281) 88989) ((-848 . -304) 88954) ((-848 . -507) 88866) ((-848 . -333) 88850) ((-848 . -239) T) ((-848 . -111) 88788) ((-848 . -1031) 88740) ((-848 . -285) T) ((-848 . -698) 88692) ((-848 . -628) 88644) ((-848 . -38) 88596) ((-848 . -302) T) ((-848 . -446) T) ((-848 . -170) T) ((-848 . -545) T) ((-848 . -897) T) ((-848 . -1190) T) ((-848 . -358) T) ((-848 . -229) 88575) ((-848 . -876) 88534) ((-848 . -227) 88518) ((-848 . -145) 88497) ((-848 . -143) 88476) ((-848 . -130) T) ((-848 . -25) T) ((-848 . -101) T) ((-848 . -597) 88458) ((-848 . -1074) T) ((-848 . -23) T) ((-848 . -21) T) ((-848 . -1025) T) ((-848 . -1032) T) ((-848 . -1085) T) ((-848 . -707) T) ((-847 . -967) 88435) ((-847 . -1124) NIL) ((-847 . -1014) 88412) ((-847 . -598) NIL) ((-847 . -996) NIL) ((-847 . -886) NIL) ((-847 . -860) 88389) ((-847 . -825) NIL) ((-847 . -777) NIL) ((-847 . -774) NIL) ((-847 . -827) NIL) ((-847 . -772) NIL) ((-847 . -771) NIL) ((-847 . -800) NIL) ((-847 . -862) NIL) ((-847 . -1185) T) ((-847 . -395) 88366) ((-847 . -621) 88343) ((-847 . -372) 88320) ((-847 . -281) 88271) ((-847 . -304) 88228) ((-847 . -507) 88136) ((-847 . -333) 88113) ((-847 . -239) T) ((-847 . -111) 88042) ((-847 . -1031) 87987) ((-847 . -285) T) ((-847 . -698) 87932) ((-847 . -628) 87877) ((-847 . -38) 87822) ((-847 . -302) T) ((-847 . -446) T) ((-847 . -170) T) ((-847 . -545) T) ((-847 . -897) T) ((-847 . -1190) T) ((-847 . -358) T) ((-847 . -229) NIL) ((-847 . -876) NIL) ((-847 . -227) 87799) ((-847 . -145) T) ((-847 . -143) NIL) ((-847 . -130) T) ((-847 . -25) T) ((-847 . -101) T) ((-847 . -597) 87781) ((-847 . -1074) T) ((-847 . -23) T) ((-847 . -21) T) ((-847 . -1025) T) ((-847 . -1032) T) ((-847 . -1085) T) ((-847 . -707) T) ((-845 . -846) 87765) ((-845 . -897) T) ((-845 . -545) T) ((-845 . -285) T) ((-845 . -170) T) ((-845 . -698) 87752) ((-845 . -1031) 87739) ((-845 . -111) 87724) ((-845 . -38) 87711) ((-845 . -446) T) ((-845 . -302) T) ((-845 . -1025) T) ((-845 . -1032) T) ((-845 . -1085) T) ((-845 . -707) T) ((-845 . -21) T) ((-845 . -23) T) ((-845 . -1074) T) ((-845 . -597) 87693) ((-845 . -101) T) ((-845 . -25) T) ((-845 . -130) T) ((-845 . -628) 87680) ((-845 . -145) T) ((-842 . -1025) T) ((-842 . -1032) T) ((-842 . -1085) T) ((-842 . -707) T) ((-842 . -21) T) ((-842 . -23) T) ((-842 . -1074) T) ((-842 . -597) 87662) ((-842 . -101) T) ((-842 . -25) T) ((-842 . -130) T) ((-842 . -628) 87622) ((-842 . -38) 87592) ((-842 . -111) 87557) ((-842 . -1031) 87527) ((-842 . -698) 87497) ((-841 . -821) T) ((-841 . -827) T) ((-841 . -1074) T) ((-841 . -597) 87479) ((-841 . -101) T) ((-841 . -363) T) ((-841 . -598) 87401) ((-840 . -1074) T) ((-840 . -597) 87383) ((-840 . -101) T) ((-839 . -838) T) ((-839 . -171) T) ((-839 . -597) 87365) ((-835 . -827) T) ((-835 . -101) T) ((-835 . -597) 87347) ((-835 . -1074) T) ((-832 . -829) 87331) ((-832 . -1014) 87227) ((-832 . -407) 87211) ((-832 . -698) 87181) ((-832 . -628) 87155) ((-832 . -130) T) ((-832 . -25) T) ((-832 . -101) T) ((-832 . -597) 87137) ((-832 . -1074) T) ((-832 . -23) T) ((-832 . -21) T) ((-832 . -1031) 87121) ((-832 . -111) 87100) ((-832 . -1025) T) ((-832 . -1032) T) ((-832 . -1085) T) ((-832 . -707) T) ((-832 . -38) 87070) ((-831 . -829) 87054) ((-831 . -1014) 86950) ((-831 . -407) 86934) ((-831 . -698) 86904) ((-831 . -628) 86878) ((-831 . -130) T) ((-831 . -25) T) ((-831 . -101) T) ((-831 . -597) 86860) ((-831 . -1074) T) ((-831 . -23) T) ((-831 . -21) T) ((-831 . -1031) 86844) ((-831 . -111) 86823) ((-831 . -1025) T) ((-831 . -1032) T) ((-831 . -1085) T) ((-831 . -707) T) ((-831 . -38) 86793) ((-819 . -1074) T) ((-819 . -597) 86775) ((-819 . -101) T) ((-819 . -407) 86759) ((-819 . -1014) 86655) ((-819 . -21) 86607) ((-819 . -23) 86559) ((-819 . -25) 86511) ((-819 . -130) 86463) ((-819 . -825) 86442) ((-819 . -628) 86415) ((-819 . -1032) 86394) ((-819 . -1025) 86373) ((-819 . -777) 86352) ((-819 . -774) 86331) ((-819 . -827) 86310) ((-819 . -772) 86289) ((-819 . -771) 86268) ((-819 . -1085) 86247) ((-819 . -707) 86226) ((-818 . -1074) T) ((-818 . -597) 86208) ((-818 . -101) T) ((-814 . -1025) T) ((-814 . -1032) T) ((-814 . -1085) T) ((-814 . -707) T) ((-814 . -21) T) ((-814 . -23) T) ((-814 . -1074) T) ((-814 . -597) 86190) ((-814 . -101) T) ((-814 . -25) T) ((-814 . -130) T) ((-814 . -628) 86150) ((-814 . -1014) 86119) ((-814 . -281) 86098) ((-814 . -145) 86077) ((-814 . -143) 86056) ((-814 . -38) 86026) ((-814 . -111) 85991) ((-814 . -1031) 85961) ((-814 . -698) 85931) ((-812 . -1074) T) ((-812 . -597) 85913) ((-812 . -101) T) ((-812 . -407) 85897) ((-812 . -1014) 85793) ((-812 . -21) 85745) ((-812 . -23) 85697) ((-812 . -25) 85649) ((-812 . -130) 85601) ((-812 . -825) 85580) ((-812 . -628) 85553) ((-812 . -1032) 85532) ((-812 . -1025) 85511) ((-812 . -777) 85490) ((-812 . -774) 85469) ((-812 . -827) 85448) ((-812 . -772) 85427) ((-812 . -771) 85406) ((-812 . -1085) 85385) ((-812 . -707) 85364) ((-808 . -689) 85348) ((-808 . -698) 85318) ((-808 . -628) 85292) ((-808 . -130) T) ((-808 . -25) T) ((-808 . -101) T) ((-808 . -597) 85274) ((-808 . -1074) T) ((-808 . -23) T) ((-808 . -21) T) ((-808 . -1031) 85258) ((-808 . -111) 85237) ((-808 . -1025) T) ((-808 . -1032) T) ((-808 . -1085) T) ((-808 . -707) T) ((-808 . -38) 85207) ((-808 . -229) 85186) ((-806 . -1074) T) ((-806 . -597) 85168) ((-806 . -101) T) ((-805 . -1074) T) ((-805 . -597) 85150) ((-805 . -101) T) ((-804 . -1074) T) ((-804 . -597) 85132) ((-804 . -101) T) ((-799 . -823) T) ((-799 . -827) T) ((-799 . -834) T) ((-799 . -1085) T) ((-799 . -101) T) ((-799 . -597) 85114) ((-799 . -1074) T) ((-799 . -707) T) ((-799 . -1014) 85098) ((-798 . -261) 85082) ((-798 . -1014) 85066) ((-798 . -1074) T) ((-798 . -597) 85048) ((-798 . -101) T) ((-798 . -827) T) ((-797 . -111) 84990) ((-797 . -1031) 84941) ((-797 . -21) T) ((-797 . -23) T) ((-797 . -1074) T) ((-797 . -597) 84923) ((-797 . -101) T) ((-797 . -25) T) ((-797 . -130) T) ((-797 . -628) 84874) ((-797 . -229) T) ((-797 . -707) T) ((-797 . -1085) T) ((-797 . -1032) T) ((-797 . -1025) T) ((-797 . -358) 84853) ((-797 . -1190) 84832) ((-797 . -897) 84811) ((-797 . -545) 84790) ((-797 . -170) 84769) ((-797 . -698) 84711) ((-797 . -38) 84653) ((-797 . -446) 84632) ((-797 . -302) 84611) ((-797 . -285) 84590) ((-797 . -239) 84569) ((-796 . -248) 84508) ((-796 . -1014) 84336) ((-796 . -598) NIL) ((-796 . -321) 84298) ((-796 . -407) 84282) ((-796 . -38) 84131) ((-796 . -111) 83960) ((-796 . -1031) 83803) ((-796 . -628) 83728) ((-796 . -698) 83577) ((-796 . -143) 83556) ((-796 . -145) 83535) ((-796 . -170) 83446) ((-796 . -545) 83377) ((-796 . -285) 83308) ((-796 . -47) 83270) ((-796 . -372) 83254) ((-796 . -621) 83202) ((-796 . -446) 83153) ((-796 . -507) 83021) ((-796 . -827) 83000) ((-796 . -876) 82936) ((-796 . -862) NIL) ((-796 . -886) 82915) ((-796 . -1190) 82894) ((-796 . -926) 82841) ((-796 . -304) 82828) ((-796 . -229) 82807) ((-796 . -130) T) ((-796 . -25) T) ((-796 . -101) T) ((-796 . -597) 82789) ((-796 . -1074) T) ((-796 . -23) T) ((-796 . -21) T) ((-796 . -707) T) ((-796 . -1085) T) ((-796 . -1032) T) ((-796 . -1025) T) ((-796 . -227) 82773) ((-795 . -234) 82752) ((-795 . -1239) 82722) ((-795 . -771) 82701) ((-795 . -825) 82680) ((-795 . -777) 82631) ((-795 . -774) 82582) ((-795 . -827) 82533) ((-795 . -772) 82484) ((-795 . -773) 82463) ((-795 . -283) 82440) ((-795 . -281) 82417) ((-795 . -483) 82401) ((-795 . -507) 82334) ((-795 . -304) 82272) ((-795 . -1185) T) ((-795 . -34) T) ((-795 . -588) 82249) ((-795 . -1014) 82076) ((-795 . -407) 82045) ((-795 . -621) 81951) ((-795 . -372) 81920) ((-795 . -363) 81899) ((-795 . -229) 81851) ((-795 . -876) 81783) ((-795 . -227) 81752) ((-795 . -111) 81642) ((-795 . -1031) 81539) ((-795 . -170) 81518) ((-795 . -597) 81249) ((-795 . -698) 81191) ((-795 . -628) 81039) ((-795 . -130) 80909) ((-795 . -23) 80779) ((-795 . -21) 80689) ((-795 . -1025) 80619) ((-795 . -1032) 80549) ((-795 . -1085) 80459) ((-795 . -707) 80369) ((-795 . -38) 80339) ((-795 . -1074) 80129) ((-795 . -101) 79919) ((-795 . -25) 79770) ((-788 . -1074) T) ((-788 . -597) 79752) ((-788 . -101) T) ((-778 . -776) 79736) ((-778 . -827) 79715) ((-778 . -1014) 79498) ((-778 . -407) 79462) ((-778 . -281) 79420) ((-778 . -304) 79385) ((-778 . -507) 79297) ((-778 . -333) 79281) ((-778 . -363) 79260) ((-778 . -598) 79221) ((-778 . -145) 79200) ((-778 . -143) 79179) ((-778 . -698) 79163) ((-778 . -628) 79137) ((-778 . -130) T) ((-778 . -25) T) ((-778 . -101) T) ((-778 . -597) 79119) ((-778 . -1074) T) ((-778 . -23) T) ((-778 . -21) T) ((-778 . -1031) 79103) ((-778 . -111) 79082) ((-778 . -1025) T) ((-778 . -1032) T) ((-778 . -1085) T) ((-778 . -707) T) ((-778 . -38) 79066) ((-761 . -1207) 79050) ((-761 . -1124) 79028) ((-761 . -598) NIL) ((-761 . -304) 79015) ((-761 . -507) 78962) ((-761 . -321) 78939) ((-761 . -1014) 78798) ((-761 . -407) 78782) ((-761 . -38) 78611) ((-761 . -111) 78420) ((-761 . -1031) 78243) ((-761 . -628) 78168) ((-761 . -698) 77997) ((-761 . -143) 77976) ((-761 . -145) 77955) ((-761 . -47) 77932) ((-761 . -372) 77916) ((-761 . -621) 77864) ((-761 . -827) 77843) ((-761 . -876) 77786) ((-761 . -862) NIL) ((-761 . -886) 77765) ((-761 . -1190) 77744) ((-761 . -926) 77713) ((-761 . -897) 77692) ((-761 . -545) 77603) ((-761 . -285) 77514) ((-761 . -170) 77405) ((-761 . -446) 77336) ((-761 . -302) 77315) ((-761 . -281) 77242) ((-761 . -229) T) ((-761 . -130) T) ((-761 . -25) T) ((-761 . -101) T) ((-761 . -597) 77203) ((-761 . -1074) T) ((-761 . -23) T) ((-761 . -21) T) ((-761 . -707) T) ((-761 . -1085) T) ((-761 . -1032) T) ((-761 . -1025) T) ((-761 . -227) 77187) ((-760 . -1039) 77154) ((-760 . -598) 76788) ((-760 . -304) 76775) ((-760 . -507) 76727) ((-760 . -321) 76699) ((-760 . -1014) 76556) ((-760 . -407) 76540) ((-760 . -38) 76389) ((-760 . -628) 76314) ((-760 . -707) T) ((-760 . -1085) T) ((-760 . -1032) T) ((-760 . -1025) T) ((-760 . -111) 76143) ((-760 . -1031) 75986) ((-760 . -21) T) ((-760 . -23) T) ((-760 . -1074) T) ((-760 . -597) 75900) ((-760 . -101) T) ((-760 . -25) T) ((-760 . -130) T) ((-760 . -698) 75749) ((-760 . -143) 75728) ((-760 . -145) 75707) ((-760 . -170) 75618) ((-760 . -545) 75549) ((-760 . -285) 75480) ((-760 . -47) 75452) ((-760 . -372) 75436) ((-760 . -621) 75384) ((-760 . -446) 75335) ((-760 . -827) 75314) ((-760 . -876) 75298) ((-760 . -862) 75157) ((-760 . -886) 75136) ((-760 . -1190) 75115) ((-760 . -926) 75082) ((-753 . -1074) T) ((-753 . -597) 75064) ((-753 . -101) T) ((-751 . -773) T) ((-751 . -130) T) ((-751 . -25) T) ((-751 . -101) T) ((-751 . -597) 75046) ((-751 . -1074) T) ((-751 . -23) T) ((-751 . -772) T) ((-751 . -827) T) ((-751 . -774) T) ((-751 . -777) T) ((-751 . -707) T) ((-751 . -1085) T) ((-749 . -1074) T) ((-749 . -597) 75028) ((-749 . -101) T) ((-717 . -718) 75012) ((-717 . -1072) 74996) ((-717 . -231) 74980) ((-717 . -598) 74941) ((-717 . -149) 74925) ((-717 . -483) 74909) ((-717 . -101) T) ((-717 . -1074) T) ((-717 . -507) 74842) ((-717 . -304) 74780) ((-717 . -597) 74762) ((-717 . -1185) T) ((-717 . -34) T) ((-717 . -106) 74746) ((-717 . -675) 74730) ((-716 . -1025) T) ((-716 . -1032) T) ((-716 . -1085) T) ((-716 . -707) T) ((-716 . -21) T) ((-716 . -23) T) ((-716 . -1074) T) ((-716 . -597) 74712) ((-716 . -101) T) ((-716 . -25) T) ((-716 . -130) T) ((-716 . -628) 74672) ((-716 . -1014) 74643) ((-716 . -145) 74622) ((-716 . -143) 74601) ((-716 . -38) 74571) ((-716 . -111) 74536) ((-716 . -1031) 74506) ((-716 . -698) 74476) ((-716 . -363) 74429) ((-712 . -926) 74382) ((-712 . -1014) 74258) ((-712 . -1190) 74237) ((-712 . -886) 74216) ((-712 . -862) NIL) ((-712 . -876) 74193) ((-712 . -827) 74172) ((-712 . -507) 74115) ((-712 . -446) 74066) ((-712 . -621) 74014) ((-712 . -372) 73998) ((-712 . -47) 73963) ((-712 . -38) 73812) ((-712 . -698) 73661) ((-712 . -285) 73592) ((-712 . -545) 73523) ((-712 . -111) 73352) ((-712 . -1031) 73195) ((-712 . -170) 73106) ((-712 . -145) 73085) ((-712 . -143) 73064) ((-712 . -628) 72989) ((-712 . -130) T) ((-712 . -25) T) ((-712 . -101) T) ((-712 . -597) 72971) ((-712 . -1074) T) ((-712 . -23) T) ((-712 . -21) T) ((-712 . -1025) T) ((-712 . -1032) T) ((-712 . -1085) T) ((-712 . -707) T) ((-712 . -407) 72955) ((-712 . -321) 72920) ((-712 . -304) 72907) ((-712 . -598) 72768) ((-699 . -467) T) ((-699 . -1085) T) ((-699 . -101) T) ((-699 . -597) 72750) ((-699 . -1074) T) ((-699 . -707) T) ((-696 . -1025) T) ((-696 . -1032) T) ((-696 . -1085) T) ((-696 . -707) T) ((-696 . -21) T) ((-696 . -23) T) ((-696 . -1074) T) ((-696 . -597) 72732) ((-696 . -101) T) ((-696 . -25) T) ((-696 . -130) T) ((-696 . -628) 72719) ((-695 . -1025) T) ((-695 . -1032) T) ((-695 . -1085) T) ((-695 . -707) T) ((-695 . -21) T) ((-695 . -23) T) ((-695 . -1074) T) ((-695 . -597) 72701) ((-695 . -101) T) ((-695 . -25) T) ((-695 . -130) T) ((-695 . -628) 72661) ((-695 . -1014) 72630) ((-695 . -281) 72609) ((-695 . -145) 72588) ((-695 . -143) 72567) ((-695 . -38) 72537) ((-695 . -111) 72502) ((-695 . -1031) 72472) ((-695 . -698) 72442) ((-694 . -827) T) ((-694 . -101) T) ((-694 . -597) 72424) ((-694 . -1074) T) ((-693 . -1207) 72408) ((-693 . -1124) 72386) ((-693 . -598) NIL) ((-693 . -304) 72373) ((-693 . -507) 72320) ((-693 . -321) 72297) ((-693 . -1014) 72177) ((-693 . -407) 72161) ((-693 . -38) 71990) ((-693 . -111) 71799) ((-693 . -1031) 71622) ((-693 . -628) 71547) ((-693 . -698) 71376) ((-693 . -143) 71355) ((-693 . -145) 71334) ((-693 . -47) 71311) ((-693 . -372) 71295) ((-693 . -621) 71243) ((-693 . -827) 71222) ((-693 . -876) 71165) ((-693 . -862) NIL) ((-693 . -886) 71144) ((-693 . -1190) 71123) ((-693 . -926) 71092) ((-693 . -897) 71071) ((-693 . -545) 70982) ((-693 . -285) 70893) ((-693 . -170) 70784) ((-693 . -446) 70715) ((-693 . -302) 70694) ((-693 . -281) 70621) ((-693 . -229) T) ((-693 . -130) T) ((-693 . -25) T) ((-693 . -101) T) ((-693 . -597) 70603) ((-693 . -1074) T) ((-693 . -23) T) ((-693 . -21) T) ((-693 . -707) T) ((-693 . -1085) T) ((-693 . -1032) T) ((-693 . -1025) T) ((-693 . -227) 70587) ((-693 . -363) 70566) ((-692 . -358) T) ((-692 . -1190) T) ((-692 . -897) T) ((-692 . -545) T) ((-692 . -170) T) ((-692 . -698) 70531) ((-692 . -38) 70496) ((-692 . -446) T) ((-692 . -302) T) ((-692 . -628) 70461) ((-692 . -707) T) ((-692 . -1085) T) ((-692 . -1032) T) ((-692 . -1025) T) ((-692 . -111) 70417) ((-692 . -1031) 70382) ((-692 . -21) T) ((-692 . -23) T) ((-692 . -1074) T) ((-692 . -597) 70364) ((-692 . -101) T) ((-692 . -25) T) ((-692 . -130) T) ((-692 . -285) T) ((-692 . -239) T) ((-691 . -1074) T) ((-691 . -597) 70346) ((-691 . -101) T) ((-683 . -131) T) ((-683 . -1074) T) ((-683 . -597) 70315) ((-683 . -101) T) ((-683 . -827) T) ((-681 . -382) T) ((-681 . -1014) 70297) ((-681 . -827) T) ((-681 . -38) 70284) ((-681 . -707) T) ((-681 . -1085) T) ((-681 . -1032) T) ((-681 . -1025) T) ((-681 . -111) 70269) ((-681 . -1031) 70256) ((-681 . -21) T) ((-681 . -23) T) ((-681 . -1074) T) ((-681 . -597) 70238) ((-681 . -101) T) ((-681 . -25) T) ((-681 . -130) T) ((-681 . -628) 70225) ((-681 . -698) 70212) ((-681 . -170) T) ((-681 . -285) T) ((-681 . -545) T) ((-681 . -537) T) ((-681 . -1190) T) ((-681 . -1124) T) ((-681 . -598) 70127) ((-681 . -996) T) ((-681 . -862) 70109) ((-681 . -825) T) ((-681 . -777) T) ((-681 . -774) T) ((-681 . -772) T) ((-681 . -771) T) ((-681 . -800) T) ((-681 . -621) 70091) ((-681 . -897) T) ((-681 . -446) T) ((-681 . -302) T) ((-681 . -229) T) ((-681 . -141) T) ((-681 . -145) T) ((-679 . -399) T) ((-679 . -145) T) ((-679 . -628) 70056) ((-679 . -130) T) ((-679 . -25) T) ((-679 . -101) T) ((-679 . -597) 70038) ((-679 . -1074) T) ((-679 . -23) T) ((-679 . -21) T) ((-679 . -707) T) ((-679 . -1085) T) ((-679 . -1032) T) ((-679 . -1025) T) ((-679 . -598) 69983) ((-679 . -358) T) ((-679 . -1190) T) ((-679 . -897) T) ((-679 . -545) T) ((-679 . -170) T) ((-679 . -698) 69948) ((-679 . -38) 69913) ((-679 . -446) T) ((-679 . -302) T) ((-679 . -111) 69869) ((-679 . -1031) 69834) ((-679 . -285) T) ((-679 . -239) T) ((-679 . -825) T) ((-679 . -777) T) ((-679 . -774) T) ((-679 . -827) T) ((-679 . -772) T) ((-679 . -771) T) ((-679 . -862) 69816) ((-679 . -978) T) ((-679 . -996) T) ((-679 . -1014) 69761) ((-679 . -1034) T) ((-679 . -382) T) ((-674 . -382) T) ((-674 . -1014) 69706) ((-674 . -827) T) ((-674 . -38) 69656) ((-674 . -707) T) ((-674 . -1085) T) ((-674 . -1032) T) ((-674 . -1025) T) ((-674 . -111) 69590) ((-674 . -1031) 69540) ((-674 . -21) T) ((-674 . -23) T) ((-674 . -1074) T) ((-674 . -597) 69522) ((-674 . -101) T) ((-674 . -25) T) ((-674 . -130) T) ((-674 . -628) 69472) ((-674 . -698) 69422) ((-674 . -170) T) ((-674 . -285) T) ((-674 . -545) T) ((-674 . -164) 69404) ((-674 . -35) NIL) ((-674 . -94) NIL) ((-674 . -279) NIL) ((-674 . -486) NIL) ((-674 . -1174) NIL) ((-674 . -1171) NIL) ((-674 . -978) NIL) ((-674 . -886) NIL) ((-674 . -598) 69312) ((-674 . -860) 69294) ((-674 . -363) NIL) ((-674 . -345) NIL) ((-674 . -1124) NIL) ((-674 . -397) NIL) ((-674 . -405) 69261) ((-674 . -365) 69228) ((-674 . -705) 69195) ((-674 . -407) 69177) ((-674 . -862) 69159) ((-674 . -1185) T) ((-674 . -395) 69141) ((-674 . -621) 69123) ((-674 . -372) 69105) ((-674 . -281) NIL) ((-674 . -304) NIL) ((-674 . -507) NIL) ((-674 . -333) 69087) ((-674 . -239) T) ((-674 . -1190) T) ((-674 . -358) T) ((-674 . -897) T) ((-674 . -446) T) ((-674 . -302) T) ((-674 . -229) NIL) ((-674 . -876) NIL) ((-674 . -227) 69069) ((-674 . -145) T) ((-674 . -143) NIL) ((-671 . -1227) T) ((-671 . -597) 69051) ((-669 . -666) 69009) ((-669 . -483) 68993) ((-669 . -101) 68971) ((-669 . -1074) 68949) ((-669 . -507) 68882) ((-669 . -304) 68820) ((-669 . -597) 68752) ((-669 . -1185) T) ((-669 . -34) T) ((-669 . -56) 68710) ((-669 . -598) 68671) ((-661 . -1056) T) ((-661 . -597) 68621) ((-661 . -1074) T) ((-661 . -101) T) ((-661 . -92) T) ((-657 . -827) T) ((-657 . -101) T) ((-657 . -597) 68603) ((-657 . -1074) T) ((-657 . -1014) 68587) ((-656 . -1056) T) ((-656 . -597) 68553) ((-656 . -1074) T) ((-656 . -101) T) ((-656 . -92) T) ((-655 . -483) 68537) ((-655 . -101) 68515) ((-655 . -1074) 68493) ((-655 . -507) 68426) ((-655 . -304) 68364) ((-655 . -597) 68296) ((-655 . -1185) T) ((-655 . -34) T) ((-652 . -827) T) ((-652 . -101) T) ((-652 . -597) 68278) ((-652 . -1074) T) ((-652 . -1014) 68262) ((-651 . -1056) T) ((-651 . -597) 68228) ((-651 . -1074) T) ((-651 . -101) T) ((-651 . -92) T) ((-650 . -1096) 68173) ((-650 . -483) 68157) ((-650 . -507) 68090) ((-650 . -304) 68028) ((-650 . -1185) T) ((-650 . -34) T) ((-650 . -1028) 67968) ((-650 . -1014) 67864) ((-650 . -407) 67848) ((-650 . -621) 67796) ((-650 . -372) 67780) ((-650 . -229) 67759) ((-650 . -876) 67718) ((-650 . -227) 67702) ((-650 . -698) 67686) ((-650 . -628) 67660) ((-650 . -130) T) ((-650 . -25) T) ((-650 . -101) T) ((-650 . -597) 67622) ((-650 . -1074) T) ((-650 . -23) T) ((-650 . -21) T) ((-650 . -1031) 67606) ((-650 . -111) 67585) ((-650 . -1025) T) ((-650 . -1032) T) ((-650 . -1085) T) ((-650 . -707) T) ((-650 . -38) 67545) ((-650 . -413) 67529) ((-650 . -725) 67513) ((-650 . -701) T) ((-650 . -742) T) ((-650 . -362) 67497) ((-644 . -369) 67476) ((-644 . -698) 67460) ((-644 . -628) 67444) ((-644 . -130) T) ((-644 . -25) T) ((-644 . -101) T) ((-644 . -597) 67426) ((-644 . -1074) T) ((-644 . -23) T) ((-644 . -21) T) ((-644 . -1031) 67410) ((-644 . -111) 67389) ((-644 . -617) 67373) ((-644 . -379) 67345) ((-644 . -1014) 67322) ((-636 . -638) 67306) ((-636 . -38) 67276) ((-636 . -628) 67250) ((-636 . -707) T) ((-636 . -1085) T) ((-636 . -1032) T) ((-636 . -1025) T) ((-636 . -111) 67229) ((-636 . -1031) 67213) ((-636 . -21) T) ((-636 . -23) T) ((-636 . -1074) T) ((-636 . -597) 67195) ((-636 . -101) T) ((-636 . -25) T) ((-636 . -130) T) ((-636 . -698) 67165) ((-636 . -407) 67149) ((-636 . -1014) 67045) ((-636 . -829) 67029) ((-636 . -281) 66990) ((-635 . -638) 66974) ((-635 . -38) 66944) ((-635 . -628) 66918) ((-635 . -707) T) ((-635 . -1085) T) ((-635 . -1032) T) ((-635 . -1025) T) ((-635 . -111) 66897) ((-635 . -1031) 66881) ((-635 . -21) T) ((-635 . -23) T) ((-635 . -1074) T) ((-635 . -597) 66863) ((-635 . -101) T) ((-635 . -25) T) ((-635 . -130) T) ((-635 . -698) 66833) ((-635 . -407) 66817) ((-635 . -1014) 66713) ((-635 . -829) 66697) ((-635 . -281) 66676) ((-634 . -638) 66660) ((-634 . -38) 66630) ((-634 . -628) 66604) ((-634 . -707) T) ((-634 . -1085) T) ((-634 . -1032) T) ((-634 . -1025) T) ((-634 . -111) 66583) ((-634 . -1031) 66567) ((-634 . -21) T) ((-634 . -23) T) ((-634 . -1074) T) ((-634 . -597) 66549) ((-634 . -101) T) ((-634 . -25) T) ((-634 . -130) T) ((-634 . -698) 66519) ((-634 . -407) 66503) ((-634 . -1014) 66399) ((-634 . -829) 66383) ((-634 . -281) 66362) ((-632 . -698) 66346) ((-632 . -628) 66330) ((-632 . -130) T) ((-632 . -25) T) ((-632 . -101) T) ((-632 . -597) 66312) ((-632 . -1074) T) ((-632 . -23) T) ((-632 . -21) T) ((-632 . -1031) 66296) ((-632 . -111) 66275) ((-632 . -771) 66254) ((-632 . -772) 66233) ((-632 . -827) 66212) ((-632 . -774) 66191) ((-632 . -777) 66170) ((-629 . -1074) T) ((-629 . -597) 66152) ((-629 . -101) T) ((-629 . -1014) 66136) ((-627 . -675) 66120) ((-627 . -106) 66104) ((-627 . -34) T) ((-627 . -1185) T) ((-627 . -597) 66036) ((-627 . -304) 65974) ((-627 . -507) 65907) ((-627 . -1074) 65885) ((-627 . -101) 65863) ((-627 . -483) 65847) ((-627 . -149) 65831) ((-627 . -598) 65792) ((-627 . -231) 65776) ((-626 . -1056) T) ((-626 . -597) 65729) ((-626 . -1074) T) ((-626 . -101) T) ((-626 . -92) T) ((-622 . -646) 65713) ((-622 . -1220) 65697) ((-622 . -986) 65681) ((-622 . -1122) 65665) ((-622 . -827) 65644) ((-622 . -367) 65628) ((-622 . -631) 65612) ((-622 . -283) 65589) ((-622 . -281) 65566) ((-622 . -588) 65543) ((-622 . -598) 65504) ((-622 . -483) 65488) ((-622 . -101) 65438) ((-622 . -1074) 65388) ((-622 . -507) 65321) ((-622 . -304) 65259) ((-622 . -597) 65171) ((-622 . -1185) T) ((-622 . -34) T) ((-622 . -149) 65155) ((-622 . -277) 65139) ((-622 . -801) 65118) ((-615 . -725) 65102) ((-615 . -701) T) ((-615 . -742) T) ((-615 . -111) 65081) ((-615 . -1031) 65065) ((-615 . -21) T) ((-615 . -23) T) ((-615 . -1074) T) ((-615 . -597) 65034) ((-615 . -101) T) ((-615 . -25) T) ((-615 . -130) T) ((-615 . -628) 65018) ((-615 . -698) 65002) ((-615 . -413) 64967) ((-615 . -362) 64899) ((-614 . -1162) 64874) ((-614 . -225) 64820) ((-614 . -106) 64766) ((-614 . -304) 64617) ((-614 . -507) 64461) ((-614 . -483) 64392) ((-614 . -149) 64338) ((-614 . -598) NIL) ((-614 . -231) 64284) ((-614 . -594) 64259) ((-614 . -283) 64234) ((-614 . -281) 64209) ((-614 . -101) T) ((-614 . -1074) T) ((-614 . -597) 64191) ((-614 . -1185) T) ((-614 . -34) T) ((-614 . -588) 64166) ((-609 . -467) T) ((-609 . -1085) T) ((-609 . -101) T) ((-609 . -597) 64148) ((-609 . -1074) T) ((-609 . -707) T) ((-608 . -1056) T) ((-608 . -597) 64114) ((-608 . -1074) T) ((-608 . -101) T) ((-608 . -92) T) ((-605 . -227) 64098) ((-605 . -876) 64057) ((-605 . -1025) T) ((-605 . -1032) T) ((-605 . -1085) T) ((-605 . -707) T) ((-605 . -21) T) ((-605 . -23) T) ((-605 . -1074) T) ((-605 . -597) 64039) ((-605 . -101) T) ((-605 . -25) T) ((-605 . -130) T) ((-605 . -628) 64026) ((-605 . -229) 64005) ((-605 . -545) T) ((-605 . -285) T) ((-605 . -170) T) ((-605 . -698) 63992) ((-605 . -1031) 63979) ((-605 . -111) 63964) ((-605 . -38) 63951) ((-605 . -598) 63928) ((-605 . -407) 63912) ((-605 . -1014) 63795) ((-605 . -145) 63774) ((-605 . -143) 63753) ((-605 . -302) 63732) ((-605 . -446) 63711) ((-605 . -897) 63690) ((-601 . -38) 63674) ((-601 . -628) 63648) ((-601 . -707) T) ((-601 . -1085) T) ((-601 . -1032) T) ((-601 . -1025) T) ((-601 . -111) 63627) ((-601 . -1031) 63611) ((-601 . -21) T) ((-601 . -23) T) ((-601 . -1074) T) ((-601 . -597) 63593) ((-601 . -101) T) ((-601 . -25) T) ((-601 . -130) T) ((-601 . -698) 63577) ((-601 . -825) 63556) ((-601 . -777) 63535) ((-601 . -774) 63514) ((-601 . -827) 63493) ((-601 . -772) 63472) ((-601 . -771) 63451) ((-600 . -943) T) ((-600 . -101) T) ((-600 . -597) 63433) ((-600 . -1074) T) ((-595 . -131) T) ((-595 . -1074) T) ((-595 . -597) 63415) ((-595 . -101) T) ((-595 . -827) T) ((-595 . -860) 63399) ((-595 . -598) 63260) ((-592 . -360) 63200) ((-592 . -101) T) ((-592 . -597) 63182) ((-592 . -1074) T) ((-592 . -1162) 63158) ((-592 . -225) 63105) ((-592 . -106) 63052) ((-592 . -304) 62847) ((-592 . -507) 62630) ((-592 . -483) 62564) ((-592 . -149) 62511) ((-592 . -598) NIL) ((-592 . -231) 62458) ((-592 . -594) 62434) ((-592 . -283) 62410) ((-592 . -281) 62386) ((-592 . -1185) T) ((-592 . -34) T) ((-592 . -588) 62362) ((-591 . -725) 62346) ((-591 . -701) T) ((-591 . -742) T) ((-591 . -111) 62325) ((-591 . -1031) 62309) ((-591 . -21) T) ((-591 . -23) T) ((-591 . -1074) T) ((-591 . -597) 62278) ((-591 . -101) T) ((-591 . -25) T) ((-591 . -130) T) ((-591 . -628) 62262) ((-591 . -698) 62246) ((-591 . -413) 62211) ((-591 . -362) 62143) ((-590 . -1056) T) ((-590 . -597) 62093) ((-590 . -1074) T) ((-590 . -101) T) ((-590 . -92) T) ((-589 . -597) 62060) ((-586 . -1230) 62044) ((-586 . -367) 62028) ((-586 . -827) 62007) ((-586 . -149) 61991) ((-586 . -34) T) ((-586 . -1185) T) ((-586 . -597) 61903) ((-586 . -304) 61841) ((-586 . -507) 61774) ((-586 . -1074) 61724) ((-586 . -101) 61674) ((-586 . -483) 61658) ((-586 . -598) 61619) ((-586 . -588) 61596) ((-586 . -281) 61573) ((-586 . -283) 61550) ((-586 . -631) 61534) ((-586 . -19) 61518) ((-585 . -597) 61500) ((-581 . -1025) T) ((-581 . -1032) T) ((-581 . -1085) T) ((-581 . -707) T) ((-581 . -21) T) ((-581 . -23) T) ((-581 . -1074) T) ((-581 . -597) 61482) ((-581 . -101) T) ((-581 . -25) T) ((-581 . -130) T) ((-581 . -628) 61469) ((-581 . -545) 61448) ((-581 . -285) 61427) ((-581 . -170) 61406) ((-581 . -698) 61379) ((-581 . -1031) 61352) ((-581 . -111) 61323) ((-581 . -38) 61296) ((-580 . -1210) 61273) ((-580 . -47) 61250) ((-580 . -38) 61147) ((-580 . -698) 61044) ((-580 . -285) 61023) ((-580 . -545) 61002) ((-580 . -111) 60871) ((-580 . -1031) 60754) ((-580 . -170) 60705) ((-580 . -145) 60684) ((-580 . -143) 60663) ((-580 . -628) 60588) ((-580 . -949) 60557) ((-580 . -876) 60470) ((-580 . -281) 60455) ((-580 . -1025) T) ((-580 . -1032) T) ((-580 . -1085) T) ((-580 . -707) T) ((-580 . -21) T) ((-580 . -23) T) ((-580 . -1074) T) ((-580 . -597) 60437) ((-580 . -101) T) ((-580 . -25) T) ((-580 . -130) T) ((-580 . -229) 60396) ((-578 . -1117) T) ((-578 . -367) 60378) ((-578 . -827) T) ((-578 . -149) 60360) ((-578 . -34) T) ((-578 . -1185) T) ((-578 . -597) 60342) ((-578 . -304) NIL) ((-578 . -507) NIL) ((-578 . -1074) T) ((-578 . -101) T) ((-578 . -483) 60324) ((-578 . -598) NIL) ((-578 . -588) 60299) ((-578 . -281) 60274) ((-578 . -283) 60249) ((-578 . -631) 60231) ((-578 . -19) 60213) ((-577 . -1056) T) ((-577 . -597) 60179) ((-577 . -1074) T) ((-577 . -101) T) ((-577 . -92) T) ((-569 . -698) 60154) ((-569 . -628) 60129) ((-569 . -130) T) ((-569 . -25) T) ((-569 . -101) T) ((-569 . -597) 60111) ((-569 . -1074) T) ((-569 . -23) T) ((-569 . -21) T) ((-569 . -1031) 60086) ((-569 . -111) 60054) ((-569 . -1014) 60038) ((-567 . -345) T) ((-567 . -1124) T) ((-567 . -363) T) ((-567 . -143) T) ((-567 . -358) T) ((-567 . -1190) T) ((-567 . -897) T) ((-567 . -545) T) ((-567 . -170) T) ((-567 . -698) 60003) ((-567 . -38) 59968) ((-567 . -446) T) ((-567 . -302) T) ((-567 . -111) 59924) ((-567 . -1031) 59889) ((-567 . -628) 59854) ((-567 . -285) T) ((-567 . -239) T) ((-567 . -397) T) ((-567 . -1025) T) ((-567 . -1032) T) ((-567 . -1085) T) ((-567 . -707) T) ((-567 . -21) T) ((-567 . -23) T) ((-567 . -1074) T) ((-567 . -597) 59836) ((-567 . -101) T) ((-567 . -25) T) ((-567 . -130) T) ((-567 . -229) T) ((-567 . -324) 59823) ((-567 . -145) 59805) ((-567 . -1014) 59792) ((-567 . -1239) 59779) ((-567 . -1250) 59766) ((-567 . -598) 59748) ((-566 . -846) 59732) ((-566 . -897) T) ((-566 . -545) T) ((-566 . -285) T) ((-566 . -170) T) ((-566 . -698) 59719) ((-566 . -1031) 59706) ((-566 . -111) 59691) ((-566 . -38) 59678) ((-566 . -446) T) ((-566 . -302) T) ((-566 . -1025) T) ((-566 . -1032) T) ((-566 . -1085) T) ((-566 . -707) T) ((-566 . -21) T) ((-566 . -23) T) ((-566 . -1074) T) ((-566 . -597) 59660) ((-566 . -101) T) ((-566 . -25) T) ((-566 . -130) T) ((-566 . -628) 59647) ((-566 . -145) T) ((-565 . -1074) T) ((-565 . -597) 59629) ((-565 . -101) T) ((-559 . -543) 59613) ((-559 . -35) T) ((-559 . -94) T) ((-559 . -279) T) ((-559 . -486) T) ((-559 . -1174) T) ((-559 . -1171) T) ((-559 . -1014) 59595) ((-559 . -978) T) ((-559 . -827) T) ((-559 . -545) T) ((-559 . -285) T) ((-559 . -170) T) ((-559 . -698) 59582) ((-559 . -628) 59569) ((-559 . -130) T) ((-559 . -25) T) ((-559 . -101) T) ((-559 . -597) 59551) ((-559 . -1074) T) ((-559 . -23) T) ((-559 . -21) T) ((-559 . -1031) 59538) ((-559 . -111) 59523) ((-559 . -1025) T) ((-559 . -1032) T) ((-559 . -1085) T) ((-559 . -707) T) ((-559 . -38) 59510) ((-559 . -446) T) ((-539 . -1162) 59489) ((-539 . -225) 59439) ((-539 . -106) 59389) ((-539 . -304) 59193) ((-539 . -507) 58985) ((-539 . -483) 58922) ((-539 . -149) 58872) ((-539 . -598) NIL) ((-539 . -231) 58822) ((-539 . -594) 58801) ((-539 . -283) 58780) ((-539 . -281) 58759) ((-539 . -101) T) ((-539 . -1074) T) ((-539 . -597) 58741) ((-539 . -1185) T) ((-539 . -34) T) ((-539 . -588) 58720) ((-538 . -537) T) ((-538 . -1190) T) ((-538 . -1124) T) ((-538 . -1014) 58702) ((-538 . -598) 58601) ((-538 . -996) T) ((-538 . -862) 58583) ((-538 . -825) T) ((-538 . -777) T) ((-538 . -774) T) ((-538 . -827) T) ((-538 . -772) T) ((-538 . -771) T) ((-538 . -800) T) ((-538 . -621) 58565) ((-538 . -897) T) ((-538 . -545) T) ((-538 . -285) T) ((-538 . -170) T) ((-538 . -698) 58552) ((-538 . -1031) 58539) ((-538 . -111) 58524) ((-538 . -38) 58511) ((-538 . -446) T) ((-538 . -302) T) ((-538 . -229) T) ((-538 . -141) T) ((-538 . -1025) T) ((-538 . -1032) T) ((-538 . -1085) T) ((-538 . -707) T) ((-538 . -21) T) ((-538 . -23) T) ((-538 . -1074) T) ((-538 . -597) 58493) ((-538 . -101) T) ((-538 . -25) T) ((-538 . -130) T) ((-538 . -628) 58480) ((-538 . -145) T) ((-538 . -801) T) ((-527 . -1077) 58432) ((-527 . -101) T) ((-527 . -597) 58414) ((-527 . -1074) T) ((-527 . -598) 58395) ((-524 . -773) T) ((-524 . -130) T) ((-524 . -25) T) ((-524 . -101) T) ((-524 . -597) 58377) ((-524 . -1074) T) ((-524 . -23) T) ((-524 . -772) T) ((-524 . -827) T) ((-524 . -774) T) ((-524 . -777) T) ((-524 . -502) 58354) ((-522 . -520) T) ((-522 . -171) T) ((-522 . -597) 58336) ((-518 . -1056) T) ((-518 . -597) 58302) ((-518 . -1074) T) ((-518 . -101) T) ((-518 . -92) T) ((-517 . -1056) T) ((-517 . -597) 58268) ((-517 . -1074) T) ((-517 . -101) T) ((-517 . -92) T) ((-516 . -666) 58218) ((-516 . -483) 58202) ((-516 . -101) 58180) ((-516 . -1074) 58158) ((-516 . -507) 58091) ((-516 . -304) 58029) ((-516 . -597) 57961) ((-516 . -1185) T) ((-516 . -34) T) ((-516 . -56) 57911) ((-513 . -646) 57895) ((-513 . -1220) 57879) ((-513 . -986) 57863) ((-513 . -1122) 57847) ((-513 . -827) 57826) ((-513 . -367) 57810) ((-513 . -631) 57794) ((-513 . -283) 57771) ((-513 . -281) 57748) ((-513 . -588) 57725) ((-513 . -598) 57686) ((-513 . -483) 57670) ((-513 . -101) 57620) ((-513 . -1074) 57570) ((-513 . -507) 57503) ((-513 . -304) 57441) ((-513 . -597) 57353) ((-513 . -1185) T) ((-513 . -34) T) ((-513 . -149) 57337) ((-513 . -277) 57321) ((-512 . -56) 57295) ((-512 . -34) T) ((-512 . -1185) T) ((-512 . -597) 57227) ((-512 . -304) 57165) ((-512 . -507) 57098) ((-512 . -1074) 57076) ((-512 . -101) 57054) ((-512 . -483) 57038) ((-511 . -324) 57015) ((-511 . -229) T) ((-511 . -363) T) ((-511 . -1124) T) ((-511 . -345) T) ((-511 . -145) 56997) ((-511 . -628) 56942) ((-511 . -130) T) ((-511 . -25) T) ((-511 . -101) T) ((-511 . -597) 56924) ((-511 . -1074) T) ((-511 . -23) T) ((-511 . -21) T) ((-511 . -707) T) ((-511 . -1085) T) ((-511 . -1032) T) ((-511 . -1025) T) ((-511 . -358) T) ((-511 . -1190) T) ((-511 . -897) T) ((-511 . -545) T) ((-511 . -170) T) ((-511 . -698) 56869) ((-511 . -38) 56834) ((-511 . -446) T) ((-511 . -302) T) ((-511 . -111) 56763) ((-511 . -1031) 56708) ((-511 . -285) T) ((-511 . -239) T) ((-511 . -397) T) ((-511 . -143) T) ((-511 . -1014) 56685) ((-511 . -1239) 56662) ((-511 . -1250) 56639) ((-510 . -1056) T) ((-510 . -597) 56605) ((-510 . -1074) T) ((-510 . -101) T) ((-510 . -92) T) ((-509 . -19) 56589) ((-509 . -631) 56573) ((-509 . -283) 56550) ((-509 . -281) 56527) ((-509 . -588) 56504) ((-509 . -598) 56465) ((-509 . -483) 56449) ((-509 . -101) 56399) ((-509 . -1074) 56349) ((-509 . -507) 56282) ((-509 . -304) 56220) ((-509 . -597) 56132) ((-509 . -1185) T) ((-509 . -34) T) ((-509 . -149) 56116) ((-509 . -827) 56095) ((-509 . -367) 56079) ((-509 . -277) 56063) ((-508 . -318) 56042) ((-508 . -1014) 56026) ((-508 . -23) T) ((-508 . -1074) T) ((-508 . -597) 56008) ((-508 . -101) T) ((-508 . -25) T) ((-508 . -130) T) ((-505 . -773) T) ((-505 . -130) T) ((-505 . -25) T) ((-505 . -101) T) ((-505 . -597) 55990) ((-505 . -1074) T) ((-505 . -23) T) ((-505 . -772) T) ((-505 . -827) T) ((-505 . -774) T) ((-505 . -777) T) ((-505 . -502) 55969) ((-504 . -772) T) ((-504 . -827) T) ((-504 . -774) T) ((-504 . -25) T) ((-504 . -101) T) ((-504 . -597) 55951) ((-504 . -1074) T) ((-504 . -23) T) ((-504 . -502) 55930) ((-503 . -502) 55909) ((-503 . -101) T) ((-503 . -597) 55891) ((-503 . -1074) T) ((-501 . -23) T) ((-501 . -1074) T) ((-501 . -597) 55873) ((-501 . -101) T) ((-501 . -25) T) ((-501 . -502) 55852) ((-500 . -21) T) ((-500 . -23) T) ((-500 . -1074) T) ((-500 . -597) 55834) ((-500 . -101) T) ((-500 . -25) T) ((-500 . -130) T) ((-500 . -502) 55813) ((-499 . -1056) T) ((-499 . -597) 55763) ((-499 . -1074) T) ((-499 . -101) T) ((-499 . -92) T) ((-497 . -1074) T) ((-497 . -597) 55745) ((-497 . -101) T) ((-495 . -827) T) ((-495 . -101) T) ((-495 . -597) 55727) ((-495 . -1074) T) ((-493 . -123) T) ((-493 . -367) 55709) ((-493 . -827) T) ((-493 . -149) 55691) ((-493 . -34) T) ((-493 . -1185) T) ((-493 . -597) 55673) ((-493 . -304) NIL) ((-493 . -507) NIL) ((-493 . -1074) T) ((-493 . -483) 55655) ((-493 . -598) 55637) ((-493 . -588) 55612) ((-493 . -281) 55587) ((-493 . -283) 55562) ((-493 . -631) 55544) ((-493 . -19) 55526) ((-493 . -101) T) ((-493 . -642) T) ((-490 . -56) 55476) ((-490 . -34) T) ((-490 . -1185) T) ((-490 . -597) 55408) ((-490 . -304) 55346) ((-490 . -507) 55279) ((-490 . -1074) 55257) ((-490 . -101) 55235) ((-490 . -483) 55219) ((-489 . -19) 55203) ((-489 . -631) 55187) ((-489 . -283) 55164) ((-489 . -281) 55141) ((-489 . -588) 55118) ((-489 . -598) 55079) ((-489 . -483) 55063) ((-489 . -101) 55013) ((-489 . -1074) 54963) ((-489 . -507) 54896) ((-489 . -304) 54834) ((-489 . -597) 54746) ((-489 . -1185) T) ((-489 . -34) T) ((-489 . -149) 54730) ((-489 . -827) 54709) ((-489 . -367) 54693) ((-488 . -293) T) ((-488 . -1014) 54636) ((-488 . -1074) T) ((-488 . -597) 54618) ((-488 . -101) T) ((-488 . -827) T) ((-488 . -507) 54584) ((-488 . -304) 54571) ((-488 . -27) T) ((-488 . -978) T) ((-488 . -239) T) ((-488 . -111) 54527) ((-488 . -1031) 54492) ((-488 . -285) T) ((-488 . -698) 54457) ((-488 . -628) 54422) ((-488 . -130) T) ((-488 . -25) T) ((-488 . -23) T) ((-488 . -21) T) ((-488 . -1025) T) ((-488 . -1032) T) ((-488 . -1085) T) ((-488 . -707) T) ((-488 . -38) 54387) ((-488 . -302) T) ((-488 . -446) T) ((-488 . -170) T) ((-488 . -545) T) ((-488 . -897) T) ((-488 . -1190) T) ((-488 . -358) T) ((-488 . -621) 54347) ((-488 . -996) T) ((-488 . -598) 54292) ((-488 . -145) T) ((-488 . -229) T) ((-484 . -1074) T) ((-484 . -597) 54258) ((-484 . -101) T) ((-481 . -967) 54240) ((-481 . -1124) T) ((-481 . -1014) 54200) ((-481 . -598) 54130) ((-481 . -996) T) ((-481 . -886) NIL) ((-481 . -860) 54112) ((-481 . -825) T) ((-481 . -777) T) ((-481 . -774) T) ((-481 . -827) T) ((-481 . -772) T) ((-481 . -771) T) ((-481 . -800) T) ((-481 . -862) 54094) ((-481 . -1185) T) ((-481 . -395) 54076) ((-481 . -621) 54058) ((-481 . -372) 54040) ((-481 . -281) NIL) ((-481 . -304) NIL) ((-481 . -507) NIL) ((-481 . -333) 54022) ((-481 . -239) T) ((-481 . -111) 53956) ((-481 . -1031) 53906) ((-481 . -285) T) ((-481 . -698) 53856) ((-481 . -628) 53806) ((-481 . -38) 53756) ((-481 . -302) T) ((-481 . -446) T) ((-481 . -170) T) ((-481 . -545) T) ((-481 . -897) T) ((-481 . -1190) T) ((-481 . -358) T) ((-481 . -229) T) ((-481 . -876) NIL) ((-481 . -227) 53738) ((-481 . -145) T) ((-481 . -143) NIL) ((-481 . -130) T) ((-481 . -25) T) ((-481 . -101) T) ((-481 . -597) 53720) ((-481 . -1074) T) ((-481 . -23) T) ((-481 . -21) T) ((-481 . -1025) T) ((-481 . -1032) T) ((-481 . -1085) T) ((-481 . -707) T) ((-479 . -331) 53689) ((-479 . -130) T) ((-479 . -25) T) ((-479 . -101) T) ((-479 . -597) 53671) ((-479 . -1074) T) ((-479 . -23) T) ((-479 . -21) T) ((-478 . -944) 53655) ((-478 . -483) 53639) ((-478 . -101) 53617) ((-478 . -1074) 53595) ((-478 . -507) 53528) ((-478 . -304) 53466) ((-478 . -597) 53398) ((-478 . -1185) T) ((-478 . -34) T) ((-478 . -106) 53382) ((-477 . -1056) T) ((-477 . -597) 53348) ((-477 . -1074) T) ((-477 . -101) T) ((-477 . -92) T) ((-476 . -234) 53327) ((-476 . -1239) 53297) ((-476 . -771) 53276) ((-476 . -825) 53255) ((-476 . -777) 53206) ((-476 . -774) 53157) ((-476 . -827) 53108) ((-476 . -772) 53059) ((-476 . -773) 53038) ((-476 . -283) 53015) ((-476 . -281) 52992) ((-476 . -483) 52976) ((-476 . -507) 52909) ((-476 . -304) 52847) ((-476 . -1185) T) ((-476 . -34) T) ((-476 . -588) 52824) ((-476 . -1014) 52651) ((-476 . -407) 52620) ((-476 . -621) 52526) ((-476 . -372) 52495) ((-476 . -363) 52474) ((-476 . -229) 52426) ((-476 . -876) 52358) ((-476 . -227) 52327) ((-476 . -111) 52217) ((-476 . -1031) 52114) ((-476 . -170) 52093) ((-476 . -597) 51824) ((-476 . -698) 51766) ((-476 . -628) 51614) ((-476 . -130) 51484) ((-476 . -23) 51354) ((-476 . -21) 51264) ((-476 . -1025) 51194) ((-476 . -1032) 51124) ((-476 . -1085) 51034) ((-476 . -707) 50944) ((-476 . -38) 50914) ((-476 . -1074) 50704) ((-476 . -101) 50494) ((-476 . -25) 50345) ((-475 . -926) 50290) ((-475 . -1014) 50166) ((-475 . -1190) 50145) ((-475 . -886) 50124) ((-475 . -862) NIL) ((-475 . -876) 50101) ((-475 . -827) 50080) ((-475 . -507) 50023) ((-475 . -446) 49974) ((-475 . -621) 49922) ((-475 . -372) 49906) ((-475 . -47) 49863) ((-475 . -38) 49712) ((-475 . -698) 49561) ((-475 . -285) 49492) ((-475 . -545) 49423) ((-475 . -111) 49252) ((-475 . -1031) 49095) ((-475 . -170) 49006) ((-475 . -145) 48985) ((-475 . -143) 48964) ((-475 . -628) 48889) ((-475 . -130) T) ((-475 . -25) T) ((-475 . -101) T) ((-475 . -597) 48871) ((-475 . -1074) T) ((-475 . -23) T) ((-475 . -21) T) ((-475 . -1025) T) ((-475 . -1032) T) ((-475 . -1085) T) ((-475 . -707) T) ((-475 . -407) 48855) ((-475 . -321) 48812) ((-475 . -304) 48799) ((-475 . -598) 48660) ((-473 . -1162) 48639) ((-473 . -225) 48589) ((-473 . -106) 48539) ((-473 . -304) 48343) ((-473 . -507) 48135) ((-473 . -483) 48072) ((-473 . -149) 48022) ((-473 . -598) NIL) ((-473 . -231) 47972) ((-473 . -594) 47951) ((-473 . -283) 47930) ((-473 . -281) 47909) ((-473 . -101) T) ((-473 . -1074) T) ((-473 . -597) 47891) ((-473 . -1185) T) ((-473 . -34) T) ((-473 . -588) 47870) ((-472 . -1056) T) ((-472 . -597) 47836) ((-472 . -1074) T) ((-472 . -101) T) ((-472 . -92) T) ((-471 . -358) T) ((-471 . -1190) T) ((-471 . -897) T) ((-471 . -545) T) ((-471 . -170) T) ((-471 . -698) 47801) ((-471 . -38) 47766) ((-471 . -446) T) ((-471 . -302) T) ((-471 . -628) 47731) ((-471 . -707) T) ((-471 . -1085) T) ((-471 . -1032) T) ((-471 . -1025) T) ((-471 . -111) 47687) ((-471 . -1031) 47652) ((-471 . -21) T) ((-471 . -23) T) ((-471 . -1074) T) ((-471 . -597) 47604) ((-471 . -101) T) ((-471 . -25) T) ((-471 . -130) T) ((-471 . -285) T) ((-471 . -239) T) ((-471 . -145) T) ((-471 . -1014) 47564) ((-471 . -996) T) ((-471 . -598) 47486) ((-470 . -1180) 47455) ((-470 . -597) 47417) ((-470 . -149) 47401) ((-470 . -34) T) ((-470 . -1185) T) ((-470 . -304) 47339) ((-470 . -507) 47272) ((-470 . -1074) T) ((-470 . -101) T) ((-470 . -483) 47256) ((-470 . -598) 47217) ((-470 . -952) 47186) ((-469 . -1162) 47165) ((-469 . -225) 47115) ((-469 . -106) 47065) ((-469 . -304) 46869) ((-469 . -507) 46661) ((-469 . -483) 46598) ((-469 . -149) 46548) ((-469 . -598) NIL) ((-469 . -231) 46498) ((-469 . -594) 46477) ((-469 . -283) 46456) ((-469 . -281) 46435) ((-469 . -101) T) ((-469 . -1074) T) ((-469 . -597) 46417) ((-469 . -1185) T) ((-469 . -34) T) ((-469 . -588) 46396) ((-468 . -1214) 46380) ((-468 . -229) 46332) ((-468 . -281) 46317) ((-468 . -876) 46223) ((-468 . -949) 46185) ((-468 . -38) 46026) ((-468 . -111) 45847) ((-468 . -1031) 45682) ((-468 . -628) 45579) ((-468 . -698) 45420) ((-468 . -143) 45399) ((-468 . -145) 45378) ((-468 . -47) 45348) ((-468 . -1210) 45318) ((-468 . -35) 45284) ((-468 . -94) 45250) ((-468 . -279) 45216) ((-468 . -486) 45182) ((-468 . -1174) 45148) ((-468 . -1171) 45114) ((-468 . -978) 45080) ((-468 . -239) 45059) ((-468 . -285) 45010) ((-468 . -130) T) ((-468 . -25) T) ((-468 . -101) T) ((-468 . -597) 44992) ((-468 . -1074) T) ((-468 . -23) T) ((-468 . -21) T) ((-468 . -1025) T) ((-468 . -1032) T) ((-468 . -1085) T) ((-468 . -707) T) ((-468 . -302) 44971) ((-468 . -446) 44950) ((-468 . -170) 44881) ((-468 . -545) 44832) ((-468 . -897) 44811) ((-468 . -1190) 44790) ((-468 . -358) 44769) ((-462 . -1074) T) ((-462 . -597) 44751) ((-462 . -101) T) ((-457 . -952) 44720) ((-457 . -598) 44681) ((-457 . -483) 44665) ((-457 . -101) T) ((-457 . -1074) T) ((-457 . -507) 44598) ((-457 . -304) 44536) ((-457 . -597) 44498) ((-457 . -1185) T) ((-457 . -34) T) ((-457 . -149) 44482) ((-455 . -698) 44453) ((-455 . -628) 44424) ((-455 . -130) T) ((-455 . -25) T) ((-455 . -101) T) ((-455 . -597) 44406) ((-455 . -1074) T) ((-455 . -23) T) ((-455 . -21) T) ((-455 . -1031) 44377) ((-455 . -111) 44338) ((-448 . -926) 44305) ((-448 . -1014) 44181) ((-448 . -1190) 44160) ((-448 . -886) 44139) ((-448 . -862) NIL) ((-448 . -876) 44116) ((-448 . -827) 44095) ((-448 . -507) 44038) ((-448 . -446) 43989) ((-448 . -621) 43937) ((-448 . -372) 43921) ((-448 . -47) 43900) ((-448 . -38) 43749) ((-448 . -698) 43598) ((-448 . -285) 43529) ((-448 . -545) 43460) ((-448 . -111) 43289) ((-448 . -1031) 43132) ((-448 . -170) 43043) ((-448 . -145) 43022) ((-448 . -143) 43001) ((-448 . -628) 42926) ((-448 . -130) T) ((-448 . -25) T) ((-448 . -101) T) ((-448 . -597) 42908) ((-448 . -1074) T) ((-448 . -23) T) ((-448 . -21) T) ((-448 . -1025) T) ((-448 . -1032) T) ((-448 . -1085) T) ((-448 . -707) T) ((-448 . -407) 42892) ((-448 . -321) 42871) ((-448 . -304) 42858) ((-448 . -598) 42719) ((-447 . -413) 42689) ((-447 . -725) 42659) ((-447 . -701) T) ((-447 . -742) T) ((-447 . -111) 42622) ((-447 . -1031) 42592) ((-447 . -21) T) ((-447 . -23) T) ((-447 . -1074) T) ((-447 . -597) 42574) ((-447 . -101) T) ((-447 . -25) T) ((-447 . -130) T) ((-447 . -628) 42504) ((-447 . -698) 42474) ((-447 . -362) 42444) ((-433 . -1074) T) ((-433 . -597) 42426) ((-433 . -101) T) ((-432 . -360) 42400) ((-432 . -101) T) ((-432 . -597) 42382) ((-432 . -1074) T) ((-431 . -1074) T) ((-431 . -597) 42364) ((-431 . -101) T) ((-429 . -597) 42346) ((-424 . -38) 42330) ((-424 . -628) 42304) ((-424 . -707) T) ((-424 . -1085) T) ((-424 . -1032) T) ((-424 . -1025) T) ((-424 . -111) 42283) ((-424 . -1031) 42267) ((-424 . -21) T) ((-424 . -23) T) ((-424 . -1074) T) ((-424 . -597) 42249) ((-424 . -101) T) ((-424 . -25) T) ((-424 . -130) T) ((-424 . -698) 42233) ((-410 . -707) T) ((-410 . -1074) T) ((-410 . -597) 42215) ((-410 . -101) T) ((-410 . -1085) T) ((-408 . -467) T) ((-408 . -1085) T) ((-408 . -101) T) ((-408 . -597) 42197) ((-408 . -1074) T) ((-408 . -707) T) ((-402 . -967) 42181) ((-402 . -1124) 42159) ((-402 . -1014) 42025) ((-402 . -598) 41833) ((-402 . -996) 41812) ((-402 . -886) 41791) ((-402 . -860) 41775) ((-402 . -825) 41754) ((-402 . -777) 41733) ((-402 . -774) 41712) ((-402 . -827) 41663) ((-402 . -772) 41642) ((-402 . -771) 41621) ((-402 . -800) 41600) ((-402 . -862) 41525) ((-402 . -1185) T) ((-402 . -395) 41509) ((-402 . -621) 41457) ((-402 . -372) 41441) ((-402 . -281) 41399) ((-402 . -304) 41364) ((-402 . -507) 41276) ((-402 . -333) 41260) ((-402 . -239) T) ((-402 . -111) 41198) ((-402 . -1031) 41150) ((-402 . -285) T) ((-402 . -698) 41102) ((-402 . -628) 41054) ((-402 . -38) 41006) ((-402 . -302) T) ((-402 . -446) T) ((-402 . -170) T) ((-402 . -545) T) ((-402 . -897) T) ((-402 . -1190) T) ((-402 . -358) T) ((-402 . -229) 40985) ((-402 . -876) 40944) ((-402 . -227) 40928) ((-402 . -145) 40907) ((-402 . -143) 40886) ((-402 . -130) T) ((-402 . -25) T) ((-402 . -101) T) ((-402 . -597) 40868) ((-402 . -1074) T) ((-402 . -23) T) ((-402 . -21) T) ((-402 . -1025) T) ((-402 . -1032) T) ((-402 . -1085) T) ((-402 . -707) T) ((-402 . -801) 40821) ((-400 . -545) T) ((-400 . -285) T) ((-400 . -170) T) ((-400 . -698) 40795) ((-400 . -628) 40769) ((-400 . -130) T) ((-400 . -25) T) ((-400 . -101) T) ((-400 . -597) 40751) ((-400 . -1074) T) ((-400 . -23) T) ((-400 . -21) T) ((-400 . -1031) 40725) ((-400 . -111) 40692) ((-400 . -1025) T) ((-400 . -1032) T) ((-400 . -1085) T) ((-400 . -707) T) ((-400 . -38) 40666) ((-400 . -227) 40650) ((-400 . -876) 40609) ((-400 . -229) 40588) ((-400 . -333) 40572) ((-400 . -507) 40414) ((-400 . -304) 40353) ((-400 . -281) 40281) ((-400 . -407) 40265) ((-400 . -1014) 40161) ((-400 . -446) 40111) ((-400 . -996) 40090) ((-400 . -598) 39998) ((-400 . -1190) 39976) ((-394 . -1074) T) ((-394 . -597) 39958) ((-394 . -101) T) ((-394 . -598) 39935) ((-393 . -391) T) ((-393 . -1185) T) ((-393 . -597) 39917) ((-388 . -1074) T) ((-388 . -597) 39899) ((-388 . -101) T) ((-385 . -725) 39883) ((-385 . -701) T) ((-385 . -742) T) ((-385 . -111) 39862) ((-385 . -1031) 39846) ((-385 . -21) T) ((-385 . -23) T) ((-385 . -1074) T) ((-385 . -597) 39828) ((-385 . -101) T) ((-385 . -25) T) ((-385 . -130) T) ((-385 . -628) 39812) ((-385 . -698) 39796) ((-383 . -384) T) ((-383 . -101) T) ((-383 . -597) 39778) ((-383 . -1074) T) ((-381 . -707) T) ((-381 . -1074) T) ((-381 . -597) 39760) ((-381 . -101) T) ((-381 . -1085) T) ((-381 . -1014) 39744) ((-381 . -827) 39723) ((-377 . -379) 39702) ((-377 . -1014) 39686) ((-377 . -698) 39656) ((-377 . -628) 39640) ((-377 . -130) T) ((-377 . -25) T) ((-377 . -101) T) ((-377 . -597) 39622) ((-377 . -1074) T) ((-377 . -23) T) ((-377 . -21) T) ((-377 . -1031) 39606) ((-377 . -111) 39585) ((-376 . -111) 39564) ((-376 . -1031) 39548) ((-376 . -21) T) ((-376 . -23) T) ((-376 . -1074) T) ((-376 . -597) 39530) ((-376 . -101) T) ((-376 . -25) T) ((-376 . -130) T) ((-376 . -628) 39514) ((-376 . -502) 39493) ((-376 . -698) 39463) ((-373 . -399) T) ((-373 . -145) T) ((-373 . -628) 39428) ((-373 . -130) T) ((-373 . -25) T) ((-373 . -101) T) ((-373 . -597) 39395) ((-373 . -1074) T) ((-373 . -23) T) ((-373 . -21) T) ((-373 . -707) T) ((-373 . -1085) T) ((-373 . -1032) T) ((-373 . -1025) T) ((-373 . -598) 39309) ((-373 . -358) T) ((-373 . -1190) T) ((-373 . -897) T) ((-373 . -545) T) ((-373 . -170) T) ((-373 . -698) 39274) ((-373 . -38) 39239) ((-373 . -446) T) ((-373 . -302) T) ((-373 . -111) 39195) ((-373 . -1031) 39160) ((-373 . -285) T) ((-373 . -239) T) ((-373 . -825) T) ((-373 . -777) T) ((-373 . -774) T) ((-373 . -827) T) ((-373 . -772) T) ((-373 . -771) T) ((-373 . -862) 39142) ((-373 . -978) T) ((-373 . -996) T) ((-373 . -1014) 39102) ((-373 . -1034) T) ((-373 . -229) T) ((-373 . -801) T) ((-373 . -1171) T) ((-373 . -1174) T) ((-373 . -486) T) ((-373 . -279) T) ((-373 . -94) T) ((-373 . -35) T) ((-359 . -360) 39079) ((-359 . -101) T) ((-359 . -597) 39061) ((-359 . -1074) T) ((-356 . -467) T) ((-356 . -1085) T) ((-356 . -101) T) ((-356 . -597) 39043) ((-356 . -1074) T) ((-356 . -707) T) ((-356 . -1014) 39027) ((-354 . -324) 39011) ((-354 . -229) 38990) ((-354 . -363) 38969) ((-354 . -1124) 38948) ((-354 . -345) 38927) ((-354 . -145) 38906) ((-354 . -628) 38858) ((-354 . -130) T) ((-354 . -25) T) ((-354 . -101) T) ((-354 . -597) 38840) ((-354 . -1074) T) ((-354 . -23) T) ((-354 . -21) T) ((-354 . -707) T) ((-354 . -1085) T) ((-354 . -1032) T) ((-354 . -1025) T) ((-354 . -358) T) ((-354 . -1190) T) ((-354 . -897) T) ((-354 . -545) T) ((-354 . -170) T) ((-354 . -698) 38792) ((-354 . -38) 38757) ((-354 . -446) T) ((-354 . -302) T) ((-354 . -111) 38695) ((-354 . -1031) 38647) ((-354 . -285) T) ((-354 . -239) T) ((-354 . -397) 38598) ((-354 . -143) 38549) ((-354 . -1014) 38533) ((-354 . -1239) 38517) ((-354 . -1250) 38501) ((-350 . -324) 38485) ((-350 . -229) 38464) ((-350 . -363) 38443) ((-350 . -1124) 38422) ((-350 . -345) 38401) ((-350 . -145) 38380) ((-350 . -628) 38332) ((-350 . -130) T) ((-350 . -25) T) ((-350 . -101) T) ((-350 . -597) 38314) ((-350 . -1074) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -707) T) ((-350 . -1085) T) ((-350 . -1032) T) ((-350 . -1025) T) ((-350 . -358) T) ((-350 . -1190) T) ((-350 . -897) T) ((-350 . -545) T) ((-350 . -170) T) ((-350 . -698) 38266) ((-350 . -38) 38231) ((-350 . -446) T) ((-350 . -302) T) ((-350 . -111) 38169) ((-350 . -1031) 38121) ((-350 . -285) T) ((-350 . -239) T) ((-350 . -397) 38072) ((-350 . -143) 38023) ((-350 . -1014) 38007) ((-350 . -1239) 37991) ((-350 . -1250) 37975) ((-349 . -324) 37959) ((-349 . -229) 37938) ((-349 . -363) 37917) ((-349 . -1124) 37896) ((-349 . -345) 37875) ((-349 . -145) 37854) ((-349 . -628) 37806) ((-349 . -130) T) ((-349 . -25) T) ((-349 . -101) T) ((-349 . -597) 37788) ((-349 . -1074) T) ((-349 . -23) T) ((-349 . -21) T) ((-349 . -707) T) ((-349 . -1085) T) ((-349 . -1032) T) ((-349 . -1025) T) ((-349 . -358) T) ((-349 . -1190) T) ((-349 . -897) T) ((-349 . -545) T) ((-349 . -170) T) ((-349 . -698) 37740) ((-349 . -38) 37705) ((-349 . -446) T) ((-349 . -302) T) ((-349 . -111) 37643) ((-349 . -1031) 37595) ((-349 . -285) T) ((-349 . -239) T) ((-349 . -397) 37546) ((-349 . -143) 37497) ((-349 . -1014) 37481) ((-349 . -1239) 37465) ((-349 . -1250) 37449) ((-348 . -324) 37433) ((-348 . -229) 37412) ((-348 . -363) 37391) ((-348 . -1124) 37370) ((-348 . -345) 37349) ((-348 . -145) 37328) ((-348 . -628) 37280) ((-348 . -130) T) ((-348 . -25) T) ((-348 . -101) T) ((-348 . -597) 37262) ((-348 . -1074) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -707) T) ((-348 . -1085) T) ((-348 . -1032) T) ((-348 . -1025) T) ((-348 . -358) T) ((-348 . -1190) T) ((-348 . -897) T) ((-348 . -545) T) ((-348 . -170) T) ((-348 . -698) 37214) ((-348 . -38) 37179) ((-348 . -446) T) ((-348 . -302) T) ((-348 . -111) 37117) ((-348 . -1031) 37069) ((-348 . -285) T) ((-348 . -239) T) ((-348 . -397) 37020) ((-348 . -143) 36971) ((-348 . -1014) 36955) ((-348 . -1239) 36939) ((-348 . -1250) 36923) ((-347 . -324) 36900) ((-347 . -229) T) ((-347 . -363) T) ((-347 . -1124) T) ((-347 . -345) T) ((-347 . -145) 36882) ((-347 . -628) 36827) ((-347 . -130) T) ((-347 . -25) T) ((-347 . -101) T) ((-347 . -597) 36809) ((-347 . -1074) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -707) T) ((-347 . -1085) T) ((-347 . -1032) T) ((-347 . -1025) T) ((-347 . -358) T) ((-347 . -1190) T) ((-347 . -897) T) ((-347 . -545) T) ((-347 . -170) T) ((-347 . -698) 36754) ((-347 . -38) 36719) ((-347 . -446) T) ((-347 . -302) T) ((-347 . -111) 36648) ((-347 . -1031) 36593) ((-347 . -285) T) ((-347 . -239) T) ((-347 . -397) T) ((-347 . -143) T) ((-347 . -1014) 36570) ((-347 . -1239) 36547) ((-347 . -1250) 36524) ((-341 . -324) 36508) ((-341 . -229) 36487) ((-341 . -363) 36466) ((-341 . -1124) 36445) ((-341 . -345) 36424) ((-341 . -145) 36403) ((-341 . -628) 36355) ((-341 . -130) T) ((-341 . -25) T) ((-341 . -101) T) ((-341 . -597) 36337) ((-341 . -1074) T) ((-341 . -23) T) ((-341 . -21) T) ((-341 . -707) T) ((-341 . -1085) T) ((-341 . -1032) T) ((-341 . -1025) T) ((-341 . -358) T) ((-341 . -1190) T) ((-341 . -897) T) ((-341 . -545) T) ((-341 . -170) T) ((-341 . -698) 36289) ((-341 . -38) 36254) ((-341 . -446) T) ((-341 . -302) T) ((-341 . -111) 36192) ((-341 . -1031) 36144) ((-341 . -285) T) ((-341 . -239) T) ((-341 . -397) 36095) ((-341 . -143) 36046) ((-341 . -1014) 36030) ((-341 . -1239) 36014) ((-341 . -1250) 35998) ((-340 . -324) 35982) ((-340 . -229) 35961) ((-340 . -363) 35940) ((-340 . -1124) 35919) ((-340 . -345) 35898) ((-340 . -145) 35877) ((-340 . -628) 35829) ((-340 . -130) T) ((-340 . -25) T) ((-340 . -101) T) ((-340 . -597) 35811) ((-340 . -1074) T) ((-340 . -23) T) ((-340 . -21) T) ((-340 . -707) T) ((-340 . -1085) T) ((-340 . -1032) T) ((-340 . -1025) T) ((-340 . -358) T) ((-340 . -1190) T) ((-340 . -897) T) ((-340 . -545) T) ((-340 . -170) T) ((-340 . -698) 35763) ((-340 . -38) 35728) ((-340 . -446) T) ((-340 . -302) T) ((-340 . -111) 35666) ((-340 . -1031) 35618) ((-340 . -285) T) ((-340 . -239) T) ((-340 . -397) 35569) ((-340 . -143) 35520) ((-340 . -1014) 35504) ((-340 . -1239) 35488) ((-340 . -1250) 35472) ((-339 . -324) 35449) ((-339 . -229) T) ((-339 . -363) T) ((-339 . -1124) T) ((-339 . -345) T) ((-339 . -145) 35431) ((-339 . -628) 35376) ((-339 . -130) T) ((-339 . -25) T) ((-339 . -101) T) ((-339 . -597) 35358) ((-339 . -1074) T) ((-339 . -23) T) ((-339 . -21) T) ((-339 . -707) T) ((-339 . -1085) T) ((-339 . -1032) T) ((-339 . -1025) T) ((-339 . -358) T) ((-339 . -1190) T) ((-339 . -897) T) ((-339 . -545) T) ((-339 . -170) T) ((-339 . -698) 35303) ((-339 . -38) 35268) ((-339 . -446) T) ((-339 . -302) T) ((-339 . -111) 35197) ((-339 . -1031) 35142) ((-339 . -285) T) ((-339 . -239) T) ((-339 . -397) T) ((-339 . -143) T) ((-339 . -1014) 35119) ((-339 . -1239) 35096) ((-339 . -1250) 35073) ((-335 . -324) 35050) ((-335 . -229) T) ((-335 . -363) T) ((-335 . -1124) T) ((-335 . -345) T) ((-335 . -145) 35032) ((-335 . -628) 34977) ((-335 . -130) T) ((-335 . -25) T) ((-335 . -101) T) ((-335 . -597) 34959) ((-335 . -1074) T) ((-335 . -23) T) ((-335 . -21) T) ((-335 . -707) T) ((-335 . -1085) T) ((-335 . -1032) T) ((-335 . -1025) T) ((-335 . -358) T) ((-335 . -1190) T) ((-335 . -897) T) ((-335 . -545) T) ((-335 . -170) T) ((-335 . -698) 34904) ((-335 . -38) 34869) ((-335 . -446) T) ((-335 . -302) T) ((-335 . -111) 34798) ((-335 . -1031) 34743) ((-335 . -285) T) ((-335 . -239) T) ((-335 . -397) T) ((-335 . -143) T) ((-335 . -1014) 34720) ((-335 . -1239) 34697) ((-335 . -1250) 34674) ((-334 . -293) T) ((-334 . -1014) 34641) ((-334 . -1074) T) ((-334 . -597) 34623) ((-334 . -101) T) ((-334 . -827) T) ((-334 . -507) 34589) ((-334 . -304) 34576) ((-334 . -38) 34560) ((-334 . -628) 34534) ((-334 . -707) T) ((-334 . -1085) T) ((-334 . -1032) T) ((-334 . -1025) T) ((-334 . -111) 34513) ((-334 . -1031) 34497) ((-334 . -21) T) ((-334 . -23) T) ((-334 . -25) T) ((-334 . -130) T) ((-334 . -698) 34481) ((-334 . -876) 34462) ((-328 . -331) 34431) ((-328 . -130) T) ((-328 . -25) T) ((-328 . -101) T) ((-328 . -597) 34413) ((-328 . -1074) T) ((-328 . -23) T) ((-328 . -21) T) ((-326 . -827) T) ((-326 . -101) T) ((-326 . -597) 34395) ((-326 . -1074) T) ((-325 . -1074) T) ((-325 . -597) 34377) ((-325 . -101) T) ((-322 . -19) 34361) ((-322 . -631) 34345) ((-322 . -283) 34322) ((-322 . -281) 34299) ((-322 . -588) 34276) ((-322 . -598) 34237) ((-322 . -483) 34221) ((-322 . -101) 34171) ((-322 . -1074) 34121) ((-322 . -507) 34054) ((-322 . -304) 33992) ((-322 . -597) 33904) ((-322 . -1185) T) ((-322 . -34) T) ((-322 . -149) 33888) ((-322 . -827) 33867) ((-322 . -367) 33851) ((-322 . -277) 33835) ((-319 . -318) 33812) ((-319 . -1014) 33796) ((-319 . -23) T) ((-319 . -1074) T) ((-319 . -597) 33778) ((-319 . -101) T) ((-319 . -25) T) ((-319 . -130) T) ((-317 . -21) T) ((-317 . -23) T) ((-317 . -1074) T) ((-317 . -597) 33760) ((-317 . -101) T) ((-317 . -25) T) ((-317 . -130) T) ((-317 . -698) 33742) ((-317 . -628) 33724) ((-317 . -1031) 33706) ((-317 . -111) 33681) ((-317 . -318) 33658) ((-317 . -1014) 33642) ((-317 . -827) 33621) ((-314 . -1214) 33605) ((-314 . -229) 33557) ((-314 . -281) 33542) ((-314 . -876) 33448) ((-314 . -949) 33410) ((-314 . -38) 33251) ((-314 . -111) 33072) ((-314 . -1031) 32907) ((-314 . -628) 32804) ((-314 . -698) 32645) ((-314 . -143) 32624) ((-314 . -145) 32603) ((-314 . -47) 32573) ((-314 . -1210) 32543) ((-314 . -35) 32509) ((-314 . -94) 32475) ((-314 . -279) 32441) ((-314 . -486) 32407) ((-314 . -1174) 32373) ((-314 . -1171) 32339) ((-314 . -978) 32305) ((-314 . -239) 32284) ((-314 . -285) 32235) ((-314 . -130) T) ((-314 . -25) T) ((-314 . -101) T) ((-314 . -597) 32217) ((-314 . -1074) T) ((-314 . -23) T) ((-314 . -21) T) ((-314 . -1025) T) ((-314 . -1032) T) ((-314 . -1085) T) ((-314 . -707) T) ((-314 . -302) 32196) ((-314 . -446) 32175) ((-314 . -170) 32106) ((-314 . -545) 32057) ((-314 . -897) 32036) ((-314 . -1190) 32015) ((-314 . -358) 31994) ((-314 . -772) T) ((-314 . -827) T) ((-314 . -774) T) ((-309 . -416) 31978) ((-309 . -1014) 31641) ((-309 . -598) 31502) ((-309 . -860) 31486) ((-309 . -876) 31452) ((-309 . -467) 31431) ((-309 . -407) 31415) ((-309 . -862) 31340) ((-309 . -1185) T) ((-309 . -395) 31324) ((-309 . -621) 31230) ((-309 . -372) 31199) ((-309 . -239) 31178) ((-309 . -111) 31074) ((-309 . -1031) 30984) ((-309 . -285) 30963) ((-309 . -698) 30873) ((-309 . -628) 30694) ((-309 . -38) 30604) ((-309 . -302) 30583) ((-309 . -446) 30562) ((-309 . -170) 30541) ((-309 . -545) 30520) ((-309 . -897) 30499) ((-309 . -1190) 30478) ((-309 . -358) 30457) ((-309 . -304) 30444) ((-309 . -507) 30410) ((-309 . -827) T) ((-309 . -293) T) ((-309 . -145) 30389) ((-309 . -143) 30368) ((-309 . -1025) 30258) ((-309 . -1032) 30148) ((-309 . -1085) 29997) ((-309 . -707) 29846) ((-309 . -130) 29717) ((-309 . -25) 29569) ((-309 . -101) T) ((-309 . -597) 29551) ((-309 . -1074) T) ((-309 . -23) 29403) ((-309 . -21) 29274) ((-309 . -29) 29244) ((-309 . -978) 29223) ((-309 . -27) 29202) ((-309 . -1171) 29181) ((-309 . -1174) 29160) ((-309 . -486) 29139) ((-309 . -279) 29118) ((-309 . -94) 29097) ((-309 . -35) 29076) ((-309 . -158) 29055) ((-309 . -141) 29034) ((-309 . -612) 29013) ((-309 . -936) 28992) ((-309 . -1112) 28971) ((-308 . -967) 28932) ((-308 . -1124) NIL) ((-308 . -1014) 28862) ((-308 . -598) NIL) ((-308 . -996) NIL) ((-308 . -886) NIL) ((-308 . -860) 28823) ((-308 . -825) NIL) ((-308 . -777) NIL) ((-308 . -774) NIL) ((-308 . -827) NIL) ((-308 . -772) NIL) ((-308 . -771) NIL) ((-308 . -800) NIL) ((-308 . -862) NIL) ((-308 . -1185) T) ((-308 . -395) 28784) ((-308 . -621) 28745) ((-308 . -372) 28706) ((-308 . -281) 28641) ((-308 . -304) 28582) ((-308 . -507) 28474) ((-308 . -333) 28435) ((-308 . -239) T) ((-308 . -111) 28348) ((-308 . -1031) 28277) ((-308 . -285) T) ((-308 . -698) 28206) ((-308 . -628) 28135) ((-308 . -38) 28064) ((-308 . -302) T) ((-308 . -446) T) ((-308 . -170) T) ((-308 . -545) T) ((-308 . -897) T) ((-308 . -1190) T) ((-308 . -358) T) ((-308 . -229) NIL) ((-308 . -876) NIL) ((-308 . -227) 28025) ((-308 . -145) 27981) ((-308 . -143) 27937) ((-308 . -130) T) ((-308 . -25) T) ((-308 . -101) T) ((-308 . -597) 27919) ((-308 . -1074) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -1025) T) ((-308 . -1032) T) ((-308 . -1085) T) ((-308 . -707) T) ((-307 . -1056) T) ((-307 . -597) 27885) ((-307 . -1074) T) ((-307 . -101) T) ((-307 . -92) T) ((-306 . -1074) T) ((-306 . -597) 27867) ((-306 . -101) T) ((-290 . -1162) 27846) ((-290 . -225) 27796) ((-290 . -106) 27746) ((-290 . -304) 27550) ((-290 . -507) 27342) ((-290 . -483) 27279) ((-290 . -149) 27229) ((-290 . -598) NIL) ((-290 . -231) 27179) ((-290 . -594) 27158) ((-290 . -283) 27137) ((-290 . -281) 27116) ((-290 . -101) T) ((-290 . -1074) T) ((-290 . -597) 27098) ((-290 . -1185) T) ((-290 . -34) T) ((-290 . -588) 27077) ((-288 . -1185) T) ((-288 . -507) 27026) ((-288 . -1074) 26808) ((-288 . -597) 26549) ((-288 . -101) 26331) ((-288 . -25) 26195) ((-288 . -21) 26078) ((-288 . -23) 25961) ((-288 . -130) 25844) ((-288 . -1085) 25725) ((-288 . -707) 25627) ((-288 . -467) 25606) ((-288 . -1025) 25548) ((-288 . -1032) 25490) ((-288 . -628) 25350) ((-288 . -111) 25266) ((-288 . -1031) 25187) ((-288 . -698) 25129) ((-288 . -876) 25088) ((-288 . -1239) 25058) ((-286 . -597) 25040) ((-284 . -302) T) ((-284 . -446) T) ((-284 . -38) 25027) ((-284 . -707) T) ((-284 . -1085) T) ((-284 . -1032) T) ((-284 . -1025) T) ((-284 . -111) 25012) ((-284 . -1031) 24999) ((-284 . -21) T) ((-284 . -23) T) ((-284 . -1074) T) ((-284 . -597) 24981) ((-284 . -101) T) ((-284 . -25) T) ((-284 . -130) T) ((-284 . -628) 24968) ((-284 . -698) 24955) ((-284 . -170) T) ((-284 . -285) T) ((-284 . -545) T) ((-284 . -897) T) ((-275 . -597) 24937) ((-274 . -959) 24921) ((-273 . -959) 24905) ((-270 . -827) T) ((-270 . -101) T) ((-270 . -597) 24887) ((-270 . -1074) T) ((-269 . -816) T) ((-269 . -101) T) ((-269 . -597) 24869) ((-269 . -1074) T) ((-268 . -816) T) ((-268 . -101) T) ((-268 . -597) 24851) ((-268 . -1074) T) ((-267 . -816) T) ((-267 . -101) T) ((-267 . -597) 24833) ((-267 . -1074) T) ((-266 . -816) T) ((-266 . -101) T) ((-266 . -597) 24815) ((-266 . -1074) T) ((-265 . -816) T) ((-265 . -101) T) ((-265 . -597) 24797) ((-265 . -1074) T) ((-264 . -816) T) ((-264 . -101) T) ((-264 . -597) 24779) ((-264 . -1074) T) ((-263 . -816) T) ((-263 . -101) T) ((-263 . -597) 24761) ((-263 . -1074) T) ((-259 . -248) 24723) ((-259 . -1014) 24567) ((-259 . -598) 24315) ((-259 . -321) 24287) ((-259 . -407) 24271) ((-259 . -38) 24120) ((-259 . -111) 23949) ((-259 . -1031) 23792) ((-259 . -628) 23717) ((-259 . -698) 23566) ((-259 . -143) 23545) ((-259 . -145) 23524) ((-259 . -170) 23435) ((-259 . -545) 23366) ((-259 . -285) 23297) ((-259 . -47) 23269) ((-259 . -372) 23253) ((-259 . -621) 23201) ((-259 . -446) 23152) ((-259 . -507) 23037) ((-259 . -827) 23016) ((-259 . -876) 22962) ((-259 . -862) 22821) ((-259 . -886) 22800) ((-259 . -1190) 22779) ((-259 . -926) 22746) ((-259 . -304) 22733) ((-259 . -229) 22712) ((-259 . -130) T) ((-259 . -25) T) ((-259 . -101) T) ((-259 . -597) 22694) ((-259 . -1074) T) ((-259 . -23) T) ((-259 . -21) T) ((-259 . -707) T) ((-259 . -1085) T) ((-259 . -1032) T) ((-259 . -1025) T) ((-259 . -227) 22678) ((-256 . -1074) T) ((-256 . -597) 22660) ((-256 . -101) T) ((-246 . -234) 22639) ((-246 . -1239) 22609) ((-246 . -771) 22588) ((-246 . -825) 22567) ((-246 . -777) 22518) ((-246 . -774) 22469) ((-246 . -827) 22420) ((-246 . -772) 22371) ((-246 . -773) 22350) ((-246 . -283) 22327) ((-246 . -281) 22304) ((-246 . -483) 22288) ((-246 . -507) 22221) ((-246 . -304) 22159) ((-246 . -1185) T) ((-246 . -34) T) ((-246 . -588) 22136) ((-246 . -1014) 21963) ((-246 . -407) 21932) ((-246 . -621) 21838) ((-246 . -372) 21807) ((-246 . -363) 21786) ((-246 . -229) 21738) ((-246 . -876) 21670) ((-246 . -227) 21639) ((-246 . -111) 21529) ((-246 . -1031) 21426) ((-246 . -170) 21405) ((-246 . -597) 21366) ((-246 . -698) 21308) ((-246 . -628) 21143) ((-246 . -130) T) ((-246 . -23) T) ((-246 . -21) T) ((-246 . -1025) 21073) ((-246 . -1032) 21003) ((-246 . -1085) 20913) ((-246 . -707) 20823) ((-246 . -38) 20793) ((-246 . -1074) T) ((-246 . -101) T) ((-246 . -25) T) ((-245 . -234) 20772) ((-245 . -1239) 20742) ((-245 . -771) 20721) ((-245 . -825) 20700) ((-245 . -777) 20651) ((-245 . -774) 20602) ((-245 . -827) 20553) ((-245 . -772) 20504) ((-245 . -773) 20483) ((-245 . -283) 20460) ((-245 . -281) 20437) ((-245 . -483) 20421) ((-245 . -507) 20354) ((-245 . -304) 20292) ((-245 . -1185) T) ((-245 . -34) T) ((-245 . -588) 20269) ((-245 . -1014) 20096) ((-245 . -407) 20065) ((-245 . -621) 19971) ((-245 . -372) 19940) ((-245 . -363) 19919) ((-245 . -229) 19871) ((-245 . -876) 19803) ((-245 . -227) 19772) ((-245 . -111) 19662) ((-245 . -1031) 19559) ((-245 . -170) 19538) ((-245 . -597) 19499) ((-245 . -698) 19441) ((-245 . -628) 19263) ((-245 . -130) T) ((-245 . -23) T) ((-245 . -21) T) ((-245 . -1025) 19193) ((-245 . -1032) 19123) ((-245 . -1085) 19033) ((-245 . -707) 18943) ((-245 . -38) 18913) ((-245 . -1074) T) ((-245 . -101) T) ((-245 . -25) T) ((-244 . -1074) T) ((-244 . -597) 18895) ((-244 . -101) T) ((-243 . -926) 18840) ((-243 . -1014) 18716) ((-243 . -1190) 18695) ((-243 . -886) 18674) ((-243 . -862) NIL) ((-243 . -876) 18651) ((-243 . -827) 18630) ((-243 . -507) 18573) ((-243 . -446) 18524) ((-243 . -621) 18472) ((-243 . -372) 18456) ((-243 . -47) 18413) ((-243 . -38) 18262) ((-243 . -698) 18111) ((-243 . -285) 18042) ((-243 . -545) 17973) ((-243 . -111) 17802) ((-243 . -1031) 17645) ((-243 . -170) 17556) ((-243 . -145) 17535) ((-243 . -143) 17514) ((-243 . -628) 17439) ((-243 . -130) T) ((-243 . -25) T) ((-243 . -101) T) ((-243 . -597) 17421) ((-243 . -1074) T) ((-243 . -23) T) ((-243 . -21) T) ((-243 . -1025) T) ((-243 . -1032) T) ((-243 . -1085) T) ((-243 . -707) T) ((-243 . -407) 17405) ((-243 . -321) 17362) ((-243 . -304) 17349) ((-243 . -598) 17210) ((-241 . -646) 17194) ((-241 . -1220) 17178) ((-241 . -986) 17162) ((-241 . -1122) 17146) ((-241 . -827) 17125) ((-241 . -367) 17109) ((-241 . -631) 17093) ((-241 . -283) 17070) ((-241 . -281) 17047) ((-241 . -588) 17024) ((-241 . -598) 16985) ((-241 . -483) 16969) ((-241 . -101) 16919) ((-241 . -1074) 16869) ((-241 . -507) 16802) ((-241 . -304) 16740) ((-241 . -597) 16652) ((-241 . -1185) T) ((-241 . -34) T) ((-241 . -149) 16636) ((-241 . -277) 16620) ((-235 . -234) 16599) ((-235 . -1239) 16569) ((-235 . -771) 16548) ((-235 . -825) 16527) ((-235 . -777) 16478) ((-235 . -774) 16429) ((-235 . -827) 16380) ((-235 . -772) 16331) ((-235 . -773) 16310) ((-235 . -283) 16287) ((-235 . -281) 16264) ((-235 . -483) 16248) ((-235 . -507) 16181) ((-235 . -304) 16119) ((-235 . -1185) T) ((-235 . -34) T) ((-235 . -588) 16096) ((-235 . -1014) 15923) ((-235 . -407) 15892) ((-235 . -621) 15798) ((-235 . -372) 15767) ((-235 . -363) 15746) ((-235 . -229) 15698) ((-235 . -876) 15630) ((-235 . -227) 15599) ((-235 . -111) 15489) ((-235 . -1031) 15386) ((-235 . -170) 15365) ((-235 . -597) 15096) ((-235 . -698) 15038) ((-235 . -628) 14886) ((-235 . -130) 14756) ((-235 . -23) 14626) ((-235 . -21) 14536) ((-235 . -1025) 14466) ((-235 . -1032) 14396) ((-235 . -1085) 14306) ((-235 . -707) 14216) ((-235 . -38) 14186) ((-235 . -1074) 13976) ((-235 . -101) 13766) ((-235 . -25) 13617) ((-223 . -666) 13575) ((-223 . -483) 13559) ((-223 . -101) 13537) ((-223 . -1074) 13515) ((-223 . -507) 13448) ((-223 . -304) 13386) ((-223 . -597) 13318) ((-223 . -1185) T) ((-223 . -34) T) ((-223 . -56) 13276) ((-221 . -399) T) ((-221 . -145) T) ((-221 . -628) 13241) ((-221 . -130) T) ((-221 . -25) T) ((-221 . -101) T) ((-221 . -597) 13223) ((-221 . -1074) T) ((-221 . -23) T) ((-221 . -21) T) ((-221 . -707) T) ((-221 . -1085) T) ((-221 . -1032) T) ((-221 . -1025) T) ((-221 . -598) 13153) ((-221 . -358) T) ((-221 . -1190) T) ((-221 . -897) T) ((-221 . -545) T) ((-221 . -170) T) ((-221 . -698) 13118) ((-221 . -38) 13083) ((-221 . -446) T) ((-221 . -302) T) ((-221 . -111) 13039) ((-221 . -1031) 13004) ((-221 . -285) T) ((-221 . -239) T) ((-221 . -825) T) ((-221 . -777) T) ((-221 . -774) T) ((-221 . -827) T) ((-221 . -772) T) ((-221 . -771) T) ((-221 . -862) 12986) ((-221 . -978) T) ((-221 . -996) T) ((-221 . -1014) 12946) ((-221 . -1034) T) ((-221 . -229) T) ((-221 . -801) T) ((-221 . -1171) T) ((-221 . -1174) T) ((-221 . -486) T) ((-221 . -279) T) ((-221 . -94) T) ((-221 . -35) T) ((-219 . -603) 12923) ((-219 . -628) 12890) ((-219 . -707) T) ((-219 . -1085) T) ((-219 . -1032) T) ((-219 . -1025) T) ((-219 . -21) T) ((-219 . -23) T) ((-219 . -1074) T) ((-219 . -597) 12872) ((-219 . -101) T) ((-219 . -25) T) ((-219 . -130) T) ((-219 . -1014) 12849) ((-218 . -249) 12833) ((-218 . -1094) 12817) ((-218 . -106) 12801) ((-218 . -34) T) ((-218 . -1185) T) ((-218 . -597) 12733) ((-218 . -304) 12671) ((-218 . -507) 12604) ((-218 . -1074) 12582) ((-218 . -101) 12560) ((-218 . -483) 12544) ((-218 . -971) 12528) ((-214 . -1056) T) ((-214 . -597) 12494) ((-214 . -1074) T) ((-214 . -101) T) ((-214 . -92) T) ((-213 . -967) 12476) ((-213 . -1124) T) ((-213 . -1014) 12436) ((-213 . -598) 12366) ((-213 . -996) T) ((-213 . -886) NIL) ((-213 . -860) 12348) ((-213 . -825) T) ((-213 . -777) T) ((-213 . -774) T) ((-213 . -827) T) ((-213 . -772) T) ((-213 . -771) T) ((-213 . -800) T) ((-213 . -862) 12330) ((-213 . -1185) T) ((-213 . -395) 12312) ((-213 . -621) 12294) ((-213 . -372) 12276) ((-213 . -281) NIL) ((-213 . -304) NIL) ((-213 . -507) NIL) ((-213 . -333) 12258) ((-213 . -239) T) ((-213 . -111) 12192) ((-213 . -1031) 12142) ((-213 . -285) T) ((-213 . -698) 12092) ((-213 . -628) 12042) ((-213 . -38) 11992) ((-213 . -302) T) ((-213 . -446) T) ((-213 . -170) T) ((-213 . -545) T) ((-213 . -897) T) ((-213 . -1190) T) ((-213 . -358) T) ((-213 . -229) T) ((-213 . -876) NIL) ((-213 . -227) 11974) ((-213 . -145) T) ((-213 . -143) NIL) ((-213 . -130) T) ((-213 . -25) T) ((-213 . -101) T) ((-213 . -597) 11956) ((-213 . -1074) T) ((-213 . -23) T) ((-213 . -21) T) ((-213 . -1025) T) ((-213 . -1032) T) ((-213 . -1085) T) ((-213 . -707) T) ((-210 . -1074) T) ((-210 . -597) 11938) ((-210 . -101) T) ((-209 . -1074) T) ((-209 . -597) 11920) ((-209 . -101) T) ((-208 . -871) T) ((-208 . -101) T) ((-208 . -597) 11902) ((-208 . -1074) T) ((-207 . -871) T) ((-207 . -101) T) ((-207 . -597) 11884) ((-207 . -1074) T) ((-205 . -780) T) ((-205 . -101) T) ((-205 . -597) 11866) ((-205 . -1074) T) ((-204 . -780) T) ((-204 . -101) T) ((-204 . -597) 11848) ((-204 . -1074) T) ((-203 . -780) T) ((-203 . -101) T) ((-203 . -597) 11830) ((-203 . -1074) T) ((-202 . -780) T) ((-202 . -101) T) ((-202 . -597) 11812) ((-202 . -1074) T) ((-199 . -767) T) ((-199 . -101) T) ((-199 . -597) 11794) ((-199 . -1074) T) ((-198 . -767) T) ((-198 . -101) T) ((-198 . -597) 11776) ((-198 . -1074) T) ((-197 . -767) T) ((-197 . -101) T) ((-197 . -597) 11758) ((-197 . -1074) T) ((-196 . -767) T) ((-196 . -101) T) ((-196 . -597) 11740) ((-196 . -1074) T) ((-195 . -767) T) ((-195 . -101) T) ((-195 . -597) 11722) ((-195 . -1074) T) ((-194 . -767) T) ((-194 . -101) T) ((-194 . -597) 11704) ((-194 . -1074) T) ((-193 . -767) T) ((-193 . -101) T) ((-193 . -597) 11686) ((-193 . -1074) T) ((-192 . -767) T) ((-192 . -101) T) ((-192 . -597) 11668) ((-192 . -1074) T) ((-191 . -767) T) ((-191 . -101) T) ((-191 . -597) 11650) ((-191 . -1074) T) ((-190 . -767) T) ((-190 . -101) T) ((-190 . -597) 11632) ((-190 . -1074) T) ((-189 . -767) T) ((-189 . -101) T) ((-189 . -597) 11614) ((-189 . -1074) T) ((-183 . -1074) T) ((-183 . -597) 11596) ((-183 . -101) T) ((-182 . -1074) T) ((-182 . -597) 11578) ((-182 . -101) T) ((-181 . -1074) T) ((-181 . -597) 11560) ((-181 . -101) T) ((-178 . -1056) T) ((-178 . -597) 11526) ((-178 . -1074) T) ((-178 . -101) T) ((-178 . -92) T) ((-173 . -597) 11508) ((-172 . -38) 11440) ((-172 . -628) 11372) ((-172 . -707) T) ((-172 . -1085) T) ((-172 . -1032) T) ((-172 . -1025) T) ((-172 . -111) 11283) ((-172 . -1031) 11215) ((-172 . -21) T) ((-172 . -23) T) ((-172 . -1074) T) ((-172 . -597) 11197) ((-172 . -101) T) ((-172 . -25) T) ((-172 . -130) T) ((-172 . -698) 11129) ((-172 . -358) T) ((-172 . -1190) T) ((-172 . -897) T) ((-172 . -545) T) ((-172 . -170) T) ((-172 . -446) T) ((-172 . -302) T) ((-172 . -285) T) ((-172 . -239) T) ((-169 . -1074) T) ((-169 . -597) 11111) ((-169 . -101) T) ((-166 . -164) 11095) ((-166 . -35) 11073) ((-166 . -94) 11051) ((-166 . -279) 11029) ((-166 . -486) 11007) ((-166 . -1174) 10985) ((-166 . -1171) 10963) ((-166 . -978) 10915) ((-166 . -886) 10868) ((-166 . -598) 10630) ((-166 . -860) 10614) ((-166 . -827) 10593) ((-166 . -363) 10544) ((-166 . -345) 10523) ((-166 . -1124) 10502) ((-166 . -397) 10481) ((-166 . -405) 10452) ((-166 . -38) 10280) ((-166 . -111) 10176) ((-166 . -1031) 10086) ((-166 . -628) 9996) ((-166 . -698) 9824) ((-166 . -365) 9795) ((-166 . -705) 9766) ((-166 . -1014) 9662) ((-166 . -407) 9646) ((-166 . -862) 9571) ((-166 . -1185) T) ((-166 . -395) 9555) ((-166 . -621) 9503) ((-166 . -372) 9487) ((-166 . -281) 9445) ((-166 . -304) 9410) ((-166 . -507) 9322) ((-166 . -333) 9306) ((-166 . -239) 9257) ((-166 . -1190) 9162) ((-166 . -358) 9113) ((-166 . -897) 9044) ((-166 . -545) 8955) ((-166 . -285) 8866) ((-166 . -446) 8797) ((-166 . -302) 8728) ((-166 . -229) 8679) ((-166 . -876) 8638) ((-166 . -227) 8622) ((-166 . -170) T) ((-166 . -145) 8601) ((-166 . -1025) T) ((-166 . -1032) T) ((-166 . -1085) T) ((-166 . -707) T) ((-166 . -21) T) ((-166 . -23) T) ((-166 . -1074) T) ((-166 . -597) 8583) ((-166 . -101) T) ((-166 . -25) T) ((-166 . -130) T) ((-166 . -143) 8534) ((-166 . -801) 8513) ((-160 . -1056) T) ((-160 . -597) 8479) ((-160 . -1074) T) ((-160 . -101) T) ((-160 . -92) T) ((-159 . -1074) T) ((-159 . -597) 8461) ((-159 . -101) T) ((-155 . -25) T) ((-155 . -101) T) ((-155 . -597) 8443) ((-155 . -1074) T) ((-154 . -1056) T) ((-154 . -597) 8409) ((-154 . -1074) T) ((-154 . -101) T) ((-154 . -92) T) ((-152 . -1056) T) ((-152 . -597) 8375) ((-152 . -1074) T) ((-152 . -101) T) ((-152 . -92) T) ((-150 . -1025) T) ((-150 . -1032) T) ((-150 . -1085) T) ((-150 . -707) T) ((-150 . -21) T) ((-150 . -23) T) ((-150 . -1074) T) ((-150 . -597) 8357) ((-150 . -101) T) ((-150 . -25) T) ((-150 . -130) T) ((-150 . -628) 8331) ((-150 . -38) 8315) ((-150 . -111) 8294) ((-150 . -1031) 8278) ((-150 . -698) 8262) ((-150 . -1239) 8246) ((-142 . -821) T) ((-142 . -827) T) ((-142 . -1074) T) ((-142 . -597) 8228) ((-142 . -101) T) ((-142 . -363) T) ((-139 . -1074) T) ((-139 . -597) 8210) ((-139 . -101) T) ((-139 . -598) 8169) ((-139 . -421) 8151) ((-139 . -1072) 8133) ((-139 . -363) T) ((-139 . -231) 8115) ((-139 . -149) 8097) ((-139 . -483) 8079) ((-139 . -507) NIL) ((-139 . -304) NIL) ((-139 . -1185) T) ((-139 . -34) T) ((-139 . -106) 8061) ((-139 . -225) 8043) ((-138 . -597) 8025) ((-137 . -1056) T) ((-137 . -597) 7991) ((-137 . -1074) T) ((-137 . -101) T) ((-137 . -92) T) ((-136 . -1056) T) ((-136 . -597) 7957) ((-136 . -1074) T) ((-136 . -101) T) ((-136 . -92) T) ((-134 . -459) 7934) ((-134 . -1014) 7918) ((-134 . -1074) T) ((-134 . -597) 7900) ((-134 . -101) T) ((-134 . -464) 7855) ((-133 . -827) T) ((-133 . -101) T) ((-133 . -597) 7837) ((-133 . -1074) T) ((-133 . -23) T) ((-133 . -25) T) ((-133 . -707) T) ((-133 . -1085) T) ((-133 . -1014) 7819) ((-132 . -1056) T) ((-132 . -597) 7785) ((-132 . -1074) T) ((-132 . -101) T) ((-132 . -92) T) ((-129 . -19) 7767) ((-129 . -631) 7749) ((-129 . -283) 7724) ((-129 . -281) 7699) ((-129 . -588) 7674) ((-129 . -598) NIL) ((-129 . -483) 7656) ((-129 . -101) T) ((-129 . -1074) T) ((-129 . -507) NIL) ((-129 . -304) NIL) ((-129 . -597) 7638) ((-129 . -1185) T) ((-129 . -34) T) ((-129 . -149) 7620) ((-129 . -827) T) ((-129 . -367) 7602) ((-128 . -827) T) ((-128 . -101) T) ((-128 . -597) 7554) ((-128 . -1074) T) ((-127 . -125) 7538) ((-127 . -986) 7522) ((-127 . -34) T) ((-127 . -1185) T) ((-127 . -597) 7454) ((-127 . -304) 7392) ((-127 . -507) 7325) ((-127 . -1074) 7303) ((-127 . -101) 7281) ((-127 . -483) 7265) ((-127 . -119) 7249) ((-126 . -125) 7233) ((-126 . -986) 7217) ((-126 . -34) T) ((-126 . -1185) T) ((-126 . -597) 7149) ((-126 . -304) 7087) ((-126 . -507) 7020) ((-126 . -1074) 6998) ((-126 . -101) 6976) ((-126 . -483) 6960) ((-126 . -119) 6944) ((-121 . -125) 6928) ((-121 . -986) 6912) ((-121 . -34) T) ((-121 . -1185) T) ((-121 . -597) 6844) ((-121 . -304) 6782) ((-121 . -507) 6715) ((-121 . -1074) 6693) ((-121 . -101) 6671) ((-121 . -483) 6655) ((-121 . -119) 6639) ((-117 . -967) 6616) ((-117 . -1124) NIL) ((-117 . -1014) 6593) ((-117 . -598) NIL) ((-117 . -996) NIL) ((-117 . -886) NIL) ((-117 . -860) 6570) ((-117 . -825) NIL) ((-117 . -777) NIL) ((-117 . -774) NIL) ((-117 . -827) NIL) ((-117 . -772) NIL) ((-117 . -771) NIL) ((-117 . -800) NIL) ((-117 . -862) NIL) ((-117 . -1185) T) ((-117 . -395) 6547) ((-117 . -621) 6524) ((-117 . -372) 6501) ((-117 . -281) 6452) ((-117 . -304) 6409) ((-117 . -507) 6317) ((-117 . -333) 6294) ((-117 . -239) T) ((-117 . -111) 6223) ((-117 . -1031) 6168) ((-117 . -285) T) ((-117 . -698) 6113) ((-117 . -628) 6058) ((-117 . -38) 6003) ((-117 . -302) T) ((-117 . -446) T) ((-117 . -170) T) ((-117 . -545) T) ((-117 . -897) T) ((-117 . -1190) T) ((-117 . -358) T) ((-117 . -229) NIL) ((-117 . -876) NIL) ((-117 . -227) 5980) ((-117 . -145) T) ((-117 . -143) NIL) ((-117 . -130) T) ((-117 . -25) T) ((-117 . -101) T) ((-117 . -597) 5962) ((-117 . -1074) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1025) T) ((-117 . -1032) T) ((-117 . -1085) T) ((-117 . -707) T) ((-116 . -846) 5946) ((-116 . -897) T) ((-116 . -545) T) ((-116 . -285) T) ((-116 . -170) T) ((-116 . -698) 5933) ((-116 . -1031) 5920) ((-116 . -111) 5905) ((-116 . -38) 5892) ((-116 . -446) T) ((-116 . -302) T) ((-116 . -1025) T) ((-116 . -1032) T) ((-116 . -1085) T) ((-116 . -707) T) ((-116 . -21) T) ((-116 . -23) T) ((-116 . -1074) T) ((-116 . -597) 5874) ((-116 . -101) T) ((-116 . -25) T) ((-116 . -130) T) ((-116 . -628) 5861) ((-116 . -145) T) ((-113 . -827) T) ((-113 . -101) T) ((-113 . -597) 5843) ((-113 . -1074) T) ((-112 . -821) T) ((-112 . -827) T) ((-112 . -1074) T) ((-112 . -597) 5825) ((-112 . -101) T) ((-112 . -363) T) ((-112 . -642) T) ((-112 . -943) T) ((-112 . -598) 5807) ((-110 . -123) T) ((-110 . -367) 5789) ((-110 . -827) T) ((-110 . -149) 5771) ((-110 . -34) T) ((-110 . -1185) T) ((-110 . -597) 5753) ((-110 . -304) NIL) ((-110 . -507) NIL) ((-110 . -1074) T) ((-110 . -483) 5735) ((-110 . -598) 5717) ((-110 . -588) 5692) ((-110 . -281) 5667) ((-110 . -283) 5642) ((-110 . -631) 5624) ((-110 . -19) 5606) ((-110 . -101) T) ((-110 . -642) T) ((-109 . -360) 5580) ((-109 . -101) T) ((-109 . -597) 5562) ((-109 . -1074) T) ((-108 . -597) 5544) ((-107 . -967) 5526) ((-107 . -1124) T) ((-107 . -1014) 5486) ((-107 . -598) 5416) ((-107 . -996) T) ((-107 . -886) NIL) ((-107 . -860) 5398) ((-107 . -825) T) ((-107 . -777) T) ((-107 . -774) T) ((-107 . -827) T) ((-107 . -772) T) ((-107 . -771) T) ((-107 . -800) T) ((-107 . -862) 5380) ((-107 . -1185) T) ((-107 . -395) 5362) ((-107 . -621) 5344) ((-107 . -372) 5326) ((-107 . -281) NIL) ((-107 . -304) NIL) ((-107 . -507) NIL) ((-107 . -333) 5308) ((-107 . -239) T) ((-107 . -111) 5242) ((-107 . -1031) 5192) ((-107 . -285) T) ((-107 . -698) 5142) ((-107 . -628) 5092) ((-107 . -38) 5042) ((-107 . -302) T) ((-107 . -446) T) ((-107 . -170) T) ((-107 . -545) T) ((-107 . -897) T) ((-107 . -1190) T) ((-107 . -358) T) ((-107 . -229) T) ((-107 . -876) NIL) ((-107 . -227) 5024) ((-107 . -145) T) ((-107 . -143) NIL) ((-107 . -130) T) ((-107 . -25) T) ((-107 . -101) T) ((-107 . -597) 5006) ((-107 . -1074) T) ((-107 . -23) T) ((-107 . -21) T) ((-107 . -1025) T) ((-107 . -1032) T) ((-107 . -1085) T) ((-107 . -707) T) ((-104 . -1074) T) ((-104 . -597) 4988) ((-104 . -101) T) ((-102 . -125) 4972) ((-102 . -986) 4956) ((-102 . -34) T) ((-102 . -1185) T) ((-102 . -597) 4888) ((-102 . -304) 4826) ((-102 . -507) 4759) ((-102 . -1074) 4737) ((-102 . -101) 4715) ((-102 . -483) 4699) ((-102 . -119) 4683) ((-98 . -467) T) ((-98 . -1085) T) ((-98 . -101) T) ((-98 . -597) 4665) ((-98 . -1074) T) ((-98 . -707) T) ((-98 . -281) 4644) ((-96 . -1074) T) ((-96 . -597) 4626) ((-96 . -101) T) ((-95 . -1056) T) ((-95 . -597) 4592) ((-95 . -1074) T) ((-95 . -101) T) ((-95 . -92) T) ((-90 . -1094) 4576) ((-90 . -483) 4560) ((-90 . -101) 4538) ((-90 . -1074) 4516) ((-90 . -507) 4449) ((-90 . -304) 4387) ((-90 . -597) 4319) ((-90 . -1185) T) ((-90 . -34) T) ((-90 . -106) 4303) ((-88 . -392) T) ((-88 . -597) 4285) ((-88 . -1185) T) ((-88 . -391) T) ((-87 . -380) T) ((-87 . -597) 4267) ((-87 . -1185) T) ((-87 . -391) T) ((-86 . -434) T) ((-86 . -597) 4249) ((-86 . -1185) T) ((-86 . -391) T) ((-85 . -435) T) ((-85 . -597) 4231) ((-85 . -1185) T) ((-85 . -391) T) ((-84 . -380) T) ((-84 . -597) 4213) ((-84 . -1185) T) ((-84 . -391) T) ((-83 . -380) T) ((-83 . -597) 4195) ((-83 . -1185) T) ((-83 . -391) T) ((-82 . -435) T) ((-82 . -597) 4177) ((-82 . -1185) T) ((-82 . -391) T) ((-81 . -435) T) ((-81 . -597) 4159) ((-81 . -1185) T) ((-81 . -391) T) ((-80 . -435) T) ((-80 . -597) 4141) ((-80 . -1185) T) ((-80 . -391) T) ((-79 . -435) T) ((-79 . -597) 4123) ((-79 . -1185) T) ((-79 . -391) T) ((-78 . -435) T) ((-78 . -597) 4105) ((-78 . -1185) T) ((-78 . -391) T) ((-77 . -392) T) ((-77 . -597) 4087) ((-77 . -1185) T) ((-77 . -391) T) ((-76 . -435) T) ((-76 . -597) 4069) ((-76 . -1185) T) ((-76 . -391) T) ((-75 . -435) T) ((-75 . -597) 4051) ((-75 . -1185) T) ((-75 . -391) T) ((-74 . -392) T) ((-74 . -597) 4033) ((-74 . -1185) T) ((-74 . -391) T) ((-73 . -435) T) ((-73 . -597) 4015) ((-73 . -1185) T) ((-73 . -391) T) ((-72 . -378) T) ((-72 . -597) 3997) ((-72 . -1185) T) ((-72 . -391) T) ((-71 . -391) T) ((-71 . -1185) T) ((-71 . -597) 3979) ((-70 . -435) T) ((-70 . -597) 3961) ((-70 . -1185) T) ((-70 . -391) T) ((-69 . -378) T) ((-69 . -597) 3943) ((-69 . -1185) T) ((-69 . -391) T) ((-68 . -391) T) ((-68 . -1185) T) ((-68 . -597) 3925) ((-67 . -378) T) ((-67 . -597) 3907) ((-67 . -1185) T) ((-67 . -391) T) ((-66 . -378) T) ((-66 . -597) 3889) ((-66 . -1185) T) ((-66 . -391) T) ((-65 . -392) T) ((-65 . -597) 3871) ((-65 . -1185) T) ((-65 . -391) T) ((-64 . -380) T) ((-64 . -597) 3853) ((-64 . -1185) T) ((-64 . -391) T) ((-63 . -435) T) ((-63 . -597) 3835) ((-63 . -1185) T) ((-63 . -391) T) ((-62 . -391) T) ((-62 . -1185) T) ((-62 . -597) 3817) ((-61 . -435) T) ((-61 . -597) 3799) ((-61 . -1185) T) ((-61 . -391) T) ((-60 . -392) T) ((-60 . -597) 3781) ((-60 . -1185) T) ((-60 . -391) T) ((-59 . -56) 3743) ((-59 . -34) T) ((-59 . -1185) T) ((-59 . -597) 3675) ((-59 . -304) 3613) ((-59 . -507) 3546) ((-59 . -1074) 3524) ((-59 . -101) 3502) ((-59 . -483) 3486) ((-57 . -19) 3470) ((-57 . -631) 3454) ((-57 . -283) 3431) ((-57 . -281) 3408) ((-57 . -588) 3385) ((-57 . -598) 3346) ((-57 . -483) 3330) ((-57 . -101) 3280) ((-57 . -1074) 3230) ((-57 . -507) 3163) ((-57 . -304) 3101) ((-57 . -597) 3013) ((-57 . -1185) T) ((-57 . -34) T) ((-57 . -149) 2997) ((-57 . -827) 2976) ((-57 . -367) 2960) ((-51 . -1074) T) ((-51 . -597) 2942) ((-51 . -101) T) ((-50 . -603) 2926) ((-50 . -628) 2900) ((-50 . -707) T) ((-50 . -1085) T) ((-50 . -1032) T) ((-50 . -1025) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1074) T) ((-50 . -597) 2882) ((-50 . -101) T) ((-50 . -25) T) ((-50 . -130) T) ((-50 . -1014) 2866) ((-49 . -1074) T) ((-49 . -597) 2848) ((-49 . -101) T) ((-48 . -293) T) ((-48 . -1014) 2791) ((-48 . -1074) T) ((-48 . -597) 2773) ((-48 . -101) T) ((-48 . -827) T) ((-48 . -507) 2739) ((-48 . -304) 2726) ((-48 . -27) T) ((-48 . -978) T) ((-48 . -239) T) ((-48 . -111) 2682) ((-48 . -1031) 2647) ((-48 . -285) T) ((-48 . -698) 2612) ((-48 . -628) 2577) ((-48 . -130) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1025) T) ((-48 . -1032) T) ((-48 . -1085) T) ((-48 . -707) T) ((-48 . -38) 2542) ((-48 . -302) T) ((-48 . -446) T) ((-48 . -170) T) ((-48 . -545) T) ((-48 . -897) T) ((-48 . -1190) T) ((-48 . -358) T) ((-48 . -621) 2502) ((-48 . -996) T) ((-48 . -598) 2447) ((-48 . -145) T) ((-48 . -229) T) ((-45 . -36) 2426) ((-45 . -588) 2351) ((-45 . -304) 2155) ((-45 . -507) 1947) ((-45 . -483) 1884) ((-45 . -281) 1809) ((-45 . -283) 1734) ((-45 . -594) 1713) ((-45 . -231) 1663) ((-45 . -106) 1613) ((-45 . -225) 1563) ((-45 . -1162) 1542) ((-45 . -277) 1492) ((-45 . -149) 1442) ((-45 . -34) T) ((-45 . -1185) T) ((-45 . -597) 1424) ((-45 . -1074) T) ((-45 . -101) T) ((-45 . -598) NIL) ((-45 . -631) 1374) ((-45 . -367) 1324) ((-45 . -827) NIL) ((-45 . -1122) 1274) ((-45 . -986) 1224) ((-45 . -1220) 1174) ((-45 . -646) 1124) ((-44 . -413) 1108) ((-44 . -725) 1092) ((-44 . -701) T) ((-44 . -742) T) ((-44 . -111) 1071) ((-44 . -1031) 1055) ((-44 . -21) T) ((-44 . -23) T) ((-44 . -1074) T) ((-44 . -597) 1037) ((-44 . -101) T) ((-44 . -25) T) ((-44 . -130) T) ((-44 . -628) 995) ((-44 . -698) 979) ((-44 . -362) 963) ((-40 . -337) 937) ((-40 . -170) T) ((-40 . -707) T) ((-40 . -1085) T) ((-40 . -1032) T) ((-40 . -1025) T) ((-40 . -628) 882) ((-40 . -130) T) ((-40 . -25) T) ((-40 . -101) T) ((-40 . -597) 864) ((-40 . -1074) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1031) 809) ((-40 . -111) 738) ((-40 . -598) 722) ((-40 . -227) 699) ((-40 . -876) 651) ((-40 . -229) 623) ((-40 . -358) T) ((-40 . -1190) T) ((-40 . -897) T) ((-40 . -545) T) ((-40 . -698) 568) ((-40 . -38) 513) ((-40 . -446) T) ((-40 . -302) T) ((-40 . -285) T) ((-40 . -239) T) ((-40 . -363) NIL) ((-40 . -345) NIL) ((-40 . -1124) NIL) ((-40 . -143) 485) ((-40 . -397) NIL) ((-40 . -405) 457) ((-40 . -145) 429) ((-40 . -365) 401) ((-40 . -372) 378) ((-40 . -621) 317) ((-40 . -407) 294) ((-40 . -1014) 182) ((-40 . -705) 154) ((-31 . -1056) T) ((-31 . -597) 120) ((-31 . -1074) T) ((-31 . -101) T) ((-31 . -92) T) ((-30 . -931) T) ((-30 . -597) 102) ((0 . |EnumerationCategory|) T) ((0 . -597) 84) ((0 . -1074) T) ((0 . -101) T) ((-1 . -1074) T) ((-1 . -597) 66) ((-1 . -101) T) ((-2 . |RecordCategory|) T) ((-2 . -597) 48) ((-2 . -1074) T) ((-2 . -101) T) ((-3 . |UnionCategory|) T) ((-3 . -597) 30) ((-3 . -1074) T) ((-3 . -101) T)) \ No newline at end of file
+(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073)))
+((($ $) . T) ((#0=(-841 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((|#2| $) |has| |#1| (-229)) ((|#2| |#1|) |has| |#1| (-229)) ((|#3| |#1|) . T) ((|#3| $) . T))
+(((-472 . -1073) T) ((-259 . -507) 144982) ((-243 . -507) 144925) ((-241 . -1073) 144875) ((-559 . -111) 144860) ((-524 . -23) T) ((-137 . -1073) T) ((-136 . -1073) T) ((-117 . -304) 144817) ((-132 . -1073) T) ((-473 . -507) 144609) ((-674 . -101) T) ((-1114 . -507) 144528) ((-385 . -130) T) ((-1245 . -952) 144497) ((-31 . -92) T) ((-586 . -483) 144481) ((-603 . -130) T) ((-799 . -823) T) ((-516 . -56) 144431) ((-58 . -507) 144364) ((-512 . -507) 144297) ((-413 . -876) 144256) ((-167 . -1025) T) ((-509 . -507) 144189) ((-490 . -507) 144122) ((-489 . -507) 144055) ((-779 . -1014) 143838) ((-679 . -38) 143803) ((-338 . -344) T) ((-1067 . -1066) 143787) ((-1067 . -1073) 143765) ((-167 . -239) 143716) ((-167 . -229) 143667) ((-1067 . -1068) 143625) ((-848 . -281) 143583) ((-221 . -775) T) ((-221 . -772) T) ((-674 . -279) NIL) ((-1123 . -1162) 143562) ((-402 . -968) 143546) ((-681 . -21) T) ((-681 . -25) T) ((-1247 . -628) 143520) ((-311 . -158) 143499) ((-311 . -141) 143478) ((-1123 . -106) 143428) ((-133 . -25) T) ((-40 . -227) 143405) ((-116 . -21) T) ((-116 . -25) T) ((-592 . -283) 143381) ((-469 . -283) 143360) ((-1205 . -1025) T) ((-832 . -1025) T) ((-779 . -333) 143344) ((-117 . -1124) NIL) ((-90 . -597) 143276) ((-471 . -130) T) ((-578 . -1186) T) ((-1205 . -321) 143253) ((-559 . -1025) T) ((-1205 . -229) T) ((-642 . -698) 143237) ((-1069 . -597) 143203) ((-934 . -283) 143180) ((-59 . -34) T) ((-1063 . -597) 143146) ((-1047 . -597) 143112) ((-1036 . -775) T) ((-1036 . -772) T) ((-796 . -707) T) ((-712 . -47) 143077) ((-605 . -38) 143064) ((-350 . -285) T) ((-347 . -285) T) ((-339 . -285) T) ((-259 . -285) 142995) ((-243 . -285) 142926) ((-1040 . -597) 142892) ((-1012 . -597) 142858) ((-1000 . -101) T) ((-995 . -597) 142824) ((-408 . -707) T) ((-117 . -38) 142769) ((-608 . -597) 142735) ((-408 . -467) T) ((-477 . -597) 142701) ((-349 . -101) T) ((-214 . -597) 142667) ((-1180 . -1032) T) ((-692 . -1032) T) ((-1147 . -47) 142644) ((-1146 . -47) 142614) ((-1140 . -47) 142591) ((-1011 . -149) 142537) ((-886 . -285) T) ((-1099 . -47) 142509) ((-674 . -304) NIL) ((-508 . -597) 142491) ((-503 . -597) 142473) ((-501 . -597) 142455) ((-322 . -1073) 142405) ((-693 . -446) 142336) ((-48 . -101) T) ((-1216 . -281) 142321) ((-1195 . -281) 142241) ((-625 . -646) 142225) ((-625 . -631) 142209) ((-334 . -21) T) ((-334 . -25) T) ((-40 . -344) NIL) ((-172 . -21) T) ((-172 . -25) T) ((-625 . -368) 142193) ((-586 . -281) 142170) ((-589 . -597) 142137) ((-383 . -101) T) ((-1093 . -141) T) ((-126 . -597) 142069) ((-850 . -1073) T) ((-638 . -406) 142053) ((-695 . -597) 142035) ((-183 . -597) 142017) ((-160 . -597) 141999) ((-155 . -597) 141981) ((-1247 . -707) T) ((-1075 . -34) T) ((-847 . -775) NIL) ((-847 . -772) NIL) ((-835 . -827) T) ((-712 . -862) NIL) ((-1256 . -130) T) ((-376 . -130) T) ((-880 . -101) T) ((-712 . -1014) 141857) ((-524 . -130) T) ((-1060 . -406) 141841) ((-976 . -483) 141825) ((-117 . -395) 141802) ((-1140 . -1186) 141781) ((-762 . -406) 141765) ((-760 . -406) 141749) ((-919 . -34) T) ((-674 . -1124) NIL) ((-246 . -628) 141584) ((-245 . -628) 141406) ((-797 . -896) 141385) ((-448 . -406) 141369) ((-586 . -19) 141353) ((-1119 . -1179) 141322) ((-1140 . -862) NIL) ((-1140 . -860) 141274) ((-586 . -588) 141251) ((-1172 . -597) 141183) ((-1148 . -597) 141165) ((-61 . -390) T) ((-1146 . -1014) 141100) ((-1140 . -1014) 141066) ((-674 . -38) 141016) ((-468 . -281) 141001) ((-712 . -372) 140985) ((-638 . -1032) T) ((-1216 . -978) 140951) ((-1195 . -978) 140917) ((-1037 . -1162) 140892) ((-848 . -598) 140700) ((-848 . -597) 140682) ((-1159 . -483) 140619) ((-413 . -998) 140598) ((-48 . -304) 140585) ((-1037 . -106) 140531) ((-473 . -483) 140468) ((-513 . -1186) T) ((-1140 . -333) 140420) ((-1114 . -483) 140391) ((-1140 . -372) 140343) ((-1060 . -1032) T) ((-432 . -101) T) ((-181 . -1073) T) ((-246 . -34) T) ((-245 . -34) T) ((-762 . -1032) T) ((-760 . -1032) T) ((-712 . -876) 140320) ((-448 . -1032) T) ((-58 . -483) 140304) ((-1010 . -1031) 140278) ((-512 . -483) 140262) ((-509 . -483) 140246) ((-490 . -483) 140230) ((-489 . -483) 140214) ((-241 . -507) 140147) ((-1010 . -111) 140114) ((-1147 . -876) 140027) ((-1146 . -876) 139933) ((-1140 . -876) 139766) ((-650 . -1085) T) ((-1099 . -876) 139750) ((-626 . -92) T) ((-349 . -1124) T) ((-317 . -1031) 139732) ((-246 . -771) 139711) ((-246 . -774) 139662) ((-246 . -773) 139641) ((-245 . -771) 139620) ((-245 . -774) 139571) ((-245 . -773) 139550) ((-31 . -597) 139516) ((-50 . -1032) T) ((-246 . -707) 139426) ((-245 . -707) 139336) ((-1180 . -1073) T) ((-650 . -23) T) ((-567 . -1032) T) ((-511 . -1032) T) ((-374 . -1031) 139301) ((-317 . -111) 139276) ((-72 . -378) T) ((-72 . -390) T) ((-1000 . -38) 139213) ((-674 . -395) 139195) ((-98 . -101) T) ((-692 . -1073) T) ((-979 . -143) 139167) ((-979 . -145) 139139) ((-374 . -111) 139095) ((-314 . -1190) 139074) ((-468 . -978) 139040) ((-349 . -38) 139005) ((-40 . -365) 138977) ((-849 . -597) 138849) ((-127 . -125) 138833) ((-121 . -125) 138817) ((-814 . -1031) 138787) ((-813 . -21) 138739) ((-807 . -1031) 138723) ((-813 . -25) 138675) ((-314 . -544) 138626) ((-552 . -808) T) ((-236 . -1186) T) ((-814 . -111) 138591) ((-807 . -111) 138570) ((-1216 . -597) 138552) ((-1195 . -597) 138534) ((-1195 . -598) 138207) ((-1145 . -885) 138186) ((-1098 . -885) 138165) ((-48 . -38) 138130) ((-1254 . -1085) T) ((-586 . -597) 138042) ((-586 . -598) 138003) ((-1252 . -1085) T) ((-236 . -1014) 137830) ((-1145 . -628) 137755) ((-1098 . -628) 137680) ((-699 . -597) 137662) ((-831 . -628) 137636) ((-484 . -1073) T) ((-1254 . -23) T) ((-1252 . -23) T) ((-1010 . -1025) T) ((-1159 . -281) 137615) ((-167 . -363) 137566) ((-980 . -1186) T) ((-44 . -23) T) ((-473 . -281) 137545) ((-571 . -1073) T) ((-1119 . -1082) 137514) ((-1077 . -1076) 137466) ((-128 . -1186) T) ((-385 . -21) T) ((-385 . -25) T) ((-150 . -1085) T) ((-1260 . -101) T) ((-980 . -860) 137448) ((-980 . -862) 137430) ((-1180 . -698) 137327) ((-605 . -227) 137311) ((-603 . -21) T) ((-284 . -544) T) ((-603 . -25) T) ((-1166 . -1073) T) ((-692 . -698) 137276) ((-236 . -372) 137245) ((-980 . -1014) 137205) ((-374 . -1025) T) ((-219 . -1032) T) ((-117 . -227) 137182) ((-58 . -281) 137159) ((-150 . -23) T) ((-509 . -281) 137136) ((-322 . -507) 137069) ((-489 . -281) 137046) ((-374 . -239) T) ((-374 . -229) T) ((-814 . -1025) T) ((-807 . -1025) T) ((-693 . -925) 137015) ((-681 . -827) T) ((-468 . -597) 136997) ((-807 . -229) 136976) ((-133 . -827) T) ((-638 . -1073) T) ((-1159 . -588) 136955) ((-538 . -1162) 136934) ((-331 . -1073) T) ((-314 . -358) 136913) ((-402 . -145) 136892) ((-402 . -143) 136871) ((-940 . -1085) 136770) ((-236 . -876) 136702) ((-795 . -1085) 136612) ((-634 . -829) 136596) ((-473 . -588) 136575) ((-538 . -106) 136525) ((-980 . -372) 136507) ((-980 . -333) 136489) ((-96 . -1073) T) ((-940 . -23) 136300) ((-471 . -21) T) ((-471 . -25) T) ((-795 . -23) 136170) ((-1149 . -597) 136152) ((-58 . -19) 136136) ((-1149 . -598) 136058) ((-1145 . -707) T) ((-1098 . -707) T) ((-509 . -19) 136042) ((-489 . -19) 136026) ((-58 . -588) 136003) ((-1060 . -1073) T) ((-877 . -101) 135981) ((-831 . -707) T) ((-762 . -1073) T) ((-509 . -588) 135958) ((-489 . -588) 135935) ((-760 . -1073) T) ((-760 . -1039) 135902) ((-455 . -1073) T) ((-448 . -1073) T) ((-571 . -698) 135877) ((-629 . -1073) T) ((-980 . -876) NIL) ((-1224 . -47) 135854) ((-609 . -1085) T) ((-650 . -130) T) ((-1218 . -101) T) ((-1217 . -47) 135824) ((-1196 . -47) 135801) ((-1180 . -170) 135752) ((-1053 . -1190) 135703) ((-270 . -1073) T) ((-84 . -435) T) ((-84 . -390) T) ((-1146 . -302) 135682) ((-1140 . -302) 135661) ((-50 . -1073) T) ((-1053 . -544) 135612) ((-692 . -170) T) ((-580 . -47) 135589) ((-221 . -628) 135554) ((-567 . -1073) T) ((-511 . -1073) T) ((-354 . -1190) T) ((-348 . -1190) T) ((-340 . -1190) T) ((-481 . -800) T) ((-481 . -896) T) ((-314 . -1085) T) ((-107 . -1190) T) ((-334 . -827) T) ((-213 . -896) T) ((-213 . -800) T) ((-695 . -1031) 135524) ((-354 . -544) T) ((-348 . -544) T) ((-340 . -544) T) ((-107 . -544) T) ((-638 . -698) 135494) ((-1140 . -998) NIL) ((-314 . -23) T) ((-66 . -1186) T) ((-976 . -597) 135426) ((-674 . -227) 135408) ((-695 . -111) 135373) ((-625 . -34) T) ((-241 . -483) 135357) ((-1075 . -1071) 135341) ((-169 . -1073) T) ((-928 . -885) 135320) ((-475 . -885) 135299) ((-1260 . -1124) T) ((-1256 . -21) T) ((-1256 . -25) T) ((-1254 . -130) T) ((-1252 . -130) T) ((-1060 . -698) 135148) ((-1036 . -628) 135135) ((-928 . -628) 135060) ((-762 . -698) 134889) ((-528 . -597) 134871) ((-528 . -598) 134852) ((-760 . -698) 134701) ((-1245 . -101) T) ((-1050 . -101) T) ((-376 . -25) T) ((-376 . -21) T) ((-475 . -628) 134626) ((-455 . -698) 134597) ((-448 . -698) 134446) ((-963 . -101) T) ((-1228 . -597) 134412) ((-1217 . -1014) 134347) ((-1196 . -1186) 134326) ((-718 . -101) T) ((-1196 . -862) NIL) ((-1196 . -860) 134278) ((-1159 . -598) NIL) ((-1159 . -597) 134260) ((-524 . -25) T) ((-1115 . -1096) 134205) ((-1022 . -1179) 134134) ((-877 . -304) 134072) ((-338 . -1032) T) ((-139 . -101) T) ((-44 . -130) T) ((-284 . -1085) T) ((-661 . -92) T) ((-656 . -92) T) ((-644 . -597) 134054) ((-626 . -597) 134007) ((-472 . -92) T) ((-350 . -597) 133989) ((-347 . -597) 133971) ((-339 . -597) 133953) ((-259 . -598) 133701) ((-259 . -597) 133683) ((-243 . -597) 133665) ((-243 . -598) 133526) ((-137 . -92) T) ((-136 . -92) T) ((-132 . -92) T) ((-1196 . -1014) 133492) ((-1180 . -507) 133459) ((-1114 . -597) 133441) ((-799 . -834) T) ((-799 . -707) T) ((-586 . -283) 133418) ((-567 . -698) 133383) ((-473 . -598) NIL) ((-473 . -597) 133365) ((-511 . -698) 133310) ((-311 . -101) T) ((-308 . -101) T) ((-284 . -23) T) ((-150 . -130) T) ((-381 . -707) T) ((-848 . -1031) 133262) ((-886 . -597) 133244) ((-886 . -598) 133226) ((-848 . -111) 133164) ((-135 . -101) T) ((-114 . -101) T) ((-693 . -1208) 133148) ((-695 . -1025) T) ((-674 . -344) NIL) ((-512 . -597) 133080) ((-374 . -775) T) ((-219 . -1073) T) ((-374 . -772) T) ((-221 . -774) T) ((-221 . -771) T) ((-58 . -598) 133041) ((-58 . -597) 132953) ((-221 . -707) T) ((-509 . -598) 132914) ((-509 . -597) 132826) ((-490 . -597) 132758) ((-489 . -598) 132719) ((-489 . -597) 132631) ((-1053 . -358) 132582) ((-40 . -406) 132559) ((-76 . -1186) T) ((-847 . -885) NIL) ((-354 . -324) 132543) ((-354 . -358) T) ((-348 . -324) 132527) ((-348 . -358) T) ((-340 . -324) 132511) ((-340 . -358) T) ((-311 . -279) 132490) ((-107 . -358) T) ((-69 . -1186) T) ((-1196 . -333) 132442) ((-847 . -628) 132387) ((-1196 . -372) 132339) ((-940 . -130) 132194) ((-795 . -130) 132064) ((-934 . -631) 132048) ((-1060 . -170) 131959) ((-934 . -368) 131943) ((-1036 . -774) T) ((-1036 . -771) T) ((-762 . -170) 131834) ((-760 . -170) 131745) ((-796 . -47) 131707) ((-1036 . -707) T) ((-322 . -483) 131691) ((-928 . -707) T) ((-448 . -170) 131602) ((-241 . -281) 131579) ((-475 . -707) T) ((-1245 . -304) 131517) ((-1224 . -876) 131430) ((-1217 . -876) 131336) ((-1216 . -1031) 131171) ((-1196 . -876) 131004) ((-1195 . -1031) 130812) ((-1180 . -285) 130791) ((-1119 . -149) 130775) ((-1093 . -101) T) ((-1048 . -101) T) ((-903 . -931) T) ((-718 . -304) 130713) ((-74 . -1186) T) ((-30 . -931) T) ((-167 . -885) 130666) ((-644 . -377) 130638) ((-112 . -821) T) ((-1 . -597) 130620) ((-1091 . -1073) T) ((-1053 . -23) T) ((-50 . -602) 130604) ((-1053 . -1085) T) ((-979 . -404) 130576) ((-580 . -876) 130489) ((-433 . -101) T) ((-139 . -304) NIL) ((-848 . -1025) T) ((-813 . -827) 130468) ((-80 . -1186) T) ((-692 . -285) T) ((-40 . -1032) T) ((-567 . -170) T) ((-511 . -170) T) ((-504 . -597) 130450) ((-167 . -628) 130360) ((-500 . -597) 130342) ((-346 . -145) 130324) ((-346 . -143) T) ((-354 . -1085) T) ((-348 . -1085) T) ((-340 . -1085) T) ((-980 . -302) T) ((-890 . -302) T) ((-848 . -239) T) ((-107 . -1085) T) ((-848 . -229) 130303) ((-1216 . -111) 130124) ((-1195 . -111) 129913) ((-241 . -1220) 129897) ((-552 . -825) T) ((-354 . -23) T) ((-349 . -344) T) ((-311 . -304) 129884) ((-308 . -304) 129825) ((-348 . -23) T) ((-314 . -130) T) ((-340 . -23) T) ((-980 . -998) T) ((-107 . -23) T) ((-241 . -588) 129802) ((-1218 . -38) 129694) ((-1205 . -885) 129673) ((-112 . -1073) T) ((-1011 . -101) T) ((-1205 . -628) 129598) ((-847 . -774) NIL) ((-832 . -628) 129572) ((-847 . -771) NIL) ((-796 . -862) NIL) ((-847 . -707) T) ((-1060 . -507) 129445) ((-762 . -507) 129392) ((-760 . -507) 129344) ((-559 . -628) 129331) ((-796 . -1014) 129159) ((-448 . -507) 129102) ((-383 . -384) T) ((-59 . -1186) T) ((-603 . -827) 129081) ((-493 . -641) T) ((-1119 . -952) 129050) ((-979 . -446) T) ((-679 . -825) T) ((-503 . -772) T) ((-468 . -1031) 128885) ((-338 . -1073) T) ((-308 . -1124) NIL) ((-284 . -130) T) ((-389 . -1073) T) ((-674 . -365) 128852) ((-846 . -1032) T) ((-219 . -602) 128829) ((-322 . -281) 128806) ((-468 . -111) 128627) ((-1216 . -1025) T) ((-1195 . -1025) T) ((-796 . -372) 128611) ((-167 . -707) T) ((-634 . -101) T) ((-1216 . -239) 128590) ((-1216 . -229) 128542) ((-1195 . -229) 128447) ((-1195 . -239) 128426) ((-979 . -397) NIL) ((-650 . -621) 128374) ((-311 . -38) 128284) ((-308 . -38) 128213) ((-68 . -597) 128195) ((-314 . -486) 128161) ((-1159 . -283) 128140) ((-1086 . -1085) 128050) ((-82 . -1186) T) ((-60 . -597) 128032) ((-473 . -283) 128011) ((-1247 . -1014) 127988) ((-1137 . -1073) T) ((-1086 . -23) 127858) ((-796 . -876) 127794) ((-1205 . -707) T) ((-1075 . -1186) T) ((-1060 . -285) 127725) ((-942 . -1073) T) ((-869 . -101) T) ((-762 . -285) 127636) ((-322 . -19) 127620) ((-58 . -283) 127597) ((-760 . -285) 127528) ((-832 . -707) T) ((-117 . -825) NIL) ((-509 . -283) 127505) ((-322 . -588) 127482) ((-489 . -283) 127459) ((-448 . -285) 127390) ((-1011 . -304) 127241) ((-559 . -707) T) ((-661 . -597) 127191) ((-656 . -597) 127157) ((-642 . -597) 127139) ((-472 . -597) 127105) ((-241 . -598) 127066) ((-241 . -597) 126978) ((-137 . -597) 126944) ((-136 . -597) 126910) ((-132 . -597) 126876) ((-1120 . -34) T) ((-919 . -1186) T) ((-338 . -698) 126821) ((-650 . -25) T) ((-650 . -21) T) ((-468 . -1025) T) ((-617 . -412) 126786) ((-591 . -412) 126751) ((-1093 . -1124) T) ((-567 . -285) T) ((-511 . -285) T) ((-1217 . -302) 126730) ((-468 . -229) 126682) ((-468 . -239) 126661) ((-1196 . -302) 126640) ((-1196 . -998) NIL) ((-1053 . -130) T) ((-848 . -775) 126619) ((-142 . -101) T) ((-40 . -1073) T) ((-848 . -772) 126598) ((-625 . -986) 126582) ((-566 . -1032) T) ((-552 . -1032) T) ((-488 . -1032) T) ((-402 . -446) T) ((-354 . -130) T) ((-311 . -395) 126566) ((-308 . -395) 126527) ((-348 . -130) T) ((-340 . -130) T) ((-1154 . -1073) T) ((-1093 . -38) 126514) ((-1067 . -597) 126481) ((-107 . -130) T) ((-930 . -1073) T) ((-897 . -1073) T) ((-751 . -1073) T) ((-652 . -1073) T) ((-499 . -1056) T) ((-681 . -145) T) ((-116 . -145) T) ((-1254 . -21) T) ((-1254 . -25) T) ((-1252 . -21) T) ((-1252 . -25) T) ((-644 . -1031) 126465) ((-524 . -827) T) ((-493 . -827) T) ((-350 . -1031) 126417) ((-347 . -1031) 126369) ((-339 . -1031) 126321) ((-246 . -1186) T) ((-245 . -1186) T) ((-259 . -1031) 126164) ((-243 . -1031) 126007) ((-644 . -111) 125986) ((-350 . -111) 125924) ((-347 . -111) 125862) ((-339 . -111) 125800) ((-259 . -111) 125629) ((-243 . -111) 125458) ((-797 . -1190) 125437) ((-605 . -406) 125421) ((-44 . -21) T) ((-44 . -25) T) ((-795 . -621) 125327) ((-797 . -544) 125306) ((-246 . -1014) 125133) ((-245 . -1014) 124960) ((-126 . -119) 124944) ((-886 . -1031) 124909) ((-679 . -1032) T) ((-693 . -101) T) ((-338 . -170) T) ((-150 . -21) T) ((-150 . -25) T) ((-87 . -597) 124891) ((-886 . -111) 124847) ((-40 . -698) 124792) ((-846 . -1073) T) ((-322 . -598) 124753) ((-322 . -597) 124665) ((-1195 . -772) 124618) ((-1195 . -775) 124571) ((-246 . -372) 124540) ((-245 . -372) 124509) ((-634 . -38) 124479) ((-592 . -34) T) ((-476 . -1085) 124389) ((-469 . -34) T) ((-1086 . -130) 124259) ((-940 . -25) 124070) ((-850 . -597) 124052) ((-940 . -21) 124007) ((-795 . -21) 123917) ((-795 . -25) 123768) ((-605 . -1032) T) ((-1151 . -544) 123747) ((-1145 . -47) 123724) ((-350 . -1025) T) ((-347 . -1025) T) ((-476 . -23) 123594) ((-339 . -1025) T) ((-259 . -1025) T) ((-243 . -1025) T) ((-1098 . -47) 123566) ((-117 . -1032) T) ((-1010 . -628) 123540) ((-934 . -34) T) ((-350 . -229) 123519) ((-350 . -239) T) ((-347 . -229) 123498) ((-347 . -239) T) ((-243 . -321) 123455) ((-339 . -229) 123434) ((-339 . -239) T) ((-259 . -321) 123406) ((-259 . -229) 123385) ((-1129 . -149) 123369) ((-246 . -876) 123301) ((-245 . -876) 123233) ((-1055 . -827) T) ((-1199 . -1186) T) ((-409 . -1085) T) ((-1029 . -23) T) ((-886 . -1025) T) ((-317 . -628) 123215) ((-1000 . -825) T) ((-1180 . -978) 123181) ((-1146 . -896) 123160) ((-1140 . -896) 123139) ((-886 . -239) T) ((-797 . -358) 123118) ((-380 . -23) T) ((-127 . -1073) 123096) ((-121 . -1073) 123074) ((-886 . -229) T) ((-1140 . -800) NIL) ((-374 . -628) 123039) ((-846 . -698) 123026) ((-1022 . -149) 122991) ((-40 . -170) T) ((-674 . -406) 122973) ((-693 . -304) 122960) ((-814 . -628) 122920) ((-807 . -628) 122894) ((-314 . -25) T) ((-314 . -21) T) ((-638 . -281) 122873) ((-566 . -1073) T) ((-552 . -1073) T) ((-488 . -1073) T) ((-241 . -283) 122850) ((-308 . -227) 122811) ((-1145 . -862) NIL) ((-1098 . -862) 122670) ((-129 . -827) T) ((-1145 . -1014) 122550) ((-1098 . -1014) 122433) ((-181 . -597) 122415) ((-831 . -1014) 122311) ((-762 . -281) 122238) ((-797 . -1085) T) ((-1010 . -707) T) ((-586 . -631) 122222) ((-1022 . -952) 122151) ((-975 . -101) T) ((-797 . -23) T) ((-693 . -1124) 122129) ((-674 . -1032) T) ((-586 . -368) 122113) ((-346 . -446) T) ((-338 . -285) T) ((-1233 . -1073) T) ((-244 . -1073) T) ((-394 . -101) T) ((-284 . -21) T) ((-284 . -25) T) ((-356 . -707) T) ((-691 . -1073) T) ((-679 . -1073) T) ((-356 . -467) T) ((-1180 . -597) 122095) ((-1145 . -372) 122079) ((-1098 . -372) 122063) ((-1000 . -406) 122025) ((-139 . -225) 122007) ((-374 . -774) T) ((-374 . -771) T) ((-846 . -170) T) ((-374 . -707) T) ((-692 . -597) 121989) ((-693 . -38) 121818) ((-1232 . -1230) 121802) ((-346 . -397) T) ((-1232 . -1073) 121752) ((-566 . -698) 121739) ((-552 . -698) 121726) ((-488 . -698) 121691) ((-311 . -611) 121670) ((-814 . -707) T) ((-807 . -707) T) ((-625 . -1186) T) ((-1053 . -621) 121618) ((-1145 . -876) 121561) ((-1098 . -876) 121545) ((-642 . -1031) 121529) ((-107 . -621) 121511) ((-476 . -130) 121381) ((-1151 . -1085) T) ((-928 . -47) 121350) ((-605 . -1073) T) ((-642 . -111) 121329) ((-484 . -597) 121295) ((-322 . -283) 121272) ((-475 . -47) 121229) ((-1151 . -23) T) ((-117 . -1073) T) ((-102 . -101) 121207) ((-1244 . -1085) T) ((-1029 . -130) T) ((-1000 . -1032) T) ((-799 . -1014) 121191) ((-979 . -705) 121163) ((-1244 . -23) T) ((-679 . -698) 121128) ((-571 . -597) 121110) ((-381 . -1014) 121094) ((-349 . -1032) T) ((-380 . -130) T) ((-319 . -1014) 121078) ((-221 . -862) 121060) ((-980 . -896) T) ((-90 . -34) T) ((-980 . -800) T) ((-890 . -896) T) ((-481 . -1190) T) ((-1166 . -597) 121042) ((-1078 . -1073) T) ((-213 . -1190) T) ((-975 . -304) 121007) ((-221 . -1014) 120967) ((-40 . -285) T) ((-1053 . -21) T) ((-1053 . -25) T) ((-1093 . -808) T) ((-481 . -544) T) ((-354 . -25) T) ((-213 . -544) T) ((-354 . -21) T) ((-348 . -25) T) ((-348 . -21) T) ((-695 . -628) 120927) ((-340 . -25) T) ((-340 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1032) T) ((-566 . -170) T) ((-552 . -170) T) ((-488 . -170) T) ((-638 . -597) 120909) ((-718 . -717) 120893) ((-331 . -597) 120875) ((-67 . -378) T) ((-67 . -390) T) ((-1075 . -106) 120859) ((-1036 . -862) 120841) ((-928 . -862) 120766) ((-633 . -1085) T) ((-605 . -698) 120753) ((-475 . -862) NIL) ((-1119 . -101) T) ((-1036 . -1014) 120735) ((-96 . -597) 120717) ((-471 . -145) T) ((-928 . -1014) 120597) ((-117 . -698) 120542) ((-633 . -23) T) ((-475 . -1014) 120418) ((-1060 . -598) NIL) ((-1060 . -597) 120400) ((-762 . -598) NIL) ((-762 . -597) 120361) ((-760 . -598) 119995) ((-760 . -597) 119909) ((-1086 . -621) 119815) ((-455 . -597) 119797) ((-448 . -597) 119779) ((-448 . -598) 119640) ((-1011 . -225) 119586) ((-848 . -885) 119565) ((-126 . -34) T) ((-797 . -130) T) ((-629 . -597) 119547) ((-565 . -101) T) ((-350 . -1251) 119531) ((-347 . -1251) 119515) ((-339 . -1251) 119499) ((-127 . -507) 119432) ((-121 . -507) 119365) ((-504 . -772) T) ((-504 . -775) T) ((-503 . -774) T) ((-102 . -304) 119303) ((-218 . -101) 119281) ((-674 . -1073) T) ((-679 . -170) T) ((-848 . -628) 119233) ((-64 . -379) T) ((-270 . -597) 119215) ((-64 . -390) T) ((-928 . -372) 119199) ((-846 . -285) T) ((-50 . -597) 119181) ((-975 . -38) 119129) ((-567 . -597) 119111) ((-475 . -372) 119095) ((-567 . -598) 119077) ((-511 . -597) 119059) ((-886 . -1251) 119046) ((-847 . -1186) T) ((-681 . -446) T) ((-488 . -507) 119012) ((-481 . -358) T) ((-350 . -363) 118991) ((-347 . -363) 118970) ((-339 . -363) 118949) ((-213 . -358) T) ((-695 . -707) T) ((-116 . -446) T) ((-1255 . -1246) 118933) ((-847 . -860) 118910) ((-847 . -862) NIL) ((-940 . -827) 118809) ((-795 . -827) 118760) ((-634 . -636) 118744) ((-1172 . -34) T) ((-169 . -597) 118726) ((-1086 . -21) 118636) ((-1086 . -25) 118487) ((-847 . -1014) 118464) ((-928 . -876) 118445) ((-1205 . -47) 118422) ((-886 . -363) T) ((-58 . -631) 118406) ((-509 . -631) 118390) ((-475 . -876) 118367) ((-70 . -435) T) ((-70 . -390) T) ((-489 . -631) 118351) ((-58 . -368) 118335) ((-605 . -170) T) ((-509 . -368) 118319) ((-489 . -368) 118303) ((-807 . -689) 118287) ((-1145 . -302) 118266) ((-1151 . -130) T) ((-117 . -170) T) ((-1119 . -304) 118204) ((-167 . -1186) T) ((-617 . -725) 118188) ((-591 . -725) 118172) ((-1244 . -130) T) ((-1217 . -896) 118151) ((-1196 . -896) 118130) ((-1196 . -800) NIL) ((-674 . -698) 118080) ((-1195 . -885) 118033) ((-1000 . -1073) T) ((-847 . -372) 118010) ((-847 . -333) 117987) ((-881 . -1085) T) ((-167 . -860) 117971) ((-167 . -862) 117896) ((-481 . -1085) T) ((-349 . -1073) T) ((-213 . -1085) T) ((-75 . -435) T) ((-75 . -390) T) ((-167 . -1014) 117792) ((-314 . -827) T) ((-1232 . -507) 117725) ((-1216 . -628) 117622) ((-1195 . -628) 117492) ((-848 . -774) 117471) ((-848 . -771) 117450) ((-848 . -707) T) ((-481 . -23) T) ((-219 . -597) 117432) ((-172 . -446) T) ((-218 . -304) 117370) ((-85 . -435) T) ((-85 . -390) T) ((-213 . -23) T) ((-1256 . -1249) 117349) ((-566 . -285) T) ((-552 . -285) T) ((-657 . -1014) 117333) ((-488 . -285) T) ((-135 . -464) 117288) ((-48 . -1073) T) ((-693 . -227) 117272) ((-847 . -876) NIL) ((-1205 . -862) NIL) ((-865 . -101) T) ((-861 . -101) T) ((-383 . -1073) T) ((-167 . -372) 117256) ((-167 . -333) 117240) ((-1205 . -1014) 117120) ((-832 . -1014) 117016) ((-1115 . -101) T) ((-633 . -130) T) ((-117 . -507) 116924) ((-642 . -772) 116903) ((-642 . -775) 116882) ((-559 . -1014) 116864) ((-289 . -1239) 116834) ((-842 . -101) T) ((-939 . -544) 116813) ((-1180 . -1031) 116696) ((-476 . -621) 116602) ((-880 . -1073) T) ((-1000 . -698) 116539) ((-692 . -1031) 116504) ((-600 . -101) T) ((-586 . -34) T) ((-1120 . -1186) T) ((-1180 . -111) 116373) ((-468 . -628) 116270) ((-349 . -698) 116215) ((-167 . -876) 116174) ((-679 . -285) T) ((-674 . -170) T) ((-692 . -111) 116130) ((-1260 . -1032) T) ((-1205 . -372) 116114) ((-413 . -1190) 116092) ((-1091 . -597) 116074) ((-308 . -825) NIL) ((-413 . -544) T) ((-221 . -302) T) ((-1195 . -771) 116027) ((-1195 . -774) 115980) ((-1216 . -707) T) ((-1195 . -707) T) ((-48 . -698) 115945) ((-221 . -998) T) ((-346 . -1239) 115922) ((-1218 . -406) 115888) ((-699 . -707) T) ((-1205 . -876) 115831) ((-112 . -597) 115813) ((-112 . -598) 115795) ((-699 . -467) T) ((-476 . -21) 115705) ((-127 . -483) 115689) ((-121 . -483) 115673) ((-476 . -25) 115524) ((-605 . -285) T) ((-571 . -1031) 115499) ((-432 . -1073) T) ((-1036 . -302) T) ((-117 . -285) T) ((-1077 . -101) T) ((-979 . -101) T) ((-571 . -111) 115467) ((-1115 . -304) 115405) ((-1180 . -1025) T) ((-1036 . -998) T) ((-65 . -1186) T) ((-1029 . -25) T) ((-1029 . -21) T) ((-692 . -1025) T) ((-380 . -21) T) ((-380 . -25) T) ((-674 . -507) NIL) ((-1000 . -170) T) ((-692 . -239) T) ((-1036 . -537) T) ((-499 . -101) T) ((-495 . -101) T) ((-349 . -170) T) ((-338 . -597) 115387) ((-389 . -597) 115369) ((-468 . -707) T) ((-1093 . -825) T) ((-868 . -1014) 115337) ((-107 . -827) T) ((-638 . -1031) 115321) ((-481 . -130) T) ((-1218 . -1032) T) ((-213 . -130) T) ((-1129 . -101) 115299) ((-98 . -1073) T) ((-241 . -646) 115283) ((-241 . -631) 115267) ((-638 . -111) 115246) ((-311 . -406) 115230) ((-241 . -368) 115214) ((-1132 . -231) 115161) ((-975 . -227) 115145) ((-73 . -1186) T) ((-48 . -170) T) ((-681 . -382) T) ((-681 . -141) T) ((-1255 . -101) T) ((-1060 . -1031) 114988) ((-259 . -885) 114967) ((-243 . -885) 114946) ((-762 . -1031) 114769) ((-760 . -1031) 114612) ((-592 . -1186) T) ((-1137 . -597) 114594) ((-1060 . -111) 114423) ((-1022 . -101) T) ((-469 . -1186) T) ((-455 . -1031) 114394) ((-448 . -1031) 114237) ((-644 . -628) 114221) ((-847 . -302) T) ((-762 . -111) 114030) ((-760 . -111) 113859) ((-350 . -628) 113811) ((-347 . -628) 113763) ((-339 . -628) 113715) ((-259 . -628) 113640) ((-243 . -628) 113565) ((-1131 . -827) T) ((-1061 . -1014) 113549) ((-455 . -111) 113510) ((-448 . -111) 113339) ((-1049 . -1014) 113316) ((-976 . -34) T) ((-942 . -597) 113298) ((-934 . -1186) T) ((-126 . -986) 113282) ((-939 . -1085) T) ((-847 . -998) NIL) ((-716 . -1085) T) ((-696 . -1085) T) ((-1232 . -483) 113266) ((-1115 . -38) 113226) ((-939 . -23) T) ((-820 . -101) T) ((-797 . -21) T) ((-797 . -25) T) ((-716 . -23) T) ((-696 . -23) T) ((-110 . -641) T) ((-886 . -628) 113191) ((-567 . -1031) 113156) ((-511 . -1031) 113101) ((-223 . -56) 113059) ((-447 . -23) T) ((-402 . -101) T) ((-258 . -101) T) ((-674 . -285) T) ((-842 . -38) 113029) ((-567 . -111) 112985) ((-511 . -111) 112914) ((-413 . -1085) T) ((-311 . -1032) 112804) ((-308 . -1032) T) ((-638 . -1025) T) ((-1260 . -1073) T) ((-167 . -302) 112735) ((-413 . -23) T) ((-40 . -597) 112717) ((-40 . -598) 112701) ((-107 . -968) 112683) ((-116 . -845) 112667) ((-48 . -507) 112633) ((-1172 . -986) 112617) ((-1154 . -597) 112599) ((-1159 . -34) T) ((-930 . -597) 112565) ((-897 . -597) 112547) ((-1086 . -827) 112498) ((-751 . -597) 112480) ((-652 . -597) 112462) ((-1129 . -304) 112400) ((-473 . -34) T) ((-1065 . -1186) T) ((-471 . -446) T) ((-1060 . -1025) T) ((-1114 . -34) T) ((-762 . -1025) T) ((-760 . -1025) T) ((-627 . -231) 112384) ((-614 . -231) 112330) ((-1205 . -302) 112309) ((-1060 . -321) 112270) ((-448 . -1025) T) ((-1151 . -21) T) ((-1060 . -229) 112249) ((-762 . -321) 112226) ((-762 . -229) T) ((-760 . -321) 112198) ((-712 . -1190) 112177) ((-322 . -631) 112161) ((-1151 . -25) T) ((-58 . -34) T) ((-512 . -34) T) ((-509 . -34) T) ((-448 . -321) 112140) ((-322 . -368) 112124) ((-490 . -34) T) ((-489 . -34) T) ((-979 . -1124) NIL) ((-712 . -544) 112055) ((-617 . -101) T) ((-591 . -101) T) ((-350 . -707) T) ((-347 . -707) T) ((-339 . -707) T) ((-259 . -707) T) ((-243 . -707) T) ((-1022 . -304) 111963) ((-877 . -1073) 111941) ((-50 . -1025) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-1147 . -544) 111920) ((-1146 . -1190) 111899) ((-567 . -1025) T) ((-511 . -1025) T) ((-1140 . -1190) 111878) ((-356 . -1014) 111862) ((-317 . -1014) 111846) ((-1000 . -285) T) ((-374 . -862) 111828) ((-1146 . -544) 111779) ((-1140 . -544) 111730) ((-979 . -38) 111675) ((-779 . -1085) T) ((-886 . -707) T) ((-567 . -239) T) ((-567 . -229) T) ((-511 . -229) T) ((-511 . -239) T) ((-1099 . -544) 111654) ((-349 . -285) T) ((-627 . -675) 111638) ((-374 . -1014) 111598) ((-1093 . -1032) T) ((-102 . -125) 111582) ((-779 . -23) T) ((-1232 . -281) 111559) ((-402 . -304) 111524) ((-1254 . -1249) 111500) ((-1252 . -1249) 111479) ((-1218 . -1073) T) ((-846 . -597) 111461) ((-814 . -1014) 111430) ((-199 . -767) T) ((-198 . -767) T) ((-197 . -767) T) ((-196 . -767) T) ((-195 . -767) T) ((-194 . -767) T) ((-193 . -767) T) ((-192 . -767) T) ((-191 . -767) T) ((-190 . -767) T) ((-488 . -978) T) ((-269 . -816) T) ((-268 . -816) T) ((-267 . -816) T) ((-266 . -816) T) ((-48 . -285) T) ((-265 . -816) T) ((-264 . -816) T) ((-263 . -816) T) ((-189 . -767) T) ((-596 . -827) T) ((-634 . -406) 111414) ((-110 . -827) T) ((-633 . -21) T) ((-633 . -25) T) ((-1255 . -38) 111384) ((-117 . -281) 111335) ((-1232 . -19) 111319) ((-1232 . -588) 111296) ((-1245 . -1073) T) ((-1050 . -1073) T) ((-963 . -1073) T) ((-939 . -130) T) ((-718 . -1073) T) ((-716 . -130) T) ((-696 . -130) T) ((-504 . -773) T) ((-402 . -1124) 111274) ((-447 . -130) T) ((-504 . -774) T) ((-219 . -1025) T) ((-289 . -101) 111056) ((-139 . -1073) T) ((-679 . -978) T) ((-90 . -1186) T) ((-127 . -597) 110988) ((-121 . -597) 110920) ((-1260 . -170) T) ((-1146 . -358) 110899) ((-1140 . -358) 110878) ((-311 . -1073) T) ((-413 . -130) T) ((-308 . -1073) T) ((-402 . -38) 110830) ((-1106 . -101) T) ((-1218 . -698) 110722) ((-634 . -1032) T) ((-1108 . -1227) T) ((-314 . -143) 110701) ((-314 . -145) 110680) ((-135 . -1073) T) ((-114 . -1073) T) ((-835 . -101) T) ((-566 . -597) 110662) ((-552 . -598) 110561) ((-552 . -597) 110543) ((-488 . -597) 110525) ((-488 . -598) 110470) ((-479 . -23) T) ((-476 . -827) 110421) ((-481 . -621) 110403) ((-941 . -597) 110385) ((-213 . -621) 110367) ((-221 . -399) T) ((-642 . -628) 110351) ((-1145 . -896) 110330) ((-712 . -1085) T) ((-346 . -101) T) ((-1185 . -1056) T) ((-798 . -827) T) ((-712 . -23) T) ((-338 . -1031) 110275) ((-1131 . -1130) T) ((-1120 . -106) 110259) ((-1147 . -1085) T) ((-1146 . -1085) T) ((-508 . -1014) 110243) ((-1140 . -1085) T) ((-1099 . -1085) T) ((-338 . -111) 110172) ((-980 . -1190) T) ((-126 . -1186) T) ((-890 . -1190) T) ((-674 . -281) NIL) ((-1233 . -597) 110154) ((-1147 . -23) T) ((-1146 . -23) T) ((-1140 . -23) T) ((-980 . -544) T) ((-1115 . -227) 110138) ((-890 . -544) T) ((-1099 . -23) T) ((-244 . -597) 110120) ((-1048 . -1073) T) ((-779 . -130) T) ((-691 . -597) 110102) ((-311 . -698) 110012) ((-308 . -698) 109941) ((-679 . -597) 109923) ((-679 . -598) 109868) ((-402 . -395) 109852) ((-433 . -1073) T) ((-481 . -25) T) ((-481 . -21) T) ((-1093 . -1073) T) ((-213 . -25) T) ((-213 . -21) T) ((-693 . -406) 109836) ((-695 . -1014) 109805) ((-1232 . -597) 109717) ((-1232 . -598) 109678) ((-1218 . -170) T) ((-241 . -34) T) ((-902 . -950) T) ((-1172 . -1186) T) ((-642 . -771) 109657) ((-642 . -774) 109636) ((-393 . -390) T) ((-516 . -101) 109614) ((-1011 . -1073) T) ((-218 . -971) 109598) ((-497 . -101) T) ((-605 . -597) 109580) ((-45 . -827) NIL) ((-605 . -598) 109557) ((-1011 . -594) 109532) ((-877 . -507) 109465) ((-338 . -1025) T) ((-117 . -598) NIL) ((-117 . -597) 109447) ((-848 . -1186) T) ((-650 . -412) 109431) ((-650 . -1096) 109376) ((-493 . -149) 109358) ((-338 . -229) T) ((-338 . -239) T) ((-40 . -1031) 109303) ((-848 . -860) 109287) ((-848 . -862) 109212) ((-693 . -1032) T) ((-674 . -978) NIL) ((-3 . |UnionCategory|) T) ((-1216 . -47) 109182) ((-1195 . -47) 109159) ((-1114 . -986) 109130) ((-221 . -896) T) ((-40 . -111) 109059) ((-848 . -1014) 108923) ((-1093 . -698) 108910) ((-1078 . -597) 108892) ((-1053 . -145) 108871) ((-1053 . -143) 108822) ((-980 . -358) T) ((-314 . -1174) 108788) ((-374 . -302) T) ((-314 . -1171) 108754) ((-311 . -170) 108733) ((-308 . -170) T) ((-979 . -227) 108710) ((-890 . -358) T) ((-567 . -1251) 108697) ((-511 . -1251) 108674) ((-354 . -145) 108653) ((-354 . -143) 108604) ((-348 . -145) 108583) ((-348 . -143) 108534) ((-592 . -1162) 108510) ((-340 . -145) 108489) ((-340 . -143) 108440) ((-314 . -35) 108406) ((-469 . -1162) 108385) ((0 . |EnumerationCategory|) T) ((-314 . -94) 108351) ((-374 . -998) T) ((-107 . -145) T) ((-107 . -143) NIL) ((-45 . -231) 108301) ((-634 . -1073) T) ((-592 . -106) 108248) ((-479 . -130) T) ((-469 . -106) 108198) ((-236 . -1085) 108108) ((-848 . -372) 108092) ((-848 . -333) 108076) ((-236 . -23) 107946) ((-1036 . -896) T) ((-1036 . -800) T) ((-567 . -363) T) ((-511 . -363) T) ((-346 . -1124) T) ((-322 . -34) T) ((-44 . -412) 107930) ((-849 . -1186) T) ((-385 . -725) 107914) ((-1245 . -507) 107847) ((-712 . -130) T) ((-1224 . -544) 107826) ((-1217 . -1190) 107805) ((-1217 . -544) 107756) ((-1196 . -1190) 107735) ((-306 . -1056) T) ((-1196 . -544) 107686) ((-718 . -507) 107619) ((-1195 . -1186) 107598) ((-1195 . -862) 107471) ((-869 . -1073) T) ((-142 . -821) T) ((-1195 . -860) 107441) ((-671 . -597) 107423) ((-1147 . -130) T) ((-516 . -304) 107361) ((-1146 . -130) T) ((-139 . -507) NIL) ((-1140 . -130) T) ((-1099 . -130) T) ((-1000 . -978) T) ((-980 . -23) T) ((-346 . -38) 107326) ((-980 . -1085) T) ((-890 . -1085) T) ((-81 . -597) 107308) ((-40 . -1025) T) ((-846 . -1031) 107295) ((-979 . -344) NIL) ((-848 . -876) 107254) ((-681 . -101) T) ((-947 . -23) T) ((-586 . -1186) T) ((-890 . -23) T) ((-846 . -111) 107239) ((-422 . -1085) T) ((-468 . -47) 107209) ((-209 . -101) T) ((-133 . -101) T) ((-40 . -229) 107181) ((-40 . -239) T) ((-116 . -101) T) ((-581 . -544) 107160) ((-580 . -544) 107139) ((-674 . -597) 107121) ((-674 . -598) 107029) ((-311 . -507) 106995) ((-308 . -507) 106887) ((-1216 . -1014) 106871) ((-1195 . -1014) 106657) ((-975 . -406) 106641) ((-422 . -23) T) ((-1093 . -170) T) ((-1218 . -285) T) ((-634 . -698) 106611) ((-142 . -1073) T) ((-48 . -978) T) ((-402 . -227) 106595) ((-290 . -231) 106545) ((-847 . -896) T) ((-847 . -800) NIL) ((-841 . -827) T) ((-1195 . -333) 106515) ((-1195 . -372) 106485) ((-218 . -1094) 106469) ((-1232 . -283) 106446) ((-1180 . -628) 106371) ((-939 . -21) T) ((-939 . -25) T) ((-716 . -21) T) ((-716 . -25) T) ((-696 . -21) T) ((-696 . -25) T) ((-692 . -628) 106336) ((-447 . -21) T) ((-447 . -25) T) ((-334 . -101) T) ((-172 . -101) T) ((-975 . -1032) T) ((-846 . -1025) T) ((-754 . -101) T) ((-1217 . -358) 106315) ((-1216 . -876) 106221) ((-1196 . -358) 106200) ((-1195 . -876) 106051) ((-1000 . -597) 106033) ((-402 . -808) 105986) ((-1147 . -486) 105952) ((-167 . -896) 105883) ((-1146 . -486) 105849) ((-1140 . -486) 105815) ((-693 . -1073) T) ((-1099 . -486) 105781) ((-566 . -1031) 105768) ((-552 . -1031) 105755) ((-488 . -1031) 105720) ((-311 . -285) 105699) ((-308 . -285) T) ((-349 . -597) 105681) ((-413 . -25) T) ((-413 . -21) T) ((-98 . -281) 105660) ((-566 . -111) 105645) ((-552 . -111) 105630) ((-488 . -111) 105586) ((-1149 . -862) 105553) ((-877 . -483) 105537) ((-48 . -597) 105519) ((-48 . -598) 105464) ((-236 . -130) 105334) ((-1205 . -896) 105313) ((-796 . -1190) 105292) ((-1011 . -507) 105136) ((-383 . -597) 105118) ((-796 . -544) 105049) ((-571 . -628) 105024) ((-259 . -47) 104996) ((-243 . -47) 104953) ((-524 . -502) 104930) ((-976 . -1186) T) ((-679 . -1031) 104895) ((-1224 . -1085) T) ((-1217 . -1085) T) ((-1196 . -1085) T) ((-979 . -365) 104867) ((-112 . -363) T) ((-468 . -876) 104773) ((-1224 . -23) T) ((-1217 . -23) T) ((-880 . -597) 104755) ((-90 . -106) 104739) ((-1180 . -707) T) ((-881 . -827) 104690) ((-681 . -1124) T) ((-679 . -111) 104646) ((-1196 . -23) T) ((-581 . -1085) T) ((-580 . -1085) T) ((-693 . -698) 104475) ((-692 . -707) T) ((-1093 . -285) T) ((-980 . -130) T) ((-481 . -827) T) ((-947 . -130) T) ((-890 . -130) T) ((-779 . -25) T) ((-213 . -827) T) ((-779 . -21) T) ((-566 . -1025) T) ((-552 . -1025) T) ((-488 . -1025) T) ((-581 . -23) T) ((-338 . -1251) 104452) ((-314 . -446) 104431) ((-334 . -304) 104418) ((-580 . -23) T) ((-422 . -130) T) ((-638 . -628) 104392) ((-241 . -986) 104376) ((-848 . -302) T) ((-1256 . -1246) 104360) ((-751 . -772) T) ((-751 . -775) T) ((-681 . -38) 104347) ((-552 . -229) T) ((-488 . -239) T) ((-488 . -229) T) ((-1123 . -231) 104297) ((-1060 . -885) 104276) ((-116 . -38) 104263) ((-205 . -780) T) ((-204 . -780) T) ((-203 . -780) T) ((-202 . -780) T) ((-848 . -998) 104242) ((-1245 . -483) 104226) ((-762 . -885) 104205) ((-760 . -885) 104184) ((-1159 . -1186) T) ((-448 . -885) 104163) ((-718 . -483) 104147) ((-1060 . -628) 104072) ((-762 . -628) 103997) ((-605 . -1031) 103984) ((-473 . -1186) T) ((-338 . -363) T) ((-139 . -483) 103966) ((-760 . -628) 103891) ((-1114 . -1186) T) ((-455 . -628) 103862) ((-259 . -862) 103721) ((-243 . -862) NIL) ((-117 . -1031) 103666) ((-448 . -628) 103591) ((-644 . -1014) 103568) ((-605 . -111) 103553) ((-350 . -1014) 103537) ((-347 . -1014) 103521) ((-339 . -1014) 103505) ((-259 . -1014) 103349) ((-243 . -1014) 103225) ((-117 . -111) 103154) ((-58 . -1186) T) ((-512 . -1186) T) ((-509 . -1186) T) ((-490 . -1186) T) ((-489 . -1186) T) ((-432 . -597) 103136) ((-429 . -597) 103118) ((-3 . -101) T) ((-1003 . -1179) 103087) ((-813 . -101) T) ((-669 . -56) 103045) ((-679 . -1025) T) ((-50 . -628) 103019) ((-284 . -446) T) ((-470 . -1179) 102988) ((0 . -101) T) ((-567 . -628) 102953) ((-511 . -628) 102898) ((-49 . -101) T) ((-886 . -1014) 102885) ((-679 . -239) T) ((-1053 . -404) 102864) ((-712 . -621) 102812) ((-975 . -1073) T) ((-693 . -170) 102703) ((-481 . -968) 102685) ((-259 . -372) 102669) ((-243 . -372) 102653) ((-394 . -1073) T) ((-334 . -38) 102637) ((-1002 . -101) 102615) ((-213 . -968) 102597) ((-172 . -38) 102529) ((-1216 . -302) 102508) ((-1195 . -302) 102487) ((-638 . -707) T) ((-98 . -597) 102469) ((-1140 . -621) 102421) ((-479 . -25) T) ((-479 . -21) T) ((-1195 . -998) 102374) ((-605 . -1025) T) ((-374 . -399) T) ((-385 . -101) T) ((-259 . -876) 102320) ((-243 . -876) 102297) ((-117 . -1025) T) ((-796 . -1085) T) ((-1060 . -707) T) ((-605 . -229) 102276) ((-603 . -101) T) ((-762 . -707) T) ((-760 . -707) T) ((-408 . -1085) T) ((-117 . -239) T) ((-40 . -363) NIL) ((-117 . -229) NIL) ((-448 . -707) T) ((-796 . -23) T) ((-712 . -25) T) ((-712 . -21) T) ((-683 . -827) T) ((-1050 . -281) 102255) ((-77 . -391) T) ((-77 . -390) T) ((-674 . -1031) 102205) ((-1224 . -130) T) ((-1217 . -130) T) ((-1196 . -130) T) ((-1115 . -406) 102189) ((-617 . -362) 102121) ((-591 . -362) 102053) ((-1129 . -1122) 102037) ((-102 . -1073) 102015) ((-1147 . -25) T) ((-1147 . -21) T) ((-1146 . -21) T) ((-975 . -698) 101963) ((-219 . -628) 101930) ((-674 . -111) 101864) ((-50 . -707) T) ((-1146 . -25) T) ((-346 . -344) T) ((-1140 . -21) T) ((-1053 . -446) 101815) ((-1140 . -25) T) ((-693 . -507) 101762) ((-567 . -707) T) ((-511 . -707) T) ((-1099 . -21) T) ((-1099 . -25) T) ((-581 . -130) T) ((-580 . -130) T) ((-354 . -446) T) ((-348 . -446) T) ((-340 . -446) T) ((-468 . -302) 101741) ((-308 . -281) 101676) ((-107 . -446) T) ((-78 . -435) T) ((-78 . -390) T) ((-471 . -101) T) ((-1260 . -597) 101658) ((-1260 . -598) 101640) ((-1053 . -397) 101619) ((-1011 . -483) 101550) ((-552 . -775) T) ((-552 . -772) T) ((-1037 . -231) 101496) ((-354 . -397) 101447) ((-348 . -397) 101398) ((-340 . -397) 101349) ((-1247 . -1085) T) ((-1247 . -23) T) ((-1234 . -101) T) ((-173 . -597) 101331) ((-1115 . -1032) T) ((-650 . -725) 101315) ((-1151 . -143) 101294) ((-1151 . -145) 101273) ((-1119 . -1073) T) ((-1119 . -1045) 101242) ((-68 . -1186) T) ((-1000 . -1031) 101179) ((-842 . -1032) T) ((-236 . -621) 101085) ((-674 . -1025) T) ((-349 . -1031) 101030) ((-60 . -1186) T) ((-1000 . -111) 100946) ((-877 . -597) 100878) ((-674 . -239) T) ((-674 . -229) NIL) ((-820 . -825) 100857) ((-679 . -775) T) ((-679 . -772) T) ((-979 . -406) 100834) ((-349 . -111) 100763) ((-374 . -896) T) ((-402 . -825) 100742) ((-693 . -285) 100653) ((-219 . -707) T) ((-1224 . -486) 100619) ((-1217 . -486) 100585) ((-1196 . -486) 100551) ((-565 . -1073) T) ((-311 . -978) 100530) ((-218 . -1073) 100508) ((-314 . -949) 100470) ((-104 . -101) T) ((-48 . -1031) 100435) ((-1256 . -101) T) ((-376 . -101) T) ((-48 . -111) 100391) ((-980 . -621) 100373) ((-1218 . -597) 100355) ((-524 . -101) T) ((-493 . -101) T) ((-1106 . -1107) 100339) ((-150 . -1239) 100323) ((-241 . -1186) T) ((-1185 . -101) T) ((-1145 . -1190) 100302) ((-1098 . -1190) 100281) ((-236 . -21) 100191) ((-236 . -25) 100042) ((-127 . -119) 100026) ((-121 . -119) 100010) ((-44 . -725) 99994) ((-1145 . -544) 99905) ((-1098 . -544) 99836) ((-1011 . -281) 99811) ((-1139 . -1056) T) ((-970 . -1056) T) ((-796 . -130) T) ((-117 . -775) NIL) ((-117 . -772) NIL) ((-350 . -302) T) ((-347 . -302) T) ((-339 . -302) T) ((-1067 . -1186) T) ((-246 . -1085) 99721) ((-245 . -1085) 99631) ((-1000 . -1025) T) ((-979 . -1032) T) ((-338 . -628) 99576) ((-603 . -38) 99560) ((-1245 . -597) 99522) ((-1245 . -598) 99483) ((-1050 . -597) 99465) ((-1000 . -239) T) ((-349 . -1025) T) ((-795 . -1239) 99435) ((-246 . -23) T) ((-245 . -23) T) ((-963 . -597) 99417) ((-718 . -598) 99378) ((-718 . -597) 99360) ((-779 . -827) 99339) ((-975 . -507) 99251) ((-349 . -229) T) ((-349 . -239) T) ((-1132 . -149) 99198) ((-980 . -25) T) ((-139 . -598) 99157) ((-139 . -597) 99139) ((-886 . -302) T) ((-980 . -21) T) ((-947 . -25) T) ((-890 . -21) T) ((-890 . -25) T) ((-422 . -21) T) ((-422 . -25) T) ((-820 . -406) 99123) ((-48 . -1025) T) ((-1254 . -1246) 99107) ((-1252 . -1246) 99091) ((-1011 . -588) 99066) ((-311 . -598) 98927) ((-311 . -597) 98909) ((-308 . -598) NIL) ((-308 . -597) 98891) ((-48 . -239) T) ((-48 . -229) T) ((-634 . -281) 98852) ((-538 . -231) 98802) ((-135 . -597) 98784) ((-114 . -597) 98766) ((-471 . -38) 98731) ((-1256 . -1253) 98710) ((-1247 . -130) T) ((-1255 . -1032) T) ((-1055 . -101) T) ((-87 . -1186) T) ((-493 . -304) NIL) ((-976 . -106) 98694) ((-865 . -1073) T) ((-861 . -1073) T) ((-1232 . -631) 98678) ((-1232 . -368) 98662) ((-322 . -1186) T) ((-578 . -827) T) ((-1115 . -1073) T) ((-1115 . -1028) 98602) ((-102 . -507) 98535) ((-903 . -597) 98517) ((-338 . -707) T) ((-30 . -597) 98499) ((-842 . -1073) T) ((-820 . -1032) 98478) ((-40 . -628) 98423) ((-221 . -1190) T) ((-402 . -1032) T) ((-1131 . -149) 98405) ((-975 . -285) 98356) ((-600 . -1073) T) ((-221 . -544) T) ((-314 . -1213) 98340) ((-314 . -1210) 98310) ((-1159 . -1162) 98289) ((-1048 . -597) 98271) ((-627 . -149) 98255) ((-614 . -149) 98201) ((-1159 . -106) 98151) ((-473 . -1162) 98130) ((-481 . -145) T) ((-481 . -143) NIL) ((-1093 . -598) 98045) ((-433 . -597) 98027) ((-213 . -145) T) ((-213 . -143) NIL) ((-1093 . -597) 98009) ((-129 . -101) T) ((-52 . -101) T) ((-1196 . -621) 97961) ((-473 . -106) 97911) ((-969 . -23) T) ((-1256 . -38) 97881) ((-1145 . -1085) T) ((-1098 . -1085) T) ((-1036 . -1190) T) ((-306 . -101) T) ((-831 . -1085) T) ((-928 . -1190) 97860) ((-475 . -1190) 97839) ((-712 . -827) 97818) ((-1036 . -544) T) ((-928 . -544) 97749) ((-1145 . -23) T) ((-1098 . -23) T) ((-831 . -23) T) ((-475 . -544) 97680) ((-1115 . -698) 97612) ((-1119 . -507) 97545) ((-1011 . -598) NIL) ((-1011 . -597) 97527) ((-95 . -1056) T) ((-842 . -698) 97497) ((-1180 . -47) 97466) ((-246 . -130) T) ((-245 . -130) T) ((-1077 . -1073) T) ((-979 . -1073) T) ((-61 . -597) 97448) ((-1140 . -827) NIL) ((-1000 . -772) T) ((-1000 . -775) T) ((-1260 . -1031) 97435) ((-1260 . -111) 97420) ((-846 . -628) 97407) ((-1224 . -25) T) ((-1224 . -21) T) ((-1217 . -21) T) ((-1217 . -25) T) ((-1196 . -21) T) ((-1196 . -25) T) ((-1003 . -149) 97391) ((-848 . -800) 97370) ((-848 . -896) T) ((-693 . -281) 97297) ((-581 . -21) T) ((-581 . -25) T) ((-580 . -21) T) ((-40 . -707) T) ((-218 . -507) 97230) ((-580 . -25) T) ((-470 . -149) 97214) ((-457 . -149) 97198) ((-897 . -774) T) ((-897 . -707) T) ((-751 . -773) T) ((-751 . -774) T) ((-499 . -1073) T) ((-495 . -1073) T) ((-751 . -707) T) ((-221 . -358) T) ((-1129 . -1073) 97176) ((-847 . -1190) T) ((-634 . -597) 97158) ((-847 . -544) T) ((-674 . -363) NIL) ((-354 . -1239) 97142) ((-650 . -101) T) ((-348 . -1239) 97126) ((-340 . -1239) 97110) ((-1255 . -1073) T) ((-513 . -827) 97089) ((-797 . -446) 97068) ((-1022 . -1073) T) ((-1022 . -1045) 96997) ((-1003 . -952) 96966) ((-799 . -1085) T) ((-979 . -698) 96911) ((-381 . -1085) T) ((-470 . -952) 96880) ((-457 . -952) 96849) ((-110 . -149) 96831) ((-72 . -597) 96813) ((-869 . -597) 96795) ((-1053 . -705) 96774) ((-1260 . -1025) T) ((-796 . -621) 96722) ((-289 . -1032) 96664) ((-167 . -1190) 96569) ((-221 . -1085) T) ((-319 . -23) T) ((-1140 . -968) 96521) ((-820 . -1073) T) ((-1099 . -721) 96500) ((-1218 . -1031) 96405) ((-1216 . -896) 96384) ((-846 . -707) T) ((-167 . -544) 96295) ((-1195 . -896) 96274) ((-566 . -628) 96261) ((-402 . -1073) T) ((-552 . -628) 96248) ((-258 . -1073) T) ((-488 . -628) 96213) ((-221 . -23) T) ((-1195 . -800) 96166) ((-1254 . -101) T) ((-349 . -1251) 96143) ((-1252 . -101) T) ((-1218 . -111) 96035) ((-142 . -597) 96017) ((-969 . -130) T) ((-44 . -101) T) ((-236 . -827) 95968) ((-1205 . -1190) 95947) ((-102 . -483) 95931) ((-1255 . -698) 95901) ((-1060 . -47) 95862) ((-1036 . -1085) T) ((-928 . -1085) T) ((-127 . -34) T) ((-121 . -34) T) ((-762 . -47) 95839) ((-760 . -47) 95811) ((-1205 . -544) 95722) ((-349 . -363) T) ((-475 . -1085) T) ((-1145 . -130) T) ((-1098 . -130) T) ((-448 . -47) 95701) ((-847 . -358) T) ((-831 . -130) T) ((-150 . -101) T) ((-1036 . -23) T) ((-928 . -23) T) ((-559 . -544) T) ((-796 . -25) T) ((-796 . -21) T) ((-1115 . -507) 95634) ((-577 . -1056) T) ((-571 . -1014) 95618) ((-475 . -23) T) ((-346 . -1032) T) ((-1180 . -876) 95599) ((-650 . -304) 95537) ((-1086 . -1239) 95507) ((-679 . -628) 95472) ((-979 . -170) T) ((-939 . -143) 95451) ((-617 . -1073) T) ((-591 . -1073) T) ((-939 . -145) 95430) ((-980 . -827) T) ((-716 . -145) 95409) ((-716 . -143) 95388) ((-947 . -827) T) ((-468 . -896) 95367) ((-311 . -1031) 95277) ((-308 . -1031) 95206) ((-975 . -281) 95164) ((-402 . -698) 95116) ((-128 . -827) T) ((-681 . -825) T) ((-1218 . -1025) T) ((-311 . -111) 95012) ((-308 . -111) 94925) ((-940 . -101) T) ((-795 . -101) 94715) ((-693 . -598) NIL) ((-693 . -597) 94697) ((-638 . -1014) 94593) ((-1218 . -321) 94537) ((-1011 . -283) 94512) ((-566 . -707) T) ((-552 . -774) T) ((-167 . -358) 94463) ((-552 . -771) T) ((-552 . -707) T) ((-488 . -707) T) ((-1119 . -483) 94447) ((-1060 . -862) NIL) ((-847 . -1085) T) ((-117 . -885) NIL) ((-1254 . -1253) 94423) ((-1252 . -1253) 94402) ((-762 . -862) NIL) ((-760 . -862) 94261) ((-1247 . -25) T) ((-1247 . -21) T) ((-1183 . -101) 94239) ((-1079 . -390) T) ((-605 . -628) 94226) ((-448 . -862) NIL) ((-655 . -101) 94204) ((-1060 . -1014) 94031) ((-847 . -23) T) ((-762 . -1014) 93890) ((-760 . -1014) 93747) ((-117 . -628) 93692) ((-448 . -1014) 93568) ((-629 . -1014) 93552) ((-609 . -101) T) ((-218 . -483) 93536) ((-1232 . -34) T) ((-617 . -698) 93520) ((-591 . -698) 93504) ((-650 . -38) 93464) ((-314 . -101) T) ((-84 . -597) 93446) ((-50 . -1014) 93430) ((-1093 . -1031) 93417) ((-1060 . -372) 93401) ((-762 . -372) 93385) ((-59 . -56) 93347) ((-679 . -774) T) ((-679 . -771) T) ((-567 . -1014) 93334) ((-511 . -1014) 93311) ((-679 . -707) T) ((-319 . -130) T) ((-311 . -1025) 93201) ((-308 . -1025) T) ((-167 . -1085) T) ((-760 . -372) 93185) ((-45 . -149) 93135) ((-980 . -968) 93117) ((-448 . -372) 93101) ((-402 . -170) T) ((-311 . -239) 93080) ((-308 . -239) T) ((-308 . -229) NIL) ((-289 . -1073) 92862) ((-221 . -130) T) ((-1093 . -111) 92847) ((-167 . -23) T) ((-779 . -145) 92826) ((-779 . -143) 92805) ((-246 . -621) 92711) ((-245 . -621) 92617) ((-314 . -279) 92583) ((-1129 . -507) 92516) ((-1106 . -1073) T) ((-221 . -1034) T) ((-795 . -304) 92454) ((-1060 . -876) 92389) ((-762 . -876) 92332) ((-760 . -876) 92316) ((-1254 . -38) 92286) ((-1252 . -38) 92256) ((-1205 . -1085) T) ((-832 . -1085) T) ((-448 . -876) 92233) ((-835 . -1073) T) ((-1205 . -23) T) ((-559 . -1085) T) ((-832 . -23) T) ((-605 . -707) T) ((-350 . -896) T) ((-347 . -896) T) ((-284 . -101) T) ((-339 . -896) T) ((-1036 . -130) T) ((-946 . -1056) T) ((-928 . -130) T) ((-117 . -774) NIL) ((-117 . -771) NIL) ((-117 . -707) T) ((-674 . -885) NIL) ((-1022 . -507) 92134) ((-475 . -130) T) ((-559 . -23) T) ((-655 . -304) 92072) ((-617 . -742) T) ((-591 . -742) T) ((-1196 . -827) NIL) ((-979 . -285) T) ((-246 . -21) T) ((-674 . -628) 92022) ((-346 . -1073) T) ((-246 . -25) T) ((-245 . -21) T) ((-245 . -25) T) ((-150 . -38) 92006) ((-2 . -101) T) ((-886 . -896) T) ((-476 . -1239) 91976) ((-219 . -1014) 91953) ((-1093 . -1025) T) ((-692 . -302) T) ((-289 . -698) 91895) ((-681 . -1032) T) ((-481 . -446) T) ((-402 . -507) 91807) ((-213 . -446) T) ((-1093 . -229) T) ((-290 . -149) 91757) ((-975 . -598) 91718) ((-975 . -597) 91700) ((-965 . -597) 91682) ((-116 . -1032) T) ((-634 . -1031) 91666) ((-221 . -486) T) ((-394 . -597) 91648) ((-394 . -598) 91625) ((-1029 . -1239) 91595) ((-634 . -111) 91574) ((-1115 . -483) 91558) ((-795 . -38) 91528) ((-62 . -435) T) ((-62 . -390) T) ((-1132 . -101) T) ((-847 . -130) T) ((-478 . -101) 91506) ((-1260 . -363) T) ((-1053 . -101) T) ((-1035 . -101) T) ((-346 . -698) 91451) ((-712 . -145) 91430) ((-712 . -143) 91409) ((-1000 . -628) 91346) ((-516 . -1073) 91324) ((-354 . -101) T) ((-348 . -101) T) ((-340 . -101) T) ((-107 . -101) T) ((-497 . -1073) T) ((-349 . -628) 91269) ((-1145 . -621) 91217) ((-1098 . -621) 91165) ((-380 . -502) 91144) ((-813 . -825) 91123) ((-374 . -1190) T) ((-674 . -707) T) ((-334 . -1032) T) ((-1196 . -968) 91075) ((-172 . -1032) T) ((-102 . -597) 91007) ((-1147 . -143) 90986) ((-1147 . -145) 90965) ((-374 . -544) T) ((-1146 . -145) 90944) ((-1146 . -143) 90923) ((-1140 . -143) 90830) ((-402 . -285) T) ((-1140 . -145) 90737) ((-1099 . -145) 90716) ((-1099 . -143) 90695) ((-314 . -38) 90536) ((-167 . -130) T) ((-308 . -775) NIL) ((-308 . -772) NIL) ((-634 . -1025) T) ((-48 . -628) 90501) ((-1139 . -101) T) ((-970 . -101) T) ((-969 . -21) T) ((-127 . -986) 90485) ((-121 . -986) 90469) ((-969 . -25) T) ((-877 . -119) 90453) ((-1131 . -101) T) ((-796 . -827) 90432) ((-1205 . -130) T) ((-1145 . -25) T) ((-1145 . -21) T) ((-832 . -130) T) ((-1098 . -25) T) ((-1098 . -21) T) ((-831 . -25) T) ((-831 . -21) T) ((-762 . -302) 90411) ((-627 . -101) 90389) ((-614 . -101) T) ((-1132 . -304) 90184) ((-559 . -130) T) ((-603 . -825) 90163) ((-1129 . -483) 90147) ((-1123 . -149) 90097) ((-1119 . -597) 90059) ((-1119 . -598) 90020) ((-1000 . -771) T) ((-1000 . -774) T) ((-1000 . -707) T) ((-478 . -304) 89958) ((-447 . -412) 89928) ((-346 . -170) T) ((-284 . -38) 89915) ((-269 . -101) T) ((-268 . -101) T) ((-267 . -101) T) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-338 . -1014) 89892) ((-208 . -101) T) ((-207 . -101) T) ((-205 . -101) T) ((-204 . -101) T) ((-203 . -101) T) ((-202 . -101) T) ((-199 . -101) T) ((-198 . -101) T) ((-693 . -1031) 89715) ((-197 . -101) T) ((-196 . -101) T) ((-195 . -101) T) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-349 . -707) T) ((-693 . -111) 89524) ((-650 . -227) 89508) ((-567 . -302) T) ((-511 . -302) T) ((-289 . -507) 89457) ((-107 . -304) NIL) ((-71 . -390) T) ((-1086 . -101) 89247) ((-813 . -406) 89231) ((-1093 . -775) T) ((-1093 . -772) T) ((-681 . -1073) T) ((-565 . -597) 89213) ((-374 . -358) T) ((-167 . -486) 89191) ((-209 . -1073) T) ((-218 . -597) 89123) ((-133 . -1073) T) ((-116 . -1073) T) ((-48 . -707) T) ((-1022 . -483) 89088) ((-499 . -92) T) ((-139 . -420) 89070) ((-139 . -363) T) ((-1003 . -101) T) ((-505 . -502) 89049) ((-470 . -101) T) ((-457 . -101) T) ((-1010 . -1085) T) ((-1147 . -35) 89015) ((-1147 . -94) 88981) ((-1147 . -1174) 88947) ((-1147 . -1171) 88913) ((-1131 . -304) NIL) ((-88 . -391) T) ((-88 . -390) T) ((-1053 . -1124) 88892) ((-1146 . -1171) 88858) ((-1146 . -1174) 88824) ((-1010 . -23) T) ((-1146 . -94) 88790) ((-559 . -486) T) ((-1146 . -35) 88756) ((-1140 . -1171) 88722) ((-1140 . -1174) 88688) ((-1140 . -94) 88654) ((-356 . -1085) T) ((-354 . -1124) 88633) ((-348 . -1124) 88612) ((-340 . -1124) 88591) ((-1140 . -35) 88557) ((-1099 . -35) 88523) ((-1099 . -94) 88489) ((-107 . -1124) T) ((-1099 . -1174) 88455) ((-813 . -1032) 88434) ((-627 . -304) 88372) ((-614 . -304) 88223) ((-1099 . -1171) 88189) ((-693 . -1025) T) ((-1036 . -621) 88171) ((-1053 . -38) 88039) ((-928 . -621) 87987) ((-980 . -145) T) ((-980 . -143) NIL) ((-374 . -1085) T) ((-319 . -25) T) ((-317 . -23) T) ((-919 . -827) 87966) ((-693 . -321) 87943) ((-475 . -621) 87891) ((-40 . -1014) 87779) ((-681 . -698) 87766) ((-693 . -229) T) ((-334 . -1073) T) ((-172 . -1073) T) ((-326 . -827) T) ((-413 . -446) 87716) ((-374 . -23) T) ((-354 . -38) 87681) ((-348 . -38) 87646) ((-340 . -38) 87611) ((-79 . -435) T) ((-79 . -390) T) ((-221 . -25) T) ((-221 . -21) T) ((-814 . -1085) T) ((-107 . -38) 87561) ((-807 . -1085) T) ((-754 . -1073) T) ((-116 . -698) 87548) ((-652 . -1014) 87532) ((-596 . -101) T) ((-814 . -23) T) ((-807 . -23) T) ((-1129 . -281) 87509) ((-1086 . -304) 87447) ((-1075 . -231) 87431) ((-63 . -391) T) ((-63 . -390) T) ((-110 . -101) T) ((-40 . -372) 87408) ((-95 . -101) T) ((-633 . -829) 87392) ((-1108 . -1056) T) ((-1036 . -21) T) ((-1036 . -25) T) ((-795 . -227) 87361) ((-928 . -25) T) ((-928 . -21) T) ((-603 . -1032) T) ((-475 . -25) T) ((-475 . -21) T) ((-1003 . -304) 87299) ((-865 . -597) 87281) ((-861 . -597) 87263) ((-246 . -827) 87214) ((-245 . -827) 87165) ((-516 . -507) 87098) ((-847 . -621) 87075) ((-470 . -304) 87013) ((-457 . -304) 86951) ((-346 . -285) T) ((-1129 . -1220) 86935) ((-1115 . -597) 86897) ((-1115 . -598) 86858) ((-1113 . -101) T) ((-975 . -1031) 86754) ((-40 . -876) 86706) ((-1129 . -588) 86683) ((-1260 . -628) 86670) ((-1037 . -149) 86616) ((-848 . -1190) T) ((-975 . -111) 86498) ((-334 . -698) 86482) ((-842 . -597) 86464) ((-172 . -698) 86396) ((-402 . -281) 86354) ((-848 . -544) T) ((-107 . -395) 86336) ((-83 . -379) T) ((-83 . -390) T) ((-681 . -170) T) ((-600 . -597) 86318) ((-98 . -707) T) ((-476 . -101) 86108) ((-98 . -467) T) ((-116 . -170) T) ((-1086 . -38) 86078) ((-167 . -621) 86026) ((-1029 . -101) T) ((-847 . -25) T) ((-795 . -234) 86005) ((-847 . -21) T) ((-798 . -101) T) ((-409 . -101) T) ((-380 . -101) T) ((-110 . -304) NIL) ((-223 . -101) 85983) ((-127 . -1186) T) ((-121 . -1186) T) ((-1010 . -130) T) ((-650 . -362) 85967) ((-975 . -1025) T) ((-1205 . -621) 85915) ((-1077 . -597) 85897) ((-979 . -597) 85879) ((-508 . -23) T) ((-503 . -23) T) ((-338 . -302) T) ((-501 . -23) T) ((-317 . -130) T) ((-3 . -1073) T) ((-979 . -598) 85863) ((-975 . -239) 85842) ((-975 . -229) 85821) ((-1260 . -707) T) ((-1224 . -143) 85800) ((-813 . -1073) T) ((-1224 . -145) 85779) ((-1217 . -145) 85758) ((-1217 . -143) 85737) ((-1216 . -1190) 85716) ((-1196 . -143) 85623) ((-1196 . -145) 85530) ((-1195 . -1190) 85509) ((-374 . -130) T) ((-552 . -862) 85491) ((0 . -1073) T) ((-172 . -170) T) ((-167 . -21) T) ((-167 . -25) T) ((-49 . -1073) T) ((-1218 . -628) 85396) ((-1216 . -544) 85347) ((-695 . -1085) T) ((-1195 . -544) 85298) ((-552 . -1014) 85280) ((-580 . -145) 85259) ((-580 . -143) 85238) ((-488 . -1014) 85181) ((-1108 . -1110) T) ((-86 . -379) T) ((-86 . -390) T) ((-848 . -358) T) ((-814 . -130) T) ((-807 . -130) T) ((-695 . -23) T) ((-499 . -597) 85131) ((-495 . -597) 85113) ((-1256 . -1032) T) ((-374 . -1034) T) ((-1002 . -1073) 85091) ((-877 . -34) T) ((-476 . -304) 85029) ((-577 . -101) T) ((-1129 . -598) 84990) ((-1129 . -597) 84922) ((-1145 . -827) 84901) ((-45 . -101) T) ((-1098 . -827) 84880) ((-797 . -101) T) ((-1205 . -25) T) ((-1205 . -21) T) ((-832 . -25) T) ((-44 . -362) 84864) ((-832 . -21) T) ((-712 . -446) 84815) ((-1255 . -597) 84797) ((-1029 . -304) 84735) ((-651 . -1056) T) ((-590 . -1056) T) ((-385 . -1073) T) ((-559 . -25) T) ((-559 . -21) T) ((-178 . -1056) T) ((-159 . -1056) T) ((-154 . -1056) T) ((-152 . -1056) T) ((-603 . -1073) T) ((-679 . -862) 84717) ((-1232 . -1186) T) ((-223 . -304) 84655) ((-142 . -363) T) ((-1022 . -598) 84597) ((-1022 . -597) 84540) ((-308 . -885) NIL) ((-679 . -1014) 84485) ((-692 . -896) T) ((-468 . -1190) 84464) ((-1146 . -446) 84443) ((-1140 . -446) 84422) ((-325 . -101) T) ((-848 . -1085) T) ((-311 . -628) 84243) ((-308 . -628) 84172) ((-468 . -544) 84123) ((-334 . -507) 84089) ((-538 . -149) 84039) ((-40 . -302) T) ((-820 . -597) 84021) ((-681 . -285) T) ((-848 . -23) T) ((-374 . -486) T) ((-1053 . -227) 83991) ((-505 . -101) T) ((-402 . -598) 83799) ((-402 . -597) 83781) ((-258 . -597) 83763) ((-116 . -285) T) ((-1218 . -707) T) ((-1216 . -358) 83742) ((-1195 . -358) 83721) ((-1245 . -34) T) ((-117 . -1186) T) ((-107 . -227) 83703) ((-1151 . -101) T) ((-471 . -1073) T) ((-516 . -483) 83687) ((-718 . -34) T) ((-476 . -38) 83657) ((-139 . -34) T) ((-117 . -860) 83634) ((-117 . -862) NIL) ((-605 . -1014) 83517) ((-625 . -827) 83496) ((-1244 . -101) T) ((-290 . -101) T) ((-693 . -363) 83475) ((-117 . -1014) 83452) ((-385 . -698) 83436) ((-603 . -698) 83420) ((-45 . -304) 83224) ((-796 . -143) 83203) ((-796 . -145) 83182) ((-1255 . -377) 83161) ((-799 . -827) T) ((-1234 . -1073) T) ((-1132 . -225) 83108) ((-381 . -827) 83087) ((-1224 . -1174) 83053) ((-1224 . -1171) 83019) ((-1217 . -1171) 82985) ((-508 . -130) T) ((-1217 . -1174) 82951) ((-1196 . -1171) 82917) ((-1196 . -1174) 82883) ((-1224 . -35) 82849) ((-1224 . -94) 82815) ((-617 . -597) 82784) ((-591 . -597) 82753) ((-221 . -827) T) ((-1217 . -94) 82719) ((-1217 . -35) 82685) ((-1216 . -1085) T) ((-1093 . -628) 82672) ((-1196 . -94) 82638) ((-1195 . -1085) T) ((-578 . -149) 82620) ((-1053 . -344) 82599) ((-172 . -285) T) ((-117 . -372) 82576) ((-117 . -333) 82553) ((-1196 . -35) 82519) ((-846 . -302) T) ((-308 . -774) NIL) ((-308 . -771) NIL) ((-311 . -707) 82368) ((-308 . -707) T) ((-468 . -358) 82347) ((-354 . -344) 82326) ((-348 . -344) 82305) ((-340 . -344) 82284) ((-311 . -467) 82263) ((-1216 . -23) T) ((-1195 . -23) T) ((-699 . -1085) T) ((-695 . -130) T) ((-633 . -101) T) ((-471 . -698) 82228) ((-45 . -277) 82178) ((-104 . -1073) T) ((-67 . -597) 82160) ((-946 . -101) T) ((-841 . -101) T) ((-605 . -876) 82119) ((-1256 . -1073) T) ((-376 . -1073) T) ((-1185 . -1073) T) ((-81 . -1186) T) ((-1036 . -827) T) ((-928 . -827) 82098) ((-117 . -876) NIL) ((-762 . -896) 82077) ((-694 . -827) T) ((-524 . -1073) T) ((-493 . -1073) T) ((-350 . -1190) T) ((-347 . -1190) T) ((-339 . -1190) T) ((-259 . -1190) 82056) ((-243 . -1190) 82035) ((-1086 . -227) 82004) ((-475 . -827) 81983) ((-1115 . -1031) 81967) ((-385 . -742) T) ((-1131 . -808) T) ((-674 . -1186) T) ((-350 . -544) T) ((-347 . -544) T) ((-339 . -544) T) ((-259 . -544) 81898) ((-243 . -544) 81829) ((-518 . -1056) T) ((-1115 . -111) 81808) ((-447 . -725) 81778) ((-842 . -1031) 81748) ((-797 . -38) 81690) ((-674 . -860) 81672) ((-674 . -862) 81654) ((-290 . -304) 81458) ((-886 . -1190) T) ((-650 . -406) 81442) ((-842 . -111) 81407) ((-674 . -1014) 81352) ((-980 . -446) T) ((-886 . -544) T) ((-567 . -896) T) ((-468 . -1085) T) ((-511 . -896) T) ((-1129 . -283) 81329) ((-890 . -446) T) ((-64 . -597) 81311) ((-614 . -225) 81257) ((-468 . -23) T) ((-1093 . -774) T) ((-848 . -130) T) ((-1093 . -771) T) ((-1247 . -1249) 81236) ((-1093 . -707) T) ((-634 . -628) 81210) ((-289 . -597) 80951) ((-1011 . -34) T) ((-795 . -825) 80930) ((-566 . -302) T) ((-552 . -302) T) ((-488 . -302) T) ((-1256 . -698) 80900) ((-674 . -372) 80882) ((-674 . -333) 80864) ((-471 . -170) T) ((-376 . -698) 80834) ((-847 . -827) NIL) ((-552 . -998) T) ((-488 . -998) T) ((-1106 . -597) 80816) ((-1086 . -234) 80795) ((-210 . -101) T) ((-1123 . -101) T) ((-70 . -597) 80777) ((-1115 . -1025) T) ((-1151 . -38) 80674) ((-835 . -597) 80656) ((-552 . -537) T) ((-650 . -1032) T) ((-712 . -925) 80609) ((-1115 . -229) 80588) ((-1055 . -1073) T) ((-1010 . -25) T) ((-1010 . -21) T) ((-979 . -1031) 80533) ((-881 . -101) T) ((-842 . -1025) T) ((-674 . -876) NIL) ((-350 . -324) 80517) ((-350 . -358) T) ((-347 . -324) 80501) ((-347 . -358) T) ((-339 . -324) 80485) ((-339 . -358) T) ((-481 . -101) T) ((-1244 . -38) 80455) ((-516 . -667) 80405) ((-213 . -101) T) ((-1000 . -1014) 80285) ((-979 . -111) 80214) ((-1147 . -949) 80183) ((-1146 . -949) 80145) ((-513 . -149) 80129) ((-1053 . -365) 80108) ((-346 . -597) 80090) ((-317 . -21) T) ((-349 . -1014) 80067) ((-317 . -25) T) ((-1140 . -949) 80036) ((-1099 . -949) 80003) ((-75 . -597) 79985) ((-679 . -302) T) ((-167 . -827) 79964) ((-886 . -358) T) ((-374 . -25) T) ((-374 . -21) T) ((-886 . -324) 79951) ((-85 . -597) 79933) ((-679 . -998) T) ((-657 . -827) T) ((-1216 . -130) T) ((-1195 . -130) T) ((-877 . -986) 79917) ((-814 . -21) T) ((-48 . -1014) 79860) ((-814 . -25) T) ((-807 . -25) T) ((-807 . -21) T) ((-1254 . -1032) T) ((-1252 . -1032) T) ((-634 . -707) T) ((-1255 . -1031) 79844) ((-1205 . -827) 79823) ((-795 . -406) 79792) ((-102 . -119) 79776) ((-129 . -1073) T) ((-52 . -1073) T) ((-902 . -597) 79758) ((-847 . -968) 79735) ((-803 . -101) T) ((-1255 . -111) 79714) ((-633 . -38) 79684) ((-559 . -827) T) ((-350 . -1085) T) ((-347 . -1085) T) ((-339 . -1085) T) ((-259 . -1085) T) ((-243 . -1085) T) ((-605 . -302) 79663) ((-1123 . -304) 79467) ((-517 . -1056) T) ((-306 . -1073) T) ((-644 . -23) T) ((-476 . -227) 79436) ((-150 . -1032) T) ((-350 . -23) T) ((-347 . -23) T) ((-339 . -23) T) ((-117 . -302) T) ((-259 . -23) T) ((-243 . -23) T) ((-979 . -1025) T) ((-693 . -885) 79415) ((-979 . -229) 79387) ((-979 . -239) T) ((-117 . -998) NIL) ((-886 . -1085) T) ((-1217 . -446) 79366) ((-1196 . -446) 79345) ((-516 . -597) 79277) ((-693 . -628) 79202) ((-402 . -1031) 79154) ((-497 . -597) 79136) ((-886 . -23) T) ((-481 . -304) NIL) ((-468 . -130) T) ((-213 . -304) NIL) ((-402 . -111) 79074) ((-795 . -1032) 79004) ((-718 . -1071) 78988) ((-1216 . -486) 78954) ((-1195 . -486) 78920) ((-471 . -285) T) ((-139 . -1071) 78902) ((-128 . -149) 78884) ((-1255 . -1025) T) ((-1037 . -101) T) ((-493 . -507) NIL) ((-683 . -101) T) ((-476 . -234) 78863) ((-1145 . -143) 78842) ((-1145 . -145) 78821) ((-1098 . -145) 78800) ((-1098 . -143) 78779) ((-617 . -1031) 78763) ((-591 . -1031) 78747) ((-650 . -1073) T) ((-650 . -1028) 78687) ((-1147 . -1223) 78671) ((-1147 . -1210) 78648) ((-481 . -1124) T) ((-1146 . -1215) 78609) ((-1146 . -1210) 78579) ((-1146 . -1213) 78563) ((-213 . -1124) T) ((-338 . -896) T) ((-798 . -261) 78547) ((-617 . -111) 78526) ((-591 . -111) 78505) ((-1140 . -1194) 78466) ((-820 . -1025) 78445) ((-1140 . -1210) 78422) ((-508 . -25) T) ((-488 . -297) T) ((-504 . -23) T) ((-503 . -25) T) ((-501 . -25) T) ((-500 . -23) T) ((-1140 . -1192) 78406) ((-402 . -1025) T) ((-314 . -1032) T) ((-674 . -302) T) ((-107 . -825) T) ((-402 . -239) T) ((-402 . -229) 78385) ((-693 . -707) T) ((-481 . -38) 78335) ((-213 . -38) 78285) ((-468 . -486) 78251) ((-1131 . -1117) T) ((-1074 . -101) T) ((-681 . -597) 78233) ((-681 . -598) 78148) ((-695 . -21) T) ((-695 . -25) T) ((-1108 . -101) T) ((-209 . -597) 78130) ((-133 . -597) 78112) ((-116 . -597) 78094) ((-155 . -25) T) ((-1254 . -1073) T) ((-848 . -621) 78042) ((-1252 . -1073) T) ((-939 . -101) T) ((-716 . -101) T) ((-696 . -101) T) ((-447 . -101) T) ((-796 . -446) 77993) ((-44 . -1073) T) ((-1061 . -827) T) ((-644 . -130) T) ((-1037 . -304) 77844) ((-650 . -698) 77828) ((-284 . -1032) T) ((-350 . -130) T) ((-347 . -130) T) ((-339 . -130) T) ((-259 . -130) T) ((-243 . -130) T) ((-413 . -101) T) ((-150 . -1073) T) ((-45 . -225) 77778) ((-934 . -827) 77757) ((-975 . -628) 77695) ((-236 . -1239) 77665) ((-1000 . -302) T) ((-289 . -1031) 77586) ((-886 . -130) T) ((-40 . -896) T) ((-481 . -395) 77568) ((-349 . -302) T) ((-213 . -395) 77550) ((-1053 . -406) 77534) ((-289 . -111) 77450) ((-848 . -25) T) ((-848 . -21) T) ((-334 . -597) 77432) ((-1218 . -47) 77376) ((-221 . -145) T) ((-172 . -597) 77358) ((-1086 . -825) 77337) ((-754 . -597) 77319) ((-592 . -231) 77266) ((-469 . -231) 77216) ((-1254 . -698) 77186) ((-48 . -302) T) ((-1252 . -698) 77156) ((-940 . -1073) T) ((-795 . -1073) 76946) ((-307 . -101) T) ((-877 . -1186) T) ((-48 . -998) T) ((-1195 . -621) 76854) ((-669 . -101) 76832) ((-44 . -698) 76816) ((-538 . -101) T) ((-66 . -378) T) ((-66 . -390) T) ((-642 . -23) T) ((-650 . -742) T) ((-1183 . -1073) 76794) ((-346 . -1031) 76739) ((-655 . -1073) 76717) ((-1036 . -145) T) ((-928 . -145) 76696) ((-928 . -143) 76675) ((-779 . -101) T) ((-150 . -698) 76659) ((-475 . -145) 76638) ((-475 . -143) 76617) ((-346 . -111) 76546) ((-1053 . -1032) T) ((-317 . -827) 76525) ((-1224 . -949) 76494) ((-609 . -1073) T) ((-1217 . -949) 76456) ((-504 . -130) T) ((-500 . -130) T) ((-290 . -225) 76406) ((-354 . -1032) T) ((-348 . -1032) T) ((-340 . -1032) T) ((-289 . -1025) 76348) ((-1196 . -949) 76317) ((-374 . -827) T) ((-107 . -1032) T) ((-975 . -707) T) ((-846 . -896) T) ((-820 . -775) 76296) ((-820 . -772) 76275) ((-413 . -304) 76214) ((-462 . -101) T) ((-580 . -949) 76183) ((-314 . -1073) T) ((-402 . -775) 76162) ((-402 . -772) 76141) ((-493 . -483) 76123) ((-1218 . -1014) 76089) ((-1216 . -21) T) ((-1216 . -25) T) ((-1195 . -21) T) ((-1195 . -25) T) ((-795 . -698) 76031) ((-679 . -399) T) ((-1245 . -1186) T) ((-590 . -101) T) ((-1086 . -406) 76000) ((-979 . -363) NIL) ((-651 . -101) T) ((-178 . -101) T) ((-159 . -101) T) ((-154 . -101) T) ((-152 . -101) T) ((-102 . -34) T) ((-718 . -1186) T) ((-44 . -742) T) ((-578 . -101) T) ((-76 . -391) T) ((-76 . -390) T) ((-633 . -636) 75984) ((-139 . -1186) T) ((-847 . -145) T) ((-847 . -143) NIL) ((-1185 . -92) T) ((-346 . -1025) T) ((-69 . -378) T) ((-69 . -390) T) ((-1138 . -101) T) ((-650 . -507) 75917) ((-669 . -304) 75855) ((-939 . -38) 75752) ((-716 . -38) 75722) ((-538 . -304) 75526) ((-311 . -1186) T) ((-346 . -229) T) ((-346 . -239) T) ((-308 . -1186) T) ((-284 . -1073) T) ((-1153 . -597) 75508) ((-692 . -1190) T) ((-1129 . -631) 75492) ((-1180 . -544) 75471) ((-692 . -544) T) ((-311 . -860) 75455) ((-311 . -862) 75380) ((-308 . -860) 75341) ((-308 . -862) NIL) ((-779 . -304) 75306) ((-314 . -698) 75147) ((-319 . -318) 75124) ((-479 . -101) T) ((-468 . -25) T) ((-468 . -21) T) ((-413 . -38) 75098) ((-311 . -1014) 74761) ((-221 . -1171) T) ((-221 . -1174) T) ((-3 . -597) 74743) ((-308 . -1014) 74673) ((-2 . -1073) T) ((-2 . |RecordCategory|) T) ((-813 . -597) 74655) ((-1086 . -1032) 74585) ((-566 . -896) T) ((-552 . -800) T) ((-552 . -896) T) ((-488 . -896) T) ((-135 . -1014) 74569) ((-221 . -94) T) ((-74 . -435) T) ((-74 . -390) T) ((0 . -597) 74551) ((-167 . -145) 74530) ((-167 . -143) 74481) ((-221 . -35) T) ((-49 . -597) 74463) ((-471 . -1032) T) ((-481 . -227) 74445) ((-478 . -944) 74429) ((-476 . -825) 74408) ((-213 . -227) 74390) ((-80 . -435) T) ((-80 . -390) T) ((-1119 . -34) T) ((-795 . -170) 74369) ((-712 . -101) T) ((-1002 . -597) 74336) ((-493 . -281) 74311) ((-311 . -372) 74280) ((-308 . -372) 74241) ((-308 . -333) 74202) ((-1058 . -597) 74184) ((-796 . -925) 74131) ((-642 . -130) T) ((-1205 . -143) 74110) ((-1205 . -145) 74089) ((-1147 . -101) T) ((-1146 . -101) T) ((-1140 . -101) T) ((-1132 . -1073) T) ((-1099 . -101) T) ((-218 . -34) T) ((-284 . -698) 74076) ((-1132 . -594) 74052) ((-578 . -304) NIL) ((-478 . -1073) 74030) ((-385 . -597) 74012) ((-503 . -827) T) ((-1123 . -225) 73962) ((-1224 . -1223) 73946) ((-1224 . -1210) 73923) ((-1217 . -1215) 73884) ((-1217 . -1210) 73854) ((-1217 . -1213) 73838) ((-1196 . -1194) 73799) ((-1196 . -1210) 73776) ((-603 . -597) 73758) ((-1196 . -1192) 73742) ((-679 . -896) T) ((-1147 . -279) 73708) ((-1146 . -279) 73674) ((-1140 . -279) 73640) ((-1053 . -1073) T) ((-1035 . -1073) T) ((-48 . -297) T) ((-311 . -876) 73606) ((-308 . -876) NIL) ((-1035 . -1042) 73585) ((-1093 . -862) 73567) ((-779 . -38) 73551) ((-259 . -621) 73499) ((-243 . -621) 73447) ((-681 . -1031) 73434) ((-580 . -1210) 73411) ((-1099 . -279) 73377) ((-314 . -170) 73308) ((-354 . -1073) T) ((-348 . -1073) T) ((-340 . -1073) T) ((-493 . -19) 73290) ((-1093 . -1014) 73272) ((-1075 . -149) 73256) ((-107 . -1073) T) ((-116 . -1031) 73243) ((-692 . -358) T) ((-493 . -588) 73218) ((-681 . -111) 73203) ((-431 . -101) T) ((-45 . -1122) 73153) ((-116 . -111) 73138) ((-617 . -701) T) ((-591 . -701) T) ((-795 . -507) 73071) ((-1011 . -1186) T) ((-919 . -149) 73055) ((-518 . -101) T) ((-513 . -101) 73005) ((-1145 . -446) 72936) ((-1139 . -1073) T) ((-1060 . -1190) 72915) ((-762 . -1190) 72894) ((-760 . -1190) 72873) ((-61 . -1186) T) ((-471 . -597) 72825) ((-471 . -598) 72747) ((-1131 . -1073) T) ((-1115 . -628) 72721) ((-1098 . -446) 72672) ((-1060 . -544) 72603) ((-476 . -406) 72572) ((-605 . -896) 72551) ((-448 . -1190) 72530) ((-970 . -1073) T) ((-762 . -544) 72441) ((-393 . -597) 72423) ((-760 . -544) 72354) ((-655 . -507) 72287) ((-712 . -304) 72274) ((-644 . -25) T) ((-644 . -21) T) ((-448 . -544) 72205) ((-117 . -896) T) ((-117 . -800) NIL) ((-350 . -25) T) ((-350 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-339 . -25) T) ((-339 . -21) T) ((-259 . -25) T) ((-259 . -21) T) ((-82 . -379) T) ((-82 . -390) T) ((-243 . -25) T) ((-243 . -21) T) ((-1234 . -597) 72187) ((-1180 . -1085) T) ((-1180 . -23) T) ((-1140 . -304) 72072) ((-1099 . -304) 72059) ((-1053 . -698) 71927) ((-842 . -628) 71887) ((-919 . -956) 71871) ((-886 . -21) T) ((-284 . -170) T) ((-886 . -25) T) ((-306 . -92) T) ((-848 . -827) 71822) ((-692 . -1085) T) ((-692 . -23) T) ((-627 . -1073) 71800) ((-614 . -594) 71775) ((-614 . -1073) T) ((-567 . -1190) T) ((-511 . -1190) T) ((-567 . -544) T) ((-511 . -544) T) ((-354 . -698) 71727) ((-348 . -698) 71679) ((-340 . -698) 71631) ((-334 . -1031) 71615) ((-172 . -111) 71526) ((-172 . -1031) 71458) ((-107 . -698) 71408) ((-334 . -111) 71387) ((-269 . -1073) T) ((-268 . -1073) T) ((-267 . -1073) T) ((-266 . -1073) T) ((-681 . -1025) T) ((-265 . -1073) T) ((-264 . -1073) T) ((-263 . -1073) T) ((-208 . -1073) T) ((-207 . -1073) T) ((-205 . -1073) T) ((-167 . -1174) 71365) ((-167 . -1171) 71343) ((-204 . -1073) T) ((-203 . -1073) T) ((-116 . -1025) T) ((-202 . -1073) T) ((-199 . -1073) T) ((-681 . -229) T) ((-198 . -1073) T) ((-197 . -1073) T) ((-196 . -1073) T) ((-195 . -1073) T) ((-194 . -1073) T) ((-193 . -1073) T) ((-192 . -1073) T) ((-191 . -1073) T) ((-190 . -1073) T) ((-189 . -1073) T) ((-236 . -101) 71133) ((-167 . -35) 71111) ((-167 . -94) 71089) ((-634 . -1014) 70985) ((-476 . -1032) 70915) ((-1086 . -1073) 70705) ((-1115 . -34) T) ((-650 . -483) 70689) ((-72 . -1186) T) ((-104 . -597) 70671) ((-1256 . -597) 70653) ((-376 . -597) 70635) ((-712 . -38) 70484) ((-559 . -1174) T) ((-559 . -1171) T) ((-524 . -597) 70466) ((-513 . -304) 70404) ((-493 . -597) 70386) ((-493 . -598) 70368) ((-1185 . -597) 70334) ((-1140 . -1124) NIL) ((-1003 . -1045) 70303) ((-1003 . -1073) T) ((-980 . -101) T) ((-947 . -101) T) ((-890 . -101) T) ((-869 . -1014) 70280) ((-1115 . -707) T) ((-979 . -628) 70225) ((-470 . -1073) T) ((-457 . -1073) T) ((-571 . -23) T) ((-559 . -35) T) ((-559 . -94) T) ((-422 . -101) T) ((-1037 . -225) 70171) ((-128 . -101) T) ((-1147 . -38) 70068) ((-842 . -707) T) ((-674 . -896) T) ((-504 . -25) T) ((-500 . -21) T) ((-500 . -25) T) ((-1146 . -38) 69909) ((-334 . -1025) T) ((-1140 . -38) 69705) ((-1053 . -170) T) ((-172 . -1025) T) ((-1099 . -38) 69602) ((-693 . -47) 69579) ((-354 . -170) T) ((-348 . -170) T) ((-512 . -56) 69553) ((-490 . -56) 69503) ((-346 . -1251) 69480) ((-221 . -446) T) ((-314 . -285) 69431) ((-340 . -170) T) ((-172 . -239) T) ((-1195 . -827) 69330) ((-107 . -170) T) ((-848 . -968) 69314) ((-638 . -1085) T) ((-567 . -358) T) ((-567 . -324) 69301) ((-511 . -324) 69278) ((-511 . -358) T) ((-311 . -302) 69257) ((-308 . -302) T) ((-586 . -827) 69236) ((-1086 . -698) 69178) ((-513 . -277) 69162) ((-638 . -23) T) ((-413 . -227) 69146) ((-308 . -998) NIL) ((-331 . -23) T) ((-102 . -986) 69130) ((-45 . -36) 69109) ((-596 . -1073) T) ((-346 . -363) T) ((-517 . -101) T) ((-488 . -27) T) ((-236 . -304) 69047) ((-1060 . -1085) T) ((-1255 . -628) 69021) ((-762 . -1085) T) ((-760 . -1085) T) ((-448 . -1085) T) ((-1036 . -446) T) ((-928 . -446) 68972) ((-1088 . -1056) T) ((-110 . -1073) T) ((-1060 . -23) T) ((-797 . -1032) T) ((-762 . -23) T) ((-760 . -23) T) ((-475 . -446) 68923) ((-1132 . -507) 68706) ((-376 . -377) 68685) ((-1151 . -406) 68669) ((-455 . -23) T) ((-448 . -23) T) ((-95 . -1073) T) ((-478 . -507) 68602) ((-284 . -285) T) ((-1055 . -597) 68584) ((-402 . -885) 68563) ((-50 . -1085) T) ((-1000 . -896) T) ((-979 . -707) T) ((-693 . -862) NIL) ((-567 . -1085) T) ((-511 . -1085) T) ((-820 . -628) 68536) ((-1180 . -130) T) ((-1140 . -395) 68488) ((-980 . -304) NIL) ((-795 . -483) 68472) ((-349 . -896) T) ((-1129 . -34) T) ((-402 . -628) 68424) ((-50 . -23) T) ((-692 . -130) T) ((-693 . -1014) 68304) ((-567 . -23) T) ((-107 . -507) NIL) ((-511 . -23) T) ((-167 . -404) 68275) ((-128 . -304) NIL) ((-1113 . -1073) T) ((-1247 . -1246) 68259) ((-681 . -775) T) ((-681 . -772) T) ((-1093 . -302) T) ((-374 . -145) T) ((-275 . -597) 68241) ((-1195 . -968) 68211) ((-48 . -896) T) ((-655 . -483) 68195) ((-246 . -1239) 68165) ((-245 . -1239) 68135) ((-1149 . -827) T) ((-1086 . -170) 68114) ((-1093 . -998) T) ((-1022 . -34) T) ((-814 . -145) 68093) ((-814 . -143) 68072) ((-718 . -106) 68056) ((-596 . -131) T) ((-476 . -1073) 67846) ((-1151 . -1032) T) ((-847 . -446) T) ((-84 . -1186) T) ((-236 . -38) 67816) ((-139 . -106) 67798) ((-693 . -372) 67782) ((-1093 . -537) T) ((-385 . -1031) 67766) ((-1255 . -707) T) ((-1145 . -925) 67735) ((-129 . -597) 67687) ((-52 . -597) 67669) ((-1098 . -925) 67636) ((-633 . -406) 67620) ((-1244 . -1032) T) ((-603 . -1031) 67604) ((-642 . -25) T) ((-642 . -21) T) ((-1131 . -507) NIL) ((-1224 . -101) T) ((-1217 . -101) T) ((-385 . -111) 67583) ((-218 . -249) 67567) ((-1196 . -101) T) ((-1029 . -1073) T) ((-980 . -1124) T) ((-1029 . -1028) 67507) ((-798 . -1073) T) ((-338 . -1190) T) ((-617 . -628) 67491) ((-603 . -111) 67470) ((-591 . -628) 67454) ((-581 . -101) T) ((-571 . -130) T) ((-580 . -101) T) ((-409 . -1073) T) ((-380 . -1073) T) ((-306 . -597) 67420) ((-223 . -1073) 67398) ((-627 . -507) 67331) ((-614 . -507) 67175) ((-813 . -1025) 67154) ((-625 . -149) 67138) ((-338 . -544) T) ((-693 . -876) 67081) ((-538 . -225) 67031) ((-1224 . -279) 66997) ((-1053 . -285) 66948) ((-481 . -825) T) ((-219 . -1085) T) ((-1217 . -279) 66914) ((-1196 . -279) 66880) ((-980 . -38) 66830) ((-213 . -825) T) ((-1180 . -486) 66796) ((-890 . -38) 66748) ((-820 . -774) 66727) ((-820 . -771) 66706) ((-820 . -707) 66685) ((-354 . -285) T) ((-348 . -285) T) ((-340 . -285) T) ((-167 . -446) 66616) ((-422 . -38) 66600) ((-107 . -285) T) ((-219 . -23) T) ((-402 . -774) 66579) ((-402 . -771) 66558) ((-402 . -707) T) ((-493 . -283) 66533) ((-471 . -1031) 66498) ((-638 . -130) T) ((-1086 . -507) 66431) ((-331 . -130) T) ((-167 . -397) 66410) ((-476 . -698) 66352) ((-795 . -281) 66329) ((-471 . -111) 66285) ((-633 . -1032) T) ((-1205 . -446) 66216) ((-1243 . -1056) T) ((-1242 . -1056) T) ((-1060 . -130) T) ((-259 . -827) 66195) ((-243 . -827) 66174) ((-762 . -130) T) ((-760 . -130) T) ((-559 . -446) T) ((-1029 . -698) 66116) ((-603 . -1025) T) ((-1003 . -507) 66049) ((-577 . -1073) T) ((-455 . -130) T) ((-448 . -130) T) ((-45 . -1073) T) ((-380 . -698) 66019) ((-797 . -1073) T) ((-470 . -507) 65952) ((-457 . -507) 65885) ((-447 . -362) 65855) ((-45 . -594) 65834) ((-311 . -297) T) ((-650 . -597) 65796) ((-58 . -827) 65775) ((-1196 . -304) 65660) ((-980 . -395) 65642) ((-795 . -588) 65619) ((-509 . -827) 65598) ((-489 . -827) 65577) ((-40 . -1190) T) ((-975 . -1014) 65473) ((-50 . -130) T) ((-567 . -130) T) ((-511 . -130) T) ((-289 . -628) 65333) ((-338 . -324) 65310) ((-338 . -358) T) ((-317 . -318) 65287) ((-314 . -281) 65272) ((-40 . -544) T) ((-374 . -1171) T) ((-374 . -1174) T) ((-1011 . -1162) 65247) ((-1159 . -231) 65197) ((-1140 . -227) 65149) ((-325 . -1073) T) ((-374 . -94) T) ((-374 . -35) T) ((-1011 . -106) 65095) ((-471 . -1025) T) ((-473 . -231) 65045) ((-1132 . -483) 64979) ((-1256 . -1031) 64963) ((-376 . -1031) 64947) ((-471 . -239) T) ((-796 . -101) T) ((-695 . -145) 64926) ((-695 . -143) 64905) ((-478 . -483) 64889) ((-479 . -330) 64858) ((-1256 . -111) 64837) ((-505 . -1073) T) ((-476 . -170) 64816) ((-975 . -372) 64800) ((-408 . -101) T) ((-376 . -111) 64779) ((-975 . -333) 64763) ((-274 . -959) 64747) ((-273 . -959) 64731) ((-1254 . -597) 64713) ((-1252 . -597) 64695) ((-110 . -507) NIL) ((-1145 . -1208) 64679) ((-831 . -829) 64663) ((-1151 . -1073) T) ((-102 . -1186) T) ((-928 . -925) 64624) ((-797 . -698) 64566) ((-1196 . -1124) NIL) ((-475 . -925) 64511) ((-1036 . -141) T) ((-59 . -101) 64489) ((-44 . -597) 64471) ((-77 . -597) 64453) ((-346 . -628) 64398) ((-1244 . -1073) T) ((-504 . -827) T) ((-338 . -1085) T) ((-290 . -1073) T) ((-975 . -876) 64357) ((-290 . -594) 64336) ((-1224 . -38) 64233) ((-1217 . -38) 64074) ((-481 . -1032) T) ((-1196 . -38) 63870) ((-213 . -1032) T) ((-338 . -23) T) ((-150 . -597) 63852) ((-813 . -775) 63831) ((-813 . -772) 63810) ((-581 . -38) 63783) ((-580 . -38) 63680) ((-846 . -544) T) ((-219 . -130) T) ((-314 . -978) 63646) ((-78 . -597) 63628) ((-693 . -302) 63607) ((-289 . -707) 63509) ((-804 . -101) T) ((-841 . -821) T) ((-289 . -467) 63488) ((-1247 . -101) T) ((-40 . -358) T) ((-848 . -145) 63467) ((-848 . -143) 63446) ((-1131 . -483) 63428) ((-1256 . -1025) T) ((-476 . -507) 63361) ((-1119 . -1186) T) ((-940 . -597) 63343) ((-627 . -483) 63327) ((-614 . -483) 63258) ((-795 . -597) 62989) ((-48 . -27) T) ((-1151 . -698) 62886) ((-633 . -1073) T) ((-838 . -837) T) ((-431 . -359) 62860) ((-1075 . -101) T) ((-796 . -304) 62847) ((-946 . -1073) T) ((-841 . -1073) T) ((-1252 . -377) 62819) ((-1029 . -507) 62752) ((-1132 . -281) 62728) ((-236 . -227) 62697) ((-1244 . -698) 62667) ((-1139 . -92) T) ((-970 . -92) T) ((-797 . -170) 62646) ((-223 . -507) 62579) ((-603 . -775) 62558) ((-603 . -772) 62537) ((-1183 . -597) 62449) ((-218 . -1186) T) ((-655 . -597) 62381) ((-1129 . -986) 62365) ((-919 . -101) 62315) ((-346 . -707) T) ((-838 . -597) 62297) ((-1196 . -395) 62249) ((-1086 . -483) 62233) ((-59 . -304) 62171) ((-326 . -101) T) ((-1180 . -21) T) ((-1180 . -25) T) ((-40 . -1085) T) ((-692 . -21) T) ((-609 . -597) 62153) ((-508 . -318) 62132) ((-692 . -25) T) ((-107 . -281) NIL) ((-897 . -1085) T) ((-40 . -23) T) ((-751 . -1085) T) ((-552 . -1190) T) ((-488 . -1190) T) ((-314 . -597) 62114) ((-980 . -227) 62096) ((-167 . -164) 62080) ((-566 . -544) T) ((-552 . -544) T) ((-488 . -544) T) ((-751 . -23) T) ((-1216 . -145) 62059) ((-1132 . -588) 62035) ((-1216 . -143) 62014) ((-1003 . -483) 61998) ((-1195 . -143) 61923) ((-1195 . -145) 61848) ((-1247 . -1253) 61827) ((-470 . -483) 61811) ((-457 . -483) 61795) ((-516 . -34) T) ((-633 . -698) 61765) ((-112 . -943) T) ((-642 . -827) 61744) ((-1151 . -170) 61695) ((-360 . -101) T) ((-236 . -234) 61674) ((-246 . -101) T) ((-245 . -101) T) ((-1205 . -925) 61643) ((-109 . -101) T) ((-241 . -827) 61622) ((-796 . -38) 61471) ((-45 . -507) 61263) ((-1131 . -281) 61238) ((-210 . -1073) T) ((-1123 . -1073) T) ((-1123 . -594) 61217) ((-571 . -25) T) ((-571 . -21) T) ((-1075 . -304) 61155) ((-939 . -406) 61139) ((-679 . -1190) T) ((-614 . -281) 61114) ((-1060 . -621) 61062) ((-762 . -621) 61010) ((-760 . -621) 60958) ((-338 . -130) T) ((-284 . -597) 60940) ((-679 . -544) T) ((-881 . -1073) T) ((-846 . -1085) T) ((-448 . -621) 60888) ((-881 . -879) 60872) ((-374 . -446) T) ((-481 . -1073) T) ((-681 . -628) 60859) ((-919 . -304) 60797) ((-213 . -1073) T) ((-311 . -896) 60776) ((-308 . -896) T) ((-308 . -800) NIL) ((-385 . -701) T) ((-846 . -23) T) ((-116 . -628) 60763) ((-468 . -143) 60742) ((-413 . -406) 60726) ((-468 . -145) 60705) ((-110 . -483) 60687) ((-2 . -597) 60669) ((-182 . -101) T) ((-1131 . -19) 60651) ((-1131 . -588) 60626) ((-638 . -21) T) ((-638 . -25) T) ((-578 . -1117) T) ((-1086 . -281) 60603) ((-331 . -25) T) ((-331 . -21) T) ((-488 . -358) T) ((-1247 . -38) 60573) ((-1115 . -1186) T) ((-614 . -588) 60548) ((-1060 . -25) T) ((-1060 . -21) T) ((-524 . -772) T) ((-524 . -775) T) ((-117 . -1190) T) ((-939 . -1032) T) ((-605 . -544) T) ((-762 . -25) T) ((-762 . -21) T) ((-760 . -21) T) ((-760 . -25) T) ((-716 . -1032) T) ((-696 . -1032) T) ((-650 . -1031) 60532) ((-510 . -1056) T) ((-455 . -25) T) ((-117 . -544) T) ((-455 . -21) T) ((-448 . -25) T) ((-448 . -21) T) ((-1115 . -1014) 60428) ((-797 . -285) 60407) ((-803 . -1073) T) ((-942 . -943) T) ((-650 . -111) 60386) ((-290 . -507) 60178) ((-1254 . -1031) 60162) ((-1252 . -1031) 60146) ((-1216 . -1171) 60112) ((-246 . -304) 60050) ((-245 . -304) 59988) ((-1199 . -101) 59966) ((-1132 . -598) NIL) ((-1132 . -597) 59948) ((-1216 . -1174) 59914) ((-1196 . -227) 59866) ((-1195 . -1171) 59832) ((-95 . -92) T) ((-1195 . -1174) 59798) ((-1115 . -372) 59782) ((-1093 . -800) T) ((-1093 . -896) T) ((-1086 . -588) 59759) ((-1053 . -598) 59743) ((-478 . -597) 59675) ((-795 . -283) 59652) ((-592 . -149) 59599) ((-413 . -1032) T) ((-481 . -698) 59549) ((-476 . -483) 59533) ((-322 . -827) 59512) ((-334 . -628) 59486) ((-50 . -21) T) ((-50 . -25) T) ((-213 . -698) 59436) ((-167 . -705) 59407) ((-172 . -628) 59339) ((-567 . -21) T) ((-567 . -25) T) ((-511 . -25) T) ((-511 . -21) T) ((-469 . -149) 59289) ((-1053 . -597) 59271) ((-1035 . -597) 59253) ((-969 . -101) T) ((-839 . -101) T) ((-779 . -406) 59217) ((-40 . -130) T) ((-679 . -358) T) ((-208 . -871) T) ((-681 . -774) T) ((-681 . -771) T) ((-566 . -1085) T) ((-552 . -1085) T) ((-488 . -1085) T) ((-681 . -707) T) ((-354 . -597) 59199) ((-348 . -597) 59181) ((-340 . -597) 59163) ((-65 . -391) T) ((-65 . -390) T) ((-107 . -598) 59093) ((-107 . -597) 59075) ((-207 . -871) T) ((-934 . -149) 59059) ((-1216 . -94) 59025) ((-751 . -130) T) ((-133 . -707) T) ((-116 . -707) T) ((-1216 . -35) 58991) ((-1029 . -483) 58975) ((-566 . -23) T) ((-552 . -23) T) ((-488 . -23) T) ((-1195 . -94) 58941) ((-1195 . -35) 58907) ((-1145 . -101) T) ((-1098 . -101) T) ((-831 . -101) T) ((-223 . -483) 58891) ((-1254 . -111) 58870) ((-1252 . -111) 58849) ((-44 . -1031) 58833) ((-1205 . -1208) 58817) ((-832 . -829) 58801) ((-1151 . -285) 58780) ((-110 . -281) 58755) ((-1115 . -876) 58714) ((-44 . -111) 58693) ((-1154 . -1227) T) ((-1139 . -597) 58659) ((-650 . -1025) T) ((-1131 . -598) NIL) ((-1131 . -597) 58641) ((-1037 . -594) 58616) ((-1037 . -1073) T) ((-970 . -597) 58582) ((-73 . -435) T) ((-73 . -390) T) ((-650 . -229) 58561) ((-150 . -1031) 58545) ((-559 . -542) 58529) ((-350 . -145) 58508) ((-350 . -143) 58459) ((-347 . -145) 58438) ((-683 . -1073) T) ((-347 . -143) 58389) ((-339 . -145) 58368) ((-339 . -143) 58319) ((-259 . -143) 58298) ((-259 . -145) 58277) ((-246 . -38) 58247) ((-243 . -145) 58226) ((-117 . -358) T) ((-243 . -143) 58205) ((-245 . -38) 58175) ((-150 . -111) 58154) ((-979 . -1014) 58042) ((-1140 . -825) NIL) ((-674 . -1190) T) ((-779 . -1032) T) ((-679 . -1085) T) ((-1254 . -1025) T) ((-1252 . -1025) T) ((-1129 . -1186) T) ((-979 . -372) 58019) ((-886 . -143) T) ((-886 . -145) 58001) ((-846 . -130) T) ((-795 . -1031) 57898) ((-674 . -544) T) ((-679 . -23) T) ((-627 . -597) 57830) ((-627 . -598) 57791) ((-614 . -598) NIL) ((-614 . -597) 57773) ((-481 . -170) T) ((-219 . -21) T) ((-213 . -170) T) ((-219 . -25) T) ((-468 . -1174) 57739) ((-468 . -1171) 57705) ((-269 . -597) 57687) ((-268 . -597) 57669) ((-267 . -597) 57651) ((-266 . -597) 57633) ((-265 . -597) 57615) ((-493 . -631) 57597) ((-264 . -597) 57579) ((-334 . -707) T) ((-263 . -597) 57561) ((-110 . -19) 57543) ((-172 . -707) T) ((-493 . -368) 57525) ((-208 . -597) 57507) ((-513 . -1122) 57491) ((-493 . -123) T) ((-110 . -588) 57466) ((-207 . -597) 57448) ((-468 . -35) 57414) ((-468 . -94) 57380) ((-205 . -597) 57362) ((-204 . -597) 57344) ((-203 . -597) 57326) ((-202 . -597) 57308) ((-199 . -597) 57290) ((-198 . -597) 57272) ((-197 . -597) 57254) ((-196 . -597) 57236) ((-195 . -597) 57218) ((-194 . -597) 57200) ((-193 . -597) 57182) ((-528 . -1076) 57134) ((-192 . -597) 57116) ((-191 . -597) 57098) ((-45 . -483) 57035) ((-190 . -597) 57017) ((-189 . -597) 56999) ((-1088 . -101) T) ((-795 . -111) 56889) ((-625 . -101) 56839) ((-476 . -281) 56816) ((-1086 . -597) 56547) ((-1074 . -1073) T) ((-1022 . -1186) T) ((-1255 . -1014) 56531) ((-605 . -1085) T) ((-1145 . -304) 56518) ((-1108 . -1073) T) ((-1098 . -304) 56505) ((-1069 . -1056) T) ((-1063 . -1056) T) ((-1047 . -1056) T) ((-1040 . -1056) T) ((-1012 . -1056) T) ((-995 . -1056) T) ((-117 . -1085) T) ((-799 . -101) T) ((-608 . -1056) T) ((-605 . -23) T) ((-1123 . -507) 56297) ((-477 . -1056) T) ((-979 . -876) 56249) ((-381 . -101) T) ((-319 . -101) T) ((-214 . -1056) T) ((-939 . -1073) T) ((-150 . -1025) T) ((-117 . -23) T) ((-712 . -406) 56233) ((-716 . -1073) T) ((-696 . -1073) T) ((-683 . -131) T) ((-447 . -1073) T) ((-402 . -1186) T) ((-311 . -425) 56217) ((-577 . -92) T) ((-1003 . -598) 56178) ((-1000 . -1190) T) ((-221 . -101) T) ((-1003 . -597) 56140) ((-796 . -227) 56124) ((-1000 . -544) T) ((-813 . -628) 56097) ((-349 . -1190) T) ((-470 . -597) 56059) ((-470 . -598) 56020) ((-457 . -598) 55981) ((-457 . -597) 55943) ((-402 . -860) 55927) ((-314 . -1031) 55762) ((-402 . -862) 55687) ((-820 . -1014) 55583) ((-481 . -507) NIL) ((-476 . -588) 55560) ((-349 . -544) T) ((-213 . -507) NIL) ((-848 . -446) T) ((-413 . -1073) T) ((-402 . -1014) 55424) ((-314 . -111) 55245) ((-674 . -358) T) ((-221 . -279) T) ((-48 . -1190) T) ((-795 . -1025) 55175) ((-566 . -130) T) ((-552 . -130) T) ((-488 . -130) T) ((-48 . -544) T) ((-1132 . -283) 55151) ((-1145 . -1124) 55129) ((-311 . -27) 55108) ((-1036 . -101) T) ((-795 . -229) 55060) ((-236 . -825) 55039) ((-928 . -101) T) ((-694 . -101) T) ((-290 . -483) 54976) ((-475 . -101) T) ((-712 . -1032) T) ((-596 . -597) 54958) ((-596 . -598) 54819) ((-402 . -372) 54803) ((-402 . -333) 54787) ((-1145 . -38) 54616) ((-1098 . -38) 54465) ((-831 . -38) 54435) ((-385 . -628) 54419) ((-625 . -304) 54357) ((-939 . -698) 54254) ((-716 . -698) 54224) ((-218 . -106) 54208) ((-45 . -281) 54133) ((-603 . -628) 54107) ((-307 . -1073) T) ((-284 . -1031) 54094) ((-110 . -597) 54076) ((-110 . -598) 54058) ((-447 . -698) 54028) ((-796 . -248) 53967) ((-669 . -1073) 53945) ((-538 . -1073) T) ((-1147 . -1032) T) ((-1146 . -1032) T) ((-1140 . -1032) T) ((-284 . -111) 53930) ((-1099 . -1032) T) ((-538 . -594) 53909) ((-95 . -597) 53875) ((-980 . -825) T) ((-223 . -667) 53833) ((-674 . -1085) T) ((-1180 . -721) 53809) ((-314 . -1025) T) ((-338 . -25) T) ((-338 . -21) T) ((-402 . -876) 53768) ((-67 . -1186) T) ((-813 . -774) 53747) ((-413 . -698) 53721) ((-779 . -1073) T) ((-813 . -771) 53700) ((-679 . -130) T) ((-693 . -896) 53679) ((-674 . -23) T) ((-481 . -285) T) ((-813 . -707) 53658) ((-314 . -229) 53610) ((-314 . -239) 53589) ((-213 . -285) T) ((-1000 . -358) T) ((-1216 . -446) 53568) ((-1195 . -446) 53547) ((-349 . -324) 53524) ((-349 . -358) T) ((-1113 . -597) 53506) ((-45 . -1220) 53456) ((-847 . -101) T) ((-625 . -277) 53440) ((-679 . -1034) T) ((-1243 . -101) T) ((-471 . -628) 53405) ((-462 . -1073) T) ((-45 . -588) 53330) ((-1242 . -101) T) ((-1131 . -283) 53305) ((-40 . -621) 53244) ((-48 . -358) T) ((-1079 . -597) 53226) ((-1060 . -827) 53205) ((-614 . -283) 53180) ((-762 . -827) 53159) ((-760 . -827) 53138) ((-476 . -597) 52869) ((-236 . -406) 52838) ((-928 . -304) 52825) ((-448 . -827) 52804) ((-64 . -1186) T) ((-1037 . -507) 52648) ((-605 . -130) T) ((-475 . -304) 52635) ((-590 . -1073) T) ((-117 . -130) T) ((-651 . -1073) T) ((-284 . -1025) T) ((-178 . -1073) T) ((-159 . -1073) T) ((-154 . -1073) T) ((-152 . -1073) T) ((-447 . -742) T) ((-31 . -1056) T) ((-939 . -170) 52586) ((-946 . -92) T) ((-1053 . -1031) 52496) ((-603 . -774) 52475) ((-578 . -1073) T) ((-603 . -771) 52454) ((-603 . -707) T) ((-290 . -281) 52433) ((-289 . -1186) T) ((-1029 . -597) 52395) ((-1029 . -598) 52356) ((-1000 . -1085) T) ((-167 . -101) T) ((-270 . -827) T) ((-1138 . -1073) T) ((-798 . -597) 52338) ((-1086 . -283) 52315) ((-1075 . -225) 52299) ((-979 . -302) T) ((-779 . -698) 52283) ((-354 . -1031) 52235) ((-349 . -1085) T) ((-348 . -1031) 52187) ((-409 . -597) 52169) ((-380 . -597) 52151) ((-340 . -1031) 52103) ((-223 . -597) 52035) ((-1053 . -111) 51931) ((-1000 . -23) T) ((-107 . -1031) 51881) ((-874 . -101) T) ((-818 . -101) T) ((-788 . -101) T) ((-749 . -101) T) ((-657 . -101) T) ((-468 . -446) 51860) ((-413 . -170) T) ((-354 . -111) 51798) ((-348 . -111) 51736) ((-340 . -111) 51674) ((-246 . -227) 51643) ((-245 . -227) 51612) ((-349 . -23) T) ((-70 . -1186) T) ((-221 . -38) 51577) ((-107 . -111) 51511) ((-40 . -25) T) ((-40 . -21) T) ((-650 . -701) T) ((-167 . -279) 51489) ((-48 . -1085) T) ((-897 . -25) T) ((-751 . -25) T) ((-1123 . -483) 51426) ((-479 . -1073) T) ((-1256 . -628) 51400) ((-1205 . -101) T) ((-832 . -101) T) ((-236 . -1032) 51330) ((-1036 . -1124) T) ((-940 . -772) 51283) ((-376 . -628) 51267) ((-48 . -23) T) ((-940 . -775) 51220) ((-795 . -775) 51171) ((-795 . -772) 51122) ((-290 . -588) 51101) ((-471 . -707) T) ((-559 . -101) T) ((-847 . -304) 51058) ((-633 . -281) 51037) ((-112 . -641) T) ((-75 . -1186) T) ((-1036 . -38) 51024) ((-644 . -369) 51003) ((-928 . -38) 50852) ((-712 . -1073) T) ((-475 . -38) 50701) ((-85 . -1186) T) ((-559 . -279) T) ((-1196 . -825) NIL) ((-577 . -597) 50667) ((-1147 . -1073) T) ((-1146 . -1073) T) ((-1140 . -1073) T) ((-346 . -1014) 50644) ((-1053 . -1025) T) ((-980 . -1032) T) ((-45 . -597) 50626) ((-45 . -598) NIL) ((-890 . -1032) T) ((-797 . -597) 50608) ((-1120 . -101) 50586) ((-1053 . -239) 50537) ((-422 . -1032) T) ((-354 . -1025) T) ((-348 . -1025) T) ((-360 . -359) 50514) ((-340 . -1025) T) ((-246 . -234) 50493) ((-245 . -234) 50472) ((-109 . -359) 50446) ((-1053 . -229) 50371) ((-1099 . -1073) T) ((-289 . -876) 50330) ((-107 . -1025) T) ((-674 . -130) T) ((-413 . -507) 50172) ((-354 . -229) 50151) ((-354 . -239) T) ((-44 . -701) T) ((-348 . -229) 50130) ((-348 . -239) T) ((-340 . -229) 50109) ((-340 . -239) T) ((-167 . -304) 50074) ((-107 . -239) T) ((-107 . -229) T) ((-314 . -772) T) ((-846 . -21) T) ((-846 . -25) T) ((-402 . -302) T) ((-493 . -34) T) ((-110 . -283) 50049) ((-1086 . -1031) 49946) ((-847 . -1124) NIL) ((-325 . -597) 49928) ((-402 . -998) 49907) ((-1086 . -111) 49797) ((-671 . -1227) T) ((-431 . -1073) T) ((-1256 . -707) T) ((-62 . -597) 49779) ((-847 . -38) 49724) ((-516 . -1186) T) ((-586 . -149) 49708) ((-505 . -597) 49690) ((-1205 . -304) 49677) ((-712 . -698) 49526) ((-524 . -773) T) ((-524 . -774) T) ((-552 . -621) 49508) ((-488 . -621) 49468) ((-350 . -446) T) ((-347 . -446) T) ((-339 . -446) T) ((-259 . -446) 49419) ((-518 . -1073) T) ((-513 . -1073) 49369) ((-243 . -446) 49320) ((-1123 . -281) 49299) ((-1151 . -597) 49281) ((-669 . -507) 49214) ((-939 . -285) 49193) ((-538 . -507) 48985) ((-1145 . -227) 48969) ((-167 . -1124) 48948) ((-1244 . -597) 48930) ((-1147 . -698) 48827) ((-1146 . -698) 48668) ((-868 . -101) T) ((-1140 . -698) 48464) ((-1099 . -698) 48361) ((-1129 . -654) 48345) ((-350 . -397) 48296) ((-347 . -397) 48247) ((-339 . -397) 48198) ((-1000 . -130) T) ((-779 . -507) 48110) ((-290 . -598) NIL) ((-290 . -597) 48092) ((-886 . -446) T) ((-940 . -363) 48045) ((-795 . -363) 48024) ((-503 . -502) 48003) ((-501 . -502) 47982) ((-481 . -281) NIL) ((-476 . -283) 47959) ((-413 . -285) T) ((-349 . -130) T) ((-213 . -281) NIL) ((-674 . -486) NIL) ((-98 . -1085) T) ((-167 . -38) 47787) ((-1216 . -949) 47749) ((-1120 . -304) 47687) ((-1195 . -949) 47656) ((-886 . -397) T) ((-1086 . -1025) 47586) ((-1218 . -544) T) ((-1123 . -588) 47565) ((-112 . -827) T) ((-1037 . -483) 47496) ((-566 . -21) T) ((-566 . -25) T) ((-552 . -21) T) ((-552 . -25) T) ((-488 . -25) T) ((-488 . -21) T) ((-1205 . -1124) 47474) ((-1086 . -229) 47426) ((-48 . -130) T) ((-1167 . -101) T) ((-236 . -1073) 47216) ((-847 . -395) 47193) ((-1061 . -101) T) ((-1049 . -101) T) ((-592 . -101) T) ((-469 . -101) T) ((-1205 . -38) 47022) ((-832 . -38) 46992) ((-712 . -170) 46903) ((-633 . -597) 46885) ((-626 . -1056) T) ((-559 . -38) 46872) ((-946 . -597) 46838) ((-934 . -101) 46788) ((-841 . -597) 46770) ((-841 . -598) 46692) ((-578 . -507) NIL) ((-1224 . -1032) T) ((-1217 . -1032) T) ((-1196 . -1032) T) ((-581 . -1032) T) ((-580 . -1032) T) ((-1260 . -1085) T) ((-1147 . -170) 46643) ((-1146 . -170) 46574) ((-1140 . -170) 46505) ((-1099 . -170) 46456) ((-980 . -1073) T) ((-947 . -1073) T) ((-890 . -1073) T) ((-1180 . -145) 46435) ((-779 . -777) 46419) ((-679 . -25) T) ((-679 . -21) T) ((-117 . -621) 46396) ((-681 . -862) 46378) ((-422 . -1073) T) ((-311 . -1190) 46357) ((-308 . -1190) T) ((-167 . -395) 46341) ((-1180 . -143) 46320) ((-468 . -949) 46282) ((-128 . -1073) T) ((-71 . -597) 46264) ((-107 . -775) T) ((-107 . -772) T) ((-311 . -544) 46243) ((-681 . -1014) 46225) ((-308 . -544) T) ((-1260 . -23) T) ((-133 . -1014) 46207) ((-476 . -1031) 46104) ((-45 . -283) 46029) ((-236 . -698) 45971) ((-510 . -101) T) ((-476 . -111) 45861) ((-1065 . -101) 45839) ((-1010 . -101) T) ((-625 . -808) 45818) ((-712 . -507) 45761) ((-1029 . -1031) 45745) ((-1108 . -92) T) ((-1037 . -281) 45720) ((-605 . -21) T) ((-605 . -25) T) ((-517 . -1073) T) ((-356 . -101) T) ((-317 . -101) T) ((-650 . -628) 45694) ((-380 . -1031) 45678) ((-1029 . -111) 45657) ((-796 . -406) 45641) ((-117 . -25) T) ((-88 . -597) 45623) ((-117 . -21) T) ((-592 . -304) 45418) ((-469 . -304) 45222) ((-1123 . -598) NIL) ((-380 . -111) 45201) ((-374 . -101) T) ((-210 . -597) 45183) ((-1123 . -597) 45165) ((-980 . -698) 45115) ((-1140 . -507) 44884) ((-890 . -698) 44836) ((-1099 . -507) 44806) ((-346 . -302) T) ((-1159 . -149) 44756) ((-934 . -304) 44694) ((-814 . -101) T) ((-422 . -698) 44678) ((-221 . -808) T) ((-807 . -101) T) ((-805 . -101) T) ((-473 . -149) 44628) ((-1216 . -1215) 44607) ((-1093 . -1190) T) ((-334 . -1014) 44574) ((-1216 . -1210) 44544) ((-1216 . -1213) 44528) ((-1195 . -1194) 44507) ((-79 . -597) 44489) ((-881 . -597) 44471) ((-1195 . -1210) 44448) ((-1093 . -544) T) ((-897 . -827) T) ((-751 . -827) T) ((-481 . -598) 44378) ((-481 . -597) 44360) ((-374 . -279) T) ((-652 . -827) T) ((-1195 . -1192) 44344) ((-1218 . -1085) T) ((-213 . -598) 44274) ((-213 . -597) 44256) ((-1037 . -588) 44231) ((-58 . -149) 44215) ((-509 . -149) 44199) ((-489 . -149) 44183) ((-354 . -1251) 44167) ((-348 . -1251) 44151) ((-340 . -1251) 44135) ((-311 . -358) 44114) ((-308 . -358) T) ((-476 . -1025) 44044) ((-674 . -621) 44026) ((-1254 . -628) 44000) ((-1252 . -628) 43974) ((-1218 . -23) T) ((-669 . -483) 43958) ((-63 . -597) 43940) ((-1086 . -775) 43891) ((-1086 . -772) 43842) ((-538 . -483) 43779) ((-650 . -34) T) ((-476 . -229) 43731) ((-290 . -283) 43710) ((-236 . -170) 43689) ((-796 . -1032) T) ((-44 . -628) 43647) ((-1053 . -363) 43598) ((-712 . -285) 43529) ((-513 . -507) 43462) ((-797 . -1031) 43413) ((-1060 . -143) 43392) ((-354 . -363) 43371) ((-348 . -363) 43350) ((-340 . -363) 43329) ((-1060 . -145) 43308) ((-847 . -227) 43285) ((-797 . -111) 43227) ((-762 . -143) 43206) ((-762 . -145) 43185) ((-259 . -925) 43152) ((-246 . -825) 43131) ((-243 . -925) 43076) ((-245 . -825) 43055) ((-760 . -143) 43034) ((-760 . -145) 43013) ((-150 . -628) 42987) ((-448 . -145) 42966) ((-448 . -143) 42945) ((-650 . -707) T) ((-803 . -597) 42927) ((-1224 . -1073) T) ((-1217 . -1073) T) ((-1196 . -1073) T) ((-1180 . -1174) 42893) ((-1180 . -1171) 42859) ((-1147 . -285) 42838) ((-1146 . -285) 42789) ((-1140 . -285) 42740) ((-1099 . -285) 42719) ((-334 . -876) 42700) ((-980 . -170) T) ((-890 . -170) T) ((-581 . -1073) T) ((-580 . -1073) T) ((-674 . -21) T) ((-674 . -25) T) ((-468 . -1213) 42684) ((-468 . -1210) 42654) ((-413 . -281) 42582) ((-311 . -1085) 42431) ((-308 . -1085) T) ((-1180 . -35) 42397) ((-1180 . -94) 42363) ((-83 . -597) 42345) ((-90 . -101) 42323) ((-1260 . -130) T) ((-567 . -143) T) ((-567 . -145) 42305) ((-511 . -145) 42287) ((-511 . -143) T) ((-311 . -23) 42139) ((-40 . -337) 42113) ((-308 . -23) T) ((-1131 . -631) 42095) ((-1247 . -1032) T) ((-1131 . -368) 42077) ((-795 . -628) 41925) ((-1069 . -101) T) ((-1063 . -101) T) ((-1047 . -101) T) ((-167 . -227) 41909) ((-1040 . -101) T) ((-1012 . -101) T) ((-995 . -101) T) ((-578 . -483) 41891) ((-608 . -101) T) ((-236 . -507) 41824) ((-477 . -101) T) ((-1254 . -707) T) ((-1252 . -707) T) ((-214 . -101) T) ((-1151 . -1031) 41707) ((-1151 . -111) 41576) ((-838 . -171) T) ((-797 . -1025) T) ((-661 . -1056) T) ((-656 . -1056) T) ((-508 . -101) T) ((-503 . -101) T) ((-48 . -621) 41536) ((-501 . -101) T) ((-472 . -1056) T) ((-1244 . -1031) 41506) ((-137 . -1056) T) ((-136 . -1056) T) ((-132 . -1056) T) ((-1010 . -38) 41490) ((-797 . -229) T) ((-797 . -239) 41469) ((-1244 . -111) 41434) ((-1224 . -698) 41331) ((-538 . -281) 41310) ((-1217 . -698) 41151) ((-1205 . -227) 41135) ((-590 . -92) T) ((-1037 . -598) NIL) ((-1037 . -597) 41117) ((-651 . -92) T) ((-178 . -92) T) ((-159 . -92) T) ((-154 . -92) T) ((-152 . -92) T) ((-1196 . -698) 40913) ((-979 . -896) T) ((-683 . -597) 40882) ((-150 . -707) T) ((-1086 . -363) 40861) ((-980 . -507) NIL) ((-246 . -406) 40830) ((-245 . -406) 40799) ((-1000 . -25) T) ((-1000 . -21) T) ((-581 . -698) 40772) ((-580 . -698) 40669) ((-779 . -281) 40627) ((-126 . -101) 40605) ((-813 . -1014) 40501) ((-167 . -808) 40480) ((-314 . -628) 40377) ((-795 . -34) T) ((-695 . -101) T) ((-1093 . -1085) T) ((-1002 . -1186) T) ((-128 . -507) NIL) ((-374 . -38) 40342) ((-349 . -25) T) ((-349 . -21) T) ((-183 . -101) T) ((-160 . -101) T) ((-155 . -101) T) ((-350 . -1239) 40326) ((-347 . -1239) 40310) ((-339 . -1239) 40294) ((-167 . -344) 40273) ((-552 . -827) T) ((-488 . -827) T) ((-1093 . -23) T) ((-86 . -597) 40255) ((-681 . -302) T) ((-814 . -38) 40225) ((-807 . -38) 40195) ((-1218 . -130) T) ((-1123 . -283) 40174) ((-940 . -773) 40127) ((-940 . -774) 40080) ((-795 . -771) 40059) ((-116 . -302) T) ((-90 . -304) 39997) ((-655 . -34) T) ((-538 . -588) 39976) ((-48 . -25) T) ((-48 . -21) T) ((-795 . -774) 39927) ((-795 . -773) 39906) ((-681 . -998) T) ((-633 . -1031) 39890) ((-940 . -707) 39789) ((-795 . -707) 39699) ((-940 . -467) 39652) ((-476 . -775) 39603) ((-476 . -772) 39554) ((-886 . -1239) 39541) ((-1151 . -1025) T) ((-633 . -111) 39520) ((-1151 . -321) 39497) ((-1172 . -101) 39475) ((-1074 . -597) 39457) ((-681 . -537) T) ((-796 . -1073) T) ((-1244 . -1025) T) ((-408 . -1073) T) ((-1108 . -597) 39423) ((-246 . -1032) 39353) ((-245 . -1032) 39283) ((-284 . -628) 39270) ((-578 . -281) 39245) ((-669 . -667) 39203) ((-939 . -597) 39185) ((-848 . -101) T) ((-716 . -597) 39167) ((-696 . -597) 39149) ((-1224 . -170) 39100) ((-1217 . -170) 39031) ((-1196 . -170) 38962) ((-679 . -827) T) ((-980 . -285) T) ((-447 . -597) 38944) ((-609 . -707) T) ((-59 . -1073) 38922) ((-241 . -149) 38906) ((-890 . -285) T) ((-1000 . -988) T) ((-609 . -467) T) ((-693 . -1190) 38885) ((-581 . -170) 38864) ((-580 . -170) 38815) ((-1232 . -827) 38794) ((-693 . -544) 38705) ((-402 . -896) T) ((-402 . -800) 38684) ((-314 . -774) T) ((-314 . -707) T) ((-413 . -597) 38666) ((-413 . -598) 38574) ((-625 . -1122) 38558) ((-110 . -631) 38540) ((-172 . -302) T) ((-126 . -304) 38478) ((-110 . -368) 38460) ((-393 . -1186) T) ((-311 . -130) 38331) ((-308 . -130) T) ((-68 . -390) T) ((-110 . -123) T) ((-513 . -483) 38315) ((-634 . -1085) T) ((-578 . -19) 38297) ((-60 . -435) T) ((-60 . -390) T) ((-804 . -1073) T) ((-578 . -588) 38272) ((-471 . -1014) 38232) ((-633 . -1025) T) ((-634 . -23) T) ((-1247 . -1073) T) ((-31 . -101) T) ((-796 . -698) 38081) ((-117 . -827) NIL) ((-1145 . -406) 38065) ((-1098 . -406) 38049) ((-831 . -406) 38033) ((-849 . -101) 37984) ((-1216 . -101) T) ((-1196 . -507) 37753) ((-1195 . -101) T) ((-518 . -92) T) ((-1172 . -304) 37691) ((-307 . -597) 37673) ((-1147 . -281) 37658) ((-1075 . -1073) T) ((-1146 . -281) 37643) ((-1053 . -628) 37553) ((-284 . -707) T) ((-107 . -885) NIL) ((-669 . -597) 37485) ((-669 . -598) 37446) ((-585 . -597) 37428) ((-538 . -598) NIL) ((-538 . -597) 37410) ((-522 . -597) 37392) ((-1140 . -281) 37240) ((-481 . -1031) 37190) ((-692 . -446) T) ((-504 . -502) 37169) ((-500 . -502) 37148) ((-213 . -1031) 37098) ((-354 . -628) 37050) ((-348 . -628) 37002) ((-221 . -825) T) ((-340 . -628) 36954) ((-586 . -101) 36904) ((-476 . -363) 36883) ((-107 . -628) 36833) ((-481 . -111) 36767) ((-236 . -483) 36751) ((-338 . -145) 36733) ((-338 . -143) T) ((-167 . -365) 36704) ((-919 . -1230) 36688) ((-213 . -111) 36622) ((-848 . -304) 36587) ((-919 . -1073) 36537) ((-779 . -598) 36498) ((-779 . -597) 36480) ((-699 . -101) T) ((-326 . -1073) T) ((-1093 . -130) T) ((-695 . -38) 36450) ((-311 . -486) 36429) ((-493 . -1186) T) ((-1216 . -279) 36395) ((-1195 . -279) 36361) ((-322 . -149) 36345) ((-1037 . -283) 36320) ((-1247 . -698) 36290) ((-1132 . -34) T) ((-1256 . -1014) 36267) ((-462 . -597) 36249) ((-478 . -34) T) ((-376 . -1014) 36233) ((-1145 . -1032) T) ((-1098 . -1032) T) ((-831 . -1032) T) ((-1036 . -825) T) ((-796 . -170) 36144) ((-513 . -281) 36121) ((-128 . -483) 36103) ((-1224 . -285) 36082) ((-117 . -968) 36059) ((-1217 . -285) 36010) ((-1167 . -359) 35984) ((-1061 . -261) 35968) ((-651 . -597) 35934) ((-590 . -597) 35884) ((-468 . -101) T) ((-178 . -597) 35850) ((-159 . -597) 35816) ((-154 . -597) 35782) ((-360 . -1073) T) ((-246 . -1073) T) ((-245 . -1073) T) ((-152 . -597) 35748) ((-109 . -1073) T) ((-1196 . -285) 35699) ((-848 . -1124) 35677) ((-1147 . -978) 35643) ((-592 . -359) 35583) ((-1146 . -978) 35549) ((-592 . -225) 35496) ((-578 . -597) 35478) ((-578 . -598) NIL) ((-674 . -827) T) ((-469 . -225) 35428) ((-481 . -1025) T) ((-1140 . -978) 35394) ((-87 . -434) T) ((-87 . -390) T) ((-213 . -1025) T) ((-1099 . -978) 35360) ((-1053 . -707) T) ((-693 . -1085) T) ((-581 . -285) 35339) ((-580 . -285) 35318) ((-481 . -239) T) ((-481 . -229) T) ((-213 . -239) T) ((-213 . -229) T) ((-1138 . -597) 35300) ((-848 . -38) 35252) ((-354 . -707) T) ((-348 . -707) T) ((-340 . -707) T) ((-107 . -774) T) ((-107 . -771) T) ((-513 . -1220) 35236) ((-107 . -707) T) ((-693 . -23) T) ((-1260 . -25) T) ((-468 . -279) 35202) ((-1260 . -21) T) ((-1195 . -304) 35141) ((-1149 . -101) T) ((-40 . -143) 35113) ((-40 . -145) 35085) ((-513 . -588) 35062) ((-1086 . -628) 34910) ((-586 . -304) 34848) ((-45 . -631) 34798) ((-45 . -646) 34748) ((-45 . -368) 34698) ((-1131 . -34) T) ((-847 . -825) NIL) ((-634 . -130) T) ((-479 . -597) 34680) ((-236 . -281) 34657) ((-182 . -1073) T) ((-627 . -34) T) ((-614 . -34) T) ((-1060 . -446) 34608) ((-796 . -507) 34482) ((-762 . -446) 34413) ((-760 . -446) 34364) ((-448 . -446) 34315) ((-928 . -406) 34299) ((-712 . -597) 34281) ((-246 . -698) 34223) ((-245 . -698) 34165) ((-712 . -598) 34026) ((-475 . -406) 34010) ((-334 . -297) T) ((-517 . -92) T) ((-346 . -896) T) ((-976 . -101) 33988) ((-1000 . -827) T) ((-59 . -507) 33921) ((-1195 . -1124) 33873) ((-980 . -281) NIL) ((-221 . -1032) T) ((-374 . -808) T) ((-1086 . -34) T) ((-1199 . -1066) 33857) ((-567 . -446) T) ((-511 . -446) T) ((-1199 . -1073) 33835) ((-1199 . -1068) 33792) ((-236 . -588) 33769) ((-1147 . -597) 33751) ((-1146 . -597) 33733) ((-1140 . -597) 33715) ((-1140 . -598) NIL) ((-1099 . -597) 33697) ((-128 . -281) 33672) ((-848 . -395) 33656) ((-528 . -101) T) ((-1216 . -38) 33497) ((-1195 . -38) 33311) ((-846 . -145) T) ((-567 . -397) T) ((-48 . -827) T) ((-511 . -397) T) ((-1228 . -101) T) ((-1218 . -21) T) ((-1218 . -25) T) ((-1086 . -771) 33290) ((-1086 . -774) 33241) ((-1086 . -773) 33220) ((-969 . -1073) T) ((-1003 . -34) T) ((-839 . -1073) T) ((-1086 . -707) 33130) ((-644 . -101) T) ((-626 . -101) T) ((-538 . -283) 33109) ((-1159 . -101) T) ((-470 . -34) T) ((-457 . -34) T) ((-350 . -101) T) ((-347 . -101) T) ((-339 . -101) T) ((-259 . -101) T) ((-243 . -101) T) ((-471 . -302) T) ((-1036 . -1032) T) ((-928 . -1032) T) ((-311 . -621) 33015) ((-308 . -621) 32976) ((-475 . -1032) T) ((-473 . -101) T) ((-431 . -597) 32958) ((-1145 . -1073) T) ((-1098 . -1073) T) ((-831 . -1073) T) ((-1114 . -101) T) ((-796 . -285) 32889) ((-939 . -1031) 32772) ((-471 . -998) T) ((-128 . -19) 32754) ((-716 . -1031) 32724) ((-128 . -588) 32699) ((-447 . -1031) 32669) ((-1120 . -1094) 32653) ((-1075 . -507) 32586) ((-939 . -111) 32455) ((-886 . -101) T) ((-716 . -111) 32420) ((-518 . -597) 32386) ((-58 . -101) 32336) ((-513 . -598) 32297) ((-513 . -597) 32209) ((-512 . -101) 32187) ((-509 . -101) 32137) ((-490 . -101) 32115) ((-489 . -101) 32065) ((-447 . -111) 32028) ((-246 . -170) 32007) ((-245 . -170) 31986) ((-413 . -1031) 31960) ((-1180 . -949) 31922) ((-975 . -1085) T) ((-919 . -507) 31855) ((-481 . -775) T) ((-468 . -38) 31696) ((-413 . -111) 31663) ((-481 . -772) T) ((-976 . -304) 31601) ((-213 . -775) T) ((-213 . -772) T) ((-975 . -23) T) ((-693 . -130) T) ((-1195 . -395) 31571) ((-311 . -25) 31423) ((-167 . -406) 31407) ((-311 . -21) 31278) ((-308 . -25) T) ((-308 . -21) T) ((-841 . -363) T) ((-110 . -34) T) ((-476 . -628) 31126) ((-847 . -1032) T) ((-578 . -283) 31101) ((-566 . -145) T) ((-552 . -145) T) ((-488 . -145) T) ((-1145 . -698) 30930) ((-1098 . -698) 30779) ((-1093 . -621) 30761) ((-831 . -698) 30731) ((-650 . -1186) T) ((-1 . -101) T) ((-236 . -597) 30462) ((-1088 . -1073) T) ((-1205 . -406) 30446) ((-1159 . -304) 30250) ((-939 . -1025) T) ((-716 . -1025) T) ((-696 . -1025) T) ((-625 . -1073) 30200) ((-1029 . -628) 30184) ((-832 . -406) 30168) ((-504 . -101) T) ((-500 . -101) T) ((-243 . -304) 30155) ((-259 . -304) 30142) ((-939 . -321) 30121) ((-380 . -628) 30105) ((-473 . -304) 29909) ((-246 . -507) 29842) ((-650 . -1014) 29738) ((-245 . -507) 29671) ((-1114 . -304) 29597) ((-799 . -1073) T) ((-779 . -1031) 29581) ((-1224 . -281) 29566) ((-1217 . -281) 29551) ((-1196 . -281) 29399) ((-381 . -1073) T) ((-319 . -1073) T) ((-413 . -1025) T) ((-167 . -1032) T) ((-58 . -304) 29337) ((-779 . -111) 29316) ((-580 . -281) 29301) ((-512 . -304) 29239) ((-509 . -304) 29177) ((-490 . -304) 29115) ((-489 . -304) 29053) ((-413 . -229) 29032) ((-476 . -34) T) ((-980 . -598) 28962) ((-221 . -1073) T) ((-980 . -597) 28944) ((-947 . -597) 28926) ((-947 . -598) 28901) ((-890 . -597) 28883) ((-679 . -145) T) ((-681 . -896) T) ((-681 . -800) T) ((-422 . -597) 28865) ((-1093 . -21) T) ((-128 . -598) NIL) ((-128 . -597) 28847) ((-1093 . -25) T) ((-650 . -372) 28831) ((-116 . -896) T) ((-848 . -227) 28815) ((-77 . -1186) T) ((-126 . -125) 28799) ((-1029 . -34) T) ((-1254 . -1014) 28773) ((-1252 . -1014) 28730) ((-1205 . -1032) T) ((-832 . -1032) T) ((-476 . -771) 28709) ((-350 . -1124) 28688) ((-347 . -1124) 28667) ((-339 . -1124) 28646) ((-476 . -774) 28597) ((-476 . -773) 28576) ((-223 . -34) T) ((-476 . -707) 28486) ((-59 . -483) 28470) ((-559 . -1032) T) ((-1145 . -170) 28361) ((-1098 . -170) 28272) ((-1036 . -1073) T) ((-1060 . -925) 28217) ((-928 . -1073) T) ((-797 . -628) 28168) ((-762 . -925) 28137) ((-694 . -1073) T) ((-760 . -925) 28104) ((-509 . -277) 28088) ((-650 . -876) 28047) ((-475 . -1073) T) ((-448 . -925) 28014) ((-78 . -1186) T) ((-350 . -38) 27979) ((-347 . -38) 27944) ((-339 . -38) 27909) ((-259 . -38) 27758) ((-243 . -38) 27607) ((-886 . -1124) T) ((-605 . -145) 27586) ((-605 . -143) 27565) ((-517 . -597) 27531) ((-117 . -145) T) ((-117 . -143) NIL) ((-409 . -707) T) ((-779 . -1025) T) ((-338 . -446) T) ((-1224 . -978) 27497) ((-1217 . -978) 27463) ((-1196 . -978) 27429) ((-886 . -38) 27394) ((-221 . -698) 27359) ((-314 . -47) 27329) ((-40 . -404) 27301) ((-138 . -597) 27283) ((-975 . -130) T) ((-795 . -1186) T) ((-172 . -896) T) ((-338 . -397) T) ((-513 . -283) 27260) ((-795 . -1014) 27087) ((-45 . -34) T) ((-661 . -101) T) ((-656 . -101) T) ((-642 . -101) T) ((-634 . -21) T) ((-634 . -25) T) ((-1195 . -227) 27057) ((-1075 . -483) 27041) ((-472 . -101) T) ((-655 . -1186) T) ((-241 . -101) 26991) ((-137 . -101) T) ((-136 . -101) T) ((-132 . -101) T) ((-847 . -1073) T) ((-1151 . -628) 26916) ((-1036 . -698) 26903) ((-712 . -1031) 26746) ((-1145 . -507) 26693) ((-928 . -698) 26542) ((-1098 . -507) 26494) ((-1243 . -1073) T) ((-1242 . -1073) T) ((-475 . -698) 26343) ((-66 . -597) 26325) ((-712 . -111) 26154) ((-919 . -483) 26138) ((-1244 . -628) 26098) ((-797 . -707) T) ((-1147 . -1031) 25981) ((-1146 . -1031) 25816) ((-1140 . -1031) 25606) ((-1099 . -1031) 25489) ((-979 . -1190) T) ((-1067 . -101) 25467) ((-795 . -372) 25436) ((-979 . -544) T) ((-1147 . -111) 25305) ((-1146 . -111) 25126) ((-1140 . -111) 24895) ((-1099 . -111) 24764) ((-1078 . -1076) 24728) ((-374 . -825) T) ((-1224 . -597) 24710) ((-1217 . -597) 24692) ((-1196 . -597) 24674) ((-1196 . -598) NIL) ((-236 . -283) 24651) ((-40 . -446) T) ((-221 . -170) T) ((-167 . -1073) T) ((-674 . -145) T) ((-674 . -143) NIL) ((-581 . -597) 24633) ((-580 . -597) 24615) ((-874 . -1073) T) ((-818 . -1073) T) ((-788 . -1073) T) ((-749 . -1073) T) ((-638 . -829) 24599) ((-657 . -1073) T) ((-795 . -876) 24531) ((-40 . -397) NIL) ((-1093 . -641) T) ((-847 . -698) 24476) ((-246 . -483) 24460) ((-245 . -483) 24444) ((-693 . -621) 24392) ((-633 . -628) 24366) ((-290 . -34) T) ((-712 . -1025) T) ((-567 . -1239) 24353) ((-511 . -1239) 24330) ((-1205 . -1073) T) ((-1145 . -285) 24241) ((-1098 . -285) 24172) ((-1036 . -170) T) ((-832 . -1073) T) ((-928 . -170) 24083) ((-762 . -1208) 24067) ((-625 . -507) 24000) ((-76 . -597) 23982) ((-712 . -321) 23947) ((-1151 . -707) T) ((-559 . -1073) T) ((-475 . -170) 23858) ((-241 . -304) 23796) ((-128 . -283) 23771) ((-1115 . -1085) T) ((-69 . -597) 23753) ((-1244 . -707) T) ((-1147 . -1025) T) ((-1146 . -1025) T) ((-322 . -101) 23703) ((-1140 . -1025) T) ((-1115 . -23) T) ((-1099 . -1025) T) ((-90 . -1094) 23687) ((-842 . -1085) T) ((-1147 . -229) 23646) ((-1146 . -239) 23625) ((-1146 . -229) 23577) ((-1140 . -229) 23464) ((-1140 . -239) 23443) ((-314 . -876) 23349) ((-842 . -23) T) ((-167 . -698) 23177) ((-402 . -1190) T) ((-1074 . -363) T) ((-1000 . -145) T) ((-979 . -358) T) ((-846 . -446) T) ((-919 . -281) 23154) ((-311 . -827) T) ((-308 . -827) NIL) ((-850 . -101) T) ((-693 . -25) T) ((-402 . -544) T) ((-693 . -21) T) ((-349 . -145) 23136) ((-349 . -143) T) ((-1120 . -1073) 23114) ((-447 . -701) T) ((-74 . -597) 23096) ((-114 . -827) T) ((-241 . -277) 23080) ((-236 . -1031) 22977) ((-80 . -597) 22959) ((-716 . -363) 22912) ((-1149 . -808) T) ((-718 . -231) 22896) ((-1132 . -1186) T) ((-139 . -231) 22878) ((-236 . -111) 22768) ((-1205 . -698) 22597) ((-48 . -145) T) ((-847 . -170) T) ((-832 . -698) 22567) ((-478 . -1186) T) ((-928 . -507) 22514) ((-633 . -707) T) ((-559 . -698) 22501) ((-1010 . -1032) T) ((-475 . -507) 22444) ((-919 . -19) 22428) ((-919 . -588) 22405) ((-796 . -598) NIL) ((-796 . -597) 22387) ((-980 . -1031) 22337) ((-408 . -597) 22319) ((-246 . -281) 22296) ((-245 . -281) 22273) ((-481 . -885) NIL) ((-311 . -29) 22243) ((-107 . -1186) T) ((-979 . -1085) T) ((-213 . -885) NIL) ((-890 . -1031) 22195) ((-1053 . -1014) 22091) ((-980 . -111) 22025) ((-718 . -675) 22009) ((-259 . -227) 21993) ((-422 . -1031) 21977) ((-374 . -1032) T) ((-979 . -23) T) ((-890 . -111) 21915) ((-674 . -1174) NIL) ((-481 . -628) 21865) ((-107 . -860) 21847) ((-107 . -862) 21829) ((-674 . -1171) NIL) ((-213 . -628) 21779) ((-354 . -1014) 21763) ((-348 . -1014) 21747) ((-322 . -304) 21685) ((-340 . -1014) 21669) ((-221 . -285) T) ((-422 . -111) 21648) ((-59 . -597) 21580) ((-167 . -170) T) ((-1093 . -827) T) ((-107 . -1014) 21540) ((-868 . -1073) T) ((-814 . -1032) T) ((-807 . -1032) T) ((-674 . -35) NIL) ((-674 . -94) NIL) ((-308 . -968) 21501) ((-181 . -101) T) ((-566 . -446) T) ((-552 . -446) T) ((-488 . -446) T) ((-402 . -358) T) ((-236 . -1025) 21431) ((-1123 . -34) T) ((-471 . -896) T) ((-975 . -621) 21379) ((-246 . -588) 21356) ((-245 . -588) 21333) ((-1053 . -372) 21317) ((-847 . -507) 21225) ((-236 . -229) 21177) ((-1131 . -1186) T) ((-804 . -597) 21159) ((-1255 . -1085) T) ((-1247 . -597) 21141) ((-1205 . -170) 21032) ((-107 . -372) 21014) ((-107 . -333) 20996) ((-1036 . -285) T) ((-928 . -285) 20927) ((-779 . -363) 20906) ((-627 . -1186) T) ((-614 . -1186) T) ((-475 . -285) 20837) ((-559 . -170) T) ((-322 . -277) 20821) ((-1255 . -23) T) ((-1180 . -101) T) ((-1167 . -1073) T) ((-1061 . -1073) T) ((-1049 . -1073) T) ((-82 . -597) 20803) ((-692 . -101) T) ((-350 . -344) 20782) ((-592 . -1073) T) ((-347 . -344) 20761) ((-339 . -344) 20740) ((-469 . -1073) T) ((-1159 . -225) 20690) ((-259 . -248) 20652) ((-1115 . -130) T) ((-592 . -594) 20628) ((-1053 . -876) 20561) ((-980 . -1025) T) ((-890 . -1025) T) ((-469 . -594) 20540) ((-1140 . -772) NIL) ((-1140 . -775) NIL) ((-1075 . -598) 20501) ((-473 . -225) 20451) ((-1075 . -597) 20433) ((-980 . -239) T) ((-980 . -229) T) ((-422 . -1025) T) ((-934 . -1073) 20383) ((-890 . -239) T) ((-842 . -130) T) ((-679 . -446) T) ((-820 . -1085) 20362) ((-107 . -876) NIL) ((-1180 . -279) 20328) ((-848 . -825) 20307) ((-1086 . -1186) T) ((-881 . -707) T) ((-167 . -507) 20219) ((-975 . -25) T) ((-881 . -467) T) ((-402 . -1085) T) ((-481 . -774) T) ((-481 . -771) T) ((-886 . -344) T) ((-481 . -707) T) ((-213 . -774) T) ((-213 . -771) T) ((-975 . -21) T) ((-213 . -707) T) ((-820 . -23) 20171) ((-314 . -302) 20150) ((-1011 . -231) 20096) ((-402 . -23) T) ((-919 . -598) 20057) ((-919 . -597) 19969) ((-625 . -483) 19953) ((-45 . -986) 19903) ((-600 . -943) T) ((-484 . -101) T) ((-326 . -597) 19885) ((-1086 . -1014) 19712) ((-578 . -631) 19694) ((-578 . -368) 19676) ((-338 . -1239) 19653) ((-1003 . -1186) T) ((-847 . -285) T) ((-1205 . -507) 19600) ((-470 . -1186) T) ((-457 . -1186) T) ((-571 . -101) T) ((-1145 . -281) 19527) ((-605 . -446) 19506) ((-976 . -971) 19490) ((-1247 . -377) 19462) ((-510 . -1073) T) ((-117 . -446) T) ((-1166 . -101) T) ((-1065 . -1073) 19440) ((-1010 . -1073) T) ((-1088 . -92) T) ((-869 . -827) T) ((-346 . -1190) T) ((-1224 . -1031) 19323) ((-1086 . -372) 19292) ((-1217 . -1031) 19127) ((-1196 . -1031) 18917) ((-1224 . -111) 18786) ((-1217 . -111) 18607) ((-1196 . -111) 18376) ((-1180 . -304) 18363) ((-346 . -544) T) ((-360 . -597) 18345) ((-284 . -302) T) ((-581 . -1031) 18318) ((-580 . -1031) 18201) ((-356 . -1073) T) ((-317 . -1073) T) ((-246 . -597) 18162) ((-245 . -597) 18123) ((-979 . -130) T) ((-109 . -597) 18105) ((-617 . -23) T) ((-674 . -404) 18072) ((-591 . -23) T) ((-638 . -101) T) ((-581 . -111) 18043) ((-580 . -111) 17912) ((-374 . -1073) T) ((-331 . -101) T) ((-167 . -285) 17823) ((-1195 . -825) 17776) ((-695 . -1032) T) ((-1120 . -507) 17709) ((-1086 . -876) 17641) ((-814 . -1073) T) ((-807 . -1073) T) ((-805 . -1073) T) ((-96 . -101) T) ((-142 . -827) T) ((-596 . -860) 17625) ((-110 . -1186) T) ((-1060 . -101) T) ((-1037 . -34) T) ((-762 . -101) T) ((-760 . -101) T) ((-455 . -101) T) ((-448 . -101) T) ((-236 . -775) 17576) ((-236 . -772) 17527) ((-629 . -101) T) ((-1205 . -285) 17438) ((-644 . -616) 17422) ((-182 . -597) 17404) ((-625 . -281) 17381) ((-1010 . -698) 17365) ((-559 . -285) T) ((-939 . -628) 17290) ((-1255 . -130) T) ((-716 . -628) 17250) ((-696 . -628) 17237) ((-270 . -101) T) ((-447 . -628) 17167) ((-50 . -101) T) ((-567 . -101) T) ((-511 . -101) T) ((-1224 . -1025) T) ((-1217 . -1025) T) ((-1196 . -1025) T) ((-1224 . -229) 17126) ((-317 . -698) 17108) ((-1217 . -239) 17087) ((-1217 . -229) 17039) ((-1196 . -229) 16926) ((-1196 . -239) 16905) ((-1180 . -38) 16802) ((-980 . -775) T) ((-581 . -1025) T) ((-580 . -1025) T) ((-980 . -772) T) ((-947 . -775) T) ((-947 . -772) T) ((-848 . -1032) T) ((-846 . -845) 16786) ((-108 . -597) 16768) ((-674 . -446) T) ((-374 . -698) 16733) ((-413 . -628) 16707) ((-693 . -827) 16686) ((-692 . -38) 16651) ((-580 . -229) 16610) ((-40 . -705) 16582) ((-346 . -324) 16559) ((-346 . -358) T) ((-1053 . -302) 16510) ((-289 . -1085) 16391) ((-1079 . -1186) T) ((-169 . -101) T) ((-1199 . -597) 16358) ((-820 . -130) 16310) ((-625 . -1220) 16294) ((-814 . -698) 16264) ((-807 . -698) 16234) ((-476 . -1186) T) ((-354 . -302) T) ((-348 . -302) T) ((-340 . -302) T) ((-625 . -588) 16211) ((-402 . -130) T) ((-513 . -646) 16195) ((-107 . -302) T) ((-289 . -23) 16078) ((-513 . -631) 16062) ((-674 . -397) NIL) ((-513 . -368) 16046) ((-286 . -597) 16028) ((-90 . -1073) 16006) ((-107 . -998) T) ((-552 . -141) T) ((-1232 . -149) 15990) ((-476 . -1014) 15817) ((-1218 . -143) 15778) ((-1218 . -145) 15739) ((-1029 . -1186) T) ((-969 . -597) 15721) ((-839 . -597) 15703) ((-796 . -1031) 15546) ((-1243 . -92) T) ((-1069 . -1073) T) ((-1063 . -1073) T) ((-1060 . -304) 15533) ((-1047 . -1073) T) ((-223 . -1186) T) ((-1040 . -1073) T) ((-1012 . -1073) T) ((-995 . -1073) T) ((-762 . -304) 15520) ((-760 . -304) 15507) ((-1242 . -92) T) ((-796 . -111) 15336) ((-1145 . -598) NIL) ((-608 . -1073) T) ((-1145 . -597) 15318) ((-522 . -171) T) ((-448 . -304) 15305) ((-477 . -1073) T) ((-1098 . -597) 15287) ((-1098 . -598) 15035) ((-1010 . -170) T) ((-214 . -1073) T) ((-831 . -597) 15017) ((-919 . -283) 14994) ((-592 . -507) 14777) ((-798 . -1014) 14761) ((-469 . -507) 14553) ((-939 . -707) T) ((-716 . -707) T) ((-696 . -707) T) ((-346 . -1085) T) ((-1152 . -597) 14535) ((-219 . -101) T) ((-476 . -372) 14504) ((-508 . -1073) T) ((-503 . -1073) T) ((-501 . -1073) T) ((-779 . -628) 14478) ((-1000 . -446) T) ((-934 . -507) 14411) ((-346 . -23) T) ((-617 . -130) T) ((-591 . -130) T) ((-349 . -446) T) ((-236 . -363) 14390) ((-374 . -170) T) ((-1216 . -1032) T) ((-1195 . -1032) T) ((-221 . -978) T) ((-679 . -382) T) ((-413 . -707) T) ((-681 . -1190) T) ((-1115 . -621) 14338) ((-566 . -845) 14322) ((-1132 . -1162) 14298) ((-681 . -544) T) ((-126 . -1073) 14276) ((-1247 . -1031) 14260) ((-695 . -1073) T) ((-476 . -876) 14192) ((-183 . -1073) T) ((-638 . -38) 14162) ((-349 . -397) T) ((-311 . -145) 14141) ((-311 . -143) 14120) ((-116 . -544) T) ((-308 . -145) 14076) ((-308 . -143) 14032) ((-48 . -446) T) ((-160 . -1073) T) ((-155 . -1073) T) ((-1132 . -106) 13979) ((-762 . -1124) 13957) ((-669 . -34) T) ((-1247 . -111) 13936) ((-538 . -34) T) ((-478 . -106) 13920) ((-246 . -283) 13897) ((-245 . -283) 13874) ((-847 . -281) 13825) ((-45 . -1186) T) ((-796 . -1025) T) ((-1151 . -47) 13802) ((-796 . -321) 13764) ((-1060 . -38) 13613) ((-796 . -229) 13592) ((-762 . -38) 13421) ((-760 . -38) 13270) ((-128 . -631) 13252) ((-448 . -38) 13101) ((-128 . -368) 13083) ((-1088 . -597) 13049) ((-1091 . -101) T) ((-625 . -598) 13010) ((-625 . -597) 12922) ((-567 . -1124) T) ((-511 . -1124) T) ((-1120 . -483) 12906) ((-1172 . -1073) 12884) ((-1115 . -25) T) ((-1115 . -21) T) ((-468 . -1032) T) ((-1196 . -772) NIL) ((-1196 . -775) NIL) ((-975 . -827) 12863) ((-799 . -597) 12845) ((-842 . -21) T) ((-842 . -25) T) ((-779 . -707) T) ((-172 . -1190) T) ((-567 . -38) 12810) ((-511 . -38) 12775) ((-381 . -597) 12757) ((-319 . -597) 12739) ((-167 . -281) 12697) ((-62 . -1186) T) ((-112 . -101) T) ((-848 . -1073) T) ((-172 . -544) T) ((-695 . -698) 12667) ((-289 . -130) 12550) ((-221 . -597) 12532) ((-221 . -598) 12462) ((-979 . -621) 12401) ((-1247 . -1025) T) ((-1093 . -145) T) ((-614 . -1162) 12376) ((-712 . -885) 12355) ((-578 . -34) T) ((-627 . -106) 12339) ((-614 . -106) 12285) ((-1205 . -281) 12212) ((-712 . -628) 12137) ((-290 . -1186) T) ((-1151 . -1014) 12033) ((-522 . -520) T) ((-1140 . -885) NIL) ((-1036 . -598) 11948) ((-1036 . -597) 11930) ((-928 . -597) 11912) ((-338 . -101) T) ((-246 . -1031) 11809) ((-245 . -1031) 11706) ((-389 . -101) T) ((-31 . -1073) T) ((-928 . -598) 11567) ((-694 . -597) 11549) ((-1245 . -1179) 11518) ((-475 . -597) 11500) ((-475 . -598) 11361) ((-259 . -406) 11345) ((-243 . -406) 11329) ((-246 . -111) 11219) ((-245 . -111) 11109) ((-1147 . -628) 11034) ((-1146 . -628) 10931) ((-1140 . -628) 10783) ((-1099 . -628) 10708) ((-346 . -130) T) ((-81 . -435) T) ((-81 . -390) T) ((-979 . -25) T) ((-979 . -21) T) ((-849 . -1073) 10659) ((-848 . -698) 10611) ((-374 . -285) T) ((-167 . -978) 10563) ((-674 . -382) T) ((-975 . -973) 10547) ((-681 . -1085) T) ((-674 . -164) 10529) ((-1216 . -1073) T) ((-1195 . -1073) T) ((-311 . -1171) 10508) ((-311 . -1174) 10487) ((-1137 . -101) T) ((-311 . -935) 10466) ((-133 . -1085) T) ((-116 . -1085) T) ((-586 . -1230) 10450) ((-681 . -23) T) ((-586 . -1073) 10400) ((-90 . -507) 10333) ((-172 . -358) T) ((-311 . -94) 10312) ((-311 . -35) 10291) ((-592 . -483) 10225) ((-133 . -23) T) ((-116 . -23) T) ((-942 . -101) T) ((-699 . -1073) T) ((-469 . -483) 10162) ((-402 . -621) 10110) ((-633 . -1014) 10006) ((-934 . -483) 9990) ((-350 . -1032) T) ((-347 . -1032) T) ((-339 . -1032) T) ((-259 . -1032) T) ((-243 . -1032) T) ((-847 . -598) NIL) ((-847 . -597) 9972) ((-1255 . -21) T) ((-1243 . -597) 9938) ((-1242 . -597) 9904) ((-559 . -978) T) ((-712 . -707) T) ((-1255 . -25) T) ((-246 . -1025) 9834) ((-245 . -1025) 9764) ((-71 . -1186) T) ((-246 . -229) 9716) ((-245 . -229) 9668) ((-40 . -101) T) ((-886 . -1032) T) ((-1154 . -101) T) ((-1147 . -707) T) ((-1146 . -707) T) ((-1140 . -707) T) ((-1140 . -771) NIL) ((-1140 . -774) NIL) ((-930 . -101) T) ((-897 . -101) T) ((-1099 . -707) T) ((-751 . -101) T) ((-652 . -101) T) ((-468 . -1073) T) ((-334 . -1085) T) ((-172 . -1085) T) ((-314 . -896) 9647) ((-1216 . -698) 9488) ((-848 . -170) T) ((-1195 . -698) 9302) ((-820 . -21) 9254) ((-820 . -25) 9206) ((-241 . -1122) 9190) ((-126 . -507) 9123) ((-402 . -25) T) ((-402 . -21) T) ((-334 . -23) T) ((-167 . -598) 8891) ((-167 . -597) 8873) ((-172 . -23) T) ((-625 . -283) 8850) ((-513 . -34) T) ((-874 . -597) 8832) ((-88 . -1186) T) ((-818 . -597) 8814) ((-788 . -597) 8796) ((-749 . -597) 8778) ((-657 . -597) 8760) ((-236 . -628) 8608) ((-1149 . -1073) T) ((-1145 . -1031) 8431) ((-1123 . -1186) T) ((-1098 . -1031) 8274) ((-831 . -1031) 8258) ((-1145 . -111) 8067) ((-1098 . -111) 7896) ((-831 . -111) 7875) ((-1205 . -598) NIL) ((-1205 . -597) 7857) ((-338 . -1124) T) ((-832 . -597) 7839) ((-1049 . -281) 7818) ((-79 . -1186) T) ((-980 . -885) NIL) ((-592 . -281) 7794) ((-1172 . -507) 7727) ((-481 . -1186) T) ((-559 . -597) 7709) ((-469 . -281) 7688) ((-510 . -92) T) ((-213 . -1186) T) ((-1060 . -227) 7672) ((-284 . -896) T) ((-797 . -302) 7651) ((-846 . -101) T) ((-762 . -227) 7635) ((-980 . -628) 7585) ((-934 . -281) 7562) ((-890 . -628) 7514) ((-617 . -21) T) ((-617 . -25) T) ((-591 . -21) T) ((-338 . -38) 7479) ((-674 . -705) 7446) ((-481 . -860) 7428) ((-481 . -862) 7410) ((-468 . -698) 7251) ((-213 . -860) 7233) ((-63 . -1186) T) ((-213 . -862) 7215) ((-591 . -25) T) ((-422 . -628) 7189) ((-481 . -1014) 7149) ((-848 . -507) 7061) ((-213 . -1014) 7021) ((-236 . -34) T) ((-976 . -1073) 6999) ((-1216 . -170) 6930) ((-1195 . -170) 6861) ((-693 . -143) 6840) ((-693 . -145) 6819) ((-681 . -130) T) ((-135 . -459) 6796) ((-638 . -636) 6780) ((-1120 . -597) 6712) ((-116 . -130) T) ((-471 . -1190) T) ((-592 . -588) 6688) ((-469 . -588) 6667) ((-331 . -330) 6636) ((-528 . -1073) T) ((-471 . -544) T) ((-1145 . -1025) T) ((-1098 . -1025) T) ((-831 . -1025) T) ((-236 . -771) 6615) ((-236 . -774) 6566) ((-236 . -773) 6545) ((-1145 . -321) 6522) ((-236 . -707) 6432) ((-934 . -19) 6416) ((-481 . -372) 6398) ((-481 . -333) 6380) ((-1098 . -321) 6352) ((-349 . -1239) 6329) ((-213 . -372) 6311) ((-213 . -333) 6293) ((-934 . -588) 6270) ((-1145 . -229) T) ((-644 . -1073) T) ((-626 . -1073) T) ((-1228 . -1073) T) ((-1159 . -1073) T) ((-1060 . -248) 6207) ((-350 . -1073) T) ((-347 . -1073) T) ((-339 . -1073) T) ((-259 . -1073) T) ((-243 . -1073) T) ((-83 . -1186) T) ((-127 . -101) 6185) ((-121 . -101) 6163) ((-128 . -34) T) ((-1159 . -594) 6142) ((-473 . -1073) T) ((-1114 . -1073) T) ((-473 . -594) 6121) ((-246 . -775) 6072) ((-246 . -772) 6023) ((-245 . -775) 5974) ((-40 . -1124) NIL) ((-245 . -772) 5925) ((-1053 . -896) 5876) ((-980 . -774) T) ((-980 . -771) T) ((-980 . -707) T) ((-947 . -774) T) ((-890 . -707) T) ((-90 . -483) 5860) ((-481 . -876) NIL) ((-886 . -1073) T) ((-221 . -1031) 5825) ((-848 . -285) T) ((-213 . -876) NIL) ((-813 . -1085) 5804) ((-58 . -1073) 5754) ((-512 . -1073) 5732) ((-509 . -1073) 5682) ((-490 . -1073) 5660) ((-489 . -1073) 5610) ((-566 . -101) T) ((-552 . -101) T) ((-488 . -101) T) ((-468 . -170) 5541) ((-354 . -896) T) ((-348 . -896) T) ((-340 . -896) T) ((-221 . -111) 5497) ((-813 . -23) 5449) ((-422 . -707) T) ((-107 . -896) T) ((-40 . -38) 5394) ((-107 . -800) T) ((-567 . -344) T) ((-511 . -344) T) ((-1195 . -507) 5254) ((-311 . -446) 5233) ((-308 . -446) T) ((-814 . -281) 5212) ((-334 . -130) T) ((-172 . -130) T) ((-289 . -25) 5076) ((-289 . -21) 4959) ((-45 . -1162) 4938) ((-65 . -597) 4920) ((-868 . -597) 4902) ((-586 . -507) 4835) ((-45 . -106) 4785) ((-1075 . -420) 4769) ((-1075 . -363) 4748) ((-1037 . -1186) T) ((-1036 . -1031) 4735) ((-928 . -1031) 4578) ((-1233 . -101) T) ((-1232 . -101) 4528) ((-475 . -1031) 4371) ((-644 . -698) 4355) ((-1036 . -111) 4340) ((-928 . -111) 4169) ((-471 . -358) T) ((-350 . -698) 4121) ((-347 . -698) 4073) ((-339 . -698) 4025) ((-259 . -698) 3874) ((-243 . -698) 3723) ((-1224 . -628) 3648) ((-1196 . -885) NIL) ((-1069 . -92) T) ((-1063 . -92) T) ((-919 . -631) 3632) ((-1047 . -92) T) ((-475 . -111) 3461) ((-1040 . -92) T) ((-1012 . -92) T) ((-919 . -368) 3445) ((-244 . -101) T) ((-995 . -92) T) ((-73 . -597) 3427) ((-939 . -47) 3406) ((-603 . -1085) T) ((-1 . -1073) T) ((-691 . -101) T) ((-679 . -101) T) ((-1217 . -628) 3303) ((-608 . -92) T) ((-1167 . -597) 3285) ((-1061 . -597) 3267) ((-126 . -483) 3251) ((-477 . -92) T) ((-1049 . -597) 3233) ((-385 . -23) T) ((-86 . -1186) T) ((-214 . -92) T) ((-1196 . -628) 3085) ((-886 . -698) 3050) ((-603 . -23) T) ((-592 . -597) 3032) ((-592 . -598) NIL) ((-469 . -598) NIL) ((-469 . -597) 3014) ((-504 . -1073) T) ((-500 . -1073) T) ((-346 . -25) T) ((-346 . -21) T) ((-127 . -304) 2952) ((-121 . -304) 2890) ((-581 . -628) 2877) ((-221 . -1025) T) ((-580 . -628) 2802) ((-374 . -978) T) ((-221 . -239) T) ((-221 . -229) T) ((-934 . -598) 2763) ((-934 . -597) 2675) ((-846 . -38) 2662) ((-1216 . -285) 2613) ((-1195 . -285) 2564) ((-1093 . -446) T) ((-495 . -827) T) ((-311 . -1112) 2543) ((-975 . -145) 2522) ((-975 . -143) 2501) ((-488 . -304) 2488) ((-290 . -1162) 2467) ((-471 . -1085) T) ((-847 . -1031) 2412) ((-605 . -101) T) ((-1172 . -483) 2396) ((-246 . -363) 2375) ((-245 . -363) 2354) ((-290 . -106) 2304) ((-1036 . -1025) T) ((-117 . -101) T) ((-928 . -1025) T) ((-847 . -111) 2233) ((-471 . -23) T) ((-475 . -1025) T) ((-1036 . -229) T) ((-928 . -321) 2202) ((-475 . -321) 2159) ((-350 . -170) T) ((-347 . -170) T) ((-339 . -170) T) ((-259 . -170) 2070) ((-243 . -170) 1981) ((-939 . -1014) 1877) ((-716 . -1014) 1848) ((-510 . -597) 1814) ((-1078 . -101) T) ((-1065 . -597) 1781) ((-1010 . -597) 1763) ((-1224 . -707) T) ((-1217 . -707) T) ((-1196 . -771) NIL) ((-167 . -1031) 1673) ((-1196 . -774) NIL) ((-886 . -170) T) ((-1196 . -707) T) ((-1245 . -149) 1657) ((-979 . -337) 1631) ((-976 . -507) 1564) ((-820 . -827) 1543) ((-552 . -1124) T) ((-468 . -285) 1494) ((-581 . -707) T) ((-356 . -597) 1476) ((-317 . -597) 1458) ((-413 . -1014) 1354) ((-580 . -707) T) ((-402 . -827) 1305) ((-167 . -111) 1201) ((-813 . -130) 1153) ((-718 . -149) 1137) ((-1232 . -304) 1075) ((-481 . -302) T) ((-374 . -597) 1042) ((-513 . -986) 1026) ((-374 . -598) 940) ((-213 . -302) T) ((-139 . -149) 922) ((-695 . -281) 901) ((-481 . -998) T) ((-566 . -38) 888) ((-552 . -38) 875) ((-488 . -38) 840) ((-213 . -998) T) ((-847 . -1025) T) ((-814 . -597) 822) ((-807 . -597) 804) ((-805 . -597) 786) ((-796 . -885) 765) ((-1256 . -1085) T) ((-1205 . -1031) 588) ((-832 . -1031) 572) ((-847 . -239) T) ((-847 . -229) NIL) ((-669 . -1186) T) ((-1256 . -23) T) ((-796 . -628) 497) ((-538 . -1186) T) ((-413 . -333) 481) ((-559 . -1031) 468) ((-1205 . -111) 277) ((-681 . -621) 259) ((-832 . -111) 238) ((-376 . -23) T) ((-1159 . -507) 30) ((-642 . -1073) T) ((-661 . -1073) T) ((-656 . -1073) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 175f5012..cf793d0f 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,998 +1,1123 @@
-(30 . 3432506629)
+(30 . 3432784492)
(4356 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
- |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&|
- |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup|
- |AlgebraicallyClosedField&| |AlgebraicallyClosedField|
- |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace|
- |PlaneAlgebraicCurvePlot| |AddAst| |AlgebraicFunction| |Aggregate&|
- |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate|
- |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField|
+ |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
+ |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&|
+ |AbelianSemiGroup| |AlgebraicallyClosedField&|
+ |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&|
+ |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AddAst|
+ |AlgebraicFunction| |Aggregate&| |Aggregate|
+ |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&|
+ |Algebra| |AlgFactor| |AlgebraicFunctionField|
|AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage|
- |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&|
- |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any|
- |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules|
+ |AlgebraGivenByStructuralConstants| |AssociationList|
+ |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber|
+ |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any|
+ |ApplyUnivariateSkewPolynomial| |ApplyRules|
|TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory|
- |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray|
- |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30|
- |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55|
- |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9|
- |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&|
- |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&|
- |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons|
- |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&|
- |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions|
- |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |BinaryFile| |Bits|
- |BiModule| |Boolean| |BasicOperator| |BasicOperatorFunctions1|
- |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational|
- |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests|
- |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&|
- |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |Byte| |ByteArray|
- |CancellationAbelianMonoid| |CachableSet| |CapsuleAst| |CardinalNumber|
- |CartesianTensor| |CartesianTensorFunctions2| |CaseAst| |CategoryAst|
+ |OneDimensionalArrayFunctions2| |OneDimensionalArray|
+ |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24|
+ |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35|
+ |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74|
+ |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations|
+ |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory|
+ |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory|
+ |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism|
+ |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree|
+ |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate|
+ |BinaryExpansion| |Binding| |BinaryFile| |Bits| |BiModule| |Boolean|
+ |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots|
+ |BalancedPAdicInteger| |BalancedPAdicRational|
+ |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate|
+ |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate|
+ |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament|
+ |BinaryTree| |ByteArray| |Byte| |CancellationAbelianMonoid|
+ |CachableSet| |CapsuleAst| |CardinalNumber|
+ |CartesianTensorFunctions2| |CartesianTensor| |CaseAst| |CategoryAst|
|Category| |CharacterClass| |CommonDenominator|
|CombinatorialFunctionCategory| |Character| |CharacteristicNonZero|
- |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable|
- |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection|
- |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst|
- |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction|
- |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator|
- |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory|
- |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex|
- |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty|
- |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems|
+ |CharacteristicPolynomialPackage| |CharacteristicZero|
+ |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation|
+ |Collection&| |Collection| |CliffordAlgebra|
+ |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage|
+ |ColonAst| |Color| |CombinatorialFunction|
+ |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |CommaAst|
+ |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory|
+ |ComplexCategory&| |ComplexCategory| |ComplexFactorization|
+ |ComplexFunctions2| |Complex| |ComplexPattern|
+ |SubSpaceComponentProperty| |CommutativeRing| |Conduit|
+ |ContinuedFraction| |Contour| |CoordinateSystems|
|CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch|
- |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools|
- |Constructor| |ConstructorCall| |ConstructorKind|
+ |CRApackage| |CoerceAst| |ComplexRootFindingPackage|
+ |CyclicStreamTools| |ConstructorCall| |ConstructorKind| |Constructor|
|ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage|
|CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage|
|d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType|
|d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType|
|d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
- |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType|
- |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType|
- |d03fafAnnaType| |DataBuffer| |Database| |DoubleResultantPackage|
- |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst|
- |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration|
- |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools|
- |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix|
- |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension|
+ |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType|
+ |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage|
+ |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database|
+ |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion|
+ |DefinitionAst| |ElementaryFunctionDefiniteIntegration|
+ |RationalFunctionDefiniteIntegration| |DegreeReductionPackage|
+ |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
+ |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
+ |Dictionary| |DifferentialExtension&| |DifferentialExtension|
|DifferentialRing&| |DifferentialRing| |DictionaryOperations&|
- |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&|
- |DirectProductCategory| |DirectProduct| |DirectProductFunctions2|
- |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate|
- |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
+ |DictionaryOperations| |DiophantineSolutionPackage|
+ |DirectProductCategory&| |DirectProductCategory|
+ |DirectProductFunctions2| |DirectProduct| |DisplayPackage|
+ |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList|
+ |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
|Domain| |DirectProductMatrixModule| |DirectProductModule|
|DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
- |DequeueAggregate| |TopLevelDrawFunctions|
- |TopLevelDrawFunctionsForCompiledFunctions|
- |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack|
- |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0|
- |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial|
+ |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions|
+ |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
+ |DrawNumericHack| |TopLevelDrawFunctions|
+ |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0|
+ |DrawOptionFunctions1| |DrawOption|
+ |DifferentialSparseMultivariatePolynomial|
|DifferentialVariableCategory&| |DifferentialVariableCategory|
|e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType|
|e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|
- |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage|
+ |ExtAlgBasis| |ElementaryFunction|
+ |ElementaryFunctionStructurePackage|
|ElementaryFunctionsUnivariateLaurentSeries|
|ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression|
|ExtensibleLinearAggregate&| |ExtensibleLinearAggregate|
|ElementaryFunctionCategory&| |ElementaryFunctionCategory|
- |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&|
- |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment|
- |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions|
- |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1|
- |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage|
- |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage|
- |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&|
- |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit|
- |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2|
- |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver|
- |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries|
- |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup|
- |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
- |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&|
- |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent|
- |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2|
- |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&|
- |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&|
- |FunctionFieldCategory| |FunctionFieldCategoryFunctions2|
- |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial|
+ |EllipticFunctionsUnivariateTaylorSeries| |Eltable|
+ |EltableAggregate&| |EltableAggregate| |EuclideanModularRing|
+ |EntireRing| |Environment| |EigenPackage| |EquationFunctions2|
+ |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1|
+ |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1|
+ |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace|
+ |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2|
+ |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain|
+ |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit|
+ |ExponentialExpansion| |ExpressionFunctions2|
+ |ExpressionToUnivariatePowerSeries| |Expression|
+ |ExpressionSpaceODESolver| |ExpressionTubePlot|
+ |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions|
+ |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory|
+ |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
+ |FiniteAbelianMonoidRing| |FlexibleArray|
+ |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField|
+ |FortranCode| |FourierComponent| |FortranCodePackage1|
+ |FiniteDivisorFunctions2| |FiniteDivisorCategory&|
+ |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&|
+ |FullyEvalableOver| |FortranExpression|
+ |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&|
+ |FunctionFieldCategory| |FiniteFieldCyclicGroup|
+ |FiniteFieldCyclicGroupExtensionByPolynomial|
|FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions|
- |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory|
- |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis|
- |FiniteFieldNormalBasisExtensionByPolynomial|
- |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial|
- |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2|
+ |FiniteFieldHomomorphisms| |FiniteFieldCategory&|
+ |FiniteFieldCategory| |FunctionFieldIntegralBasis|
+ |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial|
+ |FiniteFieldNormalBasisExtension| |FiniteField|
+ |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2|
+ |FiniteFieldPolynomialPackage|
|FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension|
- |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory|
- |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite|
- |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&|
- |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra|
- |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&|
- |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage|
- |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory|
- |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid|
- |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie|
- |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat|
- |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory|
- |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion|
- |FullyPatternMatchable| |FieldOfPrimeCharacteristic&|
- |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem|
- |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2|
- |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo|
- |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule|
+ |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File|
+ |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra|
+ |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra|
+ |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&|
+ |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort|
+ |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver|
+ |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1|
+ |FreeModuleCat| |FortranMatrixCategory|
+ |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid|
+ |FortranMachineTypeCategory| |FileName| |FileNameCategory|
+ |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite|
+ |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory|
+ |FortranFunctionCategory| |FortranPackage| |FortranProgram|
+ |FullPartialFractionExpansion| |FullyPatternMatchable|
+ |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic|
+ |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2|
+ |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra|
+ |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2|
+ |FractionalIdeal| |FramedModule|
|FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&|
- |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&|
- |FunctionSpace| |FunctionSpaceFunctions2|
- |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries|
- |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2|
- |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration|
+ |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities|
+ |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2|
+ |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2|
+ |FiniteSetAggregate&| |FiniteSetAggregate|
+ |FunctionSpaceComplexIntegration| |FourierSeries|
+ |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace|
|FunctionalSpecialFunction| |FunctionSpacePrimitiveElement|
|FunctionSpaceReduce| |FortranScalarType|
- |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate|
- |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory|
- |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities|
- |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities|
- |GaussianFactorizationPackage| |GroebnerPackage|
+ |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate|
+ |FortranType| |FunctionCalled| |FortranVectorCategory|
+ |FortranVectorFunctionCategory| |GaloisGroupFactorizer|
+ |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities|
+ |GaloisGroupUtilities| |GaussianFactorizationPackage|
|EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage|
- |GroebnerInternalPackage| |GcdDomain&| |GcdDomain|
- |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial|
- |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
+ |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain|
+ |GenericNonAssociativeAlgebra|
+ |GeneralDistributedMultivariatePolynomial| |GenExEuclid|
+ |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
|GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage|
- |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet|
- |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage|
- |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group|
- |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet|
- |Pi| |HasAst| |HashTable| |HallBasis|
- |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct|
- |HeadAst| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
+ |GeneralModulePolynomial| |GosperSummationMethod|
+ |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode|
+ |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule|
+ |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries|
+ |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HasAst| |HashTable|
+ |HallBasis| |HomogeneousDistributedMultivariatePolynomial|
+ |HomogeneousDirectProduct| |HeadAst| |Heap|
+ |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
|HomogeneousAggregate&| |HomogeneousAggregate| |Hostname|
- |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor|
- |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
+ |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory|
+ |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
|IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases|
- |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard|
- |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage|
- |Identifier| |IndexedDirectProductAbelianGroup|
- |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory|
- |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid|
- |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable|
- |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField|
- |InnerIndexedTwoDimensionalArray| |IndexedList|
- |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions|
- |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit|
+ |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools|
+ |IndexCard| |InnerCommonDenominator| |PolynomialIdeals|
+ |IdealDecompositionPackage| |Identifier|
+ |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid|
+ |IndexedDirectProductCategory|
+ |IndexedDirectProductOrderedAbelianMonoid|
+ |IndexedDirectProductOrderedAbelianMonoidSup|
+ |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable|
+ |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst|
+ |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList|
+ |InnerMatrixLinearAlgebraFunctions|
+ |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst|
+ |InAst| |InputByteConduit&| |InputByteConduit|
|InnerNormalBasisFieldFunctions| |InputBinaryFile| |IncrementingMaps|
- |IndexedExponents| |InnerNumericEigenPackage| |Infinity| |InputForm|
- |InputFormFunctions1| |InfiniteProductCharacteristicZero|
+ |IndexedExponents| |InnerNumericEigenPackage| |Infinity|
+ |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero|
|InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact|
- |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign|
- |IntegerNumberSystem&| |IntegerNumberSystem| |Integer| |InnerTable|
- |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory|
- |IntegralDomain&| |IntegralDomain| |ElementaryIntegration|
- |IntegerFactorizationPackage| |IntegrationFunctionsTable|
- |GenusZeroIntegration| |IntegerNumberTheoryFunctions|
- |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration|
+ |InfiniteProductFiniteField| |InfiniteProductPrimeField|
+ |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem|
+ |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits|
+ |IntervalCategory| |IntegralDomain&| |IntegralDomain|
+ |ElementaryIntegration| |IntegerFactorizationPackage|
+ |IntegrationFunctionsTable| |GenusZeroIntegration|
+ |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration|
+ |TranscendentalHermiteIntegration| |Integer|
|AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration|
|PatternMatchIntegration| |RationalIntegration| |IntegerRetractions|
|RationalFunctionIntegration| |Interval|
|IntegerSolveLinearPolynomialEquation| |IntegrationTools|
- |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit|
- |IOMode| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage|
- |IntegrationResult| |IntegrationResultFunctions2|
- |IntegrationResultToFunction| |IntegerRoots| |IrredPolyOverFiniteField|
- |IntegrationResultRFToFunction| |IrrRepSymNatPackage|
- |InternalRationalUnivariateRepresentationPackage| |IsAst| |IndexedString|
- |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries|
- |InfiniteTupleFunctions2| |InfiniteTupleFunctions3|
- |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector|
- |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst|
- |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&|
- |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo|
- |Kovacic| |KleeneTrivalentLogic| |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra|
- |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage|
- |LeadingCoefDetermination| |LetAst| |LieExponentials| |LexTriangularPackage|
- |LiouvillianFunction| |LiouvillianFunctionCategory| |LinGroebnerPackage|
- |Library| |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra|
- |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence|
- |LinearlyExplicitRingOver| |List| |ListFunctions2| |ListToMap|
- |ListFunctions3| |Literal| |ListMultiDictionary| |LeftModule| |ListMonoidOps|
- |LinearAggregate&| |LinearAggregate| |Localize| |ElementaryFunctionLODESolver|
- |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1|
+ |TranscendentalIntegration| |InverseLaplaceTransform|
+ |InputOutputByteConduit| |IOMode| |InnerPAdicInteger|
+ |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction|
+ |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots|
+ |IrredPolyOverFiniteField| |IntegrationResultRFToFunction|
+ |IrrRepSymNatPackage|
+ |InternalRationalUnivariateRepresentationPackage| |IsAst|
+ |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries|
+ |InnerTaylorSeries| |InfiniteTupleFunctions2|
+ |InfiniteTupleFunctions3| |InnerTrigonometricManipulations|
+ |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate|
+ |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile|
+ |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel|
+ |CoercibleTo| |ConvertibleTo| |Kovacic| |KleeneTrivalentLogic|
+ |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform|
+ |LaurentPolynomial| |LazardSetSolvingPackage|
+ |LeadingCoefDetermination| |LetAst| |LieExponentials|
+ |LexTriangularPackage| |LiouvillianFunctionCategory|
+ |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&|
+ |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage|
+ |RationalFunctionLimitPackage| |LinearDependence|
+ |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2|
+ |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule|
+ |ListMonoidOps| |LinearAggregate&| |LinearAggregate|
+ |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1|
|LinearOrdinaryDifferentialOperator2|
|LinearOrdinaryDifferentialOperatorCategory&|
|LinearOrdinaryDifferentialOperatorCategory|
|LinearOrdinaryDifferentialOperatorFactorizer|
- |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic|
+ |LinearOrdinaryDifferentialOperator|
+ |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize|
|LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&|
- |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1|
- |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord|
- |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix|
- |MacroAst| |Magma| |MappingPackageInternalHacks1|
- |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst|
- |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&|
- |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions|
+ |ListAggregate| |LinearSystemMatrixPackage1|
+ |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage|
+ |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&|
+ |LazyStreamAggregate| |ThreeDimensionalMatrix| |MacroAst| |Magma|
+ |MappingPackageInternalHacks1| |MappingPackageInternalHacks2|
+ |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1|
+ |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2|
+ |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions|
|Matrix| |StorageEfficientMatrixOperations| |Maybe|
- |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex|
- |MultiDictionary| |ModularDistinctDegreeFactorizer|
- |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat|
- |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction|
- |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
- |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator|
- |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial|
- |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&|
- |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&|
- |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools|
- |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer|
- |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer|
- |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset|
- |MultisetAggregate| |MoreSystemCommands| |MergeThing|
- |MultivariateTaylorSeriesCategory| |MultivariateFactorize|
- |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
+ |MultiVariableCalculusFunctions| |MatrixCommonDenominator|
+ |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer|
+ |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize|
+ |MachineFloat| |ModularHermitianRowReduction| |MachineInteger|
+ |MakeBinaryCompiledFunction| |MakeCachableSet|
+ |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
+ |MakeUnaryCompiledFunction| |MultivariateLifting|
+ |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField|
+ |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&|
+ |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&|
+ |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&|
+ |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2|
+ |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial|
+ |MPolyCatRationalFunctionFactorizer| |MRationalFactorize|
+ |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset|
+ |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory|
+ |MultivariateFactorize| |MultivariateSquareFree|
+ |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
|NagPolynomialRootsPackage| |NagRootFindingPackage|
|NagSeriesSummationPackage| |NagIntegrationPackage|
|NagOrdinaryDifferentialEquationsPackage|
|NagPartialDifferentialEquationsPackage| |NagInterpolationPackage|
- |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage|
- |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack|
- |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&|
- |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing|
- |NumericComplexEigenPackage| |NumericContinuedFraction|
- |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis|
- |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger|
- |NonLinearFirstOrderODESolver| |None| |NoneFunctions1|
- |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef|
- |NumericRealEigenPackage| |NewSparseMultivariatePolynomial|
- |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2|
- |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory|
- |Numeric| |NumberFormats| |NumericalIntegrationCategory|
+ |NagFittingPackage| |NagOptimisationPackage|
+ |NagMatrixOperationsPackage| |NagEigenPackage|
+ |NagLinearEquationSolvingPackage| |NagLapack|
+ |NagSpecialFunctionsPackage| |NAGLinkSupportPackage|
+ |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&|
+ |NonAssociativeRing| |NumericComplexEigenPackage|
+ |NumericContinuedFraction| |NonCommutativeOperatorDivision|
+ |NumberFieldIntegralBasis| |NumericalIntegrationProblem|
+ |NonLinearSolvePackage| |NonNegativeInteger|
+ |NonLinearFirstOrderODESolver| |NoneFunctions1| |None|
+ |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage|
+ |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial|
+ |NewSparseUnivariatePolynomialFunctions2|
+ |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions|
+ |NormalizedTriangularSetCategory| |Numeric| |NumberFormats|
+ |NumericalIntegrationCategory|
|NumericalOrdinaryDifferentialEquations| |NumericalQuadrature|
|NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid|
- |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&|
- |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion|
- |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory|
- |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable|
- |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE|
- |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE|
- |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools|
- |OrderedDirectProduct| |OrderlyDifferentialPolynomial|
- |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid|
- |OrderedIntegralDomain| |OpenMath| |OpenMathConnection| |OpenMathDevice|
- |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath|
- |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate|
- |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2|
- |Operator| |OperationsQuery| |NumericalOptimizationCategory|
+ |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup|
+ |OrderedCancellationAbelianMonoid| |OctonionCategory&|
+ |OctonionCategory| |OctonionCategoryFunctions2| |Octonion|
+ |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE|
+ |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable|
+ |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage|
+ |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem|
+ |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE|
+ |SystemODESolver| |ODETools| |OrderedDirectProduct|
+ |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing|
+ |OrderlyDifferentialVariable| |OrderedFreeMonoid|
+ |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice|
+ |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError|
+ |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath|
+ |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage|
+ |OnePointCompletionFunctions2| |OnePointCompletion| |Operator|
+ |OperationsQuery| |NumericalOptimizationCategory|
|AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem|
- |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite|
- |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&|
- |OrderedSet| |UnivariateSkewPolynomialCategory&|
- |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps|
- |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial|
- |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts|
- |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputBinaryFile|
- |OutputForm| |OrderedVariableList| |OrdinaryWeightedPolynomials|
- |PadeApproximants| |PadeApproximantPackage| |PAdicInteger|
- |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Pair|
- |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2|
- |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve|
- |Parser| |ParametricSurfaceFunctions2| |ParametricSurface|
- |PartitionsAndPermutations| |Patternable| |PatternMatchListResult|
- |PatternMatchable| |PatternMatch| |PatternMatchResult|
- |PatternMatchResultFunctions2| |Pattern| |PatternFunctions1|
- |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition|
+ |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite|
+ |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing|
+ |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&|
+ |UnivariateSkewPolynomialCategory|
+ |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial|
+ |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions|
+ |OrderedSemiGroup| |OrdSetInts| |OutputByteConduit&|
+ |OutputByteConduit| |OutputBinaryFile| |OutputForm| |OutputPackage|
+ |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants|
+ |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger|
+ |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette|
+ |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2|
+ |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2|
+ |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2|
+ |ParametricSurface| |PartitionsAndPermutations| |Patternable|
+ |PatternMatchListResult| |PatternMatchable| |PatternMatch|
+ |PatternMatchResultFunctions2| |PatternMatchResult|
+ |PatternFunctions1| |PatternFunctions2| |Pattern|
+ |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition|
|PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition|
|AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem|
|PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree|
- |Permutation| |Permanent| |PermutationCategory| |PermutationGroup|
- |PrimeField| |PolynomialFactorizationByRecursion|
+ |Permanent| |PermutationCategory| |PermutationGroup| |Permutation|
+ |PolynomialFactorizationByRecursion|
|PolynomialFactorizationByRecursionUnivariate|
|PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit|
- |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools|
- |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage|
- |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions|
- |PrincipalIdealDomain| |PolynomialInterpolation|
- |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot|
- |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions|
- |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace|
+ |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational|
+ |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage|
+ |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner|
+ |PiCoercions| |PrincipalIdealDomain| |PositiveInteger|
+ |PolynomialInterpolationAlgorithms| |PolynomialInterpolation|
+ |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot|
+ |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions|
+ |PatternMatchPushDown| |PatternMatchFunctionSpace|
|PatternMatchIntegerNumberSystem| |PatternMatchKernel|
|PatternMatchListAggregate| |PatternMatchPolynomialCategory|
- |AttachPredicates| |FunctionSpaceAttachPredicates|
- |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools|
- |PolynomialNumberTheoryFunctions| |Point| |PolToPol|
- |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2|
- |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory|
- |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting|
- |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing|
- |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2|
- |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage|
- |PrintPackage| |Product| |Property| |PropositionalFormula|
- |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence|
- |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
- |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory|
- |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm|
- |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage|
- |PartialTranscendentalFunctions| |PushVariables|
- |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2|
- |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&|
- |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm|
- |QuasiquoteAst| |QueueAggregate| |Quaternion| |QuaternionCategory&|
- |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&|
- |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities|
- |RandomNumberSource| |RationalFactorize| |RationalRetractions|
- |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&|
- |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem|
- |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions|
- |ReducedDivisor| |ReduceAst| |RealConstant| |RealZeroPackage|
- |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder|
- |Reference| |RegularTriangularSet| |RadicalEigenPackage|
- |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling|
+ |FunctionSpaceAttachPredicates| |AttachPredicates|
+ |PatternMatchQuotientFieldCategory| |PatternMatchSymbol|
+ |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point|
+ |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2|
+ |PolynomialToUnivariatePolynomial| |PolynomialCategory&|
+ |PolynomialCategory| |PolynomialCategoryQuotientFunctions|
+ |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots|
+ |PortNumber| |PlottablePlaneCurveCategory|
+ |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2|
+ |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement|
+ |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product|
+ |Property| |PropositionalFormula| |PropositionalLogic|
+ |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst|
+ |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
+ |PlottableSpaceCurveCategory| |PolynomialSetCategory&|
+ |PolynomialSetCategory| |PolynomialSetUtilitiesPackage|
+ |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory|
+ |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions|
+ |PushVariables| |PAdicWildFunctionFieldIntegralBasis|
+ |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage|
+ |QueryEquation| |QuotientFieldCategoryFunctions2|
+ |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm|
+ |QuasiquoteAst| |QueueAggregate| |QuaternionCategory&|
+ |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion|
+ |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField|
+ |RadixExpansion| |RadixUtilities| |RandomNumberSource|
+ |RationalFactorize| |RationalRetractions| |RecursiveAggregate&|
+ |RecursiveAggregate| |RealClosedField&| |RealClosedField|
+ |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE|
+ |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor|
+ |ReduceAst| |RealZeroPackage| |RealZeroPackageQ| |RealConstant|
+ |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference|
+ |RegularTriangularSet| |RepresentationPackage1|
+ |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage|
|RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result|
|ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage|
- |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor|
- |RationalFunctionFactorizer| |RGBColorModel| |RGBColorSpace| |RegularChain|
- |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation|
- |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix|
- |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&|
- |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral|
- |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory|
+ |RandomFloatDistributions| |RationalFunctionFactor|
+ |RationalFunctionFactorizer| |RationalFunction| |RGBColorModel|
+ |RGBColorSpace| |RegularChain| |RandomIntegerDistributions| |Ring&|
+ |Ring| |RationalInterpolation| |RectangularMatrixCategory&|
+ |RectangularMatrixCategory| |RectangularMatrix|
+ |RectangularMatrixCategoryFunctions2| |RightModule| |Rng|
+ |RealNumberSystem&| |RealNumberSystem|
+ |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable|
+ |RecursivePolynomialCategory&| |RecursivePolynomialCategory|
|RepeatAst| |RealRootCharacterizationCategory&|
|RealRootCharacterizationCategory| |RegularSetDecompositionPackage|
|RegularTriangularSetCategory&| |RegularTriangularSetCategory|
- |RegularTriangularSetGcdPackage| |RestrictAst| |RewriteRule| |RuleCalled|
- |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension|
- |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor|
- |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope|
+ |RegularTriangularSetGcdPackage| |RestrictAst| |RuleCalled|
+ |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage|
+ |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension|
+ |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet|
+ |SpadSyntaxCategory| |SortedCache| |Scope|
|StructuralConstantsPackage| |SequentialDifferentialPolynomial|
- |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst|
- |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory|
- |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate|
- |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression|
- |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram|
- |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage|
- |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions|
- |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage|
- |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign|
- |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate|
- |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm|
- |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries|
- |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas|
- |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage|
- |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
+ |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst|
+ |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory|
+ |Segment| |SegmentExpansionCategory| |SequenceAst| |SetAggregate&|
+ |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN|
+ |Set| |SExpressionCategory| |SExpression| |SExpressionOf|
+ |SimpleFortranProgram| |SquareFreeQuasiComponentPackage|
+ |SquareFreeRegularTriangularSetGcdPackage|
+ |SquareFreeRegularTriangularSetCategory|
+ |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup|
+ |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |SignatureAst|
+ |ElementaryFunctionSign| |RationalFunctionSign| |Signature|
+ |SimplifyAlgebraicNumberConvertPackage| |SingleInteger|
+ |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory|
+ |SmithNormalForm| |SparseMultivariatePolynomial|
+ |SparseMultivariateTaylorSeries|
+ |SquareFreeNormalizedTriangularSetCategory|
+ |PolynomialSolveByFormulas| |RadicalSolvePackage|
+ |TransSolvePackageService| |TransSolvePackage| |SortPackage|
+ |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
|SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory|
|SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&|
|StringAggregate| |SquareFreeRegularSetDecompositionPackage|
- |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate|
- |SparseTable| |StepThrough| |StreamInfiniteProduct| |Stream|
- |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory|
- |String| |StringTable| |StreamTaylorSeriesOperations|
- |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative|
- |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst|
- |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum|
- |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2|
- |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries|
+ |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&|
+ |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct|
+ |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream|
+ |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations|
+ |StreamTranscendentalFunctionsNonCommutative|
+ |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace|
+ |SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries|
+ |FunctionSpaceSum| |RationalFunctionSum|
+ |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer|
+ |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries|
|SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions|
|SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax|
- |SystemSolvePackage| |System| |TableauxBumpers| |Table| |Tableau|
+ |SystemSolvePackage| |System| |TableauxBumpers| |Tableau| |Table|
|TangentExpansions| |TableAggregate&| |TableAggregate|
- |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1|
- |TextFile| |ToolsForSign| |TopLevelThreeSpace|
- |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree|
- |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory|
- |TrigonometricManipulations| |TriangularMatrixOperations|
- |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&|
- |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize|
- |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
+ |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1|
+ |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace|
+ |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory|
+ |Tree| |TrigonometricFunctionCategory&|
+ |TrigonometricFunctionCategory| |TrigonometricManipulations|
+ |TriangularMatrixOperations| |TranscendentalManipulations|
+ |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries|
+ |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |TypeAst| |Type|
+ |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
|UniqueFactorizationDomain&| |UniqueFactorizationDomain|
- |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2|
- |UnivariateLaurentSeriesCategory|
+ |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory|
|UnivariateLaurentSeriesConstructorCategory&|
|UnivariateLaurentSeriesConstructorCategory|
- |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment|
- |UniversalSegmentFunctions2| |UnivariatePolynomial|
- |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator|
+ |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries|
+ |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment|
+ |UnivariatePolynomialFunctions2|
+ |UnivariatePolynomialCommonDenominator|
|UnivariatePolynomialDecompositionPackage|
|UnivariatePolynomialDivisionPackage|
- |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&|
- |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2|
+ |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial|
+ |UnivariatePolynomialCategoryFunctions2|
+ |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory|
|UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory|
- |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries|
- |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory|
+ |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2|
+ |UnivariatePuiseuxSeriesCategory|
|UnivariatePuiseuxSeriesConstructorCategory&|
|UnivariatePuiseuxSeriesConstructorCategory|
- |UnivariatePuiseuxSeriesConstructor|
- |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&|
- |UnaryRecursiveAggregate| |UnivariateTaylorSeries|
+ |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries|
+ |UnivariatePuiseuxSeriesWithExponentialSingularity|
+ |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate|
|UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&|
- |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver|
- |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory|
- |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport|
- |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&|
- |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis|
- |WhereAst| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet|
- |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&|
- |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial|
- |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial|
+ |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries|
+ |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable|
+ |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector|
+ |TwoDimensionalViewport| |ThreeDimensionalViewport|
+ |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&|
+ |VectorSpace| |WeierstrassPreparation|
+ |WildFunctionFieldIntegralBasis| |WhereAst| |WhileAst|
+ |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra|
+ |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra|
+ |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat|
+ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
- |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record|
- |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?|
- |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom|
- |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank|
- |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements|
- |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus|
- |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter|
- |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid|
- |radicalOfLeftTraceForm| |showTypeInOutput| |obj| |dom| |objectOf| |domainOf|
- |any| |applyRules| |localUnquote| |setColumn!| |setRow!| |oneDimensionalArray|
- |associatedSystem| |uncouplingMatrices| |associatedEquations| |arrayStack|
- |setButtonValue| |setAttributeButtonStep| |resetAttributeButtons|
- |getButtonValue| |decrease| |increase| |morphism| |balancedFactorisation|
- |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree| |sylvesterMatrix|
- |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant| |bfEntry| |bfKeys|
- |inspect| |extract!| |bag| |binding| |position!| |test| |setProperties|
- |setProperty| |deleteProperty!| |has?| |comparison| |equality| |nary?|
- |unary?| |nullary?| |properties| |derivative| |constantOperator|
- |constantOpIfCan| |integerBound| |setright!| |setleft!|
- |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!|
- |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree|
- |bitior| |bitand| |byte| |subtractIfCan| |setPosition|
- |generalizedContinuumHypothesisAssumed|
- |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel|
- |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |alphanumeric|
- |alphabetic| |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?|
- |upperCase?| |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord|
- |mkIntegral| |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates|
- |find| |e| |clipParametric| |clipWithRanges| |numberOfHues| |yellow| |iifact|
- |iibinom| |iiperm| |iipow| |iidsum| |iidprod| |ipow| |factorial| |multinomial|
- |permutation| |stirling1| |stirling2| |summation| |factorials| |mkcomm|
- |polarCoordinates| |complex| |imaginary| |solid| |solid?| |denominators|
- |numerators| |convergents| |approximants| |reducedForm| |partialQuotients|
- |partialDenominators| |partialNumerators| |reducedContinuedFraction| |push|
- |bindings| |cartesian| |polar| |cylindrical| |spherical| |parabolic|
- |parabolicCylindrical| |paraboloidal| |ellipticCylindrical|
- |prolateSpheroidal| |oblateSpheroidal| |bipolar| |bipolarCylindrical|
- |toroidal| |conical| |modTree| |multiEuclideanTree| |complexZeros|
- |divisorCascade| |graeffe| |pleskenSplit| |reciprocalPolynomial| |rootRadius|
- |schwerpunkt| |setErrorBound| |startPolynomial| |cycleElt|
- |computeCycleLength| |computeCycleEntry| |arity| |kind| |arguments|
- |constructorName| |package| |domain| |category| |coerceP| |powerSum|
- |elementary| |alternating| |cyclic| |dihedral| |cap| |cup| |wreath|
- |SFunction| |skewSFunction| |cyclotomicDecomposition|
- |cyclotomicFactorization| |rangeIsFinite| |functionIsContinuousAtEndPoints|
- |functionIsOscillatory| |changeName| |exprHasWeightCosWXorSinWX|
- |exprHasAlgebraicWeight| |exprHasLogarithmicWeights|
- |combineFeatureCompatibility| |sparsityIF| |stiffnessAndStabilityFactor|
- |stiffnessAndStabilityOfODEIF| |systemSizeIF| |expenseOfEvaluationIF|
- |accuracyIF| |intermediateResultsIF| |subscriptedVariables| |central?|
- |elliptic?| |doubleResultant| |distdfact| |separateDegrees| |trace2PowMod|
- |tracePowMod| |irreducible?| |decimal| |innerint| |exteriorDifferential|
- |totalDifferential| |homogeneous?| |leadingBasisTerm| |ignore?| |computeInt|
- |checkForZero| |logGamma| |hypergeometric0F1| |rotatez| |rotatey| |rotatex|
- |identity| |dictionary| |dioSolve| |directProduct| |newLine| |copies| |say|
- |sayLength| |setnext!| |setprevious!| |next| |previous| |datalist|
- |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| |separant| |initial|
- |leader| |isobaric?| |weights| |differentialVariables| |extractBottom!|
- |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!| |dequeue|
- |makeObject| |recolor| |drawComplex| |drawComplexVectorField| |setRealSteps|
- |setImagSteps| |setClipValue| |draw| |option?| |range| |colorFunction|
- |curveColor| |pointColor| |clip| |clipBoolean| |style| |toScale|
- |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps| |space|
- |tubePoints| |tubeRadius| |option| |weight| |makeVariable| |finiteBound|
- |sortConstraints| |sumOfSquares| |splitLinear| |simpleBounds?| |linearMatrix|
- |linearPart| |nonLinearPart| |quadratic?| |changeNameToObjf| |optAttributes|
- |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan|
- |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc|
- |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh|
- |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| |localReal?|
- |rischNormalize| |realElementary| |validExponential| |rootNormalize| |tanQ|
- |callForm?| |getIdentifier| |getConstant| |type| |select!| |delete!| |sn| |cn|
- |dn| |sncndn| |qsetelt!| |categoryFrame| |currentEnv| |setProperties!|
- |getProperties| |setProperty!| |getProperty| |scopes| |eigenvalues|
- |eigenvector| |generalizedEigenvector| |generalizedEigenvectors|
- |eigenvectors| |factorAndSplit| |rightOne| |leftOne| |rightZero| |leftZero|
- |swap| |error| |minPoly| |freeOf?| |operators| |tower| |kernels| |mainKernel|
- |distribute| |subst| |functionIsFracPolynomial?| |problemPoints| |zerosOf|
- |singularitiesOf| |polynomialZeros| |f2df| |ef2edf| |ocf2ocdf| |socf2socdf|
- |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation| |numberOfOperations| |edf2efi|
- |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef| |vedf2vef| |df2st| |f2st|
- |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure| |measure2Result|
- |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef| |fi2df| |mat| |neglist|
- |multiEuclidean| |extendedEuclidean| |euclideanSize| |sizeLess?|
- |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| |tubePlot|
- |exponentialOrder| |completeEval| |lowerPolynomial| |raisePolynomial|
- |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| |binomThmExpt|
- |pomopo!| |mapExponents| |linearAssociatedLog| |linearAssociatedOrder|
- |linearAssociatedExp| |createNormalElement| |setLabelValue| |getCode|
- |printCode| |code| |operation| |common| |printStatement| |save| |stop| |block|
- |cond| |returns| |call| |comment| |continue| |goto| |repeatUntilLoop|
- |whileLoop| |forLoop| |sin?| |zeroVector| |zeroSquareMatrix|
- |identitySquareMatrix| |lSpaceBasis| |finiteBasis| |principal?| |divisor|
- |useNagFunctions| |rationalPoints| |nonSingularModel| |algSplitSimple|
- |hyperelliptic| |elliptic| |integralDerivationMatrix| |integralRepresents|
- |integralCoordinates| |yCoordinates| |inverseIntegralMatrixAtInfinity|
- |integralMatrixAtInfinity| |inverseIntegralMatrix| |integralMatrix|
- |reduceBasisAtInfinity| |normalizeAtInfinity| |complementaryBasis| |integral?|
- |integralAtInfinity?| |integralBasisAtInfinity| |ramified?|
- |ramifiedAtInfinity?| |singular?| |singularAtInfinity?| |branchPoint?|
- |branchPointAtInfinity?| |rationalPoint?| |absolutelyIrreducible?| |genus|
- |getZechTable| |createZechTable| |createMultiplicationTable|
- |createMultiplicationMatrix| |createLowComplexityTable|
- |createLowComplexityNormalBasis| |representationType| |createPrimitiveElement|
- |tableForDiscreteLogarithm| |factorsOfCyclicGroupSize| |sizeMultiplication|
- |getMultiplicationMatrix| |getMultiplicationTable| |primitive?|
- |numberOfIrreduciblePoly| |numberOfPrimitivePoly| |numberOfNormalPoly|
- |createIrreduciblePoly| |createPrimitivePoly| |createNormalPoly|
- |createNormalPrimitivePoly| |createPrimitiveNormalPoly| |nextIrreduciblePoly|
- |nextPrimitivePoly| |nextNormalPoly| |nextNormalPrimitivePoly|
- |nextPrimitiveNormalPoly| |leastAffineMultiple| |reducedQPowers|
- |rootOfIrreduciblePoly| |write!| |read!| |iomode| |close!| |reopen!| |open|
- |rightUnit| |leftUnit| |rightMinimalPolynomial| |leftMinimalPolynomial|
- |associatorDependence| |lieAlgebra?| |jordanAlgebra?|
- |noncommutativeJordanAlgebra?| |jordanAdmissible?| |lieAdmissible?|
- |jacobiIdentity?| |powerAssociative?| |alternative?| |flexible?|
- |rightAlternative?| |leftAlternative?| |antiAssociative?| |associative?|
- |antiCommutative?| |commutative?| |rightCharacteristicPolynomial|
- |leftCharacteristicPolynomial| |rightNorm| |leftNorm| |rightTrace| |leftTrace|
- |someBasis| |sort!| |copyInto!| |sorted?| |LiePoly| |quickSort| |heapSort|
- |shellSort| |outputSpacing| |outputGeneral| |outputFixed| |outputFloating|
- |exp1| |log10| |log2| |rationalApproximation| |relerror| |complexSolve|
- |complexRoots| |realRoots| |leadingTerm| |writable?| |readable?| |exists?|
- |extension| |directory| |filename| |shallowExpand| |deepExpand|
- |clearFortranOutputStack| |showFortranOutputStack| |popFortranOutputStack|
- |pushFortranOutputStack| |topFortranOutputStack| |setFormula!| |formula|
- |linkToFortran| |setLegalFortranSourceExtensions| |fracPart| |polyPart|
- |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision|
- |increasePrecision| |bits| |unitNormalize| |unit| |flagFactor| |sqfrFactor|
- |primeFactor| |nthFlag| |nthExponent| |irreducibleFactor| |nilFactor|
- |regularRepresentation| |traceMatrix| |randomLC| |minimize| |module|
- |rightRegularRepresentation| |leftRegularRepresentation| |rightTraceMatrix|
- |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| |represents|
- |mergeFactors| |isMult| |applyQuote| |ground| |ground?| |exprToXXP|
- |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| |cardinality|
- |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown|
- |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?|
- |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter|
- |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger|
- |fortranDouble| |fortranReal| |external?| |scalarTypeOf|
- |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine|
- |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors|
- |modularFactor| |useSingleFactorBound?| |useSingleFactorBound|
- |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?|
- |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact|
- |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm|
- |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree|
- |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle|
- |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares|
- |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis|
- |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB|
- |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD|
- |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO|
- |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm|
- |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm|
- |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm|
- |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial|
- |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial|
- |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow|
- |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build|
- |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray|
- |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits|
- |putColorInfo| |appendPoint| |component| |ranges| |pointLists|
- |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc|
- |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact|
- |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host|
- |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!|
- |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate|
- |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay|
- |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal|
- |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?|
- |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp|
- |contract| |leadingSupport| |shrinkable| |physicalLength!| |physicalLength|
- |flexibleArray| |elseBranch| |thenBranch| |generalizedInverse| |imports|
- |sequence| |iterationVar| |readBytes!| |readByteIfCan!| |setFieldInfo| |pol|
- |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup| |normal?| |basis|
- |normalElement| |minimalPolynomial| |eof?| |inputBinaryFile| |increment|
- |incrementBy| |charpol| |solve1| |innerEigenvectors| |compile| |declare|
- |parseString| |unparse| |flatten| |lambda| |binary| |packageCall| |interpret|
- |innerSolve1| |innerSolve| |makeEq| |modularGcdPrimitive| |modularGcd|
- |reduction| |signAround| |invmod| |powmod| |mulmod| |submod| |addmod| |mask|
- |dec| |inc| |symmetricRemainder| |positiveRemainder| |bit?| |algint|
- |algintegrate| |palgintegrate| |palginfieldint| |bitLength| |bitCoef|
- |bitTruth| |contains?| |inf| |qinterval| |interval| |unit?| |associates?|
- |unitCanonical| |unitNormal| |lfextendedint| |lflimitedint| |lfinfieldint|
- |lfintegrate| |lfextlimint| |BasicMethod| |PollardSmallFactor| |showTheFTable|
- |clearTheFTable| |fTable| |showAttributes| |entry| |palgint0| |palgextint0|
- |palglimint0| |palgRDE0| |palgLODE0| |chineseRemainder| |divisors| |eulerPhi|
- |fibonacci| |harmonic| |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors|
- |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint|
- |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate|
- |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate|
- |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax|
- |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate|
- |expintegrate| |tanintegrate| |primextendedint| |expextendedint|
- |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac|
- |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly|
- |inverseLaplace| |bothWays| |input| |iprint| |elem?| |notelem| |logpart|
- |ratpart| |mkAnswer| |perfectNthPower?| |perfectNthRoot| |approxNthRoot|
- |perfectSquare?| |perfectSqrt| |approxSqrt| |generateIrredPoly|
- |complexExpand| |complexIntegrate| |dimensionOfIrreducibleRepresentation|
- |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh|
- |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc|
- |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos|
- |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose|
- |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG
- |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?|
- |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan|
- |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |true|
- |unknown| |false| |laplace| |trailingCoefficient| |normalizeIfCan| |polCase|
- |distFact| |identification| |LyndonCoordinates| |LyndonBasis|
- |zeroDimensional?| |fglmIfCan| |groebner| |lexTriangular|
- |squareFreeLexTriangular| |belong?| |erf| |dilog| |li| |Ci| |Si| |Ei|
- |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord| |anticoord|
- |intcompBasis| |choosemon| |transform| |pack!| |library| |complexLimit|
- |limit| |linearlyDependent?| |linearDependence| |solveLinear| |reducedSystem|
- |setDifference| |setIntersection| |setUnion| |append| |null| |nil|
- |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality|
- |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |makeMulti| |makeTerm|
- |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1|
- |symmetricProduct| |symmetricPower| |directSum|
- |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve|
- |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?|
- |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?|
- |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D|
- |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp|
- |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag|
- |curryRight| |curryLeft| |constantRight| |constantLeft| |twist|
- |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat|
- |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!|
- |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!|
- |rightScalarTimes!| |times!| |power!| |nothing| |gradient| |divergence|
- |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates|
- |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod|
- |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent|
- |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal|
- |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction|
- |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction|
- |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius|
- |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index|
- |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower|
- |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom|
- |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst|
- |numberOfMonomials| |members| |multiset| |systemCommand| |mergeDifference|
- |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose|
- |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf|
- |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf|
- |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf|
- |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf|
- |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf|
- |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff|
- |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf|
- |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf|
- |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf|
- |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf|
- |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef|
- |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff|
- |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf|
- |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf|
- |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf|
- |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf|
- |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf|
- |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf|
- |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf|
- |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf|
- |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf|
- |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator|
- |complexEigenvalues| |complexEigenvectors| |shift| |normalizedAssociate|
- |normalize| |outputArgs| |normInvertible?| |normFactors| |npcoef| |listexp|
- |characteristicPolynomial| |realEigenvalues| |realEigenvectors|
- |halfExtendedResultant2| |halfExtendedResultant1| |extendedResultant|
- |subResultantsChain| |lazyPseudoQuotient| |lazyPseudoRemainder| |bernoulliB|
- |eulerE| |numeric| |complexNumeric| |numericIfCan| |complexNumericIfCan|
- |FormatArabic| |ScanArabic| |FormatRoman| |ScanRoman| |ScanFloatIgnoreSpaces|
- |ScanFloatIgnoreSpacesIfCan| |numericalIntegration| |rk4| |rk4a| |rk4qc|
- |rk4f| |aromberg| |asimpson| |atrapezoidal| |romberg| |simpson| |trapezoidal|
- |rombergo| |simpsono| |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj|
- |imagi| |octon| |ODESolve| |constDsolve| |showTheIFTable| |clearTheIFTable|
- |keys| |iFTable| |showIntensityFunctions| |expint| |diff| |algDsolve|
- |denomLODE| |indicialEquations| |indicialEquation| |denomRicDE|
- |leadingCoefficientRicDE| |constantCoefficientRicDE| |changeVar| |ratDsolve|
- |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve|
- |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters|
- |factors| |nthFactor| |nthExpon| |overlap| |hcrf| |hclf| |lexico| |OMmakeConn|
- |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| |OMconnectTCP| |OMbindTCP|
- |OMopenFile| |OMopenString| |OMclose| |OMsetEncoding| |OMputApp| |OMputAtp|
- |OMputAttr| |OMputBind| |OMputBVar| |OMputError| |OMputObject| |OMputEndApp|
- |OMputEndAtp| |OMputEndAttr| |OMputEndBind| |OMputEndBVar| |OMputEndError|
- |OMputEndObject| |OMputInteger| |OMputFloat| |OMputVariable| |OMputString|
- |OMputSymbol| |OMgetApp| |OMgetAtp| |OMgetAttr| |OMgetBind| |OMgetBVar|
- |OMgetError| |OMgetObject| |OMgetEndApp| |OMgetEndAtp| |OMgetEndAttr|
- |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| |OMgetEndObject| |OMgetInteger|
- |OMgetFloat| |OMgetVariable| |OMgetString| |OMgetSymbol| |OMgetType|
- |OMencodingBinary| |OMencodingSGML| |OMencodingXML| |OMencodingUnknown|
- |omError| |errorInfo| |errorKind| |OMReadError?| |OMUnknownSymbol?|
- |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| |OMreadFile|
- |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| |OMsupportsSymbol?|
- |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| |infinity| |makeop|
- |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| |getDatabase|
- |numericalOptimization| |optimize| |goodnessOfFit| |whatInfinity| |infinite?|
- |finite?| |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex|
- |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient| |rightRemainder|
- |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| |leftExactQuotient|
- |leftRemainder| |leftQuotient| |times| |apply| |monicLeftDivide|
- |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| |laguerreL|
- |legendreP| |outputList| |writeBytes!| |writeByteIfCan!| |isOpen?|
- |outputBinaryFile| |quo| |rem| |div| >= > ~= |blankSeparate|
- |semicolonSeparate| |commaSeparate| |pile| |paren| |bracket| |prod|
- |overlabel| |overbar| |prime| |quote| |supersub| |presuper| |presub| |super|
- |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| |infix?| |postfix|
- |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| |hspace| |superHeight|
- |subHeight| |height| |width| |doubleFloatFormat| |messagePrint| |message|
- |padecf| |pade| |root| |quotientByP| |moduloP| |modulus| |digits|
- |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark|
- |getSyntaxFormsFromFile| |surface| |coordinate| |partitions| |conjugates|
- |shuffle| |shufflein| |sequences| |permutations| |lists| |atoms| |makeResult|
- |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed|
- |failed?| |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?|
- |topPredicate| |setTopPredicate| |patternVariable| |withPredicates|
- |setPredicates| |predicates| |hasPredicate?| |optional?| |multiple?|
- |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?|
- |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| |PDESolve|
- |leftFactor| |rightFactorCandidate| |measure| D |ptree| |coerceImages|
- |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition|
- |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent|
- |cycles| |cycle| |initializeGroupForWordProblem| <= < |movedPoints|
- |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit|
- |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base|
- |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion|
- |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit|
- |charthRoot| |conditionP| |solveLinearPolynomialEquation|
- |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial|
- |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix|
- |doubleDisc| |polyred| |padicFraction| |padicallyExpand|
- |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom|
- |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup|
- |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11|
- |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup|
- |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember|
- |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime|
- |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve|
- |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond|
- |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive|
- |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints|
- |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D|
- |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D|
- |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D|
- |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert|
- |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes|
- |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor|
- |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP|
- |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy|
- |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials|
- |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt|
- |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix|
- |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print|
- |selectsecond| |selectfirst| |makeprod| |property| |equivOperands| |equiv?|
- |impliesOperands| |implies?| |orOperands| |or?| |andOperands| |and?|
- |notOperand| |not?| |variable?| |term| |term?| |equiv| |implies| |or| |and|
- |merge!| |resultantEuclidean| |semiResultantEuclidean2|
- |semiResultantEuclidean1| |indiceSubResultant| |indiceSubResultantEuclidean|
- |semiIndiceSubResultantEuclidean| |degreeSubResultant|
- |degreeSubResultantEuclidean| |semiDegreeSubResultantEuclidean|
- |lastSubResultantEuclidean| |semiLastSubResultantEuclidean|
- |subResultantGcdEuclidean| |semiSubResultantGcdEuclidean2|
- |semiSubResultantGcdEuclidean1| |discriminantEuclidean|
- |semiDiscriminantEuclidean| |chainSubResultants| |schema| |resultantReduit|
- |resultantReduitEuclidean| |semiResultantReduitEuclidean| |divide| |Lazard|
- |Lazard2| |nextsousResultant2| |resultantnaif| |resultantEuclideannaif|
- |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?|
- |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches|
- |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder|
- |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?|
- |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect|
- |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan|
- |unprotectedRemoveRedundantFactors| |removeRedundantFactors|
- |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?|
- |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials|
- |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?|
- |linearPolynomials| |bivariate?| |bivariatePolynomials|
- |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol|
- |interReduce| |roughBasicSet| |crushedSet|
- |rewriteSetByReducingWithParticularGenerators|
- |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors|
- |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents|
- |removeRedundantFactorsInContents| |removeRedundantFactorsInPols|
- |irreducibleFactors| |lazyIrreducibleFactors|
- |removeIrreducibleRedundantFactors| |normalForm| |changeBase|
- |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord|
- |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan|
- |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan|
- |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan|
- |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan|
- |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup|
- |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations|
- |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator|
- |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!|
- |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue|
- |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits|
- |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?|
- |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance|
- |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial|
- |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE|
- |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |operator| |midpoint|
- |midpoints| |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| =
- |setref| |deref| |ref| |radicalEigenvectors| |radicalEigenvector|
- |radicalEigenvalues| |eigenMatrix| |normalise| |gramschmidt|
- |orthonormalBasis| |antisymmetricTensors| |createGenericMatrix|
- |symmetricTensors| |tensorProduct| |permutationRepresentation|
- |completeEchelonBasis| |createRandomElement| |cyclicSubmodule|
- |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?|
- |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |showArrayValues|
- |showScalarValues| |solveRetract| |variables| |mainVariable| |univariate|
- |multivariate| |uniform01| |normal01| |exponential1| |chiSquare1| |normal|
- |exponential| |chiSquare| F |t| |factorFraction| |componentUpperBound| |blue|
- |green| |red| |whitePoint| |uniform| |binomial| |poisson| |geometric|
- |ridHack1| |interpolate| |nullSpace| |nullity| |rank| |rowEchelon| |column|
- |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| |maxRowIndex|
- |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix|
- |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart|
- |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right|
- |left| |roman| |recoverAfterFail| |showTheRoutinesTable| |deleteRoutine!|
- |getExplanations| |getMeasure| |changeMeasure| |changeThreshhold|
- |selectMultiDimensionalRoutines| |selectNonFiniteRoutines|
- |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines|
- |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines|
- |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent|
- |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient|
- |subResultantChain| |halfExtendedSubResultantGcd2|
- |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!|
- |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical|
- |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide|
- |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?|
- |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial|
- |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial|
- |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators|
- |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?|
- |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit|
- |invertibleSet| |invertible?| |invertibleElseSplit?|
- |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?|
- |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo|
- |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant|
- |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression|
- |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create|
- |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope|
- |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates|
- |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?|
- |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex|
- |hash| |delta| |member?| |enumerate| |setOfMinN| |elements|
- |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer|
- |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?|
- |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?|
- |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?|
- |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?|
- |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?|
- |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!|
- |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!|
- |stosePrepareSubResAlgo| |stoseInternalLastSubResultant|
- |stoseIntegralLastSubResultant| |stoseLastSubResultant|
- |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg|
- |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet|
- |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus|
- |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition|
- |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0|
- |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence|
- |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots|
- |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature|
- |signatureAst| |Or| |And| |Not| |xor| |not| |min| |max| ~ |/\\| |\\/| |depth|
- |top| |pop!| |push!| |minordet| |determinant| |diagonalProduct| |trace|
- |diagonal| |diagonalMatrix| |scalarMatrix| |hermite| |completeHermite| |smith|
- |completeSmith| |diophantineSystem| |csubst| |particularSolution| |mapSolve|
- |linear| |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic|
- |aQuartic| |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc|
- |unvectorise| |bubbleSort!| |insertionSort!| |check| |objects| |lprop|
- |llprop| |lllp| |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon|
- |closedCurve?| |closedCurve| |curve?| |curve| |point?| |enterPointData|
- |composites| |components| |numberOfComposites| |numberOfComponents|
- |create3Space| |parse| |outputAsFortran| |outputAsScript| |outputAsTex| |abs|
- |Beta| |digamma| |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK|
- |airyAi| |airyBi| |subNode?| |infLex?| |setEmpty!| |setStatus!|
- |setCondition!| |setValue!| |copy| |status| |value| |empty?| |splitNodeOf!|
- |remove!| |remove| |subNodeOf?| |nodeOf?| |result| |conditions|
- |updateStatus!| |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim|
- |leftTrim| |trim| |split| |position| |replace| |match?| |match| |substring?|
- |suffix?| |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase|
- |KrullNumber| |numberOfVariables| |algebraicDecompose|
- |transcendentalDecompose| |internalDecompose| |decompose| |upDateBranches|
- |printInfo| |preprocess| |internalZeroSetSplit| |internalAugment| |stack|
- |possiblyInfinite?| |explicitlyFinite?| |nextItem| |init| |infiniteProduct|
- |evenInfiniteProduct| |oddInfiniteProduct| |generalInfiniteProduct|
- |filterUntil| |filterWhile| |generate| |showAll?| |showAllElements| |output|
- |cons| |delay| |findCycle| |repeating?| |repeating| |exquo| |recip| |integers|
- |oddintegers| |int| |mapmult| |deriv| |gderiv| |compose| |addiag|
- |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate| |power| |sincos|
- |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh| |cosh| |tanh|
- |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech| |acsch|
- |subresultantVector| |primitivePart| |pointData| |parent| |level|
- |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse|
- |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2|
- |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children|
- |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct|
- |predicate| |sum| |outputForm| NOT AND EQ OR GE LE GT LT |sample| |list|
- |string| |argscript| |superscript| |subscript| |script| |scripts| |scripted?|
- |name| |resetNew| |symFunc| |symbolTableOf| |argumentListOf| |returnTypeOf|
- |printHeader| |returnType!| |argumentList!| |endSubProgram|
- |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable|
- |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList|
- |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case|
- |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce|
- |solve| |triangularSystems| |rootDirectory| |hostPlatform|
- |nativeModuleExtension| |loadNativeModule| |bumprow| |bumptab| |bumptab1|
- |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr|
- |tableau| |listOfLists| |tanSum| |tanAn| |tanNa| |table| |initTable!|
- |printInfo!| |startStats!| |printStats!| |clearTable!| |usingTable?|
- |printingInfo?| |makingStats?| |extractIfCan| |insert!| |interpretString|
- |stripCommentsAndBlanks| |setPrologue!| |setTex!| |setEpilogue!| |prologue|
- |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!|
- |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi|
- |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?|
- |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary|
- |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv|
- |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog|
- |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh|
- |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig|
- |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq|
- |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate|
- |coefficient| |coHeight| |extendIfCan| |algebraicVariables|
- |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic|
- |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce|
- |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?|
- |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent|
- |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?|
- |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select|
- |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?|
- |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder|
- |resetVariableOrder| |prime?| |rationalFunction| |taylorIfCan| |taylor|
- |removeZeroes| |taylorRep| |factor| |factorSquareFree| |henselFact| |hasHi|
- |segment| SEGMENT |fmecg| |commonDenominator| |clearDenominator|
- |splitDenominator| |monicRightFactorIfCan| |rightFactorIfCan|
- |leftFactorIfCan| |monicDecomposeIfCan| |monicCompleteDecompose| |divideIfCan|
- |noKaratsuba| |karatsubaOnce| |karatsuba| |separate| |pseudoDivide|
- |pseudoQuotient| |composite| |subResultantGcd| |resultant| |discriminant|
- |pseudoRemainder| |shiftLeft| |shiftRight| |karatsubaDivide| |monicDivide|
- |divideExponents| |unmakeSUP| |makeSUP| |vectorise| |eval| |extend|
- |approximate| |truncate| |order| |center| |terms| |squareFreePart|
- |BumInSepFFE| |multiplyExponents| |laurentIfCan| |laurent| |laurentRep|
- |rationalPower| |puiseux| |dominantTerm| |limitPlus| |split!| |setlast!|
- |setrest!| |setelt| |setfirst!| |cycleSplit!| |concat!| |cycleTail|
- |cycleLength| |cycleEntry| |third| |second| |tail| |last| |rest| |elt| |first|
- |concat| |invmultisect| |multisect| |revert| |generalLambert| |evenlambert|
- |oddlambert| |lambert| |lagrange| |differentiate| |univariatePolynomial|
- |integrate| ** |polynomial| |multiplyCoefficients| |quoByVar| |coefficients|
- |series| |stFunc1| |stFunc2| |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode|
- |mpsode| UP2UTS UTS2UP LODO2FUN RF2UTS |variable| |magnitude| |length| |cross|
- |outerProduct| |dot| - |zero| + |vector| |scan| |reduce| |graphCurves|
- |drawCurves| |update| |show| |scale| |connect| |region| |points| |units|
- |getGraph| |putGraph| |graphs| |graphStates| |graphState| |makeViewport2D|
- |viewport2D| |getPickedPoints| |key| |close| |write| |colorDef| |reset|
- |intensity| |lighting| |clipSurface| |showClipRegion| |showRegion|
- |hitherPlane| |eyeDistance| |perspective| |translate| |zoom| |rotate|
- |drawStyle| |outlineRender| |diagonals| |axes| |controlPanel| |viewpoint|
- |dimensions| |title| |resize| |move| |options| |modifyPointData| |subspace|
- |makeViewport3D| |viewport3D| |viewDeltaYDefault| |viewDeltaXDefault|
- |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| |pointColorDefault|
- |lineColorDefault| |axesColorDefault| |unitsColorDefault| |pointSizeDefault|
- |viewPosDefault| |viewSizeDefault| |viewDefaults| |viewWriteDefault|
- |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| |tubePointsDefault|
- |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| |sts2stst| |clikeUniv|
- |weierstrass| |qqq| |integralBasis| |localIntegralBasis| |qualifier|
- |mainExpression| |condition| |changeWeightLevel| |characteristicSerie|
- |characteristicSet| |medialSet| |Hausdorff| |Frobenius| |transcendenceDegree|
- |extensionDegree| |inGroundField?| |transcendent?| |algebraic?| |varList| |sh|
- |mirror| |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product|
- |LiePolyIfCan| |trunc| |degree| / |quasiRegular| |quasiRegular?| |constant|
- |constant?| |coef| |mindeg| |maxdeg| |#| |coerce| |map| |reductum| *
- |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve|
- |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?|
- |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite|
- |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical|
- |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision|
- |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
- |additiveValuation| |unitsKnown| |canonicalUnitNormal|
- |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+ |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
+ |Record| |Union| |leftScalarTimes!| |selectMultiDimensionalRoutines|
+ |getGoodPrime| |RemainderList| |ipow| |basis| |makeprod|
+ |trapezoidalo| |sinhcosh| |say| |rightScalarTimes!|
+ |selectNonFiniteRoutines| |badNum| |unexpand| |factorial|
+ |normalElement| |equivOperands| |sup| |subresultantVector|
+ |normalDeriv| |times!| |mix| |selectSumOfSquaresRoutines| |name|
+ |triangSolve| |multinomial| |minimalPolynomial| |equiv?| |imagE|
+ |primitivePart| |e| |ran| |power!| |doubleDisc| |selectFiniteRoutines|
+ |body| |univariateSolve| |permutation| |eof?| |impliesOperands|
+ |imagk| |pointData| |highCommonTerms| |gradient|
+ |selectODEIVPRoutines| |polyred| |realSolve| |stirling1| |imagj|
+ |parent| |mapCoef| |divergence| |selectPDERoutines| |reset|
+ |padicFraction| |positiveSolve| |stirling2| |genericRightDiscriminant|
+ |alternatingGroup| |imagi| |extractProperty| |nthCoef| |laplacian|
+ |selectOptimizationRoutines| |padicallyExpand| |squareFree|
+ |summation| |genericRightTraceForm| |abelianGroup| |octon|
+ |extractClosed| |binomThmExpt| |hessian| |selectIntegrationRoutines|
+ |write| |numberOfFractionalTerms| |linearlyDependentOverZ?|
+ |factorials| |genericLeftDiscriminant| |cyclicGroup| |ODESolve|
+ |extractIndex| |pomopo!| |nthFractionalTerm| |linearDependenceOverZ|
+ |mkcomm| |genericLeftTraceForm| |dihedralGroup| |replace|
+ |constDsolve| |extractPoint| |numer| |mapExponents| |entries|
+ |setchildren!| |firstNumer| |solveLinearlyOverQ| |polarCoordinates|
+ |genericRightNorm| |mathieu11| |showTheIFTable| |traverse| Y |denom|
+ |linearAssociatedLog| |key?| |node?| |firstDenom| |imaginary|
+ |genericRightTrace| |mathieu12| |clearTheIFTable| |defineProperty|
+ |linearAssociatedOrder| |symbolIfCan| |child?| |compactFraction|
+ |solid| |genericRightMinimalPolynomial| |mathieu22| |pi|
+ |linearAssociatedExp| |close| |argument| |distance| |partialFraction|
+ |solid?| |rightRankPolynomial| |mathieu23| |f04arf| |aQuartic|
+ |infinity| |createNormalElement| |constantKernel| |nodes|
+ |gcdPrimitive| |denominators| |genericLeftNorm| |mathieu24| |f04asf|
+ |radicalSolve| |setLabelValue| |display| |constantIfCan| |rename|
+ |symmetricGroup| |numerators| |genericLeftTrace| |f04atf| |janko2|
+ |radicalRoots| |remove| |getCode| |kovacic| |rename!| |convergents|
+ |genericLeftMinimalPolynomial| |rubiksGroup| |f04axf| |contractSolve|
+ |kernel| |constant| |printCode| |laplace| |mainValue| |superHeight|
+ |cross| |approximants| |leftRankPolynomial| |f04faf| |youngGroup|
+ |decomposeFunc| |last| |draw| |printStatement| |trailingCoefficient|
+ |mainDefiningPolynomial| |subHeight| |dot| |assoc| |reducedForm|
+ |generic| |lexGroebner| |f04jgf| |unvectorise| |block|
+ |normalizeIfCan| |mainForm| |doubleFloatFormat| |scan|
+ |partialQuotients| |rightUnits| |totalGroebner| |f04maf| |bubbleSort!|
+ |returns| |input| |polCase| |rischDE| |messagePrint| |graphCurves|
+ |partialDenominators| |leftUnits| |expressIdealMember| |f04mbf|
+ |insertionSort!| |#| |goto| |library| |distFact| |rischDEsys| |padecf|
+ |drawCurves| |partialNumerators| |compBound| |principalIdeal| |f04mcf|
+ |check| |repeatUntilLoop| |identification| |monomRDE| |pade| |scale|
+ |reducedContinuedFraction| |tablePow| |LagrangeInterpolation| |f04qaf|
+ |lprop| |whileLoop| |LyndonCoordinates| |baseRDE| |root| |connect|
+ |push| |solveid| |psolve| |f07adf| |llprop| |forLoop| SEGMENT
+ |LyndonBasis| |polyRDE| |quotientByP| |region| |interpret| |bindings|
+ NOT |testModulus| |wrregime| |f07aef| |lllp| |sin?| |set|
+ |zeroDimensional?| |monomRDEsys| |moduloP| |points| |cartesian| OR
+ |HenselLift| |rdregime| |f07fdf| |lllip| |zeroVector| |fglmIfCan|
+ |baseRDEsys| |modulus| |getGraph| |polar| AND |completeHensel|
+ |bsolve| |f07fef| |mesh?| |zeroSquareMatrix| |groebner| |weighted|
+ |digits| |putGraph| |cylindrical| |multMonom| |dmp2rfi| |s01eaf|
+ |mesh| |top| |identitySquareMatrix| |lexTriangular| |rdHack1|
+ |continuedFraction| |graphs| |spherical| |build| |se2rfi| |s13aaf|
+ |polygon?| |continue| |lSpaceBasis| |squareFreeLexTriangular|
+ |operator| |light| |graphStates| |parabolic| |leadingIndex| |pr2dmp|
+ |s13acf| |polygon| |finiteBasis| |belong?| |midpoint| |pastel|
+ |graphState| |parabolicCylindrical| |leadingExponent| |hasoln|
+ |s13adf| |closedCurve?| |principal?| |Ci| |dark| |midpoints|
+ |makeViewport2D| |direction| |cons| |paraboloidal| |GospersMethod|
+ |ParCondList| |s14aaf| |closedCurve| |divisor| |Si|
+ |getSyntaxFormsFromFile| |realZeros| |viewport2D| |createThreeSpace|
+ |ellipticCylindrical| |nextSubsetGray| |redpps| |s14abf| |curve?|
+ |properties| |useNagFunctions| |Ei| |mainCharacterization| |surface|
+ |getPickedPoints| |prolateSpheroidal| |firstSubsetGray| |B1solve|
+ |s14baf| |curve| |rationalPoints| |linGenPos| |algebraicOf|
+ |translate| |coordinate| |colorDef| |oblateSpheroidal|
+ |clipPointsDefault| |factorset| |s15adf| |point?| |nonSingularModel|
+ |show| |groebgen| |ReduceOrder| |partitions| |intensity| |bipolar| *
+ |drawToScale| |maxrank| |s15aef| |enterPointData| |ptree|
+ |algSplitSimple| |totolex| |setref| |conjugates| |lighting|
+ |bipolarCylindrical| |adaptive| |minrank| |s17acf| |composites|
+ |hyperelliptic| |trace| |minPol| |deref| |shuffle| |clipSurface|
+ |source| |toroidal| |figureUnits| |minset| |s17adf| |components|
+ |elliptic| |computeBasis| |ref| |shufflein| |showClipRegion| |conical|
+ |putColorInfo| |nextSublist| |s17aef| |numberOfComposites| ~=
+ |integralDerivationMatrix| |coord| |radicalEigenvectors| |sequences|
+ |showRegion| |modTree| |mr| |appendPoint| |overset?| |s17aff|
+ |numberOfComponents| |coerce| |integralRepresents| |anticoord|
+ |radicalEigenvector| |permutations| |hitherPlane| |multiEuclideanTree|
+ |constructorName| |component| |ParCond| |s17agf| |create3Space|
+ |construct| |integralCoordinates| |intcompBasis| |radicalEigenvalues|
+ |atoms| |eyeDistance| |complexZeros| |ranges| |redmat| |s17ahf|
+ |outputAsScript| |yCoordinates| |choosemon| |eigenMatrix| |makeResult|
+ |perspective| |target| |divisorCascade| |pointLists| |regime| |s17ajf|
+ |outputAsTex| |buildSyntax| |inverseIntegralMatrixAtInfinity|
+ |transform| |normalise| |is?| |zoom| |graeffe| |makeGraphImage|
+ |sqfree| |s17akf| |abs| |solve| |integralMatrixAtInfinity| |formula|
+ |pack!| |gramschmidt| |Is| |rotate| |pleskenSplit| |graphImage|
+ |inconsistent?| |s17dcf| |Beta| |inverseIntegralMatrix| |complexLimit|
+ |orthonormalBasis| |addMatchRestricted| |drawStyle|
+ |reciprocalPolynomial| |groebSolve| |numFunEvals| |s17def| |digamma|
+ |integralMatrix| |limit| |antisymmetricTensors| |insertMatch|
+ |outlineRender| |rootRadius| |testDim| |setAdaptive| |s17dgf|
+ |polygamma| |reduceBasisAtInfinity| |linearlyDependent?|
+ |createGenericMatrix| |addMatch| |diagonals| |schwerpunkt|
+ |genericPosition| |adaptive?| |s17dhf| |Gamma| |normalizeAtInfinity|
+ |linearDependence| |symmetricTensors| |nrows| |getMatch| |axes|
+ |setErrorBound| |lfunc| |setScreenResolution| |s17dlf| |besselJ|
+ |complementaryBasis| |solveLinear| |tensorProduct| |ncols| |failed?|
+ |controlPanel| |startPolynomial| |inHallBasis?| |s18acf|
+ |screenResolution| |sum| |besselY| |integral?| |reducedSystem|
+ |permutationRepresentation| |optpair| |viewpoint| |compound?|
+ |cycleElt| |sort| |reorder| |setMaxPoints| |s18adf| |besselI|
+ |integralAtInfinity?| |duplicates?| |completeEchelonBasis|
+ |getBadValues| |dimensions| |getOperands| |computeCycleLength|
+ |headAst| |maxPoints| |s18aef| |besselK| |integralBasisAtInfinity|
+ |mapGen| |createRandomElement| |resetBadValues| |resize|
+ |computeCycleEntry| |heap| |setMinPoints| |s18aff| |airyAi|
+ |ramified?| |mapExpon| |plusInfinity| |cyclicSubmodule|
+ |hasTopPredicate?| |move| |arity| |gcdprim| |minPoints| |s18dcf|
+ |airyBi| |clearCache| |triangularSystems| |ramifiedAtInfinity?|
+ |commutativeEquality| |minusInfinity| |standardBasisOfCyclicSubmodule|
+ |topPredicate| |modifyPointData| |coerceP| |gcdcofact| |parametric?|
+ |s18def| |subNode?| |rootDirectory| |setelt| |singular?| |leftMult|
+ |areEquivalent?| |setTopPredicate| |subspace| |gcdcofactprim|
+ |plotPolar| |s19aaf| |infLex?| |singularAtInfinity?| |rightMult|
+ |isAbsolutelyIrreducible?| |patternVariable| |makeViewport3D|
+ |equality| |lintgcd| |debug3D| |s19abf| |setEmpty!| |copy|
+ |branchPoint?| |makeUnit| |meatAxe| |withPredicates| |viewport3D|
+ |nary?| |hex| |numFunEvals3D| |s19acf| |setStatus!|
+ |branchPointAtInfinity?| |reverse!| |scanOneDimSubspaces|
+ |setPredicates| |viewDeltaYDefault| |unary?| |every?| |setAdaptive3D|
+ |s19adf| |setCondition!| |makeMulti| |retractIfCan| |expt| |retract|
+ |predicates| |viewDeltaXDefault| |nullary?| |match?| |any?|
+ |adaptive3D?| |s20acf| |setValue!| |swap| |autoCoerce| |type|
+ |makeTerm| |showArrayValues| |hasPredicate?| |viewZoomDefault|
+ |derivative| |arguments| |host| |setScreenResolution3D| |s20adf|
+ |empty?| |minPoly| |listOfMonoms| |showScalarValues| |optional?|
+ |viewPhiDefault| |constantOperator| |precision| |width| |trueEqual|
+ |screenResolution3D| |s21baf| |splitNodeOf!| |freeOf?| |directory|
+ |symmetricSquare| |solveRetract| |simplify| |multiple?|
+ |viewThetaDefault| |constantOpIfCan| |s21bbf| |remove!| |error|
+ |operators| |factor1| |mainVariable| |htrigs| |generic?|
+ |pointColorDefault| |integerBound| |useSingleFactorBound?| |s21bcf|
+ |subNodeOf?| |assert| |substring?| |mainKernel| |symmetricProduct|
+ |uniform01| |simplifyExp| |quoted?| |lineColorDefault| |setright!|
+ |numeric| |useSingleFactorBound| |s21bdf| |nodeOf?| |distribute|
+ |setleft!| |symmetricPower| |normal01| |simplifyLog| |inR?|
+ |axesColorDefault| |radical| |inc| |useEisensteinCriterion?|
+ |fortranCompilerName| |updateStatus!| |suffix?|
+ |functionIsFracPolynomial?| |isList| |unitsColorDefault|
+ |brillhartIrreducible?| |useEisensteinCriterion| |fortranLinkerArgs|
+ |extractSplittingLeaf| |problemPoints| |perfectSquare?| |asinIfCan|
+ |isOp| |pointSizeDefault| |brillhartTrials| |eisensteinIrreducible?|
+ |aspFilename| |squareMatrix| |prefix?| |zerosOf| |perfectSqrt|
+ |acosIfCan| |map| |satisfy?| |viewPosDefault| |noLinearFactor?|
+ |tryFunctionalDecomposition?| |optional| |dimensionsOf| |transpose|
+ |singularitiesOf| |approxSqrt| |atanIfCan| |addBadValue|
+ |viewSizeDefault| |insertRoot!| |tryFunctionalDecomposition|
+ |polynomialZeros| |generateIrredPoly| |acotIfCan| |badValues|
+ |viewDefaults| |binarySearchTree| |btwFact| |e01saf| |startTableGcd!|
+ |f2df| |complexExpand| |asecIfCan| |retractable?| |viewWriteDefault|
+ |nor| |beauzamyBound| |e01sbf| |stopTableGcd!| |ef2edf|
+ |complexIntegrate| |acscIfCan| |ListOfTerms| |viewWriteAvailable|
+ |nand| |bombieriNorm| |e01sef| |startTableInvSet!| |optimize|
+ |ocf2ocdf| |dimensionOfIrreducibleRepresentation| |sinhIfCan|
+ |convert| |binaryTournament| |rootBound| |e01sff| |stopTableInvSet!|
+ |infix?| |socf2socdf| |irreducibleRepresentation| |coshIfCan|
+ |infinite?| |pseudoRemainder| |any| |binaryTree| |signature|
+ |singleFactorBound| |e02adf| |stosePrepareSubResAlgo| |mask| BY
+ |df2fi| |checkRur| |tanhIfCan| |finite?| |shiftLeft| |byte|
+ |quadraticNorm| |null| |e02aef| |stoseInternalLastSubResultant| |init|
+ |edf2fi| |cAcsch| |cothIfCan| |pureLex| |shiftRight| |subtractIfCan|
+ |infinityNorm| |case| |e02agf| |stoseIntegralLastSubResultant|
+ |edf2df| |cAsech| |sechIfCan| |totalLex| |karatsubaDivide|
+ |setPosition| |scaleRoots| |Zero| |e02ahf| |stoseLastSubResultant|
+ |pattern| |expenseOfEvaluation| |cAcoth| |cschIfCan| |reverseLex|
+ |monicDivide| |generalizedContinuumHypothesisAssumed| |shiftRoots|
+ |One| |tail| |e02ajf| |stoseInvertible?sqfreg| |numberOfOperations|
+ |cAtanh| |asinhIfCan| |leftLcm| |divideExponents|
+ |generalizedContinuumHypothesisAssumed?| |degreePartition| |e02akf|
+ |stoseInvertibleSetsqfreg| |edf2efi| |cAcosh| |acoshIfCan|
+ |rightExtendedGcd| |unmakeSUP| |countable?| |factorOfDegree| |e02baf|
+ |stoseInvertible?reg| |dfRange| |cAsinh| |atanhIfCan| |printInfo|
+ |rightGcd| |makeSUP| |Aleph| |factorsOfDegree| |e02bbf|
+ |stoseInvertibleSetreg| |char| |message| |dflist| |cCsch| |acothIfCan|
+ |rightExactQuotient| |vectorise| |unravel| |pascalTriangle| |e02bcf|
+ |stoseInvertible?| |df2mf| |cSech| |asechIfCan| |rightRemainder|
+ |extend| |lift| |expr| |id| |isQuotient| |leviCivitaSymbol|
+ |rangePascalTriangle| |elt| |e02bdf| |stoseInvertibleSet| |plus|
+ |ldf2vmf| |cCoth| |acschIfCan| |rightQuotient| |truncate| |reduce|
+ |kroneckerDelta| |sizePascalTriangle| |e02bef| |stoseSquareFreePart|
+ |edf2ef| |cTanh| |pushdown| |rightLcm| |order| |table| |reindex|
+ |fillPascalTriangle| |e02daf| |coleman| |vedf2vef| |cCosh| |pushup|
+ |leftExtendedGcd| |terms| |new| |alphanumeric| |cond| |safeCeiling|
+ |e02dcf| |inverseColeman| |float| |df2st| |cSinh|
+ |reducedDiscriminant| |leftGcd| |squareFreePart| |variable|
+ |alphabetic| |safeFloor| |e02ddf| |listYoungTableaus| |times| |f2st|
+ |cAcsc| |idealSimplify| |leftExactQuotient| |BumInSepFFE| |iterators|
+ |height| |hexDigit| |safetyMargin| |e02def| |makeYoungTableau|
+ |ldf2lst| |cAsec| |definingInequation| |leftRemainder|
+ |multiplyExponents| |digit| |sumSquares| |e02dff| |nextColeman|
+ |implies| |sdf2lst| |cAcot| |definingEquations| |leftQuotient|
+ |laurentIfCan| |tree| |t| |status| |charClass| |euclideanNormalForm|
+ |e02gaf| |nextLatticePermutation| |getlo| |cAtan| |setStatus|
+ |monicLeftDivide| |laurentRep| |alphanumeric?| |euclideanGroebner|
+ |e02zaf| |nextPartition| |monom| |xor| |gethi| |cAcos|
+ |quasiAlgebraicSet| |monicRightDivide| |rationalPower| |lowerCase?|
+ |factorGroebnerBasis| |e04dgf| |numberOfImproperPartitions|
+ |outputMeasure| |cAsin| |radicalSimplify| |leftDivide| |dominantTerm|
+ |upperCase?| |groebnerFactorize| |e04fdf| |subSet| |measure2Result|
+ |cCsc| |denominator| |rightDivide| |limitPlus| |alphabetic?| |credPol|
+ |e04gcf| |unrankImproperPartitions0| |common| GE |att2Result| |cSec|
+ |numerator| |hermiteH| |split!| |hexDigit?| |redPol| = |e04jaf|
+ |unrankImproperPartitions1| GT |iflist2Result| |cCot| |quadraticForm|
+ |laguerreL| |setlast!| |left| |escape| |arg1| |gbasis| |e04mbf|
+ |subresultantSequence| LE |pdf2ef| |cTan| |back| |legendreP|
+ |setrest!| |ord| |right| |critT| |arg2| |reverse| < |e04naf|
+ |SturmHabichtSequence| LT |currentSubProgram| |pdf2df| |cCos| |front|
+ |writeBytes!| |cyclic?| |setfirst!| |mkIntegral| |critM| > |e04ucf|
+ |SturmHabichtCoefficients| |showSummary| |newSubProgram| |df2ef|
+ |cSin| |rotate!| |writeByteIfCan!| |complexNormalize| |cycleSplit!|
+ |radPoly| |conditions| |critB| <= |e04ycf| |SturmHabicht|
+ |clearTheSymbolTable| |fi2df| |cLog| |dequeue!| |isOpen?| |concat!|
+ |rootPoly| |match| |critBonD| >= |f01brf| |countRealRoots| |erf|
+ |showTheSymbolTable| |mat| |showAttributes| |cExp| |enqueue!|
+ |outputBinaryFile| |cycleTail| |loadNativeModule| |ravel| |goodPoint|
+ |critMTonD1| |f01bsf| |SturmHabichtMultiple| |printTypes| |neglist|
+ |cRationalPower| |quatern| |blankSeparate| |cycleLength| |chvar|
+ |reshape| |critMonD1| |f01maf| |countRealRootsMultiple| |newTypeLists|
+ |multiEuclidean| |cPower| |imagK| |semicolonSeparate| |cycleEntry|
+ |find| |redPo| + |f01mcf| |signatureAst| |extendedEuclidean|
+ |seriesToOutputForm| |imagJ| |commaSeparate| |depth| |invmultisect|
+ |clipParametric| |hMonic| - |f01qcf| |pop!| |typeLists|
+ |euclideanSize| |iCompose| |imagI| |pile| |multisect| |clipWithRanges|
+ |updatF| / |f01qdf| |push!| |externalList| |sizeLess?|
+ |taylorQuoByVar| |conjugate| |paren| |revert| |numberOfHues| |sPol|
+ |f01qef| |minordet| |simplifyPower| |iExquo| |queue| |bracket|
+ |generalLambert| |yellow| |update| |updatD| |f01rcf| |determinant|
+ |number?| |getStream| |nthRoot| |prod| |evenlambert| |iifact|
+ |minGbasis| |f01rdf| |diagonalProduct| |seriesSolve| |getRef|
+ |equation| |fractRadix| |overlabel| |oddlambert| |getOperator|
+ |iibinom| |lepol| |f01ref| |diagonal| |constantToUnaryFunction|
+ |makeSeries| |wholeRadix| |overbar| |lambert| |fortran| |nil?|
+ |iiperm| |prinshINFO| |f02aaf| |diagonalMatrix| |log| |tubePlot| GF2FG
+ |cycleRagits| |prime| |lagrange| |iipow| |prindINFO| |f02abf|
+ |scalarMatrix| |exponentialOrder| FG2F |prefixRagits| |quote|
+ |univariatePolynomial| |fprindINFO| |f02adf| |hermite| |digit?|
+ |completeEval| F2FG |fractRagits| |supersub| |integrate| |rightRank|
+ |position| |prinpolINFO| |f02aef| |completeHermite| |function| ~
+ |lowerPolynomial| |explogs2trigs| |wholeRagits| |presuper|
+ |multiplyCoefficients| |doubleRank| |prinb| |f02aff| |smith|
+ |raisePolynomial| |trigs2explogs| |radix| |presub| |quoByVar|
+ |weakBiRank| |critpOrder| |outputList| |f02agf| |completeSmith| |open|
+ |swap!| |randnum| |super| |coefficients| |biRank| |makeCrit| |f02ajf|
+ |diophantineSystem| |iilog| |fill!| |reseed| |sub| |stFunc1|
+ |basisOfCommutingElements| |virtualDegree| |f02akf| |csubst| |iisin|
+ |minIndex| |seed| |rarrow| |stFunc2| |basisOfLeftAnnihilator| |stack|
+ |conditionsForIdempotents| |f02awf| |particularSolution| |iicos|
+ |maxIndex| |rational| |assign| |stFuncN| |basisOfRightAnnihilator|
+ |f02axf| |mapSolve| |iitan| |entry?| |rational?| |slash|
+ |fixedPointExquo| |basisOfLeftNucleus| |nilFactor| |f02bbf|
+ |quadratic| |iicot| |indices| |rationalIfCan| |over| |ode1|
+ |basisOfRightNucleus| |regularRepresentation| |f02bjf| |cubic| |dim|
+ |iisec| |index?| |setvalue!| |zag| |ode2| |basisOfMiddleNucleus|
+ |script| |traceMatrix| |f02fjf| |quartic| |iicsc| |declare| |postfix|
+ |ode| |basisOfNucleus| |leader| |randomLC| |f02wef| |aLinear| |iiasin|
+ |eulerPhi| |collect| |infix| |complexElementary| |mpsode|
+ |basisOfCenter| |minimize| |f02xef| |aQuadratic| |iiacos| |fibonacci|
+ |mantissa| |collectUnder| |double| |vconcat| |trigs| UP2UTS
+ |basisOfLeftNucloid| |tex| |module| |f04adf| |aCubic| |lcm| |iiatan|
+ |harmonic| |mainVariable?| |hconcat| UTS2UP |basisOfRightNucloid|
+ |rightRegularRepresentation| |iiacot| |jacobi| |mainVariables|
+ |rspace| LODO2FUN |basisOfCentroid| |leftRegularRepresentation|
+ |squareFreePrim| |internalLastSubResultant| |append| |iiasec|
+ |moebiusMu| |removeSquaresIfCan| |vspace| RF2UTS
+ |radicalOfLeftTraceForm| |rightTraceMatrix| |compdegd|
+ |checkPrecision| |integralLastSubResultant| |gcd| |iiacsc|
+ |numberOfDivisors| |unprotectedRemoveRedundantFactors| |hspace|
+ |magnitude| |showTypeInOutput| |leftTraceMatrix| |univcase|
+ |toseLastSubResultant| |false| |iisinh| |sumOfDivisors|
+ |removeRedundantFactors| |objectOf| |rightDiscriminant| |consnewpol|
+ |toseInvertible?| |lhs| |iicosh| |sumOfKthPowerDivisors|
+ |certainlySubVariety?| |OMputString| |stronglyReduced?| |domainOf|
+ |leftDiscriminant| |nsqfree| |toseInvertibleSet| |iitanh| |rhs|
+ |HermiteIntegrate| |OMputSymbol| |declare!| |possiblyNewVariety?|
+ |prefix| |reduced?| |applyRules| |represents| |intChoose|
+ |toseSquareFreePart| |second| |iicoth| |palgint| |probablyZeroDim?|
+ |OMgetApp| |normalized?| |localUnquote| |node| |test| |mergeFactors|
+ |coefChoose| |quotedOperators| |iisech| |palgextint| |OMgetAtp|
+ |selectPolynomials| |quasiComponent| |cyclicParents| |setColumn!|
+ |isMult| |myDegree| |rur| |iicsch| |palglimint| |OMgetAttr|
+ |selectOrPolynomials| |initials| |cyclicEqual?| |setRow!| |exprToXXP|
+ |normDeriv2| |create| |iiasinh| |palgRDE| |selectAndPolynomials|
+ |OMgetBind| |basicSet| |oneDimensionalArray| |exprToUPS|
+ |plenaryPower| |enterInCache| |iiacosh| |dec| |palgLODE|
+ |quasiMonicPolynomials| |OMgetBVar| |infRittWu?| |associatedSystem|
+ |exprToGenUPS| |c02aff| |currentCategoryFrame| |iiatanh|
+ |splitConstant| |univariate?| |OMgetError| |getCurve|
+ |uncouplingMatrices| |localAbs| |c02agf| |currentScope| |iiacoth|
+ |pmComplexintegrate| |segment| |univariatePolynomials| |OMgetObject|
+ |listLoops| |associatedEquations| |universe| |c05adf| |pushNewContour|
+ |iiasech| |pmintegrate| |linear?| |OMgetEndApp| |closed?| |arrayStack|
+ |complement| |c05nbf| |findBinding| |iiacsch| |infieldint|
+ |linearPolynomials| |OMgetEndAtp| |open?| |setButtonValue|
+ |cardinality| |c05pbf| |contours| |call| |specialTrigs| |extendedint|
+ |bivariate?| |OMgetEndAttr| |setClosed| |setAttributeButtonStep|
+ |internalIntegrate0| |c06eaf| |structuralConstants| |localReal?| |eq|
+ |limitedint| |bivariatePolynomials| |OMgetEndBind| |tube|
+ |resetAttributeButtons| |makeCos| |c06ebf| |coordinates| |void|
+ |rischNormalize| |iter| |integerIfCan|
+ |removeRoughlyRedundantFactorsInPols| |OMgetEndBVar| |unitVector|
+ |getButtonValue| |makeSin| |c06ecf| |bounds| |realElementary|
+ |internalIntegrate| |removeRoughlyRedundantFactorsInPol|
+ |OMgetEndError| |cosSinInfo| |decrease| |iiGamma| |c06ekf| |high|
+ |list| |exquo| |validExponential| |infieldIntegrate| |interReduce|
+ |OMgetEndObject| |loopPoints| |increase| |iiabs| |c06fpf| |low| |car|
+ |div| |/\\| |rootNormalize| |limitedIntegrate| |roughBasicSet|
+ |OMgetInteger| |generalTwoFactor| |morphism| |bringDown| |c06fqf|
+ |subset?| |next| |cdr| |quo| |\\/| |tanQ| |extendedIntegrate|
+ |crushedSet| |hash| |OMgetFloat| |generalSqFr| |balancedFactorisation|
+ |newReduc| |c06frf| |symmetricDifference| |setDifference| |callForm?|
+ |count| |varselect| |OMgetVariable|
+ |rewriteSetByReducingWithParticularGenerators| |twoFactor| |center|
+ |mapDown!| |logical?| |c06fuf| |difference| |setIntersection| |rem|
+ |getIdentifier| |kmax| |rewriteIdealWithQuasiMonicGenerators|
+ |OMgetString| |setOrder| |mapUp!| |character?| |c06gbf| |intersect|
+ |setUnion| |getConstant| |exp| |ksec| |squareFreeFactors|
+ |OMgetSymbol| |getOrder| |setleaves!| |doubleComplex?| |c06gcf|
+ |part?| |apply| |select!| |approximate| |vark|
+ |univariatePolynomialsGcds| |OMgetType| |less?| |balancedBinaryTree|
+ |previous| |complex?| |c06gqf| |latex| |delete!| |symbolTable|
+ |removeConstantTerm| |removeRoughlyRedundantFactorsInContents|
+ |OMencodingBinary| |userOrdered?| |sylvesterMatrix| |double?| |c06gsf|
+ |member?| |size| |sn| |mkPrim| |removeRedundantFactorsInContents|
+ |OMencodingSGML| |largest| |bezoutMatrix| |ffactor| |d01ajf|
+ |enumerate| |dn| |pushFortranOutputStack| |intPatternMatch|
+ |removeRedundantFactorsInPols| |OMencodingXML| |more?|
+ |bezoutResultant| |qfactor| |d01akf| |setOfMinN| |sncndn|
+ |popFortranOutputStack| |primintegrate| |irreducibleFactors|
+ |OMencodingUnknown| |setVariableOrder| |bezoutDiscriminant| |UP2ifCan|
+ |d01alf| |elements| |first| |rule| |categoryFrame| |outputAsFortran|
+ |expintegrate| |lazyIrreducibleFactors| |omError| |getVariableOrder|
+ |bfEntry| |anfactor| |d01amf| |replaceKthElement| |rest|
+ |setProperties!| |tanintegrate| |removeIrreducibleRedundantFactors|
+ |errorInfo| |resetVariableOrder| |bfKeys| |fortranCharacter| |d01anf|
+ |incrementKthElement| |substitute| |getProperties| |primextendedint|
+ |normalForm| |errorKind| |prime?| |lp| |inspect|
+ |fortranDoubleComplex| |systemCommand| |d01apf| |hostPlatform|
+ |float?| |removeDuplicates| |not| |setProperty!| |expextendedint|
+ |changeBase| |OMReadError?| |rationalFunction| |extract!|
+ |fortranComplex| |d01aqf| |nativeModuleExtension| |integer?| |key|
+ |getProperty| |primlimitedint| |companionBlocks| |OMUnknownSymbol?|
+ |taylorIfCan| |bag| |fortranLogical| |d01asf| |bumprow| |symbol?|
+ |scopes| |zero| |explimitedint| |xCoord| |OMUnknownCD?| |removeZeroes|
+ |binding| |fortranInteger| |d01bbf| |bumptab| |normal| |string?|
+ |filename| |eigenvalues| |primextintfrac| |yCoord| |OMParseError?|
+ |taylorRep| |position!| |fortranDouble| |d01fcf| |bumptab1| |list?|
+ |not?| |eigenvector| |And| |primlimintfrac| |zCoord| |OMwrite|
+ |factorSquareFree| |setProperties| |fortranReal| |d01gaf| |untab|
+ |pair?| |parse| |generalizedEigenvector| |Or| |primintfldpoly|
+ |rCoord| |po| |henselFact| |setProperty| |external?| |d01gbf| |bat1|
+ |atom?| |generalizedEigenvectors| |Not| |expintfldpoly| |thetaCoord|
+ |OMread| |hasHi| |deleteProperty!| |scalarTypeOf| |d02bbf| |bat|
+ |null?| |eigenvectors| |monomialIntegrate| |phiCoord| |OMreadFile|
+ |fmecg| |has?| |fortranCarriageReturn| |d02bhf| |tab1| |startTable!|
+ |label| |factorAndSplit| |monomialIntPoly| |color| |OMreadStr|
+ |commonDenominator| |comparison| |fortranLiteral| |d02cjf| |tab|
+ |stopTable!| |rightOne| |vector| |inverseLaplace| |hue| |OMlistCDs|
+ |clearDenominator| |fortranLiteralLine| |d02ejf| |lex|
+ |supDimElseRittWu?| |leftOne| |differentiate| |bothWays| |shade|
+ |OMlistSymbols| |splitDenominator| |processTemplate| |d02gaf|
+ |algebraicSort| |rightZero| |iprint| |nthRootIfCan| |OMsupportsCD?|
+ |monicRightFactorIfCan| |makeFR| |d02gbf| |moreAlgebraic?| |leftZero|
+ |elem?| |expIfCan| |OMsupportsSymbol?| |rightFactorIfCan|
+ |musserTrials| |d02kef| |subTriSet?| |notelem| |logIfCan|
+ |OMunhandledSymbol| |leftFactorIfCan| |flatten| |sample|
+ |stopMusserTrials| |d02raf| |subPolSet?| |setnext!| |logpart|
+ |sinIfCan| |OMreceive| |monicDecomposeIfCan| |numberOfFactors|
+ |d03edf| |internalSubPolSet?| |setprevious!| |ratpart| |cosIfCan|
+ |OMsend| |monicCompleteDecompose| |argscript| |modularFactor| |d03eef|
+ |internalInfRittWu?| |shanksDiscLogAlgorithm| |index| |mkAnswer|
+ |tanIfCan| |OMserve| |divideIfCan| |search| |d03faf|
+ |internalSubQuasiComponent?| |reflect| |perfectNthPower?| |cotIfCan|
+ |makeop| |noKaratsuba| |superscript| |antiCommutative?| |e01baf|
+ |slex| |subQuasiComponent?| |option| |reify| |perfectNthRoot|
+ |secIfCan| |opeval| |karatsubaOnce| |subscript| |commutative?|
+ |e01bef| |inverse| |removeSuperfluousQuasiComponents| |or| |separant|
+ |pair| |approxNthRoot| |cscIfCan| |evaluateInverse| |karatsuba|
+ |rightCharacteristicPolynomial| |e01bff| |subCase?| |isobaric?|
+ |nothing| |evaluate| |separate| |leftCharacteristicPolynomial|
+ |e01bgf| |removeSuperfluousCases| |weights| |inputBinaryFile|
+ |implies?| |conjug| |pseudoDivide| |rightNorm| |e01bhf|
+ |prepareDecompose| |differentialVariables| |increment| |orOperands|
+ |adjoint| |pseudoQuotient| |leftNorm| |leaves| |e01daf| |branchIfCan|
+ |extractBottom!| |charpol| |or?| |getDatabase| |composite|
+ |outerProduct| |rightTrace| |extractTop!| |solve1| |andOperands|
+ |numericalOptimization| |subResultantGcd| |save| |leftTrace|
+ |bandedHessian| |routines| |varList| |insertBottom!|
+ |innerEigenvectors| |and?| |goodnessOfFit| |resultant| |someBasis|
+ |rightTrim| |jacobian| |mainSquareFreePart| |generator| |insertTop!|
+ |parseString| |notOperand| |whatInfinity| |discriminant| |sort!|
+ |scripted?| |bandedJacobian| |leftTrim| |mainPrimitivePart| |lists|
+ |bottom!| |unparse| |variable?| |resetNew| |copyInto!| |duplicates|
+ |mainContent| |top!| |binary| |term| |iFTable| |closeComponent|
+ |symFunc| |sorted?| |removeDuplicates!| |primitivePart!| |dequeue|
+ |packageCall| |term?| |showIntensityFunctions| |modifyPoint|
+ |symbolTableOf| |LiePoly| |linears| |nextsubResultant2| |recolor|
+ |innerSolve1| |equiv| |expint| |addPointLast| |argumentListOf|
+ |quickSort| |ddFact| |LazardQuotient2| |drawComplex| |innerSolve|
+ |merge!| |diff| |addPoint2| |returnTypeOf| |heapSort|
+ |separateFactors| |LazardQuotient| |drawComplexVectorField| |makeEq|
+ |resultantEuclidean| |algDsolve| |addPoint| |printHeader| |shellSort|
+ |exptMod| |subResultantChain| |setRealSteps| |modularGcdPrimitive|
+ |denomLODE| |semiResultantEuclidean2| |merge| F |returnType!|
+ |outputSpacing| |meshPar2Var| |halfExtendedSubResultantGcd2| |lo|
+ |setImagSteps| |modularGcd| |semiResultantEuclidean1|
+ |indicialEquations| |deepCopy| |outputGeneral| |meshFun2Var|
+ |halfExtendedSubResultantGcd1| |incr| |setClipValue| |reduction|
+ |indiceSubResultant| |indicialEquation| |shallowCopy| |real?|
+ |outputFixed| |meshPar1Var| |extendedSubResultantGcd| |hi| |option?|
+ |signAround| |indiceSubResultantEuclidean| |denomRicDE|
+ |numberOfChildren| |complexForm| |outputFloating| |ptFunc|
+ |exactQuotient!| |range| |stop| |invmod|
+ |semiIndiceSubResultantEuclidean| |leadingCoefficientRicDE| |children|
+ |predicate| |makeObject| |exp1| |minimumExponent| |exactQuotient|
+ |colorFunction| |powmod| |degreeSubResultant|
+ |constantCoefficientRicDE| |child| |log2| |max| |maximumExponent|
+ |primPartElseUnitCanonical!| |curveColor| |mulmod|
+ |degreeSubResultantEuclidean| |changeVar| |birth| |coef|
+ |rationalApproximation| |rowEch| |primPartElseUnitCanonical|
+ |UpTriBddDenomInv| |pointColor| |submod|
+ |semiDegreeSubResultantEuclidean| |ratDsolve| |internal?| |relerror|
+ |rowEchLocal| |lazyResidueClass| |kind| |clip| |addmod|
+ |lastSubResultantEuclidean| |indicialEquationAtInfinity| |root?|
+ |complexSolve| |rowEchelonLocal| |monicModulo| |op| |clipBoolean|
+ |symmetricRemainder| |semiLastSubResultantEuclidean| |reduceLODE|
+ |leaf?| |complexRoots| |normalizedDivide| |lazyPseudoDivide| |style|
+ |positiveRemainder| |subResultantGcdEuclidean| |singRicDE|
+ |outputForm| |comment| |currentEnv| |realRoots| |maxint|
+ |lazyPremWithDefault| |maxrow| |toScale| |bit?|
+ |semiSubResultantGcdEuclidean2| |polyRicDE| |expandPower| |obj|
+ |leadingTerm| |binaryFunction| |lazyPquo| |tableau|
+ |pointColorPalette| |parameters| |algint|
+ |semiSubResultantGcdEuclidean1| |ricDsolve| |expandLog| |cache|
+ |writable?| |makeFloatFunction| |lazyPrem| |concat|
+ |curveColorPalette| |algintegrate| |discriminantEuclidean|
+ |triangulate| |cos2sec| |readable?| |unaryFunction| |pquo| |var1Steps|
+ |palgintegrate| |semiDiscriminantEuclidean| |solveInField| |cosh2sech|
+ |exists?| |compiledFunction| |prem| |union| |shift| |generate|
+ |var2Steps| |operation| |palginfieldint| |chainSubResultants|
+ |wronskianMatrix| |cot2trig| |zeroOf| |extension| |corrPoly|
+ |supRittWu?| |category| |space| |bitLength| |schema|
+ |variationOfParameters| |coth2trigh| |rootsOf| |shallowExpand|
+ |lifting| |RittWuCompare| |rank| |domain| |incrementBy| |tubePoints|
+ |bitCoef| |resultantReduit| |result| |factors| |csc2sin| |makeSketch|
+ |deepExpand| |lifting1| |mainMonomials| |expand| |length| |package|
+ |tubeRadius| |bitTruth| |resultantReduitEuclidean| |nthFactor|
+ |csch2sinh| |inrootof| |clearFortranOutputStack| |exprex|
+ |mainCoefficients| |filterWhile| |scripts| |weight| |contains?|
+ |semiResultantReduitEuclidean| |nthExpon| |sec2cos| |droot|
+ |showFortranOutputStack| |coerceL| |leastMonomial| |filterUntil|
+ |makeVariable| |inf| |divide| |overlap| |sech2cosh| |iroot|
+ |topFortranOutputStack| |coerceS| |mainMonomial| |select|
+ |finiteBound| |qinterval| |Lazard| |hcrf| |sin2csc| |unknown| |size?|
+ |setFormula!| |frobenius| |quasiMonic?| |sortConstraints| |interval|
+ |Lazard2| |hclf| |sinh2csch| |eq?| |linkToFortran| |computePowers|
+ |monic?| |sumOfSquares| |unit?| |nextsousResultant2| |lexico|
+ |tan2trig| |doublyTransitive?| |setLegalFortranSourceExtensions| |pow|
+ |deepestInitial| |splitLinear| |associates?| |resultantnaif|
+ |OMmakeConn| |tanh2trigh| |knownInfBasis| |fracPart| |An|
+ |iteratedInitials| |nil| |simpleBounds?| |unitCanonical|
+ |resultantEuclideannaif| |OMcloseConn| |tan2cot| |rootSplit|
+ |polyPart| |UnVectorise| |deepestTail| |linearMatrix| |unitNormal|
+ |semiResultantEuclideannaif| |OMconnInDevice| |tanh2coth| |ratDenom|
+ |rules| |fullPartialFraction| |Vectorise| |head| |makeRecord| |failed|
+ |linearPart| |lfextendedint| |pdct| |OMconnOutDevice| |cot2tan|
+ |ratPoly| |primeFrobenius| |setPoly| |mdeg| |nonLinearPart|
+ |lflimitedint| |powers| |OMconnectTCP| |coth2tanh| |rootPower|
+ |discreteLog| |exponent| |mvar| |typeList| |quadratic?| |lfinfieldint|
+ |dilog| |partition| |OMbindTCP| |removeCosSq| |rootProduct|
+ |decreasePrecision| |exQuo| |relativeApprox| |changeNameToObjf|
+ |parametersOf| |lfintegrate| |complete| |sin| |point| |OMopenFile|
+ |removeSinSq| |rootSimp| |increasePrecision| |moebius| |rootOf|
+ |fortranTypeOf| |optAttributes| |lfextlimint| |pole?| |cos|
+ |OMopenString| |removeCoshSq| |rootKerSimp| |bits| |rightRecip|
+ |allRootsOf| |empty| |Nul| |BasicMethod| |listBranches| |tan|
+ |OMclose| |removeSinhSq| |leftRank| |unitNormalize| |leftRecip|
+ |definingPolynomial| |exponents| |PollardSmallFactor| |triangular?|
+ |cot| |series| |OMsetEncoding| |expandTrigProducts| |unit| |leftPower|
+ |positive?| |symbol| |iisqrt2| |showTheFTable|
+ |rewriteIdealWithRemainder| |OMputApp| |fintegrate| |sec| |flagFactor|
+ |rightPower| |negative?| |qelt| |expression| |iisqrt3|
+ |clearTheFTable| |rewriteIdealWithHeadRemainder| |OMputAtp|
+ |coefficient| |csc| |sqfrFactor| |derivationCoordinates| |zero?|
+ |integer| |iiexp| |fTable| |remainder| |OMputAttr| |coHeight| |asin|
+ |primeFactor| |one?| |augment| |xRange| |palgint0| |li|
+ |headRemainder| |OMputBind| |extendIfCan| |min| |acos| |nthFlag|
+ |splitSquarefree| |lastSubResultant| |yRange| |powerSum| |palgextint0|
+ |categories| |roughUnitIdeal?| |OMputBVar| |algebraicVariables| |atan|
+ |level| |nthExponent| |normalDenom| |lastSubResultantElseSplit|
+ |zRange| |elementary| |palglimint0| |roughEqualIdeals?| |OMputError|
+ |zeroSetSplitIntoTriangularSystems| |acot| |irreducibleFactor| |map!|
+ |totalfract| |invertibleSet| |alternating| |palgRDE0| |roughSubIdeal?|
+ |OMputObject| |zeroSetSplit| |asec| |qsetelt!| |pushdterm|
+ |invertible?| |cyclic| |palgLODE0| |roughBase?| |OMputEndApp|
+ |reduceByQuasiMonic| |acsc| |rationalPoint?| |random| |pushucoef|
+ |invertibleElseSplit?| |dihedral| |chineseRemainder| |trivialIdeal?|
+ |OMputEndAtp| |collectQuasiMonic| |sinh| |absolutelyIrreducible?|
+ |keys| |pushuconst| |purelyAlgebraicLeadingMonomial?| |tower| |cap|
+ |divisors| |collectUpper| |OMputEndAttr| |removeZero| |cosh| |genus|
+ |numberOfMonomials| |algebraicCoefficients?| |cup| |OMputEndBind|
+ |initiallyReduce| |tanh| |getZechTable| |members|
+ |purelyTranscendental?| |true| |wreath| |factorList| |setMaxPoints3D|
+ |OMputEndBVar| |headReduce| |coth| |createZechTable| |multiset|
+ |purelyAlgebraic?| |acsch| |and| |SFunction| |listConjugateBases|
+ |maxPoints3D| |OMputEndError| |stronglyReduce| |sech|
+ |createMultiplicationTable| |mergeDifference| |prepareSubResAlgo|
+ |skewSFunction| |matrixGcd| |setMinPoints3D| |OMputEndObject|
+ |rewriteSetWithReduction| |debug| |csch| |createMultiplicationMatrix|
+ |brace| |complexNumeric| |cyclotomicDecomposition| |divideIfCan!|
+ |minPoints3D| |OMputInteger| |autoReduced?| D |asinh|
+ |createLowComplexityTable| |directSum| |exponential1|
+ |cyclotomicFactorization| |leastPower| |tValues| |OMputFloat|
+ |initiallyReduced?| |acosh| |box| |createLowComplexityNormalBasis|
+ |solveLinearPolynomialEquationByFractions| |chiSquare1| |kernels|
+ |rangeIsFinite| |idealiser| |tRange| |OMputVariable| |headReduced?|
+ |atanh| |representationType| |hasSolution?| |exponential| |univariate|
+ |functionIsContinuousAtEndPoints| |idealiserMatrix| |plot| |acoth|
+ |createPrimitiveElement| |parts| |value| |linSolve| |chiSquare|
+ |listOfLists| |functionIsOscillatory| |moduleSum| |pointPlot|
+ |restorePrecision| |trim| |asech| ** |tableForDiscreteLogarithm|
+ |LyndonWordsList| |factorFraction| |tanSum| |changeName|
+ |mapUnivariate| |calcRanges| |antiCommutator| |split|
+ |factorsOfCyclicGroupSize| |LyndonWordsList1| |componentUpperBound|
+ |tanAn| |factor| |exprHasWeightCosWXorSinWX| |mapUnivariateIfCan|
+ |fixPredicate| |commutator| |upperCase!| |multiple| |subst|
+ |sizeMultiplication| |lyndonIfCan| |blue| |tanNa|
+ |exprHasAlgebraicWeight| |sqrt| |datalist| EQ |mapMatrixIfCan|
+ |patternMatch| |associator| |upperCase| |applyQuote|
+ |getMultiplicationMatrix| |lyndon| |green| |condition| |initTable!|
+ |PDESolve| |var1StepsDefault| |real| |exprHasLogarithmicWeights|
+ |mapBivariate| |patternMatchTimes| |complexEigenvalues| |lowerCase!|
+ |complex| |getMultiplicationTable| |lyndon?| |red| |printInfo!|
+ |leftFactor| |var2StepsDefault| |imag| |combineFeatureCompatibility|
+ |fullDisplay| |bernoulli| |complexEigenvectors| |lowerCase| |print|
+ |primitive?| |numberOfComputedEntries| |whitePoint| |startStats!|
+ |rightFactorCandidate| |tubePointsDefault| |directProduct|
+ |sparsityIF| |relationsIdeal| |chebyshevT| |normalizedAssociate|
+ |KrullNumber| |ruleset| |argumentList!| |numberOfIrreduciblePoly|
+ |rst| |uniform| |printStats!| |measure| |tubeRadiusDefault|
+ |stiffnessAndStabilityFactor| |saturate| |chebyshevU| |normalize|
+ |numberOfVariables| |third| |endSubProgram| |numberOfPrimitivePoly|
+ |frst| |binomial| |clearTable!| |coerceImages| |dimension| |destruct|
+ |stiffnessAndStabilityOfODEIF| |matrix| |groebner?| |cyclotomic|
+ |outputArgs| |algebraicDecompose| |numberOfNormalPoly| |lazyEvaluate|
+ |poisson| |objects| |usingTable?| |fixedPoints| |crest|
+ |LowTriBddDenomInv| |systemSizeIF| |groebnerIdeal| |euler|
+ |normInvertible?| |transcendentalDecompose| |suchThat|
+ |createIrreduciblePoly| |lazy?| |geometric| |base| |printingInfo?|
+ |bright| |odd?| |cfirst| |expenseOfEvaluationIF| |ideal|
+ |fixedDivisor| |normFactors| |internalDecompose| |createPrimitivePoly|
+ |explicitlyEmpty?| |ridHack1| |makingStats?| |even?| |sts2stst|
+ |accuracyIF| |leadingIdeal| |npcoef| |laguerre| |cyclicEntries|
+ |decompose| |createNormalPoly| |explicitEntries?| |interpolate|
+ |extractIfCan| |numberOfCycles| |clikeUniv| |monomial|
+ |intermediateResultsIF| |backOldPos| |listexp| |legendre| |cyclicCopy|
+ |upDateBranches| |createNormalPrimitivePoly| |matrixDimensions|
+ |insert!| |nullSpace| |cyclePartition| |weierstrass| |multivariate|
+ |subscriptedVariables| |generalPosition| |dmpToHdmp|
+ |characteristicPolynomial| |preprocess| |createPrimitiveNormalPoly|
+ |matrixConcat3D| |interpretString| |nullity| |coerceListOfPairs| |qqq|
+ |variables| |central?| |quotient| |hdmpToDmp| |realEigenvalues|
+ |internalZeroSetSplit| |nextIrreduciblePoly| |setelt!|
+ |stripCommentsAndBlanks| |rowEchelon| |coercePreimagesImages|
+ |integralBasis| |insert| |elliptic?| |zeroDim?| |pToHdmp|
+ |realEigenvectors| |internalAugment| |nextPrimitivePoly| |delete|
+ |identityMatrix| |setPrologue!| |column| |listRepresentation|
+ |localIntegralBasis| |doubleResultant| |inRadical?| |hdmpToP|
+ |halfExtendedResultant2| |possiblyInfinite?| |nextNormalPoly|
+ |zeroMatrix| |setTex!| |row| |permanent| |qualifier| |distdfact| |in?|
+ |dmpToP| |halfExtendedResultant1| |explicitlyFinite?|
+ |nextNormalPrimitivePoly| |compile| |mappingAst| |setEpilogue!|
+ |maxColIndex| |cycles| |mainExpression| |separateDegrees| |element?|
+ |pToDmp| |extendedResultant| |nextItem| |nextPrimitiveNormalPoly|
+ |nullary| |prologue| |minColIndex| |cycle| |changeWeightLevel|
+ |taylor| |trace2PowMod| |zeroDimPrime?| |sylvesterSequence|
+ |subResultantsChain| |infiniteProduct| |leastAffineMultiple|
+ |fixedPoint| |epilogue| |maxRowIndex| |initializeGroupForWordProblem|
+ |characteristicSerie| |laurent| |tracePowMod| |zeroDimPrimary?|
+ |sturmSequence| |delta| |lazyPseudoQuotient| |evenInfiniteProduct|
+ |reducedQPowers| |recur| |endOfFile?| |minRowIndex| |movedPoints|
+ |characteristicSet| |puiseux| |irreducible?| |primaryDecomp|
+ |boundOfCauchy| |lazyPseudoRemainder| |oddInfiniteProduct| |linear|
+ |eval| |rootOfIrreduciblePoly| |const| |readIfCan!| |antisymmetric?|
+ |wordInGenerators| |medialSet| |decimal| |contract|
+ |sturmVariationsOf| |bernoulliB| |generalInfiniteProduct| |property|
+ |write!| |curry| |readLineIfCan!| |symmetric?|
+ |wordInStrongGenerators| |Hausdorff| |inv| |innerint| |leadingSupport|
+ |lazyVariations| |eulerE| |showAll?| |polynomial| |read!| |diag|
+ |readLine!| |diagonal?| |orbits| |Frobenius| |ground?|
+ |exteriorDifferential| |shrinkable| |content| |numericIfCan|
+ |showAllElements| |iomode| |curryRight| |writeLine!| |square?| |orbit|
+ |transcendenceDegree| |ground| |totalDifferential| |physicalLength!|
+ |entry| |totalDegree| |complexNumericIfCan| |delay| |units| |close!|
+ |curryLeft| |sign| |rectangularMatrix| |permutationGroup|
+ |extensionDegree| |leadingMonomial| |homogeneous?| |physicalLength|
+ |minimumDegree| |FormatArabic| |findCycle| |reopen!| |log10|
+ |constantRight| |nonQsign| |characteristic| |wordsForStrongGenerators|
+ |inGroundField?| |leadingCoefficient| |leadingBasisTerm|
+ |flexibleArray| |lambda| |monomials| |ScanArabic| |repeating?|
+ |bitand| |rightUnit| |constantLeft| |round| |strongGenerators|
+ |transcendent?| |primitiveMonomials| |ignore?| |elseBranch| |isPlus|
+ |FormatRoman| |repeating| |bitior| |leftUnit| |twist| |fractionPart|
+ |generators| |algebraic?| |reductum| |computeInt| |thenBranch|
+ |isTimes| |ScanRoman| |recip| |rightMinimalPolynomial| |setsubMatrix!|
+ |wholePart| |bivariateSLPEBR| |sh| |checkForZero| |generalizedInverse|
+ |isExpt| |ScanFloatIgnoreSpaces| |integers| |code| |initial|
+ |leftMinimalPolynomial| |subMatrix| |floor|
+ |solveLinearPolynomialEquationByRecursion| |mirror| |logGamma|
+ |imports| |isPower| |ScanFloatIgnoreSpacesIfCan| |oddintegers|
+ |associatorDependence| |swapColumns!| |ceiling| |factorByRecursion|
+ |monomial?| |hypergeometric0F1| |sequence| |rroot|
+ |numericalIntegration| |int| |lieAlgebra?| |swapRows!| |norm|
+ |factorSquareFreeByRecursion| |rquo| |rotatez| |output| |iterationVar|
+ |qroot| |rk4| |mapmult| |jordanAlgebra?| |vertConcat| |mightHaveRoots|
+ |randomR| |lquo| |rotatey| |readBytes!| |froot| |rk4a| |deriv|
+ |noncommutativeJordanAlgebra?| |horizConcat| |refine|
+ |factorSFBRlcUnit| |options| |mindegTerm| |rotatex| |readByteIfCan!|
+ |nthr| |rk4qc| |gderiv| |jordanAdmissible?| |comp| |squareTop|
+ |middle| |charthRoot| |product| |identity| |setFieldInfo| |port|
+ |rk4f| |compose| |lieAdmissible?| |elRow1!| |roman| |conditionP|
+ |LiePolyIfCan| |dictionary| |pol| |firstUncouplingMatrix| |aromberg|
+ |addiag| |cn| |jacobiIdentity?| |elRow2!| |recoverAfterFail|
+ |solveLinearPolynomialEquation| |string| |trunc| |dioSolve| |xn|
+ |integral| |asimpson| |lazyIntegrate| |powerAssociative?| |elColumn2!|
+ |showTheRoutinesTable| |factorSquareFreePolynomial| |degree| |newLine|
+ |dAndcExp| |primitiveElement| |atrapezoidal| |nlde| |dom|
+ |alternative?| |fractionFreeGauss!| |deleteRoutine!|
+ |factorPolynomial| |quasiRegular| |copies| |repSq| |nextPrime|
+ |romberg| |powern| |flexible?| |invertIfCan| |getExplanations|
+ |squareFreePolynomial| |quasiRegular?| |sayLength| |expPot|
+ |prevPrime| |simpson| |mapdiv| |rightAlternative?| |copy!|
+ |getMeasure| |gcdPolynomial| |constant?| |qPot| |primes| |trapezoidal|
+ |lazyGintegrate| |leftAlternative?| |plus!| |changeMeasure| |torsion?|
+ |mindeg| |iidsum| |lookup| |selectsecond| |rombergo| |power|
+ |antiAssociative?| |minus!| |changeThreshhold| |torsionIfCan| |maxdeg|
+ |iidprod| |normal?| |selectfirst| |simpsono| |sincos| |title|
+ |associative?| |nil| |infinite| |arbitraryExponent| |approximate|
+ |complex| |shallowMutable| |canonical| |noetherian| |central|
+ |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
+ |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
+ |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
+ |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 118cb525..ec090c96 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5182 +1,5182 @@
-(3168425 . 3432506650)
-((-1848 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-1846 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4147 ((|#2| $ (-538) |#2|) NIL) ((|#2| $ (-1198 (-538)) |#2|) 34)) (-2377 (($ $) 59)) (-4202 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3778 (((-538) (-1 (-112) |#2|) $) 22) (((-538) |#2| $) NIL) (((-538) |#2| $ (-538)) 73)) (-2068 (((-622 |#2|) $) 13)) (-3872 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2072 (($ (-1 |#2| |#2|) $) 29)) (-4318 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2382 (($ |#2| $ (-538)) NIL) (($ $ $ (-538)) 50)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2070 (((-112) (-1 (-112) |#2|) $) 21)) (-4159 ((|#2| $ (-538) |#2|) NIL) ((|#2| $ (-538)) NIL) (($ $ (-1198 (-538))) 49)) (-2383 (($ $ (-538)) 56) (($ $ (-1198 (-538))) 55)) (-2069 (((-751) (-1 (-112) |#2|) $) 26) (((-751) |#2| $) NIL)) (-1847 (($ $ $ (-538)) 52)) (-3759 (($ $) 51)) (-3884 (($ (-622 |#2|)) 53)) (-4161 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-622 $)) 62)) (-4317 (((-840) $) 69)) (-2071 (((-112) (-1 (-112) |#2|) $) 20)) (-3387 (((-112) $ $) 72)) (-3018 (((-112) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -3387 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2377 (|#1| |#1|)) (-15 -1847 (|#1| |#1| |#1| (-538))) (-15 -1848 ((-112) |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4147 (|#2| |#1| (-1198 (-538)) |#2|)) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4147 (|#2| |#1| (-538) |#2|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2068 ((-622 |#2|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1|))) (-19 |#2|) (-1185)) (T -18))
+(3178548 . 3432784514)
+((-3237 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-3218 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1851 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-1199 (-552)) |#2|) 34)) (-1883 (($ $) 59)) (-2163 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2483 (((-552) (-1 (-112) |#2|) $) 22) (((-552) |#2| $) NIL) (((-552) |#2| $ (-552)) 73)) (-3799 (((-625 |#2|) $) 13)) (-3280 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3683 (($ (-1 |#2| |#2|) $) 29)) (-1996 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3994 (($ |#2| $ (-552)) NIL) (($ $ $ (-552)) 50)) (-2380 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-1888 (((-112) (-1 (-112) |#2|) $) 21)) (-2154 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL) (($ $ (-1199 (-552))) 49)) (-4001 (($ $ (-552)) 56) (($ $ (-1199 (-552))) 55)) (-2840 (((-751) (-1 (-112) |#2|) $) 26) (((-751) |#2| $) NIL)) (-3228 (($ $ $ (-552)) 52)) (-1871 (($ $) 51)) (-1695 (($ (-625 |#2|)) 53)) (-3402 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-625 $)) 62)) (-1683 (((-839) $) 69)) (-1900 (((-112) (-1 (-112) |#2|) $) 20)) (-2281 (((-112) $ $) 72)) (-2307 (((-112) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2281 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1883 (|#1| |#1|)) (-15 -3228 (|#1| |#1| |#1| (-552))) (-15 -3237 ((-112) |#1|)) (-15 -3280 (|#1| |#1| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1851 (|#2| |#1| (-1199 (-552)) |#2|)) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -1851 (|#2| |#1| (-552) |#2|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -3799 ((-625 |#2|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1871 (|#1| |#1|))) (-19 |#2|) (-1186)) (T -18))
NIL
-(-10 -8 (-15 -3387 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2377 (|#1| |#1|)) (-15 -1847 (|#1| |#1| |#1| (-538))) (-15 -1848 ((-112) |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4147 (|#2| |#1| (-1198 (-538)) |#2|)) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4147 (|#2| |#1| (-538) |#2|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2068 ((-622 |#2|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-3778 (((-538) (-1 (-112) |#1|) $) 97) (((-538) |#1| $) 96 (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) 95 (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 70)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) 85 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 82 (|has| |#1| (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-19 |#1|) (-138) (-1185)) (T -19))
+(-10 -8 (-15 -2281 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1883 (|#1| |#1|)) (-15 -3228 (|#1| |#1| |#1| (-552))) (-15 -3237 ((-112) |#1|)) (-15 -3280 (|#1| |#1| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1851 (|#2| |#1| (-1199 (-552)) |#2|)) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -1851 (|#2| |#1| (-552) |#2|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -3799 ((-625 |#2|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1871 (|#1| |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-2483 (((-552) (-1 (-112) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 70)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 83 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) 85 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 82 (|has| |#1| (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-19 |#1|) (-138) (-1186)) (T -19))
NIL
-(-13 (-367 |t#1|) (-10 -7 (-6 -4354)))
-(((-34) . T) ((-101) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-367 |#1|) . T) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1074) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-1185) . T))
-((-1368 (((-3 $ "failed") $ $) 12)) (-4197 (($ $) NIL) (($ $ $) 9)) (* (($ (-895) $) NIL) (($ (-751) $) 16) (($ (-538) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -1368 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) (-21)) (T -20))
+(-13 (-368 |t#1|) (-10 -7 (-6 -4354)))
+(((-34) . T) ((-101) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1073) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-1186) . T))
+((-2077 (((-3 $ "failed") $ $) 12)) (-2393 (($ $) NIL) (($ $ $) 9)) (* (($ (-897) $) NIL) (($ (-751) $) 16) (($ (-552) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2077 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -1368 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20)))
+(-10 -8 (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2077 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20)))
(((-21) (-138)) (T -21))
-((-4197 (*1 *1 *1) (-4 *1 (-21))) (-4197 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-538)))))
-(-13 (-130) (-10 -8 (-15 -4197 ($ $)) (-15 -4197 ($ $ $)) (-15 * ($ (-538) $))))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-3539 (((-112) $) 10)) (-3896 (($) 15)) (* (($ (-895) $) 14) (($ (-751) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 -3896 (|#1|)) (-15 * (|#1| (-895) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 -3896 (|#1|)) (-15 * (|#1| (-895) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15)))
+((-2393 (*1 *1 *1) (-4 *1 (-21))) (-2393 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-552)))))
+(-13 (-130) (-10 -8 (-15 -2393 ($ $)) (-15 -2393 ($ $ $)) (-15 * ($ (-552) $))))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-3641 (((-112) $) 10)) (-3101 (($) 15)) (* (($ (-897) $) 14) (($ (-751) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 -3101 (|#1|)) (-15 * (|#1| (-897) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 -3101 (|#1|)) (-15 * (|#1| (-897) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15)))
(((-23) (-138)) (T -23))
-((-2991 (*1 *1) (-4 *1 (-23))) (-3896 (*1 *1) (-4 *1 (-23))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-751)))))
-(-13 (-25) (-10 -8 (-15 (-2991) ($) -4311) (-15 -3896 ($) -4311) (-15 -3539 ((-112) $)) (-15 * ($ (-751) $))))
-(((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((* (($ (-895) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-895) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-895) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13)))
+((-2089 (*1 *1) (-4 *1 (-23))) (-3101 (*1 *1) (-4 *1 (-23))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-751)))))
+(-13 (-25) (-10 -8 (-15 (-2089) ($) -1426) (-15 -3101 ($) -1426) (-15 -3641 ((-112) $)) (-15 * ($ (-751) $))))
+(((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((* (($ (-897) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-897) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-897) |#1|)))
+((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13)))
(((-25) (-138)) (T -25))
-((-4199 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-895)))))
-(-13 (-1074) (-10 -8 (-15 -4199 ($ $ $)) (-15 * ($ (-895) $))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-1667 (((-622 $) (-922 $)) 29) (((-622 $) (-1143 $)) 16) (((-622 $) (-1143 $) (-1149)) 20)) (-1265 (($ (-922 $)) 27) (($ (-1143 $)) 11) (($ (-1143 $) (-1149)) 54)) (-1266 (((-622 $) (-922 $)) 30) (((-622 $) (-1143 $)) 18) (((-622 $) (-1143 $) (-1149)) 19)) (-3534 (($ (-922 $)) 28) (($ (-1143 $)) 13) (($ (-1143 $) (-1149)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -1667 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1667 ((-622 |#1|) (-1143 |#1|))) (-15 -1667 ((-622 |#1|) (-922 |#1|))) (-15 -1265 (|#1| (-1143 |#1|) (-1149))) (-15 -1265 (|#1| (-1143 |#1|))) (-15 -1265 (|#1| (-922 |#1|))) (-15 -1266 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1266 ((-622 |#1|) (-1143 |#1|))) (-15 -1266 ((-622 |#1|) (-922 |#1|))) (-15 -3534 (|#1| (-1143 |#1|) (-1149))) (-15 -3534 (|#1| (-1143 |#1|))) (-15 -3534 (|#1| (-922 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -1667 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1667 ((-622 |#1|) (-1143 |#1|))) (-15 -1667 ((-622 |#1|) (-922 |#1|))) (-15 -1265 (|#1| (-1143 |#1|) (-1149))) (-15 -1265 (|#1| (-1143 |#1|))) (-15 -1265 (|#1| (-922 |#1|))) (-15 -1266 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1266 ((-622 |#1|) (-1143 |#1|))) (-15 -1266 ((-622 |#1|) (-922 |#1|))) (-15 -3534 (|#1| (-1143 |#1|) (-1149))) (-15 -3534 (|#1| (-1143 |#1|))) (-15 -3534 (|#1| (-922 |#1|))))
-((-2898 (((-112) $ $) 7)) (-1667 (((-622 $) (-922 $)) 77) (((-622 $) (-1143 $)) 76) (((-622 $) (-1143 $) (-1149)) 75)) (-1265 (($ (-922 $)) 80) (($ (-1143 $)) 79) (($ (-1143 $) (-1149)) 78)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-3370 (($ $) 89)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-1266 (((-622 $) (-922 $)) 83) (((-622 $) (-1143 $)) 82) (((-622 $) (-1143 $) (-1149)) 81)) (-3534 (($ (-922 $)) 86) (($ (-1143 $)) 85) (($ (-1143 $) (-1149)) 84)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 88)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66) (($ $ (-402 (-538))) 87)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64)))
+((-2382 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-897)))))
+(-13 (-1073) (-10 -8 (-15 -2382 ($ $ $)) (-15 * ($ (-897) $))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1993 (((-625 $) (-928 $)) 29) (((-625 $) (-1145 $)) 16) (((-625 $) (-1145 $) (-1149)) 20)) (-3428 (($ (-928 $)) 27) (($ (-1145 $)) 11) (($ (-1145 $) (-1149)) 54)) (-3438 (((-625 $) (-928 $)) 30) (((-625 $) (-1145 $)) 18) (((-625 $) (-1145 $) (-1149)) 19)) (-3588 (($ (-928 $)) 28) (($ (-1145 $)) 13) (($ (-1145 $) (-1149)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -1993 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -1993 ((-625 |#1|) (-1145 |#1|))) (-15 -1993 ((-625 |#1|) (-928 |#1|))) (-15 -3428 (|#1| (-1145 |#1|) (-1149))) (-15 -3428 (|#1| (-1145 |#1|))) (-15 -3428 (|#1| (-928 |#1|))) (-15 -3438 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -3438 ((-625 |#1|) (-1145 |#1|))) (-15 -3438 ((-625 |#1|) (-928 |#1|))) (-15 -3588 (|#1| (-1145 |#1|) (-1149))) (-15 -3588 (|#1| (-1145 |#1|))) (-15 -3588 (|#1| (-928 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -1993 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -1993 ((-625 |#1|) (-1145 |#1|))) (-15 -1993 ((-625 |#1|) (-928 |#1|))) (-15 -3428 (|#1| (-1145 |#1|) (-1149))) (-15 -3428 (|#1| (-1145 |#1|))) (-15 -3428 (|#1| (-928 |#1|))) (-15 -3438 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -3438 ((-625 |#1|) (-1145 |#1|))) (-15 -3438 ((-625 |#1|) (-928 |#1|))) (-15 -3588 (|#1| (-1145 |#1|) (-1149))) (-15 -3588 (|#1| (-1145 |#1|))) (-15 -3588 (|#1| (-928 |#1|))))
+((-1671 (((-112) $ $) 7)) (-1993 (((-625 $) (-928 $)) 77) (((-625 $) (-1145 $)) 76) (((-625 $) (-1145 $) (-1149)) 75)) (-3428 (($ (-928 $)) 80) (($ (-1145 $)) 79) (($ (-1145 $) (-1149)) 78)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-3837 (($ $) 89)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-3438 (((-625 $) (-928 $)) 83) (((-625 $) (-1145 $)) 82) (((-625 $) (-1145 $) (-1149)) 81)) (-3588 (($ (-928 $)) 86) (($ (-1145 $)) 85) (($ (-1145 $) (-1149)) 84)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 88)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66) (($ $ (-402 (-552))) 87)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64)))
(((-27) (-138)) (T -27))
-((-3534 (*1 *1 *2) (-12 (-5 *2 (-922 *1)) (-4 *1 (-27)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-27)))) (-3534 (*1 *1 *2 *3) (-12 (-5 *2 (-1143 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) (-1266 (*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) (-1266 (*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) (-1266 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) (-1265 (*1 *1 *2) (-12 (-5 *2 (-922 *1)) (-4 *1 (-27)))) (-1265 (*1 *1 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-27)))) (-1265 (*1 *1 *2 *3) (-12 (-5 *2 (-1143 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) (-1667 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-622 *1)))))
-(-13 (-358) (-978) (-10 -8 (-15 -3534 ($ (-922 $))) (-15 -3534 ($ (-1143 $))) (-15 -3534 ($ (-1143 $) (-1149))) (-15 -1266 ((-622 $) (-922 $))) (-15 -1266 ((-622 $) (-1143 $))) (-15 -1266 ((-622 $) (-1143 $) (-1149))) (-15 -1265 ($ (-922 $))) (-15 -1265 ($ (-1143 $))) (-15 -1265 ($ (-1143 $) (-1149))) (-15 -1667 ((-622 $) (-922 $))) (-15 -1667 ((-622 $) (-1143 $))) (-15 -1667 ((-622 $) (-1143 $) (-1149)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-978) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T))
-((-1667 (((-622 $) (-922 $)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-1143 $) (-1149)) 50) (((-622 $) $) 19) (((-622 $) $ (-1149)) 41)) (-1265 (($ (-922 $)) NIL) (($ (-1143 $)) NIL) (($ (-1143 $) (-1149)) 52) (($ $) 17) (($ $ (-1149)) 37)) (-1266 (((-622 $) (-922 $)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-1143 $) (-1149)) 48) (((-622 $) $) 15) (((-622 $) $ (-1149)) 43)) (-3534 (($ (-922 $)) NIL) (($ (-1143 $)) NIL) (($ (-1143 $) (-1149)) NIL) (($ $) 12) (($ $ (-1149)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -1667 ((-622 |#1|) |#1| (-1149))) (-15 -1265 (|#1| |#1| (-1149))) (-15 -1667 ((-622 |#1|) |#1|)) (-15 -1265 (|#1| |#1|)) (-15 -1266 ((-622 |#1|) |#1| (-1149))) (-15 -3534 (|#1| |#1| (-1149))) (-15 -1266 ((-622 |#1|) |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -1667 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1667 ((-622 |#1|) (-1143 |#1|))) (-15 -1667 ((-622 |#1|) (-922 |#1|))) (-15 -1265 (|#1| (-1143 |#1|) (-1149))) (-15 -1265 (|#1| (-1143 |#1|))) (-15 -1265 (|#1| (-922 |#1|))) (-15 -1266 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1266 ((-622 |#1|) (-1143 |#1|))) (-15 -1266 ((-622 |#1|) (-922 |#1|))) (-15 -3534 (|#1| (-1143 |#1|) (-1149))) (-15 -3534 (|#1| (-1143 |#1|))) (-15 -3534 (|#1| (-922 |#1|)))) (-29 |#2|) (-13 (-827) (-545))) (T -28))
-NIL
-(-10 -8 (-15 -1667 ((-622 |#1|) |#1| (-1149))) (-15 -1265 (|#1| |#1| (-1149))) (-15 -1667 ((-622 |#1|) |#1|)) (-15 -1265 (|#1| |#1|)) (-15 -1266 ((-622 |#1|) |#1| (-1149))) (-15 -3534 (|#1| |#1| (-1149))) (-15 -1266 ((-622 |#1|) |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -1667 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1667 ((-622 |#1|) (-1143 |#1|))) (-15 -1667 ((-622 |#1|) (-922 |#1|))) (-15 -1265 (|#1| (-1143 |#1|) (-1149))) (-15 -1265 (|#1| (-1143 |#1|))) (-15 -1265 (|#1| (-922 |#1|))) (-15 -1266 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1266 ((-622 |#1|) (-1143 |#1|))) (-15 -1266 ((-622 |#1|) (-922 |#1|))) (-15 -3534 (|#1| (-1143 |#1|) (-1149))) (-15 -3534 (|#1| (-1143 |#1|))) (-15 -3534 (|#1| (-922 |#1|))))
-((-2898 (((-112) $ $) 7)) (-1667 (((-622 $) (-922 $)) 77) (((-622 $) (-1143 $)) 76) (((-622 $) (-1143 $) (-1149)) 75) (((-622 $) $) 123) (((-622 $) $ (-1149)) 121)) (-1265 (($ (-922 $)) 80) (($ (-1143 $)) 79) (($ (-1143 $) (-1149)) 78) (($ $) 124) (($ $ (-1149)) 122)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1149)) $) 198)) (-3419 (((-402 (-1143 $)) $ (-595 $)) 230 (|has| |#1| (-545)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1660 (((-622 (-595 $)) $) 161)) (-1368 (((-3 $ "failed") $ $) 19)) (-1664 (($ $ (-622 (-595 $)) (-622 $)) 151) (($ $ (-622 (-288 $))) 150) (($ $ (-288 $)) 149)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-3370 (($ $) 89)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-1266 (((-622 $) (-922 $)) 83) (((-622 $) (-1143 $)) 82) (((-622 $) (-1143 $) (-1149)) 81) (((-622 $) $) 127) (((-622 $) $ (-1149)) 125)) (-3534 (($ (-922 $)) 86) (($ (-1143 $)) 85) (($ (-1143 $) (-1149)) 84) (($ $) 128) (($ $ (-1149)) 126)) (-3508 (((-3 (-922 |#1|) #1="failed") $) 248 (|has| |#1| (-1025))) (((-3 (-402 (-922 |#1|)) #1#) $) 232 (|has| |#1| (-545))) (((-3 |#1| #1#) $) 194) (((-3 (-538) #1#) $) 192 (|has| |#1| (-1014 (-538)))) (((-3 (-1149) #1#) $) 185) (((-3 (-595 $) #1#) $) 136) (((-3 (-402 (-538)) #1#) $) 120 (-3891 (-12 (|has| |#1| (-1014 (-538))) (|has| |#1| (-545))) (|has| |#1| (-1014 (-402 (-538))))))) (-3507 (((-922 |#1|) $) 249 (|has| |#1| (-1025))) (((-402 (-922 |#1|)) $) 233 (|has| |#1| (-545))) ((|#1| $) 195) (((-538) $) 191 (|has| |#1| (-1014 (-538)))) (((-1149) $) 186) (((-595 $) $) 137) (((-402 (-538)) $) 119 (-3891 (-12 (|has| |#1| (-1014 (-538))) (|has| |#1| (-545))) (|has| |#1| (-1014 (-402 (-538))))))) (-2894 (($ $ $) 53)) (-2362 (((-669 |#1|) (-669 $)) 238 (|has| |#1| (-1025))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 237 (|has| |#1| (-1025))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 118 (-3891 (-3191 (|has| |#1| (-1025)) (|has| |#1| (-621 (-538)))) (-3191 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))) (((-669 (-538)) (-669 $)) 117 (-3891 (-3191 (|has| |#1| (-1025)) (|has| |#1| (-621 (-538)))) (-3191 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 190 (|has| |#1| (-862 (-373)))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 189 (|has| |#1| (-862 (-538))))) (-2903 (($ (-622 $)) 155) (($ $) 154)) (-1659 (((-622 (-113)) $) 162)) (-3380 (((-113) (-113)) 163)) (-2502 (((-112) $) 30)) (-3006 (((-112) $) 183 (|has| $ (-1014 (-538))))) (-3329 (($ $) 215 (|has| |#1| (-1025)))) (-3331 (((-1098 |#1| (-595 $)) $) 214 (|has| |#1| (-1025)))) (-3344 (($ $ (-538)) 88)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 50)) (-1657 (((-1143 $) (-595 $)) 180 (|has| $ (-1025)))) (-3677 (($ $ $) 134)) (-3678 (($ $ $) 133)) (-4318 (($ (-1 $ $) (-595 $)) 169)) (-1662 (((-3 (-595 $) "failed") $) 159)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-1661 (((-622 (-595 $)) $) 160)) (-2317 (($ (-113) (-622 $)) 168) (($ (-113) $) 167)) (-3156 (((-3 (-622 $) #3="failed") $) 209 (|has| |#1| (-1085)))) (-3158 (((-3 (-2 (|:| |val| $) (|:| -2493 (-538))) #3#) $) 218 (|has| |#1| (-1025)))) (-3155 (((-3 (-622 $) #3#) $) 211 (|has| |#1| (-25)))) (-1913 (((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 $))) #3#) $) 212 (|has| |#1| (-25)))) (-3157 (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $ (-1149)) 217 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $ (-113)) 216 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $) 210 (|has| |#1| (-1085)))) (-2964 (((-112) $ (-1149)) 166) (((-112) $ (-113)) 165)) (-2734 (($ $) 67)) (-2933 (((-751) $) 158)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 196)) (-1915 ((|#1| $) 197)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1658 (((-112) $ (-1149)) 171) (((-112) $ $) 170)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-3007 (((-112) $) 182 (|has| $ (-1014 (-538))))) (-4127 (($ $ (-1149) (-751) (-1 $ $)) 222 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-622 $))) 221 (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ (-622 $)))) 220 (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ $))) 219 (|has| |#1| (-1025))) (($ $ (-622 (-113)) (-622 $) (-1149)) 208 (|has| |#1| (-598 (-527)))) (($ $ (-113) $ (-1149)) 207 (|has| |#1| (-598 (-527)))) (($ $) 206 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-1149))) 205 (|has| |#1| (-598 (-527)))) (($ $ (-1149)) 204 (|has| |#1| (-598 (-527)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-622 $))) 178) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) 177) (($ $ (-622 (-113)) (-622 (-1 $ $))) 176) (($ $ (-1149) (-1 $ $)) 175) (($ $ (-1149) (-1 $ (-622 $))) 174) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) 173) (($ $ (-622 (-1149)) (-622 (-1 $ $))) 172) (($ $ (-622 $) (-622 $)) 143) (($ $ $ $) 142) (($ $ (-288 $)) 141) (($ $ (-622 (-288 $))) 140) (($ $ (-622 (-595 $)) (-622 $)) 139) (($ $ (-595 $) $) 138)) (-1704 (((-751) $) 56)) (-4159 (($ (-113) (-622 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-1663 (($ $ $) 157) (($ $) 156)) (-4170 (($ $ (-1149)) 246 (|has| |#1| (-1025))) (($ $ (-622 (-1149))) 245 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 244 (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) 243 (|has| |#1| (-1025)))) (-3328 (($ $) 225 (|has| |#1| (-545)))) (-3330 (((-1098 |#1| (-595 $)) $) 224 (|has| |#1| (-545)))) (-3536 (($ $) 181 (|has| $ (-1025)))) (-4330 (((-527) $) 252 (|has| |#1| (-598 (-527)))) (($ (-400 $)) 223 (|has| |#1| (-545))) (((-866 (-373)) $) 188 (|has| |#1| (-598 (-866 (-373))))) (((-866 (-538)) $) 187 (|has| |#1| (-598 (-866 (-538)))))) (-3342 (($ $ $) 251 (|has| |#1| (-467)))) (-2686 (($ $ $) 250 (|has| |#1| (-467)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ (-922 |#1|)) 247 (|has| |#1| (-1025))) (($ (-402 (-922 |#1|))) 231 (|has| |#1| (-545))) (($ (-402 (-922 (-402 |#1|)))) 229 (|has| |#1| (-545))) (($ (-922 (-402 |#1|))) 228 (|has| |#1| (-545))) (($ (-402 |#1|)) 227 (|has| |#1| (-545))) (($ (-1098 |#1| (-595 $))) 213 (|has| |#1| (-1025))) (($ |#1|) 193) (($ (-1149)) 184) (($ (-595 $)) 135)) (-3035 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-2920 (($ (-622 $)) 153) (($ $) 152)) (-2338 (((-112) (-113)) 164)) (-2177 (((-112) $ $) 37)) (-1914 (($ (-1149) (-622 $)) 203) (($ (-1149) $ $ $ $) 202) (($ (-1149) $ $ $) 201) (($ (-1149) $ $) 200) (($ (-1149) $) 199)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1149)) 242 (|has| |#1| (-1025))) (($ $ (-622 (-1149))) 241 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 240 (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) 239 (|has| |#1| (-1025)))) (-2896 (((-112) $ $) 131)) (-2897 (((-112) $ $) 130)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 132)) (-3018 (((-112) $ $) 129)) (-4308 (($ $ $) 62) (($ (-1098 |#1| (-595 $)) (-1098 |#1| (-595 $))) 226 (|has| |#1| (-545)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66) (($ $ (-402 (-538))) 87)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170)))))
-(((-29 |#1|) (-138) (-13 (-827) (-545))) (T -29))
-((-3534 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-545))))) (-1266 (*1 *2 *1) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *3)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-545))))) (-1266 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *4)))) (-1265 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-545))))) (-1667 (*1 *2 *1) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *3)))) (-1265 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-545))))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-416 |t#1|) (-10 -8 (-15 -3534 ($ $)) (-15 -1266 ((-622 $) $)) (-15 -3534 ($ $ (-1149))) (-15 -1266 ((-622 $) $ (-1149))) (-15 -1265 ($ $)) (-15 -1667 ((-622 $) $)) (-15 -1265 ($ $ (-1149))) (-15 -1667 ((-622 $) $ (-1149)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-598 (-866 (-373))) |has| |#1| (-598 (-866 (-373)))) ((-598 (-866 (-538))) |has| |#1| (-598 (-866 (-538)))) ((-239) . T) ((-285) . T) ((-302) . T) ((-304 $) . T) ((-293) . T) ((-358) . T) ((-372 |#1|) |has| |#1| (-1025)) ((-395 |#1|) . T) ((-407 |#1|) . T) ((-416 |#1|) . T) ((-446) . T) ((-467) |has| |#1| (-467)) ((-507 (-595 $) $) . T) ((-507 $ $) . T) ((-545) . T) ((-628 #1#) . T) ((-628 |#1|) |has| |#1| (-170)) ((-628 $) . T) ((-621 (-538)) -12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) ((-621 |#1|) |has| |#1| (-1025)) ((-698 #1#) . T) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-876 (-1149)) |has| |#1| (-1025)) ((-862 (-373)) |has| |#1| (-862 (-373))) ((-862 (-538)) |has| |#1| (-862 (-538))) ((-860 |#1|) . T) ((-897) . T) ((-978) . T) ((-1014 (-402 (-538))) -3891 (|has| |#1| (-1014 (-402 (-538)))) (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538))))) ((-1014 (-402 (-922 |#1|))) |has| |#1| (-545)) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 (-595 $)) . T) ((-1014 (-922 |#1|)) |has| |#1| (-1025)) ((-1014 (-1149)) . T) ((-1014 |#1|) . T) ((-1031 #1#) . T) ((-1031 |#1|) |has| |#1| (-170)) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1185) . T) ((-1190) . T))
-((-3229 (((-1062 (-221)) $) NIL)) (-3230 (((-1062 (-221)) $) NIL)) (-3469 (($ $ (-221)) 125)) (-1267 (($ (-922 (-538)) (-1149) (-1149) (-1062 (-402 (-538))) (-1062 (-402 (-538)))) 83)) (-3231 (((-622 (-622 (-919 (-221)))) $) 137)) (-4317 (((-840) $) 149)))
-(((-30) (-13 (-931) (-10 -8 (-15 -1267 ($ (-922 (-538)) (-1149) (-1149) (-1062 (-402 (-538))) (-1062 (-402 (-538))))) (-15 -3469 ($ $ (-221)))))) (T -30))
-((-1267 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-922 (-538))) (-5 *3 (-1149)) (-5 *4 (-1062 (-402 (-538)))) (-5 *1 (-30)))) (-3469 (*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30)))))
-(-13 (-931) (-10 -8 (-15 -1267 ($ (-922 (-538)) (-1149) (-1149) (-1062 (-402 (-538))) (-1062 (-402 (-538))))) (-15 -3469 ($ $ (-221)))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 11)) (-3027 (((-1108) $) 9)) (-3387 (((-112) $ $) NIL)))
-(((-31) (-13 (-1056) (-10 -8 (-15 -3027 ((-1108) $)) (-15 -3584 ((-1108) $))))) (T -31))
-((-3027 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31)))))
-(-13 (-1056) (-10 -8 (-15 -3027 ((-1108) $)) (-15 -3584 ((-1108) $))))
-((-3534 ((|#2| (-1143 |#2|) (-1149)) 43)) (-3380 (((-113) (-113)) 56)) (-1657 (((-1143 |#2|) (-595 |#2|)) 133 (|has| |#1| (-1014 (-538))))) (-1270 ((|#2| |#1| (-538)) 122 (|has| |#1| (-1014 (-538))))) (-1268 ((|#2| (-1143 |#2|) |#2|) 30)) (-1269 (((-840) (-622 |#2|)) 85)) (-3536 ((|#2| |#2|) 129 (|has| |#1| (-1014 (-538))))) (-2338 (((-112) (-113)) 18)) (** ((|#2| |#2| (-402 (-538))) 96 (|has| |#1| (-1014 (-538))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3534 (|#2| (-1143 |#2|) (-1149))) (-15 -3380 ((-113) (-113))) (-15 -2338 ((-112) (-113))) (-15 -1268 (|#2| (-1143 |#2|) |#2|)) (-15 -1269 ((-840) (-622 |#2|))) (IF (|has| |#1| (-1014 (-538))) (PROGN (-15 ** (|#2| |#2| (-402 (-538)))) (-15 -1657 ((-1143 |#2|) (-595 |#2|))) (-15 -3536 (|#2| |#2|)) (-15 -1270 (|#2| |#1| (-538)))) |%noBranch|)) (-13 (-827) (-545)) (-416 |#1|)) (T -32))
-((-1270 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-4 *2 (-416 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1014 *4)) (-4 *3 (-13 (-827) (-545))))) (-3536 (*1 *2 *2) (-12 (-4 *3 (-1014 (-538))) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-32 *3 *2)) (-4 *2 (-416 *3)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-595 *5)) (-4 *5 (-416 *4)) (-4 *4 (-1014 (-538))) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-1143 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-538))) (-4 *4 (-1014 (-538))) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-32 *4 *2)) (-4 *2 (-416 *4)))) (-1269 (*1 *2 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-840)) (-5 *1 (-32 *4 *5)))) (-1268 (*1 *2 *3 *2) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-32 *4 *2)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-416 *4)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-32 *3 *4)) (-4 *4 (-416 *3)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *2)) (-5 *4 (-1149)) (-4 *2 (-416 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-827) (-545))))))
-(-10 -7 (-15 -3534 (|#2| (-1143 |#2|) (-1149))) (-15 -3380 ((-113) (-113))) (-15 -2338 ((-112) (-113))) (-15 -1268 (|#2| (-1143 |#2|) |#2|)) (-15 -1269 ((-840) (-622 |#2|))) (IF (|has| |#1| (-1014 (-538))) (PROGN (-15 ** (|#2| |#2| (-402 (-538)))) (-15 -1657 ((-1143 |#2|) (-595 |#2|))) (-15 -3536 (|#2| |#2|)) (-15 -1270 (|#2| |#1| (-538)))) |%noBranch|))
-((-1271 (((-112) $ (-751)) 16)) (-3896 (($) 10)) (-4082 (((-112) $ (-751)) 15)) (-4079 (((-112) $ (-751)) 14)) (-1272 (((-112) $ $) 8)) (-3762 (((-112) $) 13)))
-(((-33 |#1|) (-10 -8 (-15 -3896 (|#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751))) (-15 -3762 ((-112) |#1|)) (-15 -1272 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -3896 (|#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751))) (-15 -3762 ((-112) |#1|)) (-15 -1272 ((-112) |#1| |#1|)))
-((-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-4082 (((-112) $ (-751)) 9)) (-4079 (((-112) $ (-751)) 10)) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-3759 (($ $) 13)) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
+((-3588 (*1 *1 *2) (-12 (-5 *2 (-928 *1)) (-4 *1 (-27)))) (-3588 (*1 *1 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-27)))) (-3588 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-928 *1)) (-4 *1 (-27)))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-27)))) (-3428 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-625 *1)))))
+(-13 (-358) (-978) (-10 -8 (-15 -3588 ($ (-928 $))) (-15 -3588 ($ (-1145 $))) (-15 -3588 ($ (-1145 $) (-1149))) (-15 -3438 ((-625 $) (-928 $))) (-15 -3438 ((-625 $) (-1145 $))) (-15 -3438 ((-625 $) (-1145 $) (-1149))) (-15 -3428 ($ (-928 $))) (-15 -3428 ($ (-1145 $))) (-15 -3428 ($ (-1145 $) (-1149))) (-15 -1993 ((-625 $) (-928 $))) (-15 -1993 ((-625 $) (-1145 $))) (-15 -1993 ((-625 $) (-1145 $) (-1149)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-978) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T))
+((-1993 (((-625 $) (-928 $)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-1145 $) (-1149)) 50) (((-625 $) $) 19) (((-625 $) $ (-1149)) 41)) (-3428 (($ (-928 $)) NIL) (($ (-1145 $)) NIL) (($ (-1145 $) (-1149)) 52) (($ $) 17) (($ $ (-1149)) 37)) (-3438 (((-625 $) (-928 $)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-1145 $) (-1149)) 48) (((-625 $) $) 15) (((-625 $) $ (-1149)) 43)) (-3588 (($ (-928 $)) NIL) (($ (-1145 $)) NIL) (($ (-1145 $) (-1149)) NIL) (($ $) 12) (($ $ (-1149)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -1993 ((-625 |#1|) |#1| (-1149))) (-15 -3428 (|#1| |#1| (-1149))) (-15 -1993 ((-625 |#1|) |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3438 ((-625 |#1|) |#1| (-1149))) (-15 -3588 (|#1| |#1| (-1149))) (-15 -3438 ((-625 |#1|) |#1|)) (-15 -3588 (|#1| |#1|)) (-15 -1993 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -1993 ((-625 |#1|) (-1145 |#1|))) (-15 -1993 ((-625 |#1|) (-928 |#1|))) (-15 -3428 (|#1| (-1145 |#1|) (-1149))) (-15 -3428 (|#1| (-1145 |#1|))) (-15 -3428 (|#1| (-928 |#1|))) (-15 -3438 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -3438 ((-625 |#1|) (-1145 |#1|))) (-15 -3438 ((-625 |#1|) (-928 |#1|))) (-15 -3588 (|#1| (-1145 |#1|) (-1149))) (-15 -3588 (|#1| (-1145 |#1|))) (-15 -3588 (|#1| (-928 |#1|)))) (-29 |#2|) (-13 (-827) (-544))) (T -28))
+NIL
+(-10 -8 (-15 -1993 ((-625 |#1|) |#1| (-1149))) (-15 -3428 (|#1| |#1| (-1149))) (-15 -1993 ((-625 |#1|) |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3438 ((-625 |#1|) |#1| (-1149))) (-15 -3588 (|#1| |#1| (-1149))) (-15 -3438 ((-625 |#1|) |#1|)) (-15 -3588 (|#1| |#1|)) (-15 -1993 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -1993 ((-625 |#1|) (-1145 |#1|))) (-15 -1993 ((-625 |#1|) (-928 |#1|))) (-15 -3428 (|#1| (-1145 |#1|) (-1149))) (-15 -3428 (|#1| (-1145 |#1|))) (-15 -3428 (|#1| (-928 |#1|))) (-15 -3438 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -3438 ((-625 |#1|) (-1145 |#1|))) (-15 -3438 ((-625 |#1|) (-928 |#1|))) (-15 -3588 (|#1| (-1145 |#1|) (-1149))) (-15 -3588 (|#1| (-1145 |#1|))) (-15 -3588 (|#1| (-928 |#1|))))
+((-1671 (((-112) $ $) 7)) (-1993 (((-625 $) (-928 $)) 77) (((-625 $) (-1145 $)) 76) (((-625 $) (-1145 $) (-1149)) 75) (((-625 $) $) 123) (((-625 $) $ (-1149)) 121)) (-3428 (($ (-928 $)) 80) (($ (-1145 $)) 79) (($ (-1145 $) (-1149)) 78) (($ $) 124) (($ $ (-1149)) 122)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1149)) $) 198)) (-3793 (((-402 (-1145 $)) $ (-596 $)) 230 (|has| |#1| (-544)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-3715 (((-625 (-596 $)) $) 161)) (-2077 (((-3 $ "failed") $ $) 19)) (-3831 (($ $ (-625 (-596 $)) (-625 $)) 151) (($ $ (-625 (-289 $))) 150) (($ $ (-289 $)) 149)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-3837 (($ $) 89)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-3438 (((-625 $) (-928 $)) 83) (((-625 $) (-1145 $)) 82) (((-625 $) (-1145 $) (-1149)) 81) (((-625 $) $) 127) (((-625 $) $ (-1149)) 125)) (-3588 (($ (-928 $)) 86) (($ (-1145 $)) 85) (($ (-1145 $) (-1149)) 84) (($ $) 128) (($ $ (-1149)) 126)) (-1893 (((-3 (-928 |#1|) "failed") $) 248 (|has| |#1| (-1025))) (((-3 (-402 (-928 |#1|)) "failed") $) 232 (|has| |#1| (-544))) (((-3 |#1| "failed") $) 194) (((-3 (-552) "failed") $) 192 (|has| |#1| (-1014 (-552)))) (((-3 (-1149) "failed") $) 185) (((-3 (-596 $) "failed") $) 136) (((-3 (-402 (-552)) "failed") $) 120 (-1523 (-12 (|has| |#1| (-1014 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1014 (-402 (-552))))))) (-1895 (((-928 |#1|) $) 249 (|has| |#1| (-1025))) (((-402 (-928 |#1|)) $) 233 (|has| |#1| (-544))) ((|#1| $) 195) (((-552) $) 191 (|has| |#1| (-1014 (-552)))) (((-1149) $) 186) (((-596 $) $) 137) (((-402 (-552)) $) 119 (-1523 (-12 (|has| |#1| (-1014 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1014 (-402 (-552))))))) (-2851 (($ $ $) 53)) (-1794 (((-669 |#1|) (-669 $)) 238 (|has| |#1| (-1025))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 237 (|has| |#1| (-1025))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 118 (-1523 (-3743 (|has| |#1| (-1025)) (|has| |#1| (-621 (-552)))) (-3743 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))) (((-669 (-552)) (-669 $)) 117 (-1523 (-3743 (|has| |#1| (-1025)) (|has| |#1| (-621 (-552)))) (-3743 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 190 (|has| |#1| (-862 (-374)))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 189 (|has| |#1| (-862 (-552))))) (-2411 (($ (-625 $)) 155) (($ $) 154)) (-1940 (((-625 (-114)) $) 162)) (-1563 (((-114) (-114)) 163)) (-3650 (((-112) $) 30)) (-3932 (((-112) $) 183 (|has| $ (-1014 (-552))))) (-2276 (($ $) 215 (|has| |#1| (-1025)))) (-1356 (((-1098 |#1| (-596 $)) $) 214 (|has| |#1| (-1025)))) (-2429 (($ $ (-552)) 88)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-1917 (((-1145 $) (-596 $)) 180 (|has| $ (-1025)))) (-3658 (($ $ $) 134)) (-3332 (($ $ $) 133)) (-1996 (($ (-1 $ $) (-596 $)) 169)) (-1952 (((-3 (-596 $) "failed") $) 159)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-3783 (((-625 (-596 $)) $) 160)) (-1425 (($ (-114) (-625 $)) 168) (($ (-114) $) 167)) (-4172 (((-3 (-625 $) "failed") $) 209 (|has| |#1| (-1085)))) (-4194 (((-3 (-2 (|:| |val| $) (|:| -3564 (-552))) "failed") $) 218 (|has| |#1| (-1025)))) (-4160 (((-3 (-625 $) "failed") $) 211 (|has| |#1| (-25)))) (-2692 (((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 $))) "failed") $) 212 (|has| |#1| (-25)))) (-4182 (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-1149)) 217 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-114)) 216 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $) 210 (|has| |#1| (-1085)))) (-1721 (((-112) $ (-1149)) 166) (((-112) $ (-114)) 165)) (-4092 (($ $) 67)) (-2207 (((-751) $) 158)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 196)) (-4117 ((|#1| $) 197)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-1929 (((-112) $ (-1149)) 171) (((-112) $ $) 170)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-3943 (((-112) $) 182 (|has| $ (-1014 (-552))))) (-4073 (($ $ (-1149) (-751) (-1 $ $)) 222 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-625 $))) 221 (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ (-625 $)))) 220 (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ $))) 219 (|has| |#1| (-1025))) (($ $ (-625 (-114)) (-625 $) (-1149)) 208 (|has| |#1| (-598 (-528)))) (($ $ (-114) $ (-1149)) 207 (|has| |#1| (-598 (-528)))) (($ $) 206 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-1149))) 205 (|has| |#1| (-598 (-528)))) (($ $ (-1149)) 204 (|has| |#1| (-598 (-528)))) (($ $ (-114) (-1 $ $)) 179) (($ $ (-114) (-1 $ (-625 $))) 178) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) 177) (($ $ (-625 (-114)) (-625 (-1 $ $))) 176) (($ $ (-1149) (-1 $ $)) 175) (($ $ (-1149) (-1 $ (-625 $))) 174) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) 173) (($ $ (-625 (-1149)) (-625 (-1 $ $))) 172) (($ $ (-625 $) (-625 $)) 143) (($ $ $ $) 142) (($ $ (-289 $)) 141) (($ $ (-625 (-289 $))) 140) (($ $ (-625 (-596 $)) (-625 $)) 139) (($ $ (-596 $) $) 138)) (-2397 (((-751) $) 56)) (-2154 (($ (-114) (-625 $)) 148) (($ (-114) $ $ $ $) 147) (($ (-114) $ $ $) 146) (($ (-114) $ $) 145) (($ (-114) $) 144)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1963 (($ $ $) 157) (($ $) 156)) (-3072 (($ $ (-1149)) 246 (|has| |#1| (-1025))) (($ $ (-625 (-1149))) 245 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 244 (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) 243 (|has| |#1| (-1025)))) (-2265 (($ $) 225 (|has| |#1| (-544)))) (-1368 (((-1098 |#1| (-596 $)) $) 224 (|has| |#1| (-544)))) (-3610 (($ $) 181 (|has| $ (-1025)))) (-2042 (((-528) $) 252 (|has| |#1| (-598 (-528)))) (($ (-413 $)) 223 (|has| |#1| (-544))) (((-868 (-374)) $) 188 (|has| |#1| (-598 (-868 (-374))))) (((-868 (-552)) $) 187 (|has| |#1| (-598 (-868 (-552)))))) (-2410 (($ $ $) 251 (|has| |#1| (-467)))) (-3828 (($ $ $) 250 (|has| |#1| (-467)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ (-928 |#1|)) 247 (|has| |#1| (-1025))) (($ (-402 (-928 |#1|))) 231 (|has| |#1| (-544))) (($ (-402 (-928 (-402 |#1|)))) 229 (|has| |#1| (-544))) (($ (-928 (-402 |#1|))) 228 (|has| |#1| (-544))) (($ (-402 |#1|)) 227 (|has| |#1| (-544))) (($ (-1098 |#1| (-596 $))) 213 (|has| |#1| (-1025))) (($ |#1|) 193) (($ (-1149)) 184) (($ (-596 $)) 135)) (-4243 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-3779 (($ (-625 $)) 153) (($ $) 152)) (-1572 (((-112) (-114)) 164)) (-3518 (((-112) $ $) 37)) (-3844 (($ (-1149) (-625 $)) 203) (($ (-1149) $ $ $ $) 202) (($ (-1149) $ $ $) 201) (($ (-1149) $ $) 200) (($ (-1149) $) 199)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1149)) 242 (|has| |#1| (-1025))) (($ $ (-625 (-1149))) 241 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 240 (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) 239 (|has| |#1| (-1025)))) (-2346 (((-112) $ $) 131)) (-2320 (((-112) $ $) 130)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 132)) (-2307 (((-112) $ $) 129)) (-2404 (($ $ $) 62) (($ (-1098 |#1| (-596 $)) (-1098 |#1| (-596 $))) 226 (|has| |#1| (-544)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66) (($ $ (-402 (-552))) 87)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170)))))
+(((-29 |#1|) (-138) (-13 (-827) (-544))) (T -29))
+((-3588 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-544))))) (-3438 (*1 *2 *1) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *3)))) (-3588 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-544))))) (-3438 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *4)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-544))))) (-1993 (*1 *2 *1) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *3)))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-544))))) (-1993 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-425 |t#1|) (-10 -8 (-15 -3588 ($ $)) (-15 -3438 ((-625 $) $)) (-15 -3588 ($ $ (-1149))) (-15 -3438 ((-625 $) $ (-1149))) (-15 -3428 ($ $)) (-15 -1993 ((-625 $) $)) (-15 -3428 ($ $ (-1149))) (-15 -1993 ((-625 $) $ (-1149)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-598 (-868 (-374))) |has| |#1| (-598 (-868 (-374)))) ((-598 (-868 (-552))) |has| |#1| (-598 (-868 (-552)))) ((-239) . T) ((-285) . T) ((-302) . T) ((-304 $) . T) ((-297) . T) ((-358) . T) ((-372 |#1|) |has| |#1| (-1025)) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-425 |#1|) . T) ((-446) . T) ((-467) |has| |#1| (-467)) ((-507 (-596 $) $) . T) ((-507 $ $) . T) ((-544) . T) ((-628 #0#) . T) ((-628 |#1|) |has| |#1| (-170)) ((-628 $) . T) ((-621 (-552)) -12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) ((-621 |#1|) |has| |#1| (-1025)) ((-698 #0#) . T) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-876 (-1149)) |has| |#1| (-1025)) ((-862 (-374)) |has| |#1| (-862 (-374))) ((-862 (-552)) |has| |#1| (-862 (-552))) ((-860 |#1|) . T) ((-896) . T) ((-978) . T) ((-1014 (-402 (-552))) -1523 (|has| |#1| (-1014 (-402 (-552)))) (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552))))) ((-1014 (-402 (-928 |#1|))) |has| |#1| (-544)) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 (-596 $)) . T) ((-1014 (-928 |#1|)) |has| |#1| (-1025)) ((-1014 (-1149)) . T) ((-1014 |#1|) . T) ((-1031 #0#) . T) ((-1031 |#1|) |has| |#1| (-170)) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1186) . T) ((-1190) . T))
+((-3663 (((-1067 (-221)) $) NIL)) (-3652 (((-1067 (-221)) $) NIL)) (-4230 (($ $ (-221)) 125)) (-3451 (($ (-928 (-552)) (-1149) (-1149) (-1067 (-402 (-552))) (-1067 (-402 (-552)))) 83)) (-3603 (((-625 (-625 (-919 (-221)))) $) 137)) (-1683 (((-839) $) 149)))
+(((-30) (-13 (-931) (-10 -8 (-15 -3451 ($ (-928 (-552)) (-1149) (-1149) (-1067 (-402 (-552))) (-1067 (-402 (-552))))) (-15 -4230 ($ $ (-221)))))) (T -30))
+((-3451 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-928 (-552))) (-5 *3 (-1149)) (-5 *4 (-1067 (-402 (-552)))) (-5 *1 (-30)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30)))))
+(-13 (-931) (-10 -8 (-15 -3451 ($ (-928 (-552)) (-1149) (-1149) (-1067 (-402 (-552))) (-1067 (-402 (-552))))) (-15 -4230 ($ $ (-221)))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 11)) (-3929 (((-1108) $) 9)) (-2281 (((-112) $ $) NIL)))
+(((-31) (-13 (-1056) (-10 -8 (-15 -3929 ((-1108) $)) (-15 -1300 ((-1108) $))))) (T -31))
+((-3929 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31)))))
+(-13 (-1056) (-10 -8 (-15 -3929 ((-1108) $)) (-15 -1300 ((-1108) $))))
+((-3588 ((|#2| (-1145 |#2|) (-1149)) 43)) (-1563 (((-114) (-114)) 56)) (-1917 (((-1145 |#2|) (-596 |#2|)) 133 (|has| |#1| (-1014 (-552))))) (-3484 ((|#2| |#1| (-552)) 122 (|has| |#1| (-1014 (-552))))) (-3463 ((|#2| (-1145 |#2|) |#2|) 30)) (-3474 (((-839) (-625 |#2|)) 85)) (-3610 ((|#2| |#2|) 129 (|has| |#1| (-1014 (-552))))) (-1572 (((-112) (-114)) 18)) (** ((|#2| |#2| (-402 (-552))) 96 (|has| |#1| (-1014 (-552))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3588 (|#2| (-1145 |#2|) (-1149))) (-15 -1563 ((-114) (-114))) (-15 -1572 ((-112) (-114))) (-15 -3463 (|#2| (-1145 |#2|) |#2|)) (-15 -3474 ((-839) (-625 |#2|))) (IF (|has| |#1| (-1014 (-552))) (PROGN (-15 ** (|#2| |#2| (-402 (-552)))) (-15 -1917 ((-1145 |#2|) (-596 |#2|))) (-15 -3610 (|#2| |#2|)) (-15 -3484 (|#2| |#1| (-552)))) |%noBranch|)) (-13 (-827) (-544)) (-425 |#1|)) (T -32))
+((-3484 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *2 (-425 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1014 *4)) (-4 *3 (-13 (-827) (-544))))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-1014 (-552))) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-32 *3 *2)) (-4 *2 (-425 *3)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-596 *5)) (-4 *5 (-425 *4)) (-4 *4 (-1014 (-552))) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-1145 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-552))) (-4 *4 (-1014 (-552))) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-32 *4 *2)) (-4 *2 (-425 *4)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-839)) (-5 *1 (-32 *4 *5)))) (-3463 (*1 *2 *3 *2) (-12 (-5 *3 (-1145 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-32 *4 *2)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-425 *4)))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-32 *3 *4)) (-4 *4 (-425 *3)))) (-3588 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *2)) (-5 *4 (-1149)) (-4 *2 (-425 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-827) (-544))))))
+(-10 -7 (-15 -3588 (|#2| (-1145 |#2|) (-1149))) (-15 -1563 ((-114) (-114))) (-15 -1572 ((-112) (-114))) (-15 -3463 (|#2| (-1145 |#2|) |#2|)) (-15 -3474 ((-839) (-625 |#2|))) (IF (|has| |#1| (-1014 (-552))) (PROGN (-15 ** (|#2| |#2| (-402 (-552)))) (-15 -1917 ((-1145 |#2|) (-596 |#2|))) (-15 -3610 (|#2| |#2|)) (-15 -3484 (|#2| |#1| (-552)))) |%noBranch|))
+((-3495 (((-112) $ (-751)) 16)) (-3101 (($) 10)) (-2909 (((-112) $ (-751)) 15)) (-2878 (((-112) $ (-751)) 14)) (-3504 (((-112) $ $) 8)) (-1916 (((-112) $) 13)))
+(((-33 |#1|) (-10 -8 (-15 -3101 (|#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751))) (-15 -1916 ((-112) |#1|)) (-15 -3504 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -3101 (|#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751))) (-15 -1916 ((-112) |#1|)) (-15 -3504 ((-112) |#1| |#1|)))
+((-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-2909 (((-112) $ (-751)) 9)) (-2878 (((-112) $ (-751)) 10)) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-1871 (($ $) 13)) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
(((-34) (-138)) (T -34))
-((-1272 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3759 (*1 *1 *1) (-4 *1 (-34))) (-3928 (*1 *1) (-4 *1 (-34))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4079 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-4082 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-1271 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-3896 (*1 *1) (-4 *1 (-34))) (-4316 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-34)) (-5 *2 (-751)))))
-(-13 (-1185) (-10 -8 (-15 -1272 ((-112) $ $)) (-15 -3759 ($ $)) (-15 -3928 ($)) (-15 -3762 ((-112) $)) (-15 -4079 ((-112) $ (-751))) (-15 -4082 ((-112) $ (-751))) (-15 -1271 ((-112) $ (-751))) (-15 -3896 ($) -4311) (IF (|has| $ (-6 -4353)) (-15 -4316 ((-751) $)) |%noBranch|)))
-(((-1185) . T))
-((-3852 (($ $) 11)) (-3850 (($ $) 10)) (-3854 (($ $) 9)) (-3855 (($ $) 8)) (-3853 (($ $) 7)) (-3851 (($ $) 6)))
+((-3504 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1871 (*1 *1 *1) (-4 *1 (-34))) (-3600 (*1 *1) (-4 *1 (-34))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2878 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-2909 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-3495 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-3101 (*1 *1) (-4 *1 (-34))) (-1471 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-34)) (-5 *2 (-751)))))
+(-13 (-1186) (-10 -8 (-15 -3504 ((-112) $ $)) (-15 -1871 ($ $)) (-15 -3600 ($)) (-15 -1916 ((-112) $)) (-15 -2878 ((-112) $ (-751))) (-15 -2909 ((-112) $ (-751))) (-15 -3495 ((-112) $ (-751))) (-15 -3101 ($) -1426) (IF (|has| $ (-6 -4353)) (-15 -1471 ((-751) $)) |%noBranch|)))
+(((-1186) . T))
+((-3789 (($ $) 11)) (-3769 (($ $) 10)) (-3809 (($ $) 9)) (-3742 (($ $) 8)) (-3797 (($ $) 7)) (-3778 (($ $) 6)))
(((-35) (-138)) (T -35))
-((-3852 (*1 *1 *1) (-4 *1 (-35))) (-3850 (*1 *1 *1) (-4 *1 (-35))) (-3854 (*1 *1 *1) (-4 *1 (-35))) (-3855 (*1 *1 *1) (-4 *1 (-35))) (-3853 (*1 *1 *1) (-4 *1 (-35))) (-3851 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3851 ($ $)) (-15 -3853 ($ $)) (-15 -3855 ($ $)) (-15 -3854 ($ $)) (-15 -3850 ($ $)) (-15 -3852 ($ $))))
-((-2898 (((-112) $ $) 19 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3761 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 125)) (-4154 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 148)) (-4156 (($ $) 146)) (-3960 (($) 72) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 71)) (-2305 (((-1237) $ |#1| |#1|) 99 (|has| $ (-6 -4354))) (((-1237) $ (-538) (-538)) 178 (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 159 (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-1846 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 200 (|has| $ (-6 -4354))) (($ $) 199 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-1271 (((-112) $ (-751)) 8)) (-3358 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 134 (|has| $ (-6 -4354)))) (-4146 (($ $ $) 155 (|has| $ (-6 -4354)))) (-4145 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 157 (|has| $ (-6 -4354)))) (-4148 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 153 (|has| $ (-6 -4354)))) (-4147 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 189 (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-1198 (-538)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 160 (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #1="last" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 158 (|has| $ (-6 -4354))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #3="first" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 154 (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #4="value" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 133 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 132 (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 45 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 216)) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 55 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 175 (|has| $ (-6 -4353)))) (-4155 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 147)) (-2314 (((-3 |#2| #5="failed") |#1| $) 61)) (-3896 (($) 7 T CONST)) (-2377 (($ $) 201 (|has| $ (-6 -4354)))) (-2378 (($ $) 211)) (-4158 (($ $ (-751)) 142) (($ $) 140)) (-2455 (($ $) 214 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1398 (($ $) 58 (-3891 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))) (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 220) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 215 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 54 (|has| $ (-6 -4353))) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 174 (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 56 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 52 (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 176 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 173 (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 172 (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 190 (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) 88) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) 188)) (-3801 (((-112) $) 192)) (-3778 (((-538) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 208) (((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 207 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) (((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) 206 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 30 (|has| $ (-6 -4353))) (((-622 |#2|) $) 79 (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 114 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 123)) (-3360 (((-112) $ $) 131 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-3977 (($ (-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 169)) (-4082 (((-112) $ (-751)) 9)) (-2307 ((|#1| $) 96 (|has| |#1| (-827))) (((-538) $) 180 (|has| (-538) (-827)))) (-3677 (($ $ $) 198 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3192 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3872 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 29 (|has| $ (-6 -4353))) (((-622 |#2|) $) 80 (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 115 (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353)))) (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))))) (-2308 ((|#1| $) 95 (|has| |#1| (-827))) (((-538) $) 181 (|has| (-538) (-827)))) (-3678 (($ $ $) 197 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 34 (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 110 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 109)) (-3897 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 225)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 128)) (-3881 (((-112) $) 124)) (-3593 (((-1131) $) 22 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-4157 (($ $ (-751)) 145) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 143)) (-2744 (((-622 |#1|) $) 63)) (-2315 (((-112) |#1| $) 64)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 39)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 40) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) 219) (($ $ $ (-538)) 218)) (-2382 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) 162) (($ $ $ (-538)) 161)) (-2310 (((-622 |#1|) $) 93) (((-622 (-538)) $) 183)) (-2311 (((-112) |#1| $) 92) (((-112) (-538) $) 184)) (-3594 (((-1093) $) 21 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-4160 ((|#2| $) 97 (|has| |#1| (-827))) (($ $ (-751)) 139) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 137)) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 51) (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #6#) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 171)) (-2306 (($ $ |#2|) 98 (|has| $ (-6 -4354))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 179 (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 41)) (-3802 (((-112) $) 191)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 32 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 112 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) 26 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 25 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 24 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 23 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 121 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 120 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 119 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) 118 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 182 (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-2312 (((-622 |#2|) $) 91) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 185)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 187) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) 186) (($ $ (-1198 (-538))) 165) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #3#) 138) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #4#) 126)) (-3362 (((-538) $ $) 129)) (-1523 (($) 49) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 48)) (-1632 (($ $ (-538)) 222) (($ $ (-1198 (-538))) 221)) (-2383 (($ $ (-538)) 164) (($ $ (-1198 (-538))) 163)) (-3996 (((-112) $) 127)) (-4151 (($ $) 151)) (-4149 (($ $) 152 (|has| $ (-6 -4354)))) (-4152 (((-751) $) 150)) (-4153 (($ $) 149)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-751) |#2| $) 81 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 113 (|has| $ (-6 -4353)))) (-1847 (($ $ $ (-538)) 202 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527)))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 50) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 170)) (-4150 (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 224) (($ $ $) 223)) (-4161 (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 168) (($ (-622 $)) 167) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 136) (($ $ $) 135)) (-4317 (((-840) $) 18 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840)))))) (-3876 (((-622 $) $) 122)) (-3361 (((-112) $ $) 130 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 42)) (-1273 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") |#1| $) 108)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 33 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 111 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 195 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2897 (((-112) $ $) 194 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3387 (((-112) $ $) 20 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3017 (((-112) $ $) 196 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3018 (((-112) $ $) 193 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-36 |#1| |#2|) (-138) (-1074) (-1074)) (T -36))
-((-1273 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| -4220 *3) (|:| -2191 *4))))))
-(-13 (-1162 |t#1| |t#2|) (-646 (-2 (|:| -4220 |t#1|) (|:| -2191 |t#2|))) (-10 -8 (-15 -1273 ((-3 (-2 (|:| -4220 |t#1|) (|:| -2191 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-106 #1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((-101) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)) (|has| |#2| (-1074))) ((-597 (-840)) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-1074)) (|has| |#2| (-597 (-840)))) ((-149 #2=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((-598 (-527)) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))) ((-225 #1#) . T) ((-231 #1#) . T) ((-281 #3=(-538) #2#) . T) ((-281 |#1| |#2|) . T) ((-283 #3# #2#) . T) ((-283 |#1| |#2|) . T) ((-304 #2#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-277 #2#) . T) ((-367 #2#) . T) ((-483 #2#) . T) ((-483 |#2|) . T) ((-588 #3# #2#) . T) ((-588 |#1| |#2|) . T) ((-507 #2# #2#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-594 |#1| |#2|) . T) ((-631 #2#) . T) ((-646 #2#) . T) ((-827) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)) ((-986 #2#) . T) ((-1074) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)) (|has| |#2| (-1074))) ((-1122 #2#) . T) ((-1162 |#1| |#2|) . T) ((-1185) . T) ((-1220 #2#) . T))
-((-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-38 |#2|) (-170)) (T -37))
-NIL
-(-10 -8 (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+((-3789 (*1 *1 *1) (-4 *1 (-35))) (-3769 (*1 *1 *1) (-4 *1 (-35))) (-3809 (*1 *1 *1) (-4 *1 (-35))) (-3742 (*1 *1 *1) (-4 *1 (-35))) (-3797 (*1 *1 *1) (-4 *1 (-35))) (-3778 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -3778 ($ $)) (-15 -3797 ($ $)) (-15 -3742 ($ $)) (-15 -3809 ($ $)) (-15 -3769 ($ $)) (-15 -3789 ($ $))))
+((-1671 (((-112) $ $) 19 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-3800 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 125)) (-3897 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 148)) (-2101 (($ $) 146)) (-2173 (($) 72) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 71)) (-2509 (((-1237) $ |#1| |#1|) 99 (|has| $ (-6 -4354))) (((-1237) $ (-552) (-552)) 178 (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 159 (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3218 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 200 (|has| $ (-6 -4354))) (($ $) 199 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3495 (((-112) $ (-751)) 8)) (-2565 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 134 (|has| $ (-6 -4354)))) (-2301 (($ $ $) 155 (|has| $ (-6 -4354)))) (-2289 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 157 (|has| $ (-6 -4354)))) (-2317 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 153 (|has| $ (-6 -4354)))) (-1851 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 189 (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-1199 (-552)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 160 (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "last" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 158 (|has| $ (-6 -4354))) (($ $ "rest" $) 156 (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "first" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 154 (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "value" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 133 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 132 (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 45 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 216)) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 55 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 175 (|has| $ (-6 -4353)))) (-2673 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 147)) (-3128 (((-3 |#2| "failed") |#1| $) 61)) (-3101 (($) 7 T CONST)) (-1883 (($ $) 201 (|has| $ (-6 -4354)))) (-2306 (($ $) 211)) (-2936 (($ $ (-751)) 142) (($ $) 140)) (-3238 (($ $) 214 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2959 (($ $) 58 (-1523 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))) (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 220) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 215 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 54 (|has| $ (-6 -4353))) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 174 (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 56 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 52 (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 176 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 173 (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 172 (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 190 (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) 88) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) 188)) (-4011 (((-112) $) 192)) (-2483 (((-552) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 208) (((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 207 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) (((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) 206 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 30 (|has| $ (-6 -4353))) (((-625 |#2|) $) 79 (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 114 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 123)) (-1371 (((-112) $ $) 131 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2183 (($ (-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 169)) (-2909 (((-112) $ (-751)) 9)) (-2527 ((|#1| $) 96 (|has| |#1| (-827))) (((-552) $) 180 (|has| (-552) (-827)))) (-3658 (($ $ $) 198 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3260 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3280 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 29 (|has| $ (-6 -4353))) (((-625 |#2|) $) 80 (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 115 (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353)))) (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))))) (-2537 ((|#1| $) 95 (|has| |#1| (-827))) (((-552) $) 181 (|has| (-552) (-827)))) (-3332 (($ $ $) 197 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 34 (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 110 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 109)) (-2801 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 225)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 128)) (-3367 (((-112) $) 124)) (-2883 (((-1131) $) 22 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1437 (($ $ (-751)) 145) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 143)) (-3712 (((-625 |#1|) $) 63)) (-1370 (((-112) |#1| $) 64)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 39)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 40) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) 219) (($ $ $ (-552)) 218)) (-3994 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) 162) (($ $ $ (-552)) 161)) (-2554 (((-625 |#1|) $) 93) (((-625 (-552)) $) 183)) (-2564 (((-112) |#1| $) 92) (((-112) (-552) $) 184)) (-2831 (((-1093) $) 21 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-2924 ((|#2| $) 97 (|has| |#1| (-827))) (($ $ (-751)) 139) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 137)) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 51) (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 171)) (-2518 (($ $ |#2|) 98 (|has| $ (-6 -4354))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 179 (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 41)) (-4022 (((-112) $) 191)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 32 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 112 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) 26 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 25 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 24 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 23 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 121 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 120 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 119 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) 118 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 182 (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1358 (((-625 |#2|) $) 91) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 185)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 187) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) 186) (($ $ (-1199 (-552))) 165) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "first") 138) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "value") 126)) (-1389 (((-552) $ $) 129)) (-4255 (($) 49) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 48)) (-2884 (($ $ (-552)) 222) (($ $ (-1199 (-552))) 221)) (-4001 (($ $ (-552)) 164) (($ $ (-1199 (-552))) 163)) (-2316 (((-112) $) 127)) (-2356 (($ $) 151)) (-2330 (($ $) 152 (|has| $ (-6 -4354)))) (-2368 (((-751) $) 150)) (-2379 (($ $) 149)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-751) |#2| $) 81 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 113 (|has| $ (-6 -4353)))) (-3228 (($ $ $ (-552)) 202 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528)))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 50) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 170)) (-2342 (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 224) (($ $ $) 223)) (-3402 (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 168) (($ (-625 $)) 167) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 136) (($ $ $) 135)) (-1683 (((-839) $) 18 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839)))))) (-3320 (((-625 $) $) 122)) (-1380 (((-112) $ $) 130 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 42)) (-1444 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") |#1| $) 108)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 33 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 111 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 195 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2320 (((-112) $ $) 194 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2281 (((-112) $ $) 20 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-2334 (((-112) $ $) 196 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2307 (((-112) $ $) 193 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-36 |#1| |#2|) (-138) (-1073) (-1073)) (T -36))
+((-1444 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-5 *2 (-2 (|:| -2971 *3) (|:| -4120 *4))))))
+(-13 (-1162 |t#1| |t#2|) (-646 (-2 (|:| -2971 |t#1|) (|:| -4120 |t#2|))) (-10 -8 (-15 -1444 ((-3 (-2 (|:| -2971 |t#1|) (|:| -4120 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-106 #0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((-101) -1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827))) ((-597 (-839)) -1523 (|has| |#2| (-1073)) (|has| |#2| (-597 (-839))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839)))) ((-149 #1=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((-598 (-528)) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))) ((-225 #0#) . T) ((-231 #0#) . T) ((-281 #2=(-552) #1#) . T) ((-281 |#1| |#2|) . T) ((-283 #2# #1#) . T) ((-283 |#1| |#2|) . T) ((-304 #1#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-277 #1#) . T) ((-368 #1#) . T) ((-483 #1#) . T) ((-483 |#2|) . T) ((-588 #2# #1#) . T) ((-588 |#1| |#2|) . T) ((-507 #1# #1#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-594 |#1| |#2|) . T) ((-631 #1#) . T) ((-646 #1#) . T) ((-827) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)) ((-986 #1#) . T) ((-1073) -1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827))) ((-1122 #1#) . T) ((-1162 |#1| |#2|) . T) ((-1186) . T) ((-1220 #1#) . T))
+((-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-38 |#2|) (-170)) (T -37))
+NIL
+(-10 -8 (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
(((-38 |#1|) (-138) (-170)) (T -38))
-((-4317 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))))
-(-13 (-1025) (-698 |t#1|) (-10 -8 (-15 -4317 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-3777 (((-400 |#1|) |#1|) 41)) (-4092 (((-400 |#1|) |#1|) 30) (((-400 |#1|) |#1| (-622 (-48))) 33)) (-1274 (((-112) |#1|) 56)))
-(((-39 |#1|) (-10 -7 (-15 -4092 ((-400 |#1|) |#1| (-622 (-48)))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3777 ((-400 |#1|) |#1|)) (-15 -1274 ((-112) |#1|))) (-1207 (-48))) (T -39))
-((-1274 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48))))) (-3777 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48))))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48))))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-48))) (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48))))))
-(-10 -7 (-15 -4092 ((-400 |#1|) |#1| (-622 (-48)))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3777 ((-400 |#1|) |#1|)) (-15 -1274 ((-112) |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1763 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-2178 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2176 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-1901 (((-669 (-402 |#2|)) (-1231 $)) NIL) (((-669 (-402 |#2|))) NIL)) (-3689 (((-402 |#2|) $) NIL)) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-402 |#2|) (-345)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-4329 (((-400 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1705 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3471 (((-751)) NIL (|has| (-402 |#2|) (-363)))) (-1777 (((-112)) NIL)) (-1776 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| (-402 |#2|) (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-3 (-402 |#2|) #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| (-402 |#2|) (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-402 |#2|) $) NIL)) (-1911 (($ (-1231 (-402 |#2|)) (-1231 $)) NIL) (($ (-1231 (-402 |#2|))) 57) (($ (-1231 |#2|) |#2|) 125)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-345)))) (-2894 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1900 (((-669 (-402 |#2|)) $ (-1231 $)) NIL) (((-669 (-402 |#2|)) $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-402 |#2|))) (|:| |vec| (-1231 (-402 |#2|)))) (-669 $) (-1231 $)) NIL) (((-669 (-402 |#2|)) (-669 $)) NIL)) (-1768 (((-1231 $) (-1231 $)) NIL)) (-4202 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-3821 (((-3 $ "failed") $) NIL)) (-1755 (((-622 (-622 |#1|))) NIL (|has| |#1| (-363)))) (-1780 (((-112) |#1| |#1|) NIL)) (-3444 (((-895)) NIL)) (-3327 (($) NIL (|has| (-402 |#2|) (-363)))) (-1775 (((-112)) NIL)) (-1774 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2893 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| (-402 |#2|) (-358)))) (-3857 (($ $) NIL)) (-3166 (($) NIL (|has| (-402 |#2|) (-345)))) (-1796 (((-112) $) NIL (|has| (-402 |#2|) (-345)))) (-1886 (($ $ (-751)) NIL (|has| (-402 |#2|) (-345))) (($ $) NIL (|has| (-402 |#2|) (-345)))) (-4086 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-4131 (((-895) $) NIL (|has| (-402 |#2|) (-345))) (((-812 (-895)) $) NIL (|has| (-402 |#2|) (-345)))) (-2502 (((-112) $) NIL)) (-3736 (((-751)) NIL)) (-1769 (((-1231 $) (-1231 $)) 102)) (-3467 (((-402 |#2|) $) NIL)) (-1756 (((-622 (-922 |#1|)) (-1149)) NIL (|has| |#1| (-358)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2130 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-2126 (((-895) $) NIL (|has| (-402 |#2|) (-363)))) (-3413 ((|#3| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3593 (((-1131) $) NIL)) (-1275 (((-1237) (-751)) 79)) (-1764 (((-669 (-402 |#2|))) 51)) (-1766 (((-669 (-402 |#2|))) 44)) (-2734 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1761 (($ (-1231 |#2|) |#2|) 126)) (-1765 (((-669 (-402 |#2|))) 45)) (-1767 (((-669 (-402 |#2|))) 43)) (-1760 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1762 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) 64)) (-1773 (((-1231 $)) 42)) (-4278 (((-1231 $)) 41)) (-1772 (((-112) $) NIL)) (-1771 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3804 (($) NIL (|has| (-402 |#2|) (-345)) CONST)) (-2492 (($ (-895)) NIL (|has| (-402 |#2|) (-363)))) (-1758 (((-3 |#2| #3="failed")) NIL)) (-3594 (((-1093) $) NIL)) (-1782 (((-751)) NIL)) (-2501 (($) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| (-402 |#2|) (-358)))) (-3495 (($ (-622 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-402 |#2|) (-345)))) (-4092 (((-400 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3820 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1704 (((-751) $) NIL (|has| (-402 |#2|) (-358)))) (-4159 ((|#1| $ |#1| |#1|) NIL)) (-1759 (((-3 |#2| #3#)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-4117 (((-402 |#2|) (-1231 $)) NIL) (((-402 |#2|)) 39)) (-1887 (((-751) $) NIL (|has| (-402 |#2|) (-345))) (((-3 (-751) "failed") $ $) NIL (|has| (-402 |#2|) (-345)))) (-4170 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-2500 (((-669 (-402 |#2|)) (-1231 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-3536 ((|#3|) 50)) (-1790 (($) NIL (|has| (-402 |#2|) (-345)))) (-3575 (((-1231 (-402 |#2|)) $ (-1231 $)) NIL) (((-669 (-402 |#2|)) (-1231 $) (-1231 $)) NIL) (((-1231 (-402 |#2|)) $) 58) (((-669 (-402 |#2|)) (-1231 $)) 103)) (-4330 (((-1231 (-402 |#2|)) $) NIL) (($ (-1231 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-402 |#2|) (-345)))) (-1770 (((-1231 $) (-1231 $)) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-538))) NIL (-3891 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-1014 (-402 (-538)))))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-3035 (($ $) NIL (|has| (-402 |#2|) (-345))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-2698 ((|#3| $) NIL)) (-3461 (((-751)) NIL)) (-1779 (((-112)) 37)) (-1778 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-2128 (((-1231 $)) 93)) (-2177 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1757 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1781 (((-112)) NIL)) (-2991 (($) 16 T CONST)) (-2997 (($) 26 T CONST)) (-3002 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-538)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-538))) NIL (|has| (-402 |#2|) (-358)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -1275 ((-1237) (-751))))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) |#3|) (T -40))
-((-1275 (*1 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-4 *5 (-1207 *4)) (-5 *2 (-1237)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1207 (-402 *5))) (-14 *7 *6))))
-(-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -1275 ((-1237) (-751)))))
-((-1276 ((|#2| |#2|) 48)) (-1281 ((|#2| |#2|) 120 (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-538)))))) (-1280 ((|#2| |#2|) 87 (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-538)))))) (-1279 ((|#2| |#2|) 88 (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-538)))))) (-1282 ((|#2| (-113) |#2| (-751)) 116 (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-538)))))) (-1278 (((-1143 |#2|) |#2|) 45)) (-1277 ((|#2| |#2| (-622 (-595 |#2|))) 18) ((|#2| |#2| (-622 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -1276 (|#2| |#2|)) (-15 -1277 (|#2| |#2|)) (-15 -1277 (|#2| |#2| |#2|)) (-15 -1277 (|#2| |#2| (-622 |#2|))) (-15 -1277 (|#2| |#2| (-622 (-595 |#2|)))) (-15 -1278 ((-1143 |#2|) |#2|)) (IF (|has| |#1| (-827)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1014 (-538))) (IF (|has| |#2| (-416 |#1|)) (PROGN (-15 -1279 (|#2| |#2|)) (-15 -1280 (|#2| |#2|)) (-15 -1281 (|#2| |#2|)) (-15 -1282 (|#2| (-113) |#2| (-751)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-545) (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 |#1| (-595 $)) $)) (-15 -3330 ((-1098 |#1| (-595 $)) $)) (-15 -4317 ($ (-1098 |#1| (-595 $))))))) (T -41))
-((-1282 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-751)) (-4 *5 (-446)) (-4 *5 (-827)) (-4 *5 (-1014 (-538))) (-4 *5 (-545)) (-5 *1 (-41 *5 *2)) (-4 *2 (-416 *5)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *5 (-595 $)) $)) (-15 -3330 ((-1098 *5 (-595 $)) $)) (-15 -4317 ($ (-1098 *5 (-595 $))))))))) (-1281 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))) (-1280 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))) (-1279 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))) (-1278 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-1143 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $)) (-15 -3330 ((-1098 *4 (-595 $)) $)) (-15 -4317 ($ (-1098 *4 (-595 $))))))))) (-1277 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-595 *2))) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $)) (-15 -3330 ((-1098 *4 (-595 $)) $)) (-15 -4317 ($ (-1098 *4 (-595 $))))))) (-4 *4 (-545)) (-5 *1 (-41 *4 *2)))) (-1277 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $)) (-15 -3330 ((-1098 *4 (-595 $)) $)) (-15 -4317 ($ (-1098 *4 (-595 $))))))) (-4 *4 (-545)) (-5 *1 (-41 *4 *2)))) (-1277 (*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))) (-1277 (*1 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))) (-1276 (*1 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))))
-(-10 -7 (-15 -1276 (|#2| |#2|)) (-15 -1277 (|#2| |#2|)) (-15 -1277 (|#2| |#2| |#2|)) (-15 -1277 (|#2| |#2| (-622 |#2|))) (-15 -1277 (|#2| |#2| (-622 (-595 |#2|)))) (-15 -1278 ((-1143 |#2|) |#2|)) (IF (|has| |#1| (-827)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1014 (-538))) (IF (|has| |#2| (-416 |#1|)) (PROGN (-15 -1279 (|#2| |#2|)) (-15 -1280 (|#2| |#2|)) (-15 -1281 (|#2| |#2|)) (-15 -1282 (|#2| (-113) |#2| (-751)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-4092 (((-400 (-1143 |#3|)) (-1143 |#3|) (-622 (-48))) 23) (((-400 |#3|) |#3| (-622 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4092 ((-400 |#3|) |#3| (-622 (-48)))) (-15 -4092 ((-400 (-1143 |#3|)) (-1143 |#3|) (-622 (-48))))) (-827) (-773) (-926 (-48) |#2| |#1|)) (T -42))
-((-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *7 (-926 (-48) *6 *5)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-400 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-926 (-48) *6 *5)))))
-(-10 -7 (-15 -4092 ((-400 |#3|) |#3| (-622 (-48)))) (-15 -4092 ((-400 (-1143 |#3|)) (-1143 |#3|) (-622 (-48)))))
-((-1286 (((-751) |#2|) 65)) (-1284 (((-751) |#2|) 68)) (-1299 (((-622 |#2|)) 33)) (-1283 (((-751) |#2|) 67)) (-1285 (((-751) |#2|) 64)) (-1287 (((-751) |#2|) 66)) (-1297 (((-622 (-669 |#1|))) 60)) (-1292 (((-622 |#2|)) 55)) (-1290 (((-622 |#2|) |#2|) 43)) (-1294 (((-622 |#2|)) 57)) (-1293 (((-622 |#2|)) 56)) (-1296 (((-622 (-669 |#1|))) 48)) (-1291 (((-622 |#2|)) 54)) (-1289 (((-622 |#2|) |#2|) 42)) (-1288 (((-622 |#2|)) 50)) (-1298 (((-622 (-669 |#1|))) 61)) (-1295 (((-622 |#2|)) 59)) (-2128 (((-1231 |#2|) (-1231 |#2|)) 84 (|has| |#1| (-302)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -1283 ((-751) |#2|)) (-15 -1284 ((-751) |#2|)) (-15 -1285 ((-751) |#2|)) (-15 -1286 ((-751) |#2|)) (-15 -1287 ((-751) |#2|)) (-15 -1288 ((-622 |#2|))) (-15 -1289 ((-622 |#2|) |#2|)) (-15 -1290 ((-622 |#2|) |#2|)) (-15 -1291 ((-622 |#2|))) (-15 -1292 ((-622 |#2|))) (-15 -1293 ((-622 |#2|))) (-15 -1294 ((-622 |#2|))) (-15 -1295 ((-622 |#2|))) (-15 -1296 ((-622 (-669 |#1|)))) (-15 -1297 ((-622 (-669 |#1|)))) (-15 -1298 ((-622 (-669 |#1|)))) (-15 -1299 ((-622 |#2|))) (IF (|has| |#1| (-302)) (-15 -2128 ((-1231 |#2|) (-1231 |#2|))) |%noBranch|)) (-545) (-413 |#1|)) (T -43))
-((-2128 (*1 *2 *2) (-12 (-5 *2 (-1231 *4)) (-4 *4 (-413 *3)) (-4 *3 (-302)) (-4 *3 (-545)) (-5 *1 (-43 *3 *4)))) (-1299 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1298 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1297 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1296 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1295 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1294 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1293 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1292 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1291 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1290 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1289 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1288 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1287 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1286 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1285 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1284 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1283 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))))
-(-10 -7 (-15 -1283 ((-751) |#2|)) (-15 -1284 ((-751) |#2|)) (-15 -1285 ((-751) |#2|)) (-15 -1286 ((-751) |#2|)) (-15 -1287 ((-751) |#2|)) (-15 -1288 ((-622 |#2|))) (-15 -1289 ((-622 |#2|) |#2|)) (-15 -1290 ((-622 |#2|) |#2|)) (-15 -1291 ((-622 |#2|))) (-15 -1292 ((-622 |#2|))) (-15 -1293 ((-622 |#2|))) (-15 -1294 ((-622 |#2|))) (-15 -1295 ((-622 |#2|))) (-15 -1296 ((-622 (-669 |#1|)))) (-15 -1297 ((-622 (-669 |#1|)))) (-15 -1298 ((-622 (-669 |#1|)))) (-15 -1299 ((-622 |#2|))) (IF (|has| |#1| (-302)) (-15 -2128 ((-1231 |#2|) (-1231 |#2|))) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1892 (((-3 $ #1="failed")) NIL (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3574 (((-1231 (-669 |#1|)) (-1231 $)) NIL) (((-1231 (-669 |#1|))) 24)) (-1845 (((-1231 $)) 51)) (-3896 (($) NIL T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (|has| |#1| (-545)))) (-1819 (((-3 $ #1#)) NIL (|has| |#1| (-545)))) (-1907 (((-669 |#1|) (-1231 $)) NIL) (((-669 |#1|)) NIL)) (-1843 ((|#1| $) NIL)) (-1905 (((-669 |#1|) $ (-1231 $)) NIL) (((-669 |#1|) $) NIL)) (-2496 (((-3 $ #1#) $) NIL (|has| |#1| (-545)))) (-2022 (((-1143 (-922 |#1|))) NIL (|has| |#1| (-358)))) (-2499 (($ $ (-895)) NIL)) (-1841 ((|#1| $) NIL)) (-1821 (((-1143 |#1|) $) NIL (|has| |#1| (-545)))) (-1909 ((|#1| (-1231 $)) NIL) ((|#1|) NIL)) (-1839 (((-1143 |#1|) $) NIL)) (-1833 (((-112)) 87)) (-1911 (($ (-1231 |#1|) (-1231 $)) NIL) (($ (-1231 |#1|)) NIL)) (-3821 (((-3 $ #1#) $) 14 (|has| |#1| (-545)))) (-3444 (((-895)) 52)) (-1830 (((-112)) NIL)) (-2524 (($ $ (-895)) NIL)) (-1826 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-1828 (((-112)) 89)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (|has| |#1| (-545)))) (-1820 (((-3 $ #1#)) NIL (|has| |#1| (-545)))) (-1908 (((-669 |#1|) (-1231 $)) NIL) (((-669 |#1|)) NIL)) (-1844 ((|#1| $) NIL)) (-1906 (((-669 |#1|) $ (-1231 $)) NIL) (((-669 |#1|) $) NIL)) (-2497 (((-3 $ #1#) $) NIL (|has| |#1| (-545)))) (-2026 (((-1143 (-922 |#1|))) NIL (|has| |#1| (-358)))) (-2498 (($ $ (-895)) NIL)) (-1842 ((|#1| $) NIL)) (-1822 (((-1143 |#1|) $) NIL (|has| |#1| (-545)))) (-1910 ((|#1| (-1231 $)) NIL) ((|#1|) NIL)) (-1840 (((-1143 |#1|) $) NIL)) (-1834 (((-112)) 86)) (-3593 (((-1131) $) NIL)) (-1825 (((-112)) 93)) (-1827 (((-112)) 92)) (-1829 (((-112)) 94)) (-3594 (((-1093) $) NIL)) (-1832 (((-112)) 88)) (-4159 ((|#1| $ (-538)) 54)) (-3575 (((-1231 |#1|) $ (-1231 $)) 48) (((-669 |#1|) (-1231 $) (-1231 $)) NIL) (((-1231 |#1|) $) 28) (((-669 |#1|) (-1231 $)) NIL)) (-4330 (((-1231 |#1|) $) NIL) (($ (-1231 |#1|)) NIL)) (-2014 (((-622 (-922 |#1|)) (-1231 $)) NIL) (((-622 (-922 |#1|))) NIL)) (-2686 (($ $ $) NIL)) (-1838 (((-112)) 84)) (-4317 (((-840) $) 69) (($ (-1231 |#1|)) 22)) (-2128 (((-1231 $)) 45)) (-1823 (((-622 (-1231 |#1|))) NIL (|has| |#1| (-545)))) (-2687 (($ $ $ $) NIL)) (-1836 (((-112)) 82)) (-2880 (($ (-669 |#1|) $) 18)) (-2685 (($ $ $) NIL)) (-1837 (((-112)) 85)) (-1835 (((-112)) 83)) (-1831 (((-112)) 81)) (-2991 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1115 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-413 |#1|) (-628 (-1115 |#2| |#1|)) (-10 -8 (-15 -4317 ($ (-1231 |#1|))))) (-358) (-895) (-622 (-1149)) (-1231 (-669 |#1|))) (T -44))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-358)) (-14 *6 (-1231 (-669 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))))))
-(-13 (-413 |#1|) (-628 (-1115 |#2| |#1|)) (-10 -8 (-15 -4317 ($ (-1231 |#1|)))))
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3761 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-4154 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-4156 (($ $) NIL)) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354))) (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-1846 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827))))) (-3242 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-3358 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354)))) (-4146 (($ $ $) 27 (|has| $ (-6 -4354)))) (-4145 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354)))) (-4148 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 29 (|has| $ (-6 -4354)))) (-4147 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-1198 (-538)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #1="last" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #3="first" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #4="value" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4155 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2314 (((-3 |#2| #5="failed") |#1| $) 37)) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-4158 (($ $ (-751)) NIL) (($ $) 24)) (-2455 (($ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #5#) |#1| $) 48) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) NIL)) (-3801 (((-112) $) NIL)) (-3778 (((-538) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) (((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 18 (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 18 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-3977 (($ (-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827))) (((-538) $) 32 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3192 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3872 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827))) (((-538) $) 34 (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-3897 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) 42 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4157 (($ $ (-751)) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2744 (((-622 |#1|) $) 20)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2382 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 |#1|) $) NIL) (((-622 (-538)) $) NIL)) (-2311 (((-112) |#1| $) NIL) (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827))) (($ $ (-751)) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 23)) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #6#) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3802 (((-112) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-2312 (((-622 |#2|) $) NIL) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 17)) (-3762 (((-112) $) 16)) (-3928 (($) 13)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) NIL) (($ $ (-1198 (-538))) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #3#) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #4#) NIL)) (-3362 (((-538) $ $) NIL)) (-1523 (($) 12) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-1632 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-3996 (((-112) $) NIL)) (-4151 (($ $) NIL)) (-4149 (($ $) NIL (|has| $ (-6 -4354)))) (-4152 (((-751) $) NIL)) (-4153 (($ $) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4150 (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL) (($ $ $) NIL)) (-4161 (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL) (($ (-622 $)) NIL) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 25) (($ $ $) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-1273 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") |#1| $) 44)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3017 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-4316 (((-751) $) 22 (|has| $ (-6 -4353)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1074) (-1074)) (T -45))
+((-1683 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))))
+(-13 (-1025) (-698 |t#1|) (-10 -8 (-15 -1683 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-3819 (((-413 |#1|) |#1|) 41)) (-3824 (((-413 |#1|) |#1|) 30) (((-413 |#1|) |#1| (-625 (-48))) 33)) (-3513 (((-112) |#1|) 56)))
+(((-39 |#1|) (-10 -7 (-15 -3824 ((-413 |#1|) |#1| (-625 (-48)))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3819 ((-413 |#1|) |#1|)) (-15 -3513 ((-112) |#1|))) (-1208 (-48))) (T -39))
+((-3513 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48))))) (-3819 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48))))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-48))) (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48))))))
+(-10 -7 (-15 -3824 ((-413 |#1|) |#1| (-625 (-48)))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3819 ((-413 |#1|) |#1|)) (-15 -3513 ((-112) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1706 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-3528 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-3509 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2570 (((-669 (-402 |#2|)) (-1232 $)) NIL) (((-669 (-402 |#2|))) NIL)) (-1650 (((-402 |#2|) $) NIL)) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-402 |#2|) (-344)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1330 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2408 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-2894 (((-751)) NIL (|has| (-402 |#2|) (-363)))) (-1861 (((-112)) NIL)) (-1852 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| (-402 |#2|) (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-3 (-402 |#2|) "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| (-402 |#2|) (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-402 |#2|) $) NIL)) (-2670 (($ (-1232 (-402 |#2|)) (-1232 $)) NIL) (($ (-1232 (-402 |#2|))) 57) (($ (-1232 |#2|) |#2|) 125)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-344)))) (-2851 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2559 (((-669 (-402 |#2|)) $ (-1232 $)) NIL) (((-669 (-402 |#2|)) $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-402 |#2|))) (|:| |vec| (-1232 (-402 |#2|)))) (-669 $) (-1232 $)) NIL) (((-669 (-402 |#2|)) (-669 $)) NIL)) (-1760 (((-1232 $) (-1232 $)) NIL)) (-2163 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-4174 (((-3 $ "failed") $) NIL)) (-1615 (((-625 (-625 |#1|))) NIL (|has| |#1| (-363)))) (-3701 (((-112) |#1| |#1|) NIL)) (-3442 (((-897)) NIL)) (-3702 (($) NIL (|has| (-402 |#2|) (-363)))) (-1839 (((-112)) NIL)) (-1826 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2826 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| (-402 |#2|) (-358)))) (-1294 (($ $) NIL)) (-4279 (($) NIL (|has| (-402 |#2|) (-344)))) (-3872 (((-112) $) NIL (|has| (-402 |#2|) (-344)))) (-3554 (($ $ (-751)) NIL (|has| (-402 |#2|) (-344))) (($ $) NIL (|has| (-402 |#2|) (-344)))) (-2951 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2172 (((-897) $) NIL (|has| (-402 |#2|) (-344))) (((-813 (-897)) $) NIL (|has| (-402 |#2|) (-344)))) (-3650 (((-112) $) NIL)) (-1682 (((-751)) NIL)) (-1770 (((-1232 $) (-1232 $)) 102)) (-4209 (((-402 |#2|) $) NIL)) (-1626 (((-625 (-928 |#1|)) (-1149)) NIL (|has| |#1| (-358)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1291 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-4318 (((-897) $) NIL (|has| (-402 |#2|) (-363)))) (-2148 ((|#3| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2883 (((-1131) $) NIL)) (-3522 (((-1237) (-751)) 79)) (-1718 (((-669 (-402 |#2|))) 51)) (-1740 (((-669 (-402 |#2|))) 44)) (-4092 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1684 (($ (-1232 |#2|) |#2|) 126)) (-1729 (((-669 (-402 |#2|))) 45)) (-1750 (((-669 (-402 |#2|))) 43)) (-1672 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1696 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) 64)) (-1816 (((-1232 $)) 42)) (-3993 (((-1232 $)) 41)) (-1805 (((-112) $) NIL)) (-1793 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2071 (($) NIL (|has| (-402 |#2|) (-344)) CONST)) (-3123 (($ (-897)) NIL (|has| (-402 |#2|) (-363)))) (-1649 (((-3 |#2| "failed")) NIL)) (-2831 (((-1093) $) NIL)) (-3722 (((-751)) NIL)) (-3212 (($) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| (-402 |#2|) (-358)))) (-2633 (($ (-625 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-402 |#2|) (-344)))) (-3824 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-2802 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2397 (((-751) $) NIL (|has| (-402 |#2|) (-358)))) (-2154 ((|#1| $ |#1| |#1|) NIL)) (-1661 (((-3 |#2| "failed")) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3217 (((-402 |#2|) (-1232 $)) NIL) (((-402 |#2|)) 39)) (-3563 (((-751) $) NIL (|has| (-402 |#2|) (-344))) (((-3 (-751) "failed") $ $) NIL (|has| (-402 |#2|) (-344)))) (-3072 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-3640 (((-669 (-402 |#2|)) (-1232 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-3610 ((|#3|) 50)) (-3798 (($) NIL (|has| (-402 |#2|) (-344)))) (-2780 (((-1232 (-402 |#2|)) $ (-1232 $)) NIL) (((-669 (-402 |#2|)) (-1232 $) (-1232 $)) NIL) (((-1232 (-402 |#2|)) $) 58) (((-669 (-402 |#2|)) (-1232 $)) 103)) (-2042 (((-1232 (-402 |#2|)) $) NIL) (($ (-1232 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-402 |#2|) (-344)))) (-1781 (((-1232 $) (-1232 $)) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-552))) NIL (-1523 (|has| (-402 |#2|) (-1014 (-402 (-552)))) (|has| (-402 |#2|) (-358)))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-4243 (($ $) NIL (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-3974 ((|#3| $) NIL)) (-4141 (((-751)) NIL)) (-1882 (((-112)) 37)) (-1872 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-1270 (((-1232 $)) 93)) (-3518 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3711 (((-112)) NIL)) (-2089 (($) 16 T CONST)) (-2100 (($) 26 T CONST)) (-3768 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-552)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-552))) NIL (|has| (-402 |#2|) (-358)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -3522 ((-1237) (-751))))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) |#3|) (T -40))
+((-3522 (*1 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-4 *5 (-1208 *4)) (-5 *2 (-1237)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1208 (-402 *5))) (-14 *7 *6))))
+(-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -3522 ((-1237) (-751)))))
+((-3532 ((|#2| |#2|) 48)) (-3585 ((|#2| |#2|) 120 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-552)))))) (-3573 ((|#2| |#2|) 87 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-552)))))) (-3562 ((|#2| |#2|) 88 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-552)))))) (-3596 ((|#2| (-114) |#2| (-751)) 116 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-552)))))) (-3553 (((-1145 |#2|) |#2|) 45)) (-3541 ((|#2| |#2| (-625 (-596 |#2|))) 18) ((|#2| |#2| (-625 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -3532 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3541 (|#2| |#2| |#2|)) (-15 -3541 (|#2| |#2| (-625 |#2|))) (-15 -3541 (|#2| |#2| (-625 (-596 |#2|)))) (-15 -3553 ((-1145 |#2|) |#2|)) (IF (|has| |#1| (-827)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1014 (-552))) (IF (|has| |#2| (-425 |#1|)) (PROGN (-15 -3562 (|#2| |#2|)) (-15 -3573 (|#2| |#2|)) (-15 -3585 (|#2| |#2|)) (-15 -3596 (|#2| (-114) |#2| (-751)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-544) (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 |#1| (-596 $)) $)) (-15 -1368 ((-1098 |#1| (-596 $)) $)) (-15 -1683 ($ (-1098 |#1| (-596 $))))))) (T -41))
+((-3596 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-751)) (-4 *5 (-446)) (-4 *5 (-827)) (-4 *5 (-1014 (-552))) (-4 *5 (-544)) (-5 *1 (-41 *5 *2)) (-4 *2 (-425 *5)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *5 (-596 $)) $)) (-15 -1368 ((-1098 *5 (-596 $)) $)) (-15 -1683 ($ (-1098 *5 (-596 $))))))))) (-3585 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))) (-3573 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))) (-3562 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))) (-3553 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-1145 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $)) (-15 -1368 ((-1098 *4 (-596 $)) $)) (-15 -1683 ($ (-1098 *4 (-596 $))))))))) (-3541 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-596 *2))) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $)) (-15 -1368 ((-1098 *4 (-596 $)) $)) (-15 -1683 ($ (-1098 *4 (-596 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) (-3541 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $)) (-15 -1368 ((-1098 *4 (-596 $)) $)) (-15 -1683 ($ (-1098 *4 (-596 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) (-3541 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))))
+(-10 -7 (-15 -3532 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3541 (|#2| |#2| |#2|)) (-15 -3541 (|#2| |#2| (-625 |#2|))) (-15 -3541 (|#2| |#2| (-625 (-596 |#2|)))) (-15 -3553 ((-1145 |#2|) |#2|)) (IF (|has| |#1| (-827)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1014 (-552))) (IF (|has| |#2| (-425 |#1|)) (PROGN (-15 -3562 (|#2| |#2|)) (-15 -3573 (|#2| |#2|)) (-15 -3585 (|#2| |#2|)) (-15 -3596 (|#2| (-114) |#2| (-751)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3824 (((-413 (-1145 |#3|)) (-1145 |#3|) (-625 (-48))) 23) (((-413 |#3|) |#3| (-625 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3824 ((-413 |#3|) |#3| (-625 (-48)))) (-15 -3824 ((-413 (-1145 |#3|)) (-1145 |#3|) (-625 (-48))))) (-827) (-773) (-925 (-48) |#2| |#1|)) (T -42))
+((-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *7 (-925 (-48) *6 *5)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-413 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-925 (-48) *6 *5)))))
+(-10 -7 (-15 -3824 ((-413 |#3|) |#3| (-625 (-48)))) (-15 -3824 ((-413 (-1145 |#3|)) (-1145 |#3|) (-625 (-48)))))
+((-2503 (((-751) |#2|) 65)) (-2482 (((-751) |#2|) 68)) (-2628 (((-625 |#2|)) 33)) (-3607 (((-751) |#2|) 67)) (-2494 (((-751) |#2|) 64)) (-2513 (((-751) |#2|) 66)) (-2611 (((-625 (-669 |#1|))) 60)) (-2558 (((-625 |#2|)) 55)) (-2541 (((-625 |#2|) |#2|) 43)) (-2577 (((-625 |#2|)) 57)) (-2568 (((-625 |#2|)) 56)) (-2600 (((-625 (-669 |#1|))) 48)) (-2549 (((-625 |#2|)) 54)) (-2531 (((-625 |#2|) |#2|) 42)) (-2522 (((-625 |#2|)) 50)) (-2618 (((-625 (-669 |#1|))) 61)) (-2588 (((-625 |#2|)) 59)) (-1270 (((-1232 |#2|) (-1232 |#2|)) 84 (|has| |#1| (-302)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -3607 ((-751) |#2|)) (-15 -2482 ((-751) |#2|)) (-15 -2494 ((-751) |#2|)) (-15 -2503 ((-751) |#2|)) (-15 -2513 ((-751) |#2|)) (-15 -2522 ((-625 |#2|))) (-15 -2531 ((-625 |#2|) |#2|)) (-15 -2541 ((-625 |#2|) |#2|)) (-15 -2549 ((-625 |#2|))) (-15 -2558 ((-625 |#2|))) (-15 -2568 ((-625 |#2|))) (-15 -2577 ((-625 |#2|))) (-15 -2588 ((-625 |#2|))) (-15 -2600 ((-625 (-669 |#1|)))) (-15 -2611 ((-625 (-669 |#1|)))) (-15 -2618 ((-625 (-669 |#1|)))) (-15 -2628 ((-625 |#2|))) (IF (|has| |#1| (-302)) (-15 -1270 ((-1232 |#2|) (-1232 |#2|))) |%noBranch|)) (-544) (-412 |#1|)) (T -43))
+((-1270 (*1 *2 *2) (-12 (-5 *2 (-1232 *4)) (-4 *4 (-412 *3)) (-4 *3 (-302)) (-4 *3 (-544)) (-5 *1 (-43 *3 *4)))) (-2628 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2618 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2611 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2600 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2588 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2577 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2568 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2558 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2549 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2541 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2531 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2522 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2513 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2503 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2482 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-3607 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))))
+(-10 -7 (-15 -3607 ((-751) |#2|)) (-15 -2482 ((-751) |#2|)) (-15 -2494 ((-751) |#2|)) (-15 -2503 ((-751) |#2|)) (-15 -2513 ((-751) |#2|)) (-15 -2522 ((-625 |#2|))) (-15 -2531 ((-625 |#2|) |#2|)) (-15 -2541 ((-625 |#2|) |#2|)) (-15 -2549 ((-625 |#2|))) (-15 -2558 ((-625 |#2|))) (-15 -2568 ((-625 |#2|))) (-15 -2577 ((-625 |#2|))) (-15 -2588 ((-625 |#2|))) (-15 -2600 ((-625 (-669 |#1|)))) (-15 -2611 ((-625 (-669 |#1|)))) (-15 -2618 ((-625 (-669 |#1|)))) (-15 -2628 ((-625 |#2|))) (IF (|has| |#1| (-302)) (-15 -1270 ((-1232 |#2|) (-1232 |#2|))) |%noBranch|))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3618 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2770 (((-1232 (-669 |#1|)) (-1232 $)) NIL) (((-1232 (-669 |#1|))) 24)) (-3208 (((-1232 $)) 51)) (-3101 (($) NIL T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (|has| |#1| (-544)))) (-4152 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-2629 (((-669 |#1|) (-1232 $)) NIL) (((-669 |#1|)) NIL)) (-3192 ((|#1| $) NIL)) (-2612 (((-669 |#1|) $ (-1232 $)) NIL) (((-669 |#1|) $) NIL)) (-3598 (((-3 $ "failed") $) NIL (|has| |#1| (-544)))) (-1392 (((-1145 (-928 |#1|))) NIL (|has| |#1| (-358)))) (-3629 (($ $ (-897)) NIL)) (-3174 ((|#1| $) NIL)) (-4175 (((-1145 |#1|) $) NIL (|has| |#1| (-544)))) (-2648 ((|#1| (-1232 $)) NIL) ((|#1|) NIL)) (-3159 (((-1145 |#1|) $) NIL)) (-4303 (((-112)) 87)) (-2670 (($ (-1232 |#1|) (-1232 $)) NIL) (($ (-1232 |#1|)) NIL)) (-4174 (((-3 $ "failed") $) 14 (|has| |#1| (-544)))) (-3442 (((-897)) 52)) (-4272 (((-112)) NIL)) (-2712 (($ $ (-897)) NIL)) (-4228 (((-112)) NIL)) (-4207 (((-112)) NIL)) (-4250 (((-112)) 89)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (|has| |#1| (-544)))) (-4164 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-2640 (((-669 |#1|) (-1232 $)) NIL) (((-669 |#1|)) NIL)) (-3199 ((|#1| $) NIL)) (-2619 (((-669 |#1|) $ (-1232 $)) NIL) (((-669 |#1|) $) NIL)) (-3609 (((-3 $ "failed") $) NIL (|has| |#1| (-544)))) (-1433 (((-1145 (-928 |#1|))) NIL (|has| |#1| (-358)))) (-3619 (($ $ (-897)) NIL)) (-3182 ((|#1| $) NIL)) (-4187 (((-1145 |#1|) $) NIL (|has| |#1| (-544)))) (-2658 ((|#1| (-1232 $)) NIL) ((|#1|) NIL)) (-3166 (((-1145 |#1|) $) NIL)) (-4312 (((-112)) 86)) (-2883 (((-1131) $) NIL)) (-4218 (((-112)) 93)) (-4239 (((-112)) 92)) (-4261 (((-112)) 94)) (-2831 (((-1093) $) NIL)) (-4293 (((-112)) 88)) (-2154 ((|#1| $ (-552)) 54)) (-2780 (((-1232 |#1|) $ (-1232 $)) 48) (((-669 |#1|) (-1232 $) (-1232 $)) NIL) (((-1232 |#1|) $) 28) (((-669 |#1|) (-1232 $)) NIL)) (-2042 (((-1232 |#1|) $) NIL) (($ (-1232 |#1|)) NIL)) (-2533 (((-625 (-928 |#1|)) (-1232 $)) NIL) (((-625 (-928 |#1|))) NIL)) (-3828 (($ $ $) NIL)) (-3148 (((-112)) 84)) (-1683 (((-839) $) 69) (($ (-1232 |#1|)) 22)) (-1270 (((-1232 $)) 45)) (-4197 (((-625 (-1232 |#1|))) NIL (|has| |#1| (-544)))) (-3842 (($ $ $ $) NIL)) (-4333 (((-112)) 82)) (-2872 (($ (-669 |#1|) $) 18)) (-3818 (($ $ $) NIL)) (-3137 (((-112)) 85)) (-4322 (((-112)) 83)) (-4283 (((-112)) 81)) (-2089 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1115 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-412 |#1|) (-628 (-1115 |#2| |#1|)) (-10 -8 (-15 -1683 ($ (-1232 |#1|))))) (-358) (-897) (-625 (-1149)) (-1232 (-669 |#1|))) (T -44))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-358)) (-14 *6 (-1232 (-669 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))))))
+(-13 (-412 |#1|) (-628 (-1115 |#2| |#1|)) (-10 -8 (-15 -1683 ($ (-1232 |#1|)))))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3800 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3897 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2101 (($ $) NIL)) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354))) (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3218 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827))))) (-1800 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-2565 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354)))) (-2301 (($ $ $) 27 (|has| $ (-6 -4354)))) (-2289 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354)))) (-2317 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 29 (|has| $ (-6 -4354)))) (-1851 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-1199 (-552)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "last" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354))) (($ $ "rest" $) NIL (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "first" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "value" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2673 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3128 (((-3 |#2| "failed") |#1| $) 37)) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2936 (($ $ (-751)) NIL) (($ $) 24)) (-3238 (($ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) NIL)) (-4011 (((-112) $) NIL)) (-2483 (((-552) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) (((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 18 (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 18 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2183 (($ (-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827))) (((-552) $) 32 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3260 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3280 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827))) (((-552) $) 34 (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2801 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) 42 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1437 (($ $ (-751)) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3712 (((-625 |#1|) $) 20)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3994 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 |#1|) $) NIL) (((-625 (-552)) $) NIL)) (-2564 (((-112) |#1| $) NIL) (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827))) (($ $ (-751)) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 23)) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-4022 (((-112) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1358 (((-625 |#2|) $) NIL) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 17)) (-1916 (((-112) $) 16)) (-3600 (($) 13)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) NIL) (($ $ (-1199 (-552))) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "first") NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "value") NIL)) (-1389 (((-552) $ $) NIL)) (-4255 (($) 12) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2884 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2316 (((-112) $) NIL)) (-2356 (($ $) NIL)) (-2330 (($ $) NIL (|has| $ (-6 -4354)))) (-2368 (((-751) $) NIL)) (-2379 (($ $) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2342 (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL) (($ $ $) NIL)) (-3402 (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL) (($ (-625 $)) NIL) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 25) (($ $ $) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1444 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") |#1| $) 44)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2334 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-1471 (((-751) $) 22 (|has| $ (-6 -4353)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1073) (-1073)) (T -45))
NIL
(-36 |#1| |#2|)
-((-4297 (((-112) $) 12)) (-4318 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-402 (-538)) $) 25) (($ $ (-402 (-538))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4297 ((-112) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) (-47 |#2| |#3|) (-1025) (-772)) (T -46))
+((-4201 (((-112) $) 12)) (-1996 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-402 (-552)) $) 25) (($ $ (-402 (-552))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -4201 ((-112) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) (-47 |#2| |#3|) (-1025) (-772)) (T -46))
NIL
-(-10 -8 (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4297 ((-112) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-4297 (((-112) $) 60)) (-3226 (($ |#1| |#2|) 59)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-4307 ((|#2| $) 62)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4040 ((|#1| $ |#2|) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538)))))))
+(-10 -8 (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -4201 ((-112) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-4201 (((-112) $) 60)) (-3957 (($ |#1| |#2|) 59)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-4276 ((|#2| $) 62)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-170)))) (-3637 ((|#1| $ |#2|) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552)))))))
(((-47 |#1| |#2|) (-138) (-1025) (-772)) (T -47))
-((-3525 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-3227 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112)))) (-3226 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-4319 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-4040 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-358)))))
-(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (-15 -3525 (|t#1| $)) (-15 -3227 ($ $)) (-15 -4307 (|t#2| $)) (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (-15 -4297 ((-112) $)) (-15 -3226 ($ |t#1| |t#2|)) (-15 -4319 ($ $)) (-15 -4040 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-358)) (-15 -4308 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-545)) (-6 (-545)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-538)))) (-6 (-38 (-402 (-538)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-285) |has| |#1| (-545)) ((-545) |has| |#1| (-545)) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-1667 (((-622 $) (-1143 $) (-1149)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-922 $)) NIL)) (-1265 (($ (-1143 $) (-1149)) NIL) (($ (-1143 $)) NIL) (($ (-922 $)) NIL)) (-3539 (((-112) $) 11)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1660 (((-622 (-595 $)) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1664 (($ $ (-288 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-1266 (((-622 $) (-1143 $) (-1149)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-922 $)) NIL)) (-3534 (($ (-1143 $) (-1149)) NIL) (($ (-1143 $)) NIL) (($ (-922 $)) NIL)) (-3508 (((-3 (-595 $) #1="failed") $) NIL) (((-3 (-538) #1#) $) NIL) (((-3 (-402 (-538)) #1#) $) NIL)) (-3507 (((-595 $) $) NIL) (((-538) $) NIL) (((-402 (-538)) $) NIL)) (-2894 (($ $ $) NIL)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-402 (-538)))) (|:| |vec| (-1231 (-402 (-538))))) (-669 $) (-1231 $)) NIL) (((-669 (-402 (-538))) (-669 $)) NIL)) (-4202 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2903 (($ $) NIL) (($ (-622 $)) NIL)) (-1659 (((-622 (-113)) $) NIL)) (-3380 (((-113) (-113)) NIL)) (-2502 (((-112) $) 14)) (-3006 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-3331 (((-1098 (-538) (-595 $)) $) NIL)) (-3344 (($ $ (-538)) NIL)) (-3467 (((-1143 $) (-1143 $) (-595 $)) NIL) (((-1143 $) (-1143 $) (-622 (-595 $))) NIL) (($ $ (-595 $)) NIL) (($ $ (-622 (-595 $))) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-1657 (((-1143 $) (-595 $)) NIL (|has| $ (-1025)))) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 $ $) (-595 $)) NIL)) (-1662 (((-3 (-595 $) "failed") $) NIL)) (-2013 (($ (-622 $)) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-1661 (((-622 (-595 $)) $) NIL)) (-2317 (($ (-113) $) NIL) (($ (-113) (-622 $)) NIL)) (-2964 (((-112) $ (-113)) NIL) (((-112) $ (-1149)) NIL)) (-2734 (($ $) NIL)) (-2933 (((-751) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ (-622 $)) NIL) (($ $ $) NIL)) (-1658 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-1149) (-1 $ (-622 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-622 (-113)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-113) (-1 $ (-622 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1704 (((-751) $) NIL)) (-4159 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-622 $)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-3330 (((-1098 (-538) (-595 $)) $) NIL)) (-3536 (($ $) NIL (|has| $ (-1025)))) (-4330 (((-373) $) NIL) (((-221) $) NIL) (((-166 (-373)) $) NIL)) (-4317 (((-840) $) NIL) (($ (-595 $)) NIL) (($ (-402 (-538))) NIL) (($ $) NIL) (($ (-538)) NIL) (($ (-1098 (-538) (-595 $))) NIL)) (-3461 (((-751)) NIL)) (-2920 (($ $) NIL) (($ (-622 $)) NIL)) (-2338 (((-112) (-113)) NIL)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 7 T CONST)) (-2997 (($) 12 T CONST)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 16)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (-4197 (($ $ $) 15) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-402 (-538))) NIL) (($ $ (-538)) NIL) (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL) (($ $ $) NIL) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL)))
-(((-48) (-13 (-293) (-27) (-1014 (-538)) (-1014 (-402 (-538))) (-621 (-538)) (-996) (-621 (-402 (-538))) (-145) (-598 (-166 (-373))) (-229) (-10 -8 (-15 -4317 ($ (-1098 (-538) (-595 $)))) (-15 -3331 ((-1098 (-538) (-595 $)) $)) (-15 -3330 ((-1098 (-538) (-595 $)) $)) (-15 -4202 ($ $)) (-15 -3467 ((-1143 $) (-1143 $) (-595 $))) (-15 -3467 ((-1143 $) (-1143 $) (-622 (-595 $)))) (-15 -3467 ($ $ (-595 $))) (-15 -3467 ($ $ (-622 (-595 $))))))) (T -48))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48)))) (-4202 (*1 *1 *1) (-5 *1 (-48))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 (-48))) (-5 *3 (-595 (-48))) (-5 *1 (-48)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 (-48))) (-5 *3 (-622 (-595 (-48)))) (-5 *1 (-48)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-48))) (-5 *1 (-48)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-595 (-48)))) (-5 *1 (-48)))))
-(-13 (-293) (-27) (-1014 (-538)) (-1014 (-402 (-538))) (-621 (-538)) (-996) (-621 (-402 (-538))) (-145) (-598 (-166 (-373))) (-229) (-10 -8 (-15 -4317 ($ (-1098 (-538) (-595 $)))) (-15 -3331 ((-1098 (-538) (-595 $)) $)) (-15 -3330 ((-1098 (-538) (-595 $)) $)) (-15 -4202 ($ $)) (-15 -3467 ((-1143 $) (-1143 $) (-595 $))) (-15 -3467 ((-1143 $) (-1143 $) (-622 (-595 $)))) (-15 -3467 ($ $ (-595 $))) (-15 -3467 ($ $ (-622 (-595 $))))))
-((-2898 (((-112) $ $) NIL)) (-2060 (((-622 (-1149)) $) 17)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 7)) (-3584 (((-1154) $) 18)) (-3387 (((-112) $ $) NIL)))
-(((-49) (-13 (-1074) (-10 -8 (-15 -2060 ((-622 (-1149)) $)) (-15 -3584 ((-1154) $))))) (T -49))
-((-2060 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-49)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-49)))))
-(-13 (-1074) (-10 -8 (-15 -2060 ((-622 (-1149)) $)) (-15 -3584 ((-1154) $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 61)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2995 (((-112) $) 20)) (-3508 (((-3 |#1| "failed") $) 23)) (-3507 ((|#1| $) 24)) (-4319 (($ $) 28)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3525 ((|#1| $) 21)) (-1513 (($ $) 50)) (-3593 (((-1131) $) NIL)) (-1512 (((-112) $) 30)) (-3594 (((-1093) $) NIL)) (-2501 (($ (-751)) 48)) (-4303 (($ (-622 (-538))) 49)) (-4307 (((-751) $) 31)) (-4317 (((-840) $) 64) (($ (-538)) 45) (($ |#1|) 43)) (-4040 ((|#1| $ $) 19)) (-3461 (((-751)) 47)) (-2991 (($) 32 T CONST)) (-2997 (($) 14 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 40)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-50 |#1| |#2|) (-13 (-603 |#1|) (-1014 |#1|) (-10 -8 (-15 -3525 (|#1| $)) (-15 -1513 ($ $)) (-15 -4319 ($ $)) (-15 -4040 (|#1| $ $)) (-15 -2501 ($ (-751))) (-15 -4303 ($ (-622 (-538)))) (-15 -1512 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -4307 ((-751) $)) (-15 -4318 ($ (-1 |#1| |#1|) $)))) (-1025) (-622 (-1149))) (T -50))
-((-3525 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-622 (-1149))))) (-1513 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-622 (-1149))))) (-4319 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-622 (-1149))))) (-4040 (*1 *2 *1 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-622 (-1149))))) (-2501 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))))) (-4303 (*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-50 *3 *4)) (-14 *4 (-622 (-1149))))))
-(-13 (-603 |#1|) (-1014 |#1|) (-10 -8 (-15 -3525 (|#1| $)) (-15 -1513 ($ $)) (-15 -4319 ($ $)) (-15 -4040 (|#1| $ $)) (-15 -2501 ($ (-751))) (-15 -4303 ($ (-622 (-538)))) (-15 -1512 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -4307 ((-751) $)) (-15 -4318 ($ (-1 |#1| |#1|) $))))
-((-2898 (((-112) $ $) NIL)) (-1300 (((-1131) (-112)) 25)) (-1303 (((-840) $) 24)) (-1301 (((-753) $) 12)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1304 (((-840) $) 16)) (-1302 (((-1076) $) 14)) (-4317 (((-840) $) 32)) (-1305 (($ (-1076) (-753)) 33)) (-3387 (((-112) $ $) 18)))
-(((-51) (-13 (-1074) (-10 -8 (-15 -1305 ($ (-1076) (-753))) (-15 -1304 ((-840) $)) (-15 -1303 ((-840) $)) (-15 -1302 ((-1076) $)) (-15 -1301 ((-753) $)) (-15 -1300 ((-1131) (-112)))))) (T -51))
-((-1305 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-753)) (-5 *1 (-51)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-51)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-51)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-51)))) (-1301 (*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-51)))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1131)) (-5 *1 (-51)))))
-(-13 (-1074) (-10 -8 (-15 -1305 ($ (-1076) (-753))) (-15 -1304 ((-840) $)) (-15 -1303 ((-840) $)) (-15 -1302 ((-1076) $)) (-15 -1301 ((-753) $)) (-15 -1300 ((-1131) (-112)))))
-((-2995 (((-112) (-51)) 13)) (-3508 (((-3 |#1| "failed") (-51)) 21)) (-3507 ((|#1| (-51)) 22)) (-4317 (((-51) |#1|) 18)))
-(((-52 |#1|) (-10 -7 (-15 -4317 ((-51) |#1|)) (-15 -3508 ((-3 |#1| "failed") (-51))) (-15 -2995 ((-112) (-51))) (-15 -3507 (|#1| (-51)))) (-1185)) (T -52))
-((-3507 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1185)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1185)))) (-3508 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1185)))) (-4317 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1185)))))
-(-10 -7 (-15 -4317 ((-51) |#1|)) (-15 -3508 ((-3 |#1| "failed") (-51))) (-15 -2995 ((-112) (-51))) (-15 -3507 (|#1| (-51))))
-((-2880 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2880 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1025) (-628 |#1|) (-829 |#1|)) (T -53))
-((-2880 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-628 *5)) (-4 *5 (-1025)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-829 *5)))))
-(-10 -7 (-15 -2880 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1307 ((|#3| |#3| (-622 (-1149))) 35)) (-1306 ((|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3| (-895)) 22) ((|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3|) 20)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1306 (|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3|)) (-15 -1306 (|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3| (-895))) (-15 -1307 (|#3| |#3| (-622 (-1149))))) (-1074) (-13 (-1025) (-862 |#1|) (-827) (-598 (-866 |#1|))) (-13 (-416 |#2|) (-862 |#1|) (-598 (-866 |#1|)))) (T -54))
-((-1307 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))) (-1306 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-622 (-1048 *5 *6 *2))) (-5 *4 (-895)) (-4 *5 (-1074)) (-4 *6 (-13 (-1025) (-862 *5) (-827) (-598 (-866 *5)))) (-4 *2 (-13 (-416 *6) (-862 *5) (-598 (-866 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1306 (*1 *2 *3 *2) (-12 (-5 *3 (-622 (-1048 *4 *5 *2))) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -1306 (|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3|)) (-15 -1306 (|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3| (-895))) (-15 -1307 (|#3| |#3| (-622 (-1149)))))
-((-1271 (((-112) $ (-751)) 23)) (-1309 (($ $ (-538) |#3|) 47)) (-1308 (($ $ (-538) |#4|) 51)) (-3447 ((|#3| $ (-538)) 60)) (-2068 (((-622 |#2|) $) 30)) (-4082 (((-112) $ (-751)) 25)) (-3596 (((-112) |#2| $) 55)) (-2072 (($ (-1 |#2| |#2|) $) 38)) (-4318 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-4079 (((-112) $ (-751)) 24)) (-2306 (($ $ |#2|) 35)) (-2070 (((-112) (-1 (-112) |#2|) $) 19)) (-4159 ((|#2| $ (-538) (-538)) NIL) ((|#2| $ (-538) (-538) |#2|) 27)) (-2069 (((-751) (-1 (-112) |#2|) $) 28) (((-751) |#2| $) 57)) (-3759 (($ $) 34)) (-3446 ((|#4| $ (-538)) 63)) (-4317 (((-840) $) 69)) (-2071 (((-112) (-1 (-112) |#2|) $) 18)) (-3387 (((-112) $ $) 54)) (-4316 (((-751) $) 26)))
-(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1308 (|#1| |#1| (-538) |#4|)) (-15 -1309 (|#1| |#1| (-538) |#3|)) (-15 -2068 ((-622 |#2|) |#1|)) (-15 -3446 (|#4| |#1| (-538))) (-15 -3447 (|#3| |#1| (-538))) (-15 -4159 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538))) (-15 -2306 (|#1| |#1| |#2|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -3596 ((-112) |#2| |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751))) (-15 -3759 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1185) (-367 |#2|) (-367 |#2|)) (T -55))
-NIL
-(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1308 (|#1| |#1| (-538) |#4|)) (-15 -1309 (|#1| |#1| (-538) |#3|)) (-15 -2068 ((-622 |#2|) |#1|)) (-15 -3446 (|#4| |#1| (-538))) (-15 -3447 (|#3| |#1| (-538))) (-15 -4159 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538))) (-15 -2306 (|#1| |#1| |#2|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -3596 ((-112) |#2| |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751))) (-15 -3759 (|#1| |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) (-538) |#1|) 44)) (-1309 (($ $ (-538) |#2|) 42)) (-1308 (($ $ (-538) |#3|) 41)) (-3896 (($) 7 T CONST)) (-3447 ((|#2| $ (-538)) 46)) (-1637 ((|#1| $ (-538) (-538) |#1|) 43)) (-3448 ((|#1| $ (-538) (-538)) 48)) (-2068 (((-622 |#1|) $) 30)) (-3450 (((-751) $) 51)) (-3977 (($ (-751) (-751) |#1|) 57)) (-3449 (((-751) $) 50)) (-4082 (((-112) $ (-751)) 9)) (-3454 (((-538) $) 55)) (-3452 (((-538) $) 53)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3453 (((-538) $) 54)) (-3451 (((-538) $) 52)) (-2072 (($ (-1 |#1| |#1|) $) 34)) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) 56)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) (-538)) 49) ((|#1| $ (-538) (-538) |#1|) 47)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-3446 ((|#3| $ (-538)) 45)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-56 |#1| |#2| |#3|) (-138) (-1185) (-367 |t#1|) (-367 |t#1|)) (T -56))
-((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3977 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-751)) (-4 *3 (-1185)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2306 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1185)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-538)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-538)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-538)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-538)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-751)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-751)))) (-4159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1185)))) (-3448 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1185)))) (-4159 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-3447 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1185)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1185)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-622 *3)))) (-4147 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-1637 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-1309 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-538)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-367 *4)) (-4 *5 (-367 *4)))) (-1308 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-538)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1185)) (-4 *5 (-367 *4)) (-4 *3 (-367 *4)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4318 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4318 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))))
-(-13 (-483 |t#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -3977 ($ (-751) (-751) |t#1|)) (-15 -2306 ($ $ |t#1|)) (-15 -3454 ((-538) $)) (-15 -3453 ((-538) $)) (-15 -3452 ((-538) $)) (-15 -3451 ((-538) $)) (-15 -3450 ((-751) $)) (-15 -3449 ((-751) $)) (-15 -4159 (|t#1| $ (-538) (-538))) (-15 -3448 (|t#1| $ (-538) (-538))) (-15 -4159 (|t#1| $ (-538) (-538) |t#1|)) (-15 -3447 (|t#2| $ (-538))) (-15 -3446 (|t#3| $ (-538))) (-15 -2068 ((-622 |t#1|) $)) (-15 -4147 (|t#1| $ (-538) (-538) |t#1|)) (-15 -1637 (|t#1| $ (-538) (-538) |t#1|)) (-15 -1309 ($ $ (-538) |t#2|)) (-15 -1308 ($ $ (-538) |t#3|)) (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (-15 -2072 ($ (-1 |t#1| |t#1|) $)) (-15 -4318 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4318 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) 11 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1310 (($ (-622 |#1|)) 13) (($ (-751) |#1|) 14)) (-3977 (($ (-751) |#1|) 9)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 7)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1310 ($ (-622 |#1|))) (-15 -1310 ($ (-751) |#1|)))) (-1185)) (T -57))
-((-1310 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-57 *3)))) (-1310 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-57 *3)) (-4 *3 (-1185)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -1310 ($ (-622 |#1|))) (-15 -1310 ($ (-751) |#1|))))
-((-4201 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-4202 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-4318 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -4201 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4318 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1185) (-1185)) (T -58))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-58 *5 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -4201 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4318 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) NIL)) (-1309 (($ $ (-538) (-57 |#1|)) NIL)) (-1308 (($ $ (-538) (-57 |#1|)) NIL)) (-3896 (($) NIL T CONST)) (-3447 (((-57 |#1|) $ (-538)) NIL)) (-1637 ((|#1| $ (-538) (-538) |#1|) NIL)) (-3448 ((|#1| $ (-538) (-538)) NIL)) (-2068 (((-622 |#1|) $) NIL)) (-3450 (((-751) $) NIL)) (-3977 (($ (-751) (-751) |#1|) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) (-538)) NIL) ((|#1| $ (-538) (-538) |#1|) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3446 (((-57 |#1|) $ (-538)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-59 |#1|) (-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4354))) (-1185)) (T -59))
-NIL
-(-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4354)))
-((-3508 (((-3 $ #1="failed") (-309 (-373))) 41) (((-3 $ #1#) (-309 (-538))) 46) (((-3 $ #1#) (-922 (-373))) 50) (((-3 $ #1#) (-922 (-538))) 54) (((-3 $ #1#) (-402 (-922 (-373)))) 36) (((-3 $ #1#) (-402 (-922 (-538)))) 29)) (-3507 (($ (-309 (-373))) 39) (($ (-309 (-538))) 44) (($ (-922 (-373))) 48) (($ (-922 (-538))) 52) (($ (-402 (-922 (-373)))) 34) (($ (-402 (-922 (-538)))) 26)) (-3739 (((-1237) $) 76)) (-4317 (((-840) $) 69) (($ (-622 (-325))) 61) (($ (-325)) 66) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 64) (($ (-334 (-3884 (QUOTE X)) (-3884) (-679))) 25)))
-(((-60 |#1|) (-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884 (QUOTE X)) (-3884) (-679)))))) (-1149)) (T -60))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-334 (-3884 (QUOTE X)) (-3884) (-679))) (-5 *1 (-60 *3)) (-14 *3 (-1149)))))
-(-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884 (QUOTE X)) (-3884) (-679))))))
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 74) (((-3 $ #1#) (-1231 (-309 (-538)))) 63) (((-3 $ #1#) (-1231 (-922 (-373)))) 94) (((-3 $ #1#) (-1231 (-922 (-538)))) 84) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 52) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 39)) (-3507 (($ (-1231 (-309 (-373)))) 70) (($ (-1231 (-309 (-538)))) 59) (($ (-1231 (-922 (-373)))) 90) (($ (-1231 (-922 (-538)))) 80) (($ (-1231 (-402 (-922 (-373))))) 48) (($ (-1231 (-402 (-922 (-538))))) 32)) (-3739 (((-1237) $) 120)) (-4317 (((-840) $) 113) (($ (-622 (-325))) 103) (($ (-325)) 97) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 101) (($ (-1231 (-334 (-3884 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3884) (-679)))) 31)))
-(((-61 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3884) (-679))))))) (-1149)) (T -61))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3884) (-679)))) (-5 *1 (-61 *3)) (-14 *3 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3884) (-679)))))))
-((-3739 (((-1237) $) 53) (((-1237)) 54)) (-4317 (((-840) $) 50)))
-(((-62 |#1|) (-13 (-391) (-10 -7 (-15 -3739 ((-1237))))) (-1149)) (T -62))
-((-3739 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-62 *3)) (-14 *3 (-1149)))))
-(-13 (-391) (-10 -7 (-15 -3739 ((-1237)))))
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 144) (((-3 $ #1#) (-1231 (-309 (-538)))) 134) (((-3 $ #1#) (-1231 (-922 (-373)))) 164) (((-3 $ #1#) (-1231 (-922 (-538)))) 154) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 123) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 111)) (-3507 (($ (-1231 (-309 (-373)))) 140) (($ (-1231 (-309 (-538)))) 130) (($ (-1231 (-922 (-373)))) 160) (($ (-1231 (-922 (-538)))) 150) (($ (-1231 (-402 (-922 (-373))))) 119) (($ (-1231 (-402 (-922 (-538))))) 104)) (-3739 (((-1237) $) 97)) (-4317 (((-840) $) 91) (($ (-622 (-325))) 29) (($ (-325)) 34) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 32) (($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679)))) 89)))
-(((-63 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679))))))) (-1149)) (T -63))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679)))) (-5 *1 (-63 *3)) (-14 *3 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-669 (-309 (-373)))) 109) (((-3 $ #1#) (-669 (-309 (-538)))) 97) (((-3 $ #1#) (-669 (-922 (-373)))) 131) (((-3 $ #1#) (-669 (-922 (-538)))) 120) (((-3 $ #1#) (-669 (-402 (-922 (-373))))) 85) (((-3 $ #1#) (-669 (-402 (-922 (-538))))) 71)) (-3507 (($ (-669 (-309 (-373)))) 105) (($ (-669 (-309 (-538)))) 93) (($ (-669 (-922 (-373)))) 127) (($ (-669 (-922 (-538)))) 116) (($ (-669 (-402 (-922 (-373))))) 81) (($ (-669 (-402 (-922 (-538))))) 64)) (-3739 (((-1237) $) 139)) (-4317 (((-840) $) 133) (($ (-622 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 31) (($ (-669 (-334 (-3884) (-3884 (QUOTE X) (QUOTE HESS)) (-679)))) 54)))
-(((-64 |#1|) (-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884) (-3884 (QUOTE X) (QUOTE HESS)) (-679))))))) (-1149)) (T -64))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-3884) (-3884 (QUOTE X) (QUOTE HESS)) (-679)))) (-5 *1 (-64 *3)) (-14 *3 (-1149)))))
-(-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884) (-3884 (QUOTE X) (QUOTE HESS)) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-309 (-373))) 59) (((-3 $ #1#) (-309 (-538))) 64) (((-3 $ #1#) (-922 (-373))) 68) (((-3 $ #1#) (-922 (-538))) 72) (((-3 $ #1#) (-402 (-922 (-373)))) 54) (((-3 $ #1#) (-402 (-922 (-538)))) 47)) (-3507 (($ (-309 (-373))) 57) (($ (-309 (-538))) 62) (($ (-922 (-373))) 66) (($ (-922 (-538))) 70) (($ (-402 (-922 (-373)))) 52) (($ (-402 (-922 (-538)))) 44)) (-3739 (((-1237) $) 81)) (-4317 (((-840) $) 75) (($ (-622 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 31) (($ (-334 (-3884) (-3884 (QUOTE XC)) (-679))) 39)))
-(((-65 |#1|) (-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE XC)) (-679)))))) (-1149)) (T -65))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-334 (-3884) (-3884 (QUOTE XC)) (-679))) (-5 *1 (-65 *3)) (-14 *3 (-1149)))))
-(-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE XC)) (-679))))))
-((-3739 (((-1237) $) 63)) (-4317 (((-840) $) 57) (($ (-669 (-679))) 49) (($ (-622 (-325))) 48) (($ (-325)) 55) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 53)))
+((-4144 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112)))) (-3957 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-4169 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-3637 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-358)))))
+(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (-15 -4144 (|t#1| $)) (-15 -4131 ($ $)) (-15 -4276 (|t#2| $)) (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (-15 -4201 ((-112) $)) (-15 -3957 ($ |t#1| |t#2|)) (-15 -4169 ($ $)) (-15 -3637 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-358)) (-15 -2404 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-544)) (-6 (-544)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-552)))) (-6 (-38 (-402 (-552)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-285) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-1993 (((-625 $) (-1145 $) (-1149)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-928 $)) NIL)) (-3428 (($ (-1145 $) (-1149)) NIL) (($ (-1145 $)) NIL) (($ (-928 $)) NIL)) (-3641 (((-112) $) 11)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-3715 (((-625 (-596 $)) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3831 (($ $ (-289 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-3438 (((-625 $) (-1145 $) (-1149)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-928 $)) NIL)) (-3588 (($ (-1145 $) (-1149)) NIL) (($ (-1145 $)) NIL) (($ (-928 $)) NIL)) (-1893 (((-3 (-596 $) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL)) (-1895 (((-596 $) $) NIL) (((-552) $) NIL) (((-402 (-552)) $) NIL)) (-2851 (($ $ $) NIL)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-402 (-552)))) (|:| |vec| (-1232 (-402 (-552))))) (-669 $) (-1232 $)) NIL) (((-669 (-402 (-552))) (-669 $)) NIL)) (-2163 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-2411 (($ $) NIL) (($ (-625 $)) NIL)) (-1940 (((-625 (-114)) $) NIL)) (-1563 (((-114) (-114)) NIL)) (-3650 (((-112) $) 14)) (-3932 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-1356 (((-1098 (-552) (-596 $)) $) NIL)) (-2429 (($ $ (-552)) NIL)) (-4209 (((-1145 $) (-1145 $) (-596 $)) NIL) (((-1145 $) (-1145 $) (-625 (-596 $))) NIL) (($ $ (-596 $)) NIL) (($ $ (-625 (-596 $))) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1917 (((-1145 $) (-596 $)) NIL (|has| $ (-1025)))) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 $ $) (-596 $)) NIL)) (-1952 (((-3 (-596 $) "failed") $) NIL)) (-2605 (($ (-625 $)) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3783 (((-625 (-596 $)) $) NIL)) (-1425 (($ (-114) $) NIL) (($ (-114) (-625 $)) NIL)) (-1721 (((-112) $ (-114)) NIL) (((-112) $ (-1149)) NIL)) (-4092 (($ $) NIL)) (-2207 (((-751) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ (-625 $)) NIL) (($ $ $) NIL)) (-1929 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-1149) (-1 $ (-625 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-625 (-114)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-114) (-1 $ (-625 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2397 (((-751) $) NIL)) (-2154 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-625 $)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1963 (($ $) NIL) (($ $ $) NIL)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-1368 (((-1098 (-552) (-596 $)) $) NIL)) (-3610 (($ $) NIL (|has| $ (-1025)))) (-2042 (((-374) $) NIL) (((-221) $) NIL) (((-167 (-374)) $) NIL)) (-1683 (((-839) $) NIL) (($ (-596 $)) NIL) (($ (-402 (-552))) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-1098 (-552) (-596 $))) NIL)) (-4141 (((-751)) NIL)) (-3779 (($ $) NIL) (($ (-625 $)) NIL)) (-1572 (((-112) (-114)) NIL)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 7 T CONST)) (-2100 (($) 12 T CONST)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 16)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (-2393 (($ $ $) 15) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-402 (-552))) NIL) (($ $ (-552)) NIL) (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL)))
+(((-48) (-13 (-297) (-27) (-1014 (-552)) (-1014 (-402 (-552))) (-621 (-552)) (-998) (-621 (-402 (-552))) (-145) (-598 (-167 (-374))) (-229) (-10 -8 (-15 -1683 ($ (-1098 (-552) (-596 $)))) (-15 -1356 ((-1098 (-552) (-596 $)) $)) (-15 -1368 ((-1098 (-552) (-596 $)) $)) (-15 -2163 ($ $)) (-15 -4209 ((-1145 $) (-1145 $) (-596 $))) (-15 -4209 ((-1145 $) (-1145 $) (-625 (-596 $)))) (-15 -4209 ($ $ (-596 $))) (-15 -4209 ($ $ (-625 (-596 $))))))) (T -48))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48)))) (-2163 (*1 *1 *1) (-5 *1 (-48))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 (-48))) (-5 *3 (-596 (-48))) (-5 *1 (-48)))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 (-48))) (-5 *3 (-625 (-596 (-48)))) (-5 *1 (-48)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-596 (-48))) (-5 *1 (-48)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-596 (-48)))) (-5 *1 (-48)))))
+(-13 (-297) (-27) (-1014 (-552)) (-1014 (-402 (-552))) (-621 (-552)) (-998) (-621 (-402 (-552))) (-145) (-598 (-167 (-374))) (-229) (-10 -8 (-15 -1683 ($ (-1098 (-552) (-596 $)))) (-15 -1356 ((-1098 (-552) (-596 $)) $)) (-15 -1368 ((-1098 (-552) (-596 $)) $)) (-15 -2163 ($ $)) (-15 -4209 ((-1145 $) (-1145 $) (-596 $))) (-15 -4209 ((-1145 $) (-1145 $) (-625 (-596 $)))) (-15 -4209 ($ $ (-596 $))) (-15 -4209 ($ $ (-625 (-596 $))))))
+((-1671 (((-112) $ $) NIL)) (-3393 (((-625 (-1149)) $) 17)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 7)) (-1300 (((-1154) $) 18)) (-2281 (((-112) $ $) NIL)))
+(((-49) (-13 (-1073) (-10 -8 (-15 -3393 ((-625 (-1149)) $)) (-15 -1300 ((-1154) $))))) (T -49))
+((-3393 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-49)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-49)))))
+(-13 (-1073) (-10 -8 (-15 -3393 ((-625 (-1149)) $)) (-15 -1300 ((-1154) $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 61)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2023 (((-112) $) 20)) (-1893 (((-3 |#1| "failed") $) 23)) (-1895 ((|#1| $) 24)) (-4169 (($ $) 28)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4144 ((|#1| $) 21)) (-4145 (($ $) 50)) (-2883 (((-1131) $) NIL)) (-4132 (((-112) $) 30)) (-2831 (((-1093) $) NIL)) (-3212 (($ (-751)) 48)) (-2863 (($ (-625 (-552))) 49)) (-4276 (((-751) $) 31)) (-1683 (((-839) $) 64) (($ (-552)) 45) (($ |#1|) 43)) (-3637 ((|#1| $ $) 19)) (-4141 (((-751)) 47)) (-2089 (($) 32 T CONST)) (-2100 (($) 14 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 40)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-50 |#1| |#2|) (-13 (-602 |#1|) (-1014 |#1|) (-10 -8 (-15 -4144 (|#1| $)) (-15 -4145 ($ $)) (-15 -4169 ($ $)) (-15 -3637 (|#1| $ $)) (-15 -3212 ($ (-751))) (-15 -2863 ($ (-625 (-552)))) (-15 -4132 ((-112) $)) (-15 -2023 ((-112) $)) (-15 -4276 ((-751) $)) (-15 -1996 ($ (-1 |#1| |#1|) $)))) (-1025) (-625 (-1149))) (T -50))
+((-4144 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-625 (-1149))))) (-4145 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-625 (-1149))))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-625 (-1149))))) (-3637 (*1 *2 *1 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-625 (-1149))))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))))) (-2863 (*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-50 *3 *4)) (-14 *4 (-625 (-1149))))))
+(-13 (-602 |#1|) (-1014 |#1|) (-10 -8 (-15 -4144 (|#1| $)) (-15 -4145 ($ $)) (-15 -4169 ($ $)) (-15 -3637 (|#1| $ $)) (-15 -3212 ($ (-751))) (-15 -2863 ($ (-625 (-552)))) (-15 -4132 ((-112) $)) (-15 -2023 ((-112) $)) (-15 -4276 ((-751) $)) (-15 -1996 ($ (-1 |#1| |#1|) $))))
+((-2023 (((-112) (-52)) 13)) (-1893 (((-3 |#1| "failed") (-52)) 21)) (-1895 ((|#1| (-52)) 22)) (-1683 (((-52) |#1|) 18)))
+(((-51 |#1|) (-10 -7 (-15 -1683 ((-52) |#1|)) (-15 -1893 ((-3 |#1| "failed") (-52))) (-15 -2023 ((-112) (-52))) (-15 -1895 (|#1| (-52)))) (-1186)) (T -51))
+((-1895 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1186)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1186)))) (-1893 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1186)))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1186)))))
+(-10 -7 (-15 -1683 ((-52) |#1|)) (-15 -1893 ((-3 |#1| "failed") (-52))) (-15 -2023 ((-112) (-52))) (-15 -1895 (|#1| (-52))))
+((-1671 (((-112) $ $) NIL)) (-2639 (((-1131) (-112)) 25)) (-2647 (((-839) $) 24)) (-3387 (((-754) $) 12)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2657 (((-839) $) 16)) (-4282 (((-1077) $) 14)) (-1683 (((-839) $) 32)) (-2053 (($ (-1077) (-754)) 33)) (-2281 (((-112) $ $) 18)))
+(((-52) (-13 (-1073) (-10 -8 (-15 -2053 ($ (-1077) (-754))) (-15 -2657 ((-839) $)) (-15 -2647 ((-839) $)) (-15 -4282 ((-1077) $)) (-15 -3387 ((-754) $)) (-15 -2639 ((-1131) (-112)))))) (T -52))
+((-2053 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-754)) (-5 *1 (-52)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-52)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-52)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-52)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-52)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1131)) (-5 *1 (-52)))))
+(-13 (-1073) (-10 -8 (-15 -2053 ($ (-1077) (-754))) (-15 -2657 ((-839) $)) (-15 -2647 ((-839) $)) (-15 -4282 ((-1077) $)) (-15 -3387 ((-754) $)) (-15 -2639 ((-1131) (-112)))))
+((-2872 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2872 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1025) (-628 |#1|) (-829 |#1|)) (T -53))
+((-2872 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-628 *5)) (-4 *5 (-1025)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-829 *5)))))
+(-10 -7 (-15 -2872 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2679 ((|#3| |#3| (-625 (-1149))) 35)) (-2669 ((|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3| (-897)) 22) ((|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3|) 20)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2669 (|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3|)) (-15 -2669 (|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3| (-897))) (-15 -2679 (|#3| |#3| (-625 (-1149))))) (-1073) (-13 (-1025) (-862 |#1|) (-827) (-598 (-868 |#1|))) (-13 (-425 |#2|) (-862 |#1|) (-598 (-868 |#1|)))) (T -54))
+((-2679 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))) (-2669 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-625 (-1049 *5 *6 *2))) (-5 *4 (-897)) (-4 *5 (-1073)) (-4 *6 (-13 (-1025) (-862 *5) (-827) (-598 (-868 *5)))) (-4 *2 (-13 (-425 *6) (-862 *5) (-598 (-868 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2669 (*1 *2 *3 *2) (-12 (-5 *3 (-625 (-1049 *4 *5 *2))) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -2669 (|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3|)) (-15 -2669 (|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3| (-897))) (-15 -2679 (|#3| |#3| (-625 (-1149)))))
+((-3495 (((-112) $ (-751)) 23)) (-2701 (($ $ (-552) |#3|) 47)) (-2691 (($ $ (-552) |#4|) 51)) (-4015 ((|#3| $ (-552)) 60)) (-3799 (((-625 |#2|) $) 30)) (-2909 (((-112) $ (-751)) 25)) (-2893 (((-112) |#2| $) 55)) (-3683 (($ (-1 |#2| |#2|) $) 38)) (-1996 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-2878 (((-112) $ (-751)) 24)) (-2518 (($ $ |#2|) 35)) (-1888 (((-112) (-1 (-112) |#2|) $) 19)) (-2154 ((|#2| $ (-552) (-552)) NIL) ((|#2| $ (-552) (-552) |#2|) 27)) (-2840 (((-751) (-1 (-112) |#2|) $) 28) (((-751) |#2| $) 57)) (-1871 (($ $) 34)) (-4004 ((|#4| $ (-552)) 63)) (-1683 (((-839) $) 69)) (-1900 (((-112) (-1 (-112) |#2|) $) 18)) (-2281 (((-112) $ $) 54)) (-1471 (((-751) $) 26)))
+(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2691 (|#1| |#1| (-552) |#4|)) (-15 -2701 (|#1| |#1| (-552) |#3|)) (-15 -3799 ((-625 |#2|) |#1|)) (-15 -4004 (|#4| |#1| (-552))) (-15 -4015 (|#3| |#1| (-552))) (-15 -2154 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552))) (-15 -2518 (|#1| |#1| |#2|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -2893 ((-112) |#2| |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751))) (-15 -1871 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1186) (-368 |#2|) (-368 |#2|)) (T -55))
+NIL
+(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2691 (|#1| |#1| (-552) |#4|)) (-15 -2701 (|#1| |#1| (-552) |#3|)) (-15 -3799 ((-625 |#2|) |#1|)) (-15 -4004 (|#4| |#1| (-552))) (-15 -4015 (|#3| |#1| (-552))) (-15 -2154 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552))) (-15 -2518 (|#1| |#1| |#2|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -2893 ((-112) |#2| |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751))) (-15 -1871 (|#1| |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) (-552) |#1|) 44)) (-2701 (($ $ (-552) |#2|) 42)) (-2691 (($ $ (-552) |#3|) 41)) (-3101 (($) 7 T CONST)) (-4015 ((|#2| $ (-552)) 46)) (-3692 ((|#1| $ (-552) (-552) |#1|) 43)) (-3631 ((|#1| $ (-552) (-552)) 48)) (-3799 (((-625 |#1|) $) 30)) (-1773 (((-751) $) 51)) (-2183 (($ (-751) (-751) |#1|) 57)) (-1784 (((-751) $) 50)) (-2909 (((-112) $ (-751)) 9)) (-4063 (((-552) $) 55)) (-4038 (((-552) $) 53)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-4050 (((-552) $) 54)) (-4027 (((-552) $) 52)) (-3683 (($ (-1 |#1| |#1|) $) 34)) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) 56)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) (-552)) 49) ((|#1| $ (-552) (-552) |#1|) 47)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-4004 ((|#3| $ (-552)) 45)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-56 |#1| |#2| |#3|) (-138) (-1186) (-368 |t#1|) (-368 |t#1|)) (T -56))
+((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2183 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-751)) (-4 *3 (-1186)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2518 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1186)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-552)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-552)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-552)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-552)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-751)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-751)))) (-2154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-1186)))) (-3631 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-1186)))) (-2154 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1186)) (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) (-4004 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1186)) (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-625 *3)))) (-1851 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-3692 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-2701 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1186)) (-4 *3 (-368 *4)) (-4 *5 (-368 *4)))) (-2691 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1186)) (-4 *5 (-368 *4)) (-4 *3 (-368 *4)))) (-3683 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1996 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1996 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))))
+(-13 (-483 |t#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -2183 ($ (-751) (-751) |t#1|)) (-15 -2518 ($ $ |t#1|)) (-15 -4063 ((-552) $)) (-15 -4050 ((-552) $)) (-15 -4038 ((-552) $)) (-15 -4027 ((-552) $)) (-15 -1773 ((-751) $)) (-15 -1784 ((-751) $)) (-15 -2154 (|t#1| $ (-552) (-552))) (-15 -3631 (|t#1| $ (-552) (-552))) (-15 -2154 (|t#1| $ (-552) (-552) |t#1|)) (-15 -4015 (|t#2| $ (-552))) (-15 -4004 (|t#3| $ (-552))) (-15 -3799 ((-625 |t#1|) $)) (-15 -1851 (|t#1| $ (-552) (-552) |t#1|)) (-15 -3692 (|t#1| $ (-552) (-552) |t#1|)) (-15 -2701 ($ $ (-552) |t#2|)) (-15 -2691 ($ $ (-552) |t#3|)) (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (-15 -3683 ($ (-1 |t#1| |t#1|) $)) (-15 -1996 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1996 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-1454 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2163 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-1996 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13)))
+(((-57 |#1| |#2|) (-10 -7 (-15 -1454 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -1996 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1186) (-1186)) (T -57))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-57 *5 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1186)) (-4 *5 (-1186)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))))
+(-10 -7 (-15 -1454 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -1996 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) 11 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2710 (($ (-625 |#1|)) 13) (($ (-751) |#1|) 14)) (-2183 (($ (-751) |#1|) 9)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 7)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2710 ($ (-625 |#1|))) (-15 -2710 ($ (-751) |#1|)))) (-1186)) (T -58))
+((-2710 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-58 *3)))) (-2710 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-58 *3)) (-4 *3 (-1186)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2710 ($ (-625 |#1|))) (-15 -2710 ($ (-751) |#1|))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) NIL)) (-2701 (($ $ (-552) (-58 |#1|)) NIL)) (-2691 (($ $ (-552) (-58 |#1|)) NIL)) (-3101 (($) NIL T CONST)) (-4015 (((-58 |#1|) $ (-552)) NIL)) (-3692 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3631 ((|#1| $ (-552) (-552)) NIL)) (-3799 (((-625 |#1|) $) NIL)) (-1773 (((-751) $) NIL)) (-2183 (($ (-751) (-751) |#1|) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-4004 (((-58 |#1|) $ (-552)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4354))) (-1186)) (T -59))
+NIL
+(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4354)))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 74) (((-3 $ "failed") (-1232 (-311 (-552)))) 63) (((-3 $ "failed") (-1232 (-928 (-374)))) 94) (((-3 $ "failed") (-1232 (-928 (-552)))) 84) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 52) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 39)) (-1895 (($ (-1232 (-311 (-374)))) 70) (($ (-1232 (-311 (-552)))) 59) (($ (-1232 (-928 (-374)))) 90) (($ (-1232 (-928 (-552)))) 80) (($ (-1232 (-402 (-928 (-374))))) 48) (($ (-1232 (-402 (-928 (-552))))) 32)) (-2927 (((-1237) $) 120)) (-1683 (((-839) $) 113) (($ (-625 (-325))) 103) (($ (-325)) 97) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 101) (($ (-1232 (-334 (-1695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1695) (-679)))) 31)))
+(((-60 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1695) (-679))))))) (-1149)) (T -60))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1695) (-679)))) (-5 *1 (-60 *3)) (-14 *3 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1695) (-679)))))))
+((-2927 (((-1237) $) 53) (((-1237)) 54)) (-1683 (((-839) $) 50)))
+(((-61 |#1|) (-13 (-390) (-10 -7 (-15 -2927 ((-1237))))) (-1149)) (T -61))
+((-2927 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-61 *3)) (-14 *3 (-1149)))))
+(-13 (-390) (-10 -7 (-15 -2927 ((-1237)))))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 144) (((-3 $ "failed") (-1232 (-311 (-552)))) 134) (((-3 $ "failed") (-1232 (-928 (-374)))) 164) (((-3 $ "failed") (-1232 (-928 (-552)))) 154) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 123) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 111)) (-1895 (($ (-1232 (-311 (-374)))) 140) (($ (-1232 (-311 (-552)))) 130) (($ (-1232 (-928 (-374)))) 160) (($ (-1232 (-928 (-552)))) 150) (($ (-1232 (-402 (-928 (-374))))) 119) (($ (-1232 (-402 (-928 (-552))))) 104)) (-2927 (((-1237) $) 97)) (-1683 (((-839) $) 91) (($ (-625 (-325))) 29) (($ (-325)) 34) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 32) (($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679)))) 89)))
+(((-62 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679))))))) (-1149)) (T -62))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679)))) (-5 *1 (-62 *3)) (-14 *3 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679)))))))
+((-1893 (((-3 $ "failed") (-311 (-374))) 41) (((-3 $ "failed") (-311 (-552))) 46) (((-3 $ "failed") (-928 (-374))) 50) (((-3 $ "failed") (-928 (-552))) 54) (((-3 $ "failed") (-402 (-928 (-374)))) 36) (((-3 $ "failed") (-402 (-928 (-552)))) 29)) (-1895 (($ (-311 (-374))) 39) (($ (-311 (-552))) 44) (($ (-928 (-374))) 48) (($ (-928 (-552))) 52) (($ (-402 (-928 (-374)))) 34) (($ (-402 (-928 (-552)))) 26)) (-2927 (((-1237) $) 76)) (-1683 (((-839) $) 69) (($ (-625 (-325))) 61) (($ (-325)) 66) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 64) (($ (-334 (-1695 (QUOTE X)) (-1695) (-679))) 25)))
+(((-63 |#1|) (-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695 (QUOTE X)) (-1695) (-679)))))) (-1149)) (T -63))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-334 (-1695 (QUOTE X)) (-1695) (-679))) (-5 *1 (-63 *3)) (-14 *3 (-1149)))))
+(-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695 (QUOTE X)) (-1695) (-679))))))
+((-1893 (((-3 $ "failed") (-669 (-311 (-374)))) 109) (((-3 $ "failed") (-669 (-311 (-552)))) 97) (((-3 $ "failed") (-669 (-928 (-374)))) 131) (((-3 $ "failed") (-669 (-928 (-552)))) 120) (((-3 $ "failed") (-669 (-402 (-928 (-374))))) 85) (((-3 $ "failed") (-669 (-402 (-928 (-552))))) 71)) (-1895 (($ (-669 (-311 (-374)))) 105) (($ (-669 (-311 (-552)))) 93) (($ (-669 (-928 (-374)))) 127) (($ (-669 (-928 (-552)))) 116) (($ (-669 (-402 (-928 (-374))))) 81) (($ (-669 (-402 (-928 (-552))))) 64)) (-2927 (((-1237) $) 139)) (-1683 (((-839) $) 133) (($ (-625 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 31) (($ (-669 (-334 (-1695) (-1695 (QUOTE X) (QUOTE HESS)) (-679)))) 54)))
+(((-64 |#1|) (-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695) (-1695 (QUOTE X) (QUOTE HESS)) (-679))))))) (-1149)) (T -64))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-1695) (-1695 (QUOTE X) (QUOTE HESS)) (-679)))) (-5 *1 (-64 *3)) (-14 *3 (-1149)))))
+(-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695) (-1695 (QUOTE X) (QUOTE HESS)) (-679)))))))
+((-1893 (((-3 $ "failed") (-311 (-374))) 59) (((-3 $ "failed") (-311 (-552))) 64) (((-3 $ "failed") (-928 (-374))) 68) (((-3 $ "failed") (-928 (-552))) 72) (((-3 $ "failed") (-402 (-928 (-374)))) 54) (((-3 $ "failed") (-402 (-928 (-552)))) 47)) (-1895 (($ (-311 (-374))) 57) (($ (-311 (-552))) 62) (($ (-928 (-374))) 66) (($ (-928 (-552))) 70) (($ (-402 (-928 (-374)))) 52) (($ (-402 (-928 (-552)))) 44)) (-2927 (((-1237) $) 81)) (-1683 (((-839) $) 75) (($ (-625 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 31) (($ (-334 (-1695) (-1695 (QUOTE XC)) (-679))) 39)))
+(((-65 |#1|) (-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE XC)) (-679)))))) (-1149)) (T -65))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-334 (-1695) (-1695 (QUOTE XC)) (-679))) (-5 *1 (-65 *3)) (-14 *3 (-1149)))))
+(-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE XC)) (-679))))))
+((-2927 (((-1237) $) 63)) (-1683 (((-839) $) 57) (($ (-669 (-679))) 49) (($ (-625 (-325))) 48) (($ (-325)) 55) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 53)))
(((-66 |#1|) (-378) (-1149)) (T -66))
NIL
(-378)
-((-3739 (((-1237) $) 64)) (-4317 (((-840) $) 58) (($ (-669 (-679))) 50) (($ (-622 (-325))) 49) (($ (-325)) 52) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 55)))
+((-2927 (((-1237) $) 64)) (-1683 (((-839) $) 58) (($ (-669 (-679))) 50) (($ (-625 (-325))) 49) (($ (-325)) 52) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 55)))
(((-67 |#1|) (-378) (-1149)) (T -67))
NIL
(-378)
-((-3739 (((-1237) $) NIL) (((-1237)) 32)) (-4317 (((-840) $) NIL)))
-(((-68 |#1|) (-13 (-391) (-10 -7 (-15 -3739 ((-1237))))) (-1149)) (T -68))
-((-3739 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-68 *3)) (-14 *3 (-1149)))))
-(-13 (-391) (-10 -7 (-15 -3739 ((-1237)))))
-((-3739 (((-1237) $) 73)) (-4317 (((-840) $) 67) (($ (-669 (-679))) 59) (($ (-622 (-325))) 61) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 58)))
+((-2927 (((-1237) $) NIL) (((-1237)) 32)) (-1683 (((-839) $) NIL)))
+(((-68 |#1|) (-13 (-390) (-10 -7 (-15 -2927 ((-1237))))) (-1149)) (T -68))
+((-2927 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-68 *3)) (-14 *3 (-1149)))))
+(-13 (-390) (-10 -7 (-15 -2927 ((-1237)))))
+((-2927 (((-1237) $) 73)) (-1683 (((-839) $) 67) (($ (-669 (-679))) 59) (($ (-625 (-325))) 61) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 58)))
(((-69 |#1|) (-378) (-1149)) (T -69))
NIL
(-378)
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 103) (((-3 $ #1#) (-1231 (-309 (-538)))) 92) (((-3 $ #1#) (-1231 (-922 (-373)))) 123) (((-3 $ #1#) (-1231 (-922 (-538)))) 113) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 81) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 68)) (-3507 (($ (-1231 (-309 (-373)))) 99) (($ (-1231 (-309 (-538)))) 88) (($ (-1231 (-922 (-373)))) 119) (($ (-1231 (-922 (-538)))) 109) (($ (-1231 (-402 (-922 (-373))))) 77) (($ (-1231 (-402 (-922 (-538))))) 61)) (-3739 (((-1237) $) 136)) (-4317 (((-840) $) 130) (($ (-622 (-325))) 125) (($ (-325)) 128) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 53) (($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))) 54)))
-(((-70 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))))))) (-1149)) (T -70))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))) (-5 *1 (-70 *3)) (-14 *3 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))))))
-((-3739 (((-1237) $) 32) (((-1237)) 31)) (-4317 (((-840) $) 35)))
-(((-71 |#1|) (-13 (-391) (-10 -7 (-15 -3739 ((-1237))))) (-1149)) (T -71))
-((-3739 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-71 *3)) (-14 *3 (-1149)))))
-(-13 (-391) (-10 -7 (-15 -3739 ((-1237)))))
-((-3739 (((-1237) $) 63)) (-4317 (((-840) $) 57) (($ (-669 (-679))) 49) (($ (-622 (-325))) 51) (($ (-325)) 54) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 48)))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 103) (((-3 $ "failed") (-1232 (-311 (-552)))) 92) (((-3 $ "failed") (-1232 (-928 (-374)))) 123) (((-3 $ "failed") (-1232 (-928 (-552)))) 113) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 81) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 68)) (-1895 (($ (-1232 (-311 (-374)))) 99) (($ (-1232 (-311 (-552)))) 88) (($ (-1232 (-928 (-374)))) 119) (($ (-1232 (-928 (-552)))) 109) (($ (-1232 (-402 (-928 (-374))))) 77) (($ (-1232 (-402 (-928 (-552))))) 61)) (-2927 (((-1237) $) 136)) (-1683 (((-839) $) 130) (($ (-625 (-325))) 125) (($ (-325)) 128) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 53) (($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))) 54)))
+(((-70 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))))))) (-1149)) (T -70))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))) (-5 *1 (-70 *3)) (-14 *3 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))))))
+((-2927 (((-1237) $) 32) (((-1237)) 31)) (-1683 (((-839) $) 35)))
+(((-71 |#1|) (-13 (-390) (-10 -7 (-15 -2927 ((-1237))))) (-1149)) (T -71))
+((-2927 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-71 *3)) (-14 *3 (-1149)))))
+(-13 (-390) (-10 -7 (-15 -2927 ((-1237)))))
+((-2927 (((-1237) $) 63)) (-1683 (((-839) $) 57) (($ (-669 (-679))) 49) (($ (-625 (-325))) 51) (($ (-325)) 54) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 48)))
(((-72 |#1|) (-378) (-1149)) (T -72))
NIL
(-378)
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 125) (((-3 $ #1#) (-1231 (-309 (-538)))) 115) (((-3 $ #1#) (-1231 (-922 (-373)))) 145) (((-3 $ #1#) (-1231 (-922 (-538)))) 135) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 105) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 93)) (-3507 (($ (-1231 (-309 (-373)))) 121) (($ (-1231 (-309 (-538)))) 111) (($ (-1231 (-922 (-373)))) 141) (($ (-1231 (-922 (-538)))) 131) (($ (-1231 (-402 (-922 (-373))))) 101) (($ (-1231 (-402 (-922 (-538))))) 86)) (-3739 (((-1237) $) 78)) (-4317 (((-840) $) 27) (($ (-622 (-325))) 68) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 71) (($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) 65)))
-(((-73 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679))))))) (-1149)) (T -73))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) (-5 *1 (-73 *3)) (-14 *3 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-309 (-373))) 46) (((-3 $ #1#) (-309 (-538))) 51) (((-3 $ #1#) (-922 (-373))) 55) (((-3 $ #1#) (-922 (-538))) 59) (((-3 $ #1#) (-402 (-922 (-373)))) 41) (((-3 $ #1#) (-402 (-922 (-538)))) 34)) (-3507 (($ (-309 (-373))) 44) (($ (-309 (-538))) 49) (($ (-922 (-373))) 53) (($ (-922 (-538))) 57) (($ (-402 (-922 (-373)))) 39) (($ (-402 (-922 (-538)))) 31)) (-3739 (((-1237) $) 80)) (-4317 (((-840) $) 74) (($ (-622 (-325))) 66) (($ (-325)) 71) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 69) (($ (-334 (-3884) (-3884 (QUOTE X)) (-679))) 30)))
-(((-74 |#1|) (-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE X)) (-679)))))) (-1149)) (T -74))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-334 (-3884) (-3884 (QUOTE X)) (-679))) (-5 *1 (-74 *3)) (-14 *3 (-1149)))))
-(-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE X)) (-679))))))
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 130) (((-3 $ #1#) (-1231 (-309 (-538)))) 119) (((-3 $ #1#) (-1231 (-922 (-373)))) 150) (((-3 $ #1#) (-1231 (-922 (-538)))) 140) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 108) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 95)) (-3507 (($ (-1231 (-309 (-373)))) 126) (($ (-1231 (-309 (-538)))) 115) (($ (-1231 (-922 (-373)))) 146) (($ (-1231 (-922 (-538)))) 136) (($ (-1231 (-402 (-922 (-373))))) 104) (($ (-1231 (-402 (-922 (-538))))) 88)) (-3739 (((-1237) $) 79)) (-4317 (((-840) $) 71) (($ (-622 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) NIL) (($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE EPS)) (-3884 (QUOTE -4324)) (-679)))) 66)))
-(((-75 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE EPS)) (-3884 (QUOTE -4324)) (-679))))))) (-1149) (-1149) (-1149)) (T -75))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE X) (QUOTE EPS)) (-3884 (QUOTE -4324)) (-679)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE EPS)) (-3884 (QUOTE -4324)) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 134) (((-3 $ #1#) (-1231 (-309 (-538)))) 123) (((-3 $ #1#) (-1231 (-922 (-373)))) 154) (((-3 $ #1#) (-1231 (-922 (-538)))) 144) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 112) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 99)) (-3507 (($ (-1231 (-309 (-373)))) 130) (($ (-1231 (-309 (-538)))) 119) (($ (-1231 (-922 (-373)))) 150) (($ (-1231 (-922 (-538)))) 140) (($ (-1231 (-402 (-922 (-373))))) 108) (($ (-1231 (-402 (-922 (-538))))) 92)) (-3739 (((-1237) $) 83)) (-4317 (((-840) $) 75) (($ (-622 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) NIL) (($ (-1231 (-334 (-3884 (QUOTE EPS)) (-3884 (QUOTE YA) (QUOTE YB)) (-679)))) 70)))
-(((-76 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE EPS)) (-3884 (QUOTE YA) (QUOTE YB)) (-679))))))) (-1149) (-1149) (-1149)) (T -76))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE EPS)) (-3884 (QUOTE YA) (QUOTE YB)) (-679)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE EPS)) (-3884 (QUOTE YA) (QUOTE YB)) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-309 (-373))) 82) (((-3 $ #1#) (-309 (-538))) 87) (((-3 $ #1#) (-922 (-373))) 91) (((-3 $ #1#) (-922 (-538))) 95) (((-3 $ #1#) (-402 (-922 (-373)))) 77) (((-3 $ #1#) (-402 (-922 (-538)))) 70)) (-3507 (($ (-309 (-373))) 80) (($ (-309 (-538))) 85) (($ (-922 (-373))) 89) (($ (-922 (-538))) 93) (($ (-402 (-922 (-373)))) 75) (($ (-402 (-922 (-538)))) 67)) (-3739 (((-1237) $) 62)) (-4317 (((-840) $) 50) (($ (-622 (-325))) 46) (($ (-325)) 56) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 54) (($ (-334 (-3884) (-3884 (QUOTE X)) (-679))) 47)))
-(((-77 |#1|) (-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE X)) (-679)))))) (-1149)) (T -77))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-334 (-3884) (-3884 (QUOTE X)) (-679))) (-5 *1 (-77 *3)) (-14 *3 (-1149)))))
-(-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE X)) (-679))))))
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 89) (((-3 $ #1#) (-1231 (-309 (-538)))) 78) (((-3 $ #1#) (-1231 (-922 (-373)))) 109) (((-3 $ #1#) (-1231 (-922 (-538)))) 99) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 67) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 54)) (-3507 (($ (-1231 (-309 (-373)))) 85) (($ (-1231 (-309 (-538)))) 74) (($ (-1231 (-922 (-373)))) 105) (($ (-1231 (-922 (-538)))) 95) (($ (-1231 (-402 (-922 (-373))))) 63) (($ (-1231 (-402 (-922 (-538))))) 47)) (-3739 (((-1237) $) 125)) (-4317 (((-840) $) 119) (($ (-622 (-325))) 112) (($ (-325)) 37) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 115) (($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679)))) 38)))
-(((-78 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679))))))) (-1149)) (T -78))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679)))) (-5 *1 (-78 *3)) (-14 *3 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 142) (((-3 $ #1#) (-1231 (-309 (-538)))) 132) (((-3 $ #1#) (-1231 (-922 (-373)))) 162) (((-3 $ #1#) (-1231 (-922 (-538)))) 152) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 122) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 110)) (-3507 (($ (-1231 (-309 (-373)))) 138) (($ (-1231 (-309 (-538)))) 128) (($ (-1231 (-922 (-373)))) 158) (($ (-1231 (-922 (-538)))) 148) (($ (-1231 (-402 (-922 (-373))))) 118) (($ (-1231 (-402 (-922 (-538))))) 103)) (-3739 (((-1237) $) 96)) (-4317 (((-840) $) 90) (($ (-622 (-325))) 81) (($ (-325)) 88) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 86) (($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) 82)))
-(((-79 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679))))))) (-1149)) (T -79))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) (-5 *1 (-79 *3)) (-14 *3 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 78) (((-3 $ #1#) (-1231 (-309 (-538)))) 67) (((-3 $ #1#) (-1231 (-922 (-373)))) 98) (((-3 $ #1#) (-1231 (-922 (-538)))) 88) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 56) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 43)) (-3507 (($ (-1231 (-309 (-373)))) 74) (($ (-1231 (-309 (-538)))) 63) (($ (-1231 (-922 (-373)))) 94) (($ (-1231 (-922 (-538)))) 84) (($ (-1231 (-402 (-922 (-373))))) 52) (($ (-1231 (-402 (-922 (-538))))) 36)) (-3739 (((-1237) $) 124)) (-4317 (((-840) $) 118) (($ (-622 (-325))) 109) (($ (-325)) 115) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 113) (($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) 35)))
-(((-80 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679))))))) (-1149)) (T -80))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) (-5 *1 (-80 *3)) (-14 *3 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 79) (((-3 $ #1#) (-1231 (-309 (-538)))) 68) (((-3 $ #1#) (-1231 (-922 (-373)))) 99) (((-3 $ #1#) (-1231 (-922 (-538)))) 89) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 57) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 44)) (-3507 (($ (-1231 (-309 (-373)))) 75) (($ (-1231 (-309 (-538)))) 64) (($ (-1231 (-922 (-373)))) 95) (($ (-1231 (-922 (-538)))) 85) (($ (-1231 (-402 (-922 (-373))))) 53) (($ (-1231 (-402 (-922 (-538))))) 37)) (-3739 (((-1237) $) 125)) (-4317 (((-840) $) 119) (($ (-622 (-325))) 110) (($ (-325)) 116) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 114) (($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))) 36)))
-(((-81 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))))))) (-1149)) (T -81))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))) (-5 *1 (-81 *3)) (-14 *3 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 95) (((-3 $ #1#) (-1231 (-309 (-538)))) 84) (((-3 $ #1#) (-1231 (-922 (-373)))) 115) (((-3 $ #1#) (-1231 (-922 (-538)))) 105) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 73) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 60)) (-3507 (($ (-1231 (-309 (-373)))) 91) (($ (-1231 (-309 (-538)))) 80) (($ (-1231 (-922 (-373)))) 111) (($ (-1231 (-922 (-538)))) 101) (($ (-1231 (-402 (-922 (-373))))) 69) (($ (-1231 (-402 (-922 (-538))))) 53)) (-3739 (((-1237) $) 45)) (-4317 (((-840) $) 39) (($ (-622 (-325))) 29) (($ (-325)) 32) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 35) (($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679)))) 30)))
-(((-82 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679))))))) (-1149)) (T -82))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679)))) (-5 *1 (-82 *3)) (-14 *3 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-669 (-309 (-373)))) 115) (((-3 $ #1#) (-669 (-309 (-538)))) 104) (((-3 $ #1#) (-669 (-922 (-373)))) 137) (((-3 $ #1#) (-669 (-922 (-538)))) 126) (((-3 $ #1#) (-669 (-402 (-922 (-373))))) 93) (((-3 $ #1#) (-669 (-402 (-922 (-538))))) 80)) (-3507 (($ (-669 (-309 (-373)))) 111) (($ (-669 (-309 (-538)))) 100) (($ (-669 (-922 (-373)))) 133) (($ (-669 (-922 (-538)))) 122) (($ (-669 (-402 (-922 (-373))))) 89) (($ (-669 (-402 (-922 (-538))))) 73)) (-3739 (((-1237) $) 63)) (-4317 (((-840) $) 50) (($ (-622 (-325))) 57) (($ (-325)) 46) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 55) (($ (-669 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679)))) 47)))
-(((-83 |#1|) (-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679))))))) (-1149)) (T -83))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679)))) (-5 *1 (-83 *3)) (-14 *3 (-1149)))))
-(-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-669 (-309 (-373)))) 112) (((-3 $ #1#) (-669 (-309 (-538)))) 100) (((-3 $ #1#) (-669 (-922 (-373)))) 134) (((-3 $ #1#) (-669 (-922 (-538)))) 123) (((-3 $ #1#) (-669 (-402 (-922 (-373))))) 88) (((-3 $ #1#) (-669 (-402 (-922 (-538))))) 74)) (-3507 (($ (-669 (-309 (-373)))) 108) (($ (-669 (-309 (-538)))) 96) (($ (-669 (-922 (-373)))) 130) (($ (-669 (-922 (-538)))) 119) (($ (-669 (-402 (-922 (-373))))) 84) (($ (-669 (-402 (-922 (-538))))) 67)) (-3739 (((-1237) $) 59)) (-4317 (((-840) $) 53) (($ (-622 (-325))) 47) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 44) (($ (-669 (-334 (-3884 (QUOTE X)) (-3884) (-679)))) 45)))
-(((-84 |#1|) (-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE X)) (-3884) (-679))))))) (-1149)) (T -84))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-3884 (QUOTE X)) (-3884) (-679)))) (-5 *1 (-84 *3)) (-14 *3 (-1149)))))
-(-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE X)) (-3884) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 104) (((-3 $ #1#) (-1231 (-309 (-538)))) 93) (((-3 $ #1#) (-1231 (-922 (-373)))) 124) (((-3 $ #1#) (-1231 (-922 (-538)))) 114) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 82) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 69)) (-3507 (($ (-1231 (-309 (-373)))) 100) (($ (-1231 (-309 (-538)))) 89) (($ (-1231 (-922 (-373)))) 120) (($ (-1231 (-922 (-538)))) 110) (($ (-1231 (-402 (-922 (-373))))) 78) (($ (-1231 (-402 (-922 (-538))))) 62)) (-3739 (((-1237) $) 46)) (-4317 (((-840) $) 40) (($ (-622 (-325))) 49) (($ (-325)) 36) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 52) (($ (-1231 (-334 (-3884 (QUOTE X)) (-3884) (-679)))) 37)))
-(((-85 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884) (-679))))))) (-1149)) (T -85))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE X)) (-3884) (-679)))) (-5 *1 (-85 *3)) (-14 *3 (-1149)))))
-(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884) (-679)))))))
-((-3739 (((-1237) $) 44)) (-4317 (((-840) $) 38) (($ (-1231 (-679))) 92) (($ (-622 (-325))) 30) (($ (-325)) 35) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 33)))
-(((-86 |#1|) (-434) (-1149)) (T -86))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 125) (((-3 $ "failed") (-1232 (-311 (-552)))) 115) (((-3 $ "failed") (-1232 (-928 (-374)))) 145) (((-3 $ "failed") (-1232 (-928 (-552)))) 135) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 105) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 93)) (-1895 (($ (-1232 (-311 (-374)))) 121) (($ (-1232 (-311 (-552)))) 111) (($ (-1232 (-928 (-374)))) 141) (($ (-1232 (-928 (-552)))) 131) (($ (-1232 (-402 (-928 (-374))))) 101) (($ (-1232 (-402 (-928 (-552))))) 86)) (-2927 (((-1237) $) 78)) (-1683 (((-839) $) 27) (($ (-625 (-325))) 68) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 71) (($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) 65)))
+(((-73 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679))))))) (-1149)) (T -73))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) (-5 *1 (-73 *3)) (-14 *3 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))))))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 130) (((-3 $ "failed") (-1232 (-311 (-552)))) 119) (((-3 $ "failed") (-1232 (-928 (-374)))) 150) (((-3 $ "failed") (-1232 (-928 (-552)))) 140) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 108) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 95)) (-1895 (($ (-1232 (-311 (-374)))) 126) (($ (-1232 (-311 (-552)))) 115) (($ (-1232 (-928 (-374)))) 146) (($ (-1232 (-928 (-552)))) 136) (($ (-1232 (-402 (-928 (-374))))) 104) (($ (-1232 (-402 (-928 (-552))))) 88)) (-2927 (((-1237) $) 79)) (-1683 (((-839) $) 71) (($ (-625 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) NIL) (($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE EPS)) (-1695 (QUOTE -1367)) (-679)))) 66)))
+(((-74 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE EPS)) (-1695 (QUOTE -1367)) (-679))))))) (-1149) (-1149) (-1149)) (T -74))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE X) (QUOTE EPS)) (-1695 (QUOTE -1367)) (-679)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE EPS)) (-1695 (QUOTE -1367)) (-679)))))))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 134) (((-3 $ "failed") (-1232 (-311 (-552)))) 123) (((-3 $ "failed") (-1232 (-928 (-374)))) 154) (((-3 $ "failed") (-1232 (-928 (-552)))) 144) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 112) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 99)) (-1895 (($ (-1232 (-311 (-374)))) 130) (($ (-1232 (-311 (-552)))) 119) (($ (-1232 (-928 (-374)))) 150) (($ (-1232 (-928 (-552)))) 140) (($ (-1232 (-402 (-928 (-374))))) 108) (($ (-1232 (-402 (-928 (-552))))) 92)) (-2927 (((-1237) $) 83)) (-1683 (((-839) $) 75) (($ (-625 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) NIL) (($ (-1232 (-334 (-1695 (QUOTE EPS)) (-1695 (QUOTE YA) (QUOTE YB)) (-679)))) 70)))
+(((-75 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE EPS)) (-1695 (QUOTE YA) (QUOTE YB)) (-679))))))) (-1149) (-1149) (-1149)) (T -75))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE EPS)) (-1695 (QUOTE YA) (QUOTE YB)) (-679)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE EPS)) (-1695 (QUOTE YA) (QUOTE YB)) (-679)))))))
+((-1893 (((-3 $ "failed") (-311 (-374))) 82) (((-3 $ "failed") (-311 (-552))) 87) (((-3 $ "failed") (-928 (-374))) 91) (((-3 $ "failed") (-928 (-552))) 95) (((-3 $ "failed") (-402 (-928 (-374)))) 77) (((-3 $ "failed") (-402 (-928 (-552)))) 70)) (-1895 (($ (-311 (-374))) 80) (($ (-311 (-552))) 85) (($ (-928 (-374))) 89) (($ (-928 (-552))) 93) (($ (-402 (-928 (-374)))) 75) (($ (-402 (-928 (-552)))) 67)) (-2927 (((-1237) $) 62)) (-1683 (((-839) $) 50) (($ (-625 (-325))) 46) (($ (-325)) 56) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 54) (($ (-334 (-1695) (-1695 (QUOTE X)) (-679))) 47)))
+(((-76 |#1|) (-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE X)) (-679)))))) (-1149)) (T -76))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-334 (-1695) (-1695 (QUOTE X)) (-679))) (-5 *1 (-76 *3)) (-14 *3 (-1149)))))
+(-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE X)) (-679))))))
+((-1893 (((-3 $ "failed") (-311 (-374))) 46) (((-3 $ "failed") (-311 (-552))) 51) (((-3 $ "failed") (-928 (-374))) 55) (((-3 $ "failed") (-928 (-552))) 59) (((-3 $ "failed") (-402 (-928 (-374)))) 41) (((-3 $ "failed") (-402 (-928 (-552)))) 34)) (-1895 (($ (-311 (-374))) 44) (($ (-311 (-552))) 49) (($ (-928 (-374))) 53) (($ (-928 (-552))) 57) (($ (-402 (-928 (-374)))) 39) (($ (-402 (-928 (-552)))) 31)) (-2927 (((-1237) $) 80)) (-1683 (((-839) $) 74) (($ (-625 (-325))) 66) (($ (-325)) 71) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 69) (($ (-334 (-1695) (-1695 (QUOTE X)) (-679))) 30)))
+(((-77 |#1|) (-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE X)) (-679)))))) (-1149)) (T -77))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-334 (-1695) (-1695 (QUOTE X)) (-679))) (-5 *1 (-77 *3)) (-14 *3 (-1149)))))
+(-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE X)) (-679))))))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 89) (((-3 $ "failed") (-1232 (-311 (-552)))) 78) (((-3 $ "failed") (-1232 (-928 (-374)))) 109) (((-3 $ "failed") (-1232 (-928 (-552)))) 99) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 67) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 54)) (-1895 (($ (-1232 (-311 (-374)))) 85) (($ (-1232 (-311 (-552)))) 74) (($ (-1232 (-928 (-374)))) 105) (($ (-1232 (-928 (-552)))) 95) (($ (-1232 (-402 (-928 (-374))))) 63) (($ (-1232 (-402 (-928 (-552))))) 47)) (-2927 (((-1237) $) 125)) (-1683 (((-839) $) 119) (($ (-625 (-325))) 112) (($ (-325)) 37) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 115) (($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679)))) 38)))
+(((-78 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679))))))) (-1149)) (T -78))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679)))) (-5 *1 (-78 *3)) (-14 *3 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679)))))))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 142) (((-3 $ "failed") (-1232 (-311 (-552)))) 132) (((-3 $ "failed") (-1232 (-928 (-374)))) 162) (((-3 $ "failed") (-1232 (-928 (-552)))) 152) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 122) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 110)) (-1895 (($ (-1232 (-311 (-374)))) 138) (($ (-1232 (-311 (-552)))) 128) (($ (-1232 (-928 (-374)))) 158) (($ (-1232 (-928 (-552)))) 148) (($ (-1232 (-402 (-928 (-374))))) 118) (($ (-1232 (-402 (-928 (-552))))) 103)) (-2927 (((-1237) $) 96)) (-1683 (((-839) $) 90) (($ (-625 (-325))) 81) (($ (-325)) 88) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 86) (($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) 82)))
+(((-79 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679))))))) (-1149)) (T -79))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) (-5 *1 (-79 *3)) (-14 *3 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))))))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 78) (((-3 $ "failed") (-1232 (-311 (-552)))) 67) (((-3 $ "failed") (-1232 (-928 (-374)))) 98) (((-3 $ "failed") (-1232 (-928 (-552)))) 88) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 56) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 43)) (-1895 (($ (-1232 (-311 (-374)))) 74) (($ (-1232 (-311 (-552)))) 63) (($ (-1232 (-928 (-374)))) 94) (($ (-1232 (-928 (-552)))) 84) (($ (-1232 (-402 (-928 (-374))))) 52) (($ (-1232 (-402 (-928 (-552))))) 36)) (-2927 (((-1237) $) 124)) (-1683 (((-839) $) 118) (($ (-625 (-325))) 109) (($ (-325)) 115) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 113) (($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) 35)))
+(((-80 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679))))))) (-1149)) (T -80))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) (-5 *1 (-80 *3)) (-14 *3 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))))))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 95) (((-3 $ "failed") (-1232 (-311 (-552)))) 84) (((-3 $ "failed") (-1232 (-928 (-374)))) 115) (((-3 $ "failed") (-1232 (-928 (-552)))) 105) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 73) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 60)) (-1895 (($ (-1232 (-311 (-374)))) 91) (($ (-1232 (-311 (-552)))) 80) (($ (-1232 (-928 (-374)))) 111) (($ (-1232 (-928 (-552)))) 101) (($ (-1232 (-402 (-928 (-374))))) 69) (($ (-1232 (-402 (-928 (-552))))) 53)) (-2927 (((-1237) $) 45)) (-1683 (((-839) $) 39) (($ (-625 (-325))) 29) (($ (-325)) 32) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 35) (($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679)))) 30)))
+(((-81 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679))))))) (-1149)) (T -81))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679)))) (-5 *1 (-81 *3)) (-14 *3 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679)))))))
+((-1893 (((-3 $ "failed") (-669 (-311 (-374)))) 115) (((-3 $ "failed") (-669 (-311 (-552)))) 104) (((-3 $ "failed") (-669 (-928 (-374)))) 137) (((-3 $ "failed") (-669 (-928 (-552)))) 126) (((-3 $ "failed") (-669 (-402 (-928 (-374))))) 93) (((-3 $ "failed") (-669 (-402 (-928 (-552))))) 80)) (-1895 (($ (-669 (-311 (-374)))) 111) (($ (-669 (-311 (-552)))) 100) (($ (-669 (-928 (-374)))) 133) (($ (-669 (-928 (-552)))) 122) (($ (-669 (-402 (-928 (-374))))) 89) (($ (-669 (-402 (-928 (-552))))) 73)) (-2927 (((-1237) $) 63)) (-1683 (((-839) $) 50) (($ (-625 (-325))) 57) (($ (-325)) 46) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 55) (($ (-669 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679)))) 47)))
+(((-82 |#1|) (-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679))))))) (-1149)) (T -82))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679)))) (-5 *1 (-82 *3)) (-14 *3 (-1149)))))
+(-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679)))))))
+((-1893 (((-3 $ "failed") (-669 (-311 (-374)))) 112) (((-3 $ "failed") (-669 (-311 (-552)))) 100) (((-3 $ "failed") (-669 (-928 (-374)))) 134) (((-3 $ "failed") (-669 (-928 (-552)))) 123) (((-3 $ "failed") (-669 (-402 (-928 (-374))))) 88) (((-3 $ "failed") (-669 (-402 (-928 (-552))))) 74)) (-1895 (($ (-669 (-311 (-374)))) 108) (($ (-669 (-311 (-552)))) 96) (($ (-669 (-928 (-374)))) 130) (($ (-669 (-928 (-552)))) 119) (($ (-669 (-402 (-928 (-374))))) 84) (($ (-669 (-402 (-928 (-552))))) 67)) (-2927 (((-1237) $) 59)) (-1683 (((-839) $) 53) (($ (-625 (-325))) 47) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 44) (($ (-669 (-334 (-1695 (QUOTE X)) (-1695) (-679)))) 45)))
+(((-83 |#1|) (-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE X)) (-1695) (-679))))))) (-1149)) (T -83))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-1695 (QUOTE X)) (-1695) (-679)))) (-5 *1 (-83 *3)) (-14 *3 (-1149)))))
+(-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE X)) (-1695) (-679)))))))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 104) (((-3 $ "failed") (-1232 (-311 (-552)))) 93) (((-3 $ "failed") (-1232 (-928 (-374)))) 124) (((-3 $ "failed") (-1232 (-928 (-552)))) 114) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 82) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 69)) (-1895 (($ (-1232 (-311 (-374)))) 100) (($ (-1232 (-311 (-552)))) 89) (($ (-1232 (-928 (-374)))) 120) (($ (-1232 (-928 (-552)))) 110) (($ (-1232 (-402 (-928 (-374))))) 78) (($ (-1232 (-402 (-928 (-552))))) 62)) (-2927 (((-1237) $) 46)) (-1683 (((-839) $) 40) (($ (-625 (-325))) 49) (($ (-325)) 36) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 52) (($ (-1232 (-334 (-1695 (QUOTE X)) (-1695) (-679)))) 37)))
+(((-84 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695) (-679))))))) (-1149)) (T -84))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE X)) (-1695) (-679)))) (-5 *1 (-84 *3)) (-14 *3 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695) (-679)))))))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 79) (((-3 $ "failed") (-1232 (-311 (-552)))) 68) (((-3 $ "failed") (-1232 (-928 (-374)))) 99) (((-3 $ "failed") (-1232 (-928 (-552)))) 89) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 57) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 44)) (-1895 (($ (-1232 (-311 (-374)))) 75) (($ (-1232 (-311 (-552)))) 64) (($ (-1232 (-928 (-374)))) 95) (($ (-1232 (-928 (-552)))) 85) (($ (-1232 (-402 (-928 (-374))))) 53) (($ (-1232 (-402 (-928 (-552))))) 37)) (-2927 (((-1237) $) 125)) (-1683 (((-839) $) 119) (($ (-625 (-325))) 110) (($ (-325)) 116) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 114) (($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))) 36)))
+(((-85 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))))))) (-1149)) (T -85))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))) (-5 *1 (-85 *3)) (-14 *3 (-1149)))))
+(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))))))
+((-1893 (((-3 $ "failed") (-669 (-311 (-374)))) 113) (((-3 $ "failed") (-669 (-311 (-552)))) 101) (((-3 $ "failed") (-669 (-928 (-374)))) 135) (((-3 $ "failed") (-669 (-928 (-552)))) 124) (((-3 $ "failed") (-669 (-402 (-928 (-374))))) 89) (((-3 $ "failed") (-669 (-402 (-928 (-552))))) 75)) (-1895 (($ (-669 (-311 (-374)))) 109) (($ (-669 (-311 (-552)))) 97) (($ (-669 (-928 (-374)))) 131) (($ (-669 (-928 (-552)))) 120) (($ (-669 (-402 (-928 (-374))))) 85) (($ (-669 (-402 (-928 (-552))))) 68)) (-2927 (((-1237) $) 59)) (-1683 (((-839) $) 53) (($ (-625 (-325))) 43) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 48) (($ (-669 (-334 (-1695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1695) (-679)))) 44)))
+(((-86 |#1|) (-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1695) (-679))))))) (-1149)) (T -86))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-1695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1695) (-679)))) (-5 *1 (-86 *3)) (-14 *3 (-1149)))))
+(-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1695) (-679)))))))
+((-2927 (((-1237) $) 44)) (-1683 (((-839) $) 38) (($ (-1232 (-679))) 92) (($ (-625 (-325))) 30) (($ (-325)) 35) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 33)))
+(((-87 |#1|) (-434) (-1149)) (T -87))
NIL
(-434)
-((-3508 (((-3 $ #1="failed") (-669 (-309 (-373)))) 113) (((-3 $ #1#) (-669 (-309 (-538)))) 101) (((-3 $ #1#) (-669 (-922 (-373)))) 135) (((-3 $ #1#) (-669 (-922 (-538)))) 124) (((-3 $ #1#) (-669 (-402 (-922 (-373))))) 89) (((-3 $ #1#) (-669 (-402 (-922 (-538))))) 75)) (-3507 (($ (-669 (-309 (-373)))) 109) (($ (-669 (-309 (-538)))) 97) (($ (-669 (-922 (-373)))) 131) (($ (-669 (-922 (-538)))) 120) (($ (-669 (-402 (-922 (-373))))) 85) (($ (-669 (-402 (-922 (-538))))) 68)) (-3739 (((-1237) $) 59)) (-4317 (((-840) $) 53) (($ (-622 (-325))) 43) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 48) (($ (-669 (-334 (-3884 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3884) (-679)))) 44)))
-(((-87 |#1|) (-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3884) (-679))))))) (-1149)) (T -87))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-3884 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3884) (-679)))) (-5 *1 (-87 *3)) (-14 *3 (-1149)))))
-(-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3884) (-679)))))))
-((-3508 (((-3 $ #1="failed") (-309 (-373))) 47) (((-3 $ #1#) (-309 (-538))) 52) (((-3 $ #1#) (-922 (-373))) 56) (((-3 $ #1#) (-922 (-538))) 60) (((-3 $ #1#) (-402 (-922 (-373)))) 42) (((-3 $ #1#) (-402 (-922 (-538)))) 35)) (-3507 (($ (-309 (-373))) 45) (($ (-309 (-538))) 50) (($ (-922 (-373))) 54) (($ (-922 (-538))) 58) (($ (-402 (-922 (-373)))) 40) (($ (-402 (-922 (-538)))) 32)) (-3739 (((-1237) $) 90)) (-4317 (((-840) $) 84) (($ (-622 (-325))) 78) (($ (-325)) 81) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 76) (($ (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))) 31)))
-(((-88 |#1|) (-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))))) (-1149)) (T -88))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))) (-5 *1 (-88 *3)) (-14 *3 (-1149)))))
-(-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))))))
-((-1312 (((-1231 (-669 |#1|)) (-669 |#1|)) 54)) (-1311 (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 (-622 (-895))))) |#2| (-895)) 44)) (-1313 (((-2 (|:| |minor| (-622 (-895))) (|:| -3617 |#2|) (|:| |minors| (-622 (-622 (-895)))) (|:| |ops| (-622 |#2|))) |#2| (-895)) 65 (|has| |#1| (-358)))))
-(((-89 |#1| |#2|) (-10 -7 (-15 -1311 ((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 (-622 (-895))))) |#2| (-895))) (-15 -1312 ((-1231 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-358)) (-15 -1313 ((-2 (|:| |minor| (-622 (-895))) (|:| -3617 |#2|) (|:| |minors| (-622 (-622 (-895)))) (|:| |ops| (-622 |#2|))) |#2| (-895))) |%noBranch|)) (-545) (-638 |#1|)) (T -89))
-((-1313 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |minor| (-622 (-895))) (|:| -3617 *3) (|:| |minors| (-622 (-622 (-895)))) (|:| |ops| (-622 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-638 *5)))) (-1312 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-1231 (-669 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-669 *4)) (-4 *5 (-638 *4)))) (-1311 (*1 *2 *3 *4) (-12 (-4 *5 (-545)) (-5 *2 (-2 (|:| -1700 (-669 *5)) (|:| |vec| (-1231 (-622 (-895)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-638 *5)))))
-(-10 -7 (-15 -1311 ((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 (-622 (-895))))) |#2| (-895))) (-15 -1312 ((-1231 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-358)) (-15 -1313 ((-2 (|:| |minor| (-622 (-895))) (|:| -3617 |#2|) (|:| |minors| (-622 (-622 (-895)))) (|:| |ops| (-622 |#2|))) |#2| (-895))) |%noBranch|))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3683 ((|#1| $) 35)) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-3685 ((|#1| |#1| $) 30)) (-3684 ((|#1| $) 28)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) NIL)) (-3970 (($ |#1| $) 31)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-1334 ((|#1| $) 29)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 16)) (-3928 (($) 39)) (-3682 (((-751) $) 26)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 15)) (-4317 (((-840) $) 25 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) NIL)) (-1314 (($ (-622 |#1|)) 37)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 13 (|has| |#1| (-1074)))) (-4316 (((-751) $) 10 (|has| $ (-6 -4353)))))
-(((-90 |#1|) (-13 (-1094 |#1|) (-10 -8 (-15 -1314 ($ (-622 |#1|))))) (-1074)) (T -90))
-((-1314 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-90 *3)))))
-(-13 (-1094 |#1|) (-10 -8 (-15 -1314 ($ (-622 |#1|)))))
-((-4317 (((-840) $) 13) (((-1154) $) 8) (($ (-1154)) 9)))
-(((-91 |#1|) (-10 -8 (-15 -4317 (|#1| (-1154))) (-15 -4317 ((-1154) |#1|)) (-15 -4317 ((-840) |#1|))) (-92)) (T -91))
-NIL
-(-10 -8 (-15 -4317 (|#1| (-1154))) (-15 -4317 ((-1154) |#1|)) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-3387 (((-112) $ $) 6)))
+((-1893 (((-3 $ "failed") (-311 (-374))) 47) (((-3 $ "failed") (-311 (-552))) 52) (((-3 $ "failed") (-928 (-374))) 56) (((-3 $ "failed") (-928 (-552))) 60) (((-3 $ "failed") (-402 (-928 (-374)))) 42) (((-3 $ "failed") (-402 (-928 (-552)))) 35)) (-1895 (($ (-311 (-374))) 45) (($ (-311 (-552))) 50) (($ (-928 (-374))) 54) (($ (-928 (-552))) 58) (($ (-402 (-928 (-374)))) 40) (($ (-402 (-928 (-552)))) 32)) (-2927 (((-1237) $) 90)) (-1683 (((-839) $) 84) (($ (-625 (-325))) 78) (($ (-325)) 81) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 76) (($ (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))) 31)))
+(((-88 |#1|) (-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))))) (-1149)) (T -88))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))) (-5 *1 (-88 *3)) (-14 *3 (-1149)))))
+(-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))))))
+((-2729 (((-1232 (-669 |#1|)) (-669 |#1|)) 54)) (-2720 (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 (-625 (-897))))) |#2| (-897)) 44)) (-2739 (((-2 (|:| |minor| (-625 (-897))) (|:| -2772 |#2|) (|:| |minors| (-625 (-625 (-897)))) (|:| |ops| (-625 |#2|))) |#2| (-897)) 65 (|has| |#1| (-358)))))
+(((-89 |#1| |#2|) (-10 -7 (-15 -2720 ((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 (-625 (-897))))) |#2| (-897))) (-15 -2729 ((-1232 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-358)) (-15 -2739 ((-2 (|:| |minor| (-625 (-897))) (|:| -2772 |#2|) (|:| |minors| (-625 (-625 (-897)))) (|:| |ops| (-625 |#2|))) |#2| (-897))) |%noBranch|)) (-544) (-636 |#1|)) (T -89))
+((-2739 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |minor| (-625 (-897))) (|:| -2772 *3) (|:| |minors| (-625 (-625 (-897)))) (|:| |ops| (-625 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-897)) (-4 *3 (-636 *5)))) (-2729 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-1232 (-669 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-669 *4)) (-4 *5 (-636 *4)))) (-2720 (*1 *2 *3 *4) (-12 (-4 *5 (-544)) (-5 *2 (-2 (|:| -2351 (-669 *5)) (|:| |vec| (-1232 (-625 (-897)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-897)) (-4 *3 (-636 *5)))))
+(-10 -7 (-15 -2720 ((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 (-625 (-897))))) |#2| (-897))) (-15 -2729 ((-1232 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-358)) (-15 -2739 ((-2 (|:| |minor| (-625 (-897))) (|:| -2772 |#2|) (|:| |minors| (-625 (-625 (-897)))) (|:| |ops| (-625 |#2|))) |#2| (-897))) |%noBranch|))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1549 ((|#1| $) 35)) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-2406 ((|#1| |#1| $) 30)) (-2395 ((|#1| $) 28)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) NIL)) (-3966 (($ |#1| $) 31)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2966 ((|#1| $) 29)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 16)) (-3600 (($) 39)) (-2389 (((-751) $) 26)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 15)) (-1683 (((-839) $) 25 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) NIL)) (-2748 (($ (-625 |#1|)) 37)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 13 (|has| |#1| (-1073)))) (-1471 (((-751) $) 10 (|has| $ (-6 -4353)))))
+(((-90 |#1|) (-13 (-1094 |#1|) (-10 -8 (-15 -2748 ($ (-625 |#1|))))) (-1073)) (T -90))
+((-2748 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-90 *3)))))
+(-13 (-1094 |#1|) (-10 -8 (-15 -2748 ($ (-625 |#1|)))))
+((-1683 (((-839) $) 13) (((-1154) $) 8) (($ (-1154)) 9)))
+(((-91 |#1|) (-10 -8 (-15 -1683 (|#1| (-1154))) (-15 -1683 ((-1154) |#1|)) (-15 -1683 ((-839) |#1|))) (-92)) (T -91))
+NIL
+(-10 -8 (-15 -1683 (|#1| (-1154))) (-15 -1683 ((-1154) |#1|)) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-2281 (((-112) $ $) 6)))
(((-92) (-138)) (T -92))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-92)))))
-(-13 (-1074) (-597 (-1154)) (-10 -8 (-15 -4317 ($ (-1154)))))
-(((-101) . T) ((-597 (-840)) . T) ((-597 (-1154)) . T) ((-1074) . T))
-((-3842 (($ $) 10)) (-3843 (($ $) 12)))
-(((-93 |#1|) (-10 -8 (-15 -3843 (|#1| |#1|)) (-15 -3842 (|#1| |#1|))) (-94)) (T -93))
-NIL
-(-10 -8 (-15 -3843 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)))
-((-3840 (($ $) 11)) (-3838 (($ $) 10)) (-3842 (($ $) 9)) (-3843 (($ $) 8)) (-3841 (($ $) 7)) (-3839 (($ $) 6)))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-92)))))
+(-13 (-1073) (-597 (-1154)) (-10 -8 (-15 -1683 ($ (-1154)))))
+(((-101) . T) ((-597 (-839)) . T) ((-597 (-1154)) . T) ((-1073) . T))
+((-3691 (($ $) 10)) (-3700 (($ $) 12)))
+(((-93 |#1|) (-10 -8 (-15 -3700 (|#1| |#1|)) (-15 -3691 (|#1| |#1|))) (-94)) (T -93))
+NIL
+(-10 -8 (-15 -3700 (|#1| |#1|)) (-15 -3691 (|#1| |#1|)))
+((-3670 (($ $) 11)) (-3648 (($ $) 10)) (-3691 (($ $) 9)) (-3700 (($ $) 8)) (-3681 (($ $) 7)) (-3659 (($ $) 6)))
(((-94) (-138)) (T -94))
-((-3840 (*1 *1 *1) (-4 *1 (-94))) (-3838 (*1 *1 *1) (-4 *1 (-94))) (-3842 (*1 *1 *1) (-4 *1 (-94))) (-3843 (*1 *1 *1) (-4 *1 (-94))) (-3841 (*1 *1 *1) (-4 *1 (-94))) (-3839 (*1 *1 *1) (-4 *1 (-94))))
-(-13 (-10 -8 (-15 -3839 ($ $)) (-15 -3841 ($ $)) (-15 -3843 ($ $)) (-15 -3842 ($ $)) (-15 -3838 ($ $)) (-15 -3840 ($ $))))
-((-2898 (((-112) $ $) NIL)) (-3905 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-95) (-13 (-1056) (-10 -8 (-15 -3905 ((-1108) $))))) (T -95))
-((-3905 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-95)))))
-(-13 (-1056) (-10 -8 (-15 -3905 ((-1108) $))))
-((-2898 (((-112) $ $) NIL)) (-1315 (((-373) (-1131) (-373)) 42) (((-373) (-1131) (-1131) (-373)) 41)) (-1316 (((-373) (-373)) 33)) (-1317 (((-1237)) 36)) (-3593 (((-1131) $) NIL)) (-1320 (((-373) (-1131) (-1131)) 46) (((-373) (-1131)) 48)) (-3594 (((-1093) $) NIL)) (-1318 (((-373) (-1131) (-1131)) 47)) (-1319 (((-373) (-1131) (-1131)) 49) (((-373) (-1131)) 50)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-96) (-13 (-1074) (-10 -7 (-15 -1320 ((-373) (-1131) (-1131))) (-15 -1320 ((-373) (-1131))) (-15 -1319 ((-373) (-1131) (-1131))) (-15 -1319 ((-373) (-1131))) (-15 -1318 ((-373) (-1131) (-1131))) (-15 -1317 ((-1237))) (-15 -1316 ((-373) (-373))) (-15 -1315 ((-373) (-1131) (-373))) (-15 -1315 ((-373) (-1131) (-1131) (-373))) (-6 -4353)))) (T -96))
-((-1320 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1319 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1318 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1317 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-96)))) (-1316 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96)))) (-1315 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1131)) (-5 *1 (-96)))) (-1315 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1131)) (-5 *1 (-96)))))
-(-13 (-1074) (-10 -7 (-15 -1320 ((-373) (-1131) (-1131))) (-15 -1320 ((-373) (-1131))) (-15 -1319 ((-373) (-1131) (-1131))) (-15 -1319 ((-373) (-1131))) (-15 -1318 ((-373) (-1131) (-1131))) (-15 -1317 ((-1237))) (-15 -1316 ((-373) (-373))) (-15 -1315 ((-373) (-1131) (-373))) (-15 -1315 ((-373) (-1131) (-1131) (-373))) (-6 -4353)))
+((-3670 (*1 *1 *1) (-4 *1 (-94))) (-3648 (*1 *1 *1) (-4 *1 (-94))) (-3691 (*1 *1 *1) (-4 *1 (-94))) (-3700 (*1 *1 *1) (-4 *1 (-94))) (-3681 (*1 *1 *1) (-4 *1 (-94))) (-3659 (*1 *1 *1) (-4 *1 (-94))))
+(-13 (-10 -8 (-15 -3659 ($ $)) (-15 -3681 ($ $)) (-15 -3700 ($ $)) (-15 -3691 ($ $)) (-15 -3648 ($ $)) (-15 -3670 ($ $))))
+((-1671 (((-112) $ $) NIL)) (-1288 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-95) (-13 (-1056) (-10 -8 (-15 -1288 ((-1108) $))))) (T -95))
+((-1288 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-95)))))
+(-13 (-1056) (-10 -8 (-15 -1288 ((-1108) $))))
+((-1671 (((-112) $ $) NIL)) (-2757 (((-374) (-1131) (-374)) 42) (((-374) (-1131) (-1131) (-374)) 41)) (-2767 (((-374) (-374)) 33)) (-2777 (((-1237)) 36)) (-2883 (((-1131) $) NIL)) (-2808 (((-374) (-1131) (-1131)) 46) (((-374) (-1131)) 48)) (-2831 (((-1093) $) NIL)) (-2788 (((-374) (-1131) (-1131)) 47)) (-2797 (((-374) (-1131) (-1131)) 49) (((-374) (-1131)) 50)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-96) (-13 (-1073) (-10 -7 (-15 -2808 ((-374) (-1131) (-1131))) (-15 -2808 ((-374) (-1131))) (-15 -2797 ((-374) (-1131) (-1131))) (-15 -2797 ((-374) (-1131))) (-15 -2788 ((-374) (-1131) (-1131))) (-15 -2777 ((-1237))) (-15 -2767 ((-374) (-374))) (-15 -2757 ((-374) (-1131) (-374))) (-15 -2757 ((-374) (-1131) (-1131) (-374))) (-6 -4353)))) (T -96))
+((-2808 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) (-2797 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) (-2788 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) (-2777 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-96)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-96)))) (-2757 (*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1131)) (-5 *1 (-96)))) (-2757 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1131)) (-5 *1 (-96)))))
+(-13 (-1073) (-10 -7 (-15 -2808 ((-374) (-1131) (-1131))) (-15 -2808 ((-374) (-1131))) (-15 -2797 ((-374) (-1131) (-1131))) (-15 -2797 ((-374) (-1131))) (-15 -2788 ((-374) (-1131) (-1131))) (-15 -2777 ((-1237))) (-15 -2767 ((-374) (-374))) (-15 -2757 ((-374) (-1131) (-374))) (-15 -2757 ((-374) (-1131) (-1131) (-374))) (-6 -4353)))
NIL
(((-97) (-138)) (T -97))
NIL
(-13 (-10 -7 (-6 -4353) (-6 (-4355 "*")) (-6 -4354) (-6 -4350) (-6 -4348) (-6 -4347) (-6 -4346) (-6 -4351) (-6 -4345) (-6 -4344) (-6 -4343) (-6 -4342) (-6 -4341) (-6 -4349) (-6 -4352) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4340)))
-((-2898 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-1321 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-538))) 22)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 14)) (-3594 (((-1093) $) NIL)) (-4159 ((|#1| $ |#1|) 11)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) 20)) (-2997 (($) 8 T CONST)) (-3387 (((-112) $ $) 10)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) 27) (($ $ (-751)) NIL) (($ $ (-538)) 16)) (* (($ $ $) 28)))
-(((-98 |#1|) (-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -1321 ($ (-1 |#1| |#1|))) (-15 -1321 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1321 ($ (-1 |#1| |#1| (-538)))))) (-1025)) (T -98))
-((-1321 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) (-1321 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) (-1321 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-538))) (-4 *3 (-1025)) (-5 *1 (-98 *3)))))
-(-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -1321 ($ (-1 |#1| |#1|))) (-15 -1321 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1321 ($ (-1 |#1| |#1| (-538))))))
-((-1322 (((-400 |#2|) |#2| (-622 |#2|)) 10) (((-400 |#2|) |#2| |#2|) 11)))
-(((-99 |#1| |#2|) (-10 -7 (-15 -1322 ((-400 |#2|) |#2| |#2|)) (-15 -1322 ((-400 |#2|) |#2| (-622 |#2|)))) (-13 (-446) (-145)) (-1207 |#1|)) (T -99))
-((-1322 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-13 (-446) (-145))) (-5 *2 (-400 *3)) (-5 *1 (-99 *5 *3)))) (-1322 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-400 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1207 *4)))))
-(-10 -7 (-15 -1322 ((-400 |#2|) |#2| |#2|)) (-15 -1322 ((-400 |#2|) |#2| (-622 |#2|))))
-((-2898 (((-112) $ $) 10)))
-(((-100 |#1|) (-10 -8 (-15 -2898 ((-112) |#1| |#1|))) (-101)) (T -100))
-NIL
-(-10 -8 (-15 -2898 ((-112) |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3387 (((-112) $ $) 6)))
+((-1671 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-2820 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-552))) 22)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 14)) (-2831 (((-1093) $) NIL)) (-2154 ((|#1| $ |#1|) 11)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) 20)) (-2100 (($) 8 T CONST)) (-2281 (((-112) $ $) 10)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) 27) (($ $ (-751)) NIL) (($ $ (-552)) 16)) (* (($ $ $) 28)))
+(((-98 |#1|) (-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -2820 ($ (-1 |#1| |#1|))) (-15 -2820 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2820 ($ (-1 |#1| |#1| (-552)))))) (-1025)) (T -98))
+((-2820 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) (-2820 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) (-2820 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-552))) (-4 *3 (-1025)) (-5 *1 (-98 *3)))))
+(-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -2820 ($ (-1 |#1| |#1|))) (-15 -2820 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2820 ($ (-1 |#1| |#1| (-552))))))
+((-2834 (((-413 |#2|) |#2| (-625 |#2|)) 10) (((-413 |#2|) |#2| |#2|) 11)))
+(((-99 |#1| |#2|) (-10 -7 (-15 -2834 ((-413 |#2|) |#2| |#2|)) (-15 -2834 ((-413 |#2|) |#2| (-625 |#2|)))) (-13 (-446) (-145)) (-1208 |#1|)) (T -99))
+((-2834 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-13 (-446) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-99 *5 *3)))) (-2834 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1208 *4)))))
+(-10 -7 (-15 -2834 ((-413 |#2|) |#2| |#2|)) (-15 -2834 ((-413 |#2|) |#2| (-625 |#2|))))
+((-1671 (((-112) $ $) 10)))
+(((-100 |#1|) (-10 -8 (-15 -1671 ((-112) |#1| |#1|))) (-101)) (T -100))
+NIL
+(-10 -8 (-15 -1671 ((-112) |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-2281 (((-112) $ $) 6)))
(((-101) (-138)) (T -101))
-((-2898 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-3387 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -3387 ((-112) $ $)) (-15 -2898 ((-112) $ $))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) 13 (|has| $ (-6 -4354)))) (-1353 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1354 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1325 (($ $ (-622 |#1|)) 15)) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #2="left" $) NIL (|has| $ (-6 -4354))) (($ $ #3="right" $) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3472 (($ $) 11)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1362 (($ $ |#1| $) 17)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1324 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1323 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-622 |#1|) |#1| |#1| |#1|)) 35)) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3473 (($ $) 10)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) 12)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 9)) (-3928 (($) 16)) (-4159 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1326 (($ (-751) |#1|) 19)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -1326 ($ (-751) |#1|)) (-15 -1325 ($ $ (-622 |#1|))) (-15 -1324 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1324 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1323 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1323 ($ $ |#1| (-1 (-622 |#1|) |#1| |#1| |#1|))))) (-1074)) (T -102))
-((-1326 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-102 *3)) (-4 *3 (-1074)))) (-1325 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-102 *3)))) (-1324 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1074)))) (-1324 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-102 *3)))) (-1323 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1074)) (-5 *1 (-102 *2)))) (-1323 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-622 *2) *2 *2 *2)) (-4 *2 (-1074)) (-5 *1 (-102 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -1326 ($ (-751) |#1|)) (-15 -1325 ($ $ (-622 |#1|))) (-15 -1324 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1324 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1323 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1323 ($ $ |#1| (-1 (-622 |#1|) |#1| |#1| |#1|)))))
-((-1327 ((|#3| |#2| |#2|) 29)) (-1329 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4355 #1="*"))))) (-1328 ((|#3| |#2| |#2|) 30)) (-1330 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4355 #1#))))))
-(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1327 (|#3| |#2| |#2|)) (-15 -1328 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4355 "*"))) (PROGN (-15 -1329 (|#1| |#2| |#2|)) (-15 -1330 (|#1| |#2|))) |%noBranch|)) (-1025) (-1207 |#1|) (-666 |#1| |#4| |#5|) (-367 |#1|) (-367 |#1|)) (T -103))
-((-1330 (*1 *2 *3) (-12 (|has| *2 (-6 (-4355 #1="*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1207 *2)) (-4 *4 (-666 *2 *5 *6)))) (-1329 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4355 #1#))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1207 *2)) (-4 *4 (-666 *2 *5 *6)))) (-1328 (*1 *2 *3 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-666 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1207 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)))) (-1327 (*1 *2 *3 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-666 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1207 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)))))
-(-10 -7 (-15 -1327 (|#3| |#2| |#2|)) (-15 -1328 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4355 "*"))) (PROGN (-15 -1329 (|#1| |#2| |#2|)) (-15 -1330 (|#1| |#2|))) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-1332 (((-622 (-1149))) 33)) (-1331 (((-2 (|:| |zeros| (-1126 (-221))) (|:| |ones| (-1126 (-221))) (|:| |singularities| (-1126 (-221)))) (-1149)) 35)) (-3387 (((-112) $ $) NIL)))
-(((-104) (-13 (-1074) (-10 -7 (-15 -1332 ((-622 (-1149)))) (-15 -1331 ((-2 (|:| |zeros| (-1126 (-221))) (|:| |ones| (-1126 (-221))) (|:| |singularities| (-1126 (-221)))) (-1149))) (-6 -4353)))) (T -104))
-((-1332 (*1 *2) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-104)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-2 (|:| |zeros| (-1126 (-221))) (|:| |ones| (-1126 (-221))) (|:| |singularities| (-1126 (-221))))) (-5 *1 (-104)))))
-(-13 (-1074) (-10 -7 (-15 -1332 ((-622 (-1149)))) (-15 -1331 ((-2 (|:| |zeros| (-1126 (-221))) (|:| |ones| (-1126 (-221))) (|:| |singularities| (-1126 (-221)))) (-1149))) (-6 -4353)))
-((-1335 (($ (-622 |#2|)) 11)))
-(((-105 |#1| |#2|) (-10 -8 (-15 -1335 (|#1| (-622 |#2|)))) (-106 |#2|) (-1185)) (T -105))
-NIL
-(-10 -8 (-15 -1335 (|#1| (-622 |#2|))))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-106 |#1|) (-138) (-1185)) (T -106))
-((-1335 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-106 *3)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185)))) (-3970 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185)))))
-(-13 (-483 |t#1|) (-10 -8 (-6 -4354) (-15 -1335 ($ (-622 |t#1|))) (-15 -1334 (|t#1| $)) (-15 -3970 ($ |t#1| $)) (-15 -1333 (|t#1| $))))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-538) $) NIL (|has| (-538) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-538) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-538) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-538) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-538) (-1014 (-538))))) (-3507 (((-538) $) NIL) (((-1149) $) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-538) (-1014 (-538)))) (((-538) $) NIL (|has| (-538) (-1014 (-538))))) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-538) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-538) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-538) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-538) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-538) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-538) (-1124)))) (-3538 (((-112) $) NIL (|has| (-538) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-538) (-827)))) (-4318 (($ (-1 (-538) (-538)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-538) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-538) (-302))) (((-402 (-538)) $) NIL)) (-3465 (((-538) $) NIL (|has| (-538) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-538)) (-622 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-538) (-538)) NIL (|has| (-538) (-304 (-538)))) (($ $ (-288 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-288 (-538)))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-1149)) (-622 (-538))) NIL (|has| (-538) (-507 (-1149) (-538)))) (($ $ (-1149) (-538)) NIL (|has| (-538) (-507 (-1149) (-538))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-538)) NIL (|has| (-538) (-281 (-538) (-538))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-538) $) NIL)) (-4330 (((-866 (-538)) $) NIL (|has| (-538) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-538) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-538) (-598 (-527)))) (((-373) $) NIL (|has| (-538) (-996))) (((-221) $) NIL (|has| (-538) (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-538) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) 8) (($ (-538)) NIL) (($ (-1149)) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL) (((-980 2) $) 10)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-538) (-886))) (|has| (-538) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-538) $) NIL (|has| (-538) (-537)))) (-2144 (($ (-402 (-538))) 9)) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| (-538) (-800)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-538) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-538) (-827)))) (-4308 (($ $ $) NIL) (($ (-538) (-538)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-538) $) NIL) (($ $ (-538)) NIL)))
-(((-107) (-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 2) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -2144 ($ (-402 (-538))))))) (T -107))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-980 2)) (-5 *1 (-107)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107)))) (-2144 (*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107)))))
-(-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 2) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -2144 ($ (-402 (-538))))))
-((-1348 (((-622 (-941)) $) 14)) (-3905 (((-1149) $) 10)) (-4317 (((-840) $) 23)) (-1336 (($ (-1149) (-622 (-941))) 15)))
-(((-108) (-13 (-597 (-840)) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -1348 ((-622 (-941)) $)) (-15 -1336 ($ (-1149) (-622 (-941))))))) (T -108))
-((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-108)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-622 (-941))) (-5 *1 (-108)))) (-1336 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-941))) (-5 *1 (-108)))))
-(-13 (-597 (-840)) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -1348 ((-622 (-941)) $)) (-15 -1336 ($ (-1149) (-622 (-941))))))
-((-2898 (((-112) $ $) NIL)) (-1813 (((-1093) $ (-1093)) 24)) (-1817 (($ $ (-1131)) 17)) (-3982 (((-3 (-1093) "failed") $) 23)) (-1814 (((-1093) $) 21)) (-1337 (((-1093) $ (-1093)) 26)) (-3778 (((-1093) $) 25)) (-1818 (($ (-383)) NIL) (($ (-383) (-1131)) 16)) (-3905 (((-383) $) NIL)) (-3593 (((-1131) $) NIL)) (-1815 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-1816 (($ $) 18)) (-3387 (((-112) $ $) NIL)))
-(((-109) (-13 (-360 (-383) (-1093)) (-10 -8 (-15 -3982 ((-3 (-1093) "failed") $)) (-15 -3778 ((-1093) $)) (-15 -1337 ((-1093) $ (-1093)))))) (T -109))
-((-3982 (*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-109)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-109)))) (-1337 (*1 *2 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-109)))))
-(-13 (-360 (-383) (-1093)) (-10 -8 (-15 -3982 ((-3 (-1093) "failed") $)) (-15 -3778 ((-1093) $)) (-15 -1337 ((-1093) $ (-1093)))))
-((-2898 (((-112) $ $) NIL)) (-3679 (($ $) NIL)) (-3675 (($ $ $) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) $) NIL (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1846 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-112) (-827)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-3242 (($ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-112) $ (-1198 (-538)) (-112)) NIL (|has| $ (-6 -4354))) (((-112) $ (-538) (-112)) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-3765 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-4202 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-1637 (((-112) $ (-538) (-112)) NIL (|has| $ (-6 -4354)))) (-3448 (((-112) $ (-538)) NIL)) (-3778 (((-538) (-112) $ (-538)) NIL (|has| (-112) (-1074))) (((-538) (-112) $) NIL (|has| (-112) (-1074))) (((-538) (-1 (-112) (-112)) $) NIL)) (-2068 (((-622 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3190 (($ $ $) NIL)) (-3676 (($ $) NIL)) (-1360 (($ $ $) NIL)) (-3977 (($ (-751) (-112)) 8)) (-1361 (($ $ $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL)) (-3872 (($ $ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2511 (((-622 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL)) (-2072 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ (-112) $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-112) $) NIL (|has| (-538) (-827)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2306 (($ $ (-112)) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-112)) (-622 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-288 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-622 (-288 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-2312 (((-622 (-112)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (($ $ (-1198 (-538))) NIL) (((-112) $ (-538)) NIL) (((-112) $ (-538) (-112)) NIL)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2069 (((-751) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074)))) (((-751) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-112) (-598 (-527))))) (-3884 (($ (-622 (-112))) NIL)) (-4161 (($ (-622 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4317 (((-840) $) NIL)) (-1890 (($ (-751) (-112)) 9)) (-2071 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3191 (($ $ $) NIL)) (-3681 (($ $ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-3680 (($ $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -1890 ($ (-751) (-112)))))) (T -110))
-((-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -1890 ($ (-751) (-112)))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+((-1671 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-2281 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -2281 ((-112) $ $)) (-15 -1671 ((-112) $ $))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) 13 (|has| $ (-6 -4354)))) (-1958 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1964 (($ $ $) NIL (|has| $ (-6 -4354)))) (-2868 (($ $ (-625 |#1|)) 15)) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "left" $) NIL (|has| $ (-6 -4354))) (($ $ "right" $) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-2303 (($ $) 11)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2680 (($ $ |#1| $) 17)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2857 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2846 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-625 |#1|) |#1| |#1| |#1|)) 35)) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2290 (($ $) 10)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) 12)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 9)) (-3600 (($) 16)) (-2154 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2879 (($ (-751) |#1|) 19)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2879 ($ (-751) |#1|)) (-15 -2868 ($ $ (-625 |#1|))) (-15 -2857 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2857 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2846 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2846 ($ $ |#1| (-1 (-625 |#1|) |#1| |#1| |#1|))))) (-1073)) (T -102))
+((-2879 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-102 *3)) (-4 *3 (-1073)))) (-2868 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-102 *3)))) (-2857 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1073)))) (-2857 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-102 *3)))) (-2846 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1073)) (-5 *1 (-102 *2)))) (-2846 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-625 *2) *2 *2 *2)) (-4 *2 (-1073)) (-5 *1 (-102 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2879 ($ (-751) |#1|)) (-15 -2868 ($ $ (-625 |#1|))) (-15 -2857 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2857 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2846 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2846 ($ $ |#1| (-1 (-625 |#1|) |#1| |#1| |#1|)))))
+((-2890 ((|#3| |#2| |#2|) 29)) (-2910 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4355 "*"))))) (-2900 ((|#3| |#2| |#2|) 30)) (-2920 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4355 "*"))))))
+(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2890 (|#3| |#2| |#2|)) (-15 -2900 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4355 "*"))) (PROGN (-15 -2910 (|#1| |#2| |#2|)) (-15 -2920 (|#1| |#2|))) |%noBranch|)) (-1025) (-1208 |#1|) (-667 |#1| |#4| |#5|) (-368 |#1|) (-368 |#1|)) (T -103))
+((-2920 (*1 *2 *3) (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1208 *2)) (-4 *4 (-667 *2 *5 *6)))) (-2910 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1208 *2)) (-4 *4 (-667 *2 *5 *6)))) (-2900 (*1 *2 *3 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-667 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1208 *4)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)))) (-2890 (*1 *2 *3 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-667 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1208 *4)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)))))
+(-10 -7 (-15 -2890 (|#3| |#2| |#2|)) (-15 -2900 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4355 "*"))) (PROGN (-15 -2910 (|#1| |#2| |#2|)) (-15 -2920 (|#1| |#2|))) |%noBranch|))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2942 (((-625 (-1149))) 33)) (-2932 (((-2 (|:| |zeros| (-1129 (-221))) (|:| |ones| (-1129 (-221))) (|:| |singularities| (-1129 (-221)))) (-1149)) 35)) (-2281 (((-112) $ $) NIL)))
+(((-104) (-13 (-1073) (-10 -7 (-15 -2942 ((-625 (-1149)))) (-15 -2932 ((-2 (|:| |zeros| (-1129 (-221))) (|:| |ones| (-1129 (-221))) (|:| |singularities| (-1129 (-221)))) (-1149))) (-6 -4353)))) (T -104))
+((-2942 (*1 *2) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-104)))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-2 (|:| |zeros| (-1129 (-221))) (|:| |ones| (-1129 (-221))) (|:| |singularities| (-1129 (-221))))) (-5 *1 (-104)))))
+(-13 (-1073) (-10 -7 (-15 -2942 ((-625 (-1149)))) (-15 -2932 ((-2 (|:| |zeros| (-1129 (-221))) (|:| |ones| (-1129 (-221))) (|:| |singularities| (-1129 (-221)))) (-1149))) (-6 -4353)))
+((-2977 (($ (-625 |#2|)) 11)))
+(((-105 |#1| |#2|) (-10 -8 (-15 -2977 (|#1| (-625 |#2|)))) (-106 |#2|) (-1186)) (T -105))
+NIL
+(-10 -8 (-15 -2977 (|#1| (-625 |#2|))))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-106 |#1|) (-138) (-1186)) (T -106))
+((-2977 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-106 *3)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186)))) (-3966 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186)))) (-2953 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186)))))
+(-13 (-483 |t#1|) (-10 -8 (-6 -4354) (-15 -2977 ($ (-625 |t#1|))) (-15 -2966 (|t#1| $)) (-15 -3966 ($ |t#1| $)) (-15 -2953 (|t#1| $))))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-552) $) NIL (|has| (-552) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-552) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-552) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-552) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1014 (-552))))) (-1895 (((-552) $) NIL) (((-1149) $) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-552) (-1014 (-552)))) (((-552) $) NIL (|has| (-552) (-1014 (-552))))) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-552) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-552) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-552) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-552) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-552) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-552) (-1124)))) (-3630 (((-112) $) NIL (|has| (-552) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-552) (-827)))) (-1996 (($ (-1 (-552) (-552)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-552) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-552) (-302))) (((-402 (-552)) $) NIL)) (-4189 (((-552) $) NIL (|has| (-552) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-552)) (-625 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-304 (-552)))) (($ $ (-289 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-289 (-552)))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-1149)) (-625 (-552))) NIL (|has| (-552) (-507 (-1149) (-552)))) (($ $ (-1149) (-552)) NIL (|has| (-552) (-507 (-1149) (-552))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-552)) NIL (|has| (-552) (-281 (-552) (-552))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-552) $) NIL)) (-2042 (((-868 (-552)) $) NIL (|has| (-552) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-552) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-552) (-598 (-528)))) (((-374) $) NIL (|has| (-552) (-998))) (((-221) $) NIL (|has| (-552) (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-552) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) 8) (($ (-552)) NIL) (($ (-1149)) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL) (((-980 2) $) 10)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-552) (-885))) (|has| (-552) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-552) $) NIL (|has| (-552) (-537)))) (-3232 (($ (-402 (-552))) 9)) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| (-552) (-800)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2404 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL)))
+(((-107) (-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 2) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -3232 ($ (-402 (-552))))))) (T -107))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-980 2)) (-5 *1 (-107)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107)))))
+(-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 2) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -3232 ($ (-402 (-552))))))
+((-1604 (((-625 (-941)) $) 14)) (-1288 (((-1149) $) 10)) (-1683 (((-839) $) 23)) (-2988 (($ (-1149) (-625 (-941))) 15)))
+(((-108) (-13 (-597 (-839)) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1604 ((-625 (-941)) $)) (-15 -2988 ($ (-1149) (-625 (-941))))))) (T -108))
+((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-108)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-625 (-941))) (-5 *1 (-108)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-941))) (-5 *1 (-108)))))
+(-13 (-597 (-839)) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1604 ((-625 (-941)) $)) (-15 -2988 ($ (-1149) (-625 (-941))))))
+((-1671 (((-112) $ $) NIL)) (-4086 (((-1093) $ (-1093)) 24)) (-4137 (($ $ (-1131)) 17)) (-4076 (((-3 (-1093) "failed") $) 23)) (-4099 (((-1093) $) 21)) (-3000 (((-1093) $ (-1093)) 26)) (-2483 (((-1093) $) 25)) (-2508 (($ (-383)) NIL) (($ (-383) (-1131)) 16)) (-1288 (((-383) $) NIL)) (-2883 (((-1131) $) NIL)) (-4111 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-4125 (($ $) 18)) (-2281 (((-112) $ $) NIL)))
+(((-109) (-13 (-359 (-383) (-1093)) (-10 -8 (-15 -4076 ((-3 (-1093) "failed") $)) (-15 -2483 ((-1093) $)) (-15 -3000 ((-1093) $ (-1093)))))) (T -109))
+((-4076 (*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-109)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-109)))) (-3000 (*1 *2 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-109)))))
+(-13 (-359 (-383) (-1093)) (-10 -8 (-15 -4076 ((-3 (-1093) "failed") $)) (-15 -2483 ((-1093) $)) (-15 -3000 ((-1093) $ (-1093)))))
+((-1671 (((-112) $ $) NIL)) (-2488 (($ $) NIL)) (-2244 (($ $ $) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) $) NIL (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3218 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-112) (-827)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-1800 (($ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-112) $ (-1199 (-552)) (-112)) NIL (|has| $ (-6 -4354))) (((-112) $ (-552) (-112)) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-1416 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-2163 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-3692 (((-112) $ (-552) (-112)) NIL (|has| $ (-6 -4354)))) (-3631 (((-112) $ (-552)) NIL)) (-2483 (((-552) (-112) $ (-552)) NIL (|has| (-112) (-1073))) (((-552) (-112) $) NIL (|has| (-112) (-1073))) (((-552) (-1 (-112) (-112)) $) NIL)) (-3799 (((-625 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3152 (($ $ $) NIL)) (-2960 (($ $) NIL)) (-2025 (($ $ $) NIL)) (-2183 (($ (-751) (-112)) 8)) (-2034 (($ $ $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL)) (-3280 (($ $ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3730 (((-625 (-112)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL)) (-3683 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ (-112) $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-112) $) NIL (|has| (-552) (-827)))) (-2380 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2518 (($ $ (-112)) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-112)) (-625 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-289 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-625 (-289 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-1358 (((-625 (-112)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (($ $ (-1199 (-552))) NIL) (((-112) $ (-552)) NIL) (((-112) $ (-552) (-112)) NIL)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-2840 (((-751) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073)))) (((-751) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-112) (-598 (-528))))) (-1695 (($ (-625 (-112))) NIL)) (-3402 (($ (-625 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1683 (((-839) $) NIL)) (-3597 (($ (-751) (-112)) 9)) (-1900 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3743 (($ $ $) NIL)) (-2827 (($ $ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2814 (($ $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -3597 ($ (-751) (-112)))))) (T -110))
+((-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -3597 ($ (-751) (-112)))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
(((-111 |#1| |#2|) (-138) (-1025) (-1025)) (T -111))
NIL
(-13 (-628 |t#1|) (-1031 |t#2|) (-10 -7 (-6 -4348) (-6 -4347)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-1031 |#2|) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3679 (($ $) 10)) (-3675 (($ $ $) 15)) (-2322 (($) 7 T CONST)) (-1338 (($ $) 6)) (-3471 (((-751)) 24)) (-3327 (($) 30)) (-3190 (($ $ $) 13)) (-3676 (($ $) 9)) (-1360 (($ $ $) 16)) (-1361 (($ $ $) 17)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-2126 (((-895) $) 29)) (-3593 (((-1131) $) NIL)) (-2492 (($ (-895)) 28)) (-3189 (($ $ $) 20)) (-3594 (((-1093) $) NIL)) (-2324 (($) 8 T CONST)) (-3188 (($ $ $) 21)) (-4330 (((-527) $) 36)) (-4317 (((-840) $) 39)) (-3191 (($ $ $) 11)) (-3681 (($ $ $) 14)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 19)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 22)) (-3680 (($ $ $) 12)))
-(((-112) (-13 (-821) (-642) (-943) (-598 (-527)) (-10 -8 (-15 -2322 ($) -4311) (-15 -2324 ($) -4311) (-15 -3675 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -1360 ($ $ $)) (-15 -1338 ($ $))))) (T -112))
-((-2322 (*1 *1) (-5 *1 (-112))) (-2324 (*1 *1) (-5 *1 (-112))) (-3675 (*1 *1 *1 *1) (-5 *1 (-112))) (-1361 (*1 *1 *1 *1) (-5 *1 (-112))) (-1360 (*1 *1 *1 *1) (-5 *1 (-112))) (-1338 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-821) (-642) (-943) (-598 (-527)) (-10 -8 (-15 -2322 ($) -4311) (-15 -2324 ($) -4311) (-15 -3675 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -1360 ($ $ $)) (-15 -1338 ($ $))))
-((-2898 (((-112) $ $) NIL)) (-1577 (((-751) $) 72) (($ $ (-751)) 30)) (-1346 (((-112) $) 32)) (-1340 (($ $ (-1131) (-753)) 26)) (-1339 (($ $ (-45 (-1131) (-753))) 15)) (-3174 (((-3 (-753) "failed") $ (-1131)) 25)) (-1348 (((-45 (-1131) (-753)) $) 14)) (-3380 (($ (-1149)) 17) (($ (-1149) (-751)) 22)) (-1347 (((-112) $) 31)) (-1345 (((-112) $) 33)) (-3905 (((-1149) $) 8)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2964 (((-112) $ (-1149)) 10)) (-2246 (($ $ (-1 (-527) (-622 (-527)))) 52) (((-3 (-1 (-527) (-622 (-527))) "failed") $) 56)) (-3594 (((-1093) $) NIL)) (-1342 (((-112) $ (-1131)) 29)) (-1344 (($ $ (-1 (-112) $ $)) 35)) (-3980 (((-3 (-1 (-840) (-622 (-840))) "failed") $) 54) (($ $ (-1 (-840) (-622 (-840)))) 41) (($ $ (-1 (-840) (-840))) 43)) (-1341 (($ $ (-1131)) 45)) (-3759 (($ $) 63)) (-1343 (($ $ (-1 (-112) $ $)) 36)) (-4317 (((-840) $) 48)) (-3125 (($ $ (-1131)) 27)) (-1464 (((-3 (-751) "failed") $) 58)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 71)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 79)))
-(((-113) (-13 (-827) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -1348 ((-45 (-1131) (-753)) $)) (-15 -3759 ($ $)) (-15 -3380 ($ (-1149))) (-15 -3380 ($ (-1149) (-751))) (-15 -1464 ((-3 (-751) "failed") $)) (-15 -1347 ((-112) $)) (-15 -1346 ((-112) $)) (-15 -1345 ((-112) $)) (-15 -1577 ((-751) $)) (-15 -1577 ($ $ (-751))) (-15 -1344 ($ $ (-1 (-112) $ $))) (-15 -1343 ($ $ (-1 (-112) $ $))) (-15 -3980 ((-3 (-1 (-840) (-622 (-840))) "failed") $)) (-15 -3980 ($ $ (-1 (-840) (-622 (-840))))) (-15 -3980 ($ $ (-1 (-840) (-840)))) (-15 -2246 ($ $ (-1 (-527) (-622 (-527))))) (-15 -2246 ((-3 (-1 (-527) (-622 (-527))) "failed") $)) (-15 -2964 ((-112) $ (-1149))) (-15 -1342 ((-112) $ (-1131))) (-15 -3125 ($ $ (-1131))) (-15 -1341 ($ $ (-1131))) (-15 -3174 ((-3 (-753) "failed") $ (-1131))) (-15 -1340 ($ $ (-1131) (-753))) (-15 -1339 ($ $ (-45 (-1131) (-753))))))) (T -113))
-((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-113)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-45 (-1131) (-753))) (-5 *1 (-113)))) (-3759 (*1 *1 *1) (-5 *1 (-113))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-113)))) (-3380 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *1 (-113)))) (-1464 (*1 *2 *1) (|partial| -12 (-5 *2 (-751)) (-5 *1 (-113)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-113)))) (-1577 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-113)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-3980 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-840) (-622 (-840)))) (-5 *1 (-113)))) (-3980 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-840) (-622 (-840)))) (-5 *1 (-113)))) (-3980 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-840) (-840))) (-5 *1 (-113)))) (-2246 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-527) (-622 (-527)))) (-5 *1 (-113)))) (-2246 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-527) (-622 (-527)))) (-5 *1 (-113)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-113)))) (-1342 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3125 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-113)))) (-1341 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-113)))) (-3174 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-753)) (-5 *1 (-113)))) (-1340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-753)) (-5 *1 (-113)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1131) (-753))) (-5 *1 (-113)))))
-(-13 (-827) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -1348 ((-45 (-1131) (-753)) $)) (-15 -3759 ($ $)) (-15 -3380 ($ (-1149))) (-15 -3380 ($ (-1149) (-751))) (-15 -1464 ((-3 (-751) "failed") $)) (-15 -1347 ((-112) $)) (-15 -1346 ((-112) $)) (-15 -1345 ((-112) $)) (-15 -1577 ((-751) $)) (-15 -1577 ($ $ (-751))) (-15 -1344 ($ $ (-1 (-112) $ $))) (-15 -1343 ($ $ (-1 (-112) $ $))) (-15 -3980 ((-3 (-1 (-840) (-622 (-840))) "failed") $)) (-15 -3980 ($ $ (-1 (-840) (-622 (-840))))) (-15 -3980 ($ $ (-1 (-840) (-840)))) (-15 -2246 ($ $ (-1 (-527) (-622 (-527))))) (-15 -2246 ((-3 (-1 (-527) (-622 (-527))) "failed") $)) (-15 -2964 ((-112) $ (-1149))) (-15 -1342 ((-112) $ (-1131))) (-15 -3125 ($ $ (-1131))) (-15 -1341 ($ $ (-1131))) (-15 -3174 ((-3 (-753) "failed") $ (-1131))) (-15 -1340 ($ $ (-1131) (-753))) (-15 -1339 ($ $ (-45 (-1131) (-753))))))
-((-2852 (((-3 (-1 |#1| (-622 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-622 |#1|))) 11) (((-3 |#1| "failed") (-113) (-622 |#1|)) 21)) (-1349 (((-3 (-622 (-1 |#1| (-622 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-622 (-1 |#1| (-622 |#1|)))) 26)) (-1350 (((-113) |#1|) 56 (|has| |#1| (-827)))) (-1351 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-827)))))
-(((-114 |#1|) (-10 -7 (-15 -2852 ((-3 |#1| "failed") (-113) (-622 |#1|))) (-15 -2852 ((-113) (-113) (-1 |#1| (-622 |#1|)))) (-15 -2852 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2852 ((-3 (-1 |#1| (-622 |#1|)) "failed") (-113))) (-15 -1349 ((-113) (-113) (-622 (-1 |#1| (-622 |#1|))))) (-15 -1349 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1349 ((-3 (-622 (-1 |#1| (-622 |#1|))) "failed") (-113))) (IF (|has| |#1| (-827)) (PROGN (-15 -1350 ((-113) |#1|)) (-15 -1351 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1074)) (T -114))
-((-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1074)) (-4 *2 (-827)) (-5 *1 (-114 *2)))) (-1350 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-827)) (-4 *3 (-1074)))) (-1349 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-622 (-1 *4 (-622 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1074)))) (-1349 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) (-1349 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 (-1 *4 (-622 *4)))) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) (-2852 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-622 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1074)))) (-2852 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) (-2852 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-622 *4))) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) (-2852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-622 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1074)))))
-(-10 -7 (-15 -2852 ((-3 |#1| "failed") (-113) (-622 |#1|))) (-15 -2852 ((-113) (-113) (-1 |#1| (-622 |#1|)))) (-15 -2852 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2852 ((-3 (-1 |#1| (-622 |#1|)) "failed") (-113))) (-15 -1349 ((-113) (-113) (-622 (-1 |#1| (-622 |#1|))))) (-15 -1349 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1349 ((-3 (-622 (-1 |#1| (-622 |#1|))) "failed") (-113))) (IF (|has| |#1| (-827)) (PROGN (-15 -1350 ((-113) |#1|)) (-15 -1351 ((-3 |#1| "failed") (-113)))) |%noBranch|))
-((-1352 (((-538) |#2|) 37)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -1352 ((-538) |#2|))) (-13 (-358) (-1014 (-402 (-538)))) (-1207 |#1|)) (T -115))
-((-1352 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-1014 (-402 *2)))) (-5 *2 (-538)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1207 *4)))))
-(-10 -7 (-15 -1352 ((-538) |#2|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $ (-538)) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2940 (($ (-1143 (-538)) (-538)) NIL)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2941 (($ $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4131 (((-751) $) NIL)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2943 (((-538)) NIL)) (-2942 (((-538) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4128 (($ $ (-538)) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-2944 (((-1126 (-538)) $) NIL)) (-3224 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-4129 (((-538) $ (-538)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL)))
-(((-116 |#1|) (-846 |#1|) (-538)) (T -116))
-NIL
-(-846 |#1|)
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-116 |#1|) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-116 |#1|) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-116 |#1|) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-116 |#1|) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-116 |#1|) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-116 |#1|) (-1014 (-538))))) (-3507 (((-116 |#1|) $) NIL) (((-1149) $) NIL (|has| (-116 |#1|) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-116 |#1|) (-1014 (-538)))) (((-538) $) NIL (|has| (-116 |#1|) (-1014 (-538))))) (-4090 (($ $) NIL) (($ (-538) $) NIL)) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-116 |#1|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-116 |#1|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-116 |#1|))) (|:| |vec| (-1231 (-116 |#1|)))) (-669 $) (-1231 $)) NIL) (((-669 (-116 |#1|)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-116 |#1|) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-116 |#1|) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-116 |#1|) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-116 |#1|) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-116 |#1|) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1124)))) (-3538 (((-112) $) NIL (|has| (-116 |#1|) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-116 |#1|) (-827)))) (-3678 (($ $ $) NIL (|has| (-116 |#1|) (-827)))) (-4318 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-116 |#1|) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-116 |#1|) (-302)))) (-3465 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-116 |#1|) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-116 |#1|) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-116 |#1|)) (-622 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-288 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-622 (-288 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-622 (-1149)) (-622 (-116 |#1|))) NIL (|has| (-116 |#1|) (-507 (-1149) (-116 |#1|)))) (($ $ (-1149) (-116 |#1|)) NIL (|has| (-116 |#1|) (-507 (-1149) (-116 |#1|))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-281 (-116 |#1|) (-116 |#1|))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-751)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-116 |#1|) $) NIL)) (-4330 (((-866 (-538)) $) NIL (|has| (-116 |#1|) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-116 |#1|) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-116 |#1|) (-598 (-527)))) (((-373) $) NIL (|has| (-116 |#1|) (-996))) (((-221) $) NIL (|has| (-116 |#1|) (-996)))) (-2945 (((-172 (-402 (-538))) $) NIL)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-116 |#1|)) NIL) (($ (-1149)) NIL (|has| (-116 |#1|) (-1014 (-1149))))) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-886))) (|has| (-116 |#1|) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-537)))) (-2177 (((-112) $ $) NIL)) (-4129 (((-402 (-538)) $ (-538)) NIL)) (-3742 (($ $) NIL (|has| (-116 |#1|) (-800)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-751)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-4308 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-967 (-116 |#1|)) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)))) (-538)) (T -117))
-((-4129 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-538)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-117 *3)) (-14 *3 (-538)))) (-4090 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-538)))) (-4090 (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-967 (-116 |#1|)) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $))))
-((-4147 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3364 (((-622 $) $) 27)) (-3360 (((-112) $ $) 32)) (-3596 (((-112) |#2| $) 36)) (-3363 (((-622 |#2|) $) 22)) (-3881 (((-112) $) 16)) (-4159 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3996 (((-112) $) 45)) (-4317 (((-840) $) 41)) (-3876 (((-622 $) $) 28)) (-3387 (((-112) $ $) 34)) (-4316 (((-751) $) 43)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4147 (|#1| |#1| "right" |#1|)) (-15 -4147 (|#1| |#1| "left" |#1|)) (-15 -4159 (|#1| |#1| "right")) (-15 -4159 (|#1| |#1| "left")) (-15 -4147 (|#2| |#1| #1="value" |#2|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3363 ((-622 |#2|) |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -3596 ((-112) |#2| |#1|)) (-15 -4316 ((-751) |#1|))) (-119 |#2|) (-1185)) (T -118))
-NIL
-(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4147 (|#1| |#1| "right" |#1|)) (-15 -4147 (|#1| |#1| "left" |#1|)) (-15 -4159 (|#1| |#1| "right")) (-15 -4159 (|#1| |#1| "left")) (-15 -4147 (|#2| |#1| #1="value" |#2|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3363 ((-622 |#2|) |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -3596 ((-112) |#2| |#1|)) (-15 -4316 ((-751) |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1353 (($ $ $) 52 (|has| $ (-6 -4354)))) (-1354 (($ $ $) 54 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) (($ $ "left" $) 55 (|has| $ (-6 -4354))) (($ $ "right" $) 53 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-3472 (($ $) 57)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3473 (($ $) 59)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3362 (((-538) $ $) 44)) (-3996 (((-112) $) 46)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-119 |#1|) (-138) (-1185)) (T -119))
-((-3473 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1185)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1185)))) (-3472 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1185)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1185)))) (-4147 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) (-4 *3 (-1185)))) (-1354 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1185)))) (-4147 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) (-4 *3 (-1185)))) (-1353 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1185)))))
-(-13 (-986 |t#1|) (-10 -8 (-15 -3473 ($ $)) (-15 -4159 ($ $ "left")) (-15 -3472 ($ $)) (-15 -4159 ($ $ "right")) (IF (|has| $ (-6 -4354)) (PROGN (-15 -4147 ($ $ "left" $)) (-15 -1354 ($ $ $)) (-15 -4147 ($ $ "right" $)) (-15 -1353 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-1357 (((-112) |#1|) 24)) (-1356 (((-751) (-751)) 23) (((-751)) 22)) (-1355 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
-(((-120 |#1|) (-10 -7 (-15 -1355 ((-112) |#1|)) (-15 -1355 ((-112) |#1| (-112))) (-15 -1356 ((-751))) (-15 -1356 ((-751) (-751))) (-15 -1357 ((-112) |#1|))) (-1207 (-538))) (T -120))
-((-1357 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))) (-1356 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))) (-1356 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))) (-1355 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))) (-1355 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))))
-(-10 -7 (-15 -1355 ((-112) |#1|)) (-15 -1355 ((-112) |#1| (-112))) (-15 -1356 ((-751))) (-15 -1356 ((-751) (-751))) (-15 -1357 ((-112) |#1|)))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) 15)) (-3777 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1353 (($ $ $) 18 (|has| $ (-6 -4354)))) (-1354 (($ $ $) 20 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #2="left" $) NIL (|has| $ (-6 -4354))) (($ $ #3="right" $) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3472 (($ $) 17)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1362 (($ $ |#1| $) 23)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3473 (($ $) 19)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1358 (($ |#1| $) 24)) (-3970 (($ |#1| $) 10)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 14)) (-3928 (($) 8)) (-4159 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1359 (($ (-622 |#1|)) 12)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -1359 ($ (-622 |#1|))) (-15 -3970 ($ |#1| $)) (-15 -1358 ($ |#1| $)) (-15 -3777 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-827)) (T -121))
-((-1359 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-121 *3)))) (-3970 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))) (-1358 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))) (-3777 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-827)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -1359 ($ (-622 |#1|))) (-15 -3970 ($ |#1| $)) (-15 -1358 ($ |#1| $)) (-15 -3777 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-3679 (($ $) 13)) (-3676 (($ $) 11)) (-1360 (($ $ $) 23)) (-1361 (($ $ $) 21)) (-3681 (($ $ $) 19)) (-3680 (($ $ $) 17)))
-(((-122 |#1|) (-10 -8 (-15 -1360 (|#1| |#1| |#1|)) (-15 -1361 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3680 (|#1| |#1| |#1|)) (-15 -3681 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -1360 (|#1| |#1| |#1|)) (-15 -1361 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3680 (|#1| |#1| |#1|)) (-15 -3681 (|#1| |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3679 (($ $) 103)) (-3675 (($ $ $) 25)) (-2305 (((-1237) $ (-538) (-538)) 66 (|has| $ (-6 -4354)))) (-1848 (((-112) $) 98 (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1846 (($ $) 102 (-12 (|has| (-112) (-827)) (|has| $ (-6 -4354)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4354)))) (-3242 (($ $) 97 (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1271 (((-112) $ (-751)) 37)) (-4147 (((-112) $ (-1198 (-538)) (-112)) 88 (|has| $ (-6 -4354))) (((-112) $ (-538) (-112)) 54 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4353)))) (-3896 (($) 38 T CONST)) (-2377 (($ $) 100 (|has| $ (-6 -4354)))) (-2378 (($ $) 90)) (-1398 (($ $) 68 (-12 (|has| (-112) (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4353))) (($ (-112) $) 69 (-12 (|has| (-112) (-1074)) (|has| $ (-6 -4353))))) (-4202 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1074)) (|has| $ (-6 -4353))))) (-1637 (((-112) $ (-538) (-112)) 53 (|has| $ (-6 -4354)))) (-3448 (((-112) $ (-538)) 55)) (-3778 (((-538) (-112) $ (-538)) 95 (|has| (-112) (-1074))) (((-538) (-112) $) 94 (|has| (-112) (-1074))) (((-538) (-1 (-112) (-112)) $) 93)) (-2068 (((-622 (-112)) $) 45 (|has| $ (-6 -4353)))) (-3190 (($ $ $) 26)) (-3676 (($ $) 30)) (-1360 (($ $ $) 28)) (-3977 (($ (-751) (-112)) 77)) (-1361 (($ $ $) 29)) (-4082 (((-112) $ (-751)) 36)) (-2307 (((-538) $) 63 (|has| (-538) (-827)))) (-3677 (($ $ $) 13)) (-3872 (($ $ $) 96 (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2511 (((-622 (-112)) $) 46 (|has| $ (-6 -4353)))) (-3596 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 62 (|has| (-538) (-827)))) (-3678 (($ $ $) 14)) (-2072 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4079 (((-112) $ (-751)) 35)) (-3593 (((-1131) $) 9)) (-2382 (($ $ $ (-538)) 87) (($ (-112) $ (-538)) 86)) (-2310 (((-622 (-538)) $) 60)) (-2311 (((-112) (-538) $) 59)) (-3594 (((-1093) $) 10)) (-4160 (((-112) $) 64 (|has| (-538) (-827)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2306 (($ $ (-112)) 65 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-112)) (-622 (-112))) 52 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-288 (-112))) 50 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-622 (-288 (-112)))) 49 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074))))) (-1272 (((-112) $ $) 31)) (-2309 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-2312 (((-622 (-112)) $) 58)) (-3762 (((-112) $) 34)) (-3928 (($) 33)) (-4159 (($ $ (-1198 (-538))) 83) (((-112) $ (-538)) 57) (((-112) $ (-538) (-112)) 56)) (-2383 (($ $ (-1198 (-538))) 85) (($ $ (-538)) 84)) (-2069 (((-751) (-112) $) 47 (-12 (|has| (-112) (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4353)))) (-1847 (($ $ $ (-538)) 99 (|has| $ (-6 -4354)))) (-3759 (($ $) 32)) (-4330 (((-527) $) 67 (|has| (-112) (-598 (-527))))) (-3884 (($ (-622 (-112))) 76)) (-4161 (($ (-622 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4317 (((-840) $) 11)) (-2071 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4353)))) (-3191 (($ $ $) 27)) (-3681 (($ $ $) 105)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-3680 (($ $ $) 104)) (-4316 (((-751) $) 39 (|has| $ (-6 -4353)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-1031 |#2|) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-2488 (($ $) 10)) (-2244 (($ $ $) 15)) (-3732 (($) 7 T CONST)) (-2681 (($ $) 6)) (-2894 (((-751)) 24)) (-3702 (($) 30)) (-3152 (($ $ $) 13)) (-2960 (($ $) 9)) (-2025 (($ $ $) 16)) (-2034 (($ $ $) 17)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-4318 (((-897) $) 29)) (-2883 (((-1131) $) NIL)) (-3123 (($ (-897)) 28)) (-2221 (($ $ $) 20)) (-2831 (((-1093) $) NIL)) (-2643 (($) 8 T CONST)) (-3251 (($ $ $) 21)) (-2042 (((-528) $) 36)) (-1683 (((-839) $) 39)) (-3743 (($ $ $) 11)) (-2827 (($ $ $) 14)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 19)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 22)) (-2814 (($ $ $) 12)))
+(((-112) (-13 (-821) (-641) (-943) (-598 (-528)) (-10 -8 (-15 -3732 ($) -1426) (-15 -2643 ($) -1426) (-15 -2244 ($ $ $)) (-15 -2034 ($ $ $)) (-15 -2025 ($ $ $)) (-15 -2681 ($ $))))) (T -112))
+((-3732 (*1 *1) (-5 *1 (-112))) (-2643 (*1 *1) (-5 *1 (-112))) (-2244 (*1 *1 *1 *1) (-5 *1 (-112))) (-2034 (*1 *1 *1 *1) (-5 *1 (-112))) (-2025 (*1 *1 *1 *1) (-5 *1 (-112))) (-2681 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-821) (-641) (-943) (-598 (-528)) (-10 -8 (-15 -3732 ($) -1426) (-15 -2643 ($) -1426) (-15 -2244 ($ $ $)) (-15 -2034 ($ $ $)) (-15 -2025 ($ $ $)) (-15 -2681 ($ $))))
+((-3164 (((-3 (-1 |#1| (-625 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-625 |#1|))) 11) (((-3 |#1| "failed") (-114) (-625 |#1|)) 21)) (-1911 (((-3 (-625 (-1 |#1| (-625 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-625 (-1 |#1| (-625 |#1|)))) 26)) (-1922 (((-114) |#1|) 56 (|has| |#1| (-827)))) (-1936 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-827)))))
+(((-113 |#1|) (-10 -7 (-15 -3164 ((-3 |#1| "failed") (-114) (-625 |#1|))) (-15 -3164 ((-114) (-114) (-1 |#1| (-625 |#1|)))) (-15 -3164 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3164 ((-3 (-1 |#1| (-625 |#1|)) "failed") (-114))) (-15 -1911 ((-114) (-114) (-625 (-1 |#1| (-625 |#1|))))) (-15 -1911 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1911 ((-3 (-625 (-1 |#1| (-625 |#1|))) "failed") (-114))) (IF (|has| |#1| (-827)) (PROGN (-15 -1922 ((-114) |#1|)) (-15 -1936 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1073)) (T -113))
+((-1936 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1073)) (-4 *2 (-827)) (-5 *1 (-113 *2)))) (-1922 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-827)) (-4 *3 (-1073)))) (-1911 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-625 (-1 *4 (-625 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1073)))) (-1911 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1073)) (-5 *1 (-113 *4)))) (-1911 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 (-1 *4 (-625 *4)))) (-4 *4 (-1073)) (-5 *1 (-113 *4)))) (-3164 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-625 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1073)))) (-3164 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1073)) (-5 *1 (-113 *4)))) (-3164 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-625 *4))) (-4 *4 (-1073)) (-5 *1 (-113 *4)))) (-3164 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-625 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1073)))))
+(-10 -7 (-15 -3164 ((-3 |#1| "failed") (-114) (-625 |#1|))) (-15 -3164 ((-114) (-114) (-1 |#1| (-625 |#1|)))) (-15 -3164 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3164 ((-3 (-1 |#1| (-625 |#1|)) "failed") (-114))) (-15 -1911 ((-114) (-114) (-625 (-1 |#1| (-625 |#1|))))) (-15 -1911 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1911 ((-3 (-625 (-1 |#1| (-625 |#1|))) "failed") (-114))) (IF (|has| |#1| (-827)) (PROGN (-15 -1922 ((-114) |#1|)) (-15 -1936 ((-3 |#1| "failed") (-114)))) |%noBranch|))
+((-1671 (((-112) $ $) NIL)) (-3469 (((-751) $) 72) (($ $ (-751)) 30)) (-1887 (((-112) $) 32)) (-3024 (($ $ (-1131) (-754)) 26)) (-3012 (($ $ (-45 (-1131) (-754))) 15)) (-4085 (((-3 (-754) "failed") $ (-1131)) 25)) (-1604 (((-45 (-1131) (-754)) $) 14)) (-1563 (($ (-1149)) 17) (($ (-1149) (-751)) 22)) (-1898 (((-112) $) 31)) (-1877 (((-112) $) 33)) (-1288 (((-1149) $) 8)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-1721 (((-112) $ (-1149)) 10)) (-1461 (($ $ (-1 (-528) (-625 (-528)))) 52) (((-3 (-1 (-528) (-625 (-528))) "failed") $) 56)) (-2831 (((-1093) $) NIL)) (-3045 (((-112) $ (-1131)) 29)) (-1866 (($ $ (-1 (-112) $ $)) 35)) (-1407 (((-3 (-1 (-839) (-625 (-839))) "failed") $) 54) (($ $ (-1 (-839) (-625 (-839)))) 41) (($ $ (-1 (-839) (-839))) 43)) (-3035 (($ $ (-1131)) 45)) (-1871 (($ $) 63)) (-3056 (($ $ (-1 (-112) $ $)) 36)) (-1683 (((-839) $) 48)) (-1950 (($ $ (-1131)) 27)) (-1832 (((-3 (-751) "failed") $) 58)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 71)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 79)))
+(((-114) (-13 (-827) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1604 ((-45 (-1131) (-754)) $)) (-15 -1871 ($ $)) (-15 -1563 ($ (-1149))) (-15 -1563 ($ (-1149) (-751))) (-15 -1832 ((-3 (-751) "failed") $)) (-15 -1898 ((-112) $)) (-15 -1887 ((-112) $)) (-15 -1877 ((-112) $)) (-15 -3469 ((-751) $)) (-15 -3469 ($ $ (-751))) (-15 -1866 ($ $ (-1 (-112) $ $))) (-15 -3056 ($ $ (-1 (-112) $ $))) (-15 -1407 ((-3 (-1 (-839) (-625 (-839))) "failed") $)) (-15 -1407 ($ $ (-1 (-839) (-625 (-839))))) (-15 -1407 ($ $ (-1 (-839) (-839)))) (-15 -1461 ($ $ (-1 (-528) (-625 (-528))))) (-15 -1461 ((-3 (-1 (-528) (-625 (-528))) "failed") $)) (-15 -1721 ((-112) $ (-1149))) (-15 -3045 ((-112) $ (-1131))) (-15 -1950 ($ $ (-1131))) (-15 -3035 ($ $ (-1131))) (-15 -4085 ((-3 (-754) "failed") $ (-1131))) (-15 -3024 ($ $ (-1131) (-754))) (-15 -3012 ($ $ (-45 (-1131) (-754))))))) (T -114))
+((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-114)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-45 (-1131) (-754))) (-5 *1 (-114)))) (-1871 (*1 *1 *1) (-5 *1 (-114))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-114)))) (-1563 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *1 (-114)))) (-1832 (*1 *2 *1) (|partial| -12 (-5 *2 (-751)) (-5 *1 (-114)))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-114)))) (-3469 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-114)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3056 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1407 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-839) (-625 (-839)))) (-5 *1 (-114)))) (-1407 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-839) (-625 (-839)))) (-5 *1 (-114)))) (-1407 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-839) (-839))) (-5 *1 (-114)))) (-1461 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-528) (-625 (-528)))) (-5 *1 (-114)))) (-1461 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-528) (-625 (-528)))) (-5 *1 (-114)))) (-1721 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3045 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1950 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-114)))) (-3035 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-114)))) (-4085 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-754)) (-5 *1 (-114)))) (-3024 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-754)) (-5 *1 (-114)))) (-3012 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1131) (-754))) (-5 *1 (-114)))))
+(-13 (-827) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1604 ((-45 (-1131) (-754)) $)) (-15 -1871 ($ $)) (-15 -1563 ($ (-1149))) (-15 -1563 ($ (-1149) (-751))) (-15 -1832 ((-3 (-751) "failed") $)) (-15 -1898 ((-112) $)) (-15 -1887 ((-112) $)) (-15 -1877 ((-112) $)) (-15 -3469 ((-751) $)) (-15 -3469 ($ $ (-751))) (-15 -1866 ($ $ (-1 (-112) $ $))) (-15 -3056 ($ $ (-1 (-112) $ $))) (-15 -1407 ((-3 (-1 (-839) (-625 (-839))) "failed") $)) (-15 -1407 ($ $ (-1 (-839) (-625 (-839))))) (-15 -1407 ($ $ (-1 (-839) (-839)))) (-15 -1461 ($ $ (-1 (-528) (-625 (-528))))) (-15 -1461 ((-3 (-1 (-528) (-625 (-528))) "failed") $)) (-15 -1721 ((-112) $ (-1149))) (-15 -3045 ((-112) $ (-1131))) (-15 -1950 ($ $ (-1131))) (-15 -3035 ($ $ (-1131))) (-15 -4085 ((-3 (-754) "failed") $ (-1131))) (-15 -3024 ($ $ (-1131) (-754))) (-15 -3012 ($ $ (-45 (-1131) (-754))))))
+((-1946 (((-552) |#2|) 37)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -1946 ((-552) |#2|))) (-13 (-358) (-1014 (-402 (-552)))) (-1208 |#1|)) (T -115))
+((-1946 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-1014 (-402 *2)))) (-5 *2 (-552)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1208 *4)))))
+(-10 -7 (-15 -1946 ((-552) |#2|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $ (-552)) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-1496 (($ (-1145 (-552)) (-552)) NIL)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1507 (($ $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2172 (((-751) $) NIL)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1531 (((-552)) NIL)) (-1520 (((-552) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2147 (($ $ (-552)) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1542 (((-1129 (-552)) $) NIL)) (-3580 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2874 (((-552) $ (-552)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL)))
+(((-116 |#1|) (-845 |#1|) (-552)) (T -116))
+NIL
+(-845 |#1|)
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-116 |#1|) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-116 |#1|) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-116 |#1|) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-116 |#1|) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-116 |#1|) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-116 |#1|) (-1014 (-552))))) (-1895 (((-116 |#1|) $) NIL) (((-1149) $) NIL (|has| (-116 |#1|) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-116 |#1|) (-1014 (-552)))) (((-552) $) NIL (|has| (-116 |#1|) (-1014 (-552))))) (-2987 (($ $) NIL) (($ (-552) $) NIL)) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-116 |#1|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-116 |#1|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-116 |#1|))) (|:| |vec| (-1232 (-116 |#1|)))) (-669 $) (-1232 $)) NIL) (((-669 (-116 |#1|)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-116 |#1|) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-116 |#1|) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-116 |#1|) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-116 |#1|) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-116 |#1|) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1124)))) (-3630 (((-112) $) NIL (|has| (-116 |#1|) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-116 |#1|) (-827)))) (-3332 (($ $ $) NIL (|has| (-116 |#1|) (-827)))) (-1996 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-116 |#1|) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-116 |#1|) (-302)))) (-4189 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-116 |#1|) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-116 |#1|) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-116 |#1|)) (-625 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-289 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-625 (-289 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-625 (-1149)) (-625 (-116 |#1|))) NIL (|has| (-116 |#1|) (-507 (-1149) (-116 |#1|)))) (($ $ (-1149) (-116 |#1|)) NIL (|has| (-116 |#1|) (-507 (-1149) (-116 |#1|))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-281 (-116 |#1|) (-116 |#1|))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-751)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-116 |#1|) $) NIL)) (-2042 (((-868 (-552)) $) NIL (|has| (-116 |#1|) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-116 |#1|) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-116 |#1|) (-598 (-528)))) (((-374) $) NIL (|has| (-116 |#1|) (-998))) (((-221) $) NIL (|has| (-116 |#1|) (-998)))) (-1553 (((-172 (-402 (-552))) $) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-116 |#1|)) NIL) (($ (-1149)) NIL (|has| (-116 |#1|) (-1014 (-1149))))) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-885))) (|has| (-116 |#1|) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-537)))) (-3518 (((-112) $ $) NIL)) (-2874 (((-402 (-552)) $ (-552)) NIL)) (-1727 (($ $) NIL (|has| (-116 |#1|) (-800)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-751)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-2404 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-968 (-116 |#1|)) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)))) (-552)) (T -117))
+((-2874 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-552)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-552)))) (-5 *1 (-117 *3)) (-14 *3 (-552)))) (-2987 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-552)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-968 (-116 |#1|)) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $))))
+((-1851 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1399 (((-625 $) $) 27)) (-1371 (((-112) $ $) 32)) (-2893 (((-112) |#2| $) 36)) (-3183 (((-625 |#2|) $) 22)) (-3367 (((-112) $) 16)) (-2154 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2316 (((-112) $) 45)) (-1683 (((-839) $) 41)) (-3320 (((-625 $) $) 28)) (-2281 (((-112) $ $) 34)) (-1471 (((-751) $) 43)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -1851 (|#1| |#1| "right" |#1|)) (-15 -1851 (|#1| |#1| "left" |#1|)) (-15 -2154 (|#1| |#1| "right")) (-15 -2154 (|#1| |#1| "left")) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1371 ((-112) |#1| |#1|)) (-15 -3183 ((-625 |#2|) |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -2893 ((-112) |#2| |#1|)) (-15 -1471 ((-751) |#1|))) (-119 |#2|) (-1186)) (T -118))
+NIL
+(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -1851 (|#1| |#1| "right" |#1|)) (-15 -1851 (|#1| |#1| "left" |#1|)) (-15 -2154 (|#1| |#1| "right")) (-15 -2154 (|#1| |#1| "left")) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1371 ((-112) |#1| |#1|)) (-15 -3183 ((-625 |#2|) |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -2893 ((-112) |#2| |#1|)) (-15 -1471 ((-751) |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1958 (($ $ $) 52 (|has| $ (-6 -4354)))) (-1964 (($ $ $) 54 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) (($ $ "left" $) 55 (|has| $ (-6 -4354))) (($ $ "right" $) 53 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-2303 (($ $) 57)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2290 (($ $) 59)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1389 (((-552) $ $) 44)) (-2316 (((-112) $) 46)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-119 |#1|) (-138) (-1186)) (T -119))
+((-2290 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1186)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1186)))) (-2303 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1186)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1186)))) (-1851 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) (-4 *3 (-1186)))) (-1964 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1186)))) (-1851 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) (-4 *3 (-1186)))) (-1958 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1186)))))
+(-13 (-986 |t#1|) (-10 -8 (-15 -2290 ($ $)) (-15 -2154 ($ $ "left")) (-15 -2303 ($ $)) (-15 -2154 ($ $ "right")) (IF (|has| $ (-6 -4354)) (PROGN (-15 -1851 ($ $ "left" $)) (-15 -1964 ($ $ $)) (-15 -1851 ($ $ "right" $)) (-15 -1958 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-1999 (((-112) |#1|) 24)) (-1988 (((-751) (-751)) 23) (((-751)) 22)) (-1979 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
+(((-120 |#1|) (-10 -7 (-15 -1979 ((-112) |#1|)) (-15 -1979 ((-112) |#1| (-112))) (-15 -1988 ((-751))) (-15 -1988 ((-751) (-751))) (-15 -1999 ((-112) |#1|))) (-1208 (-552))) (T -120))
+((-1999 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))) (-1988 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))) (-1979 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))) (-1979 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))))
+(-10 -7 (-15 -1979 ((-112) |#1|)) (-15 -1979 ((-112) |#1| (-112))) (-15 -1988 ((-751))) (-15 -1988 ((-751) (-751))) (-15 -1999 ((-112) |#1|)))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) 15)) (-3819 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1958 (($ $ $) 18 (|has| $ (-6 -4354)))) (-1964 (($ $ $) 20 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "left" $) NIL (|has| $ (-6 -4354))) (($ $ "right" $) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-2303 (($ $) 17)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2680 (($ $ |#1| $) 23)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2290 (($ $) 19)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2009 (($ |#1| $) 24)) (-3966 (($ |#1| $) 10)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 14)) (-3600 (($) 8)) (-2154 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2016 (($ (-625 |#1|)) 12)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -2016 ($ (-625 |#1|))) (-15 -3966 ($ |#1| $)) (-15 -2009 ($ |#1| $)) (-15 -3819 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-827)) (T -121))
+((-2016 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-121 *3)))) (-3966 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))) (-2009 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))) (-3819 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-827)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -2016 ($ (-625 |#1|))) (-15 -3966 ($ |#1| $)) (-15 -2009 ($ |#1| $)) (-15 -3819 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2488 (($ $) 13)) (-2960 (($ $) 11)) (-2025 (($ $ $) 23)) (-2034 (($ $ $) 21)) (-2827 (($ $ $) 19)) (-2814 (($ $ $) 17)))
+(((-122 |#1|) (-10 -8 (-15 -2025 (|#1| |#1| |#1|)) (-15 -2034 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -2827 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -2025 (|#1| |#1| |#1|)) (-15 -2034 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -2827 (|#1| |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-2488 (($ $) 103)) (-2244 (($ $ $) 25)) (-2509 (((-1237) $ (-552) (-552)) 66 (|has| $ (-6 -4354)))) (-3237 (((-112) $) 98 (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3218 (($ $) 102 (-12 (|has| (-112) (-827)) (|has| $ (-6 -4354)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4354)))) (-1800 (($ $) 97 (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3495 (((-112) $ (-751)) 37)) (-1851 (((-112) $ (-1199 (-552)) (-112)) 88 (|has| $ (-6 -4354))) (((-112) $ (-552) (-112)) 54 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4353)))) (-3101 (($) 38 T CONST)) (-1883 (($ $) 100 (|has| $ (-6 -4354)))) (-2306 (($ $) 90)) (-2959 (($ $) 68 (-12 (|has| (-112) (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4353))) (($ (-112) $) 69 (-12 (|has| (-112) (-1073)) (|has| $ (-6 -4353))))) (-2163 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1073)) (|has| $ (-6 -4353))))) (-3692 (((-112) $ (-552) (-112)) 53 (|has| $ (-6 -4354)))) (-3631 (((-112) $ (-552)) 55)) (-2483 (((-552) (-112) $ (-552)) 95 (|has| (-112) (-1073))) (((-552) (-112) $) 94 (|has| (-112) (-1073))) (((-552) (-1 (-112) (-112)) $) 93)) (-3799 (((-625 (-112)) $) 45 (|has| $ (-6 -4353)))) (-3152 (($ $ $) 26)) (-2960 (($ $) 30)) (-2025 (($ $ $) 28)) (-2183 (($ (-751) (-112)) 77)) (-2034 (($ $ $) 29)) (-2909 (((-112) $ (-751)) 36)) (-2527 (((-552) $) 63 (|has| (-552) (-827)))) (-3658 (($ $ $) 13)) (-3280 (($ $ $) 96 (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3730 (((-625 (-112)) $) 46 (|has| $ (-6 -4353)))) (-2893 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 62 (|has| (-552) (-827)))) (-3332 (($ $ $) 14)) (-3683 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-2878 (((-112) $ (-751)) 35)) (-2883 (((-1131) $) 9)) (-3994 (($ $ $ (-552)) 87) (($ (-112) $ (-552)) 86)) (-2554 (((-625 (-552)) $) 60)) (-2564 (((-112) (-552) $) 59)) (-2831 (((-1093) $) 10)) (-2924 (((-112) $) 64 (|has| (-552) (-827)))) (-2380 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2518 (($ $ (-112)) 65 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-112)) (-625 (-112))) 52 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-289 (-112))) 50 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-625 (-289 (-112)))) 49 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073))))) (-3504 (((-112) $ $) 31)) (-2545 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-1358 (((-625 (-112)) $) 58)) (-1916 (((-112) $) 34)) (-3600 (($) 33)) (-2154 (($ $ (-1199 (-552))) 83) (((-112) $ (-552)) 57) (((-112) $ (-552) (-112)) 56)) (-4001 (($ $ (-1199 (-552))) 85) (($ $ (-552)) 84)) (-2840 (((-751) (-112) $) 47 (-12 (|has| (-112) (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4353)))) (-3228 (($ $ $ (-552)) 99 (|has| $ (-6 -4354)))) (-1871 (($ $) 32)) (-2042 (((-528) $) 67 (|has| (-112) (-598 (-528))))) (-1695 (($ (-625 (-112))) 76)) (-3402 (($ (-625 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-1683 (((-839) $) 11)) (-1900 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4353)))) (-3743 (($ $ $) 27)) (-2827 (($ $ $) 105)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2814 (($ $ $) 104)) (-1471 (((-751) $) 39 (|has| $ (-6 -4353)))))
(((-123) (-138)) (T -123))
-((-3676 (*1 *1 *1) (-4 *1 (-123))) (-1361 (*1 *1 *1 *1) (-4 *1 (-123))) (-1360 (*1 *1 *1 *1) (-4 *1 (-123))) (-3191 (*1 *1 *1 *1) (-4 *1 (-123))) (-3190 (*1 *1 *1 *1) (-4 *1 (-123))) (-3675 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-827) (-642) (-19 (-112)) (-10 -8 (-15 -3676 ($ $)) (-15 -1361 ($ $ $)) (-15 -1360 ($ $ $)) (-15 -3191 ($ $ $)) (-15 -3190 ($ $ $)) (-15 -3675 ($ $ $))))
-(((-34) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 #1=(-112)) . T) ((-598 (-527)) |has| (-112) (-598 (-527))) ((-281 #2=(-538) #1#) . T) ((-283 #2# #1#) . T) ((-304 #1#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074))) ((-367 #1#) . T) ((-483 #1#) . T) ((-588 #2# #1#) . T) ((-507 #1# #1#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074))) ((-631 #1#) . T) ((-642) . T) ((-19 #1#) . T) ((-827) . T) ((-1074) . T) ((-1185) . T))
-((-2072 (($ (-1 |#2| |#2|) $) 22)) (-3759 (($ $) 16)) (-4316 (((-751) $) 24)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -3759 (|#1| |#1|))) (-125 |#2|) (-1074)) (T -124))
-NIL
-(-10 -8 (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -3759 (|#1| |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1353 (($ $ $) 52 (|has| $ (-6 -4354)))) (-1354 (($ $ $) 54 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) (($ $ #2="left" $) 55 (|has| $ (-6 -4354))) (($ $ #3="right" $) 53 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-3472 (($ $) 57)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-1362 (($ $ |#1| $) 60)) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3473 (($ $) 59)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3362 (((-538) $ $) 44)) (-3996 (((-112) $) 46)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-125 |#1|) (-138) (-1074)) (T -125))
-((-1362 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1074)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -1362 ($ $ |t#1| $))))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-119 |#1|) . T) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) 15)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) 19 (|has| $ (-6 -4354)))) (-1353 (($ $ $) 20 (|has| $ (-6 -4354)))) (-1354 (($ $ $) 18 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #2="left" $) NIL (|has| $ (-6 -4354))) (($ $ #3="right" $) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3472 (($ $) 21)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1362 (($ $ |#1| $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3473 (($ $) NIL)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3970 (($ |#1| $) 10)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 14)) (-3928 (($) 8)) (-4159 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 17)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1363 (($ (-622 |#1|)) 12)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4354) (-15 -1363 ($ (-622 |#1|))) (-15 -3970 ($ |#1| $)))) (-827)) (T -126))
-((-1363 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-126 *3)))) (-3970 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-827)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4354) (-15 -1363 ($ (-622 |#1|))) (-15 -3970 ($ |#1| $))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) 24)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) 26 (|has| $ (-6 -4354)))) (-1353 (($ $ $) 30 (|has| $ (-6 -4354)))) (-1354 (($ $ $) 28 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #2="left" $) NIL (|has| $ (-6 -4354))) (($ $ #3="right" $) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3472 (($ $) 20)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1362 (($ $ |#1| $) 15)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3473 (($ $) 19)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) 21)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 18)) (-3928 (($) 11)) (-4159 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1364 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 10 (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1364 ($ |#1|)) (-15 -1364 ($ $ |#1| $)))) (-1074)) (T -127))
-((-1364 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1074)))) (-1364 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1074)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -1364 ($ |#1|)) (-15 -1364 ($ $ |#1| $))))
-((-2898 (((-112) $ $) NIL)) (-3896 (($) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) 9)) (-4317 (((-840) $) 19) (((-751) $) 11) (((-142) $) 16) (($ (-751)) 10) (($ (-142)) 14)) (-1367 (($ (-751)) 7)) (-1365 (($ $ $) 24)) (-1366 (($ $ $) 23)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 21)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 22)))
-(((-128) (-13 (-827) (-597 (-751)) (-597 (-142)) (-10 -8 (-15 -1367 ($ (-751))) (-15 -4317 ($ (-751))) (-15 -4317 ($ (-142))) (-15 -1366 ($ $ $)) (-15 -1365 ($ $ $)) (-15 -3896 ($))))) (T -128))
-((-1367 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-128)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-128)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-128)))) (-1366 (*1 *1 *1 *1) (-5 *1 (-128))) (-1365 (*1 *1 *1 *1) (-5 *1 (-128))) (-3896 (*1 *1) (-5 *1 (-128))))
-(-13 (-827) (-597 (-751)) (-597 (-142)) (-10 -8 (-15 -1367 ($ (-751))) (-15 -4317 ($ (-751))) (-15 -4317 ($ (-142))) (-15 -1366 ($ $ $)) (-15 -1365 ($ $ $)) (-15 -3896 ($))))
-((-2898 (((-112) $ $) NIL (|has| (-128) (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-827)))) (-1846 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-128) (-827))))) (-3242 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-128) $ (-538) (-128)) NIL (|has| $ (-6 -4354))) (((-128) $ (-1198 (-538)) (-128)) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074))))) (-3765 (($ (-128) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4353))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4353)))) (-1637 (((-128) $ (-538) (-128)) NIL (|has| $ (-6 -4354)))) (-3448 (((-128) $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) (-128)) $) NIL) (((-538) (-128) $) NIL (|has| (-128) (-1074))) (((-538) (-128) $ (-538)) NIL (|has| (-128) (-1074)))) (-2068 (((-622 (-128)) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) (-128)) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| (-128) (-827)))) (-3872 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-827)))) (-2511 (((-622 (-128)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-128) (-827)))) (-2072 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| (-128) (-1074)))) (-2382 (($ (-128) $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| (-128) (-1074)))) (-4160 (((-128) $) NIL (|has| (-538) (-827)))) (-1399 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2306 (($ $ (-128)) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-128)))) NIL (-12 (|has| (-128) (-304 (-128))) (|has| (-128) (-1074)))) (($ $ (-288 (-128))) NIL (-12 (|has| (-128) (-304 (-128))) (|has| (-128) (-1074)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-304 (-128))) (|has| (-128) (-1074)))) (($ $ (-622 (-128)) (-622 (-128))) NIL (-12 (|has| (-128) (-304 (-128))) (|has| (-128) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074))))) (-2312 (((-622 (-128)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (((-128) $ (-538) (-128)) NIL) (((-128) $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4353))) (((-751) (-128) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-128) (-598 (-527))))) (-3884 (($ (-622 (-128))) NIL)) (-4161 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| (-128) (-597 (-840))))) (-2071 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| (-128) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-128) (-827)))) (-3387 (((-112) $ $) NIL (|has| (-128) (-1074)))) (-3017 (((-112) $ $) NIL (|has| (-128) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-128) (-827)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-129) (-19 (-128))) (T -129))
-NIL
-(-19 (-128))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15)))
+((-2960 (*1 *1 *1) (-4 *1 (-123))) (-2034 (*1 *1 *1 *1) (-4 *1 (-123))) (-2025 (*1 *1 *1 *1) (-4 *1 (-123))) (-3743 (*1 *1 *1 *1) (-4 *1 (-123))) (-3152 (*1 *1 *1 *1) (-4 *1 (-123))) (-2244 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-827) (-641) (-19 (-112)) (-10 -8 (-15 -2960 ($ $)) (-15 -2034 ($ $ $)) (-15 -2025 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -2244 ($ $ $))))
+(((-34) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 #0=(-112)) . T) ((-598 (-528)) |has| (-112) (-598 (-528))) ((-281 #1=(-552) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073))) ((-368 #0#) . T) ((-483 #0#) . T) ((-588 #1# #0#) . T) ((-507 #0# #0#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073))) ((-631 #0#) . T) ((-641) . T) ((-19 #0#) . T) ((-827) . T) ((-1073) . T) ((-1186) . T))
+((-3683 (($ (-1 |#2| |#2|) $) 22)) (-1871 (($ $) 16)) (-1471 (((-751) $) 24)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -1871 (|#1| |#1|))) (-125 |#2|) (-1073)) (T -124))
+NIL
+(-10 -8 (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -1871 (|#1| |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1958 (($ $ $) 52 (|has| $ (-6 -4354)))) (-1964 (($ $ $) 54 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) (($ $ "left" $) 55 (|has| $ (-6 -4354))) (($ $ "right" $) 53 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-2303 (($ $) 57)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2680 (($ $ |#1| $) 60)) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2290 (($ $) 59)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1389 (((-552) $ $) 44)) (-2316 (((-112) $) 46)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-125 |#1|) (-138) (-1073)) (T -125))
+((-2680 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1073)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -2680 ($ $ |t#1| $))))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-119 |#1|) . T) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) 15)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) 19 (|has| $ (-6 -4354)))) (-1958 (($ $ $) 20 (|has| $ (-6 -4354)))) (-1964 (($ $ $) 18 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "left" $) NIL (|has| $ (-6 -4354))) (($ $ "right" $) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-2303 (($ $) 21)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2680 (($ $ |#1| $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2290 (($ $) NIL)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3966 (($ |#1| $) 10)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 14)) (-3600 (($) 8)) (-2154 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 17)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2043 (($ (-625 |#1|)) 12)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4354) (-15 -2043 ($ (-625 |#1|))) (-15 -3966 ($ |#1| $)))) (-827)) (T -126))
+((-2043 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-126 *3)))) (-3966 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-827)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4354) (-15 -2043 ($ (-625 |#1|))) (-15 -3966 ($ |#1| $))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) 24)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) 26 (|has| $ (-6 -4354)))) (-1958 (($ $ $) 30 (|has| $ (-6 -4354)))) (-1964 (($ $ $) 28 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "left" $) NIL (|has| $ (-6 -4354))) (($ $ "right" $) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-2303 (($ $) 20)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2680 (($ $ |#1| $) 15)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2290 (($ $) 19)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) 21)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 18)) (-3600 (($) 11)) (-2154 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2054 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 10 (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2054 ($ |#1|)) (-15 -2054 ($ $ |#1| $)))) (-1073)) (T -127))
+((-2054 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1073)))) (-2054 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1073)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -2054 ($ |#1|)) (-15 -2054 ($ $ |#1| $))))
+((-1671 (((-112) $ $) NIL (|has| (-129) (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-827)))) (-3218 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-129) (-827))))) (-1800 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-129) $ (-552) (-129)) NIL (|has| $ (-6 -4354))) (((-129) $ (-1199 (-552)) (-129)) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073))))) (-1416 (($ (-129) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4353))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4353)))) (-3692 (((-129) $ (-552) (-129)) NIL (|has| $ (-6 -4354)))) (-3631 (((-129) $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) (-129)) $) NIL) (((-552) (-129) $) NIL (|has| (-129) (-1073))) (((-552) (-129) $ (-552)) NIL (|has| (-129) (-1073)))) (-3799 (((-625 (-129)) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) (-129)) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| (-129) (-827)))) (-3280 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-827)))) (-3730 (((-625 (-129)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-129) (-827)))) (-3683 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| (-129) (-1073)))) (-3994 (($ (-129) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| (-129) (-1073)))) (-2924 (((-129) $) NIL (|has| (-552) (-827)))) (-2380 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2518 (($ $ (-129)) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-129)))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1073)))) (($ $ (-289 (-129))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1073)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1073)))) (($ $ (-625 (-129)) (-625 (-129))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073))))) (-1358 (((-625 (-129)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (((-129) $ (-552) (-129)) NIL) (((-129) $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4353))) (((-751) (-129) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-129) (-598 (-528))))) (-1695 (($ (-625 (-129))) NIL)) (-3402 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| (-129) (-597 (-839))))) (-1900 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| (-129) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-129) (-827)))) (-2281 (((-112) $ $) NIL (|has| (-129) (-1073)))) (-2334 (((-112) $ $) NIL (|has| (-129) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-129) (-827)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-128) (-19 (-129))) (T -128))
+NIL
+(-19 (-129))
+((-1671 (((-112) $ $) NIL)) (-3101 (($) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) 9)) (-1683 (((-839) $) 19) (((-751) $) 11) (((-142) $) 16) (($ (-751)) 10) (($ (-142)) 14)) (-2066 (($ (-751)) 7)) (-4163 (($ $ $) 24)) (-4151 (($ $ $) 23)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 21)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 22)))
+(((-129) (-13 (-827) (-597 (-751)) (-597 (-142)) (-10 -8 (-15 -2066 ($ (-751))) (-15 -1683 ($ (-751))) (-15 -1683 ($ (-142))) (-15 -4151 ($ $ $)) (-15 -4163 ($ $ $)) (-15 -3101 ($))))) (T -129))
+((-2066 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-129)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-129)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-129)))) (-4151 (*1 *1 *1 *1) (-5 *1 (-129))) (-4163 (*1 *1 *1 *1) (-5 *1 (-129))) (-3101 (*1 *1) (-5 *1 (-129))))
+(-13 (-827) (-597 (-751)) (-597 (-142)) (-10 -8 (-15 -2066 ($ (-751))) (-15 -1683 ($ (-751))) (-15 -1683 ($ (-142))) (-15 -4151 ($ $ $)) (-15 -4163 ($ $ $)) (-15 -3101 ($))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15)))
(((-130) (-138)) (T -130))
-((-1368 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(-13 (-23) (-10 -8 (-15 -1368 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 7)) (-1369 (((-1237) $ (-751)) 19)) (-3778 (((-751) $) 20)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)))
+((-2077 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(-13 (-23) (-10 -8 (-15 -2077 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 7)) (-2087 (((-1237) $ (-751)) 19)) (-2483 (((-751) $) 20)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)))
(((-131) (-138)) (T -131))
-((-3778 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-751)))) (-1369 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-751)) (-5 *2 (-1237)))))
-(-13 (-827) (-10 -8 (-15 -3778 ((-751) $)) (-15 -1369 ((-1237) $ (-751)))))
-(((-101) . T) ((-597 (-840)) . T) ((-827) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 18) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-622 (-1108)) $) 10)) (-3387 (((-112) $ $) NIL)))
-(((-132) (-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $))))) (T -132))
-((-3584 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-132)))))
-(-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $))))
-((-2898 (((-112) $ $) 34)) (-3539 (((-112) $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-751) "failed") $) 40)) (-3507 (((-751) $) 38)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) 27)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1371 (((-112)) 41)) (-1370 (((-112) (-112)) 43)) (-2861 (((-112) $) 24)) (-1372 (((-112) $) 37)) (-4317 (((-840) $) 22) (($ (-751)) 14)) (-2991 (($) 11 T CONST)) (-2997 (($) 12 T CONST)) (-1373 (($ (-751)) 15)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 25)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 26)) (-4197 (((-3 $ "failed") $ $) 30)) (-4199 (($ $ $) 28)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL) (($ $ $) 36)) (* (($ (-751) $) 33) (($ (-895) $) NIL) (($ $ $) 31)))
-(((-133) (-13 (-827) (-23) (-707) (-1014 (-751)) (-10 -8 (-6 (-4355 "*")) (-15 -4197 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1373 ($ (-751))) (-15 -2861 ((-112) $)) (-15 -1372 ((-112) $)) (-15 -1371 ((-112))) (-15 -1370 ((-112) (-112)))))) (T -133))
-((-4197 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-1373 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-133)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1371 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1370 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(-13 (-827) (-23) (-707) (-1014 (-751)) (-10 -8 (-6 (-4355 "*")) (-15 -4197 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1373 ($ (-751))) (-15 -2861 ((-112) $)) (-15 -1372 ((-112) $)) (-15 -1371 ((-112))) (-15 -1370 ((-112) (-112)))))
-((-2898 (((-112) $ $) NIL)) (-1374 (($ (-622 |#3|)) 40)) (-3773 (($ $) 99) (($ $ (-538) (-538)) 98)) (-3896 (($) 17)) (-3508 (((-3 |#3| "failed") $) 60)) (-3507 ((|#3| $) NIL)) (-1378 (($ $ (-622 (-538))) 100)) (-1375 (((-622 |#3|) $) 36)) (-3444 (((-751) $) 44)) (-4304 (($ $ $) 93)) (-1376 (($) 43)) (-3593 (((-1131) $) NIL)) (-1377 (($) 16)) (-3594 (((-1093) $) NIL)) (-4159 ((|#3| $) 46) ((|#3| $ (-538)) 47) ((|#3| $ (-538) (-538)) 48) ((|#3| $ (-538) (-538) (-538)) 49) ((|#3| $ (-538) (-538) (-538) (-538)) 50) ((|#3| $ (-622 (-538))) 52)) (-4307 (((-751) $) 45)) (-2105 (($ $ (-538) $ (-538)) 94) (($ $ (-538) (-538)) 96)) (-4317 (((-840) $) 67) (($ |#3|) 68) (($ (-235 |#2| |#3|)) 75) (($ (-1115 |#2| |#3|)) 78) (($ (-622 |#3|)) 53) (($ (-622 $)) 58)) (-2991 (($) 69 T CONST)) (-2997 (($) 70 T CONST)) (-3387 (((-112) $ $) 80)) (-4197 (($ $) 86) (($ $ $) 84)) (-4199 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-538)) 89) (($ (-538) $) 88) (($ $ $) 95)))
-(((-134 |#1| |#2| |#3|) (-13 (-459 |#3| (-751)) (-464 (-538) (-751)) (-10 -8 (-15 -4317 ($ (-235 |#2| |#3|))) (-15 -4317 ($ (-1115 |#2| |#3|))) (-15 -4317 ($ (-622 |#3|))) (-15 -4317 ($ (-622 $))) (-15 -3444 ((-751) $)) (-15 -4159 (|#3| $)) (-15 -4159 (|#3| $ (-538))) (-15 -4159 (|#3| $ (-538) (-538))) (-15 -4159 (|#3| $ (-538) (-538) (-538))) (-15 -4159 (|#3| $ (-538) (-538) (-538) (-538))) (-15 -4159 (|#3| $ (-622 (-538)))) (-15 -4304 ($ $ $)) (-15 * ($ $ $)) (-15 -2105 ($ $ (-538) $ (-538))) (-15 -2105 ($ $ (-538) (-538))) (-15 -3773 ($ $)) (-15 -3773 ($ $ (-538) (-538))) (-15 -1378 ($ $ (-622 (-538)))) (-15 -1377 ($)) (-15 -1376 ($)) (-15 -1375 ((-622 |#3|) $)) (-15 -1374 ($ (-622 |#3|))) (-15 -3896 ($)))) (-538) (-751) (-170)) (T -134))
-((-4304 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1115 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 (-751)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 (-751)) (-4 *5 (-170)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 *2) (-4 *5 (-170)))) (-4159 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-538)) (-14 *4 (-751)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-4159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-4159 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-4159 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-622 (-538))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-538)) (-14 *5 (-751)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) (-2105 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-2105 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-3773 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) (-3773 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-1378 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 (-751)) (-4 *5 (-170)))) (-1377 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) (-1376 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-622 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 (-751)) (-4 *5 (-170)))) (-1374 (*1 *1 *2) (-12 (-5 *2 (-622 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 (-751)))) (-3896 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))))
-(-13 (-459 |#3| (-751)) (-464 (-538) (-751)) (-10 -8 (-15 -4317 ($ (-235 |#2| |#3|))) (-15 -4317 ($ (-1115 |#2| |#3|))) (-15 -4317 ($ (-622 |#3|))) (-15 -4317 ($ (-622 $))) (-15 -3444 ((-751) $)) (-15 -4159 (|#3| $)) (-15 -4159 (|#3| $ (-538))) (-15 -4159 (|#3| $ (-538) (-538))) (-15 -4159 (|#3| $ (-538) (-538) (-538))) (-15 -4159 (|#3| $ (-538) (-538) (-538) (-538))) (-15 -4159 (|#3| $ (-622 (-538)))) (-15 -4304 ($ $ $)) (-15 * ($ $ $)) (-15 -2105 ($ $ (-538) $ (-538))) (-15 -2105 ($ $ (-538) (-538))) (-15 -3773 ($ $)) (-15 -3773 ($ $ (-538) (-538))) (-15 -1378 ($ $ (-622 (-538)))) (-15 -1377 ($)) (-15 -1376 ($)) (-15 -1375 ((-622 |#3|) $)) (-15 -1374 ($ (-622 |#3|))) (-15 -3896 ($))))
-((-2505 (((-134 |#1| |#2| |#4|) (-622 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-4318 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18)))
-(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2505 ((-134 |#1| |#2| |#4|) (-622 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4318 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-538) (-751) (-170) (-170)) (T -135))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-538)) (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-538)) (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2505 ((-134 |#1| |#2| |#4|) (-622 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4318 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|))))
-((-2898 (((-112) $ $) NIL)) (-3882 (((-1108) $) 11)) (-3883 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-136) (-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))) (T -136))
-((-3883 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136)))))
-(-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-1465 (((-1149) $) 10)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-622 (-1108)) $) 12)) (-3387 (((-112) $ $) NIL)))
-(((-137) (-13 (-1056) (-10 -8 (-15 -1465 ((-1149) $)) (-15 -3584 ((-622 (-1108)) $))))) (T -137))
-((-1465 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-137)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-137)))))
-(-13 (-1056) (-10 -8 (-15 -1465 ((-1149) $)) (-15 -3584 ((-622 (-1108)) $))))
-((-4317 (((-840) $) 7)))
-(((-138) (-597 (-840))) (T -138))
-NIL
-(-597 (-840))
-((-2898 (((-112) $ $) NIL)) (-3786 (($) 15 T CONST)) (-1921 (($) NIL (|has| (-142) (-363)))) (-3585 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-3587 (($ $ $) NIL)) (-3586 (((-112) $ $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| (-142) (-363)))) (-3590 (($) NIL) (($ (-622 (-142))) NIL)) (-1631 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-3764 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (($ (-142) $) 51 (|has| $ (-6 -4353)))) (-3765 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-4202 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-3327 (($) NIL (|has| (-142) (-363)))) (-2068 (((-622 (-142)) $) 60 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3677 (((-142) $) NIL (|has| (-142) (-827)))) (-2511 (((-622 (-142)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-3678 (((-142) $) NIL (|has| (-142) (-827)))) (-2072 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-142) (-142)) $) 55)) (-3788 (($) 16 T CONST)) (-2126 (((-895) $) NIL (|has| (-142) (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3589 (($ $ $) 29)) (-1333 (((-142) $) 52)) (-3970 (($ (-142) $) 50)) (-2492 (($ (-895)) NIL (|has| (-142) (-363)))) (-1381 (($) 14 T CONST)) (-3594 (((-1093) $) NIL)) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1334 (((-142) $) 53)) (-2070 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-142)) (-622 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-288 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-622 (-288 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 48)) (-1382 (($) 13 T CONST)) (-3588 (($ $ $) 31) (($ $ (-142)) NIL)) (-1523 (($ (-622 (-142))) NIL) (($) NIL)) (-2069 (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074)))) (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-1131) $) 36) (((-527) $) NIL (|has| (-142) (-598 (-527)))) (((-622 (-142)) $) 34)) (-3884 (($ (-622 (-142))) NIL)) (-1922 (($ $) 32 (|has| (-142) (-363)))) (-4317 (((-840) $) 46)) (-1383 (($ (-1131)) 12) (($ (-622 (-142))) 43)) (-1923 (((-751) $) NIL)) (-3591 (($) 49) (($ (-622 (-142))) NIL)) (-1335 (($ (-622 (-142))) NIL)) (-2071 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-1379 (($) 19 T CONST)) (-1380 (($) 18 T CONST)) (-3387 (((-112) $ $) 22)) (-4316 (((-751) $) 47 (|has| $ (-6 -4353)))))
-(((-139) (-13 (-1074) (-598 (-1131)) (-421 (-142)) (-598 (-622 (-142))) (-10 -8 (-15 -1383 ($ (-1131))) (-15 -1383 ($ (-622 (-142)))) (-15 -1382 ($) -4311) (-15 -1381 ($) -4311) (-15 -3786 ($) -4311) (-15 -3788 ($) -4311) (-15 -1380 ($) -4311) (-15 -1379 ($) -4311)))) (T -139))
-((-1383 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-139)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-622 (-142))) (-5 *1 (-139)))) (-1382 (*1 *1) (-5 *1 (-139))) (-1381 (*1 *1) (-5 *1 (-139))) (-3786 (*1 *1) (-5 *1 (-139))) (-3788 (*1 *1) (-5 *1 (-139))) (-1380 (*1 *1) (-5 *1 (-139))) (-1379 (*1 *1) (-5 *1 (-139))))
-(-13 (-1074) (-598 (-1131)) (-421 (-142)) (-598 (-622 (-142))) (-10 -8 (-15 -1383 ($ (-1131))) (-15 -1383 ($ (-622 (-142)))) (-15 -1382 ($) -4311) (-15 -1381 ($) -4311) (-15 -3786 ($) -4311) (-15 -3788 ($) -4311) (-15 -1380 ($) -4311) (-15 -1379 ($) -4311)))
-((-4101 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4099 ((|#1| |#3|) 9)) (-4100 ((|#3| |#3|) 15)))
-(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -4099 (|#1| |#3|)) (-15 -4100 (|#3| |#3|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-545) (-967 |#1|) (-367 |#2|)) (T -140))
-((-4101 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-367 *5)))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-545)) (-4 *4 (-967 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-367 *4)))) (-4099 (*1 *2 *3) (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-367 *4)))))
-(-10 -7 (-15 -4099 (|#1| |#3|)) (-15 -4100 (|#3| |#3|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1414 (($ $ $) 8)) (-1412 (($ $) 7)) (-3437 (($ $ $) 6)))
+((-2483 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-751)))) (-2087 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-751)) (-5 *2 (-1237)))))
+(-13 (-827) (-10 -8 (-15 -2483 ((-751) $)) (-15 -2087 ((-1237) $ (-751)))))
+(((-101) . T) ((-597 (-839)) . T) ((-827) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 18) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-625 (-1108)) $) 10)) (-2281 (((-112) $ $) NIL)))
+(((-132) (-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $))))) (T -132))
+((-1300 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-132)))))
+(-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $))))
+((-1671 (((-112) $ $) 34)) (-3641 (((-112) $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-751) "failed") $) 40)) (-1895 (((-751) $) 38)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) 27)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2109 (((-112)) 41)) (-2098 (((-112) (-112)) 43)) (-2064 (((-112) $) 24)) (-2118 (((-112) $) 37)) (-1683 (((-839) $) 22) (($ (-751)) 14)) (-2089 (($) 11 T CONST)) (-2100 (($) 12 T CONST)) (-2128 (($ (-751)) 15)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 25)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 26)) (-2393 (((-3 $ "failed") $ $) 30)) (-2382 (($ $ $) 28)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL) (($ $ $) 36)) (* (($ (-751) $) 33) (($ (-897) $) NIL) (($ $ $) 31)))
+(((-133) (-13 (-827) (-23) (-707) (-1014 (-751)) (-10 -8 (-6 (-4355 "*")) (-15 -2393 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2128 ($ (-751))) (-15 -2064 ((-112) $)) (-15 -2118 ((-112) $)) (-15 -2109 ((-112))) (-15 -2098 ((-112) (-112)))))) (T -133))
+((-2393 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-133)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2109 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(-13 (-827) (-23) (-707) (-1014 (-751)) (-10 -8 (-6 (-4355 "*")) (-15 -2393 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2128 ($ (-751))) (-15 -2064 ((-112) $)) (-15 -2118 ((-112) $)) (-15 -2109 ((-112))) (-15 -2098 ((-112) (-112)))))
+((-2370 (((-135 |#1| |#2| |#4|) (-625 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-1996 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
+(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2370 ((-135 |#1| |#2| |#4|) (-625 |#4|) (-135 |#1| |#2| |#3|))) (-15 -1996 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-552) (-751) (-170) (-170)) (T -134))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-552)) (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-552)) (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2370 ((-135 |#1| |#2| |#4|) (-625 |#4|) (-135 |#1| |#2| |#3|))) (-15 -1996 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
+((-1671 (((-112) $ $) NIL)) (-2139 (($ (-625 |#3|)) 40)) (-2003 (($ $) 99) (($ $ (-552) (-552)) 98)) (-3101 (($) 17)) (-1893 (((-3 |#3| "failed") $) 60)) (-1895 ((|#3| $) NIL)) (-2174 (($ $ (-625 (-552))) 100)) (-2358 (((-625 |#3|) $) 36)) (-3442 (((-751) $) 44)) (-4244 (($ $ $) 93)) (-2152 (($) 43)) (-2883 (((-1131) $) NIL)) (-2164 (($) 16)) (-2831 (((-1093) $) NIL)) (-2154 ((|#3| $) 46) ((|#3| $ (-552)) 47) ((|#3| $ (-552) (-552)) 48) ((|#3| $ (-552) (-552) (-552)) 49) ((|#3| $ (-552) (-552) (-552) (-552)) 50) ((|#3| $ (-625 (-552))) 52)) (-4276 (((-751) $) 45)) (-4081 (($ $ (-552) $ (-552)) 94) (($ $ (-552) (-552)) 96)) (-1683 (((-839) $) 67) (($ |#3|) 68) (($ (-236 |#2| |#3|)) 75) (($ (-1115 |#2| |#3|)) 78) (($ (-625 |#3|)) 53) (($ (-625 $)) 58)) (-2089 (($) 69 T CONST)) (-2100 (($) 70 T CONST)) (-2281 (((-112) $ $) 80)) (-2393 (($ $) 86) (($ $ $) 84)) (-2382 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-552)) 89) (($ (-552) $) 88) (($ $ $) 95)))
+(((-135 |#1| |#2| |#3|) (-13 (-459 |#3| (-751)) (-464 (-552) (-751)) (-10 -8 (-15 -1683 ($ (-236 |#2| |#3|))) (-15 -1683 ($ (-1115 |#2| |#3|))) (-15 -1683 ($ (-625 |#3|))) (-15 -1683 ($ (-625 $))) (-15 -3442 ((-751) $)) (-15 -2154 (|#3| $)) (-15 -2154 (|#3| $ (-552))) (-15 -2154 (|#3| $ (-552) (-552))) (-15 -2154 (|#3| $ (-552) (-552) (-552))) (-15 -2154 (|#3| $ (-552) (-552) (-552) (-552))) (-15 -2154 (|#3| $ (-625 (-552)))) (-15 -4244 ($ $ $)) (-15 * ($ $ $)) (-15 -4081 ($ $ (-552) $ (-552))) (-15 -4081 ($ $ (-552) (-552))) (-15 -2003 ($ $)) (-15 -2003 ($ $ (-552) (-552))) (-15 -2174 ($ $ (-625 (-552)))) (-15 -2164 ($)) (-15 -2152 ($)) (-15 -2358 ((-625 |#3|) $)) (-15 -2139 ($ (-625 |#3|))) (-15 -3101 ($)))) (-552) (-751) (-170)) (T -135))
+((-4244 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-236 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1115 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-751)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-751)) (-4 *5 (-170)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 *2) (-4 *5 (-170)))) (-2154 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-552)) (-14 *4 (-751)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-2154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-2154 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-2154 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-625 (-552))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-552)) (-14 *5 (-751)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))) (-4081 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-4081 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-2003 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))) (-2003 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-2174 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-751)) (-4 *5 (-170)))) (-2164 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))) (-2152 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))) (-2358 (*1 *2 *1) (-12 (-5 *2 (-625 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-751)) (-4 *5 (-170)))) (-2139 (*1 *1 *2) (-12 (-5 *2 (-625 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-751)))) (-3101 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))))
+(-13 (-459 |#3| (-751)) (-464 (-552) (-751)) (-10 -8 (-15 -1683 ($ (-236 |#2| |#3|))) (-15 -1683 ($ (-1115 |#2| |#3|))) (-15 -1683 ($ (-625 |#3|))) (-15 -1683 ($ (-625 $))) (-15 -3442 ((-751) $)) (-15 -2154 (|#3| $)) (-15 -2154 (|#3| $ (-552))) (-15 -2154 (|#3| $ (-552) (-552))) (-15 -2154 (|#3| $ (-552) (-552) (-552))) (-15 -2154 (|#3| $ (-552) (-552) (-552) (-552))) (-15 -2154 (|#3| $ (-625 (-552)))) (-15 -4244 ($ $ $)) (-15 * ($ $ $)) (-15 -4081 ($ $ (-552) $ (-552))) (-15 -4081 ($ $ (-552) (-552))) (-15 -2003 ($ $)) (-15 -2003 ($ $ (-552) (-552))) (-15 -2174 ($ $ (-625 (-552)))) (-15 -2164 ($)) (-15 -2152 ($)) (-15 -2358 ((-625 |#3|) $)) (-15 -2139 ($ (-625 |#3|))) (-15 -3101 ($))))
+((-1671 (((-112) $ $) NIL)) (-2662 (((-1108) $) 11)) (-2651 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-136) (-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))) (T -136))
+((-2651 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136)))))
+(-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3353 (((-1149) $) 10)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-625 (-1108)) $) 12)) (-2281 (((-112) $ $) NIL)))
+(((-137) (-13 (-1056) (-10 -8 (-15 -3353 ((-1149) $)) (-15 -1300 ((-625 (-1108)) $))))) (T -137))
+((-3353 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-137)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-137)))))
+(-13 (-1056) (-10 -8 (-15 -3353 ((-1149) $)) (-15 -1300 ((-625 (-1108)) $))))
+((-1683 (((-839) $) 7)))
+(((-138) (-597 (-839))) (T -138))
+NIL
+(-597 (-839))
+((-1671 (((-112) $ $) NIL)) (-3843 (($) 15 T CONST)) (-2740 (($) NIL (|has| (-142) (-363)))) (-3419 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-2837 (($ $ $) NIL)) (-2823 (((-112) $ $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| (-142) (-363)))) (-1517 (($) NIL) (($ (-625 (-142))) NIL)) (-2873 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1938 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (($ (-142) $) 51 (|has| $ (-6 -4353)))) (-1416 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-2163 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-3702 (($) NIL (|has| (-142) (-363)))) (-3799 (((-625 (-142)) $) 60 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-3658 (((-142) $) NIL (|has| (-142) (-827)))) (-3730 (((-625 (-142)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-3332 (((-142) $) NIL (|has| (-142) (-827)))) (-3683 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-142) (-142)) $) 55)) (-3870 (($) 16 T CONST)) (-4318 (((-897) $) NIL (|has| (-142) (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2860 (($ $ $) 29)) (-2953 (((-142) $) 52)) (-3966 (($ (-142) $) 50)) (-3123 (($ (-897)) NIL (|has| (-142) (-363)))) (-2208 (($) 14 T CONST)) (-2831 (((-1093) $) NIL)) (-2380 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2966 (((-142) $) 53)) (-1888 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-142)) (-625 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-625 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 48)) (-2217 (($) 13 T CONST)) (-2849 (($ $ $) 31) (($ $ (-142)) NIL)) (-4255 (($ (-625 (-142))) NIL) (($) NIL)) (-2840 (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073)))) (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-1131) $) 36) (((-528) $) NIL (|has| (-142) (-598 (-528)))) (((-625 (-142)) $) 34)) (-1695 (($ (-625 (-142))) NIL)) (-2749 (($ $) 32 (|has| (-142) (-363)))) (-1683 (((-839) $) 46)) (-2230 (($ (-1131)) 12) (($ (-625 (-142))) 43)) (-2758 (((-751) $) NIL)) (-3761 (($) 49) (($ (-625 (-142))) NIL)) (-2977 (($ (-625 (-142))) NIL)) (-1900 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2184 (($) 19 T CONST)) (-2196 (($) 18 T CONST)) (-2281 (((-112) $ $) 22)) (-1471 (((-751) $) 47 (|has| $ (-6 -4353)))))
+(((-139) (-13 (-1073) (-598 (-1131)) (-420 (-142)) (-598 (-625 (-142))) (-10 -8 (-15 -2230 ($ (-1131))) (-15 -2230 ($ (-625 (-142)))) (-15 -2217 ($) -1426) (-15 -2208 ($) -1426) (-15 -3843 ($) -1426) (-15 -3870 ($) -1426) (-15 -2196 ($) -1426) (-15 -2184 ($) -1426)))) (T -139))
+((-2230 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-139)))) (-2230 (*1 *1 *2) (-12 (-5 *2 (-625 (-142))) (-5 *1 (-139)))) (-2217 (*1 *1) (-5 *1 (-139))) (-2208 (*1 *1) (-5 *1 (-139))) (-3843 (*1 *1) (-5 *1 (-139))) (-3870 (*1 *1) (-5 *1 (-139))) (-2196 (*1 *1) (-5 *1 (-139))) (-2184 (*1 *1) (-5 *1 (-139))))
+(-13 (-1073) (-598 (-1131)) (-420 (-142)) (-598 (-625 (-142))) (-10 -8 (-15 -2230 ($ (-1131))) (-15 -2230 ($ (-625 (-142)))) (-15 -2217 ($) -1426) (-15 -2208 ($) -1426) (-15 -3843 ($) -1426) (-15 -3870 ($) -1426) (-15 -2196 ($) -1426) (-15 -2184 ($) -1426)))
+((-3076 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3055 ((|#1| |#3|) 9)) (-3066 ((|#3| |#3|) 15)))
+(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -3055 (|#1| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-544) (-968 |#1|) (-368 |#2|)) (T -140))
+((-3076 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-368 *5)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *4 (-968 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-368 *4)))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-368 *4)))))
+(-10 -7 (-15 -3055 (|#1| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1302 (($ $ $) 8)) (-1279 (($ $) 7)) (-3901 (($ $ $) 6)))
(((-141) (-138)) (T -141))
-((-1414 (*1 *1 *1 *1) (-4 *1 (-141))) (-1412 (*1 *1 *1) (-4 *1 (-141))) (-3437 (*1 *1 *1 *1) (-4 *1 (-141))))
-(-13 (-10 -8 (-15 -3437 ($ $ $)) (-15 -1412 ($ $)) (-15 -1414 ($ $ $))))
-((-2898 (((-112) $ $) NIL)) (-1386 (((-112) $) 30)) (-3786 (($ $) 43)) (-1573 (($) 17)) (-3471 (((-751)) 10)) (-3327 (($) 16)) (-2909 (($) 18)) (-1392 (((-751) $) 14)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-1385 (((-112) $) 32)) (-3788 (($ $) 44)) (-2126 (((-895) $) 15)) (-3593 (((-1131) $) 38)) (-2492 (($ (-895)) 13)) (-1388 (((-112) $) 28)) (-3594 (((-1093) $) NIL)) (-1390 (($) 19)) (-1389 (((-112) $) 26)) (-4317 (((-840) $) 21)) (-1391 (($ (-751)) 11) (($ (-1131)) 42)) (-1384 (((-112) $) 36)) (-1387 (((-112) $) 34)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 7)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 8)))
-(((-142) (-13 (-821) (-10 -8 (-15 -1392 ((-751) $)) (-15 -1391 ($ (-751))) (-15 -1391 ($ (-1131))) (-15 -1573 ($)) (-15 -2909 ($)) (-15 -1390 ($)) (-15 -3786 ($ $)) (-15 -3788 ($ $)) (-15 -1389 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -1387 ((-112) $)) (-15 -1386 ((-112) $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $))))) (T -142))
-((-1392 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-142)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-142)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-142)))) (-1573 (*1 *1) (-5 *1 (-142))) (-2909 (*1 *1) (-5 *1 (-142))) (-1390 (*1 *1) (-5 *1 (-142))) (-3786 (*1 *1 *1) (-5 *1 (-142))) (-3788 (*1 *1 *1) (-5 *1 (-142))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(-13 (-821) (-10 -8 (-15 -1392 ((-751) $)) (-15 -1391 ($ (-751))) (-15 -1391 ($ (-1131))) (-15 -1573 ($)) (-15 -2909 ($)) (-15 -1390 ($)) (-15 -3786 ($ $)) (-15 -3788 ($ $)) (-15 -1389 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -1387 ((-112) $)) (-15 -1386 ((-112) $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3035 (((-3 $ "failed") $) 33)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-1302 (*1 *1 *1 *1) (-4 *1 (-141))) (-1279 (*1 *1 *1) (-4 *1 (-141))) (-3901 (*1 *1 *1 *1) (-4 *1 (-141))))
+(-13 (-10 -8 (-15 -3901 ($ $ $)) (-15 -1279 ($ $)) (-15 -1302 ($ $ $))))
+((-1671 (((-112) $ $) NIL)) (-2259 (((-112) $) 30)) (-3843 (($ $) 43)) (-3433 (($) 17)) (-2894 (((-751)) 10)) (-3702 (($) 16)) (-2471 (($) 18)) (-2302 (((-751) $) 14)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2250 (((-112) $) 32)) (-3870 (($ $) 44)) (-4318 (((-897) $) 15)) (-2883 (((-1131) $) 38)) (-3123 (($ (-897)) 13)) (-2279 (((-112) $) 28)) (-2831 (((-1093) $) NIL)) (-2291 (($) 19)) (-2476 (((-112) $) 26)) (-1683 (((-839) $) 21)) (-2132 (($ (-751)) 11) (($ (-1131)) 42)) (-2239 (((-112) $) 36)) (-2268 (((-112) $) 34)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 7)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 8)))
+(((-142) (-13 (-821) (-10 -8 (-15 -2302 ((-751) $)) (-15 -2132 ($ (-751))) (-15 -2132 ($ (-1131))) (-15 -3433 ($)) (-15 -2471 ($)) (-15 -2291 ($)) (-15 -3843 ($ $)) (-15 -3870 ($ $)) (-15 -2476 ((-112) $)) (-15 -2279 ((-112) $)) (-15 -2268 ((-112) $)) (-15 -2259 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2239 ((-112) $))))) (T -142))
+((-2302 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-142)))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-142)))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-142)))) (-3433 (*1 *1) (-5 *1 (-142))) (-2471 (*1 *1) (-5 *1 (-142))) (-2291 (*1 *1) (-5 *1 (-142))) (-3843 (*1 *1 *1) (-5 *1 (-142))) (-3870 (*1 *1 *1) (-5 *1 (-142))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(-13 (-821) (-10 -8 (-15 -2302 ((-751) $)) (-15 -2132 ($ (-751))) (-15 -2132 ($ (-1131))) (-15 -3433 ($)) (-15 -2471 ($)) (-15 -2291 ($)) (-15 -3843 ($ $)) (-15 -3870 ($ $)) (-15 -2476 ((-112) $)) (-15 -2279 ((-112) $)) (-15 -2268 ((-112) $)) (-15 -2259 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2239 ((-112) $))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4243 (((-3 $ "failed") $) 33)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-143) (-138)) (T -143))
-((-3035 (*1 *1 *1) (|partial| -4 *1 (-143))))
-(-13 (-1025) (-10 -8 (-15 -3035 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2698 ((|#1| (-669 |#1|) |#1|) 19)))
-(((-144 |#1|) (-10 -7 (-15 -2698 (|#1| (-669 |#1|) |#1|))) (-170)) (T -144))
-((-2698 (*1 *2 *3 *2) (-12 (-5 *3 (-669 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))))
-(-10 -7 (-15 -2698 (|#1| (-669 |#1|) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-4243 (*1 *1 *1) (|partial| -4 *1 (-143))))
+(-13 (-1025) (-10 -8 (-15 -4243 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-3974 ((|#1| (-669 |#1|) |#1|) 19)))
+(((-144 |#1|) (-10 -7 (-15 -3974 (|#1| (-669 |#1|) |#1|))) (-170)) (T -144))
+((-3974 (*1 *2 *3 *2) (-12 (-5 *3 (-669 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))))
+(-10 -7 (-15 -3974 (|#1| (-669 |#1|) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-145) (-138)) (T -145))
NIL
(-13 (-1025))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-1395 (((-2 (|:| -2493 (-751)) (|:| -4313 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751)) 70)) (-1394 (((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|) 52)) (-1393 (((-2 (|:| -4313 (-402 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1396 ((|#1| |#3| |#3|) 40)) (-4127 ((|#3| |#3| (-402 |#2|) (-402 |#2|)) 19)) (-1397 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|) 49)))
-(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1393 ((-2 (|:| -4313 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1394 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|)) (-15 -1395 ((-2 (|:| -2493 (-751)) (|:| -4313 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751))) (-15 -1396 (|#1| |#3| |#3|)) (-15 -4127 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -1397 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|))) (-1190) (-1207 |#1|) (-1207 (-402 |#2|))) (T -146))
-((-1397 (*1 *2 *3 *3) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5)) (|:| |c2| (-402 *5)) (|:| |deg| (-751)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1207 (-402 *5))))) (-4127 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1207 *3)))) (-1396 (*1 *2 *3 *3) (-12 (-4 *4 (-1207 *2)) (-4 *2 (-1190)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1207 (-402 *4))))) (-1395 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *6)) (-4 *5 (-1190)) (-4 *6 (-1207 *5)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-751)) (-4 *7 (-1207 *3)))) (-1394 (*1 *2 *3) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-751)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1207 (-402 *5))))) (-1393 (*1 *2 *3) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| -4313 (-402 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1207 (-402 *5))))))
-(-10 -7 (-15 -1393 ((-2 (|:| -4313 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1394 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|)) (-15 -1395 ((-2 (|:| -2493 (-751)) (|:| -4313 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751))) (-15 -1396 (|#1| |#3| |#3|)) (-15 -4127 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -1397 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|)))
-((-3037 (((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|)) 32)))
-(((-147 |#1| |#2|) (-10 -7 (-15 -3037 ((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|)))) (-537) (-164 |#1|)) (T -147))
-((-3037 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 *5))) (-5 *3 (-1143 *5)) (-4 *5 (-164 *4)) (-4 *4 (-537)) (-5 *1 (-147 *4 *5)))))
-(-10 -7 (-15 -3037 ((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|))))
-((-4073 (($ (-1 (-112) |#2|) $) 29)) (-1398 (($ $) 36)) (-3765 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-4202 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2070 (((-112) (-1 (-112) |#2|) $) 16)) (-2069 (((-751) (-1 (-112) |#2|) $) 14) (((-751) |#2| $) NIL)) (-2071 (((-112) (-1 (-112) |#2|) $) 15)) (-4316 (((-751) $) 11)))
-(((-148 |#1| |#2|) (-10 -8 (-15 -1398 (|#1| |#1|)) (-15 -3765 (|#1| |#2| |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4073 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3765 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|))) (-149 |#2|) (-1185)) (T -148))
-NIL
-(-10 -8 (-15 -1398 (|#1| |#1|)) (-15 -3765 (|#1| |#2| |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4073 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3765 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-4073 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-1398 (($ $) 41 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353))) (($ |#1| $) 42 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 40 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 49)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-149 |#1|) (-138) (-1185)) (T -149))
-((-3884 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-149 *3)))) (-1399 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1185)))) (-4202 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)))) (-4202 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)))) (-3765 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) (-4 *3 (-1185)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) (-4 *3 (-1185)))) (-4202 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1074)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)))) (-3765 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)) (-4 *2 (-1074)))) (-1398 (*1 *1 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)) (-4 *2 (-1074)))))
-(-13 (-483 |t#1|) (-10 -8 (-15 -3884 ($ (-622 |t#1|))) (-15 -1399 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4353)) (PROGN (-15 -4202 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4202 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3765 ($ (-1 (-112) |t#1|) $)) (-15 -4073 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -4202 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3765 ($ |t#1| $)) (-15 -1398 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) 86)) (-2502 (((-112) $) NIL)) (-3226 (($ |#2| (-622 (-895))) 56)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1400 (($ (-895)) 47)) (-4271 (((-133)) 23)) (-4317 (((-840) $) 69) (($ (-538)) 45) (($ |#2|) 46)) (-4040 ((|#2| $ (-622 (-895))) 59)) (-3461 (((-751)) 20)) (-2991 (($) 40 T CONST)) (-2997 (($) 43 T CONST)) (-3387 (((-112) $ $) 26)) (-4308 (($ $ |#2|) NIL)) (-4197 (($ $) 34) (($ $ $) 32)) (-4199 (($ $ $) 30)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-150 |#1| |#2| |#3|) (-13 (-1025) (-38 |#2|) (-1239 |#2|) (-10 -8 (-15 -1400 ($ (-895))) (-15 -3226 ($ |#2| (-622 (-895)))) (-15 -4040 (|#2| $ (-622 (-895)))) (-15 -3821 ((-3 $ "failed") $)))) (-895) (-358) (-969 |#1| |#2|)) (T -150))
-((-3821 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-895)) (-4 *3 (-358)) (-14 *4 (-969 *2 *3)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-358)) (-14 *5 (-969 *3 *4)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-622 (-895))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-895)) (-4 *2 (-358)) (-14 *5 (-969 *4 *2)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-622 (-895))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-895)) (-14 *5 (-969 *4 *2)))))
-(-13 (-1025) (-38 |#2|) (-1239 |#2|) (-10 -8 (-15 -1400 ($ (-895))) (-15 -3226 ($ |#2| (-622 (-895)))) (-15 -4040 (|#2| $ (-622 (-895)))) (-15 -3821 ((-3 $ "failed") $))))
-((-1402 (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221)))) (-221) (-221) (-221) (-221)) 38)) (-1401 (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538))) 63) (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901)) 64)) (-1565 (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221))))) 67) (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-919 (-221)))) 66) (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538))) 58) (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901)) 59)))
-(((-151) (-10 -7 (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538)))) (-15 -1401 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901))) (-15 -1401 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538)))) (-15 -1402 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221)))) (-221) (-221) (-221) (-221))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-919 (-221))))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221)))))))) (T -151))
-((-1565 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)) (-5 *3 (-622 (-622 (-919 (-221))))))) (-1565 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)) (-5 *3 (-622 (-919 (-221)))))) (-1402 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-221)) (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 *4)))) (|:| |xValues| (-1062 *4)) (|:| |yValues| (-1062 *4)))) (-5 *1 (-151)) (-5 *3 (-622 (-622 (-919 *4)))))) (-1401 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901)) (-5 *4 (-402 (-538))) (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)))) (-1565 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901)) (-5 *4 (-402 (-538))) (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)))))
-(-10 -7 (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538)))) (-15 -1401 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901))) (-15 -1401 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538)))) (-15 -1402 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221)))) (-221) (-221) (-221) (-221))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-919 (-221))))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221)))))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3532 (((-622 (-1108)) $) 15)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 24) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 9)) (-3387 (((-112) $ $) NIL)))
-(((-152) (-13 (-1056) (-10 -8 (-15 -3532 ((-622 (-1108)) $)) (-15 -3584 ((-1108) $))))) (T -152))
-((-3532 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-152)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-152)))))
-(-13 (-1056) (-10 -8 (-15 -3532 ((-622 (-1108)) $)) (-15 -3584 ((-1108) $))))
-((-1452 (((-622 (-166 |#2|)) |#1| |#2|) 45)))
-(((-153 |#1| |#2|) (-10 -7 (-15 -1452 ((-622 (-166 |#2|)) |#1| |#2|))) (-1207 (-166 (-538))) (-13 (-358) (-825))) (T -153))
-((-1452 (*1 *2 *3 *4) (-12 (-5 *2 (-622 (-166 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1207 (-166 (-538)))) (-4 *4 (-13 (-358) (-825))))))
-(-10 -7 (-15 -1452 ((-622 (-166 |#2|)) |#1| |#2|)))
-((-2898 (((-112) $ $) NIL)) (-3882 (((-1186) $) 12)) (-3883 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-154) (-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1186) $))))) (T -154))
-((-3883 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-154)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-154)))))
-(-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1186) $))))
-((-2898 (((-112) $ $) NIL)) (-1404 (($) 15)) (-3434 (($) 14)) (-1403 (((-895)) 22)) (-3593 (((-1131) $) NIL)) (-3289 (((-538) $) 19)) (-3594 (((-1093) $) NIL)) (-3433 (($) 16)) (-3288 (($ (-538)) 23)) (-4317 (((-840) $) 29)) (-3432 (($) 17)) (-3387 (((-112) $ $) 13)) (-4199 (($ $ $) 11)) (* (($ (-895) $) 21) (($ (-221) $) 8)))
-(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-895) $)) (-15 * ($ (-221) $)) (-15 -4199 ($ $ $)) (-15 -3434 ($)) (-15 -1404 ($)) (-15 -3433 ($)) (-15 -3432 ($)) (-15 -3289 ((-538) $)) (-15 -1403 ((-895))) (-15 -3288 ($ (-538)))))) (T -155))
-((-4199 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155)))) (-3434 (*1 *1) (-5 *1 (-155))) (-1404 (*1 *1) (-5 *1 (-155))) (-3433 (*1 *1) (-5 *1 (-155))) (-3432 (*1 *1) (-5 *1 (-155))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-155)))) (-1403 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-155)))) (-3288 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-155)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-895) $)) (-15 * ($ (-221) $)) (-15 -4199 ($ $ $)) (-15 -3434 ($)) (-15 -1404 ($)) (-15 -3433 ($)) (-15 -3432 ($)) (-15 -3289 ((-538) $)) (-15 -1403 ((-895))) (-15 -3288 ($ (-538)))))
-((-1417 ((|#2| |#2| (-1065 |#2|)) 88) ((|#2| |#2| (-1149)) 68)) (-4304 ((|#2| |#2| (-1065 |#2|)) 87) ((|#2| |#2| (-1149)) 67)) (-1414 ((|#2| |#2| |#2|) 27)) (-3380 (((-113) (-113)) 99)) (-1411 ((|#2| (-622 |#2|)) 117)) (-1408 ((|#2| (-622 |#2|)) 135)) (-1407 ((|#2| (-622 |#2|)) 125)) (-1405 ((|#2| |#2|) 123)) (-1409 ((|#2| (-622 |#2|)) 111)) (-1410 ((|#2| (-622 |#2|)) 112)) (-1406 ((|#2| (-622 |#2|)) 133)) (-1418 ((|#2| |#2| (-1149)) 56) ((|#2| |#2|) 55)) (-1412 ((|#2| |#2|) 23)) (-3437 ((|#2| |#2| |#2|) 26)) (-2338 (((-112) (-113)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3437 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -1418 (|#2| |#2| (-1149))) (-15 -1417 (|#2| |#2| (-1149))) (-15 -1417 (|#2| |#2| (-1065 |#2|))) (-15 -4304 (|#2| |#2| (-1149))) (-15 -4304 (|#2| |#2| (-1065 |#2|))) (-15 -1405 (|#2| |#2|)) (-15 -1406 (|#2| (-622 |#2|))) (-15 -1407 (|#2| (-622 |#2|))) (-15 -1408 (|#2| (-622 |#2|))) (-15 -1409 (|#2| (-622 |#2|))) (-15 -1410 (|#2| (-622 |#2|))) (-15 -1411 (|#2| (-622 |#2|)))) (-13 (-827) (-545)) (-416 |#1|)) (T -156))
-((-1411 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1405 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (-4304 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)))) (-4304 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)) (-4 *2 (-416 *4)))) (-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)))) (-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)) (-4 *2 (-416 *4)))) (-1418 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)) (-4 *2 (-416 *4)))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (-1414 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (-3437 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *4)) (-4 *4 (-416 *3)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-416 *4)))))
-(-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3437 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -1418 (|#2| |#2| (-1149))) (-15 -1417 (|#2| |#2| (-1149))) (-15 -1417 (|#2| |#2| (-1065 |#2|))) (-15 -4304 (|#2| |#2| (-1149))) (-15 -4304 (|#2| |#2| (-1065 |#2|))) (-15 -1405 (|#2| |#2|)) (-15 -1406 (|#2| (-622 |#2|))) (-15 -1407 (|#2| (-622 |#2|))) (-15 -1408 (|#2| (-622 |#2|))) (-15 -1409 (|#2| (-622 |#2|))) (-15 -1410 (|#2| (-622 |#2|))) (-15 -1411 (|#2| (-622 |#2|))))
-((-1416 ((|#1| |#1| |#1|) 53)) (-1415 ((|#1| |#1| |#1|) 50)) (-1414 ((|#1| |#1| |#1|) 44)) (-3223 ((|#1| |#1|) 35)) (-1413 ((|#1| |#1| (-622 |#1|)) 43)) (-1412 ((|#1| |#1|) 37)) (-3437 ((|#1| |#1| |#1|) 40)))
-(((-157 |#1|) (-10 -7 (-15 -3437 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -1413 (|#1| |#1| (-622 |#1|))) (-15 -3223 (|#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|))) (-537)) (T -157))
-((-1416 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1415 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1414 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-3223 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1413 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-537)) (-5 *1 (-157 *2)))) (-1412 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-3437 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))))
-(-10 -7 (-15 -3437 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -1413 (|#1| |#1| (-622 |#1|))) (-15 -3223 (|#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|)))
-((-1417 (($ $ (-1149)) 12) (($ $ (-1065 $)) 11)) (-4304 (($ $ (-1149)) 10) (($ $ (-1065 $)) 9)) (-1414 (($ $ $) 8)) (-1418 (($ $) 14) (($ $ (-1149)) 13)) (-1412 (($ $) 7)) (-3437 (($ $ $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-2343 (((-2 (|:| -3564 (-751)) (|:| -3340 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751)) 70)) (-2331 (((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|) 52)) (-2318 (((-2 (|:| -3340 (-402 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-2359 ((|#1| |#3| |#3|) 40)) (-4073 ((|#3| |#3| (-402 |#2|) (-402 |#2|)) 19)) (-2369 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|) 49)))
+(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -2318 ((-2 (|:| -3340 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2331 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|)) (-15 -2343 ((-2 (|:| -3564 (-751)) (|:| -3340 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751))) (-15 -2359 (|#1| |#3| |#3|)) (-15 -4073 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -2369 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|))) (-1190) (-1208 |#1|) (-1208 (-402 |#2|))) (T -146))
+((-2369 (*1 *2 *3 *3) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5)) (|:| |c2| (-402 *5)) (|:| |deg| (-751)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5))))) (-4073 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1208 *3)))) (-2359 (*1 *2 *3 *3) (-12 (-4 *4 (-1208 *2)) (-4 *2 (-1190)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1208 (-402 *4))))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *6)) (-4 *5 (-1190)) (-4 *6 (-1208 *5)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-751)) (-4 *7 (-1208 *3)))) (-2331 (*1 *2 *3) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-751)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5))))) (-2318 (*1 *2 *3) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| -3340 (-402 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5))))))
+(-10 -7 (-15 -2318 ((-2 (|:| -3340 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2331 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|)) (-15 -2343 ((-2 (|:| -3564 (-751)) (|:| -3340 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751))) (-15 -2359 (|#1| |#3| |#3|)) (-15 -4073 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -2369 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|)))
+((-4264 (((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|)) 32)))
+(((-147 |#1| |#2|) (-10 -7 (-15 -4264 ((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|)))) (-537) (-164 |#1|)) (T -147))
+((-4264 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 *5))) (-5 *3 (-1145 *5)) (-4 *5 (-164 *4)) (-4 *4 (-537)) (-5 *1 (-147 *4 *5)))))
+(-10 -7 (-15 -4264 ((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|))))
+((-3488 (($ (-1 (-112) |#2|) $) 29)) (-2959 (($ $) 36)) (-1416 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2163 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2380 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-1888 (((-112) (-1 (-112) |#2|) $) 16)) (-2840 (((-751) (-1 (-112) |#2|) $) 14) (((-751) |#2| $) NIL)) (-1900 (((-112) (-1 (-112) |#2|) $) 15)) (-1471 (((-751) $) 11)))
+(((-148 |#1| |#2|) (-10 -8 (-15 -2959 (|#1| |#1|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1416 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|))) (-149 |#2|) (-1186)) (T -148))
+NIL
+(-10 -8 (-15 -2959 (|#1| |#1|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1416 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-3488 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-2959 (($ $) 41 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353))) (($ |#1| $) 42 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 40 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 49)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-149 |#1|) (-138) (-1186)) (T -149))
+((-1695 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-149 *3)))) (-2380 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1186)))) (-2163 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)))) (-2163 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)))) (-1416 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) (-4 *3 (-1186)))) (-3488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) (-4 *3 (-1186)))) (-2163 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1073)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)))) (-1416 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)) (-4 *2 (-1073)))) (-2959 (*1 *1 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)) (-4 *2 (-1073)))))
+(-13 (-483 |t#1|) (-10 -8 (-15 -1695 ($ (-625 |t#1|))) (-15 -2380 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4353)) (PROGN (-15 -2163 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2163 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1416 ($ (-1 (-112) |t#1|) $)) (-15 -3488 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1073)) (PROGN (-15 -2163 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1416 ($ |t#1| $)) (-15 -2959 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) 86)) (-3650 (((-112) $) NIL)) (-3957 (($ |#2| (-625 (-897))) 56)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1295 (($ (-897)) 47)) (-3904 (((-133)) 23)) (-1683 (((-839) $) 69) (($ (-552)) 45) (($ |#2|) 46)) (-3637 ((|#2| $ (-625 (-897))) 59)) (-4141 (((-751)) 20)) (-2089 (($) 40 T CONST)) (-2100 (($) 43 T CONST)) (-2281 (((-112) $ $) 26)) (-2404 (($ $ |#2|) NIL)) (-2393 (($ $) 34) (($ $ $) 32)) (-2382 (($ $ $) 30)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-150 |#1| |#2| |#3|) (-13 (-1025) (-38 |#2|) (-1239 |#2|) (-10 -8 (-15 -1295 ($ (-897))) (-15 -3957 ($ |#2| (-625 (-897)))) (-15 -3637 (|#2| $ (-625 (-897)))) (-15 -4174 ((-3 $ "failed") $)))) (-897) (-358) (-969 |#1| |#2|)) (T -150))
+((-4174 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-897)) (-4 *3 (-358)) (-14 *4 (-969 *2 *3)))) (-1295 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-358)) (-14 *5 (-969 *3 *4)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *3 (-625 (-897))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-897)) (-4 *2 (-358)) (-14 *5 (-969 *4 *2)))) (-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-625 (-897))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-897)) (-14 *5 (-969 *4 *2)))))
+(-13 (-1025) (-38 |#2|) (-1239 |#2|) (-10 -8 (-15 -1295 ($ (-897))) (-15 -3957 ($ |#2| (-625 (-897)))) (-15 -3637 (|#2| $ (-625 (-897)))) (-15 -4174 ((-3 $ "failed") $))))
+((-2402 (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221)))) (-221) (-221) (-221) (-221)) 38)) (-2391 (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552))) 63) (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903)) 64)) (-3354 (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221))))) 67) (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-919 (-221)))) 66) (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552))) 58) (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903)) 59)))
+(((-151) (-10 -7 (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552)))) (-15 -2391 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903))) (-15 -2391 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552)))) (-15 -2402 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221)))) (-221) (-221) (-221) (-221))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-919 (-221))))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221)))))))) (T -151))
+((-3354 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)) (-5 *3 (-625 (-625 (-919 (-221))))))) (-3354 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)) (-5 *3 (-625 (-919 (-221)))))) (-2402 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-221)) (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 *4)))) (|:| |xValues| (-1067 *4)) (|:| |yValues| (-1067 *4)))) (-5 *1 (-151)) (-5 *3 (-625 (-625 (-919 *4)))))) (-2391 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-903)) (-5 *4 (-402 (-552))) (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)))) (-3354 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-903)) (-5 *4 (-402 (-552))) (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)))))
+(-10 -7 (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552)))) (-15 -2391 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903))) (-15 -2391 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552)))) (-15 -2402 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221)))) (-221) (-221) (-221) (-221))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-919 (-221))))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221)))))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2206 (((-625 (-1108)) $) 15)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 24) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 9)) (-2281 (((-112) $ $) NIL)))
+(((-152) (-13 (-1056) (-10 -8 (-15 -2206 ((-625 (-1108)) $)) (-15 -1300 ((-1108) $))))) (T -152))
+((-2206 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-152)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-152)))))
+(-13 (-1056) (-10 -8 (-15 -2206 ((-625 (-1108)) $)) (-15 -1300 ((-1108) $))))
+((-1701 (((-625 (-167 |#2|)) |#1| |#2|) 45)))
+(((-153 |#1| |#2|) (-10 -7 (-15 -1701 ((-625 (-167 |#2|)) |#1| |#2|))) (-1208 (-167 (-552))) (-13 (-358) (-825))) (T -153))
+((-1701 (*1 *2 *3 *4) (-12 (-5 *2 (-625 (-167 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1208 (-167 (-552)))) (-4 *4 (-13 (-358) (-825))))))
+(-10 -7 (-15 -1701 ((-625 (-167 |#2|)) |#1| |#2|)))
+((-1671 (((-112) $ $) NIL)) (-2662 (((-1185) $) 12)) (-2651 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-154) (-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1185) $))))) (T -154))
+((-2651 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-154)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-154)))))
+(-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1185) $))))
+((-1671 (((-112) $ $) NIL)) (-2422 (($) 15)) (-3861 (($) 14)) (-2413 (((-897)) 22)) (-2883 (((-1131) $) NIL)) (-3064 (((-552) $) 19)) (-2831 (((-1093) $) NIL)) (-3847 (($) 16)) (-3053 (($ (-552)) 23)) (-1683 (((-839) $) 29)) (-3834 (($) 17)) (-2281 (((-112) $ $) 13)) (-2382 (($ $ $) 11)) (* (($ (-897) $) 21) (($ (-221) $) 8)))
+(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-897) $)) (-15 * ($ (-221) $)) (-15 -2382 ($ $ $)) (-15 -3861 ($)) (-15 -2422 ($)) (-15 -3847 ($)) (-15 -3834 ($)) (-15 -3064 ((-552) $)) (-15 -2413 ((-897))) (-15 -3053 ($ (-552)))))) (T -155))
+((-2382 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155)))) (-3861 (*1 *1) (-5 *1 (-155))) (-2422 (*1 *1) (-5 *1 (-155))) (-3847 (*1 *1) (-5 *1 (-155))) (-3834 (*1 *1) (-5 *1 (-155))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-155)))) (-2413 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-155)))) (-3053 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-155)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-897) $)) (-15 * ($ (-221) $)) (-15 -2382 ($ $ $)) (-15 -3861 ($)) (-15 -2422 ($)) (-15 -3847 ($)) (-15 -3834 ($)) (-15 -3064 ((-552) $)) (-15 -2413 ((-897))) (-15 -3053 ($ (-552)))))
+((-1331 ((|#2| |#2| (-1065 |#2|)) 88) ((|#2| |#2| (-1149)) 68)) (-4244 ((|#2| |#2| (-1065 |#2|)) 87) ((|#2| |#2| (-1149)) 67)) (-1302 ((|#2| |#2| |#2|) 27)) (-1563 (((-114) (-114)) 99)) (-1269 ((|#2| (-625 |#2|)) 117)) (-2464 ((|#2| (-625 |#2|)) 135)) (-2454 ((|#2| (-625 |#2|)) 125)) (-2432 ((|#2| |#2|) 123)) (-4317 ((|#2| (-625 |#2|)) 111)) (-4327 ((|#2| (-625 |#2|)) 112)) (-2443 ((|#2| (-625 |#2|)) 133)) (-1342 ((|#2| |#2| (-1149)) 56) ((|#2| |#2|) 55)) (-1279 ((|#2| |#2|) 23)) (-3901 ((|#2| |#2| |#2|) 26)) (-1572 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3901 (|#2| |#2| |#2|)) (-15 -1302 (|#2| |#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -1342 (|#2| |#2| (-1149))) (-15 -1331 (|#2| |#2| (-1149))) (-15 -1331 (|#2| |#2| (-1065 |#2|))) (-15 -4244 (|#2| |#2| (-1149))) (-15 -4244 (|#2| |#2| (-1065 |#2|))) (-15 -2432 (|#2| |#2|)) (-15 -2443 (|#2| (-625 |#2|))) (-15 -2454 (|#2| (-625 |#2|))) (-15 -2464 (|#2| (-625 |#2|))) (-15 -4317 (|#2| (-625 |#2|))) (-15 -4327 (|#2| (-625 |#2|))) (-15 -1269 (|#2| (-625 |#2|)))) (-13 (-827) (-544)) (-425 |#1|)) (T -156))
+((-1269 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-2432 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-4244 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)))) (-4244 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-1331 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)))) (-1331 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-1342 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-1342 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1279 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1302 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-3901 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *4)) (-4 *4 (-425 *3)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-425 *4)))))
+(-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3901 (|#2| |#2| |#2|)) (-15 -1302 (|#2| |#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -1342 (|#2| |#2| (-1149))) (-15 -1331 (|#2| |#2| (-1149))) (-15 -1331 (|#2| |#2| (-1065 |#2|))) (-15 -4244 (|#2| |#2| (-1149))) (-15 -4244 (|#2| |#2| (-1065 |#2|))) (-15 -2432 (|#2| |#2|)) (-15 -2443 (|#2| (-625 |#2|))) (-15 -2454 (|#2| (-625 |#2|))) (-15 -2464 (|#2| (-625 |#2|))) (-15 -4317 (|#2| (-625 |#2|))) (-15 -4327 (|#2| (-625 |#2|))) (-15 -1269 (|#2| (-625 |#2|))))
+((-1321 ((|#1| |#1| |#1|) 53)) (-1312 ((|#1| |#1| |#1|) 50)) (-1302 ((|#1| |#1| |#1|) 44)) (-3570 ((|#1| |#1|) 35)) (-1290 ((|#1| |#1| (-625 |#1|)) 43)) (-1279 ((|#1| |#1|) 37)) (-3901 ((|#1| |#1| |#1|) 40)))
+(((-157 |#1|) (-10 -7 (-15 -3901 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -1290 (|#1| |#1| (-625 |#1|))) (-15 -3570 (|#1| |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -1312 (|#1| |#1| |#1|)) (-15 -1321 (|#1| |#1| |#1|))) (-537)) (T -157))
+((-1321 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1312 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1302 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-3570 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-537)) (-5 *1 (-157 *2)))) (-1279 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-3901 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))))
+(-10 -7 (-15 -3901 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -1290 (|#1| |#1| (-625 |#1|))) (-15 -3570 (|#1| |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -1312 (|#1| |#1| |#1|)) (-15 -1321 (|#1| |#1| |#1|)))
+((-1331 (($ $ (-1149)) 12) (($ $ (-1065 $)) 11)) (-4244 (($ $ (-1149)) 10) (($ $ (-1065 $)) 9)) (-1302 (($ $ $) 8)) (-1342 (($ $) 14) (($ $ (-1149)) 13)) (-1279 (($ $) 7)) (-3901 (($ $ $) 6)))
(((-158) (-138)) (T -158))
-((-1418 (*1 *1 *1) (-4 *1 (-158))) (-1418 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-1417 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-1417 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158)))) (-4304 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-4304 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158)))))
-(-13 (-141) (-10 -8 (-15 -1418 ($ $)) (-15 -1418 ($ $ (-1149))) (-15 -1417 ($ $ (-1149))) (-15 -1417 ($ $ (-1065 $))) (-15 -4304 ($ $ (-1149))) (-15 -4304 ($ $ (-1065 $)))))
+((-1342 (*1 *1 *1) (-4 *1 (-158))) (-1342 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-1331 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-1331 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158)))) (-4244 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158)))))
+(-13 (-141) (-10 -8 (-15 -1342 ($ $)) (-15 -1342 ($ $ (-1149))) (-15 -1331 ($ $ (-1149))) (-15 -1331 ($ $ (-1065 $))) (-15 -4244 ($ $ (-1149))) (-15 -4244 ($ $ (-1065 $)))))
(((-141) . T))
-((-2898 (((-112) $ $) NIL)) (-1419 (($ (-538)) 13) (($ $ $) 14)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 17)) (-3387 (((-112) $ $) 9)))
-(((-159) (-13 (-1074) (-10 -8 (-15 -1419 ($ (-538))) (-15 -1419 ($ $ $))))) (T -159))
-((-1419 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-159)))) (-1419 (*1 *1 *1 *1) (-5 *1 (-159))))
-(-13 (-1074) (-10 -8 (-15 -1419 ($ (-538))) (-15 -1419 ($ $ $))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-622 (-1108)) $) 9)) (-3387 (((-112) $ $) NIL)))
-(((-160) (-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $))))) (T -160))
-((-3584 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-160)))))
-(-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $))))
-((-3380 (((-113) (-1149)) 97)))
-(((-161) (-10 -7 (-15 -3380 ((-113) (-1149))))) (T -161))
-((-3380 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-113)) (-5 *1 (-161)))))
-(-10 -7 (-15 -3380 ((-113) (-1149))))
-((-1655 ((|#3| |#3|) 19)))
-(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1655 (|#3| |#3|))) (-1025) (-1207 |#1|) (-1207 |#2|)) (T -162))
-((-1655 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-1207 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1207 *4)))))
-(-10 -7 (-15 -1655 (|#3| |#3|)))
-((-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 217)) (-3689 ((|#2| $) 96)) (-3846 (($ $) 247)) (-4002 (($ $) 241)) (-3037 (((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $)) 40)) (-3844 (($ $) 245)) (-4001 (($ $) 239)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#2| #1#) $) 141)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL) ((|#2| $) 139)) (-2894 (($ $ $) 222)) (-2362 (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 155) (((-669 |#2|) (-669 $)) 149)) (-4202 (($ (-1143 |#2|)) 119) (((-3 $ "failed") (-402 (-1143 |#2|))) NIL)) (-3821 (((-3 $ "failed") $) 209)) (-3357 (((-3 (-402 (-538)) "failed") $) 199)) (-3356 (((-112) $) 194)) (-3355 (((-402 (-538)) $) 197)) (-3444 (((-895)) 89)) (-2893 (($ $ $) 224)) (-1420 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3990 (($) 236)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 186) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 191)) (-3467 ((|#2| $) 94)) (-2130 (((-1143 |#2|) $) 121)) (-4318 (($ (-1 |#2| |#2|) $) 102)) (-4302 (($ $) 238)) (-3413 (((-1143 |#2|) $) 120)) (-2734 (($ $) 202)) (-1422 (($) 97)) (-3038 (((-400 (-1143 $)) (-1143 $)) 88)) (-3039 (((-400 (-1143 $)) (-1143 $)) 57)) (-3820 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4303 (($ $) 237)) (-1704 (((-751) $) 219)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 229)) (-4117 ((|#2| (-1231 $)) NIL) ((|#2|) 91)) (-4170 (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-3536 (((-1143 |#2|)) 114)) (-3845 (($ $) 246)) (-3997 (($ $) 240)) (-3575 (((-1231 |#2|) $ (-1231 $)) 128) (((-669 |#2|) (-1231 $) (-1231 $)) NIL) (((-1231 |#2|) $) 110) (((-669 |#2|) (-1231 $)) NIL)) (-4330 (((-1231 |#2|) $) NIL) (($ (-1231 |#2|)) NIL) (((-1143 |#2|) $) NIL) (($ (-1143 |#2|)) NIL) (((-866 (-538)) $) 177) (((-866 (-373)) $) 181) (((-166 (-373)) $) 167) (((-166 (-221)) $) 162) (((-527) $) 173)) (-3342 (($ $) 98)) (-4317 (((-840) $) 138) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-402 (-538))) NIL) (($ $) NIL)) (-2698 (((-1143 |#2|) $) 23)) (-3461 (((-751)) 100)) (-3852 (($ $) 250)) (-3840 (($ $) 244)) (-3850 (($ $) 248)) (-3838 (($ $) 242)) (-2318 ((|#2| $) 233)) (-3851 (($ $) 249)) (-3839 (($ $) 243)) (-3742 (($ $) 157)) (-3387 (((-112) $ $) 104)) (-3018 (((-112) $ $) 193)) (-4197 (($ $) 106) (($ $ $) NIL)) (-4199 (($ $ $) 105)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-402 (-538))) 267) (($ $ $) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL)))
-(((-163 |#1| |#2|) (-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4317 (|#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -1704 ((-751) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -2893 (|#1| |#1| |#1|)) (-15 -2894 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-166 (-221)) |#1|)) (-15 -4330 ((-166 (-373)) |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3990 (|#1|)) (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -1420 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2318 (|#2| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3342 (|#1| |#1|)) (-15 -1422 (|#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4202 ((-3 |#1| "failed") (-402 (-1143 |#2|)))) (-15 -3413 ((-1143 |#2|) |#1|)) (-15 -4330 (|#1| (-1143 |#2|))) (-15 -4202 (|#1| (-1143 |#2|))) (-15 -3536 ((-1143 |#2|))) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 ((-1143 |#2|) |#1|)) (-15 -4117 (|#2|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -2130 ((-1143 |#2|) |#1|)) (-15 -2698 ((-1143 |#2|) |#1|)) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -3467 (|#2| |#1|)) (-15 -3689 (|#2| |#1|)) (-15 -3444 ((-895))) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163))
-((-3461 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3444 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-895)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-4117 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-3536 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1143 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))))
-(-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4317 (|#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -1704 ((-751) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -2893 (|#1| |#1| |#1|)) (-15 -2894 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-166 (-221)) |#1|)) (-15 -4330 ((-166 (-373)) |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3990 (|#1|)) (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -1420 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2318 (|#2| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3342 (|#1| |#1|)) (-15 -1422 (|#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4202 ((-3 |#1| "failed") (-402 (-1143 |#2|)))) (-15 -3413 ((-1143 |#2|) |#1|)) (-15 -4330 (|#1| (-1143 |#2|))) (-15 -4202 (|#1| (-1143 |#2|))) (-15 -3536 ((-1143 |#2|))) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 ((-1143 |#2|) |#1|)) (-15 -4117 (|#2|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -2130 ((-1143 |#2|) |#1|)) (-15 -2698 ((-1143 |#2|) |#1|)) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -3467 (|#2| |#1|)) (-15 -3689 (|#2| |#1|)) (-15 -3444 ((-895))) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-2178 (($ $) 92 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-2176 (((-112) $) 94 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-1901 (((-669 |#1|) (-1231 $)) 44) (((-669 |#1|)) 59)) (-3689 ((|#1| $) 50)) (-3846 (($ $) 225 (|has| |#1| (-1171)))) (-4002 (($ $) 208 (|has| |#1| (-1171)))) (-1791 (((-1158 (-895) (-751)) (-538)) 144 (|has| |#1| (-345)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 239 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-4134 (($ $) 111 (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-4329 (((-400 $) $) 112 (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-3370 (($ $) 238 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-3037 (((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $)) 242 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-1705 (((-112) $ $) 102 (|has| |#1| (-302)))) (-3471 (((-751)) 85 (|has| |#1| (-363)))) (-3844 (($ $) 224 (|has| |#1| (-1171)))) (-4001 (($ $) 209 (|has| |#1| (-1171)))) (-3848 (($ $) 223 (|has| |#1| (-1171)))) (-4000 (($ $) 210 (|has| |#1| (-1171)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 166 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 164 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 163)) (-3507 (((-538) $) 167 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 165 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 162)) (-1911 (($ (-1231 |#1|) (-1231 $)) 46) (($ (-1231 |#1|)) 62)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-345)))) (-2894 (($ $ $) 106 (|has| |#1| (-302)))) (-1900 (((-669 |#1|) $ (-1231 $)) 51) (((-669 |#1|) $) 57)) (-2362 (((-669 (-538)) (-669 $)) 161 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 160 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 159) (((-669 |#1|) (-669 $)) 158)) (-4202 (($ (-1143 |#1|)) 155) (((-3 $ "failed") (-402 (-1143 |#1|))) 152 (|has| |#1| (-358)))) (-3821 (((-3 $ "failed") $) 32)) (-4006 ((|#1| $) 250)) (-3357 (((-3 (-402 (-538)) "failed") $) 243 (|has| |#1| (-537)))) (-3356 (((-112) $) 245 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 244 (|has| |#1| (-537)))) (-3444 (((-895)) 52)) (-3327 (($) 88 (|has| |#1| (-363)))) (-2893 (($ $ $) 105 (|has| |#1| (-302)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 100 (|has| |#1| (-302)))) (-3166 (($) 146 (|has| |#1| (-345)))) (-1796 (((-112) $) 147 (|has| |#1| (-345)))) (-1886 (($ $ (-751)) 138 (|has| |#1| (-345))) (($ $) 137 (|has| |#1| (-345)))) (-4086 (((-112) $) 113 (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-1420 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1034)) (|has| |#1| (-1171))))) (-3990 (($) 235 (|has| |#1| (-1171)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 258 (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 257 (|has| |#1| (-862 (-373))))) (-4131 (((-895) $) 149 (|has| |#1| (-345))) (((-812 (-895)) $) 135 (|has| |#1| (-345)))) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 237 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-3467 ((|#1| $) 49)) (-3803 (((-3 $ "failed") $) 139 (|has| |#1| (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 109 (|has| |#1| (-302)))) (-2130 (((-1143 |#1|) $) 42 (|has| |#1| (-358)))) (-3677 (($ $ $) 204 (|has| |#1| (-827)))) (-3678 (($ $ $) 203 (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) 259)) (-2126 (((-895) $) 87 (|has| |#1| (-363)))) (-4302 (($ $) 232 (|has| |#1| (-1171)))) (-3413 (((-1143 |#1|) $) 153)) (-2013 (($ (-622 $)) 98 (-3891 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (($ $ $) 97 (-3891 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 114 (|has| |#1| (-358)))) (-3804 (($) 140 (|has| |#1| (-345)) CONST)) (-2492 (($ (-895)) 86 (|has| |#1| (-363)))) (-1422 (($) 254)) (-4007 ((|#1| $) 251)) (-3594 (((-1093) $) 10)) (-2501 (($) 157)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 99 (-3891 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-3495 (($ (-622 $)) 96 (-3891 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (($ $ $) 95 (-3891 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 143 (|has| |#1| (-345)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 241 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-3039 (((-400 (-1143 $)) (-1143 $)) 240 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-4092 (((-400 $) $) 110 (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 107 (|has| |#1| (-302)))) (-3820 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 90 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 101 (|has| |#1| (-302)))) (-4303 (($ $) 233 (|has| |#1| (-1171)))) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) 265 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) 263 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) 262 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 261 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 260 (|has| |#1| (-507 (-1149) |#1|)))) (-1704 (((-751) $) 103 (|has| |#1| (-302)))) (-4159 (($ $ |#1|) 266 (|has| |#1| (-281 |#1| |#1|)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 104 (|has| |#1| (-302)))) (-4117 ((|#1| (-1231 $)) 45) ((|#1|) 58)) (-1887 (((-751) $) 148 (|has| |#1| (-345))) (((-3 (-751) "failed") $ $) 136 (|has| |#1| (-345)))) (-4170 (($ $ (-1 |#1| |#1|) (-751)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-622 (-1149)) (-622 (-751))) 127 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 128 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 129 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 130 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 132 (-3891 (-3191 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 134 (-3891 (-3191 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3191 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-2500 (((-669 |#1|) (-1231 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-358)))) (-3536 (((-1143 |#1|)) 156)) (-3849 (($ $) 222 (|has| |#1| (-1171)))) (-3999 (($ $) 211 (|has| |#1| (-1171)))) (-1790 (($) 145 (|has| |#1| (-345)))) (-3847 (($ $) 221 (|has| |#1| (-1171)))) (-3998 (($ $) 212 (|has| |#1| (-1171)))) (-3845 (($ $) 220 (|has| |#1| (-1171)))) (-3997 (($ $) 213 (|has| |#1| (-1171)))) (-3575 (((-1231 |#1|) $ (-1231 $)) 48) (((-669 |#1|) (-1231 $) (-1231 $)) 47) (((-1231 |#1|) $) 64) (((-669 |#1|) (-1231 $)) 63)) (-4330 (((-1231 |#1|) $) 61) (($ (-1231 |#1|)) 60) (((-1143 |#1|) $) 168) (($ (-1143 |#1|)) 154) (((-866 (-538)) $) 256 (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) 255 (|has| |#1| (-598 (-866 (-373))))) (((-166 (-373)) $) 207 (|has| |#1| (-996))) (((-166 (-221)) $) 206 (|has| |#1| (-996))) (((-527) $) 205 (|has| |#1| (-598 (-527))))) (-3342 (($ $) 253)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 142 (-3891 (-3191 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))) (|has| |#1| (-345))))) (-1421 (($ |#1| |#1|) 252)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35) (($ (-402 (-538))) 84 (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) 89 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-3035 (($ $) 141 (|has| |#1| (-345))) (((-3 $ "failed") $) 41 (-3891 (-3191 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))) (|has| |#1| (-143))))) (-2698 (((-1143 |#1|) $) 43)) (-3461 (((-751)) 28)) (-2128 (((-1231 $)) 65)) (-3852 (($ $) 231 (|has| |#1| (-1171)))) (-3840 (($ $) 219 (|has| |#1| (-1171)))) (-2177 (((-112) $ $) 93 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-3850 (($ $) 230 (|has| |#1| (-1171)))) (-3838 (($ $) 218 (|has| |#1| (-1171)))) (-3854 (($ $) 229 (|has| |#1| (-1171)))) (-3842 (($ $) 217 (|has| |#1| (-1171)))) (-2318 ((|#1| $) 247 (|has| |#1| (-1171)))) (-3855 (($ $) 228 (|has| |#1| (-1171)))) (-3843 (($ $) 216 (|has| |#1| (-1171)))) (-3853 (($ $) 227 (|has| |#1| (-1171)))) (-3841 (($ $) 215 (|has| |#1| (-1171)))) (-3851 (($ $) 226 (|has| |#1| (-1171)))) (-3839 (($ $) 214 (|has| |#1| (-1171)))) (-3742 (($ $) 248 (|has| |#1| (-1034)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1 |#1| |#1|) (-751)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-622 (-1149)) (-622 (-751))) 123 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 124 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 125 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 126 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 131 (-3891 (-3191 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 133 (-3891 (-3191 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3191 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-2896 (((-112) $ $) 201 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 200 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 202 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 199 (|has| |#1| (-827)))) (-4308 (($ $ $) 118 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-402 (-538))) 236 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171)))) (($ $ $) 234 (|has| |#1| (-1171))) (($ $ (-538)) 115 (|has| |#1| (-358)))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-402 (-538)) $) 117 (|has| |#1| (-358))) (($ $ (-402 (-538))) 116 (|has| |#1| (-358)))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-625 (-1108)) $) 9)) (-2281 (((-112) $ $) NIL)))
+(((-159) (-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $))))) (T -159))
+((-1300 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-159)))))
+(-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $))))
+((-1671 (((-112) $ $) NIL)) (-1350 (($ (-552)) 13) (($ $ $) 14)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 17)) (-2281 (((-112) $ $) 9)))
+(((-160) (-13 (-1073) (-10 -8 (-15 -1350 ($ (-552))) (-15 -1350 ($ $ $))))) (T -160))
+((-1350 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-160)))) (-1350 (*1 *1 *1 *1) (-5 *1 (-160))))
+(-13 (-1073) (-10 -8 (-15 -1350 ($ (-552))) (-15 -1350 ($ $ $))))
+((-1563 (((-114) (-1149)) 97)))
+(((-161) (-10 -7 (-15 -1563 ((-114) (-1149))))) (T -161))
+((-1563 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-114)) (-5 *1 (-161)))))
+(-10 -7 (-15 -1563 ((-114) (-1149))))
+((-1904 ((|#3| |#3|) 19)))
+(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1904 (|#3| |#3|))) (-1025) (-1208 |#1|) (-1208 |#2|)) (T -162))
+((-1904 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-1208 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1208 *4)))))
+(-10 -7 (-15 -1904 (|#3| |#3|)))
+((-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 217)) (-1650 ((|#2| $) 96)) (-3728 (($ $) 247)) (-3604 (($ $) 241)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 40)) (-3710 (($ $) 245)) (-3581 (($ $) 239)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL) ((|#2| $) 139)) (-2851 (($ $ $) 222)) (-1794 (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 155) (((-669 |#2|) (-669 $)) 149)) (-2163 (($ (-1145 |#2|)) 119) (((-3 $ "failed") (-402 (-1145 |#2|))) NIL)) (-4174 (((-3 $ "failed") $) 209)) (-2555 (((-3 (-402 (-552)) "failed") $) 199)) (-2546 (((-112) $) 194)) (-2538 (((-402 (-552)) $) 197)) (-3442 (((-897)) 89)) (-2826 (($ $ $) 224)) (-1362 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1385 (($) 236)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 186) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 191)) (-4209 ((|#2| $) 94)) (-1291 (((-1145 |#2|) $) 121)) (-1996 (($ (-1 |#2| |#2|) $) 102)) (-2458 (($ $) 238)) (-2148 (((-1145 |#2|) $) 120)) (-4092 (($ $) 202)) (-1373 (($) 97)) (-4275 (((-413 (-1145 $)) (-1145 $)) 88)) (-4286 (((-413 (-1145 $)) (-1145 $)) 57)) (-2802 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2863 (($ $) 237)) (-2397 (((-751) $) 219)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 229)) (-3217 ((|#2| (-1232 $)) NIL) ((|#2|) 91)) (-3072 (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-3610 (((-1145 |#2|)) 114)) (-3721 (($ $) 246)) (-3593 (($ $) 240)) (-2780 (((-1232 |#2|) $ (-1232 $)) 128) (((-669 |#2|) (-1232 $) (-1232 $)) NIL) (((-1232 |#2|) $) 110) (((-669 |#2|) (-1232 $)) NIL)) (-2042 (((-1232 |#2|) $) NIL) (($ (-1232 |#2|)) NIL) (((-1145 |#2|) $) NIL) (($ (-1145 |#2|)) NIL) (((-868 (-552)) $) 177) (((-868 (-374)) $) 181) (((-167 (-374)) $) 167) (((-167 (-221)) $) 162) (((-528) $) 173)) (-2410 (($ $) 98)) (-1683 (((-839) $) 138) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-402 (-552))) NIL) (($ $) NIL)) (-3974 (((-1145 |#2|) $) 23)) (-4141 (((-751)) 100)) (-3789 (($ $) 250)) (-3670 (($ $) 244)) (-3769 (($ $) 248)) (-3648 (($ $) 242)) (-1388 ((|#2| $) 233)) (-3778 (($ $) 249)) (-3659 (($ $) 243)) (-1727 (($ $) 157)) (-2281 (((-112) $ $) 104)) (-2307 (((-112) $ $) 193)) (-2393 (($ $) 106) (($ $ $) NIL)) (-2382 (($ $ $) 105)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-402 (-552))) 267) (($ $ $) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL)))
+(((-163 |#1| |#2|) (-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -1683 (|#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -2397 ((-751) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2826 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-167 (-221)) |#1|)) (-15 -2042 ((-167 (-374)) |#1|)) (-15 -3604 (|#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3721 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2863 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1385 (|#1|)) (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1362 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1388 (|#2| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2410 (|#1| |#1|)) (-15 -1373 (|#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -2163 ((-3 |#1| "failed") (-402 (-1145 |#2|)))) (-15 -2148 ((-1145 |#2|) |#1|)) (-15 -2042 (|#1| (-1145 |#2|))) (-15 -2163 (|#1| (-1145 |#2|))) (-15 -3610 ((-1145 |#2|))) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 ((-1145 |#2|) |#1|)) (-15 -3217 (|#2|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -1291 ((-1145 |#2|) |#1|)) (-15 -3974 ((-1145 |#2|) |#1|)) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -4209 (|#2| |#1|)) (-15 -1650 (|#2| |#1|)) (-15 -3442 ((-897))) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163))
+((-4141 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3442 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-897)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3217 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-3610 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1145 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))))
+(-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -1683 (|#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -2397 ((-751) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2826 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-167 (-221)) |#1|)) (-15 -2042 ((-167 (-374)) |#1|)) (-15 -3604 (|#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3721 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2863 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1385 (|#1|)) (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1362 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1388 (|#2| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2410 (|#1| |#1|)) (-15 -1373 (|#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -2163 ((-3 |#1| "failed") (-402 (-1145 |#2|)))) (-15 -2148 ((-1145 |#2|) |#1|)) (-15 -2042 (|#1| (-1145 |#2|))) (-15 -2163 (|#1| (-1145 |#2|))) (-15 -3610 ((-1145 |#2|))) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 ((-1145 |#2|) |#1|)) (-15 -3217 (|#2|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -1291 ((-1145 |#2|) |#1|)) (-15 -3974 ((-1145 |#2|) |#1|)) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -4209 (|#2| |#1|)) (-15 -1650 (|#2| |#1|)) (-15 -3442 ((-897))) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-3528 (($ $) 92 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-3509 (((-112) $) 94 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-2570 (((-669 |#1|) (-1232 $)) 44) (((-669 |#1|)) 59)) (-1650 ((|#1| $) 50)) (-3728 (($ $) 225 (|has| |#1| (-1171)))) (-3604 (($ $) 208 (|has| |#1| (-1171)))) (-3811 (((-1159 (-897) (-751)) (-552)) 144 (|has| |#1| (-344)))) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 239 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-2194 (($ $) 111 (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-1330 (((-413 $) $) 112 (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-3837 (($ $) 238 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 242 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-2408 (((-112) $ $) 102 (|has| |#1| (-302)))) (-2894 (((-751)) 85 (|has| |#1| (-363)))) (-3710 (($ $) 224 (|has| |#1| (-1171)))) (-3581 (($ $) 209 (|has| |#1| (-1171)))) (-3749 (($ $) 223 (|has| |#1| (-1171)))) (-3627 (($ $) 210 (|has| |#1| (-1171)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 166 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 164 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 163)) (-1895 (((-552) $) 167 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 165 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 162)) (-2670 (($ (-1232 |#1|) (-1232 $)) 46) (($ (-1232 |#1|)) 62)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-344)))) (-2851 (($ $ $) 106 (|has| |#1| (-302)))) (-2559 (((-669 |#1|) $ (-1232 $)) 51) (((-669 |#1|) $) 57)) (-1794 (((-669 (-552)) (-669 $)) 161 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 160 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 159) (((-669 |#1|) (-669 $)) 158)) (-2163 (($ (-1145 |#1|)) 155) (((-3 $ "failed") (-402 (-1145 |#1|))) 152 (|has| |#1| (-358)))) (-4174 (((-3 $ "failed") $) 32)) (-3852 ((|#1| $) 250)) (-2555 (((-3 (-402 (-552)) "failed") $) 243 (|has| |#1| (-537)))) (-2546 (((-112) $) 245 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 244 (|has| |#1| (-537)))) (-3442 (((-897)) 52)) (-3702 (($) 88 (|has| |#1| (-363)))) (-2826 (($ $ $) 105 (|has| |#1| (-302)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 100 (|has| |#1| (-302)))) (-4279 (($) 146 (|has| |#1| (-344)))) (-3872 (((-112) $) 147 (|has| |#1| (-344)))) (-3554 (($ $ (-751)) 138 (|has| |#1| (-344))) (($ $) 137 (|has| |#1| (-344)))) (-2951 (((-112) $) 113 (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-1362 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1034)) (|has| |#1| (-1171))))) (-1385 (($) 235 (|has| |#1| (-1171)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 258 (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 257 (|has| |#1| (-862 (-374))))) (-2172 (((-897) $) 149 (|has| |#1| (-344))) (((-813 (-897)) $) 135 (|has| |#1| (-344)))) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 237 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-4209 ((|#1| $) 49)) (-4034 (((-3 $ "failed") $) 139 (|has| |#1| (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 109 (|has| |#1| (-302)))) (-1291 (((-1145 |#1|) $) 42 (|has| |#1| (-358)))) (-3658 (($ $ $) 204 (|has| |#1| (-827)))) (-3332 (($ $ $) 203 (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) 259)) (-4318 (((-897) $) 87 (|has| |#1| (-363)))) (-2458 (($ $) 232 (|has| |#1| (-1171)))) (-2148 (((-1145 |#1|) $) 153)) (-2605 (($ (-625 $)) 98 (-1523 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (($ $ $) 97 (-1523 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 114 (|has| |#1| (-358)))) (-2071 (($) 140 (|has| |#1| (-344)) CONST)) (-3123 (($ (-897)) 86 (|has| |#1| (-363)))) (-1373 (($) 254)) (-3865 ((|#1| $) 251)) (-2831 (((-1093) $) 10)) (-3212 (($) 157)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 99 (-1523 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-2633 (($ (-625 $)) 96 (-1523 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (($ $ $) 95 (-1523 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 143 (|has| |#1| (-344)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 241 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-4286 (((-413 (-1145 $)) (-1145 $)) 240 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-3824 (((-413 $) $) 110 (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 107 (|has| |#1| (-302)))) (-2802 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 90 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 101 (|has| |#1| (-302)))) (-2863 (($ $) 233 (|has| |#1| (-1171)))) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) 265 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 263 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) 262 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 261 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 260 (|has| |#1| (-507 (-1149) |#1|)))) (-2397 (((-751) $) 103 (|has| |#1| (-302)))) (-2154 (($ $ |#1|) 266 (|has| |#1| (-281 |#1| |#1|)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 104 (|has| |#1| (-302)))) (-3217 ((|#1| (-1232 $)) 45) ((|#1|) 58)) (-3563 (((-751) $) 148 (|has| |#1| (-344))) (((-3 (-751) "failed") $ $) 136 (|has| |#1| (-344)))) (-3072 (($ $ (-1 |#1| |#1|) (-751)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-625 (-1149)) (-625 (-751))) 127 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 128 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 129 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 130 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 132 (-1523 (-3743 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 134 (-1523 (-3743 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3743 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-3640 (((-669 |#1|) (-1232 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-358)))) (-3610 (((-1145 |#1|)) 156)) (-3759 (($ $) 222 (|has| |#1| (-1171)))) (-3638 (($ $) 211 (|has| |#1| (-1171)))) (-3798 (($) 145 (|has| |#1| (-344)))) (-3738 (($ $) 221 (|has| |#1| (-1171)))) (-3614 (($ $) 212 (|has| |#1| (-1171)))) (-3721 (($ $) 220 (|has| |#1| (-1171)))) (-3593 (($ $) 213 (|has| |#1| (-1171)))) (-2780 (((-1232 |#1|) $ (-1232 $)) 48) (((-669 |#1|) (-1232 $) (-1232 $)) 47) (((-1232 |#1|) $) 64) (((-669 |#1|) (-1232 $)) 63)) (-2042 (((-1232 |#1|) $) 61) (($ (-1232 |#1|)) 60) (((-1145 |#1|) $) 168) (($ (-1145 |#1|)) 154) (((-868 (-552)) $) 256 (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) 255 (|has| |#1| (-598 (-868 (-374))))) (((-167 (-374)) $) 207 (|has| |#1| (-998))) (((-167 (-221)) $) 206 (|has| |#1| (-998))) (((-528) $) 205 (|has| |#1| (-598 (-528))))) (-2410 (($ $) 253)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 142 (-1523 (-3743 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))) (|has| |#1| (-344))))) (-3858 (($ |#1| |#1|) 252)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-402 (-552))) 84 (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) 89 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-4243 (($ $) 141 (|has| |#1| (-344))) (((-3 $ "failed") $) 41 (-1523 (-3743 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))) (|has| |#1| (-143))))) (-3974 (((-1145 |#1|) $) 43)) (-4141 (((-751)) 28)) (-1270 (((-1232 $)) 65)) (-3789 (($ $) 231 (|has| |#1| (-1171)))) (-3670 (($ $) 219 (|has| |#1| (-1171)))) (-3518 (((-112) $ $) 93 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-3769 (($ $) 230 (|has| |#1| (-1171)))) (-3648 (($ $) 218 (|has| |#1| (-1171)))) (-3809 (($ $) 229 (|has| |#1| (-1171)))) (-3691 (($ $) 217 (|has| |#1| (-1171)))) (-1388 ((|#1| $) 247 (|has| |#1| (-1171)))) (-3742 (($ $) 228 (|has| |#1| (-1171)))) (-3700 (($ $) 216 (|has| |#1| (-1171)))) (-3797 (($ $) 227 (|has| |#1| (-1171)))) (-3681 (($ $) 215 (|has| |#1| (-1171)))) (-3778 (($ $) 226 (|has| |#1| (-1171)))) (-3659 (($ $) 214 (|has| |#1| (-1171)))) (-1727 (($ $) 248 (|has| |#1| (-1034)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1 |#1| |#1|) (-751)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-625 (-1149)) (-625 (-751))) 123 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 124 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 125 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 126 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 131 (-1523 (-3743 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 133 (-1523 (-3743 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3743 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-2346 (((-112) $ $) 201 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 200 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 202 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 199 (|has| |#1| (-827)))) (-2404 (($ $ $) 118 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-402 (-552))) 236 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171)))) (($ $ $) 234 (|has| |#1| (-1171))) (($ $ (-552)) 115 (|has| |#1| (-358)))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-402 (-552)) $) 117 (|has| |#1| (-358))) (($ $ (-402 (-552))) 116 (|has| |#1| (-358)))))
(((-164 |#1|) (-138) (-170)) (T -164))
-((-3467 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1422 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3342 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1421 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3820 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) (-3742 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1171)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1034)) (-4 *3 (-1171)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))))
-(-13 (-705 |t#1| (-1143 |t#1|)) (-407 |t#1|) (-227 |t#1|) (-333 |t#1|) (-395 |t#1|) (-860 |t#1|) (-372 |t#1|) (-170) (-10 -8 (-6 -1421) (-15 -1422 ($)) (-15 -3342 ($ $)) (-15 -1421 ($ |t#1| |t#1|)) (-15 -4007 (|t#1| $)) (-15 -4006 (|t#1| $)) (-15 -3467 (|t#1| $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-6 (-545)) (-15 -3820 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-6 -4352)) (-6 -4352) |%noBranch|) (IF (|has| |t#1| (-6 -4349)) (-6 -4349) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-996)) (PROGN (-6 (-598 (-166 (-221)))) (-6 (-598 (-166 (-373))))) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -3742 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1171)) (PROGN (-6 (-1171)) (-15 -2318 (|t#1| $)) (IF (|has| |t#1| (-978)) (-6 (-978)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -1420 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-886)) (IF (|has| |t#1| (-302)) (-6 (-886)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-35) |has| |#1| (-1171)) ((-94) |has| |#1| (-1171)) ((-101) . T) ((-111 #1# #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3891 (|has| |#1| (-345)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-598 (-166 (-221))) |has| |#1| (-996)) ((-598 (-166 (-373))) |has| |#1| (-996)) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-598 (-866 (-373))) |has| |#1| (-598 (-866 (-373)))) ((-598 (-866 (-538))) |has| |#1| (-598 (-866 (-538)))) ((-598 #2=(-1143 |#1|)) . T) ((-227 |#1|) . T) ((-229) -3891 (|has| |#1| (-345)) (|has| |#1| (-229))) ((-239) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-279) |has| |#1| (-1171)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -3891 (|has| |#1| (-545)) (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-302) -3891 (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-397) |has| |#1| (-345)) ((-363) -3891 (|has| |#1| (-345)) (|has| |#1| (-363))) ((-345) |has| |#1| (-345)) ((-365 |#1| #2#) . T) ((-405 |#1| #2#) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-486) |has| |#1| (-1171)) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-545) -3891 (|has| |#1| (-545)) (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-628 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-698 |#1|) . T) ((-698 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-705 |#1| #2#) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-373)) |has| |#1| (-862 (-373))) ((-862 (-538)) |has| |#1| (-862 (-538))) ((-860 |#1|) . T) ((-886) -12 (|has| |#1| (-302)) (|has| |#1| (-886))) ((-897) -3891 (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-978) -12 (|has| |#1| (-978)) (|has| |#1| (-1171))) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| |#1| (-345)) ((-1171) |has| |#1| (-1171)) ((-1174) |has| |#1| (-1171)) ((-1185) . T) ((-1190) -3891 (|has| |#1| (-345)) (|has| |#1| (-358)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))
-((-4092 (((-400 |#2|) |#2|) 63)))
-(((-165 |#1| |#2|) (-10 -7 (-15 -4092 ((-400 |#2|) |#2|))) (-302) (-1207 (-166 |#1|))) (T -165))
-((-4092 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1207 (-166 *4))))))
-(-10 -7 (-15 -4092 ((-400 |#2|) |#2|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 33)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-2178 (($ $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-2176 (((-112) $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-1901 (((-669 |#1|) (-1231 $)) NIL) (((-669 |#1|)) NIL)) (-3689 ((|#1| $) NIL)) (-3846 (($ $) NIL (|has| |#1| (-1171)))) (-4002 (($ $) NIL (|has| |#1| (-1171)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| |#1| (-345)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-4134 (($ $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-4329 (((-400 $) $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-3370 (($ $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-302)))) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3844 (($ $) NIL (|has| |#1| (-1171)))) (-4001 (($ $) NIL (|has| |#1| (-1171)))) (-3848 (($ $) NIL (|has| |#1| (-1171)))) (-4000 (($ $) NIL (|has| |#1| (-1171)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-1911 (($ (-1231 |#1|) (-1231 $)) NIL) (($ (-1231 |#1|)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-345)))) (-2894 (($ $ $) NIL (|has| |#1| (-302)))) (-1900 (((-669 |#1|) $ (-1231 $)) NIL) (((-669 |#1|) $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4202 (($ (-1143 |#1|)) NIL) (((-3 $ "failed") (-402 (-1143 |#1|))) NIL (|has| |#1| (-358)))) (-3821 (((-3 $ "failed") $) NIL)) (-4006 ((|#1| $) 13)) (-3357 (((-3 (-402 (-538)) #3="failed") $) NIL (|has| |#1| (-537)))) (-3356 (((-112) $) NIL (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) NIL (|has| |#1| (-537)))) (-3444 (((-895)) NIL)) (-3327 (($) NIL (|has| |#1| (-363)))) (-2893 (($ $ $) NIL (|has| |#1| (-302)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-302)))) (-3166 (($) NIL (|has| |#1| (-345)))) (-1796 (((-112) $) NIL (|has| |#1| (-345)))) (-1886 (($ $ (-751)) NIL (|has| |#1| (-345))) (($ $) NIL (|has| |#1| (-345)))) (-4086 (((-112) $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-1420 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1171))))) (-3990 (($) NIL (|has| |#1| (-1171)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| |#1| (-862 (-373))))) (-4131 (((-895) $) NIL (|has| |#1| (-345))) (((-812 (-895)) $) NIL (|has| |#1| (-345)))) (-2502 (((-112) $) 35)) (-3344 (($ $ (-538)) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-3467 ((|#1| $) 46)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-345)))) (-1702 (((-3 (-622 $) #4="failed") (-622 $) $) NIL (|has| |#1| (-302)))) (-2130 (((-1143 |#1|) $) NIL (|has| |#1| (-358)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-4302 (($ $) NIL (|has| |#1| (-1171)))) (-3413 (((-1143 |#1|) $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-3804 (($) NIL (|has| |#1| (-345)) CONST)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-1422 (($) NIL)) (-4007 ((|#1| $) 15)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-302)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| |#1| (-345)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-4092 (((-400 $) $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-302)))) (-3820 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 47 (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-302)))) (-4303 (($ $) NIL (|has| |#1| (-1171)))) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-1704 (((-751) $) NIL (|has| |#1| (-302)))) (-4159 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-302)))) (-4117 ((|#1| (-1231 $)) NIL) ((|#1|) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-345))) (((-3 (-751) "failed") $ $) NIL (|has| |#1| (-345)))) (-4170 (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-2500 (((-669 |#1|) (-1231 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3536 (((-1143 |#1|)) NIL)) (-3849 (($ $) NIL (|has| |#1| (-1171)))) (-3999 (($ $) NIL (|has| |#1| (-1171)))) (-1790 (($) NIL (|has| |#1| (-345)))) (-3847 (($ $) NIL (|has| |#1| (-1171)))) (-3998 (($ $) NIL (|has| |#1| (-1171)))) (-3845 (($ $) NIL (|has| |#1| (-1171)))) (-3997 (($ $) NIL (|has| |#1| (-1171)))) (-3575 (((-1231 |#1|) $ (-1231 $)) NIL) (((-669 |#1|) (-1231 $) (-1231 $)) NIL) (((-1231 |#1|) $) NIL) (((-669 |#1|) (-1231 $)) NIL)) (-4330 (((-1231 |#1|) $) NIL) (($ (-1231 |#1|)) NIL) (((-1143 |#1|) $) NIL) (($ (-1143 |#1|)) NIL) (((-866 (-538)) $) NIL (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| |#1| (-598 (-866 (-373))))) (((-166 (-373)) $) NIL (|has| |#1| (-996))) (((-166 (-221)) $) NIL (|has| |#1| (-996))) (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3342 (($ $) 45)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-345))))) (-1421 (($ |#1| |#1|) 37)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) 36) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-3035 (($ $) NIL (|has| |#1| (-345))) (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-2698 (((-1143 |#1|) $) NIL)) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL)) (-3852 (($ $) NIL (|has| |#1| (-1171)))) (-3840 (($ $) NIL (|has| |#1| (-1171)))) (-2177 (((-112) $ $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-3850 (($ $) NIL (|has| |#1| (-1171)))) (-3838 (($ $) NIL (|has| |#1| (-1171)))) (-3854 (($ $) NIL (|has| |#1| (-1171)))) (-3842 (($ $) NIL (|has| |#1| (-1171)))) (-2318 ((|#1| $) NIL (|has| |#1| (-1171)))) (-3855 (($ $) NIL (|has| |#1| (-1171)))) (-3843 (($ $) NIL (|has| |#1| (-1171)))) (-3853 (($ $) NIL (|has| |#1| (-1171)))) (-3841 (($ $) NIL (|has| |#1| (-1171)))) (-3851 (($ $) NIL (|has| |#1| (-1171)))) (-3839 (($ $) NIL (|has| |#1| (-1171)))) (-3742 (($ $) NIL (|has| |#1| (-1034)))) (-2991 (($) 28 T CONST)) (-2997 (($) 30 T CONST)) (-2834 (((-1131) $) 23 (|has| |#1| (-801))) (((-1131) $ (-112)) 25 (|has| |#1| (-801))) (((-1237) (-803) $) 26 (|has| |#1| (-801))) (((-1237) (-803) $ (-112)) 27 (|has| |#1| (-801)))) (-3002 (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 39)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-402 (-538))) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171)))) (($ $ $) NIL (|has| |#1| (-1171))) (($ $ (-538)) NIL (|has| |#1| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-538)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-538))) NIL (|has| |#1| (-358)))))
-(((-166 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|))) (-170)) (T -166))
-NIL
-(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|)))
-((-4318 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -4318 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-170) (-170)) (T -167))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6)))))
-(-10 -7 (-15 -4318 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|))))
-((-4330 (((-866 |#1|) |#3|) 22)))
-(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -4330 ((-866 |#1|) |#3|))) (-1074) (-13 (-598 (-866 |#1|)) (-170)) (-164 |#2|)) (T -168))
-((-4330 (*1 *2 *3) (-12 (-4 *5 (-13 (-598 *2) (-170))) (-5 *2 (-866 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1074)) (-4 *3 (-164 *5)))))
-(-10 -7 (-15 -4330 ((-866 |#1|) |#3|)))
-((-2898 (((-112) $ $) NIL)) (-1424 (((-112) $) 9)) (-1423 (((-112) $ (-112)) 11)) (-3977 (($) 12)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3759 (($ $) 13)) (-4317 (((-840) $) 17)) (-4065 (((-112) $) 8)) (-4221 (((-112) $ (-112)) 10)) (-3387 (((-112) $ $) NIL)))
-(((-169) (-13 (-1074) (-10 -8 (-15 -3977 ($)) (-15 -4065 ((-112) $)) (-15 -1424 ((-112) $)) (-15 -4221 ((-112) $ (-112))) (-15 -1423 ((-112) $ (-112))) (-15 -3759 ($ $))))) (T -169))
-((-3977 (*1 *1) (-5 *1 (-169))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-4221 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1423 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-3759 (*1 *1 *1) (-5 *1 (-169))))
-(-13 (-1074) (-10 -8 (-15 -3977 ($)) (-15 -4065 ((-112) $)) (-15 -1424 ((-112) $)) (-15 -4221 ((-112) $ (-112))) (-15 -1423 ((-112) $ (-112))) (-15 -3759 ($ $))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-4209 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1373 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2410 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3858 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2802 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) (-1727 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1171)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1034)) (-4 *3 (-1171)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552))))) (-2555 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552))))))
+(-13 (-705 |t#1| (-1145 |t#1|)) (-406 |t#1|) (-227 |t#1|) (-333 |t#1|) (-395 |t#1|) (-860 |t#1|) (-372 |t#1|) (-170) (-10 -8 (-6 -3858) (-15 -1373 ($)) (-15 -2410 ($ $)) (-15 -3858 ($ |t#1| |t#1|)) (-15 -3865 (|t#1| $)) (-15 -3852 (|t#1| $)) (-15 -4209 (|t#1| $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-544)) (-15 -2802 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-6 -4352)) (-6 -4352) |%noBranch|) (IF (|has| |t#1| (-6 -4349)) (-6 -4349) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-998)) (PROGN (-6 (-598 (-167 (-221)))) (-6 (-598 (-167 (-374))))) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -1727 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1171)) (PROGN (-6 (-1171)) (-15 -1388 (|t#1| $)) (IF (|has| |t#1| (-978)) (-6 (-978)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -1362 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-885)) (IF (|has| |t#1| (-302)) (-6 (-885)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-35) |has| |#1| (-1171)) ((-94) |has| |#1| (-1171)) ((-101) . T) ((-111 #0# #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1523 (|has| |#1| (-344)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-598 (-167 (-221))) |has| |#1| (-998)) ((-598 (-167 (-374))) |has| |#1| (-998)) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-598 (-868 (-374))) |has| |#1| (-598 (-868 (-374)))) ((-598 (-868 (-552))) |has| |#1| (-598 (-868 (-552)))) ((-598 #1=(-1145 |#1|)) . T) ((-227 |#1|) . T) ((-229) -1523 (|has| |#1| (-344)) (|has| |#1| (-229))) ((-239) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-279) |has| |#1| (-1171)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -1523 (|has| |#1| (-544)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-302) -1523 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-397) |has| |#1| (-344)) ((-363) -1523 (|has| |#1| (-363)) (|has| |#1| (-344))) ((-344) |has| |#1| (-344)) ((-365 |#1| #1#) . T) ((-404 |#1| #1#) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-486) |has| |#1| (-1171)) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-544) -1523 (|has| |#1| (-544)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-628 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-698 |#1|) . T) ((-698 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-705 |#1| #1#) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-374)) |has| |#1| (-862 (-374))) ((-862 (-552)) |has| |#1| (-862 (-552))) ((-860 |#1|) . T) ((-885) -12 (|has| |#1| (-302)) (|has| |#1| (-885))) ((-896) -1523 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-978) -12 (|has| |#1| (-978)) (|has| |#1| (-1171))) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| |#1| (-344)) ((-1171) |has| |#1| (-1171)) ((-1174) |has| |#1| (-1171)) ((-1186) . T) ((-1190) -1523 (|has| |#1| (-344)) (|has| |#1| (-358)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))
+((-3824 (((-413 |#2|) |#2|) 63)))
+(((-165 |#1| |#2|) (-10 -7 (-15 -3824 ((-413 |#2|) |#2|))) (-302) (-1208 (-167 |#1|))) (T -165))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1208 (-167 *4))))))
+(-10 -7 (-15 -3824 ((-413 |#2|) |#2|)))
+((-1996 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14)))
+(((-166 |#1| |#2|) (-10 -7 (-15 -1996 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-170) (-170)) (T -166))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6)))))
+(-10 -7 (-15 -1996 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 33)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-3528 (($ $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-3509 (((-112) $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-2570 (((-669 |#1|) (-1232 $)) NIL) (((-669 |#1|)) NIL)) (-1650 ((|#1| $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-1171)))) (-3604 (($ $) NIL (|has| |#1| (-1171)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| |#1| (-344)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-2194 (($ $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-1330 (((-413 $) $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-3837 (($ $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-302)))) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3710 (($ $) NIL (|has| |#1| (-1171)))) (-3581 (($ $) NIL (|has| |#1| (-1171)))) (-3749 (($ $) NIL (|has| |#1| (-1171)))) (-3627 (($ $) NIL (|has| |#1| (-1171)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-2670 (($ (-1232 |#1|) (-1232 $)) NIL) (($ (-1232 |#1|)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-2851 (($ $ $) NIL (|has| |#1| (-302)))) (-2559 (((-669 |#1|) $ (-1232 $)) NIL) (((-669 |#1|) $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-2163 (($ (-1145 |#1|)) NIL) (((-3 $ "failed") (-402 (-1145 |#1|))) NIL (|has| |#1| (-358)))) (-4174 (((-3 $ "failed") $) NIL)) (-3852 ((|#1| $) 13)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-2546 (((-112) $) NIL (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) NIL (|has| |#1| (-537)))) (-3442 (((-897)) NIL)) (-3702 (($) NIL (|has| |#1| (-363)))) (-2826 (($ $ $) NIL (|has| |#1| (-302)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-302)))) (-4279 (($) NIL (|has| |#1| (-344)))) (-3872 (((-112) $) NIL (|has| |#1| (-344)))) (-3554 (($ $ (-751)) NIL (|has| |#1| (-344))) (($ $) NIL (|has| |#1| (-344)))) (-2951 (((-112) $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-1362 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1171))))) (-1385 (($) NIL (|has| |#1| (-1171)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| |#1| (-862 (-374))))) (-2172 (((-897) $) NIL (|has| |#1| (-344))) (((-813 (-897)) $) NIL (|has| |#1| (-344)))) (-3650 (((-112) $) 35)) (-2429 (($ $ (-552)) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-4209 ((|#1| $) 46)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-302)))) (-1291 (((-1145 |#1|) $) NIL (|has| |#1| (-358)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-2458 (($ $) NIL (|has| |#1| (-1171)))) (-2148 (((-1145 |#1|) $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2071 (($) NIL (|has| |#1| (-344)) CONST)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-1373 (($) NIL)) (-3865 ((|#1| $) 15)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-302)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| |#1| (-344)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-3824 (((-413 $) $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-302)))) (-2802 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 47 (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-302)))) (-2863 (($ $) NIL (|has| |#1| (-1171)))) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-2397 (((-751) $) NIL (|has| |#1| (-302)))) (-2154 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-302)))) (-3217 ((|#1| (-1232 $)) NIL) ((|#1|) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-344))) (((-3 (-751) "failed") $ $) NIL (|has| |#1| (-344)))) (-3072 (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-3640 (((-669 |#1|) (-1232 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3610 (((-1145 |#1|)) NIL)) (-3759 (($ $) NIL (|has| |#1| (-1171)))) (-3638 (($ $) NIL (|has| |#1| (-1171)))) (-3798 (($) NIL (|has| |#1| (-344)))) (-3738 (($ $) NIL (|has| |#1| (-1171)))) (-3614 (($ $) NIL (|has| |#1| (-1171)))) (-3721 (($ $) NIL (|has| |#1| (-1171)))) (-3593 (($ $) NIL (|has| |#1| (-1171)))) (-2780 (((-1232 |#1|) $ (-1232 $)) NIL) (((-669 |#1|) (-1232 $) (-1232 $)) NIL) (((-1232 |#1|) $) NIL) (((-669 |#1|) (-1232 $)) NIL)) (-2042 (((-1232 |#1|) $) NIL) (($ (-1232 |#1|)) NIL) (((-1145 |#1|) $) NIL) (($ (-1145 |#1|)) NIL) (((-868 (-552)) $) NIL (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| |#1| (-598 (-868 (-374))))) (((-167 (-374)) $) NIL (|has| |#1| (-998))) (((-167 (-221)) $) NIL (|has| |#1| (-998))) (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-2410 (($ $) 45)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-344))))) (-3858 (($ |#1| |#1|) 37)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) 36) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-4243 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-3974 (((-1145 |#1|) $) NIL)) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL)) (-3789 (($ $) NIL (|has| |#1| (-1171)))) (-3670 (($ $) NIL (|has| |#1| (-1171)))) (-3518 (((-112) $ $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-3769 (($ $) NIL (|has| |#1| (-1171)))) (-3648 (($ $) NIL (|has| |#1| (-1171)))) (-3809 (($ $) NIL (|has| |#1| (-1171)))) (-3691 (($ $) NIL (|has| |#1| (-1171)))) (-1388 ((|#1| $) NIL (|has| |#1| (-1171)))) (-3742 (($ $) NIL (|has| |#1| (-1171)))) (-3700 (($ $) NIL (|has| |#1| (-1171)))) (-3797 (($ $) NIL (|has| |#1| (-1171)))) (-3681 (($ $) NIL (|has| |#1| (-1171)))) (-3778 (($ $) NIL (|has| |#1| (-1171)))) (-3659 (($ $) NIL (|has| |#1| (-1171)))) (-1727 (($ $) NIL (|has| |#1| (-1034)))) (-2089 (($) 28 T CONST)) (-2100 (($) 30 T CONST)) (-3010 (((-1131) $) 23 (|has| |#1| (-808))) (((-1131) $ (-112)) 25 (|has| |#1| (-808))) (((-1237) (-802) $) 26 (|has| |#1| (-808))) (((-1237) (-802) $ (-112)) 27 (|has| |#1| (-808)))) (-3768 (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 39)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-402 (-552))) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171)))) (($ $ $) NIL (|has| |#1| (-1171))) (($ $ (-552)) NIL (|has| |#1| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-552)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-552))) NIL (|has| |#1| (-358)))))
+(((-167 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|))) (-170)) (T -167))
+NIL
+(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|)))
+((-2042 (((-868 |#1|) |#3|) 22)))
+(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -2042 ((-868 |#1|) |#3|))) (-1073) (-13 (-598 (-868 |#1|)) (-170)) (-164 |#2|)) (T -168))
+((-2042 (*1 *2 *3) (-12 (-4 *5 (-13 (-598 *2) (-170))) (-5 *2 (-868 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1073)) (-4 *3 (-164 *5)))))
+(-10 -7 (-15 -2042 ((-868 |#1|) |#3|)))
+((-1671 (((-112) $ $) NIL)) (-1391 (((-112) $) 9)) (-1382 (((-112) $ (-112)) 11)) (-2183 (($) 12)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1871 (($ $) 13)) (-1683 (((-839) $) 17)) (-2747 (((-112) $) 8)) (-1387 (((-112) $ (-112)) 10)) (-2281 (((-112) $ $) NIL)))
+(((-169) (-13 (-1073) (-10 -8 (-15 -2183 ($)) (-15 -2747 ((-112) $)) (-15 -1391 ((-112) $)) (-15 -1387 ((-112) $ (-112))) (-15 -1382 ((-112) $ (-112))) (-15 -1871 ($ $))))) (T -169))
+((-2183 (*1 *1) (-5 *1 (-169))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1387 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1871 (*1 *1 *1) (-5 *1 (-169))))
+(-13 (-1073) (-10 -8 (-15 -2183 ($)) (-15 -2747 ((-112) $)) (-15 -1391 ((-112) $)) (-15 -1387 ((-112) $ (-112))) (-15 -1382 ((-112) $ (-112))) (-15 -1871 ($ $))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-170) (-138)) (T -170))
NIL
(-13 (-1025) (-111 $ $) (-10 -7 (-6 (-4355 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-1816 (($ $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-4125 (($ $) 6)))
(((-171) (-138)) (T -171))
-((-1816 (*1 *1 *1) (-4 *1 (-171))))
-(-13 (-10 -8 (-15 -1816 ($ $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 ((|#1| $) 75)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL)) (-1429 (($ $) 19)) (-1433 (($ |#1| (-1126 |#1|)) 48)) (-3821 (((-3 $ "failed") $) 117)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-1430 (((-1126 |#1|) $) 82)) (-1432 (((-1126 |#1|) $) 79)) (-1431 (((-1126 |#1|) $) 80)) (-2502 (((-112) $) NIL)) (-1426 (((-1126 |#1|) $) 88)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2013 (($ (-622 $)) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ (-622 $)) NIL) (($ $ $) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-4128 (($ $ (-538)) 91)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1425 (((-1126 |#1|) $) 89)) (-1427 (((-1126 (-402 |#1|)) $) 14)) (-2945 (($ (-402 |#1|)) 17) (($ |#1| (-1126 |#1|) (-1126 |#1|)) 38)) (-3224 (($ $) 93)) (-4317 (((-840) $) 127) (($ (-538)) 51) (($ |#1|) 52) (($ (-402 |#1|)) 36) (($ (-402 (-538))) NIL) (($ $) NIL)) (-3461 (((-751)) 64)) (-2177 (((-112) $ $) NIL)) (-1428 (((-1126 (-402 |#1|)) $) 18)) (-2991 (($) 25 T CONST)) (-2997 (($) 28 T CONST)) (-3387 (((-112) $ $) 35)) (-4308 (($ $ $) 115)) (-4197 (($ $) 106) (($ $ $) 103)) (-4199 (($ $ $) 101)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-402 |#1|) $) 111) (($ $ (-402 |#1|)) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL)))
-(((-172 |#1|) (-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -2945 ($ (-402 |#1|))) (-15 -2945 ($ |#1| (-1126 |#1|) (-1126 |#1|))) (-15 -1433 ($ |#1| (-1126 |#1|))) (-15 -1432 ((-1126 |#1|) $)) (-15 -1431 ((-1126 |#1|) $)) (-15 -1430 ((-1126 |#1|) $)) (-15 -3464 (|#1| $)) (-15 -1429 ($ $)) (-15 -1428 ((-1126 (-402 |#1|)) $)) (-15 -1427 ((-1126 (-402 |#1|)) $)) (-15 -1426 ((-1126 |#1|) $)) (-15 -1425 ((-1126 |#1|) $)) (-15 -4128 ($ $ (-538))) (-15 -3224 ($ $)))) (-302)) (T -172))
-((-2945 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3)))) (-2945 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1126 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-1433 (*1 *1 *2 *3) (-12 (-5 *3 (-1126 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3464 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-1429 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-1126 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1126 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3224 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))))
-(-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -2945 ($ (-402 |#1|))) (-15 -2945 ($ |#1| (-1126 |#1|) (-1126 |#1|))) (-15 -1433 ($ |#1| (-1126 |#1|))) (-15 -1432 ((-1126 |#1|) $)) (-15 -1431 ((-1126 |#1|) $)) (-15 -1430 ((-1126 |#1|) $)) (-15 -3464 (|#1| $)) (-15 -1429 ($ $)) (-15 -1428 ((-1126 (-402 |#1|)) $)) (-15 -1427 ((-1126 (-402 |#1|)) $)) (-15 -1426 ((-1126 |#1|) $)) (-15 -1425 ((-1126 |#1|) $)) (-15 -4128 ($ $ (-538))) (-15 -3224 ($ $))))
-((-1434 (($ (-108) $) 13)) (-3572 (((-3 (-108) "failed") (-1149) $) 12)) (-4317 (((-840) $) 16)) (-1435 (((-622 (-108)) $) 8)))
-(((-173) (-13 (-597 (-840)) (-10 -8 (-15 -1435 ((-622 (-108)) $)) (-15 -1434 ($ (-108) $)) (-15 -3572 ((-3 (-108) "failed") (-1149) $))))) (T -173))
-((-1435 (*1 *2 *1) (-12 (-5 *2 (-622 (-108))) (-5 *1 (-173)))) (-1434 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-3572 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-173)))))
-(-13 (-597 (-840)) (-10 -8 (-15 -1435 ((-622 (-108)) $)) (-15 -1434 ($ (-108) $)) (-15 -3572 ((-3 (-108) "failed") (-1149) $))))
-((-1448 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 40)) (-1439 (((-919 |#1|) (-919 |#1|)) 19)) (-1444 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 36)) (-1437 (((-919 |#1|) (-919 |#1|)) 17)) (-1442 (((-919 |#1|) (-919 |#1|)) 25)) (-1441 (((-919 |#1|) (-919 |#1|)) 24)) (-1440 (((-919 |#1|) (-919 |#1|)) 23)) (-1445 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 37)) (-1443 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 35)) (-1759 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 34)) (-1438 (((-919 |#1|) (-919 |#1|)) 18)) (-1449 (((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|) 43)) (-1436 (((-919 |#1|) (-919 |#1|)) 8)) (-1447 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 39)) (-1446 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 38)))
-(((-174 |#1|) (-10 -7 (-15 -1436 ((-919 |#1|) (-919 |#1|))) (-15 -1437 ((-919 |#1|) (-919 |#1|))) (-15 -1438 ((-919 |#1|) (-919 |#1|))) (-15 -1439 ((-919 |#1|) (-919 |#1|))) (-15 -1440 ((-919 |#1|) (-919 |#1|))) (-15 -1441 ((-919 |#1|) (-919 |#1|))) (-15 -1442 ((-919 |#1|) (-919 |#1|))) (-15 -1759 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1443 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1444 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1445 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1446 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1447 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1448 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1449 ((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|))) (-13 (-358) (-1171) (-978))) (T -174))
-((-1449 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1448 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1447 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1446 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1445 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1444 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1759 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1442 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1438 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1437 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))))
-(-10 -7 (-15 -1436 ((-919 |#1|) (-919 |#1|))) (-15 -1437 ((-919 |#1|) (-919 |#1|))) (-15 -1438 ((-919 |#1|) (-919 |#1|))) (-15 -1439 ((-919 |#1|) (-919 |#1|))) (-15 -1440 ((-919 |#1|) (-919 |#1|))) (-15 -1441 ((-919 |#1|) (-919 |#1|))) (-15 -1442 ((-919 |#1|) (-919 |#1|))) (-15 -1759 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1443 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1444 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1445 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1446 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1447 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1448 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1449 ((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|)))
-((-2698 ((|#2| |#3|) 27)))
-(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -2698 (|#2| |#3|))) (-170) (-1207 |#1|) (-705 |#1| |#2|)) (T -175))
-((-2698 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1207 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-705 *4 *2)))))
-(-10 -7 (-15 -2698 (|#2| |#3|)))
-((-3129 (((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)) 47 (|has| (-922 |#2|) (-862 |#1|)))))
-(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-922 |#2|) (-862 |#1|)) (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))) |%noBranch|)) (-1074) (-13 (-862 |#1|) (-170)) (-164 |#2|)) (T -176))
-((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *3 (-164 *6)) (-4 (-922 *6) (-862 *5)) (-4 *6 (-13 (-862 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-922 |#2|) (-862 |#1|)) (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))) |%noBranch|))
-((-1451 (((-622 |#1|) (-622 |#1|) |#1|) 38)) (-1450 (((-622 |#1|) |#1| (-622 |#1|)) 19)) (-2197 (((-622 |#1|) (-622 (-622 |#1|)) (-622 |#1|)) 33) ((|#1| (-622 |#1|) (-622 |#1|)) 31)))
-(((-177 |#1|) (-10 -7 (-15 -1450 ((-622 |#1|) |#1| (-622 |#1|))) (-15 -2197 (|#1| (-622 |#1|) (-622 |#1|))) (-15 -2197 ((-622 |#1|) (-622 (-622 |#1|)) (-622 |#1|))) (-15 -1451 ((-622 |#1|) (-622 |#1|) |#1|))) (-302)) (T -177))
-((-1451 (*1 *2 *2 *3) (-12 (-5 *2 (-622 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))) (-2197 (*1 *2 *3 *2) (-12 (-5 *3 (-622 (-622 *4))) (-5 *2 (-622 *4)) (-4 *4 (-302)) (-5 *1 (-177 *4)))) (-2197 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302)))) (-1450 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))))
-(-10 -7 (-15 -1450 ((-622 |#1|) |#1| (-622 |#1|))) (-15 -2197 (|#1| (-622 |#1|) (-622 |#1|))) (-15 -2197 ((-622 |#1|) (-622 (-622 |#1|)) (-622 |#1|))) (-15 -1451 ((-622 |#1|) (-622 |#1|) |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3669 (((-1186) $) 13)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 10)) (-4317 (((-840) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-178) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $))))) (T -178))
-((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-178)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-178)))))
-(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $))))
-((-1460 (((-2 (|:| |start| |#2|) (|:| -2767 (-400 |#2|))) |#2|) 61)) (-1459 ((|#1| |#1|) 54)) (-1458 (((-166 |#1|) |#2|) 84)) (-1457 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1456 ((|#2| |#2|) 83)) (-1455 (((-400 |#2|) |#2| |#1|) 113) (((-400 |#2|) |#2| |#1| (-112)) 81)) (-3467 ((|#1| |#2|) 112)) (-1454 ((|#2| |#2|) 119)) (-4092 (((-400 |#2|) |#2|) 134) (((-400 |#2|) |#2| |#1|) 32) (((-400 |#2|) |#2| |#1| (-112)) 133)) (-1453 (((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2|) 132) (((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2| (-112)) 76)) (-1452 (((-622 (-166 |#1|)) |#2| |#1|) 40) (((-622 (-166 |#1|)) |#2|) 41)))
-(((-179 |#1| |#2|) (-10 -7 (-15 -1452 ((-622 (-166 |#1|)) |#2|)) (-15 -1452 ((-622 (-166 |#1|)) |#2| |#1|)) (-15 -1453 ((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2| (-112))) (-15 -1453 ((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2|)) (-15 -4092 ((-400 |#2|) |#2| |#1| (-112))) (-15 -4092 ((-400 |#2|) |#2| |#1|)) (-15 -4092 ((-400 |#2|) |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -3467 (|#1| |#2|)) (-15 -1455 ((-400 |#2|) |#2| |#1| (-112))) (-15 -1455 ((-400 |#2|) |#2| |#1|)) (-15 -1456 (|#2| |#2|)) (-15 -1457 (|#1| |#2| |#1|)) (-15 -1457 (|#1| |#2|)) (-15 -1458 ((-166 |#1|) |#2|)) (-15 -1459 (|#1| |#1|)) (-15 -1460 ((-2 (|:| |start| |#2|) (|:| -2767 (-400 |#2|))) |#2|))) (-13 (-358) (-825)) (-1207 (-166 |#1|))) (T -179))
-((-1460 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-2 (|:| |start| *3) (|:| -2767 (-400 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-1459 (*1 *2 *2) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1207 (-166 *2))))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-358) (-825))) (-4 *3 (-1207 *2)))) (-1457 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1207 (-166 *2))))) (-1457 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1207 (-166 *2))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1207 (-166 *3))))) (-1455 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-1455 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-3467 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1207 (-166 *2))))) (-1454 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1207 (-166 *3))))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-4092 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-4092 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-1453 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-622 (-2 (|:| -2767 (-622 *3)) (|:| -1656 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-1453 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-825))) (-5 *2 (-622 (-2 (|:| -2767 (-622 *3)) (|:| -1656 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1207 (-166 *5))))) (-1452 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-622 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-622 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))))
-(-10 -7 (-15 -1452 ((-622 (-166 |#1|)) |#2|)) (-15 -1452 ((-622 (-166 |#1|)) |#2| |#1|)) (-15 -1453 ((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2| (-112))) (-15 -1453 ((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2|)) (-15 -4092 ((-400 |#2|) |#2| |#1| (-112))) (-15 -4092 ((-400 |#2|) |#2| |#1|)) (-15 -4092 ((-400 |#2|) |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -3467 (|#1| |#2|)) (-15 -1455 ((-400 |#2|) |#2| |#1| (-112))) (-15 -1455 ((-400 |#2|) |#2| |#1|)) (-15 -1456 (|#2| |#2|)) (-15 -1457 (|#1| |#2| |#1|)) (-15 -1457 (|#1| |#2|)) (-15 -1458 ((-166 |#1|) |#2|)) (-15 -1459 (|#1| |#1|)) (-15 -1460 ((-2 (|:| |start| |#2|) (|:| -2767 (-400 |#2|))) |#2|)))
-((-1461 (((-3 |#2| "failed") |#2|) 14)) (-1462 (((-751) |#2|) 16)) (-1463 ((|#2| |#2| |#2|) 18)))
-(((-180 |#1| |#2|) (-10 -7 (-15 -1461 ((-3 |#2| "failed") |#2|)) (-15 -1462 ((-751) |#2|)) (-15 -1463 (|#2| |#2| |#2|))) (-1185) (-654 |#1|)) (T -180))
-((-1463 (*1 *2 *2 *2) (-12 (-4 *3 (-1185)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3)))) (-1462 (*1 *2 *3) (-12 (-4 *4 (-1185)) (-5 *2 (-751)) (-5 *1 (-180 *4 *3)) (-4 *3 (-654 *4)))) (-1461 (*1 *2 *2) (|partial| -12 (-4 *3 (-1185)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3)))))
-(-10 -7 (-15 -1461 ((-3 |#2| "failed") |#2|)) (-15 -1462 ((-751) |#2|)) (-15 -1463 (|#2| |#2| |#2|)))
-((-2898 (((-112) $ $) NIL)) (-3905 (((-499) $) 8)) (-3593 (((-1131) $) NIL)) (-1465 (((-183) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-1464 (((-1093) $) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-181) (-13 (-1074) (-10 -8 (-15 -3905 ((-499) $)) (-15 -1465 ((-183) $)) (-15 -1464 ((-1093) $))))) (T -181))
-((-3905 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-181)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-181)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-181)))))
-(-13 (-1074) (-10 -8 (-15 -3905 ((-499) $)) (-15 -1465 ((-183) $)) (-15 -1464 ((-1093) $))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1467 (((-1149) $) 10)) (-4317 (((-840) $) 17)) (-1466 (((-622 (-1154)) $) 12)) (-3387 (((-112) $ $) 15)))
-(((-182) (-13 (-1074) (-10 -8 (-15 -1467 ((-1149) $)) (-15 -1466 ((-622 (-1154)) $))))) (T -182))
-((-1467 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-182)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-182)))))
-(-13 (-1074) (-10 -8 (-15 -1467 ((-1149) $)) (-15 -1466 ((-622 (-1154)) $))))
-((-2898 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-8 (($) 7 T CONST)) (-4317 (((-840) $) 14)) (-9 (($) 6 T CONST)) (-3387 (((-112) $ $) 10)))
-(((-183) (-13 (-1074) (-10 -8 (-15 -9 ($) -4311) (-15 -8 ($) -4311) (-15 -7 ($) -4311)))) (T -183))
-((-9 (*1 *1) (-5 *1 (-183))) (-8 (*1 *1) (-5 *1 (-183))) (-7 (*1 *1) (-5 *1 (-183))))
-(-13 (-1074) (-10 -8 (-15 -9 ($) -4311) (-15 -8 ($) -4311) (-15 -7 ($) -4311)))
-((-4005 ((|#2| |#2|) 28)) (-4008 (((-112) |#2|) 19)) (-4006 (((-309 |#1|) |#2|) 12)) (-4007 (((-309 |#1|) |#2|) 14)) (-4003 ((|#2| |#2| (-1149)) 68) ((|#2| |#2|) 69)) (-4009 (((-166 (-309 |#1|)) |#2|) 10)) (-4004 ((|#2| |#2| (-1149)) 65) ((|#2| |#2|) 59)))
-(((-184 |#1| |#2|) (-10 -7 (-15 -4003 (|#2| |#2|)) (-15 -4003 (|#2| |#2| (-1149))) (-15 -4004 (|#2| |#2|)) (-15 -4004 (|#2| |#2| (-1149))) (-15 -4006 ((-309 |#1|) |#2|)) (-15 -4007 ((-309 |#1|) |#2|)) (-15 -4008 ((-112) |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4009 ((-166 (-309 |#1|)) |#2|))) (-13 (-545) (-827) (-1014 (-538))) (-13 (-27) (-1171) (-416 (-166 |#1|)))) (T -184))
-((-4009 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-166 (-309 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3)))))) (-4008 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-112)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4007 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-309 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-309 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4004 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3)))))) (-4003 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3)))))))
-(-10 -7 (-15 -4003 (|#2| |#2|)) (-15 -4003 (|#2| |#2| (-1149))) (-15 -4004 (|#2| |#2|)) (-15 -4004 (|#2| |#2| (-1149))) (-15 -4006 ((-309 |#1|) |#2|)) (-15 -4007 ((-309 |#1|) |#2|)) (-15 -4008 ((-112) |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4009 ((-166 (-309 |#1|)) |#2|)))
-((-1471 (((-1231 (-669 (-922 |#1|))) (-1231 (-669 |#1|))) 24)) (-4317 (((-1231 (-669 (-402 (-922 |#1|)))) (-1231 (-669 |#1|))) 33)))
-(((-185 |#1|) (-10 -7 (-15 -1471 ((-1231 (-669 (-922 |#1|))) (-1231 (-669 |#1|)))) (-15 -4317 ((-1231 (-669 (-402 (-922 |#1|)))) (-1231 (-669 |#1|))))) (-170)) (T -185))
-((-4317 (*1 *2 *3) (-12 (-5 *3 (-1231 (-669 *4))) (-4 *4 (-170)) (-5 *2 (-1231 (-669 (-402 (-922 *4))))) (-5 *1 (-185 *4)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1231 (-669 *4))) (-4 *4 (-170)) (-5 *2 (-1231 (-669 (-922 *4)))) (-5 *1 (-185 *4)))))
-(-10 -7 (-15 -1471 ((-1231 (-669 (-922 |#1|))) (-1231 (-669 |#1|)))) (-15 -4317 ((-1231 (-669 (-402 (-922 |#1|)))) (-1231 (-669 |#1|)))))
-((-1479 (((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538)))) 66)) (-1481 (((-1151 (-402 (-538))) (-622 (-538)) (-622 (-538))) 75)) (-1472 (((-1151 (-402 (-538))) (-538)) 40)) (-4214 (((-1151 (-402 (-538))) (-538)) 52)) (-4127 (((-402 (-538)) (-1151 (-402 (-538)))) 62)) (-1473 (((-1151 (-402 (-538))) (-538)) 32)) (-1476 (((-1151 (-402 (-538))) (-538)) 48)) (-1475 (((-1151 (-402 (-538))) (-538)) 46)) (-1478 (((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538)))) 60)) (-3224 (((-1151 (-402 (-538))) (-538)) 25)) (-1477 (((-402 (-538)) (-1151 (-402 (-538))) (-1151 (-402 (-538)))) 64)) (-1474 (((-1151 (-402 (-538))) (-538)) 30)) (-1480 (((-1151 (-402 (-538))) (-622 (-538))) 72)))
-(((-186) (-10 -7 (-15 -3224 ((-1151 (-402 (-538))) (-538))) (-15 -1472 ((-1151 (-402 (-538))) (-538))) (-15 -1473 ((-1151 (-402 (-538))) (-538))) (-15 -1474 ((-1151 (-402 (-538))) (-538))) (-15 -1475 ((-1151 (-402 (-538))) (-538))) (-15 -1476 ((-1151 (-402 (-538))) (-538))) (-15 -4214 ((-1151 (-402 (-538))) (-538))) (-15 -1477 ((-402 (-538)) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -1478 ((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -4127 ((-402 (-538)) (-1151 (-402 (-538))))) (-15 -1479 ((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -1480 ((-1151 (-402 (-538))) (-622 (-538)))) (-15 -1481 ((-1151 (-402 (-538))) (-622 (-538)) (-622 (-538)))))) (T -186))
-((-1481 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))) (-1479 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-1151 (-402 (-538)))) (-5 *2 (-402 (-538))) (-5 *1 (-186)))) (-1478 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))) (-1477 (*1 *2 *3 *3) (-12 (-5 *3 (-1151 (-402 (-538)))) (-5 *2 (-402 (-538))) (-5 *1 (-186)))) (-4214 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-1475 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-1472 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-3224 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))))
-(-10 -7 (-15 -3224 ((-1151 (-402 (-538))) (-538))) (-15 -1472 ((-1151 (-402 (-538))) (-538))) (-15 -1473 ((-1151 (-402 (-538))) (-538))) (-15 -1474 ((-1151 (-402 (-538))) (-538))) (-15 -1475 ((-1151 (-402 (-538))) (-538))) (-15 -1476 ((-1151 (-402 (-538))) (-538))) (-15 -4214 ((-1151 (-402 (-538))) (-538))) (-15 -1477 ((-402 (-538)) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -1478 ((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -4127 ((-402 (-538)) (-1151 (-402 (-538))))) (-15 -1479 ((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -1480 ((-1151 (-402 (-538))) (-622 (-538)))) (-15 -1481 ((-1151 (-402 (-538))) (-622 (-538)) (-622 (-538)))))
-((-1483 (((-400 (-1143 (-538))) (-538)) 28)) (-1482 (((-622 (-1143 (-538))) (-538)) 23)) (-3134 (((-1143 (-538)) (-538)) 21)))
-(((-187) (-10 -7 (-15 -1482 ((-622 (-1143 (-538))) (-538))) (-15 -3134 ((-1143 (-538)) (-538))) (-15 -1483 ((-400 (-1143 (-538))) (-538))))) (T -187))
-((-1483 (*1 *2 *3) (-12 (-5 *2 (-400 (-1143 (-538)))) (-5 *1 (-187)) (-5 *3 (-538)))) (-3134 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-187)) (-5 *3 (-538)))) (-1482 (*1 *2 *3) (-12 (-5 *2 (-622 (-1143 (-538)))) (-5 *1 (-187)) (-5 *3 (-538)))))
-(-10 -7 (-15 -1482 ((-622 (-1143 (-538))) (-538))) (-15 -3134 ((-1143 (-538)) (-538))) (-15 -1483 ((-400 (-1143 (-538))) (-538))))
-((-1668 (((-1126 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 105)) (-1689 (((-622 (-1131)) (-1126 (-221))) NIL)) (-1484 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 81)) (-1666 (((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221)))) NIL)) (-1688 (((-622 (-1131)) (-622 (-221))) NIL)) (-1690 (((-221) (-1062 (-819 (-221)))) 24)) (-1691 (((-221) (-1062 (-819 (-221)))) 25)) (-1486 (((-373) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 98)) (-1485 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-1686 (((-1131) (-221)) NIL)) (-2901 (((-1131) (-622 (-1131))) 20)) (-1487 (((-1011) (-1149) (-1149) (-1011)) 13)))
-(((-188) (-10 -7 (-15 -1484 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1485 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -1486 ((-373) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1666 ((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))) (-15 -2901 ((-1131) (-622 (-1131)))) (-15 -1487 ((-1011) (-1149) (-1149) (-1011))))) (T -188))
-((-1487 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-188)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-188)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-188)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-188)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-188)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-188)))) (-1666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-221))) (-5 *4 (-1149)) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-622 (-221))) (-5 *1 (-188)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-373)) (-5 *1 (-188)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-188)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-188)))))
-(-10 -7 (-15 -1484 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1485 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -1486 ((-373) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1666 ((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))) (-15 -2901 ((-1131) (-622 (-1131)))) (-15 -1487 ((-1011) (-1149) (-1149) (-1011))))
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 55) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-4125 (*1 *1 *1) (-4 *1 (-171))))
+(-13 (-10 -8 (-15 -4125 ($ $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 ((|#1| $) 75)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL)) (-1445 (($ $) 19)) (-1488 (($ |#1| (-1129 |#1|)) 48)) (-4174 (((-3 $ "failed") $) 117)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1455 (((-1129 |#1|) $) 82)) (-1478 (((-1129 |#1|) $) 79)) (-1466 (((-1129 |#1|) $) 80)) (-3650 (((-112) $) NIL)) (-1411 (((-1129 |#1|) $) 88)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2605 (($ (-625 $)) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ (-625 $)) NIL) (($ $ $) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2147 (($ $ (-552)) 91)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1401 (((-1129 |#1|) $) 89)) (-1420 (((-1129 (-402 |#1|)) $) 14)) (-1553 (($ (-402 |#1|)) 17) (($ |#1| (-1129 |#1|) (-1129 |#1|)) 38)) (-3580 (($ $) 93)) (-1683 (((-839) $) 127) (($ (-552)) 51) (($ |#1|) 52) (($ (-402 |#1|)) 36) (($ (-402 (-552))) NIL) (($ $) NIL)) (-4141 (((-751)) 64)) (-3518 (((-112) $ $) NIL)) (-1432 (((-1129 (-402 |#1|)) $) 18)) (-2089 (($) 25 T CONST)) (-2100 (($) 28 T CONST)) (-2281 (((-112) $ $) 35)) (-2404 (($ $ $) 115)) (-2393 (($ $) 106) (($ $ $) 103)) (-2382 (($ $ $) 101)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-402 |#1|) $) 111) (($ $ (-402 |#1|)) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL)))
+(((-172 |#1|) (-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -1553 ($ (-402 |#1|))) (-15 -1553 ($ |#1| (-1129 |#1|) (-1129 |#1|))) (-15 -1488 ($ |#1| (-1129 |#1|))) (-15 -1478 ((-1129 |#1|) $)) (-15 -1466 ((-1129 |#1|) $)) (-15 -1455 ((-1129 |#1|) $)) (-15 -4177 (|#1| $)) (-15 -1445 ($ $)) (-15 -1432 ((-1129 (-402 |#1|)) $)) (-15 -1420 ((-1129 (-402 |#1|)) $)) (-15 -1411 ((-1129 |#1|) $)) (-15 -1401 ((-1129 |#1|) $)) (-15 -2147 ($ $ (-552))) (-15 -3580 ($ $)))) (-302)) (T -172))
+((-1553 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3)))) (-1553 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1129 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-1488 (*1 *1 *2 *3) (-12 (-5 *3 (-1129 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-4177 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-1129 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-1129 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3580 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))))
+(-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -1553 ($ (-402 |#1|))) (-15 -1553 ($ |#1| (-1129 |#1|) (-1129 |#1|))) (-15 -1488 ($ |#1| (-1129 |#1|))) (-15 -1478 ((-1129 |#1|) $)) (-15 -1466 ((-1129 |#1|) $)) (-15 -1455 ((-1129 |#1|) $)) (-15 -4177 (|#1| $)) (-15 -1445 ($ $)) (-15 -1432 ((-1129 (-402 |#1|)) $)) (-15 -1420 ((-1129 (-402 |#1|)) $)) (-15 -1411 ((-1129 |#1|) $)) (-15 -1401 ((-1129 |#1|) $)) (-15 -2147 ($ $ (-552))) (-15 -3580 ($ $))))
+((-1498 (($ (-108) $) 13)) (-2751 (((-3 (-108) "failed") (-1149) $) 12)) (-1683 (((-839) $) 16)) (-1510 (((-625 (-108)) $) 8)))
+(((-173) (-13 (-597 (-839)) (-10 -8 (-15 -1510 ((-625 (-108)) $)) (-15 -1498 ($ (-108) $)) (-15 -2751 ((-3 (-108) "failed") (-1149) $))))) (T -173))
+((-1510 (*1 *2 *1) (-12 (-5 *2 (-625 (-108))) (-5 *1 (-173)))) (-1498 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-2751 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-173)))))
+(-13 (-597 (-839)) (-10 -8 (-15 -1510 ((-625 (-108)) $)) (-15 -1498 ($ (-108) $)) (-15 -2751 ((-3 (-108) "failed") (-1149) $))))
+((-1656 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 40)) (-1555 (((-919 |#1|) (-919 |#1|)) 19)) (-1610 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 36)) (-1533 (((-919 |#1|) (-919 |#1|)) 17)) (-1588 (((-919 |#1|) (-919 |#1|)) 25)) (-1576 (((-919 |#1|) (-919 |#1|)) 24)) (-1566 (((-919 |#1|) (-919 |#1|)) 23)) (-1621 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 37)) (-1599 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 35)) (-1661 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 34)) (-1544 (((-919 |#1|) (-919 |#1|)) 18)) (-1666 (((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|) 43)) (-1522 (((-919 |#1|) (-919 |#1|)) 8)) (-1644 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 39)) (-1632 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 38)))
+(((-174 |#1|) (-10 -7 (-15 -1522 ((-919 |#1|) (-919 |#1|))) (-15 -1533 ((-919 |#1|) (-919 |#1|))) (-15 -1544 ((-919 |#1|) (-919 |#1|))) (-15 -1555 ((-919 |#1|) (-919 |#1|))) (-15 -1566 ((-919 |#1|) (-919 |#1|))) (-15 -1576 ((-919 |#1|) (-919 |#1|))) (-15 -1588 ((-919 |#1|) (-919 |#1|))) (-15 -1661 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1599 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1610 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1621 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1632 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1644 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1656 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1666 ((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|))) (-13 (-358) (-1171) (-978))) (T -174))
+((-1666 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1656 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1644 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1632 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1621 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1610 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1599 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1661 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1533 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))))
+(-10 -7 (-15 -1522 ((-919 |#1|) (-919 |#1|))) (-15 -1533 ((-919 |#1|) (-919 |#1|))) (-15 -1544 ((-919 |#1|) (-919 |#1|))) (-15 -1555 ((-919 |#1|) (-919 |#1|))) (-15 -1566 ((-919 |#1|) (-919 |#1|))) (-15 -1576 ((-919 |#1|) (-919 |#1|))) (-15 -1588 ((-919 |#1|) (-919 |#1|))) (-15 -1661 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1599 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1610 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1621 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1632 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1644 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1656 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1666 ((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|)))
+((-3974 ((|#2| |#3|) 27)))
+(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -3974 (|#2| |#3|))) (-170) (-1208 |#1|) (-705 |#1| |#2|)) (T -175))
+((-3974 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1208 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-705 *4 *2)))))
+(-10 -7 (-15 -3974 (|#2| |#3|)))
+((-3841 (((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)) 47 (|has| (-928 |#2|) (-862 |#1|)))))
+(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-928 |#2|) (-862 |#1|)) (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))) |%noBranch|)) (-1073) (-13 (-862 |#1|) (-170)) (-164 |#2|)) (T -176))
+((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *3)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-4 *3 (-164 *6)) (-4 (-928 *6) (-862 *5)) (-4 *6 (-13 (-862 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-928 |#2|) (-862 |#1|)) (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))) |%noBranch|))
+((-1689 (((-625 |#1|) (-625 |#1|) |#1|) 38)) (-1677 (((-625 |#1|) |#1| (-625 |#1|)) 19)) (-3706 (((-625 |#1|) (-625 (-625 |#1|)) (-625 |#1|)) 33) ((|#1| (-625 |#1|) (-625 |#1|)) 31)))
+(((-177 |#1|) (-10 -7 (-15 -1677 ((-625 |#1|) |#1| (-625 |#1|))) (-15 -3706 (|#1| (-625 |#1|) (-625 |#1|))) (-15 -3706 ((-625 |#1|) (-625 (-625 |#1|)) (-625 |#1|))) (-15 -1689 ((-625 |#1|) (-625 |#1|) |#1|))) (-302)) (T -177))
+((-1689 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))) (-3706 (*1 *2 *3 *2) (-12 (-5 *3 (-625 (-625 *4))) (-5 *2 (-625 *4)) (-4 *4 (-302)) (-5 *1 (-177 *4)))) (-3706 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302)))) (-1677 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))))
+(-10 -7 (-15 -1677 ((-625 |#1|) |#1| (-625 |#1|))) (-15 -3706 (|#1| (-625 |#1|) (-625 |#1|))) (-15 -3706 ((-625 |#1|) (-625 (-625 |#1|)) (-625 |#1|))) (-15 -1689 ((-625 |#1|) (-625 |#1|) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-1711 (((-1185) $) 13)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 10)) (-1683 (((-839) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-178) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $))))) (T -178))
+((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-178)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-178)))))
+(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $))))
+((-1787 (((-2 (|:| |start| |#2|) (|:| -3449 (-413 |#2|))) |#2|) 61)) (-1776 ((|#1| |#1|) 54)) (-1765 (((-167 |#1|) |#2|) 84)) (-1755 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1745 ((|#2| |#2|) 83)) (-1735 (((-413 |#2|) |#2| |#1|) 113) (((-413 |#2|) |#2| |#1| (-112)) 81)) (-4209 ((|#1| |#2|) 112)) (-1723 ((|#2| |#2|) 119)) (-3824 (((-413 |#2|) |#2|) 134) (((-413 |#2|) |#2| |#1|) 32) (((-413 |#2|) |#2| |#1| (-112)) 133)) (-1712 (((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2|) 132) (((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2| (-112)) 76)) (-1701 (((-625 (-167 |#1|)) |#2| |#1|) 40) (((-625 (-167 |#1|)) |#2|) 41)))
+(((-179 |#1| |#2|) (-10 -7 (-15 -1701 ((-625 (-167 |#1|)) |#2|)) (-15 -1701 ((-625 (-167 |#1|)) |#2| |#1|)) (-15 -1712 ((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2| (-112))) (-15 -1712 ((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2|)) (-15 -3824 ((-413 |#2|) |#2| |#1| (-112))) (-15 -3824 ((-413 |#2|) |#2| |#1|)) (-15 -3824 ((-413 |#2|) |#2|)) (-15 -1723 (|#2| |#2|)) (-15 -4209 (|#1| |#2|)) (-15 -1735 ((-413 |#2|) |#2| |#1| (-112))) (-15 -1735 ((-413 |#2|) |#2| |#1|)) (-15 -1745 (|#2| |#2|)) (-15 -1755 (|#1| |#2| |#1|)) (-15 -1755 (|#1| |#2|)) (-15 -1765 ((-167 |#1|) |#2|)) (-15 -1776 (|#1| |#1|)) (-15 -1787 ((-2 (|:| |start| |#2|) (|:| -3449 (-413 |#2|))) |#2|))) (-13 (-358) (-825)) (-1208 (-167 |#1|))) (T -179))
+((-1787 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-2 (|:| |start| *3) (|:| -3449 (-413 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-1776 (*1 *2 *2) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1208 (-167 *2))))) (-1765 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-358) (-825))) (-4 *3 (-1208 *2)))) (-1755 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1208 (-167 *2))))) (-1755 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1208 (-167 *2))))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1208 (-167 *3))))) (-1735 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-1735 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-4209 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1208 (-167 *2))))) (-1723 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1208 (-167 *3))))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-3824 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-1712 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-625 (-2 (|:| -3449 (-625 *3)) (|:| -1939 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-1712 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-825))) (-5 *2 (-625 (-2 (|:| -3449 (-625 *3)) (|:| -1939 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1208 (-167 *5))))) (-1701 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-625 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-625 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))))
+(-10 -7 (-15 -1701 ((-625 (-167 |#1|)) |#2|)) (-15 -1701 ((-625 (-167 |#1|)) |#2| |#1|)) (-15 -1712 ((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2| (-112))) (-15 -1712 ((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2|)) (-15 -3824 ((-413 |#2|) |#2| |#1| (-112))) (-15 -3824 ((-413 |#2|) |#2| |#1|)) (-15 -3824 ((-413 |#2|) |#2|)) (-15 -1723 (|#2| |#2|)) (-15 -4209 (|#1| |#2|)) (-15 -1735 ((-413 |#2|) |#2| |#1| (-112))) (-15 -1735 ((-413 |#2|) |#2| |#1|)) (-15 -1745 (|#2| |#2|)) (-15 -1755 (|#1| |#2| |#1|)) (-15 -1755 (|#1| |#2|)) (-15 -1765 ((-167 |#1|) |#2|)) (-15 -1776 (|#1| |#1|)) (-15 -1787 ((-2 (|:| |start| |#2|) (|:| -3449 (-413 |#2|))) |#2|)))
+((-1799 (((-3 |#2| "failed") |#2|) 14)) (-1811 (((-751) |#2|) 16)) (-1821 ((|#2| |#2| |#2|) 18)))
+(((-180 |#1| |#2|) (-10 -7 (-15 -1799 ((-3 |#2| "failed") |#2|)) (-15 -1811 ((-751) |#2|)) (-15 -1821 (|#2| |#2| |#2|))) (-1186) (-654 |#1|)) (T -180))
+((-1821 (*1 *2 *2 *2) (-12 (-4 *3 (-1186)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3)))) (-1811 (*1 *2 *3) (-12 (-4 *4 (-1186)) (-5 *2 (-751)) (-5 *1 (-180 *4 *3)) (-4 *3 (-654 *4)))) (-1799 (*1 *2 *2) (|partial| -12 (-4 *3 (-1186)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3)))))
+(-10 -7 (-15 -1799 ((-3 |#2| "failed") |#2|)) (-15 -1811 ((-751) |#2|)) (-15 -1821 (|#2| |#2| |#2|)))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1690 (((-1149) $) 10)) (-1683 (((-839) $) 17)) (-1912 (((-625 (-1154)) $) 12)) (-2281 (((-112) $ $) 15)))
+(((-181) (-13 (-1073) (-10 -8 (-15 -1690 ((-1149) $)) (-15 -1912 ((-625 (-1154)) $))))) (T -181))
+((-1690 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-181)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-181)))))
+(-13 (-1073) (-10 -8 (-15 -1690 ((-1149) $)) (-15 -1912 ((-625 (-1154)) $))))
+((-1671 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-8 (($) 7 T CONST)) (-1683 (((-839) $) 14)) (-9 (($) 6 T CONST)) (-2281 (((-112) $ $) 10)))
+(((-182) (-13 (-1073) (-10 -8 (-15 -9 ($) -1426) (-15 -8 ($) -1426) (-15 -7 ($) -1426)))) (T -182))
+((-9 (*1 *1) (-5 *1 (-182))) (-8 (*1 *1) (-5 *1 (-182))) (-7 (*1 *1) (-5 *1 (-182))))
+(-13 (-1073) (-10 -8 (-15 -9 ($) -1426) (-15 -8 ($) -1426) (-15 -7 ($) -1426)))
+((-1671 (((-112) $ $) NIL)) (-1288 (((-499) $) 8)) (-2883 (((-1131) $) NIL)) (-3353 (((-182) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 14)) (-1832 (((-1093) $) NIL)) (-2281 (((-112) $ $) 11)))
+(((-183) (-13 (-1073) (-10 -8 (-15 -1288 ((-499) $)) (-15 -3353 ((-182) $)) (-15 -1832 ((-1093) $))))) (T -183))
+((-1288 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-183)))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-183)))))
+(-13 (-1073) (-10 -8 (-15 -1288 ((-499) $)) (-15 -3353 ((-182) $)) (-15 -1832 ((-1093) $))))
+((-2598 ((|#2| |#2|) 28)) (-3301 (((-112) |#2|) 19)) (-3852 (((-311 |#1|) |#2|) 12)) (-3865 (((-311 |#1|) |#2|) 14)) (-2329 ((|#2| |#2| (-1149)) 68) ((|#2| |#2|) 69)) (-3311 (((-167 (-311 |#1|)) |#2|) 10)) (-2586 ((|#2| |#2| (-1149)) 65) ((|#2| |#2|) 59)))
+(((-184 |#1| |#2|) (-10 -7 (-15 -2329 (|#2| |#2|)) (-15 -2329 (|#2| |#2| (-1149))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1149))) (-15 -3852 ((-311 |#1|) |#2|)) (-15 -3865 ((-311 |#1|) |#2|)) (-15 -3301 ((-112) |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -3311 ((-167 (-311 |#1|)) |#2|))) (-13 (-544) (-827) (-1014 (-552))) (-13 (-27) (-1171) (-425 (-167 |#1|)))) (T -184))
+((-3311 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-167 (-311 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3)))))) (-3301 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-112)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-311 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-3852 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-311 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3)))))) (-2329 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3)))))))
+(-10 -7 (-15 -2329 (|#2| |#2|)) (-15 -2329 (|#2| |#2| (-1149))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1149))) (-15 -3852 ((-311 |#1|) |#2|)) (-15 -3865 ((-311 |#1|) |#2|)) (-15 -3301 ((-112) |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -3311 ((-167 (-311 |#1|)) |#2|)))
+((-1845 (((-1232 (-669 (-928 |#1|))) (-1232 (-669 |#1|))) 24)) (-1683 (((-1232 (-669 (-402 (-928 |#1|)))) (-1232 (-669 |#1|))) 33)))
+(((-185 |#1|) (-10 -7 (-15 -1845 ((-1232 (-669 (-928 |#1|))) (-1232 (-669 |#1|)))) (-15 -1683 ((-1232 (-669 (-402 (-928 |#1|)))) (-1232 (-669 |#1|))))) (-170)) (T -185))
+((-1683 (*1 *2 *3) (-12 (-5 *3 (-1232 (-669 *4))) (-4 *4 (-170)) (-5 *2 (-1232 (-669 (-402 (-928 *4))))) (-5 *1 (-185 *4)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-1232 (-669 *4))) (-4 *4 (-170)) (-5 *2 (-1232 (-669 (-928 *4)))) (-5 *1 (-185 *4)))))
+(-10 -7 (-15 -1845 ((-1232 (-669 (-928 |#1|))) (-1232 (-669 |#1|)))) (-15 -1683 ((-1232 (-669 (-402 (-928 |#1|)))) (-1232 (-669 |#1|)))))
+((-3733 (((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552)))) 66)) (-3753 (((-1151 (-402 (-552))) (-625 (-552)) (-625 (-552))) 75)) (-3664 (((-1151 (-402 (-552))) (-552)) 40)) (-1554 (((-1151 (-402 (-552))) (-552)) 52)) (-4073 (((-402 (-552)) (-1151 (-402 (-552)))) 62)) (-3676 (((-1151 (-402 (-552))) (-552)) 32)) (-3705 (((-1151 (-402 (-552))) (-552)) 48)) (-3695 (((-1151 (-402 (-552))) (-552)) 46)) (-3725 (((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552)))) 60)) (-3580 (((-1151 (-402 (-552))) (-552)) 25)) (-3716 (((-402 (-552)) (-1151 (-402 (-552))) (-1151 (-402 (-552)))) 64)) (-3686 (((-1151 (-402 (-552))) (-552)) 30)) (-3744 (((-1151 (-402 (-552))) (-625 (-552))) 72)))
+(((-186) (-10 -7 (-15 -3580 ((-1151 (-402 (-552))) (-552))) (-15 -3664 ((-1151 (-402 (-552))) (-552))) (-15 -3676 ((-1151 (-402 (-552))) (-552))) (-15 -3686 ((-1151 (-402 (-552))) (-552))) (-15 -3695 ((-1151 (-402 (-552))) (-552))) (-15 -3705 ((-1151 (-402 (-552))) (-552))) (-15 -1554 ((-1151 (-402 (-552))) (-552))) (-15 -3716 ((-402 (-552)) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -3725 ((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -4073 ((-402 (-552)) (-1151 (-402 (-552))))) (-15 -3733 ((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -3744 ((-1151 (-402 (-552))) (-625 (-552)))) (-15 -3753 ((-1151 (-402 (-552))) (-625 (-552)) (-625 (-552)))))) (T -186))
+((-3753 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)))) (-3733 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1151 (-402 (-552)))) (-5 *2 (-402 (-552))) (-5 *1 (-186)))) (-3725 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-1151 (-402 (-552)))) (-5 *2 (-402 (-552))) (-5 *1 (-186)))) (-1554 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3705 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3695 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3686 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3664 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3580 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))))
+(-10 -7 (-15 -3580 ((-1151 (-402 (-552))) (-552))) (-15 -3664 ((-1151 (-402 (-552))) (-552))) (-15 -3676 ((-1151 (-402 (-552))) (-552))) (-15 -3686 ((-1151 (-402 (-552))) (-552))) (-15 -3695 ((-1151 (-402 (-552))) (-552))) (-15 -3705 ((-1151 (-402 (-552))) (-552))) (-15 -1554 ((-1151 (-402 (-552))) (-552))) (-15 -3716 ((-402 (-552)) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -3725 ((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -4073 ((-402 (-552)) (-1151 (-402 (-552))))) (-15 -3733 ((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -3744 ((-1151 (-402 (-552))) (-625 (-552)))) (-15 -3753 ((-1151 (-402 (-552))) (-625 (-552)) (-625 (-552)))))
+((-3773 (((-413 (-1145 (-552))) (-552)) 28)) (-3763 (((-625 (-1145 (-552))) (-552)) 23)) (-3909 (((-1145 (-552)) (-552)) 21)))
+(((-187) (-10 -7 (-15 -3763 ((-625 (-1145 (-552))) (-552))) (-15 -3909 ((-1145 (-552)) (-552))) (-15 -3773 ((-413 (-1145 (-552))) (-552))))) (T -187))
+((-3773 (*1 *2 *3) (-12 (-5 *2 (-413 (-1145 (-552)))) (-5 *1 (-187)) (-5 *3 (-552)))) (-3909 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-187)) (-5 *3 (-552)))) (-3763 (*1 *2 *3) (-12 (-5 *2 (-625 (-1145 (-552)))) (-5 *1 (-187)) (-5 *3 (-552)))))
+(-10 -7 (-15 -3763 ((-625 (-1145 (-552))) (-552))) (-15 -3909 ((-1145 (-552)) (-552))) (-15 -3773 ((-413 (-1145 (-552))) (-552))))
+((-2004 (((-1129 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 105)) (-2222 (((-625 (-1131)) (-1129 (-221))) NIL)) (-3784 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 81)) (-1983 (((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221)))) NIL)) (-2212 (((-625 (-1131)) (-625 (-221))) NIL)) (-2234 (((-221) (-1067 (-820 (-221)))) 24)) (-2245 (((-221) (-1067 (-820 (-221)))) 25)) (-3804 (((-374) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 98)) (-3794 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-2190 (((-1131) (-221)) NIL)) (-2388 (((-1131) (-625 (-1131))) 20)) (-3815 (((-1011) (-1149) (-1149) (-1011)) 13)))
+(((-188) (-10 -7 (-15 -3784 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3794 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -3804 ((-374) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1983 ((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))) (-15 -2388 ((-1131) (-625 (-1131)))) (-15 -3815 ((-1011) (-1149) (-1149) (-1011))))) (T -188))
+((-3815 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-188)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-188)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-188)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-188)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-188)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-188)))) (-1983 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1149)) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-188)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-188)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-188)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-188)))))
+(-10 -7 (-15 -3784 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3794 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -3804 ((-374) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1983 ((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))) (-15 -2388 ((-1131) (-625 (-1131)))) (-15 -3815 ((-1011) (-1149) (-1149) (-1011))))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 55) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-189) (-767)) (T -189))
NIL
(-767)
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 60) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 60) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-190) (-767)) (T -190))
NIL
(-767)
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 69) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 69) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-191) (-767)) (T -191))
NIL
(-767)
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 56) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 56) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-192) (-767)) (T -192))
NIL
(-767)
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 67) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 38) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 67) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 38) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-193) (-767)) (T -193))
NIL
(-767)
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 73) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 73) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-194) (-767)) (T -194))
NIL
(-767)
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 80) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 44) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 80) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 44) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-195) (-767)) (T -195))
NIL
(-767)
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 70) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 70) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-196) (-767)) (T -196))
NIL
(-767)
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 66)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 66)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-197) (-767)) (T -197))
NIL
(-767)
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 63)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 63)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-198) (-767)) (T -198))
NIL
(-767)
-((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 90) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 78) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 90) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 78) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-199) (-767)) (T -199))
NIL
(-767)
-((-1488 (((-3 (-2 (|:| -2836 (-113)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 85)) (-1490 (((-538) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-1489 (((-3 (-622 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 73)))
-(((-200) (-10 -7 (-15 -1488 ((-3 (-2 (|:| -2836 (-113)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1489 ((-3 (-622 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1490 ((-538) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -200))
-((-1490 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-538)) (-5 *1 (-200)))) (-1489 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-622 (-221))) (-5 *1 (-200)))) (-1488 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -2836 (-113)) (|:| |w| (-221)))) (-5 *1 (-200)))))
-(-10 -7 (-15 -1488 ((-3 (-2 (|:| -2836 (-113)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1489 ((-3 (-622 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1490 ((-538) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
-((-1495 (((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-1494 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 130)) (-1493 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-669 (-309 (-221)))) 89)) (-1492 (((-373) (-669 (-309 (-221)))) 113)) (-2452 (((-669 (-309 (-221))) (-1231 (-309 (-221))) (-622 (-1149))) 110)) (-1498 (((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 30)) (-1496 (((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 43)) (-4127 (((-669 (-309 (-221))) (-669 (-309 (-221))) (-622 (-1149)) (-1231 (-309 (-221)))) 102)) (-1491 (((-373) (-373) (-622 (-373))) 107) (((-373) (-373) (-373)) 105)) (-1497 (((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36)))
-(((-201) (-10 -7 (-15 -1491 ((-373) (-373) (-373))) (-15 -1491 ((-373) (-373) (-622 (-373)))) (-15 -1492 ((-373) (-669 (-309 (-221))))) (-15 -2452 ((-669 (-309 (-221))) (-1231 (-309 (-221))) (-622 (-1149)))) (-15 -4127 ((-669 (-309 (-221))) (-669 (-309 (-221))) (-622 (-1149)) (-1231 (-309 (-221))))) (-15 -1493 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-669 (-309 (-221))))) (-15 -1494 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1495 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1496 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1497 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1498 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -201))
-((-1498 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-201)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-669 (-309 (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-201)))) (-4127 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-669 (-309 (-221)))) (-5 *3 (-622 (-1149))) (-5 *4 (-1231 (-309 (-221)))) (-5 *1 (-201)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *4 (-622 (-1149))) (-5 *2 (-669 (-309 (-221)))) (-5 *1 (-201)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-669 (-309 (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1491 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-373))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1491 (*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-201)))))
-(-10 -7 (-15 -1491 ((-373) (-373) (-373))) (-15 -1491 ((-373) (-373) (-622 (-373)))) (-15 -1492 ((-373) (-669 (-309 (-221))))) (-15 -2452 ((-669 (-309 (-221))) (-1231 (-309 (-221))) (-622 (-1149)))) (-15 -4127 ((-669 (-309 (-221))) (-669 (-309 (-221))) (-622 (-1149)) (-1231 (-309 (-221))))) (-15 -1493 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-669 (-309 (-221))))) (-15 -1494 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1495 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1496 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1497 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1498 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
-((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2740 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 64)) (-3387 (((-112) $ $) NIL)))
+((-3825 (((-3 (-2 (|:| -3362 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 85)) (-3853 (((-552) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-3836 (((-3 (-625 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 73)))
+(((-200) (-10 -7 (-15 -3825 ((-3 (-2 (|:| -3362 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3836 ((-3 (-625 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3853 ((-552) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -200))
+((-3853 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-552)) (-5 *1 (-200)))) (-3836 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-200)))) (-3825 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3362 (-114)) (|:| |w| (-221)))) (-5 *1 (-200)))))
+(-10 -7 (-15 -3825 ((-3 (-2 (|:| -3362 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3836 ((-3 (-625 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3853 ((-552) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
+((-3920 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-3906 (((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 130)) (-3892 (((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-669 (-311 (-221)))) 89)) (-3879 (((-374) (-669 (-311 (-221)))) 113)) (-3210 (((-669 (-311 (-221))) (-1232 (-311 (-221))) (-625 (-1149))) 110)) (-3958 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 30)) (-3934 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 43)) (-4073 (((-669 (-311 (-221))) (-669 (-311 (-221))) (-625 (-1149)) (-1232 (-311 (-221)))) 102)) (-3866 (((-374) (-374) (-625 (-374))) 107) (((-374) (-374) (-374)) 105)) (-3945 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36)))
+(((-201) (-10 -7 (-15 -3866 ((-374) (-374) (-374))) (-15 -3866 ((-374) (-374) (-625 (-374)))) (-15 -3879 ((-374) (-669 (-311 (-221))))) (-15 -3210 ((-669 (-311 (-221))) (-1232 (-311 (-221))) (-625 (-1149)))) (-15 -4073 ((-669 (-311 (-221))) (-669 (-311 (-221))) (-625 (-1149)) (-1232 (-311 (-221))))) (-15 -3892 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-669 (-311 (-221))))) (-15 -3906 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3920 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3934 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3945 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3958 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -201))
+((-3958 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) (-5 *1 (-201)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-669 (-311 (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) (-5 *1 (-201)))) (-4073 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-669 (-311 (-221)))) (-5 *3 (-625 (-1149))) (-5 *4 (-1232 (-311 (-221)))) (-5 *1 (-201)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *4 (-625 (-1149))) (-5 *2 (-669 (-311 (-221)))) (-5 *1 (-201)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-669 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3866 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-374))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3866 (*1 *2 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-201)))))
+(-10 -7 (-15 -3866 ((-374) (-374) (-374))) (-15 -3866 ((-374) (-374) (-625 (-374)))) (-15 -3879 ((-374) (-669 (-311 (-221))))) (-15 -3210 ((-669 (-311 (-221))) (-1232 (-311 (-221))) (-625 (-1149)))) (-15 -4073 ((-669 (-311 (-221))) (-669 (-311 (-221))) (-625 (-1149)) (-1232 (-311 (-221))))) (-15 -3892 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-669 (-311 (-221))))) (-15 -3906 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3920 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3934 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3945 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3958 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
+((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-1345 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 64)) (-2281 (((-112) $ $) NIL)))
(((-202) (-780)) (T -202))
NIL
(-780)
-((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2740 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 62)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-1345 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 62)) (-2281 (((-112) $ $) NIL)))
(((-203) (-780)) (T -203))
NIL
(-780)
-((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2740 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 66)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-1345 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 66)) (-2281 (((-112) $ $) NIL)))
(((-204) (-780)) (T -204))
NIL
(-780)
-((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 46)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2740 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 75)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 46)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-1345 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 75)) (-2281 (((-112) $ $) NIL)))
(((-205) (-780)) (T -205))
NIL
(-780)
-((-4294 (((-622 (-1149)) (-1149) (-751)) 23)) (-1499 (((-309 (-221)) (-309 (-221))) 31)) (-1501 (((-112) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 74)) (-1500 (((-112) (-221) (-221) (-622 (-309 (-221)))) 45)))
-(((-206) (-10 -7 (-15 -4294 ((-622 (-1149)) (-1149) (-751))) (-15 -1499 ((-309 (-221)) (-309 (-221)))) (-15 -1500 ((-112) (-221) (-221) (-622 (-309 (-221))))) (-15 -1501 ((-112) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))))) (T -206))
-((-1501 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-112)) (-5 *1 (-206)))) (-1500 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-622 (-309 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-206)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-309 (-221))) (-5 *1 (-206)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-622 (-1149))) (-5 *1 (-206)) (-5 *3 (-1149)))))
-(-10 -7 (-15 -4294 ((-622 (-1149)) (-1149) (-751))) (-15 -1499 ((-309 (-221)) (-309 (-221)))) (-15 -1500 ((-112) (-221) (-221) (-622 (-309 (-221))))) (-15 -1501 ((-112) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))))
-((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 26)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2998 (((-1011) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 57)) (-3387 (((-112) $ $) NIL)))
+((-3202 (((-625 (-1149)) (-1149) (-751)) 23)) (-3971 (((-311 (-221)) (-311 (-221))) 31)) (-3995 (((-112) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 74)) (-3983 (((-112) (-221) (-221) (-625 (-311 (-221)))) 45)))
+(((-206) (-10 -7 (-15 -3202 ((-625 (-1149)) (-1149) (-751))) (-15 -3971 ((-311 (-221)) (-311 (-221)))) (-15 -3983 ((-112) (-221) (-221) (-625 (-311 (-221))))) (-15 -3995 ((-112) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))))) (T -206))
+((-3995 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-112)) (-5 *1 (-206)))) (-3983 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-625 (-311 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-206)))) (-3971 (*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-206)))) (-3202 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-625 (-1149))) (-5 *1 (-206)) (-5 *3 (-1149)))))
+(-10 -7 (-15 -3202 ((-625 (-1149)) (-1149) (-751))) (-15 -3971 ((-311 (-221)) (-311 (-221)))) (-15 -3983 ((-112) (-221) (-221) (-625 (-311 (-221))))) (-15 -3995 ((-112) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))))
+((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 26)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-3850 (((-1011) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 57)) (-2281 (((-112) $ $) NIL)))
(((-207) (-871)) (T -207))
NIL
(-871)
-((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 21)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2998 (((-1011) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 21)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-3850 (((-1011) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) NIL)) (-2281 (((-112) $ $) NIL)))
(((-208) (-871)) (T -208))
NIL
(-871)
-((-2898 (((-112) $ $) NIL)) (-4147 ((|#2| $ (-751) |#2|) 11)) (-3977 (($) 8)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4159 ((|#2| $ (-751)) 10)) (-4317 (((-840) $) 18)) (-3387 (((-112) $ $) 13)))
-(((-209 |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -3977 ($)) (-15 -4159 (|#2| $ (-751))) (-15 -4147 (|#2| $ (-751) |#2|)))) (-895) (-1074)) (T -209))
-((-3977 (*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1074)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *2 (-1074)) (-5 *1 (-209 *4 *2)) (-14 *4 (-895)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-209 *4 *2)) (-14 *4 (-895)) (-4 *2 (-1074)))))
-(-13 (-1074) (-10 -8 (-15 -3977 ($)) (-15 -4159 (|#2| $ (-751))) (-15 -4147 (|#2| $ (-751) |#2|))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2087 (((-1237) $) 36) (((-1237) $ (-895) (-895)) 38)) (-4159 (($ $ (-965)) 19) (((-241 (-1131)) $ (-1149)) 15)) (-3980 (((-1237) $) 34)) (-4317 (((-840) $) 31) (($ (-622 |#1|)) 8)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $ $) 27)) (-4199 (($ $ $) 22)))
-(((-210 |#1|) (-13 (-1074) (-10 -8 (-15 -4159 ($ $ (-965))) (-15 -4159 ((-241 (-1131)) $ (-1149))) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -4317 ($ (-622 |#1|))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $)) (-15 -2087 ((-1237) $ (-895) (-895))))) (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))) (T -210))
-((-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-965)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-241 (-1131))) (-5 *1 (-210 *4)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ *3)) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))))) (-4199 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))))) (-4197 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))) (-5 *1 (-210 *3)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $)) (-15 -2087 (*2 $))))))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $)) (-15 -2087 (*2 $))))))) (-2087 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-210 *4)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $)) (-15 -2087 (*2 $))))))))
-(-13 (-1074) (-10 -8 (-15 -4159 ($ $ (-965))) (-15 -4159 ((-241 (-1131)) $ (-1149))) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -4317 ($ (-622 |#1|))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $)) (-15 -2087 ((-1237) $ (-895) (-895)))))
-((-1502 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-211 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1502 (|#2| |#4| (-1 |#2| |#2|)))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -211))
-((-1502 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1207 (-402 *2))) (-4 *2 (-1207 *5)) (-5 *1 (-211 *5 *2 *6 *3)) (-4 *3 (-337 *5 *2 *6)))))
-(-10 -7 (-15 -1502 (|#2| |#4| (-1 |#2| |#2|))))
-((-1506 ((|#2| |#2| (-751) |#2|) 42)) (-1505 ((|#2| |#2| (-751) |#2|) 38)) (-2458 (((-622 |#2|) (-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|)))) 57)) (-1504 (((-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|))) |#2|) 53)) (-1507 (((-112) |#2|) 50)) (-4093 (((-400 |#2|) |#2|) 77)) (-4092 (((-400 |#2|) |#2|) 76)) (-2459 ((|#2| |#2| (-751) |#2|) 36)) (-1503 (((-2 (|:| |cont| |#1|) (|:| -2767 (-622 (-2 (|:| |irr| |#2|) (|:| -2487 (-538)))))) |#2| (-112)) 69)))
-(((-212 |#1| |#2|) (-10 -7 (-15 -4092 ((-400 |#2|) |#2|)) (-15 -4093 ((-400 |#2|) |#2|)) (-15 -1503 ((-2 (|:| |cont| |#1|) (|:| -2767 (-622 (-2 (|:| |irr| |#2|) (|:| -2487 (-538)))))) |#2| (-112))) (-15 -1504 ((-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|))) |#2|)) (-15 -2458 ((-622 |#2|) (-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|))))) (-15 -2459 (|#2| |#2| (-751) |#2|)) (-15 -1505 (|#2| |#2| (-751) |#2|)) (-15 -1506 (|#2| |#2| (-751) |#2|)) (-15 -1507 ((-112) |#2|))) (-345) (-1207 |#1|)) (T -212))
-((-1507 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4)))) (-1506 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4)))) (-1505 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4)))) (-2459 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| |deg| (-751)) (|:| -2905 *5)))) (-4 *5 (-1207 *4)) (-4 *4 (-345)) (-5 *2 (-622 *5)) (-5 *1 (-212 *4 *5)))) (-1504 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-622 (-2 (|:| |deg| (-751)) (|:| -2905 *3)))) (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-345)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) (-5 *1 (-212 *5 *3)) (-4 *3 (-1207 *5)))) (-4093 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-400 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4)))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-400 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4)))))
-(-10 -7 (-15 -4092 ((-400 |#2|) |#2|)) (-15 -4093 ((-400 |#2|) |#2|)) (-15 -1503 ((-2 (|:| |cont| |#1|) (|:| -2767 (-622 (-2 (|:| |irr| |#2|) (|:| -2487 (-538)))))) |#2| (-112))) (-15 -1504 ((-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|))) |#2|)) (-15 -2458 ((-622 |#2|) (-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|))))) (-15 -2459 (|#2| |#2| (-751) |#2|)) (-15 -1505 (|#2| |#2| (-751) |#2|)) (-15 -1506 (|#2| |#2| (-751) |#2|)) (-15 -1507 ((-112) |#2|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-538) $) NIL (|has| (-538) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-538) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-538) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-538) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-538) (-1014 (-538))))) (-3507 (((-538) $) NIL) (((-1149) $) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-538) (-1014 (-538)))) (((-538) $) NIL (|has| (-538) (-1014 (-538))))) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-538) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-538) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-538) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-538) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-538) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-538) (-1124)))) (-3538 (((-112) $) NIL (|has| (-538) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-538) (-827)))) (-4318 (($ (-1 (-538) (-538)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-538) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-538) (-302))) (((-402 (-538)) $) NIL)) (-3465 (((-538) $) NIL (|has| (-538) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-538)) (-622 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-538) (-538)) NIL (|has| (-538) (-304 (-538)))) (($ $ (-288 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-288 (-538)))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-1149)) (-622 (-538))) NIL (|has| (-538) (-507 (-1149) (-538)))) (($ $ (-1149) (-538)) NIL (|has| (-538) (-507 (-1149) (-538))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-538)) NIL (|has| (-538) (-281 (-538) (-538))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-538) $) NIL)) (-1508 (($ (-402 (-538))) 9)) (-4330 (((-866 (-538)) $) NIL (|has| (-538) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-538) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-538) (-598 (-527)))) (((-373) $) NIL (|has| (-538) (-996))) (((-221) $) NIL (|has| (-538) (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-538) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) 8) (($ (-538)) NIL) (($ (-1149)) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL) (((-980 10) $) 10)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-538) (-886))) (|has| (-538) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-538) $) NIL (|has| (-538) (-537)))) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| (-538) (-800)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-538) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-538) (-827)))) (-4308 (($ $ $) NIL) (($ (-538) (-538)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-538) $) NIL) (($ $ (-538)) NIL)))
-(((-213) (-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 10) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -1508 ($ (-402 (-538))))))) (T -213))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-980 10)) (-5 *1 (-213)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213)))))
-(-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 10) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -1508 ($ (-402 (-538))))))
-((-2898 (((-112) $ $) NIL)) (-3670 (((-1088) $) 13)) (-3593 (((-1131) $) NIL)) (-3529 (((-477) $) 10)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 25) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 15)) (-3387 (((-112) $ $) NIL)))
-(((-214) (-13 (-1056) (-10 -8 (-15 -3529 ((-477) $)) (-15 -3670 ((-1088) $)) (-15 -3584 ((-1108) $))))) (T -214))
-((-3529 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-214)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-214)))))
-(-13 (-1056) (-10 -8 (-15 -3529 ((-477) $)) (-15 -3670 ((-1088) $)) (-15 -3584 ((-1108) $))))
-((-4172 (((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1065 (-819 |#2|)) (-1131)) 28) (((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1065 (-819 |#2|))) 24)) (-1509 (((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1149) (-819 |#2|) (-819 |#2|) (-112)) 17)))
-(((-215 |#1| |#2|) (-10 -7 (-15 -4172 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1065 (-819 |#2|)))) (-15 -4172 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1065 (-819 |#2|)) (-1131))) (-15 -1509 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1149) (-819 |#2|) (-819 |#2|) (-112)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-936) (-29 |#1|))) (T -215))
-((-1509 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1149)) (-5 *6 (-112)) (-4 *7 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-4 *3 (-13 (-1171) (-936) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-215 *7 *3)) (-5 *5 (-819 *3)))) (-4172 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-819 *3))) (-5 *5 (-1131)) (-4 *3 (-13 (-1171) (-936) (-29 *6))) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-215 *6 *3)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-819 *3))) (-4 *3 (-13 (-1171) (-936) (-29 *5))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-215 *5 *3)))))
-(-10 -7 (-15 -4172 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1065 (-819 |#2|)))) (-15 -4172 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1065 (-819 |#2|)) (-1131))) (-15 -1509 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1149) (-819 |#2|) (-819 |#2|) (-112))))
-((-4172 (((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|)))) (-1131)) 46) (((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|))))) 43) (((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|))) (-1131)) 47) (((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|)))) 20)))
-(((-216 |#1|) (-10 -7 (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|))))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|))) (-1131))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|)))))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|)))) (-1131)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (T -216))
-((-4172 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-819 (-402 (-922 *6))))) (-5 *5 (-1131)) (-5 *3 (-402 (-922 *6))) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 (-309 *6))) (|:| |f2| (-622 (-819 (-309 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-216 *6)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-819 (-402 (-922 *5))))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 (-309 *5))) (|:| |f2| (-622 (-819 (-309 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-216 *5)))) (-4172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-402 (-922 *6))) (-5 *4 (-1065 (-819 (-309 *6)))) (-5 *5 (-1131)) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 (-309 *6))) (|:| |f2| (-622 (-819 (-309 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-216 *6)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1065 (-819 (-309 *5)))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 (-309 *5))) (|:| |f2| (-622 (-819 (-309 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-216 *5)))))
-(-10 -7 (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|))))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|))) (-1131))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|)))))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|)))) (-1131))))
-((-4202 (((-2 (|:| -2120 (-1143 |#1|)) (|:| |deg| (-895))) (-1143 |#1|)) 21)) (-4323 (((-622 (-309 |#2|)) (-309 |#2|) (-895)) 42)))
-(((-217 |#1| |#2|) (-10 -7 (-15 -4202 ((-2 (|:| -2120 (-1143 |#1|)) (|:| |deg| (-895))) (-1143 |#1|))) (-15 -4323 ((-622 (-309 |#2|)) (-309 |#2|) (-895)))) (-1025) (-13 (-545) (-827))) (T -217))
-((-4323 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *6 (-13 (-545) (-827))) (-5 *2 (-622 (-309 *6))) (-5 *1 (-217 *5 *6)) (-5 *3 (-309 *6)) (-4 *5 (-1025)))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-2 (|:| -2120 (-1143 *4)) (|:| |deg| (-895)))) (-5 *1 (-217 *4 *5)) (-5 *3 (-1143 *4)) (-4 *5 (-13 (-545) (-827))))))
-(-10 -7 (-15 -4202 ((-2 (|:| -2120 (-1143 |#1|)) (|:| |deg| (-895))) (-1143 |#1|))) (-15 -4323 ((-622 (-309 |#2|)) (-309 |#2|) (-895))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1550 ((|#1| $) NIL)) (-3683 ((|#1| $) 25)) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-3335 (($ $) NIL)) (-2377 (($ $) 31)) (-3685 ((|#1| |#1| $) NIL)) (-3684 ((|#1| $) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-4193 (((-751) $) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) NIL)) (-1548 ((|#1| |#1| $) 28)) (-1547 ((|#1| |#1| $) 30)) (-3970 (($ |#1| $) NIL)) (-2933 (((-751) $) 27)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-3334 ((|#1| $) NIL)) (-1546 ((|#1| $) 26)) (-1545 ((|#1| $) 24)) (-1334 ((|#1| $) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3337 ((|#1| |#1| $) NIL)) (-3762 (((-112) $) 9)) (-3928 (($) NIL)) (-3336 ((|#1| $) NIL)) (-1551 (($) NIL) (($ (-622 |#1|)) 16)) (-3682 (((-751) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-1549 ((|#1| $) 13)) (-1335 (($ (-622 |#1|)) NIL)) (-3333 ((|#1| $) NIL)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-218 |#1|) (-13 (-249 |#1|) (-10 -8 (-15 -1551 ($ (-622 |#1|))))) (-1074)) (T -218))
-((-1551 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-218 *3)))))
-(-13 (-249 |#1|) (-10 -8 (-15 -1551 ($ (-622 |#1|)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1511 (($ (-309 |#1|)) 23)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2995 (((-112) $) NIL)) (-3508 (((-3 (-309 |#1|) "failed") $) NIL)) (-3507 (((-309 |#1|) $) NIL)) (-4319 (($ $) 31)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-4318 (($ (-1 (-309 |#1|) (-309 |#1|)) $) NIL)) (-3525 (((-309 |#1|) $) NIL)) (-1513 (($ $) 30)) (-3593 (((-1131) $) NIL)) (-1512 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($ (-751)) NIL)) (-1510 (($ $) 32)) (-4307 (((-538) $) NIL)) (-4317 (((-840) $) 57) (($ (-538)) NIL) (($ (-309 |#1|)) NIL)) (-4040 (((-309 |#1|) $ $) NIL)) (-3461 (((-751)) NIL)) (-2991 (($) 25 T CONST)) (-2997 (($) 50 T CONST)) (-3387 (((-112) $ $) 28)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 19)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 24) (($ (-309 |#1|) $) 18)))
-(((-219 |#1| |#2|) (-13 (-603 (-309 |#1|)) (-1014 (-309 |#1|)) (-10 -8 (-15 -3525 ((-309 |#1|) $)) (-15 -1513 ($ $)) (-15 -4319 ($ $)) (-15 -4040 ((-309 |#1|) $ $)) (-15 -2501 ($ (-751))) (-15 -1512 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -4307 ((-538) $)) (-15 -4318 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -1511 ($ (-309 |#1|))) (-15 -1510 ($ $)))) (-13 (-1025) (-827)) (-622 (-1149))) (T -219))
-((-3525 (*1 *2 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-1513 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-622 (-1149))))) (-4319 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-622 (-1149))))) (-4040 (*1 *2 *1 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-2501 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1025) (-827))) (-5 *1 (-219 *3 *4)) (-14 *4 (-622 (-1149))))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1025) (-827))) (-5 *1 (-219 *3 *4)) (-14 *4 (-622 (-1149))))) (-1510 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-622 (-1149))))))
-(-13 (-603 (-309 |#1|)) (-1014 (-309 |#1|)) (-10 -8 (-15 -3525 ((-309 |#1|) $)) (-15 -1513 ($ $)) (-15 -4319 ($ $)) (-15 -4040 ((-309 |#1|) $ $)) (-15 -2501 ($ (-751))) (-15 -1512 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -4307 ((-538) $)) (-15 -4318 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -1511 ($ (-309 |#1|))) (-15 -1510 ($ $))))
-((-1514 (((-112) (-1131)) 22)) (-1515 (((-3 (-819 |#2|) "failed") (-595 |#2|) |#2| (-819 |#2|) (-819 |#2|) (-112)) 32)) (-1516 (((-3 (-112) "failed") (-1143 |#2|) (-819 |#2|) (-819 |#2|) (-112)) 73) (((-3 (-112) "failed") (-922 |#1|) (-1149) (-819 |#2|) (-819 |#2|) (-112)) 74)))
-(((-220 |#1| |#2|) (-10 -7 (-15 -1514 ((-112) (-1131))) (-15 -1515 ((-3 (-819 |#2|) "failed") (-595 |#2|) |#2| (-819 |#2|) (-819 |#2|) (-112))) (-15 -1516 ((-3 (-112) "failed") (-922 |#1|) (-1149) (-819 |#2|) (-819 |#2|) (-112))) (-15 -1516 ((-3 (-112) "failed") (-1143 |#2|) (-819 |#2|) (-819 |#2|) (-112)))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-29 |#1|))) (T -220))
-((-1516 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1143 *6)) (-5 *4 (-819 *6)) (-4 *6 (-13 (-1171) (-29 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-220 *5 *6)))) (-1516 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-922 *6)) (-5 *4 (-1149)) (-5 *5 (-819 *7)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-4 *7 (-13 (-1171) (-29 *6))) (-5 *1 (-220 *6 *7)))) (-1515 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-819 *4)) (-5 *3 (-595 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1171) (-29 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-220 *6 *4)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1171) (-29 *4))))))
-(-10 -7 (-15 -1514 ((-112) (-1131))) (-15 -1515 ((-3 (-819 |#2|) "failed") (-595 |#2|) |#2| (-819 |#2|) (-819 |#2|) (-112))) (-15 -1516 ((-3 (-112) "failed") (-922 |#1|) (-1149) (-819 |#2|) (-819 |#2|) (-112))) (-15 -1516 ((-3 (-112) "failed") (-1143 |#2|) (-819 |#2|) (-819 |#2|) (-112))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 87)) (-3464 (((-538) $) 98)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4130 (($ $) NIL)) (-3846 (($ $) 75)) (-4002 (($ $) 63)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) 54)) (-1705 (((-112) $ $) NIL)) (-3844 (($ $) 73)) (-4001 (($ $) 61)) (-3986 (((-538) $) 115)) (-3848 (($ $) 78)) (-4000 (($ $) 65)) (-3896 (($) NIL T CONST)) (-3462 (($ $) NIL)) (-3508 (((-3 (-538) #1="failed") $) 114) (((-3 (-402 (-538)) #1#) $) 111)) (-3507 (((-538) $) 112) (((-402 (-538)) $) 109)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) 91)) (-1860 (((-402 (-538)) $ (-751)) 107) (((-402 (-538)) $ (-751) (-751)) 106)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2466 (((-895)) 27) (((-895) (-895)) NIL (|has| $ (-6 -4344)))) (-3537 (((-112) $) NIL)) (-3990 (($) 37)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL)) (-4131 (((-538) $) 33)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL)) (-3467 (($ $) NIL)) (-3538 (((-112) $) 86)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-3677 (($ $ $) 51) (($) 32 (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-3678 (($ $ $) 50) (($) 31 (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-2467 (((-538) $) 25)) (-1859 (($ $) 28)) (-1858 (($ $) 55)) (-4302 (($ $) 60)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-1889 (((-895) (-538)) NIL (|has| $ (-6 -4344)))) (-3594 (((-1093) $) 89)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL)) (-3465 (($ $) NIL)) (-3605 (($ (-538) (-538)) NIL) (($ (-538) (-538) (-895)) 99)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-2493 (((-538) $) 26)) (-1857 (($) 36)) (-4303 (($ $) 59)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-2944 (((-895)) NIL) (((-895) (-895)) NIL (|has| $ (-6 -4344)))) (-4170 (($ $ (-751)) NIL) (($ $) 92)) (-1888 (((-895) (-538)) NIL (|has| $ (-6 -4344)))) (-3849 (($ $) 76)) (-3999 (($ $) 66)) (-3847 (($ $) 77)) (-3998 (($ $) 64)) (-3845 (($ $) 74)) (-3997 (($ $) 62)) (-4330 (((-373) $) 103) (((-221) $) 100) (((-866 (-373)) $) NIL) (((-527) $) 43)) (-4317 (((-840) $) 40) (($ (-538)) 58) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-538)) 58) (($ (-402 (-538))) NIL)) (-3461 (((-751)) NIL)) (-3466 (($ $) NIL)) (-1890 (((-895)) 30) (((-895) (-895)) NIL (|has| $ (-6 -4344)))) (-3027 (((-895)) 23)) (-3852 (($ $) 81)) (-3840 (($ $) 69) (($ $ $) 108)) (-2177 (((-112) $ $) NIL)) (-3850 (($ $) 79)) (-3838 (($ $) 67)) (-3854 (($ $) 84)) (-3842 (($ $) 72)) (-3855 (($ $) 82)) (-3843 (($ $) 70)) (-3853 (($ $) 83)) (-3841 (($ $) 71)) (-3851 (($ $) 80)) (-3839 (($ $) 68)) (-3742 (($ $) 116)) (-2991 (($) 34 T CONST)) (-2997 (($) 35 T CONST)) (-2834 (((-1131) $) 17) (((-1131) $ (-112)) 19) (((-1237) (-803) $) 20) (((-1237) (-803) $ (-112)) 21)) (-3746 (($ $) 95)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-3743 (($ $ $) 97)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 52)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 44)) (-4308 (($ $ $) 85) (($ $ (-538)) 53)) (-4197 (($ $) 45) (($ $ $) 47)) (-4199 (($ $ $) 46)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 56) (($ $ (-402 (-538))) 128) (($ $ $) 57)) (* (($ (-895) $) 29) (($ (-751) $) NIL) (($ (-538) $) 49) (($ $ $) 48) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL)))
-(((-221) (-13 (-399) (-229) (-801) (-1171) (-598 (-527)) (-10 -8 (-15 -4308 ($ $ (-538))) (-15 ** ($ $ $)) (-15 -1857 ($)) (-15 -1859 ($ $)) (-15 -1858 ($ $)) (-15 -3840 ($ $ $)) (-15 -3746 ($ $)) (-15 -3743 ($ $ $)) (-15 -1860 ((-402 (-538)) $ (-751))) (-15 -1860 ((-402 (-538)) $ (-751) (-751)))))) (T -221))
-((** (*1 *1 *1 *1) (-5 *1 (-221))) (-4308 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-221)))) (-1857 (*1 *1) (-5 *1 (-221))) (-1859 (*1 *1 *1) (-5 *1 (-221))) (-1858 (*1 *1 *1) (-5 *1 (-221))) (-3840 (*1 *1 *1 *1) (-5 *1 (-221))) (-3746 (*1 *1 *1) (-5 *1 (-221))) (-3743 (*1 *1 *1 *1) (-5 *1 (-221))) (-1860 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-221)))) (-1860 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-221)))))
-(-13 (-399) (-229) (-801) (-1171) (-598 (-527)) (-10 -8 (-15 -4308 ($ $ (-538))) (-15 ** ($ $ $)) (-15 -1857 ($)) (-15 -1859 ($ $)) (-15 -1858 ($ $)) (-15 -3840 ($ $ $)) (-15 -3746 ($ $)) (-15 -3743 ($ $ $)) (-15 -1860 ((-402 (-538)) $ (-751))) (-15 -1860 ((-402 (-538)) $ (-751) (-751)))))
-((-3745 (((-166 (-221)) (-751) (-166 (-221))) 11) (((-221) (-751) (-221)) 12)) (-1517 (((-166 (-221)) (-166 (-221))) 13) (((-221) (-221)) 14)) (-1518 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 19) (((-221) (-221) (-221)) 22)) (-3744 (((-166 (-221)) (-166 (-221))) 25) (((-221) (-221)) 24)) (-3748 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 43) (((-221) (-221) (-221)) 35)) (-3750 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 48) (((-221) (-221) (-221)) 45)) (-3747 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 15) (((-221) (-221) (-221)) 16)) (-3749 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 17) (((-221) (-221) (-221)) 18)) (-3752 (((-166 (-221)) (-166 (-221))) 60) (((-221) (-221)) 59)) (-3751 (((-221) (-221)) 54) (((-166 (-221)) (-166 (-221))) 58)) (-3746 (((-166 (-221)) (-166 (-221))) 8) (((-221) (-221)) 9)) (-3743 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 30) (((-221) (-221) (-221)) 26)))
-(((-222) (-10 -7 (-15 -3746 ((-221) (-221))) (-15 -3746 ((-166 (-221)) (-166 (-221)))) (-15 -3743 ((-221) (-221) (-221))) (-15 -3743 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -1517 ((-221) (-221))) (-15 -1517 ((-166 (-221)) (-166 (-221)))) (-15 -3744 ((-221) (-221))) (-15 -3744 ((-166 (-221)) (-166 (-221)))) (-15 -3745 ((-221) (-751) (-221))) (-15 -3745 ((-166 (-221)) (-751) (-166 (-221)))) (-15 -3747 ((-221) (-221) (-221))) (-15 -3747 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3748 ((-221) (-221) (-221))) (-15 -3748 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3749 ((-221) (-221) (-221))) (-15 -3749 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3750 ((-221) (-221) (-221))) (-15 -3750 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3751 ((-166 (-221)) (-166 (-221)))) (-15 -3751 ((-221) (-221))) (-15 -3752 ((-221) (-221))) (-15 -3752 ((-166 (-221)) (-166 (-221)))) (-15 -1518 ((-221) (-221) (-221))) (-15 -1518 ((-166 (-221)) (-166 (-221)) (-166 (-221)))))) (T -222))
-((-1518 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3749 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3749 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3748 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3748 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3747 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3747 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3745 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-221))) (-5 *3 (-751)) (-5 *1 (-222)))) (-3745 (*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-751)) (-5 *1 (-222)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3743 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3743 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))))
-(-10 -7 (-15 -3746 ((-221) (-221))) (-15 -3746 ((-166 (-221)) (-166 (-221)))) (-15 -3743 ((-221) (-221) (-221))) (-15 -3743 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -1517 ((-221) (-221))) (-15 -1517 ((-166 (-221)) (-166 (-221)))) (-15 -3744 ((-221) (-221))) (-15 -3744 ((-166 (-221)) (-166 (-221)))) (-15 -3745 ((-221) (-751) (-221))) (-15 -3745 ((-166 (-221)) (-751) (-166 (-221)))) (-15 -3747 ((-221) (-221) (-221))) (-15 -3747 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3748 ((-221) (-221) (-221))) (-15 -3748 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3749 ((-221) (-221) (-221))) (-15 -3749 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3750 ((-221) (-221) (-221))) (-15 -3750 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3751 ((-166 (-221)) (-166 (-221)))) (-15 -3751 ((-221) (-221))) (-15 -3752 ((-221) (-221))) (-15 -3752 ((-166 (-221)) (-166 (-221)))) (-15 -1518 ((-221) (-221) (-221))) (-15 -1518 ((-166 (-221)) (-166 (-221)) (-166 (-221)))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751) (-751)) NIL)) (-2431 (($ $ $) NIL)) (-3773 (($ (-1231 |#1|)) NIL) (($ $) NIL)) (-4233 (($ |#1| |#1| |#1|) 32)) (-3456 (((-112) $) NIL)) (-2430 (($ $ (-538) (-538)) NIL)) (-2429 (($ $ (-538) (-538)) NIL)) (-2428 (($ $ (-538) (-538) (-538) (-538)) NIL)) (-2433 (($ $) NIL)) (-3458 (((-112) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-2427 (($ $ (-538) (-538) $) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538)) $) NIL)) (-1309 (($ $ (-538) (-1231 |#1|)) NIL)) (-1308 (($ $ (-538) (-1231 |#1|)) NIL)) (-4207 (($ |#1| |#1| |#1|) 31)) (-3692 (($ (-751) |#1|) NIL)) (-3896 (($) NIL T CONST)) (-3445 (($ $) NIL (|has| |#1| (-302)))) (-3447 (((-1231 |#1|) $ (-538)) NIL)) (-1519 (($ |#1|) 30)) (-1520 (($ |#1|) 29)) (-1521 (($ |#1|) 28)) (-3444 (((-751) $) NIL (|has| |#1| (-545)))) (-1637 ((|#1| $ (-538) (-538) |#1|) NIL)) (-3448 ((|#1| $ (-538) (-538)) NIL)) (-2068 (((-622 |#1|) $) NIL)) (-3443 (((-751) $) NIL (|has| |#1| (-545)))) (-3442 (((-622 (-1231 |#1|)) $) NIL (|has| |#1| (-545)))) (-3450 (((-751) $) NIL)) (-3977 (($ (-751) (-751) |#1|) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3686 ((|#1| $) NIL (|has| |#1| (-6 (-4355 #1="*"))))) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-3459 (($ (-622 (-622 |#1|))) 11)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3956 (((-622 (-622 |#1|)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3952 (((-3 $ #2="failed") $) NIL (|has| |#1| (-358)))) (-1522 (($) 12)) (-2432 (($ $ $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-3820 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-545)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) (-538)) NIL) ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538))) NIL)) (-3691 (($ (-622 |#1|)) NIL) (($ (-622 $)) NIL)) (-3457 (((-112) $) NIL)) (-3687 ((|#1| $) NIL (|has| |#1| (-6 (-4355 #1#))))) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3446 (((-1231 |#1|) $ (-538)) NIL)) (-4317 (($ (-1231 |#1|)) NIL) (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-538) $) NIL) (((-1231 |#1|) $ (-1231 |#1|)) 15) (((-1231 |#1|) (-1231 |#1|) $) NIL) (((-919 |#1|) $ (-919 |#1|)) 20)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-223 |#1|) (-13 (-666 |#1| (-1231 |#1|) (-1231 |#1|)) (-10 -8 (-15 * ((-919 |#1|) $ (-919 |#1|))) (-15 -1522 ($)) (-15 -1521 ($ |#1|)) (-15 -1520 ($ |#1|)) (-15 -1519 ($ |#1|)) (-15 -4207 ($ |#1| |#1| |#1|)) (-15 -4233 ($ |#1| |#1| |#1|)))) (-13 (-358) (-1171))) (T -223))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171))) (-5 *1 (-223 *3)))) (-1522 (*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-1521 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-1520 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-1519 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-4207 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-4233 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))))
-(-13 (-666 |#1| (-1231 |#1|) (-1231 |#1|)) (-10 -8 (-15 * ((-919 |#1|) $ (-919 |#1|))) (-15 -1522 ($)) (-15 -1521 ($ |#1|)) (-15 -1520 ($ |#1|)) (-15 -1519 ($ |#1|)) (-15 -4207 ($ |#1| |#1| |#1|)) (-15 -4233 ($ |#1| |#1| |#1|))))
-((-1631 (($ (-1 (-112) |#2|) $) 16)) (-3764 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-1523 (($) NIL) (($ (-622 |#2|)) 11)) (-3387 (((-112) $ $) 23)))
-(((-224 |#1| |#2|) (-10 -8 (-15 -1631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -1523 (|#1| (-622 |#2|))) (-15 -1523 (|#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-225 |#2|) (-1074)) (T -224))
-NIL
-(-10 -8 (-15 -1631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -1523 (|#1| (-622 |#2|))) (-15 -1523 (|#1|)) (-15 -3387 ((-112) |#1| |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-225 |#1|) (-138) (-1074)) (T -225))
+((-1671 (((-112) $ $) NIL)) (-1851 ((|#2| $ (-751) |#2|) 11)) (-2183 (($) 8)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2154 ((|#2| $ (-751)) 10)) (-1683 (((-839) $) 18)) (-2281 (((-112) $ $) 13)))
+(((-209 |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -2183 ($)) (-15 -2154 (|#2| $ (-751))) (-15 -1851 (|#2| $ (-751) |#2|)))) (-897) (-1073)) (T -209))
+((-2183 (*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1073)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *2 (-1073)) (-5 *1 (-209 *4 *2)) (-14 *4 (-897)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-209 *4 *2)) (-14 *4 (-897)) (-4 *2 (-1073)))))
+(-13 (-1073) (-10 -8 (-15 -2183 ($)) (-15 -2154 (|#2| $ (-751))) (-15 -1851 (|#2| $ (-751) |#2|))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3867 (((-1237) $) 36) (((-1237) $ (-897) (-897)) 38)) (-2154 (($ $ (-965)) 19) (((-241 (-1131)) $ (-1149)) 15)) (-1407 (((-1237) $) 34)) (-1683 (((-839) $) 31) (($ (-625 |#1|)) 8)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $ $) 27)) (-2382 (($ $ $) 22)))
+(((-210 |#1|) (-13 (-1073) (-10 -8 (-15 -2154 ($ $ (-965))) (-15 -2154 ((-241 (-1131)) $ (-1149))) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)) (-15 -1683 ($ (-625 |#1|))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $)) (-15 -3867 ((-1237) $ (-897) (-897))))) (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))) (T -210))
+((-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-965)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-241 (-1131))) (-5 *1 (-210 *4)) (-4 *4 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ *3)) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))))) (-2382 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))))) (-2393 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))) (-5 *1 (-210 *3)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $)) (-15 -3867 (*2 $))))))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $)) (-15 -3867 (*2 $))))))) (-3867 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-210 *4)) (-4 *4 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $)) (-15 -3867 (*2 $))))))))
+(-13 (-1073) (-10 -8 (-15 -2154 ($ $ (-965))) (-15 -2154 ((-241 (-1131)) $ (-1149))) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)) (-15 -1683 ($ (-625 |#1|))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $)) (-15 -3867 ((-1237) $ (-897) (-897)))))
+((-4007 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-211 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4007 (|#2| |#4| (-1 |#2| |#2|)))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -211))
+((-4007 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1208 (-402 *2))) (-4 *2 (-1208 *5)) (-5 *1 (-211 *5 *2 *6 *3)) (-4 *3 (-337 *5 *2 *6)))))
+(-10 -7 (-15 -4007 (|#2| |#4| (-1 |#2| |#2|))))
+((-4054 ((|#2| |#2| (-751) |#2|) 42)) (-4042 ((|#2| |#2| (-751) |#2|) 38)) (-3265 (((-625 |#2|) (-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|)))) 57)) (-4030 (((-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|))) |#2|) 53)) (-4067 (((-112) |#2|) 50)) (-3011 (((-413 |#2|) |#2|) 77)) (-3824 (((-413 |#2|) |#2|) 76)) (-3274 ((|#2| |#2| (-751) |#2|) 36)) (-4018 (((-2 (|:| |cont| |#1|) (|:| -3449 (-625 (-2 (|:| |irr| |#2|) (|:| -3515 (-552)))))) |#2| (-112)) 69)))
+(((-212 |#1| |#2|) (-10 -7 (-15 -3824 ((-413 |#2|) |#2|)) (-15 -3011 ((-413 |#2|) |#2|)) (-15 -4018 ((-2 (|:| |cont| |#1|) (|:| -3449 (-625 (-2 (|:| |irr| |#2|) (|:| -3515 (-552)))))) |#2| (-112))) (-15 -4030 ((-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|))) |#2|)) (-15 -3265 ((-625 |#2|) (-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|))))) (-15 -3274 (|#2| |#2| (-751) |#2|)) (-15 -4042 (|#2| |#2| (-751) |#2|)) (-15 -4054 (|#2| |#2| (-751) |#2|)) (-15 -4067 ((-112) |#2|))) (-344) (-1208 |#1|)) (T -212))
+((-4067 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1208 *4)))) (-4054 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1208 *4)))) (-4042 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1208 *4)))) (-3274 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1208 *4)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| |deg| (-751)) (|:| -2430 *5)))) (-4 *5 (-1208 *4)) (-4 *4 (-344)) (-5 *2 (-625 *5)) (-5 *1 (-212 *4 *5)))) (-4030 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-625 (-2 (|:| |deg| (-751)) (|:| -2430 *3)))) (-5 *1 (-212 *4 *3)) (-4 *3 (-1208 *4)))) (-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) (-5 *1 (-212 *5 *3)) (-4 *3 (-1208 *5)))) (-3011 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1208 *4)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1208 *4)))))
+(-10 -7 (-15 -3824 ((-413 |#2|) |#2|)) (-15 -3011 ((-413 |#2|) |#2|)) (-15 -4018 ((-2 (|:| |cont| |#1|) (|:| -3449 (-625 (-2 (|:| |irr| |#2|) (|:| -3515 (-552)))))) |#2| (-112))) (-15 -4030 ((-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|))) |#2|)) (-15 -3265 ((-625 |#2|) (-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|))))) (-15 -3274 (|#2| |#2| (-751) |#2|)) (-15 -4042 (|#2| |#2| (-751) |#2|)) (-15 -4054 (|#2| |#2| (-751) |#2|)) (-15 -4067 ((-112) |#2|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-552) $) NIL (|has| (-552) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-552) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-552) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-552) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1014 (-552))))) (-1895 (((-552) $) NIL) (((-1149) $) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-552) (-1014 (-552)))) (((-552) $) NIL (|has| (-552) (-1014 (-552))))) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-552) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-552) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-552) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-552) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-552) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-552) (-1124)))) (-3630 (((-112) $) NIL (|has| (-552) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-552) (-827)))) (-1996 (($ (-1 (-552) (-552)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-552) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-552) (-302))) (((-402 (-552)) $) NIL)) (-4189 (((-552) $) NIL (|has| (-552) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-552)) (-625 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-304 (-552)))) (($ $ (-289 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-289 (-552)))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-1149)) (-625 (-552))) NIL (|has| (-552) (-507 (-1149) (-552)))) (($ $ (-1149) (-552)) NIL (|has| (-552) (-507 (-1149) (-552))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-552)) NIL (|has| (-552) (-281 (-552) (-552))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-552) $) NIL)) (-4080 (($ (-402 (-552))) 9)) (-2042 (((-868 (-552)) $) NIL (|has| (-552) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-552) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-552) (-598 (-528)))) (((-374) $) NIL (|has| (-552) (-998))) (((-221) $) NIL (|has| (-552) (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-552) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) 8) (($ (-552)) NIL) (($ (-1149)) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL) (((-980 10) $) 10)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-552) (-885))) (|has| (-552) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-552) $) NIL (|has| (-552) (-537)))) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| (-552) (-800)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2404 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL)))
+(((-213) (-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 10) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -4080 ($ (-402 (-552))))))) (T -213))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-980 10)) (-5 *1 (-213)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213)))) (-4080 (*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213)))))
+(-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 10) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -4080 ($ (-402 (-552))))))
+((-1671 (((-112) $ $) NIL)) (-2055 (((-1091) $) 13)) (-2883 (((-1131) $) NIL)) (-3545 (((-477) $) 10)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 25) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 15)) (-2281 (((-112) $ $) NIL)))
+(((-214) (-13 (-1056) (-10 -8 (-15 -3545 ((-477) $)) (-15 -2055 ((-1091) $)) (-15 -1300 ((-1108) $))))) (T -214))
+((-3545 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-214)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-214)))))
+(-13 (-1056) (-10 -8 (-15 -3545 ((-477) $)) (-15 -2055 ((-1091) $)) (-15 -1300 ((-1108) $))))
+((-2481 (((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|)) (-1131)) 28) (((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|))) 24)) (-4093 (((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1149) (-820 |#2|) (-820 |#2|) (-112)) 17)))
+(((-215 |#1| |#2|) (-10 -7 (-15 -2481 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|)))) (-15 -2481 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|)) (-1131))) (-15 -4093 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1149) (-820 |#2|) (-820 |#2|) (-112)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-935) (-29 |#1|))) (T -215))
+((-4093 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1149)) (-5 *6 (-112)) (-4 *7 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-4 *3 (-13 (-1171) (-935) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *7 *3)) (-5 *5 (-820 *3)))) (-2481 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-820 *3))) (-5 *5 (-1131)) (-4 *3 (-13 (-1171) (-935) (-29 *6))) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6 *3)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-820 *3))) (-4 *3 (-13 (-1171) (-935) (-29 *5))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5 *3)))))
+(-10 -7 (-15 -2481 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|)))) (-15 -2481 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|)) (-1131))) (-15 -4093 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1149) (-820 |#2|) (-820 |#2|) (-112))))
+((-2481 (((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|)))) (-1131)) 46) (((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|))))) 43) (((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|))) (-1131)) 47) (((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|)))) 20)))
+(((-216 |#1|) (-10 -7 (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|))))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|))) (-1131))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|)))))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|)))) (-1131)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (T -216))
+((-2481 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-820 (-402 (-928 *6))))) (-5 *5 (-1131)) (-5 *3 (-402 (-928 *6))) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 (-311 *6))) (|:| |f2| (-625 (-820 (-311 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *6)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-820 (-402 (-928 *5))))) (-5 *3 (-402 (-928 *5))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 (-311 *5))) (|:| |f2| (-625 (-820 (-311 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *5)))) (-2481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-402 (-928 *6))) (-5 *4 (-1065 (-820 (-311 *6)))) (-5 *5 (-1131)) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 (-311 *6))) (|:| |f2| (-625 (-820 (-311 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *6)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1065 (-820 (-311 *5)))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 (-311 *5))) (|:| |f2| (-625 (-820 (-311 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *5)))))
+(-10 -7 (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|))))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|))) (-1131))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|)))))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|)))) (-1131))))
+((-2163 (((-2 (|:| -4256 (-1145 |#1|)) (|:| |deg| (-897))) (-1145 |#1|)) 21)) (-3455 (((-625 (-311 |#2|)) (-311 |#2|) (-897)) 42)))
+(((-217 |#1| |#2|) (-10 -7 (-15 -2163 ((-2 (|:| -4256 (-1145 |#1|)) (|:| |deg| (-897))) (-1145 |#1|))) (-15 -3455 ((-625 (-311 |#2|)) (-311 |#2|) (-897)))) (-1025) (-13 (-544) (-827))) (T -217))
+((-3455 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-4 *6 (-13 (-544) (-827))) (-5 *2 (-625 (-311 *6))) (-5 *1 (-217 *5 *6)) (-5 *3 (-311 *6)) (-4 *5 (-1025)))) (-2163 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-2 (|:| -4256 (-1145 *4)) (|:| |deg| (-897)))) (-5 *1 (-217 *4 *5)) (-5 *3 (-1145 *4)) (-4 *5 (-13 (-544) (-827))))))
+(-10 -7 (-15 -2163 ((-2 (|:| -4256 (-1145 |#1|)) (|:| |deg| (-897))) (-1145 |#1|))) (-15 -3455 ((-625 (-311 |#2|)) (-311 |#2|) (-897))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3231 ((|#1| $) NIL)) (-1549 ((|#1| $) 25)) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-2327 (($ $) NIL)) (-1883 (($ $) 31)) (-2406 ((|#1| |#1| $) NIL)) (-2395 ((|#1| $) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3456 (((-751) $) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) NIL)) (-3213 ((|#1| |#1| $) 28)) (-3203 ((|#1| |#1| $) 30)) (-3966 (($ |#1| $) NIL)) (-2207 (((-751) $) 27)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2314 ((|#1| $) NIL)) (-3193 ((|#1| $) 26)) (-3186 ((|#1| $) 24)) (-2966 ((|#1| $) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2354 ((|#1| |#1| $) NIL)) (-1916 (((-112) $) 9)) (-3600 (($) NIL)) (-2340 ((|#1| $) NIL)) (-3240 (($) NIL) (($ (-625 |#1|)) 16)) (-2389 (((-751) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3224 ((|#1| $) 13)) (-2977 (($ (-625 |#1|)) NIL)) (-2299 ((|#1| $) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-218 |#1|) (-13 (-249 |#1|) (-10 -8 (-15 -3240 ($ (-625 |#1|))))) (-1073)) (T -218))
+((-3240 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-218 *3)))))
+(-13 (-249 |#1|) (-10 -8 (-15 -3240 ($ (-625 |#1|)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4118 (($ (-311 |#1|)) 23)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2023 (((-112) $) NIL)) (-1893 (((-3 (-311 |#1|) "failed") $) NIL)) (-1895 (((-311 |#1|) $) NIL)) (-4169 (($ $) 31)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-1996 (($ (-1 (-311 |#1|) (-311 |#1|)) $) NIL)) (-4144 (((-311 |#1|) $) NIL)) (-4145 (($ $) 30)) (-2883 (((-1131) $) NIL)) (-4132 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($ (-751)) NIL)) (-4106 (($ $) 32)) (-4276 (((-552) $) NIL)) (-1683 (((-839) $) 57) (($ (-552)) NIL) (($ (-311 |#1|)) NIL)) (-3637 (((-311 |#1|) $ $) NIL)) (-4141 (((-751)) NIL)) (-2089 (($) 25 T CONST)) (-2100 (($) 50 T CONST)) (-2281 (((-112) $ $) 28)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 19)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 24) (($ (-311 |#1|) $) 18)))
+(((-219 |#1| |#2|) (-13 (-602 (-311 |#1|)) (-1014 (-311 |#1|)) (-10 -8 (-15 -4144 ((-311 |#1|) $)) (-15 -4145 ($ $)) (-15 -4169 ($ $)) (-15 -3637 ((-311 |#1|) $ $)) (-15 -3212 ($ (-751))) (-15 -4132 ((-112) $)) (-15 -2023 ((-112) $)) (-15 -4276 ((-552) $)) (-15 -1996 ($ (-1 (-311 |#1|) (-311 |#1|)) $)) (-15 -4118 ($ (-311 |#1|))) (-15 -4106 ($ $)))) (-13 (-1025) (-827)) (-625 (-1149))) (T -219))
+((-4144 (*1 *2 *1) (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-4145 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-625 (-1149))))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-625 (-1149))))) (-3637 (*1 *2 *1 *1) (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-311 *3) (-311 *3))) (-4 *3 (-13 (-1025) (-827))) (-5 *1 (-219 *3 *4)) (-14 *4 (-625 (-1149))))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-311 *3)) (-4 *3 (-13 (-1025) (-827))) (-5 *1 (-219 *3 *4)) (-14 *4 (-625 (-1149))))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-625 (-1149))))))
+(-13 (-602 (-311 |#1|)) (-1014 (-311 |#1|)) (-10 -8 (-15 -4144 ((-311 |#1|) $)) (-15 -4145 ($ $)) (-15 -4169 ($ $)) (-15 -3637 ((-311 |#1|) $ $)) (-15 -3212 ($ (-751))) (-15 -4132 ((-112) $)) (-15 -2023 ((-112) $)) (-15 -4276 ((-552) $)) (-15 -1996 ($ (-1 (-311 |#1|) (-311 |#1|)) $)) (-15 -4118 ($ (-311 |#1|))) (-15 -4106 ($ $))))
+((-4158 (((-112) (-1131)) 22)) (-4170 (((-3 (-820 |#2|) "failed") (-596 |#2|) |#2| (-820 |#2|) (-820 |#2|) (-112)) 32)) (-4180 (((-3 (-112) "failed") (-1145 |#2|) (-820 |#2|) (-820 |#2|) (-112)) 73) (((-3 (-112) "failed") (-928 |#1|) (-1149) (-820 |#2|) (-820 |#2|) (-112)) 74)))
+(((-220 |#1| |#2|) (-10 -7 (-15 -4158 ((-112) (-1131))) (-15 -4170 ((-3 (-820 |#2|) "failed") (-596 |#2|) |#2| (-820 |#2|) (-820 |#2|) (-112))) (-15 -4180 ((-3 (-112) "failed") (-928 |#1|) (-1149) (-820 |#2|) (-820 |#2|) (-112))) (-15 -4180 ((-3 (-112) "failed") (-1145 |#2|) (-820 |#2|) (-820 |#2|) (-112)))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-29 |#1|))) (T -220))
+((-4180 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1145 *6)) (-5 *4 (-820 *6)) (-4 *6 (-13 (-1171) (-29 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-220 *5 *6)))) (-4180 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-928 *6)) (-5 *4 (-1149)) (-5 *5 (-820 *7)) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-4 *7 (-13 (-1171) (-29 *6))) (-5 *1 (-220 *6 *7)))) (-4170 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-820 *4)) (-5 *3 (-596 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1171) (-29 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-220 *6 *4)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1171) (-29 *4))))))
+(-10 -7 (-15 -4158 ((-112) (-1131))) (-15 -4170 ((-3 (-820 |#2|) "failed") (-596 |#2|) |#2| (-820 |#2|) (-820 |#2|) (-112))) (-15 -4180 ((-3 (-112) "failed") (-928 |#1|) (-1149) (-820 |#2|) (-820 |#2|) (-112))) (-15 -4180 ((-3 (-112) "failed") (-1145 |#2|) (-820 |#2|) (-820 |#2|) (-112))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 87)) (-4177 (((-552) $) 98)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2162 (($ $) NIL)) (-3728 (($ $) 75)) (-3604 (($ $) 63)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) 54)) (-2408 (((-112) $ $) NIL)) (-3710 (($ $) 73)) (-3581 (($ $) 61)) (-4127 (((-552) $) 115)) (-3749 (($ $) 78)) (-3627 (($ $) 65)) (-3101 (($) NIL T CONST)) (-4154 (($ $) NIL)) (-1893 (((-3 (-552) "failed") $) 114) (((-3 (-402 (-552)) "failed") $) 111)) (-1895 (((-552) $) 112) (((-402 (-552)) $) 109)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) 91)) (-3341 (((-402 (-552)) $ (-751)) 107) (((-402 (-552)) $ (-751) (-751)) 106)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1923 (((-897)) 27) (((-897) (-897)) NIL (|has| $ (-6 -4344)))) (-3620 (((-112) $) NIL)) (-1385 (($) 37)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL)) (-2172 (((-552) $) 33)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL)) (-4209 (($ $) NIL)) (-3630 (((-112) $) 86)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) 51) (($) 32 (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-3332 (($ $ $) 50) (($) 31 (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-2594 (((-552) $) 25)) (-3331 (($ $) 28)) (-4138 (($ $) 55)) (-2458 (($ $) 60)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-3586 (((-897) (-552)) NIL (|has| $ (-6 -4344)))) (-2831 (((-1093) $) 89)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL)) (-4189 (($ $) NIL)) (-2189 (($ (-552) (-552)) NIL) (($ (-552) (-552) (-897)) 99)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3564 (((-552) $) 26)) (-3323 (($) 36)) (-2863 (($ $) 59)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1542 (((-897)) NIL) (((-897) (-897)) NIL (|has| $ (-6 -4344)))) (-3072 (($ $ (-751)) NIL) (($ $) 92)) (-3574 (((-897) (-552)) NIL (|has| $ (-6 -4344)))) (-3759 (($ $) 76)) (-3638 (($ $) 66)) (-3738 (($ $) 77)) (-3614 (($ $) 64)) (-3721 (($ $) 74)) (-3593 (($ $) 62)) (-2042 (((-374) $) 103) (((-221) $) 100) (((-868 (-374)) $) NIL) (((-528) $) 43)) (-1683 (((-839) $) 40) (($ (-552)) 58) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-552)) 58) (($ (-402 (-552))) NIL)) (-4141 (((-751)) NIL)) (-4199 (($ $) NIL)) (-3597 (((-897)) 30) (((-897) (-897)) NIL (|has| $ (-6 -4344)))) (-3929 (((-897)) 23)) (-3789 (($ $) 81)) (-3670 (($ $) 69) (($ $ $) 108)) (-3518 (((-112) $ $) NIL)) (-3769 (($ $) 79)) (-3648 (($ $) 67)) (-3809 (($ $) 84)) (-3691 (($ $) 72)) (-3742 (($ $) 82)) (-3700 (($ $) 70)) (-3797 (($ $) 83)) (-3681 (($ $) 71)) (-3778 (($ $) 80)) (-3659 (($ $) 68)) (-1727 (($ $) 116)) (-2089 (($) 34 T CONST)) (-2100 (($) 35 T CONST)) (-3010 (((-1131) $) 17) (((-1131) $ (-112)) 19) (((-1237) (-802) $) 20) (((-1237) (-802) $ (-112)) 21)) (-1769 (($ $) 95)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-1739 (($ $ $) 97)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 52)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 44)) (-2404 (($ $ $) 85) (($ $ (-552)) 53)) (-2393 (($ $) 45) (($ $ $) 47)) (-2382 (($ $ $) 46)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 56) (($ $ (-402 (-552))) 128) (($ $ $) 57)) (* (($ (-897) $) 29) (($ (-751) $) NIL) (($ (-552) $) 49) (($ $ $) 48) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL)))
+(((-221) (-13 (-399) (-229) (-808) (-1171) (-598 (-528)) (-10 -8 (-15 -2404 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -3323 ($)) (-15 -3331 ($ $)) (-15 -4138 ($ $)) (-15 -3670 ($ $ $)) (-15 -1769 ($ $)) (-15 -1739 ($ $ $)) (-15 -3341 ((-402 (-552)) $ (-751))) (-15 -3341 ((-402 (-552)) $ (-751) (-751)))))) (T -221))
+((** (*1 *1 *1 *1) (-5 *1 (-221))) (-2404 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-221)))) (-3323 (*1 *1) (-5 *1 (-221))) (-3331 (*1 *1 *1) (-5 *1 (-221))) (-4138 (*1 *1 *1) (-5 *1 (-221))) (-3670 (*1 *1 *1 *1) (-5 *1 (-221))) (-1769 (*1 *1 *1) (-5 *1 (-221))) (-1739 (*1 *1 *1 *1) (-5 *1 (-221))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-221)))) (-3341 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-221)))))
+(-13 (-399) (-229) (-808) (-1171) (-598 (-528)) (-10 -8 (-15 -2404 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -3323 ($)) (-15 -3331 ($ $)) (-15 -4138 ($ $)) (-15 -3670 ($ $ $)) (-15 -1769 ($ $)) (-15 -1739 ($ $ $)) (-15 -3341 ((-402 (-552)) $ (-751))) (-15 -3341 ((-402 (-552)) $ (-751) (-751)))))
+((-1759 (((-167 (-221)) (-751) (-167 (-221))) 11) (((-221) (-751) (-221)) 12)) (-4192 (((-167 (-221)) (-167 (-221))) 13) (((-221) (-221)) 14)) (-4202 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 19) (((-221) (-221) (-221)) 22)) (-1749 (((-167 (-221)) (-167 (-221))) 25) (((-221) (-221)) 24)) (-1792 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 43) (((-221) (-221) (-221)) 35)) (-1815 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 48) (((-221) (-221) (-221)) 45)) (-1780 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 15) (((-221) (-221) (-221)) 16)) (-1804 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 17) (((-221) (-221) (-221)) 18)) (-1836 (((-167 (-221)) (-167 (-221))) 60) (((-221) (-221)) 59)) (-1825 (((-221) (-221)) 54) (((-167 (-221)) (-167 (-221))) 58)) (-1769 (((-167 (-221)) (-167 (-221))) 8) (((-221) (-221)) 9)) (-1739 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 30) (((-221) (-221) (-221)) 26)))
+(((-222) (-10 -7 (-15 -1769 ((-221) (-221))) (-15 -1769 ((-167 (-221)) (-167 (-221)))) (-15 -1739 ((-221) (-221) (-221))) (-15 -1739 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -4192 ((-221) (-221))) (-15 -4192 ((-167 (-221)) (-167 (-221)))) (-15 -1749 ((-221) (-221))) (-15 -1749 ((-167 (-221)) (-167 (-221)))) (-15 -1759 ((-221) (-751) (-221))) (-15 -1759 ((-167 (-221)) (-751) (-167 (-221)))) (-15 -1780 ((-221) (-221) (-221))) (-15 -1780 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1792 ((-221) (-221) (-221))) (-15 -1792 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1804 ((-221) (-221) (-221))) (-15 -1804 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1815 ((-221) (-221) (-221))) (-15 -1815 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1825 ((-167 (-221)) (-167 (-221)))) (-15 -1825 ((-221) (-221))) (-15 -1836 ((-221) (-221))) (-15 -1836 ((-167 (-221)) (-167 (-221)))) (-15 -4202 ((-221) (-221) (-221))) (-15 -4202 ((-167 (-221)) (-167 (-221)) (-167 (-221)))))) (T -222))
+((-4202 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-4202 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1825 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1825 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1815 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1815 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1804 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1804 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1792 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1792 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1780 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1780 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1759 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-221))) (-5 *3 (-751)) (-5 *1 (-222)))) (-1759 (*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-751)) (-5 *1 (-222)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1739 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1739 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))))
+(-10 -7 (-15 -1769 ((-221) (-221))) (-15 -1769 ((-167 (-221)) (-167 (-221)))) (-15 -1739 ((-221) (-221) (-221))) (-15 -1739 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -4192 ((-221) (-221))) (-15 -4192 ((-167 (-221)) (-167 (-221)))) (-15 -1749 ((-221) (-221))) (-15 -1749 ((-167 (-221)) (-167 (-221)))) (-15 -1759 ((-221) (-751) (-221))) (-15 -1759 ((-167 (-221)) (-751) (-167 (-221)))) (-15 -1780 ((-221) (-221) (-221))) (-15 -1780 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1792 ((-221) (-221) (-221))) (-15 -1792 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1804 ((-221) (-221) (-221))) (-15 -1804 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1815 ((-221) (-221) (-221))) (-15 -1815 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1825 ((-167 (-221)) (-167 (-221)))) (-15 -1825 ((-221) (-221))) (-15 -1836 ((-221) (-221))) (-15 -1836 ((-167 (-221)) (-167 (-221)))) (-15 -4202 ((-221) (-221) (-221))) (-15 -4202 ((-167 (-221)) (-167 (-221)) (-167 (-221)))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751) (-751)) NIL)) (-4219 (($ $ $) NIL)) (-2003 (($ (-1232 |#1|)) NIL) (($ $) NIL)) (-1618 (($ |#1| |#1| |#1|) 32)) (-4089 (((-112) $) NIL)) (-4208 (($ $ (-552) (-552)) NIL)) (-4198 (($ $ (-552) (-552)) NIL)) (-4188 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-4241 (($ $) NIL)) (-4114 (((-112) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-4176 (($ $ (-552) (-552) $) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552)) $) NIL)) (-2701 (($ $ (-552) (-1232 |#1|)) NIL)) (-2691 (($ $ (-552) (-1232 |#1|)) NIL)) (-1487 (($ |#1| |#1| |#1|) 31)) (-2467 (($ (-751) |#1|) NIL)) (-3101 (($) NIL T CONST)) (-3991 (($ $) NIL (|has| |#1| (-302)))) (-4015 (((-1232 |#1|) $ (-552)) NIL)) (-4212 (($ |#1|) 30)) (-4223 (($ |#1|) 29)) (-4234 (($ |#1|) 28)) (-3442 (((-751) $) NIL (|has| |#1| (-544)))) (-3692 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3631 ((|#1| $ (-552) (-552)) NIL)) (-3799 (((-625 |#1|) $) NIL)) (-3979 (((-751) $) NIL (|has| |#1| (-544)))) (-3967 (((-625 (-1232 |#1|)) $) NIL (|has| |#1| (-544)))) (-1773 (((-751) $) NIL)) (-2183 (($ (-751) (-751) |#1|) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2416 ((|#1| $) NIL (|has| |#1| (-6 (-4355 "*"))))) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3907 (($ (-625 (-625 |#1|))) 11)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3803 (((-625 (-625 |#1|)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3150 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-4245 (($) 12)) (-4229 (($ $ $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552))) NIL)) (-2457 (($ (-625 |#1|)) NIL) (($ (-625 $)) NIL)) (-4102 (((-112) $) NIL)) (-2426 ((|#1| $) NIL (|has| |#1| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-4004 (((-1232 |#1|) $ (-552)) NIL)) (-1683 (($ (-1232 |#1|)) NIL) (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-1232 |#1|) $ (-1232 |#1|)) 15) (((-1232 |#1|) (-1232 |#1|) $) NIL) (((-919 |#1|) $ (-919 |#1|)) 20)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-223 |#1|) (-13 (-667 |#1| (-1232 |#1|) (-1232 |#1|)) (-10 -8 (-15 * ((-919 |#1|) $ (-919 |#1|))) (-15 -4245 ($)) (-15 -4234 ($ |#1|)) (-15 -4223 ($ |#1|)) (-15 -4212 ($ |#1|)) (-15 -1487 ($ |#1| |#1| |#1|)) (-15 -1618 ($ |#1| |#1| |#1|)))) (-13 (-358) (-1171))) (T -223))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171))) (-5 *1 (-223 *3)))) (-4245 (*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-4234 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-4223 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-4212 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-1487 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-1618 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))))
+(-13 (-667 |#1| (-1232 |#1|) (-1232 |#1|)) (-10 -8 (-15 * ((-919 |#1|) $ (-919 |#1|))) (-15 -4245 ($)) (-15 -4234 ($ |#1|)) (-15 -4223 ($ |#1|)) (-15 -4212 ($ |#1|)) (-15 -1487 ($ |#1| |#1| |#1|)) (-15 -1618 ($ |#1| |#1| |#1|))))
+((-2873 (($ (-1 (-112) |#2|) $) 16)) (-1938 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-4255 (($) NIL) (($ (-625 |#2|)) 11)) (-2281 (((-112) $ $) 23)))
+(((-224 |#1| |#2|) (-10 -8 (-15 -2873 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -4255 (|#1| (-625 |#2|))) (-15 -4255 (|#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-225 |#2|) (-1073)) (T -224))
+NIL
+(-10 -8 (-15 -2873 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -4255 (|#1| (-625 |#2|))) (-15 -4255 (|#1|)) (-15 -2281 ((-112) |#1| |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-225 |#1|) (-138) (-1073)) (T -225))
NIL
(-13 (-231 |t#1|))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-4170 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) 11) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) 19) (($ $ (-751)) NIL) (($ $) 16)) (-3002 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-751)) 14) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)))
-(((-226 |#1| |#2|) (-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3002 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3002 (|#1| |#1| (-1149))) (-15 -3002 (|#1| |#1| (-622 (-1149)))) (-15 -3002 (|#1| |#1| (-1149) (-751))) (-15 -3002 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3002 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3002 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|)))) (-227 |#2|) (-1025)) (T -226))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) 11) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) 19) (($ $ (-751)) NIL) (($ $) 16)) (-3768 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-751)) 14) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)))
+(((-226 |#1| |#2|) (-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3768 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3768 (|#1| |#1| (-1149))) (-15 -3768 (|#1| |#1| (-625 (-1149)))) (-15 -3768 (|#1| |#1| (-1149) (-751))) (-15 -3768 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3768 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3768 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|)))) (-227 |#2|) (-1025)) (T -226))
NIL
-(-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3002 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3002 (|#1| |#1| (-1149))) (-15 -3002 (|#1| |#1| (-622 (-1149)))) (-15 -3002 (|#1| |#1| (-1149) (-751))) (-15 -3002 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3002 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3002 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4170 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-751)) 49) (($ $ (-622 (-1149)) (-622 (-751))) 42 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 41 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 40 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 39 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 37 (|has| |#1| (-229))) (($ $) 35 (|has| |#1| (-229)))) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-751)) 47) (($ $ (-622 (-1149)) (-622 (-751))) 46 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 45 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 44 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 43 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 38 (|has| |#1| (-229))) (($ $) 36 (|has| |#1| (-229)))) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3768 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3768 (|#1| |#1| (-1149))) (-15 -3768 (|#1| |#1| (-625 (-1149)))) (-15 -3768 (|#1| |#1| (-1149) (-751))) (-15 -3768 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3768 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3768 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3072 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-751)) 49) (($ $ (-625 (-1149)) (-625 (-751))) 42 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 41 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 40 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 39 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 37 (|has| |#1| (-229))) (($ $) 35 (|has| |#1| (-229)))) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-751)) 47) (($ $ (-625 (-1149)) (-625 (-751))) 46 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 45 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 44 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 43 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 38 (|has| |#1| (-229))) (($ $) 36 (|has| |#1| (-229)))) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-227 |#1|) (-138) (-1025)) (T -227))
-((-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) (-4170 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025)))) (-3002 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) (-3002 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025)))))
-(-13 (-1025) (-10 -8 (-15 -4170 ($ $ (-1 |t#1| |t#1|))) (-15 -4170 ($ $ (-1 |t#1| |t#1|) (-751))) (-15 -3002 ($ $ (-1 |t#1| |t#1|))) (-15 -3002 ($ $ (-1 |t#1| |t#1|) (-751))) (IF (|has| |t#1| (-229)) (-6 (-229)) |%noBranch|) (IF (|has| |t#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-229) |has| |#1| (-229)) ((-628 $) . T) ((-707) . T) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-4170 (($ $) NIL) (($ $ (-751)) 10)) (-3002 (($ $) 8) (($ $ (-751)) 12)))
-(((-228 |#1|) (-10 -8 (-15 -3002 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-751))) (-15 -3002 (|#1| |#1|)) (-15 -4170 (|#1| |#1|))) (-229)) (T -228))
-NIL
-(-10 -8 (-15 -3002 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-751))) (-15 -3002 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4170 (($ $) 36) (($ $ (-751)) 34)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $) 35) (($ $ (-751)) 33)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025)))))
+(-13 (-1025) (-10 -8 (-15 -3072 ($ $ (-1 |t#1| |t#1|))) (-15 -3072 ($ $ (-1 |t#1| |t#1|) (-751))) (-15 -3768 ($ $ (-1 |t#1| |t#1|))) (-15 -3768 ($ $ (-1 |t#1| |t#1|) (-751))) (IF (|has| |t#1| (-229)) (-6 (-229)) |%noBranch|) (IF (|has| |t#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-229) |has| |#1| (-229)) ((-628 $) . T) ((-707) . T) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-3072 (($ $) NIL) (($ $ (-751)) 10)) (-3768 (($ $) 8) (($ $ (-751)) 12)))
+(((-228 |#1|) (-10 -8 (-15 -3768 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3768 (|#1| |#1|)) (-15 -3072 (|#1| |#1|))) (-229)) (T -228))
+NIL
+(-10 -8 (-15 -3768 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3768 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3072 (($ $) 36) (($ $ (-751)) 34)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $) 35) (($ $ (-751)) 33)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-229) (-138)) (T -229))
-((-4170 (*1 *1 *1) (-4 *1 (-229))) (-3002 (*1 *1 *1) (-4 *1 (-229))) (-4170 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751)))) (-3002 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751)))))
-(-13 (-1025) (-10 -8 (-15 -4170 ($ $)) (-15 -3002 ($ $)) (-15 -4170 ($ $ (-751))) (-15 -3002 ($ $ (-751)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-1523 (($) 12) (($ (-622 |#2|)) NIL)) (-3759 (($ $) 14)) (-3884 (($ (-622 |#2|)) 10)) (-4317 (((-840) $) 21)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -1523 (|#1| (-622 |#2|))) (-15 -1523 (|#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -3759 (|#1| |#1|))) (-231 |#2|) (-1074)) (T -230))
-NIL
-(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -1523 (|#1| (-622 |#2|))) (-15 -1523 (|#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -3759 (|#1| |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-231 |#1|) (-138) (-1074)) (T -231))
-((-1523 (*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1074)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-231 *3)))) (-3764 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-231 *2)) (-4 *2 (-1074)))) (-3764 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) (-4 *3 (-1074)))) (-1631 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) (-4 *3 (-1074)))))
-(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -1523 ($)) (-15 -1523 ($ (-622 |t#1|))) (IF (|has| $ (-6 -4353)) (PROGN (-15 -3764 ($ |t#1| $)) (-15 -3764 ($ (-1 (-112) |t#1|) $)) (-15 -1631 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-1524 (((-2 (|:| |varOrder| (-622 (-1149))) (|:| |inhom| (-3 (-622 (-1231 (-751))) "failed")) (|:| |hom| (-622 (-1231 (-751))))) (-288 (-922 (-538)))) 27)))
-(((-232) (-10 -7 (-15 -1524 ((-2 (|:| |varOrder| (-622 (-1149))) (|:| |inhom| (-3 (-622 (-1231 (-751))) "failed")) (|:| |hom| (-622 (-1231 (-751))))) (-288 (-922 (-538))))))) (T -232))
-((-1524 (*1 *2 *3) (-12 (-5 *3 (-288 (-922 (-538)))) (-5 *2 (-2 (|:| |varOrder| (-622 (-1149))) (|:| |inhom| (-3 (-622 (-1231 (-751))) "failed")) (|:| |hom| (-622 (-1231 (-751)))))) (-5 *1 (-232)))))
-(-10 -7 (-15 -1524 ((-2 (|:| |varOrder| (-622 (-1149))) (|:| |inhom| (-3 (-622 (-1231 (-751))) "failed")) (|:| |hom| (-622 (-1231 (-751))))) (-288 (-922 (-538))))))
-((-3471 (((-751)) 51)) (-2362 (((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 $) (-1231 $)) 49) (((-669 |#3|) (-669 $)) 41) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-4271 (((-133)) 57)) (-4170 (($ $ (-1 |#3| |#3|) (-751)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-4317 (((-1231 |#3|) $) NIL) (($ |#3|) NIL) (((-840) $) NIL) (($ (-538)) 12) (($ (-402 (-538))) NIL)) (-3461 (((-751)) 15)) (-4308 (($ $ |#3|) 54)))
-(((-233 |#1| |#2| |#3|) (-10 -8 (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)) (-15 -3461 ((-751))) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -4317 (|#1| |#3|)) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -2362 ((-669 |#3|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 |#1|) (-1231 |#1|))) (-15 -3471 ((-751))) (-15 -4308 (|#1| |#1| |#3|)) (-15 -4271 ((-133))) (-15 -4317 ((-1231 |#3|) |#1|))) (-234 |#2| |#3|) (-751) (-1185)) (T -233))
-((-4271 (*1 *2) (-12 (-14 *4 (-751)) (-4 *5 (-1185)) (-5 *2 (-133)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-3471 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1185)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-3461 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1185)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))))
-(-10 -8 (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)) (-15 -3461 ((-751))) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -4317 (|#1| |#3|)) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -2362 ((-669 |#3|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 |#1|) (-1231 |#1|))) (-15 -3471 ((-751))) (-15 -4308 (|#1| |#1| |#3|)) (-15 -4271 ((-133))) (-15 -4317 ((-1231 |#3|) |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#2| (-1074)))) (-3539 (((-112) $) 72 (|has| |#2| (-130)))) (-4070 (($ (-895)) 125 (|has| |#2| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-2733 (($ $ $) 121 (|has| |#2| (-773)))) (-1368 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1271 (((-112) $ (-751)) 8)) (-3471 (((-751)) 107 (|has| |#2| (-363)))) (-3986 (((-538) $) 119 (|has| |#2| (-825)))) (-4147 ((|#2| $ (-538) |#2|) 52 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 67 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-3 (-402 (-538)) #1#) $) 64 (-3191 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1074)))) (-3507 (((-538) $) 68 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-402 (-538)) $) 65 (-3191 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) ((|#2| $) 60 (|has| |#2| (-1074)))) (-2362 (((-669 (-538)) (-669 $)) 106 (-3191 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 105 (-3191 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 104 (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) 103 (|has| |#2| (-1025)))) (-3821 (((-3 $ "failed") $) 79 (|has| |#2| (-707)))) (-3327 (($) 110 (|has| |#2| (-363)))) (-1637 ((|#2| $ (-538) |#2|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#2| $ (-538)) 51)) (-3537 (((-112) $) 117 (|has| |#2| (-825)))) (-2068 (((-622 |#2|) $) 30 (|has| $ (-6 -4353)))) (-2502 (((-112) $) 81 (|has| |#2| (-707)))) (-3538 (((-112) $) 118 (|has| |#2| (-825)))) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 116 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2511 (((-622 |#2|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 115 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2072 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2|) $) 35)) (-2126 (((-895) $) 109 (|has| |#2| (-363)))) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#2| (-1074)))) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-2492 (($ (-895)) 108 (|has| |#2| (-363)))) (-3594 (((-1093) $) 21 (|has| |#2| (-1074)))) (-4160 ((|#2| $) 42 (|has| (-538) (-827)))) (-2306 (($ $ |#2|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#2| $ (-538) |#2|) 50) ((|#2| $ (-538)) 49)) (-4196 ((|#2| $ $) 124 (|has| |#2| (-1025)))) (-1525 (($ (-1231 |#2|)) 126)) (-4271 (((-133)) 123 (|has| |#2| (-358)))) (-4170 (($ $) 98 (-3191 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) 96 (-3191 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) 94 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) 93 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) 92 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) 91 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) 84 (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1025)))) (-2069 (((-751) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4353))) (((-751) |#2| $) 28 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-1231 |#2|) $) 127) (($ (-538)) 66 (-3891 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (|has| |#2| (-1025)))) (($ (-402 (-538))) 63 (-3191 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (($ |#2|) 62 (|has| |#2| (-1074))) (((-840) $) 18 (|has| |#2| (-597 (-840))))) (-3461 (((-751)) 102 (|has| |#2| (-1025)))) (-2071 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4353)))) (-3742 (($ $) 120 (|has| |#2| (-825)))) (-2991 (($) 71 (|has| |#2| (-130)) CONST)) (-2997 (($) 82 (|has| |#2| (-707)) CONST)) (-3002 (($ $) 97 (-3191 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) 95 (-3191 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) 90 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) 89 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) 88 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) 87 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) 86 (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1025)))) (-2896 (((-112) $ $) 113 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2897 (((-112) $ $) 112 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-3387 (((-112) $ $) 20 (|has| |#2| (-1074)))) (-3017 (((-112) $ $) 114 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-3018 (((-112) $ $) 111 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-4308 (($ $ |#2|) 122 (|has| |#2| (-358)))) (-4197 (($ $ $) 100 (|has| |#2| (-1025))) (($ $) 99 (|has| |#2| (-1025)))) (-4199 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-751)) 80 (|has| |#2| (-707))) (($ $ (-895)) 77 (|has| |#2| (-707)))) (* (($ (-538) $) 101 (|has| |#2| (-1025))) (($ $ $) 78 (|has| |#2| (-707))) (($ $ |#2|) 76 (|has| |#2| (-707))) (($ |#2| $) 75 (|has| |#2| (-707))) (($ (-751) $) 73 (|has| |#2| (-130))) (($ (-895) $) 70 (|has| |#2| (-25)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-234 |#1| |#2|) (-138) (-751) (-1185)) (T -234))
-((-1525 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1185)) (-4 *1 (-234 *3 *4)))) (-4070 (*1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1025)) (-4 *4 (-1185)))) (-4196 (*1 *2 *1 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))))
-(-13 (-588 (-538) |t#2|) (-597 (-1231 |t#2|)) (-10 -8 (-6 -4353) (-15 -1525 ($ (-1231 |t#2|))) (IF (|has| |t#2| (-1074)) (-6 (-407 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1025)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-227 |t#2|)) (-6 (-372 |t#2|)) (-15 -4070 ($ (-895))) (-15 -4196 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-707)) (PROGN (-6 (-707)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |t#2| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#2| (-773)) (-6 (-773)) |%noBranch|) (IF (|has| |t#2| (-358)) (-6 (-1239 |t#2|)) |%noBranch|)))
-(((-21) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-23) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -3891 (|has| |#2| (-1074)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3891 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-597 (-840)) -3891 (|has| |#2| (-1074)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-597 (-840))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-597 (-1231 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-227 |#2|) |has| |#2| (-1025)) ((-229) -12 (|has| |#2| (-229)) (|has| |#2| (-1025))) ((-281 #1=(-538) |#2|) . T) ((-283 #1# |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-363) |has| |#2| (-363)) ((-372 |#2|) |has| |#2| (-1025)) ((-407 |#2|) |has| |#2| (-1074)) ((-483 |#2|) . T) ((-588 #1# |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-628 |#2|) -3891 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-628 $) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-621 (-538)) -12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025))) ((-621 |#2|) |has| |#2| (-1025)) ((-698 |#2|) -3891 (|has| |#2| (-358)) (|has| |#2| (-170))) ((-707) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-707)) (|has| |#2| (-170))) ((-771) |has| |#2| (-825)) ((-772) -3891 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-773) |has| |#2| (-773)) ((-774) -3891 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-777) -3891 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-825) |has| |#2| (-825)) ((-827) -3891 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-876 (-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025))) ((-1014 (-402 (-538))) -12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074))) ((-1014 (-538)) -12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) ((-1014 |#2|) |has| |#2| (-1074)) ((-1031 |#2|) -3891 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-1031 $) |has| |#2| (-170)) ((-1025) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-1032) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-1085) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-707)) (|has| |#2| (-170))) ((-1074) -3891 (|has| |#2| (-1074)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1185) . T) ((-1239 |#2|) |has| |#2| (-358)))
-((-2898 (((-112) $ $) NIL (|has| |#2| (-1074)))) (-3539 (((-112) $) NIL (|has| |#2| (-130)))) (-4070 (($ (-895)) 56 (|has| |#2| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) 60 (|has| |#2| (-773)))) (-1368 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1271 (((-112) $ (-751)) 17)) (-3471 (((-751)) NIL (|has| |#2| (-363)))) (-3986 (((-538) $) NIL (|has| |#2| (-825)))) (-4147 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1074)))) (-3507 (((-538) $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) ((|#2| $) 27 (|has| |#2| (-1074)))) (-2362 (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-3821 (((-3 $ "failed") $) 53 (|has| |#2| (-707)))) (-3327 (($) NIL (|has| |#2| (-363)))) (-1637 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ (-538)) 51)) (-3537 (((-112) $) NIL (|has| |#2| (-825)))) (-2068 (((-622 |#2|) $) 15 (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (|has| |#2| (-707)))) (-3538 (((-112) $) NIL (|has| |#2| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 20 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2511 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 (((-538) $) 50 (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2072 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2|) $) 41)) (-2126 (((-895) $) NIL (|has| |#2| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#2| (-1074)))) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#2| (-363)))) (-3594 (((-1093) $) NIL (|has| |#2| (-1074)))) (-4160 ((|#2| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ (-538) |#2|) NIL) ((|#2| $ (-538)) 21)) (-4196 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-1525 (($ (-1231 |#2|)) 18)) (-4271 (((-133)) NIL (|has| |#2| (-358)))) (-4170 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2069 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#2|) $) 10) (($ (-538)) NIL (-3891 (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (|has| |#2| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (($ |#2|) 13 (|has| |#2| (-1074))) (((-840) $) NIL (|has| |#2| (-597 (-840))))) (-3461 (((-751)) NIL (|has| |#2| (-1025)))) (-2071 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#2| (-825)))) (-2991 (($) 35 (|has| |#2| (-130)) CONST)) (-2997 (($) 38 (|has| |#2| (-707)) CONST)) (-3002 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3387 (((-112) $ $) 26 (|has| |#2| (-1074)))) (-3017 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3018 (((-112) $ $) 58 (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-4199 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-895)) NIL (|has| |#2| (-707)))) (* (($ (-538) $) NIL (|has| |#2| (-1025))) (($ $ $) 44 (|has| |#2| (-707))) (($ $ |#2|) 42 (|has| |#2| (-707))) (($ |#2| $) 43 (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-895) $) NIL (|has| |#2| (-25)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-235 |#1| |#2|) (-234 |#1| |#2|) (-751) (-1185)) (T -235))
+((-3072 (*1 *1 *1) (-4 *1 (-229))) (-3768 (*1 *1 *1) (-4 *1 (-229))) (-3072 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751)))))
+(-13 (-1025) (-10 -8 (-15 -3072 ($ $)) (-15 -3768 ($ $)) (-15 -3072 ($ $ (-751))) (-15 -3768 ($ $ (-751)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-4255 (($) 12) (($ (-625 |#2|)) NIL)) (-1871 (($ $) 14)) (-1695 (($ (-625 |#2|)) 10)) (-1683 (((-839) $) 21)))
+(((-230 |#1| |#2|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -4255 (|#1| (-625 |#2|))) (-15 -4255 (|#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -1871 (|#1| |#1|))) (-231 |#2|) (-1073)) (T -230))
+NIL
+(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -4255 (|#1| (-625 |#2|))) (-15 -4255 (|#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -1871 (|#1| |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-231 |#1|) (-138) (-1073)) (T -231))
+((-4255 (*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1073)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-231 *3)))) (-1938 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-231 *2)) (-4 *2 (-1073)))) (-1938 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) (-4 *3 (-1073)))) (-2873 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) (-4 *3 (-1073)))))
+(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -4255 ($)) (-15 -4255 ($ (-625 |t#1|))) (IF (|has| $ (-6 -4353)) (PROGN (-15 -1938 ($ |t#1| $)) (-15 -1938 ($ (-1 (-112) |t#1|) $)) (-15 -2873 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-4267 (((-2 (|:| |varOrder| (-625 (-1149))) (|:| |inhom| (-3 (-625 (-1232 (-751))) "failed")) (|:| |hom| (-625 (-1232 (-751))))) (-289 (-928 (-552)))) 27)))
+(((-232) (-10 -7 (-15 -4267 ((-2 (|:| |varOrder| (-625 (-1149))) (|:| |inhom| (-3 (-625 (-1232 (-751))) "failed")) (|:| |hom| (-625 (-1232 (-751))))) (-289 (-928 (-552))))))) (T -232))
+((-4267 (*1 *2 *3) (-12 (-5 *3 (-289 (-928 (-552)))) (-5 *2 (-2 (|:| |varOrder| (-625 (-1149))) (|:| |inhom| (-3 (-625 (-1232 (-751))) "failed")) (|:| |hom| (-625 (-1232 (-751)))))) (-5 *1 (-232)))))
+(-10 -7 (-15 -4267 ((-2 (|:| |varOrder| (-625 (-1149))) (|:| |inhom| (-3 (-625 (-1232 (-751))) "failed")) (|:| |hom| (-625 (-1232 (-751))))) (-289 (-928 (-552))))))
+((-2894 (((-751)) 51)) (-1794 (((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 $) (-1232 $)) 49) (((-669 |#3|) (-669 $)) 41) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-3904 (((-133)) 57)) (-3072 (($ $ (-1 |#3| |#3|) (-751)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-1683 (((-1232 |#3|) $) NIL) (($ |#3|) NIL) (((-839) $) NIL) (($ (-552)) 12) (($ (-402 (-552))) NIL)) (-4141 (((-751)) 15)) (-2404 (($ $ |#3|) 54)))
+(((-233 |#1| |#2| |#3|) (-10 -8 (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)) (-15 -4141 ((-751))) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1683 (|#1| |#3|)) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -1794 ((-669 |#3|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 |#1|) (-1232 |#1|))) (-15 -2894 ((-751))) (-15 -2404 (|#1| |#1| |#3|)) (-15 -3904 ((-133))) (-15 -1683 ((-1232 |#3|) |#1|))) (-234 |#2| |#3|) (-751) (-1186)) (T -233))
+((-3904 (*1 *2) (-12 (-14 *4 (-751)) (-4 *5 (-1186)) (-5 *2 (-133)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-2894 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1186)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-4141 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1186)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))))
+(-10 -8 (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)) (-15 -4141 ((-751))) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1683 (|#1| |#3|)) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -1794 ((-669 |#3|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 |#1|) (-1232 |#1|))) (-15 -2894 ((-751))) (-15 -2404 (|#1| |#1| |#3|)) (-15 -3904 ((-133))) (-15 -1683 ((-1232 |#3|) |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#2| (-1073)))) (-3641 (((-112) $) 72 (|has| |#2| (-130)))) (-2787 (($ (-897)) 125 (|has| |#2| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-1282 (($ $ $) 121 (|has| |#2| (-773)))) (-2077 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-3495 (((-112) $ (-751)) 8)) (-2894 (((-751)) 107 (|has| |#2| (-363)))) (-4127 (((-552) $) 119 (|has| |#2| (-825)))) (-1851 ((|#2| $ (-552) |#2|) 52 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-1893 (((-3 (-552) "failed") $) 67 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-3 (-402 (-552)) "failed") $) 64 (-3743 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1073)))) (-1895 (((-552) $) 68 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-402 (-552)) $) 65 (-3743 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) ((|#2| $) 60 (|has| |#2| (-1073)))) (-1794 (((-669 (-552)) (-669 $)) 106 (-3743 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 105 (-3743 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 104 (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) 103 (|has| |#2| (-1025)))) (-4174 (((-3 $ "failed") $) 79 (|has| |#2| (-707)))) (-3702 (($) 110 (|has| |#2| (-363)))) (-3692 ((|#2| $ (-552) |#2|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#2| $ (-552)) 51)) (-3620 (((-112) $) 117 (|has| |#2| (-825)))) (-3799 (((-625 |#2|) $) 30 (|has| $ (-6 -4353)))) (-3650 (((-112) $) 81 (|has| |#2| (-707)))) (-3630 (((-112) $) 118 (|has| |#2| (-825)))) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 116 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-3730 (((-625 |#2|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 115 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-3683 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2|) $) 35)) (-4318 (((-897) $) 109 (|has| |#2| (-363)))) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#2| (-1073)))) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-3123 (($ (-897)) 108 (|has| |#2| (-363)))) (-2831 (((-1093) $) 21 (|has| |#2| (-1073)))) (-2924 ((|#2| $) 42 (|has| (-552) (-827)))) (-2518 (($ $ |#2|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#2| $ (-552) |#2|) 50) ((|#2| $ (-552)) 49)) (-1443 ((|#2| $ $) 124 (|has| |#2| (-1025)))) (-3878 (($ (-1232 |#2|)) 126)) (-3904 (((-133)) 123 (|has| |#2| (-358)))) (-3072 (($ $) 98 (-3743 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) 96 (-3743 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) 94 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) 93 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) 92 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) 91 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) 84 (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1025)))) (-2840 (((-751) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4353))) (((-751) |#2| $) 28 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-1232 |#2|) $) 127) (($ (-552)) 66 (-1523 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (|has| |#2| (-1025)))) (($ (-402 (-552))) 63 (-3743 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (($ |#2|) 62 (|has| |#2| (-1073))) (((-839) $) 18 (|has| |#2| (-597 (-839))))) (-4141 (((-751)) 102 (|has| |#2| (-1025)))) (-1900 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4353)))) (-1727 (($ $) 120 (|has| |#2| (-825)))) (-2089 (($) 71 (|has| |#2| (-130)) CONST)) (-2100 (($) 82 (|has| |#2| (-707)) CONST)) (-3768 (($ $) 97 (-3743 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) 95 (-3743 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) 90 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) 89 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) 88 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) 87 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) 86 (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1025)))) (-2346 (((-112) $ $) 113 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2320 (((-112) $ $) 112 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2281 (((-112) $ $) 20 (|has| |#2| (-1073)))) (-2334 (((-112) $ $) 114 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2307 (((-112) $ $) 111 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2404 (($ $ |#2|) 122 (|has| |#2| (-358)))) (-2393 (($ $ $) 100 (|has| |#2| (-1025))) (($ $) 99 (|has| |#2| (-1025)))) (-2382 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-751)) 80 (|has| |#2| (-707))) (($ $ (-897)) 77 (|has| |#2| (-707)))) (* (($ (-552) $) 101 (|has| |#2| (-1025))) (($ $ $) 78 (|has| |#2| (-707))) (($ $ |#2|) 76 (|has| |#2| (-707))) (($ |#2| $) 75 (|has| |#2| (-707))) (($ (-751) $) 73 (|has| |#2| (-130))) (($ (-897) $) 70 (|has| |#2| (-25)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-234 |#1| |#2|) (-138) (-751) (-1186)) (T -234))
+((-3878 (*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1186)) (-4 *1 (-234 *3 *4)))) (-2787 (*1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1025)) (-4 *4 (-1186)))) (-1443 (*1 *2 *1 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))))
+(-13 (-588 (-552) |t#2|) (-597 (-1232 |t#2|)) (-10 -8 (-6 -4353) (-15 -3878 ($ (-1232 |t#2|))) (IF (|has| |t#2| (-1073)) (-6 (-406 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1025)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-227 |t#2|)) (-6 (-372 |t#2|)) (-15 -2787 ($ (-897))) (-15 -1443 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-707)) (PROGN (-6 (-707)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |t#2| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#2| (-773)) (-6 (-773)) |%noBranch|) (IF (|has| |t#2| (-358)) (-6 (-1239 |t#2|)) |%noBranch|)))
+(((-21) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-23) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -1523 (|has| |#2| (-1073)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -1523 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-597 (-839)) -1523 (|has| |#2| (-1073)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-597 (-839))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-597 (-1232 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-227 |#2|) |has| |#2| (-1025)) ((-229) -12 (|has| |#2| (-229)) (|has| |#2| (-1025))) ((-281 #0=(-552) |#2|) . T) ((-283 #0# |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-363) |has| |#2| (-363)) ((-372 |#2|) |has| |#2| (-1025)) ((-406 |#2|) |has| |#2| (-1073)) ((-483 |#2|) . T) ((-588 #0# |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-628 |#2|) -1523 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-628 $) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-621 (-552)) -12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025))) ((-621 |#2|) |has| |#2| (-1025)) ((-698 |#2|) -1523 (|has| |#2| (-358)) (|has| |#2| (-170))) ((-707) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-707)) (|has| |#2| (-170))) ((-771) |has| |#2| (-825)) ((-772) -1523 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-773) |has| |#2| (-773)) ((-774) -1523 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-775) -1523 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-825) |has| |#2| (-825)) ((-827) -1523 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-876 (-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025))) ((-1014 (-402 (-552))) -12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073))) ((-1014 (-552)) -12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) ((-1014 |#2|) |has| |#2| (-1073)) ((-1031 |#2|) -1523 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-1031 $) |has| |#2| (-170)) ((-1025) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-1032) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-1085) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-707)) (|has| |#2| (-170))) ((-1073) -1523 (|has| |#2| (-1073)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1186) . T) ((-1239 |#2|) |has| |#2| (-358)))
+((-1454 (((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|) 21)) (-2163 ((|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|) 23)) (-1996 (((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|)) 18)))
+(((-235 |#1| |#2| |#3|) (-10 -7 (-15 -1454 ((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -2163 (|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -1996 ((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|)))) (-751) (-1186) (-1186)) (T -235))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-236 *5 *6)) (-14 *5 (-751)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-5 *2 (-236 *5 *7)) (-5 *1 (-235 *5 *6 *7)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-236 *5 *6)) (-14 *5 (-751)) (-4 *6 (-1186)) (-4 *2 (-1186)) (-5 *1 (-235 *5 *6 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-236 *6 *7)) (-14 *6 (-751)) (-4 *7 (-1186)) (-4 *5 (-1186)) (-5 *2 (-236 *6 *5)) (-5 *1 (-235 *6 *7 *5)))))
+(-10 -7 (-15 -1454 ((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -2163 (|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -1996 ((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|))))
+((-1671 (((-112) $ $) NIL (|has| |#2| (-1073)))) (-3641 (((-112) $) NIL (|has| |#2| (-130)))) (-2787 (($ (-897)) 56 (|has| |#2| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) 60 (|has| |#2| (-773)))) (-2077 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-3495 (((-112) $ (-751)) 17)) (-2894 (((-751)) NIL (|has| |#2| (-363)))) (-4127 (((-552) $) NIL (|has| |#2| (-825)))) (-1851 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1073)))) (-1895 (((-552) $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) ((|#2| $) 27 (|has| |#2| (-1073)))) (-1794 (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-4174 (((-3 $ "failed") $) 53 (|has| |#2| (-707)))) (-3702 (($) NIL (|has| |#2| (-363)))) (-3692 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ (-552)) 51)) (-3620 (((-112) $) NIL (|has| |#2| (-825)))) (-3799 (((-625 |#2|) $) 15 (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (|has| |#2| (-707)))) (-3630 (((-112) $) NIL (|has| |#2| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 20 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3730 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 (((-552) $) 50 (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3683 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2|) $) 41)) (-4318 (((-897) $) NIL (|has| |#2| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#2| (-1073)))) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#2| (-363)))) (-2831 (((-1093) $) NIL (|has| |#2| (-1073)))) (-2924 ((|#2| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) 21)) (-1443 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-3878 (($ (-1232 |#2|)) 18)) (-3904 (((-133)) NIL (|has| |#2| (-358)))) (-3072 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2840 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#2|) $) 10) (($ (-552)) NIL (-1523 (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (|has| |#2| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (($ |#2|) 13 (|has| |#2| (-1073))) (((-839) $) NIL (|has| |#2| (-597 (-839))))) (-4141 (((-751)) NIL (|has| |#2| (-1025)))) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#2| (-825)))) (-2089 (($) 35 (|has| |#2| (-130)) CONST)) (-2100 (($) 38 (|has| |#2| (-707)) CONST)) (-3768 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2281 (((-112) $ $) 26 (|has| |#2| (-1073)))) (-2334 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2307 (((-112) $ $) 58 (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-2382 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-897)) NIL (|has| |#2| (-707)))) (* (($ (-552) $) NIL (|has| |#2| (-1025))) (($ $ $) 44 (|has| |#2| (-707))) (($ $ |#2|) 42 (|has| |#2| (-707))) (($ |#2| $) 43 (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-897) $) NIL (|has| |#2| (-25)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-236 |#1| |#2|) (-234 |#1| |#2|) (-751) (-1186)) (T -236))
NIL
(-234 |#1| |#2|)
-((-4201 (((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 21)) (-4202 ((|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 23)) (-4318 (((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)) 18)))
-(((-236 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -4202 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -4318 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) (-751) (-1185) (-1185)) (T -236))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-751)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-5 *2 (-235 *5 *7)) (-5 *1 (-236 *5 *6 *7)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-751)) (-4 *6 (-1185)) (-4 *2 (-1185)) (-5 *1 (-236 *5 *6 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-751)) (-4 *7 (-1185)) (-4 *5 (-1185)) (-5 *2 (-235 *6 *5)) (-5 *1 (-236 *6 *7 *5)))))
-(-10 -7 (-15 -4201 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -4202 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -4318 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|))))
-((-1529 (((-538) (-622 (-1131))) 24) (((-538) (-1131)) 19)) (-1528 (((-1237) (-622 (-1131))) 29) (((-1237) (-1131)) 28)) (-1526 (((-1131)) 14)) (-1527 (((-1131) (-538) (-1131)) 16)) (-4132 (((-622 (-1131)) (-622 (-1131)) (-538) (-1131)) 25) (((-1131) (-1131) (-538) (-1131)) 23)) (-2949 (((-622 (-1131)) (-622 (-1131))) 13) (((-622 (-1131)) (-1131)) 11)))
-(((-237) (-10 -7 (-15 -2949 ((-622 (-1131)) (-1131))) (-15 -2949 ((-622 (-1131)) (-622 (-1131)))) (-15 -1526 ((-1131))) (-15 -1527 ((-1131) (-538) (-1131))) (-15 -4132 ((-1131) (-1131) (-538) (-1131))) (-15 -4132 ((-622 (-1131)) (-622 (-1131)) (-538) (-1131))) (-15 -1528 ((-1237) (-1131))) (-15 -1528 ((-1237) (-622 (-1131)))) (-15 -1529 ((-538) (-1131))) (-15 -1529 ((-538) (-622 (-1131)))))) (T -237))
-((-1529 (*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-538)) (-5 *1 (-237)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-538)) (-5 *1 (-237)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1237)) (-5 *1 (-237)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-237)))) (-4132 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-622 (-1131))) (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *1 (-237)))) (-4132 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-237)))) (-1527 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-237)))) (-1526 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-237)))) (-2949 (*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-237)))) (-2949 (*1 *2 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-237)) (-5 *3 (-1131)))))
-(-10 -7 (-15 -2949 ((-622 (-1131)) (-1131))) (-15 -2949 ((-622 (-1131)) (-622 (-1131)))) (-15 -1526 ((-1131))) (-15 -1527 ((-1131) (-538) (-1131))) (-15 -4132 ((-1131) (-1131) (-538) (-1131))) (-15 -4132 ((-622 (-1131)) (-622 (-1131)) (-538) (-1131))) (-15 -1528 ((-1237) (-1131))) (-15 -1528 ((-1237) (-622 (-1131)))) (-15 -1529 ((-538) (-1131))) (-15 -1529 ((-538) (-622 (-1131)))))
-((** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 16)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ (-402 (-538)) $) 23) (($ $ (-402 (-538))) NIL)))
-(((-238 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-538))) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) (-239)) (T -238))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-538))) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 37)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 41)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 38)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ (-402 (-538)) $) 40) (($ $ (-402 (-538))) 39)))
+((-4298 (((-552) (-625 (-1131))) 24) (((-552) (-1131)) 19)) (-1274 (((-1237) (-625 (-1131))) 29) (((-1237) (-1131)) 28)) (-4277 (((-1131)) 14)) (-4288 (((-1131) (-552) (-1131)) 16)) (-2845 (((-625 (-1131)) (-625 (-1131)) (-552) (-1131)) 25) (((-1131) (-1131) (-552) (-1131)) 23)) (-3931 (((-625 (-1131)) (-625 (-1131))) 13) (((-625 (-1131)) (-1131)) 11)))
+(((-237) (-10 -7 (-15 -3931 ((-625 (-1131)) (-1131))) (-15 -3931 ((-625 (-1131)) (-625 (-1131)))) (-15 -4277 ((-1131))) (-15 -4288 ((-1131) (-552) (-1131))) (-15 -2845 ((-1131) (-1131) (-552) (-1131))) (-15 -2845 ((-625 (-1131)) (-625 (-1131)) (-552) (-1131))) (-15 -1274 ((-1237) (-1131))) (-15 -1274 ((-1237) (-625 (-1131)))) (-15 -4298 ((-552) (-1131))) (-15 -4298 ((-552) (-625 (-1131)))))) (T -237))
+((-4298 (*1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-552)) (-5 *1 (-237)))) (-4298 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-552)) (-5 *1 (-237)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1237)) (-5 *1 (-237)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-237)))) (-2845 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-625 (-1131))) (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *1 (-237)))) (-2845 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-237)))) (-4288 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-237)))) (-4277 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-237)))) (-3931 (*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-237)))) (-3931 (*1 *2 *3) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-237)) (-5 *3 (-1131)))))
+(-10 -7 (-15 -3931 ((-625 (-1131)) (-1131))) (-15 -3931 ((-625 (-1131)) (-625 (-1131)))) (-15 -4277 ((-1131))) (-15 -4288 ((-1131) (-552) (-1131))) (-15 -2845 ((-1131) (-1131) (-552) (-1131))) (-15 -2845 ((-625 (-1131)) (-625 (-1131)) (-552) (-1131))) (-15 -1274 ((-1237) (-1131))) (-15 -1274 ((-1237) (-625 (-1131)))) (-15 -4298 ((-552) (-1131))) (-15 -4298 ((-552) (-625 (-1131)))))
+((** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 16)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ (-402 (-552)) $) 23) (($ $ (-402 (-552))) NIL)))
+(((-238 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) (-239)) (T -238))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 37)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 41)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 38)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ (-402 (-552)) $) 40) (($ $ (-402 (-552))) 39)))
(((-239) (-138)) (T -239))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-538)))) (-2734 (*1 *1 *1) (-4 *1 (-239))))
-(-13 (-285) (-38 (-402 (-538))) (-10 -8 (-15 ** ($ $ (-538))) (-15 -2734 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-285) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-707) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-4156 (($ $) 57)) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1531 (($ $ $) 53 (|has| $ (-6 -4354)))) (-1530 (($ $ $) 52 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-1533 (($ $) 56)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-1532 (($ $) 55)) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-4157 ((|#1| $) 59)) (-3529 (($ $) 58)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47)) (-3362 (((-538) $ $) 44)) (-3996 (((-112) $) 46)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4150 (($ $ $) 54 (|has| $ (-6 -4354)))) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-240 |#1|) (-138) (-1185)) (T -240))
-((-4157 (*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-3529 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-1533 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-1532 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-4150 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-1531 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-1530 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185)))))
-(-13 (-986 |t#1|) (-10 -8 (-15 -4157 (|t#1| $)) (-15 -3529 ($ $)) (-15 -4156 ($ $)) (-15 -1533 ($ $)) (-15 -1532 ($ $)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -4150 ($ $ $)) (-15 -1531 ($ $ $)) (-15 -1530 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) NIL)) (-4154 ((|#1| $) NIL)) (-4156 (($ $) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1846 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-3242 (($ $) 10 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4146 (($ $ $) NIL (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) NIL)) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4155 ((|#1| $) NIL)) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-4158 (($ $) NIL) (($ $ (-751)) NIL)) (-2455 (($ $) NIL (|has| |#1| (-1074)))) (-1398 (($ $) 7 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) NIL (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) NIL)) (-3765 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3801 (((-112) $) NIL)) (-3778 (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074))) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) (-1 (-112) |#1|) $) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3192 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3872 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3897 (($ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-4157 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3970 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-3802 (((-112) $) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1198 (-538))) NIL) ((|#1| $ (-538)) NIL) ((|#1| $ (-538) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-751) $ "count") 16)) (-3362 (((-538) $ $) NIL)) (-1632 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-1534 (($ (-622 |#1|)) 22)) (-3996 (((-112) $) NIL)) (-4151 (($ $) NIL)) (-4149 (($ $) NIL (|has| $ (-6 -4354)))) (-4152 (((-751) $) NIL)) (-4153 (($ $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4150 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4161 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-622 $)) NIL) (($ $ |#1|) NIL)) (-4317 (($ (-622 |#1|)) 17) (((-622 |#1|) $) 18) (((-840) $) 21 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) 14 (|has| $ (-6 -4353)))))
-(((-241 |#1|) (-13 (-646 |#1|) (-10 -8 (-15 -4317 ($ (-622 |#1|))) (-15 -4317 ((-622 |#1|) $)) (-15 -1534 ($ (-622 |#1|))) (-15 -4159 ($ $ "unique")) (-15 -4159 ($ $ "sort")) (-15 -4159 ((-751) $ "count")))) (-827)) (T -241))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-1534 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-751)) (-5 *1 (-241 *4)) (-4 *4 (-827)))))
-(-13 (-646 |#1|) (-10 -8 (-15 -4317 ($ (-622 |#1|))) (-15 -4317 ((-622 |#1|) $)) (-15 -1534 ($ (-622 |#1|))) (-15 -4159 ($ $ "unique")) (-15 -4159 ($ $ "sort")) (-15 -4159 ((-751) $ "count"))))
-((-1535 (((-3 (-751) "failed") |#1| |#1| (-751)) 27)))
-(((-242 |#1|) (-10 -7 (-15 -1535 ((-3 (-751) "failed") |#1| |#1| (-751)))) (-13 (-707) (-363) (-10 -7 (-15 ** (|#1| |#1| (-538)))))) (T -242))
-((-1535 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-751)) (-4 *3 (-13 (-707) (-363) (-10 -7 (-15 ** (*3 *3 (-538)))))) (-5 *1 (-242 *3)))))
-(-10 -7 (-15 -1535 ((-3 (-751) "failed") |#1| |#1| (-751))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-841 |#1|)) $) NIL)) (-3419 (((-1143 $) $ (-841 |#1|)) NIL) (((-1143 |#2|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-2178 (($ $) NIL (|has| |#2| (-545)))) (-2176 (((-112) $) NIL (|has| |#2| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-841 |#1|))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL (|has| |#2| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-841 |#1|) #2#) $) NIL)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-841 |#1|) $) NIL)) (-4116 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-2059 (($ $ (-622 (-538))) NIL)) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#2| (-886)))) (-1721 (($ $ |#2| (-235 (-4316 |#1|) (-751)) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#2|) (-841 |#1|)) NIL) (($ (-1143 $) (-841 |#1|)) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#2| (-235 (-4316 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-841 |#1|)) NIL)) (-3153 (((-235 (-4316 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-1722 (($ (-1 (-235 (-4316 |#1|) (-751)) (-235 (-4316 |#1|) (-751))) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-3418 (((-3 (-841 |#1|) #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#2| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -2493 (-751))) #3#) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#2| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-886)))) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-622 (-841 |#1|)) (-622 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-622 (-841 |#1|)) (-622 $)) NIL)) (-4117 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4170 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4307 (((-235 (-4316 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-841 |#1|) (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#2| (-38 (-402 (-538)))) (|has| |#2| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#2| (-545)))) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-235 (-4316 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#2| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#2| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#2| (-38 (-402 (-538))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-243 |#1| |#2|) (-13 (-926 |#2| (-235 (-4316 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538)))))) (-622 (-1149)) (-1025)) (T -243))
-((-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-243 *3 *4)) (-14 *3 (-622 (-1149))) (-4 *4 (-1025)))))
-(-13 (-926 |#2| (-235 (-4316 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538))))))
-((-2898 (((-112) $ $) NIL)) (-1536 (((-1237) $) 15)) (-1538 (((-182) $) 9)) (-1537 (($ (-182)) 10)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 7)) (-3387 (((-112) $ $) 13)))
-(((-244) (-13 (-1074) (-10 -8 (-15 -1538 ((-182) $)) (-15 -1537 ($ (-182))) (-15 -1536 ((-1237) $))))) (T -244))
-((-1538 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-244)))) (-1537 (*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-244)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-244)))))
-(-13 (-1074) (-10 -8 (-15 -1538 ((-182) $)) (-15 -1537 ($ (-182))) (-15 -1536 ((-1237) $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4070 (($ (-895)) NIL (|has| |#4| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) NIL (|has| |#4| (-773)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#4| (-363)))) (-3986 (((-538) $) NIL (|has| |#4| (-825)))) (-4147 ((|#4| $ (-538) |#4|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1074))) (((-3 (-538) #1#) $) NIL (-12 (|has| |#4| (-1014 (-538))) (|has| |#4| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#4| (-1014 (-402 (-538)))) (|has| |#4| (-1074))))) (-3507 ((|#4| $) NIL (|has| |#4| (-1074))) (((-538) $) NIL (-12 (|has| |#4| (-1014 (-538))) (|has| |#4| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#4| (-1014 (-402 (-538)))) (|has| |#4| (-1074))))) (-2362 (((-2 (|:| -1700 (-669 |#4|)) (|:| |vec| (-1231 |#4|))) (-669 $) (-1231 $)) NIL (|has| |#4| (-1025))) (((-669 |#4|) (-669 $)) NIL (|has| |#4| (-1025))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025)))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))))) (-3821 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-3327 (($) NIL (|has| |#4| (-363)))) (-1637 ((|#4| $ (-538) |#4|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#4| $ (-538)) NIL)) (-3537 (((-112) $) NIL (|has| |#4| (-825)))) (-2068 (((-622 |#4|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-3538 (((-112) $) NIL (|has| |#4| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2511 (((-622 |#4|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2072 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#4| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#4| (-363)))) (-3594 (((-1093) $) NIL)) (-4160 ((|#4| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#4|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2312 (((-622 |#4|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#4| $ (-538) |#4|) NIL) ((|#4| $ (-538)) 12)) (-4196 ((|#4| $ $) NIL (|has| |#4| (-1025)))) (-1525 (($ (-1231 |#4|)) NIL)) (-4271 (((-133)) NIL (|has| |#4| (-358)))) (-4170 (($ $ (-1 |#4| |#4|) (-751)) NIL (|has| |#4| (-1025))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))))) (-2069 (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#4|) $) NIL) (((-840) $) NIL) (($ |#4|) NIL (|has| |#4| (-1074))) (($ (-538)) NIL (-3891 (-12 (|has| |#4| (-1014 (-538))) (|has| |#4| (-1074))) (|has| |#4| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#4| (-1014 (-402 (-538)))) (|has| |#4| (-1074))))) (-3461 (((-751)) NIL (|has| |#4| (-1025)))) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#4| (-825)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) CONST)) (-3002 (($ $ (-1 |#4| |#4|) (-751)) NIL (|has| |#4| (-1025))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-3018 (((-112) $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-4308 (($ $ |#4|) NIL (|has| |#4| (-358)))) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025))))) (($ $ (-895)) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (* (($ |#2| $) 14) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-707))) (($ |#4| $) NIL (|has| |#4| (-707))) (($ $ $) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-245 |#1| |#2| |#3| |#4|) (-13 (-234 |#1| |#4|) (-628 |#2|) (-628 |#3|)) (-895) (-1025) (-1096 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-628 |#2|)) (T -245))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-552)))) (-4092 (*1 *1 *1) (-4 *1 (-239))))
+(-13 (-285) (-38 (-402 (-552))) (-10 -8 (-15 ** ($ $ (-552))) (-15 -4092 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-285) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-707) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-2101 (($ $) 57)) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-3113 (($ $ $) 53 (|has| $ (-6 -4354)))) (-3105 (($ $ $) 52 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-2880 (($ $) 56)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2824 (($ $) 55)) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-1437 ((|#1| $) 59)) (-3545 (($ $) 58)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47)) (-1389 (((-552) $ $) 44)) (-2316 (((-112) $) 46)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2342 (($ $ $) 54 (|has| $ (-6 -4354)))) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-240 |#1|) (-138) (-1186)) (T -240))
+((-1437 (*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-3545 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-2101 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-2880 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-2824 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-2342 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-3113 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-3105 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186)))))
+(-13 (-986 |t#1|) (-10 -8 (-15 -1437 (|t#1| $)) (-15 -3545 ($ $)) (-15 -2101 ($ $)) (-15 -2880 ($ $)) (-15 -2824 ($ $)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -2342 ($ $ $)) (-15 -3113 ($ $ $)) (-15 -3105 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) NIL)) (-3897 ((|#1| $) NIL)) (-2101 (($ $) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3218 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1800 (($ $) 10 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2301 (($ $ $) NIL (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "rest" $) NIL (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) NIL)) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2673 ((|#1| $) NIL)) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2936 (($ $) NIL) (($ $ (-751)) NIL)) (-3238 (($ $) NIL (|has| |#1| (-1073)))) (-2959 (($ $) 7 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) NIL (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) NIL)) (-1416 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-4011 (((-112) $) NIL)) (-2483 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073))) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) (-1 (-112) |#1|) $) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3260 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3280 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2801 (($ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-1437 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3966 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-4022 (((-112) $) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1199 (-552))) NIL) ((|#1| $ (-552)) NIL) ((|#1| $ (-552) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-751) $ "count") 16)) (-1389 (((-552) $ $) NIL)) (-2884 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-3838 (($ (-625 |#1|)) 22)) (-2316 (((-112) $) NIL)) (-2356 (($ $) NIL)) (-2330 (($ $) NIL (|has| $ (-6 -4354)))) (-2368 (((-751) $) NIL)) (-2379 (($ $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-2342 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3402 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-625 $)) NIL) (($ $ |#1|) NIL)) (-1683 (($ (-625 |#1|)) 17) (((-625 |#1|) $) 18) (((-839) $) 21 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) 14 (|has| $ (-6 -4353)))))
+(((-241 |#1|) (-13 (-646 |#1|) (-10 -8 (-15 -1683 ($ (-625 |#1|))) (-15 -1683 ((-625 |#1|) $)) (-15 -3838 ($ (-625 |#1|))) (-15 -2154 ($ $ "unique")) (-15 -2154 ($ $ "sort")) (-15 -2154 ((-751) $ "count")))) (-827)) (T -241))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-751)) (-5 *1 (-241 *4)) (-4 *4 (-827)))))
+(-13 (-646 |#1|) (-10 -8 (-15 -1683 ($ (-625 |#1|))) (-15 -1683 ((-625 |#1|) $)) (-15 -3838 ($ (-625 |#1|))) (-15 -2154 ($ $ "unique")) (-15 -2154 ($ $ "sort")) (-15 -2154 ((-751) $ "count"))))
+((-3122 (((-3 (-751) "failed") |#1| |#1| (-751)) 27)))
+(((-242 |#1|) (-10 -7 (-15 -3122 ((-3 (-751) "failed") |#1| |#1| (-751)))) (-13 (-707) (-363) (-10 -7 (-15 ** (|#1| |#1| (-552)))))) (T -242))
+((-3122 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-751)) (-4 *3 (-13 (-707) (-363) (-10 -7 (-15 ** (*3 *3 (-552)))))) (-5 *1 (-242 *3)))))
+(-10 -7 (-15 -3122 ((-3 (-751) "failed") |#1| |#1| (-751))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-841 |#1|)) $) NIL)) (-3793 (((-1145 $) $ (-841 |#1|)) NIL) (((-1145 |#2|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3528 (($ $) NIL (|has| |#2| (-544)))) (-3509 (((-112) $) NIL (|has| |#2| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-841 |#1|))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL (|has| |#2| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-841 |#1|) "failed") $) NIL)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-841 |#1|) $) NIL)) (-3207 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-1801 (($ $ (-625 (-552))) NIL)) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#2| (-885)))) (-1347 (($ $ |#2| (-236 (-1471 |#1|) (-751)) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#2|) (-841 |#1|)) NIL) (($ (-1145 $) (-841 |#1|)) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#2| (-236 (-1471 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-841 |#1|)) NIL)) (-4134 (((-236 (-1471 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1357 (($ (-1 (-236 (-1471 |#1|) (-751)) (-236 (-1471 |#1|) (-751))) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-1942 (((-3 (-841 |#1|) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#2| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -3564 (-751))) "failed") $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#2| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-885)))) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-625 (-841 |#1|)) (-625 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-625 (-841 |#1|)) (-625 $)) NIL)) (-3217 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-3072 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4276 (((-236 (-1471 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-841 |#1|) (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#2| (-38 (-402 (-552)))) (|has| |#2| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-236 (-1471 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#2| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#2| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#2| (-38 (-402 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-243 |#1| |#2|) (-13 (-925 |#2| (-236 (-1471 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552)))))) (-625 (-1149)) (-1025)) (T -243))
+((-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-243 *3 *4)) (-14 *3 (-625 (-1149))) (-4 *4 (-1025)))))
+(-13 (-925 |#2| (-236 (-1471 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552))))))
+((-1671 (((-112) $ $) NIL)) (-2323 (((-1237) $) 15)) (-3142 (((-181) $) 9)) (-3131 (($ (-181)) 10)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 7)) (-2281 (((-112) $ $) 13)))
+(((-244) (-13 (-1073) (-10 -8 (-15 -3142 ((-181) $)) (-15 -3131 ($ (-181))) (-15 -2323 ((-1237) $))))) (T -244))
+((-3142 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-244)))) (-3131 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-244)))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-244)))))
+(-13 (-1073) (-10 -8 (-15 -3142 ((-181) $)) (-15 -3131 ($ (-181))) (-15 -2323 ((-1237) $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2787 (($ (-897)) NIL (|has| |#4| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) NIL (|has| |#4| (-773)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#4| (-363)))) (-4127 (((-552) $) NIL (|has| |#4| (-825)))) (-1851 ((|#4| $ (-552) |#4|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1073))) (((-3 (-552) "failed") $) NIL (-12 (|has| |#4| (-1014 (-552))) (|has| |#4| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#4| (-1014 (-402 (-552)))) (|has| |#4| (-1073))))) (-1895 ((|#4| $) NIL (|has| |#4| (-1073))) (((-552) $) NIL (-12 (|has| |#4| (-1014 (-552))) (|has| |#4| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#4| (-1014 (-402 (-552)))) (|has| |#4| (-1073))))) (-1794 (((-2 (|:| -2351 (-669 |#4|)) (|:| |vec| (-1232 |#4|))) (-669 $) (-1232 $)) NIL (|has| |#4| (-1025))) (((-669 |#4|) (-669 $)) NIL (|has| |#4| (-1025))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))))) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-3702 (($) NIL (|has| |#4| (-363)))) (-3692 ((|#4| $ (-552) |#4|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#4| $ (-552)) NIL)) (-3620 (((-112) $) NIL (|has| |#4| (-825)))) (-3799 (((-625 |#4|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-3630 (((-112) $) NIL (|has| |#4| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-3730 (((-625 |#4|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-3683 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#4| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#4| (-363)))) (-2831 (((-1093) $) NIL)) (-2924 ((|#4| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#4|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1358 (((-625 |#4|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#4| $ (-552) |#4|) NIL) ((|#4| $ (-552)) 12)) (-1443 ((|#4| $ $) NIL (|has| |#4| (-1025)))) (-3878 (($ (-1232 |#4|)) NIL)) (-3904 (((-133)) NIL (|has| |#4| (-358)))) (-3072 (($ $ (-1 |#4| |#4|) (-751)) NIL (|has| |#4| (-1025))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))))) (-2840 (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#4|) $) NIL) (((-839) $) NIL) (($ |#4|) NIL (|has| |#4| (-1073))) (($ (-552)) NIL (-1523 (-12 (|has| |#4| (-1014 (-552))) (|has| |#4| (-1073))) (|has| |#4| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#4| (-1014 (-402 (-552)))) (|has| |#4| (-1073))))) (-4141 (((-751)) NIL (|has| |#4| (-1025)))) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#4| (-825)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) CONST)) (-3768 (($ $ (-1 |#4| |#4|) (-751)) NIL (|has| |#4| (-1025))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2307 (((-112) $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2404 (($ $ |#4|) NIL (|has| |#4| (-358)))) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025))))) (($ $ (-897)) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (* (($ |#2| $) 14) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-707))) (($ |#4| $) NIL (|has| |#4| (-707))) (($ $ $) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-245 |#1| |#2| |#3| |#4|) (-13 (-234 |#1| |#4|) (-628 |#2|) (-628 |#3|)) (-897) (-1025) (-1096 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-628 |#2|)) (T -245))
NIL
(-13 (-234 |#1| |#4|) (-628 |#2|) (-628 |#3|))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4070 (($ (-895)) NIL (|has| |#3| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) NIL (|has| |#3| (-773)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#3| (-363)))) (-3986 (((-538) $) NIL (|has| |#3| (-825)))) (-4147 ((|#3| $ (-538) |#3|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1074))) (((-3 (-538) #1#) $) NIL (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074))))) (-3507 ((|#3| $) NIL (|has| |#3| (-1074))) (((-538) $) NIL (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074))))) (-2362 (((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 $) (-1231 $)) NIL (|has| |#3| (-1025))) (((-669 |#3|) (-669 $)) NIL (|has| |#3| (-1025))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025)))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))))) (-3821 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-3327 (($) NIL (|has| |#3| (-363)))) (-1637 ((|#3| $ (-538) |#3|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#3| $ (-538)) NIL)) (-3537 (((-112) $) NIL (|has| |#3| (-825)))) (-2068 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-3538 (((-112) $) NIL (|has| |#3| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2511 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2072 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#3| |#3|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#3| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#3| (-363)))) (-3594 (((-1093) $) NIL)) (-4160 ((|#3| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#3|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-622 |#3|) (-622 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-2312 (((-622 |#3|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#3| $ (-538) |#3|) NIL) ((|#3| $ (-538)) 11)) (-4196 ((|#3| $ $) NIL (|has| |#3| (-1025)))) (-1525 (($ (-1231 |#3|)) NIL)) (-4271 (((-133)) NIL (|has| |#3| (-358)))) (-4170 (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))))) (-2069 (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353))) (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#3|) $) NIL) (((-840) $) NIL) (($ |#3|) NIL (|has| |#3| (-1074))) (($ (-538)) NIL (-3891 (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074))) (|has| |#3| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074))))) (-3461 (((-751)) NIL (|has| |#3| (-1025)))) (-2071 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#3| (-825)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) CONST)) (-3002 (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3018 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-4308 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025))))) (($ $ (-895)) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (* (($ |#2| $) 13) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-707))) (($ |#3| $) NIL (|has| |#3| (-707))) (($ $ $) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2787 (($ (-897)) NIL (|has| |#3| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) NIL (|has| |#3| (-773)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#3| (-363)))) (-4127 (((-552) $) NIL (|has| |#3| (-825)))) (-1851 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1073))) (((-3 (-552) "failed") $) NIL (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073))))) (-1895 ((|#3| $) NIL (|has| |#3| (-1073))) (((-552) $) NIL (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073))))) (-1794 (((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 $) (-1232 $)) NIL (|has| |#3| (-1025))) (((-669 |#3|) (-669 $)) NIL (|has| |#3| (-1025))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))))) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-3702 (($) NIL (|has| |#3| (-363)))) (-3692 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#3| $ (-552)) NIL)) (-3620 (((-112) $) NIL (|has| |#3| (-825)))) (-3799 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-3630 (((-112) $) NIL (|has| |#3| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3730 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3683 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#3| |#3|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#3| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#3| (-363)))) (-2831 (((-1093) $) NIL)) (-2924 ((|#3| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#3|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-625 |#3|) (-625 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-1358 (((-625 |#3|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#3| $ (-552) |#3|) NIL) ((|#3| $ (-552)) 11)) (-1443 ((|#3| $ $) NIL (|has| |#3| (-1025)))) (-3878 (($ (-1232 |#3|)) NIL)) (-3904 (((-133)) NIL (|has| |#3| (-358)))) (-3072 (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))))) (-2840 (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353))) (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#3|) $) NIL) (((-839) $) NIL) (($ |#3|) NIL (|has| |#3| (-1073))) (($ (-552)) NIL (-1523 (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073))) (|has| |#3| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073))))) (-4141 (((-751)) NIL (|has| |#3| (-1025)))) (-1900 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#3| (-825)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) CONST)) (-3768 (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2307 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2404 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025))))) (($ $ (-897)) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (* (($ |#2| $) 13) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-707))) (($ |#3| $) NIL (|has| |#3| (-707))) (($ $ $) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
(((-246 |#1| |#2| |#3|) (-13 (-234 |#1| |#3|) (-628 |#2|)) (-751) (-1025) (-628 |#2|)) (T -246))
NIL
(-13 (-234 |#1| |#3|) (-628 |#2|))
-((-1543 (((-622 (-751)) $) 47) (((-622 (-751)) $ |#3|) 50)) (-1577 (((-751) $) 49) (((-751) $ |#3|) 52)) (-1539 (($ $) 65)) (-3508 (((-3 |#2| #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 (-538) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4131 (((-751) $ |#3|) 39) (((-751) $) 36)) (-1578 (((-1 $ (-751)) |#3|) 15) (((-1 $ (-751)) $) 77)) (-1541 ((|#4| $) 58)) (-1542 (((-112) $) 56)) (-1540 (($ $) 64)) (-4127 (($ $ (-622 (-288 $))) 97) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-622 |#4|) (-622 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-622 |#4|) (-622 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-622 |#3|) (-622 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-622 |#3|) (-622 |#2|)) 84)) (-4170 (($ $ |#4|) NIL) (($ $ (-622 |#4|)) NIL) (($ $ |#4| (-751)) NIL) (($ $ (-622 |#4|) (-622 (-751))) NIL) (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1544 (((-622 |#3|) $) 75)) (-4307 ((|#5| $) NIL) (((-751) $ |#4|) NIL) (((-622 (-751)) $ (-622 |#4|)) NIL) (((-751) $ |#3|) 44)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-402 (-538))) NIL) (($ $) NIL)))
-(((-247 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4127 (|#1| |#1| (-622 |#3|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#3| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#3|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#3| |#1|)) (-15 -1578 ((-1 |#1| (-751)) |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1541 (|#4| |#1|)) (-15 -1542 ((-112) |#1|)) (-15 -1577 ((-751) |#1| |#3|)) (-15 -1543 ((-622 (-751)) |#1| |#3|)) (-15 -1577 ((-751) |#1|)) (-15 -1543 ((-622 (-751)) |#1|)) (-15 -4307 ((-751) |#1| |#3|)) (-15 -4131 ((-751) |#1|)) (-15 -4131 ((-751) |#1| |#3|)) (-15 -1544 ((-622 |#3|) |#1|)) (-15 -1578 ((-1 |#1| (-751)) |#3|)) (-15 -3508 ((-3 |#3| #1="failed") |#1|)) (-15 -4317 (|#1| |#3|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -4307 ((-622 (-751)) |#1| (-622 |#4|))) (-15 -4307 ((-751) |#1| |#4|)) (-15 -3508 ((-3 |#4| #1#) |#1|)) (-15 -4317 (|#1| |#4|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#4| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#4| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4307 (|#5| |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4170 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -4170 (|#1| |#1| |#4| (-751))) (-15 -4170 (|#1| |#1| (-622 |#4|))) (-15 -4170 (|#1| |#1| |#4|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-248 |#2| |#3| |#4| |#5|) (-1025) (-827) (-261 |#3|) (-773)) (T -247))
+((-3169 (((-625 (-751)) $) 47) (((-625 (-751)) $ |#3|) 50)) (-3469 (((-751) $) 49) (((-751) $ |#3|) 52)) (-3153 (($ $) 65)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2172 (((-751) $ |#3|) 39) (((-751) $) 36)) (-3479 (((-1 $ (-751)) |#3|) 15) (((-1 $ (-751)) $) 77)) (-2578 ((|#4| $) 58)) (-3162 (((-112) $) 56)) (-4186 (($ $) 64)) (-4073 (($ $ (-625 (-289 $))) 97) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-625 |#4|) (-625 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-625 |#4|) (-625 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-625 |#3|) (-625 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-625 |#3|) (-625 |#2|)) 84)) (-3072 (($ $ |#4|) NIL) (($ $ (-625 |#4|)) NIL) (($ $ |#4| (-751)) NIL) (($ $ (-625 |#4|) (-625 (-751))) NIL) (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3177 (((-625 |#3|) $) 75)) (-4276 ((|#5| $) NIL) (((-751) $ |#4|) NIL) (((-625 (-751)) $ (-625 |#4|)) NIL) (((-751) $ |#3|) 44)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-402 (-552))) NIL) (($ $) NIL)))
+(((-247 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -4073 (|#1| |#1| (-625 |#3|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#3| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#3|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#3| |#1|)) (-15 -3479 ((-1 |#1| (-751)) |#1|)) (-15 -3153 (|#1| |#1|)) (-15 -4186 (|#1| |#1|)) (-15 -2578 (|#4| |#1|)) (-15 -3162 ((-112) |#1|)) (-15 -3469 ((-751) |#1| |#3|)) (-15 -3169 ((-625 (-751)) |#1| |#3|)) (-15 -3469 ((-751) |#1|)) (-15 -3169 ((-625 (-751)) |#1|)) (-15 -4276 ((-751) |#1| |#3|)) (-15 -2172 ((-751) |#1|)) (-15 -2172 ((-751) |#1| |#3|)) (-15 -3177 ((-625 |#3|) |#1|)) (-15 -3479 ((-1 |#1| (-751)) |#3|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -1683 (|#1| |#3|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -4276 ((-625 (-751)) |#1| (-625 |#4|))) (-15 -4276 ((-751) |#1| |#4|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -1683 (|#1| |#4|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#4| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#4| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4276 (|#5| |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -3072 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3072 (|#1| |#1| |#4| (-751))) (-15 -3072 (|#1| |#1| (-625 |#4|))) (-15 -3072 (|#1| |#1| |#4|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-248 |#2| |#3| |#4| |#5|) (-1025) (-827) (-261 |#3|) (-773)) (T -247))
NIL
-(-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4127 (|#1| |#1| (-622 |#3|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#3| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#3|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#3| |#1|)) (-15 -1578 ((-1 |#1| (-751)) |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1541 (|#4| |#1|)) (-15 -1542 ((-112) |#1|)) (-15 -1577 ((-751) |#1| |#3|)) (-15 -1543 ((-622 (-751)) |#1| |#3|)) (-15 -1577 ((-751) |#1|)) (-15 -1543 ((-622 (-751)) |#1|)) (-15 -4307 ((-751) |#1| |#3|)) (-15 -4131 ((-751) |#1|)) (-15 -4131 ((-751) |#1| |#3|)) (-15 -1544 ((-622 |#3|) |#1|)) (-15 -1578 ((-1 |#1| (-751)) |#3|)) (-15 -3508 ((-3 |#3| #1="failed") |#1|)) (-15 -4317 (|#1| |#3|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -4307 ((-622 (-751)) |#1| (-622 |#4|))) (-15 -4307 ((-751) |#1| |#4|)) (-15 -3508 ((-3 |#4| #1#) |#1|)) (-15 -4317 (|#1| |#4|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#4| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#4| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4307 (|#5| |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4170 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -4170 (|#1| |#1| |#4| (-751))) (-15 -4170 (|#1| |#1| (-622 |#4|))) (-15 -4170 (|#1| |#1| |#4|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1543 (((-622 (-751)) $) 212) (((-622 (-751)) $ |#2|) 210)) (-1577 (((-751) $) 211) (((-751) $ |#2|) 209)) (-3417 (((-622 |#3|) $) 108)) (-3419 (((-1143 $) $ |#3|) 123) (((-1143 |#1|) $) 122)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-545)))) (-2178 (($ $) 86 (|has| |#1| (-545)))) (-2176 (((-112) $) 88 (|has| |#1| (-545)))) (-3152 (((-751) $) 110) (((-751) $ (-622 |#3|)) 109)) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 98 (|has| |#1| (-886)))) (-4134 (($ $) 96 (|has| |#1| (-446)))) (-4329 (((-400 $) $) 95 (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 101 (|has| |#1| (-886)))) (-1539 (($ $) 205)) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| #2="failed") $) 162) (((-3 (-402 (-538)) #2#) $) 160 (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) 158 (|has| |#1| (-1014 (-538)))) (((-3 |#3| #2#) $) 134) (((-3 |#2| #2#) $) 219)) (-3507 ((|#1| $) 163) (((-402 (-538)) $) 159 (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) 157 (|has| |#1| (-1014 (-538)))) ((|#3| $) 133) ((|#2| $) 218)) (-4116 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4319 (($ $) 152)) (-2362 (((-669 (-538)) (-669 $)) 132 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 131 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-3821 (((-3 $ "failed") $) 32)) (-3857 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-3151 (((-622 $) $) 107)) (-4086 (((-112) $) 94 (|has| |#1| (-886)))) (-1721 (($ $ |#1| |#4| $) 170)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 82 (-12 (|has| |#3| (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 81 (-12 (|has| |#3| (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ |#2|) 215) (((-751) $) 214)) (-2502 (((-112) $) 30)) (-2510 (((-751) $) 167)) (-3420 (($ (-1143 |#1|) |#3|) 115) (($ (-1143 $) |#3|) 114)) (-3154 (((-622 $) $) 124)) (-4297 (((-112) $) 150)) (-3226 (($ |#1| |#4|) 151) (($ $ |#3| (-751)) 117) (($ $ (-622 |#3|) (-622 (-751))) 116)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#3|) 118)) (-3153 ((|#4| $) 168) (((-751) $ |#3|) 120) (((-622 (-751)) $ (-622 |#3|)) 119)) (-3677 (($ $ $) 77 (|has| |#1| (-827)))) (-3678 (($ $ $) 76 (|has| |#1| (-827)))) (-1722 (($ (-1 |#4| |#4|) $) 169)) (-4318 (($ (-1 |#1| |#1|) $) 149)) (-1578 (((-1 $ (-751)) |#2|) 217) (((-1 $ (-751)) $) 204 (|has| |#1| (-229)))) (-3418 (((-3 |#3| #3="failed") $) 121)) (-3227 (($ $) 147)) (-3525 ((|#1| $) 146)) (-1541 ((|#3| $) 207)) (-2013 (($ (-622 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-3593 (((-1131) $) 9)) (-1542 (((-112) $) 208)) (-3156 (((-3 (-622 $) #3#) $) 112)) (-3155 (((-3 (-622 $) #3#) $) 113)) (-3157 (((-3 (-2 (|:| |var| |#3|) (|:| -2493 (-751))) #3#) $) 111)) (-1540 (($ $) 206)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 164)) (-1915 ((|#1| $) 165)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 93 (|has| |#1| (-446)))) (-3495 (($ (-622 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 100 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 99 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 97 (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-622 $) (-622 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-622 |#3|) (-622 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-622 |#3|) (-622 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-229))) (($ $ (-622 |#2|) (-622 $)) 202 (|has| |#1| (-229))) (($ $ |#2| |#1|) 201 (|has| |#1| (-229))) (($ $ (-622 |#2|) (-622 |#1|)) 200 (|has| |#1| (-229)))) (-4117 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4170 (($ $ |#3|) 40) (($ $ (-622 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-622 |#3|) (-622 (-751))) 37) (($ $) 236 (|has| |#1| (-229))) (($ $ (-751)) 234 (|has| |#1| (-229))) (($ $ (-1149)) 232 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 231 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 230 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 229 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-1544 (((-622 |#2|) $) 216)) (-4307 ((|#4| $) 148) (((-751) $ |#3|) 128) (((-622 (-751)) $ (-622 |#3|)) 127) (((-751) $ |#2|) 213)) (-4330 (((-866 (-373)) $) 80 (-12 (|has| |#3| (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) 79 (-12 (|has| |#3| (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) 78 (-12 (|has| |#3| (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 102 (-3191 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-402 (-538))) 70 (-3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| |#1| (-38 (-402 (-538)))))) (($ $) 83 (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) 166)) (-4040 ((|#1| $ |#4|) 153) (($ $ |#3| (-751)) 126) (($ $ (-622 |#3|) (-622 (-751))) 125)) (-3035 (((-3 $ #1#) $) 71 (-3891 (-3191 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 28)) (-1720 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 87 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ |#3|) 36) (($ $ (-622 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-622 |#3|) (-622 (-751))) 33) (($ $) 235 (|has| |#1| (-229))) (($ $ (-751)) 233 (|has| |#1| (-229))) (($ $ (-1149)) 228 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 227 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 226 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 225 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2896 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 73 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 75 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 72 (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 156 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 155 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -4073 (|#1| |#1| (-625 |#3|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#3| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#3|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#3| |#1|)) (-15 -3479 ((-1 |#1| (-751)) |#1|)) (-15 -3153 (|#1| |#1|)) (-15 -4186 (|#1| |#1|)) (-15 -2578 (|#4| |#1|)) (-15 -3162 ((-112) |#1|)) (-15 -3469 ((-751) |#1| |#3|)) (-15 -3169 ((-625 (-751)) |#1| |#3|)) (-15 -3469 ((-751) |#1|)) (-15 -3169 ((-625 (-751)) |#1|)) (-15 -4276 ((-751) |#1| |#3|)) (-15 -2172 ((-751) |#1|)) (-15 -2172 ((-751) |#1| |#3|)) (-15 -3177 ((-625 |#3|) |#1|)) (-15 -3479 ((-1 |#1| (-751)) |#3|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -1683 (|#1| |#3|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -4276 ((-625 (-751)) |#1| (-625 |#4|))) (-15 -4276 ((-751) |#1| |#4|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -1683 (|#1| |#4|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#4| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#4| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4276 (|#5| |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -3072 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3072 (|#1| |#1| |#4| (-751))) (-15 -3072 (|#1| |#1| (-625 |#4|))) (-15 -3072 (|#1| |#1| |#4|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3169 (((-625 (-751)) $) 212) (((-625 (-751)) $ |#2|) 210)) (-3469 (((-751) $) 211) (((-751) $ |#2|) 209)) (-3982 (((-625 |#3|) $) 108)) (-3793 (((-1145 $) $ |#3|) 123) (((-1145 |#1|) $) 122)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3528 (($ $) 86 (|has| |#1| (-544)))) (-3509 (((-112) $) 88 (|has| |#1| (-544)))) (-4121 (((-751) $) 110) (((-751) $ (-625 |#3|)) 109)) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 98 (|has| |#1| (-885)))) (-2194 (($ $) 96 (|has| |#1| (-446)))) (-1330 (((-413 $) $) 95 (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 101 (|has| |#1| (-885)))) (-3153 (($ $) 205)) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 162) (((-3 (-402 (-552)) "failed") $) 160 (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1014 (-552)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-1895 ((|#1| $) 163) (((-402 (-552)) $) 159 (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) 157 (|has| |#1| (-1014 (-552)))) ((|#3| $) 133) ((|#2| $) 218)) (-3207 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4169 (($ $) 152)) (-1794 (((-669 (-552)) (-669 $)) 132 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 131 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-4174 (((-3 $ "failed") $) 32)) (-1294 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-4157 (((-625 $) $) 107)) (-2951 (((-112) $) 94 (|has| |#1| (-885)))) (-1347 (($ $ |#1| |#4| $) 170)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 82 (-12 (|has| |#3| (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 81 (-12 (|has| |#3| (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ |#2|) 215) (((-751) $) 214)) (-3650 (((-112) $) 30)) (-3723 (((-751) $) 167)) (-3970 (($ (-1145 |#1|) |#3|) 115) (($ (-1145 $) |#3|) 114)) (-4148 (((-625 $) $) 124)) (-4201 (((-112) $) 150)) (-3957 (($ |#1| |#4|) 151) (($ $ |#3| (-751)) 117) (($ $ (-625 |#3|) (-625 (-751))) 116)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#3|) 118)) (-4134 ((|#4| $) 168) (((-751) $ |#3|) 120) (((-625 (-751)) $ (-625 |#3|)) 119)) (-3658 (($ $ $) 77 (|has| |#1| (-827)))) (-3332 (($ $ $) 76 (|has| |#1| (-827)))) (-1357 (($ (-1 |#4| |#4|) $) 169)) (-1996 (($ (-1 |#1| |#1|) $) 149)) (-3479 (((-1 $ (-751)) |#2|) 217) (((-1 $ (-751)) $) 204 (|has| |#1| (-229)))) (-1942 (((-3 |#3| "failed") $) 121)) (-4131 (($ $) 147)) (-4144 ((|#1| $) 146)) (-2578 ((|#3| $) 207)) (-2605 (($ (-625 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-2883 (((-1131) $) 9)) (-3162 (((-112) $) 208)) (-4172 (((-3 (-625 $) "failed") $) 112)) (-4160 (((-3 (-625 $) "failed") $) 113)) (-4182 (((-3 (-2 (|:| |var| |#3|) (|:| -3564 (-751))) "failed") $) 111)) (-4186 (($ $) 206)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 164)) (-4117 ((|#1| $) 165)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 93 (|has| |#1| (-446)))) (-2633 (($ (-625 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 100 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 99 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 97 (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) 143) (($ $ (-289 $)) 142) (($ $ $ $) 141) (($ $ (-625 $) (-625 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-625 |#3|) (-625 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-625 |#3|) (-625 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-229))) (($ $ (-625 |#2|) (-625 $)) 202 (|has| |#1| (-229))) (($ $ |#2| |#1|) 201 (|has| |#1| (-229))) (($ $ (-625 |#2|) (-625 |#1|)) 200 (|has| |#1| (-229)))) (-3217 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3072 (($ $ |#3|) 40) (($ $ (-625 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-625 |#3|) (-625 (-751))) 37) (($ $) 236 (|has| |#1| (-229))) (($ $ (-751)) 234 (|has| |#1| (-229))) (($ $ (-1149)) 232 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 231 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 230 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 229 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-3177 (((-625 |#2|) $) 216)) (-4276 ((|#4| $) 148) (((-751) $ |#3|) 128) (((-625 (-751)) $ (-625 |#3|)) 127) (((-751) $ |#2|) 213)) (-2042 (((-868 (-374)) $) 80 (-12 (|has| |#3| (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) 79 (-12 (|has| |#3| (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 102 (-3743 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-402 (-552))) 70 (-1523 (|has| |#1| (-1014 (-402 (-552)))) (|has| |#1| (-38 (-402 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) 166)) (-3637 ((|#1| $ |#4|) 153) (($ $ |#3| (-751)) 126) (($ $ (-625 |#3|) (-625 (-751))) 125)) (-4243 (((-3 $ "failed") $) 71 (-1523 (-3743 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 28)) (-1336 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 87 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ |#3|) 36) (($ $ (-625 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-625 |#3|) (-625 (-751))) 33) (($ $) 235 (|has| |#1| (-229))) (($ $ (-751)) 233 (|has| |#1| (-229))) (($ $ (-1149)) 228 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 227 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 226 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 225 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2346 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 73 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 75 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 72 (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 156 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 155 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
(((-248 |#1| |#2| |#3| |#4|) (-138) (-1025) (-827) (-261 |t#2|) (-773)) (T -248))
-((-1578 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *4 *3 *5 *6)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-622 *4)))) (-4131 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) (-4307 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-622 (-751))))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) (-1543 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-622 (-751))))) (-1577 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-112)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-4 *2 (-261 *4)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-261 *3)) (-4 *5 (-773)))) (-1539 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-261 *3)) (-4 *5 (-773)))) (-1578 (*1 *2 *1) (-12 (-4 *3 (-229)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *3 *4 *5 *6)))))
-(-13 (-926 |t#1| |t#4| |t#3|) (-227 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -1578 ((-1 $ (-751)) |t#2|)) (-15 -1544 ((-622 |t#2|) $)) (-15 -4131 ((-751) $ |t#2|)) (-15 -4131 ((-751) $)) (-15 -4307 ((-751) $ |t#2|)) (-15 -1543 ((-622 (-751)) $)) (-15 -1577 ((-751) $)) (-15 -1543 ((-622 (-751)) $ |t#2|)) (-15 -1577 ((-751) $ |t#2|)) (-15 -1542 ((-112) $)) (-15 -1541 (|t#3| $)) (-15 -1540 ($ $)) (-15 -1539 ($ $)) (IF (|has| |t#1| (-229)) (PROGN (-6 (-507 |t#2| |t#1|)) (-6 (-507 |t#2| $)) (-6 (-304 $)) (-15 -1578 ((-1 $ (-751)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#3| (-598 (-527)))) ((-598 (-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#3| (-598 (-866 (-373))))) ((-598 (-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#3| (-598 (-866 (-538))))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-285) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#4|) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-886)) (|has| |#1| (-446))) ((-507 |#2| |#1|) |has| |#1| (-229)) ((-507 |#2| $) |has| |#1| (-229)) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-545) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-876 |#3|) . T) ((-862 (-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#3| (-862 (-373)))) ((-862 (-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#3| (-862 (-538)))) ((-926 |#1| |#4| |#3|) . T) ((-886) |has| |#1| (-886)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1014 |#2|) . T) ((-1014 |#3|) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) |has| |#1| (-886)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1550 ((|#1| $) 54)) (-3683 ((|#1| $) 44)) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-3335 (($ $) 60)) (-2377 (($ $) 48)) (-3685 ((|#1| |#1| $) 46)) (-3684 ((|#1| $) 45)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-4193 (((-751) $) 61)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-1548 ((|#1| |#1| $) 52)) (-1547 ((|#1| |#1| $) 51)) (-3970 (($ |#1| $) 40)) (-2933 (((-751) $) 55)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-3334 ((|#1| $) 62)) (-1546 ((|#1| $) 50)) (-1545 ((|#1| $) 49)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3337 ((|#1| |#1| $) 58)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-3336 ((|#1| $) 59)) (-1551 (($) 57) (($ (-622 |#1|)) 56)) (-3682 (((-751) $) 43)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1549 ((|#1| $) 53)) (-1335 (($ (-622 |#1|)) 42)) (-3333 ((|#1| $) 63)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-249 |#1|) (-138) (-1185)) (T -249))
-((-1551 (*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-249 *3)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))) (-1550 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1548 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1547 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1546 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-2377 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))))
-(-13 (-1094 |t#1|) (-971 |t#1|) (-10 -8 (-15 -1551 ($)) (-15 -1551 ($ (-622 |t#1|))) (-15 -2933 ((-751) $)) (-15 -1550 (|t#1| $)) (-15 -1549 (|t#1| $)) (-15 -1548 (|t#1| |t#1| $)) (-15 -1547 (|t#1| |t#1| $)) (-15 -1546 (|t#1| $)) (-15 -1545 (|t#1| $)) (-15 -2377 ($ $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-971 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1094 |#1|) . T) ((-1185) . T))
-((-1552 (((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373))) 71) (((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256))) 70) (((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373))) 61) (((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256))) 60) (((-1106 (-221)) (-855 |#1|) (-1065 (-373))) 52) (((-1106 (-221)) (-855 |#1|) (-1065 (-373)) (-622 (-256))) 51)) (-1559 (((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373))) 74) (((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256))) 73) (((-1235) |#1| (-1065 (-373)) (-1065 (-373))) 64) (((-1235) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256))) 63) (((-1235) (-855 |#1|) (-1065 (-373))) 56) (((-1235) (-855 |#1|) (-1065 (-373)) (-622 (-256))) 55) (((-1234) (-853 |#1|) (-1065 (-373))) 43) (((-1234) (-853 |#1|) (-1065 (-373)) (-622 (-256))) 42) (((-1234) |#1| (-1065 (-373))) 35) (((-1234) |#1| (-1065 (-373)) (-622 (-256))) 34)))
-(((-250 |#1|) (-10 -7 (-15 -1559 ((-1234) |#1| (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) |#1| (-1065 (-373)))) (-15 -1559 ((-1234) (-853 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-853 |#1|) (-1065 (-373)))) (-15 -1559 ((-1235) (-855 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-855 |#1|) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) (-855 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-855 |#1|) (-1065 (-373)))) (-15 -1559 ((-1235) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) |#1| (-1065 (-373)) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373)))) (-15 -1559 ((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373))))) (-13 (-598 (-527)) (-1074))) (T -250))
-((-1552 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-373))) (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *5)))) (-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *6)))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-373))) (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *5)))) (-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *6)))) (-1552 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) (-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1235)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) (-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) (-1552 (*1 *2 *3 *4) (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-373))) (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *5)))) (-1552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *6)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-373))) (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *5)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *6)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1065 (-373))) (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1234)) (-5 *1 (-250 *5)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1234)) (-5 *1 (-250 *6)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1234)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))))
-(-10 -7 (-15 -1559 ((-1234) |#1| (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) |#1| (-1065 (-373)))) (-15 -1559 ((-1234) (-853 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-853 |#1|) (-1065 (-373)))) (-15 -1559 ((-1235) (-855 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-855 |#1|) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) (-855 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-855 |#1|) (-1065 (-373)))) (-15 -1559 ((-1235) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) |#1| (-1065 (-373)) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373)))) (-15 -1559 ((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373)))))
-((-1553 (((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 139)) (-1552 (((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373))) 160) (((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 158) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373))) 163) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 159) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373))) 150) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 149) (((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373))) 129) (((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256))) 127) (((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373))) 128) (((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256))) 125)) (-1559 (((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373))) 162) (((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 161) (((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373))) 165) (((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 164) (((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373))) 152) (((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 151) (((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373))) 135) (((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256))) 134) (((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373))) 133) (((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256))) 132) (((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373))) 100) (((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256))) 99) (((-1234) (-1 (-221) (-221)) (-1062 (-373))) 96) (((-1234) (-1 (-221) (-221)) (-1062 (-373)) (-622 (-256))) 95)))
-(((-251) (-10 -7 (-15 -1559 ((-1234) (-1 (-221) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-1 (-221) (-221)) (-1062 (-373)))) (-15 -1559 ((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1559 ((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1559 ((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)))) (-15 -1553 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -251))
-((-1553 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1234)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1234)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-251)))))
-(-10 -7 (-15 -1559 ((-1234) (-1 (-221) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-1 (-221) (-221)) (-1062 (-373)))) (-15 -1559 ((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1559 ((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1559 ((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)))) (-15 -1553 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))
-((-1559 (((-1234) (-288 |#2|) (-1149) (-1149) (-622 (-256))) 96)))
-(((-252 |#1| |#2|) (-10 -7 (-15 -1559 ((-1234) (-288 |#2|) (-1149) (-1149) (-622 (-256))))) (-13 (-545) (-827) (-1014 (-538))) (-416 |#1|)) (T -252))
-((-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-1149)) (-5 *5 (-622 (-256))) (-4 *7 (-416 *6)) (-4 *6 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-1234)) (-5 *1 (-252 *6 *7)))))
-(-10 -7 (-15 -1559 ((-1234) (-288 |#2|) (-1149) (-1149) (-622 (-256)))))
-((-1556 (((-538) (-538)) 50)) (-1557 (((-538) (-538)) 51)) (-1558 (((-221) (-221)) 52)) (-1555 (((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221))) 49)) (-1554 (((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221)) (-112)) 47)))
-(((-253) (-10 -7 (-15 -1554 ((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221)) (-112))) (-15 -1555 ((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221)))) (-15 -1556 ((-538) (-538))) (-15 -1557 ((-538) (-538))) (-15 -1558 ((-221) (-221))))) (T -253))
-((-1558 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-253)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-253)))) (-1556 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-253)))) (-1555 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-221)) (-166 (-221)))) (-5 *4 (-1062 (-221))) (-5 *2 (-1235)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-221)) (-166 (-221)))) (-5 *4 (-1062 (-221))) (-5 *5 (-112)) (-5 *2 (-1235)) (-5 *1 (-253)))))
-(-10 -7 (-15 -1554 ((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221)) (-112))) (-15 -1555 ((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221)))) (-15 -1556 ((-538) (-538))) (-15 -1557 ((-538) (-538))) (-15 -1558 ((-221) (-221))))
-((-4317 (((-1065 (-373)) (-1065 (-309 |#1|))) 16)))
-(((-254 |#1|) (-10 -7 (-15 -4317 ((-1065 (-373)) (-1065 (-309 |#1|))))) (-13 (-827) (-545) (-598 (-373)))) (T -254))
-((-4317 (*1 *2 *3) (-12 (-5 *3 (-1065 (-309 *4))) (-4 *4 (-13 (-827) (-545) (-598 (-373)))) (-5 *2 (-1065 (-373))) (-5 *1 (-254 *4)))))
-(-10 -7 (-15 -4317 ((-1065 (-373)) (-1065 (-309 |#1|)))))
-((-1559 (((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221)) (-622 (-256))) 23) (((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221))) 24) (((-1234) (-622 (-919 (-221))) (-622 (-256))) 16) (((-1234) (-622 (-919 (-221)))) 17) (((-1234) (-622 (-221)) (-622 (-221)) (-622 (-256))) 20) (((-1234) (-622 (-221)) (-622 (-221))) 21)))
-(((-255) (-10 -7 (-15 -1559 ((-1234) (-622 (-221)) (-622 (-221)))) (-15 -1559 ((-1234) (-622 (-221)) (-622 (-221)) (-622 (-256)))) (-15 -1559 ((-1234) (-622 (-919 (-221))))) (-15 -1559 ((-1234) (-622 (-919 (-221))) (-622 (-256)))) (-15 -1559 ((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221)))) (-15 -1559 ((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221)) (-622 (-256)))))) (T -255))
-((-1559 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-622 (-221))) (-5 *4 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-255)))) (-1559 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1235)) (-5 *1 (-255)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *4 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-255)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *2 (-1234)) (-5 *1 (-255)))) (-1559 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-622 (-221))) (-5 *4 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-255)))) (-1559 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1234)) (-5 *1 (-255)))))
-(-10 -7 (-15 -1559 ((-1234) (-622 (-221)) (-622 (-221)))) (-15 -1559 ((-1234) (-622 (-221)) (-622 (-221)) (-622 (-256)))) (-15 -1559 ((-1234) (-622 (-919 (-221))))) (-15 -1559 ((-1234) (-622 (-919 (-221))) (-622 (-256)))) (-15 -1559 ((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221)))) (-15 -1559 ((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221)) (-622 (-256)))))
-((-2898 (((-112) $ $) NIL)) (-4241 (($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 15)) (-1572 (($ (-895)) 76)) (-1571 (($ (-895)) 75)) (-1892 (($ (-622 (-373))) 82)) (-1575 (($ (-373)) 58)) (-1574 (($ (-895)) 77)) (-1568 (($ (-112)) 23)) (-4243 (($ (-1131)) 18)) (-1567 (($ (-1131)) 19)) (-1573 (($ (-1106 (-221))) 71)) (-2050 (($ (-622 (-1062 (-373)))) 67)) (-1561 (($ (-622 (-1062 (-373)))) 59) (($ (-622 (-1062 (-402 (-538))))) 66)) (-1564 (($ (-373)) 29) (($ (-850)) 33)) (-1560 (((-112) (-622 $) (-1149)) 91)) (-1576 (((-3 (-51) "failed") (-622 $) (-1149)) 93)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1563 (($ (-373)) 34) (($ (-850)) 35)) (-3575 (($ (-1 (-919 (-221)) (-919 (-221)))) 57)) (-2350 (($ (-1 (-919 (-221)) (-919 (-221)))) 78)) (-1562 (($ (-1 (-221) (-221))) 39) (($ (-1 (-221) (-221) (-221))) 43) (($ (-1 (-221) (-221) (-221) (-221))) 47)) (-4317 (((-840) $) 87)) (-1565 (($ (-112)) 24) (($ (-622 (-1062 (-373)))) 52)) (-2045 (($ (-112)) 25)) (-3387 (((-112) $ $) 89)))
-(((-256) (-13 (-1074) (-10 -8 (-15 -2045 ($ (-112))) (-15 -1565 ($ (-112))) (-15 -4241 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4243 ($ (-1131))) (-15 -1567 ($ (-1131))) (-15 -1568 ($ (-112))) (-15 -1565 ($ (-622 (-1062 (-373))))) (-15 -3575 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -1564 ($ (-373))) (-15 -1564 ($ (-850))) (-15 -1563 ($ (-373))) (-15 -1563 ($ (-850))) (-15 -1562 ($ (-1 (-221) (-221)))) (-15 -1562 ($ (-1 (-221) (-221) (-221)))) (-15 -1562 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -1575 ($ (-373))) (-15 -1561 ($ (-622 (-1062 (-373))))) (-15 -1561 ($ (-622 (-1062 (-402 (-538)))))) (-15 -2050 ($ (-622 (-1062 (-373))))) (-15 -1573 ($ (-1106 (-221)))) (-15 -1571 ($ (-895))) (-15 -1572 ($ (-895))) (-15 -1574 ($ (-895))) (-15 -2350 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -1892 ($ (-622 (-373)))) (-15 -1576 ((-3 (-51) "failed") (-622 $) (-1149))) (-15 -1560 ((-112) (-622 $) (-1149)))))) (T -256))
-((-2045 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-1565 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-4241 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-256)))) (-4243 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-256)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-256)))) (-1568 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-1565 (*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256)))) (-3575 (*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-256)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-256)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-256)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-256)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-256)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-256)))) (-1575 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256)))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256)))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-402 (-538))))) (-5 *1 (-256)))) (-2050 (*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256)))) (-1573 (*1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-256)))) (-1571 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-256)))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-256)))) (-1576 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *2 (-51)) (-5 *1 (-256)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *2 (-112)) (-5 *1 (-256)))))
-(-13 (-1074) (-10 -8 (-15 -2045 ($ (-112))) (-15 -1565 ($ (-112))) (-15 -4241 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4243 ($ (-1131))) (-15 -1567 ($ (-1131))) (-15 -1568 ($ (-112))) (-15 -1565 ($ (-622 (-1062 (-373))))) (-15 -3575 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -1564 ($ (-373))) (-15 -1564 ($ (-850))) (-15 -1563 ($ (-373))) (-15 -1563 ($ (-850))) (-15 -1562 ($ (-1 (-221) (-221)))) (-15 -1562 ($ (-1 (-221) (-221) (-221)))) (-15 -1562 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -1575 ($ (-373))) (-15 -1561 ($ (-622 (-1062 (-373))))) (-15 -1561 ($ (-622 (-1062 (-402 (-538)))))) (-15 -2050 ($ (-622 (-1062 (-373))))) (-15 -1573 ($ (-1106 (-221)))) (-15 -1571 ($ (-895))) (-15 -1572 ($ (-895))) (-15 -1574 ($ (-895))) (-15 -2350 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -1892 ($ (-622 (-373)))) (-15 -1576 ((-3 (-51) "failed") (-622 $) (-1149))) (-15 -1560 ((-112) (-622 $) (-1149)))))
-((-4241 (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-622 (-256)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 26)) (-1572 (((-895) (-622 (-256)) (-895)) 53)) (-1571 (((-895) (-622 (-256)) (-895)) 52)) (-4211 (((-622 (-373)) (-622 (-256)) (-622 (-373))) 69)) (-1575 (((-373) (-622 (-256)) (-373)) 58)) (-1574 (((-895) (-622 (-256)) (-895)) 54)) (-1568 (((-112) (-622 (-256)) (-112)) 28)) (-4243 (((-1131) (-622 (-256)) (-1131)) 20)) (-1567 (((-1131) (-622 (-256)) (-1131)) 27)) (-1573 (((-1106 (-221)) (-622 (-256))) 47)) (-2050 (((-622 (-1062 (-373))) (-622 (-256)) (-622 (-1062 (-373)))) 41)) (-1569 (((-850) (-622 (-256)) (-850)) 33)) (-1570 (((-850) (-622 (-256)) (-850)) 34)) (-2350 (((-1 (-919 (-221)) (-919 (-221))) (-622 (-256)) (-1 (-919 (-221)) (-919 (-221)))) 64)) (-1566 (((-112) (-622 (-256)) (-112)) 16)) (-2045 (((-112) (-622 (-256)) (-112)) 15)))
-(((-257) (-10 -7 (-15 -2045 ((-112) (-622 (-256)) (-112))) (-15 -1566 ((-112) (-622 (-256)) (-112))) (-15 -4241 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-622 (-256)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4243 ((-1131) (-622 (-256)) (-1131))) (-15 -1567 ((-1131) (-622 (-256)) (-1131))) (-15 -1568 ((-112) (-622 (-256)) (-112))) (-15 -1569 ((-850) (-622 (-256)) (-850))) (-15 -1570 ((-850) (-622 (-256)) (-850))) (-15 -2050 ((-622 (-1062 (-373))) (-622 (-256)) (-622 (-1062 (-373))))) (-15 -1571 ((-895) (-622 (-256)) (-895))) (-15 -1572 ((-895) (-622 (-256)) (-895))) (-15 -1573 ((-1106 (-221)) (-622 (-256)))) (-15 -1574 ((-895) (-622 (-256)) (-895))) (-15 -1575 ((-373) (-622 (-256)) (-373))) (-15 -2350 ((-1 (-919 (-221)) (-919 (-221))) (-622 (-256)) (-1 (-919 (-221)) (-919 (-221))))) (-15 -4211 ((-622 (-373)) (-622 (-256)) (-622 (-373)))))) (T -257))
-((-4211 (*1 *2 *3 *2) (-12 (-5 *2 (-622 (-373))) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-2350 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1575 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1574 (*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-257)))) (-1572 (*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1571 (*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-2050 (*1 *2 *3 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1570 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1569 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1568 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1567 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-4243 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-4241 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1566 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-2045 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))))
-(-10 -7 (-15 -2045 ((-112) (-622 (-256)) (-112))) (-15 -1566 ((-112) (-622 (-256)) (-112))) (-15 -4241 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-622 (-256)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4243 ((-1131) (-622 (-256)) (-1131))) (-15 -1567 ((-1131) (-622 (-256)) (-1131))) (-15 -1568 ((-112) (-622 (-256)) (-112))) (-15 -1569 ((-850) (-622 (-256)) (-850))) (-15 -1570 ((-850) (-622 (-256)) (-850))) (-15 -2050 ((-622 (-1062 (-373))) (-622 (-256)) (-622 (-1062 (-373))))) (-15 -1571 ((-895) (-622 (-256)) (-895))) (-15 -1572 ((-895) (-622 (-256)) (-895))) (-15 -1573 ((-1106 (-221)) (-622 (-256)))) (-15 -1574 ((-895) (-622 (-256)) (-895))) (-15 -1575 ((-373) (-622 (-256)) (-373))) (-15 -2350 ((-1 (-919 (-221)) (-919 (-221))) (-622 (-256)) (-1 (-919 (-221)) (-919 (-221))))) (-15 -4211 ((-622 (-373)) (-622 (-256)) (-622 (-373)))))
-((-1576 (((-3 |#1| "failed") (-622 (-256)) (-1149)) 17)))
-(((-258 |#1|) (-10 -7 (-15 -1576 ((-3 |#1| "failed") (-622 (-256)) (-1149)))) (-1185)) (T -258))
-((-1576 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *1 (-258 *2)) (-4 *2 (-1185)))))
-(-10 -7 (-15 -1576 ((-3 |#1| "failed") (-622 (-256)) (-1149))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1543 (((-622 (-751)) $) NIL) (((-622 (-751)) $ |#2|) NIL)) (-1577 (((-751) $) NIL) (((-751) $ |#2|) NIL)) (-3417 (((-622 |#3|) $) NIL)) (-3419 (((-1143 $) $ |#3|) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 |#3|)) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1539 (($ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1098 |#1| |#2|) #2#) $) 21)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1098 |#1| |#2|) $) NIL)) (-4116 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-524 |#3|) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| |#1| (-862 (-373))) (|has| |#3| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| |#1| (-862 (-538))) (|has| |#3| (-862 (-538)))))) (-4131 (((-751) $ |#2|) NIL) (((-751) $) 10)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#1|) |#3|) NIL) (($ (-1143 $) |#3|) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-524 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-622 |#3|) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#3|) NIL)) (-3153 (((-524 |#3|) $) NIL) (((-751) $ |#3|) NIL) (((-622 (-751)) $ (-622 |#3|)) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 |#3|) (-524 |#3|)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1 $ (-751)) |#2|) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-3418 (((-3 |#3| #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-1541 ((|#3| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-1542 (((-112) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| |#3|) (|:| -2493 (-751))) #3#) $) NIL)) (-1540 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-622 |#3|) (-622 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-622 |#3|) (-622 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-229))) (($ $ (-622 |#2|) (-622 $)) NIL (|has| |#1| (-229))) (($ $ |#2| |#1|) NIL (|has| |#1| (-229))) (($ $ (-622 |#2|) (-622 |#1|)) NIL (|has| |#1| (-229)))) (-4117 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-4170 (($ $ |#3|) NIL) (($ $ (-622 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-622 |#3|) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1544 (((-622 |#2|) $) NIL)) (-4307 (((-524 |#3|) $) NIL) (((-751) $ |#3|) NIL) (((-622 (-751)) $ (-622 |#3|)) NIL) (((-751) $ |#2|) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#3| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#3| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| |#1| (-598 (-527))) (|has| |#3| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1098 |#1| |#2|)) 30) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-524 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-622 |#3|) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ |#3|) NIL) (($ $ (-622 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-622 |#3|) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-3479 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *4 *3 *5 *6)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-625 *4)))) (-2172 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) (-4276 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-625 (-751))))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) (-3169 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-625 (-751))))) (-3469 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-112)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-4 *2 (-261 *4)))) (-4186 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-261 *3)) (-4 *5 (-773)))) (-3153 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-261 *3)) (-4 *5 (-773)))) (-3479 (*1 *2 *1) (-12 (-4 *3 (-229)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *3 *4 *5 *6)))))
+(-13 (-925 |t#1| |t#4| |t#3|) (-227 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -3479 ((-1 $ (-751)) |t#2|)) (-15 -3177 ((-625 |t#2|) $)) (-15 -2172 ((-751) $ |t#2|)) (-15 -2172 ((-751) $)) (-15 -4276 ((-751) $ |t#2|)) (-15 -3169 ((-625 (-751)) $)) (-15 -3469 ((-751) $)) (-15 -3169 ((-625 (-751)) $ |t#2|)) (-15 -3469 ((-751) $ |t#2|)) (-15 -3162 ((-112) $)) (-15 -2578 (|t#3| $)) (-15 -4186 ($ $)) (-15 -3153 ($ $)) (IF (|has| |t#1| (-229)) (PROGN (-6 (-507 |t#2| |t#1|)) (-6 (-507 |t#2| $)) (-6 (-304 $)) (-15 -3479 ((-1 $ (-751)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#3| (-598 (-528)))) ((-598 (-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#3| (-598 (-868 (-374))))) ((-598 (-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#3| (-598 (-868 (-552))))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-285) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#4|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-885)) (|has| |#1| (-446))) ((-507 |#2| |#1|) |has| |#1| (-229)) ((-507 |#2| $) |has| |#1| (-229)) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-544) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-876 |#3|) . T) ((-862 (-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#3| (-862 (-374)))) ((-862 (-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#3| (-862 (-552)))) ((-925 |#1| |#4| |#3|) . T) ((-885) |has| |#1| (-885)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1014 |#2|) . T) ((-1014 |#3|) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) |has| |#1| (-885)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3231 ((|#1| $) 54)) (-1549 ((|#1| $) 44)) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-2327 (($ $) 60)) (-1883 (($ $) 48)) (-2406 ((|#1| |#1| $) 46)) (-2395 ((|#1| $) 45)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-3456 (((-751) $) 61)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3213 ((|#1| |#1| $) 52)) (-3203 ((|#1| |#1| $) 51)) (-3966 (($ |#1| $) 40)) (-2207 (((-751) $) 55)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2314 ((|#1| $) 62)) (-3193 ((|#1| $) 50)) (-3186 ((|#1| $) 49)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2354 ((|#1| |#1| $) 58)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2340 ((|#1| $) 59)) (-3240 (($) 57) (($ (-625 |#1|)) 56)) (-2389 (((-751) $) 43)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3224 ((|#1| $) 53)) (-2977 (($ (-625 |#1|)) 42)) (-2299 ((|#1| $) 63)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-249 |#1|) (-138) (-1186)) (T -249))
+((-3240 (*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-249 *3)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3213 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3203 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))))
+(-13 (-1094 |t#1|) (-971 |t#1|) (-10 -8 (-15 -3240 ($)) (-15 -3240 ($ (-625 |t#1|))) (-15 -2207 ((-751) $)) (-15 -3231 (|t#1| $)) (-15 -3224 (|t#1| $)) (-15 -3213 (|t#1| |t#1| $)) (-15 -3203 (|t#1| |t#1| $)) (-15 -3193 (|t#1| $)) (-15 -3186 (|t#1| $)) (-15 -1883 ($ $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-971 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1094 |#1|) . T) ((-1186) . T))
+((-3249 (((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 139)) (-3322 (((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374))) 160) (((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 158) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374))) 163) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 159) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374))) 150) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 149) (((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374))) 129) (((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258))) 127) (((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374))) 128) (((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258))) 125)) (-1438 (((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374))) 162) (((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 161) (((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374))) 165) (((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 164) (((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374))) 152) (((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 151) (((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374))) 135) (((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258))) 134) (((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374))) 133) (((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258))) 132) (((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374))) 100) (((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258))) 99) (((-1233) (-1 (-221) (-221)) (-1067 (-374))) 96) (((-1233) (-1 (-221) (-221)) (-1067 (-374)) (-625 (-258))) 95)))
+(((-250) (-10 -7 (-15 -1438 ((-1233) (-1 (-221) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-1 (-221) (-221)) (-1067 (-374)))) (-15 -1438 ((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -1438 ((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -1438 ((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)))) (-15 -3249 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -250))
+((-3249 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *2 (-1233)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1233)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-250)))))
+(-10 -7 (-15 -1438 ((-1233) (-1 (-221) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-1 (-221) (-221)) (-1067 (-374)))) (-15 -1438 ((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -1438 ((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -1438 ((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)))) (-15 -3249 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))
+((-1438 (((-1233) (-289 |#2|) (-1149) (-1149) (-625 (-258))) 96)))
+(((-251 |#1| |#2|) (-10 -7 (-15 -1438 ((-1233) (-289 |#2|) (-1149) (-1149) (-625 (-258))))) (-13 (-544) (-827) (-1014 (-552))) (-425 |#1|)) (T -251))
+((-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-1149)) (-5 *5 (-625 (-258))) (-4 *7 (-425 *6)) (-4 *6 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-1233)) (-5 *1 (-251 *6 *7)))))
+(-10 -7 (-15 -1438 ((-1233) (-289 |#2|) (-1149) (-1149) (-625 (-258)))))
+((-3276 (((-552) (-552)) 50)) (-3287 (((-552) (-552)) 51)) (-3296 (((-221) (-221)) 52)) (-3267 (((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221))) 49)) (-3258 (((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221)) (-112)) 47)))
+(((-252) (-10 -7 (-15 -3258 ((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221)) (-112))) (-15 -3267 ((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221)))) (-15 -3276 ((-552) (-552))) (-15 -3287 ((-552) (-552))) (-15 -3296 ((-221) (-221))))) (T -252))
+((-3296 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-252)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-252)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-252)))) (-3267 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1067 (-221))) (-5 *2 (-1234)) (-5 *1 (-252)))) (-3258 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1067 (-221))) (-5 *5 (-112)) (-5 *2 (-1234)) (-5 *1 (-252)))))
+(-10 -7 (-15 -3258 ((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221)) (-112))) (-15 -3267 ((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221)))) (-15 -3276 ((-552) (-552))) (-15 -3287 ((-552) (-552))) (-15 -3296 ((-221) (-221))))
+((-1683 (((-1065 (-374)) (-1065 (-311 |#1|))) 16)))
+(((-253 |#1|) (-10 -7 (-15 -1683 ((-1065 (-374)) (-1065 (-311 |#1|))))) (-13 (-827) (-544) (-598 (-374)))) (T -253))
+((-1683 (*1 *2 *3) (-12 (-5 *3 (-1065 (-311 *4))) (-4 *4 (-13 (-827) (-544) (-598 (-374)))) (-5 *2 (-1065 (-374))) (-5 *1 (-253 *4)))))
+(-10 -7 (-15 -1683 ((-1065 (-374)) (-1065 (-311 |#1|)))))
+((-3322 (((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374))) 71) (((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258))) 70) (((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374))) 61) (((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258))) 60) (((-1106 (-221)) (-855 |#1|) (-1065 (-374))) 52) (((-1106 (-221)) (-855 |#1|) (-1065 (-374)) (-625 (-258))) 51)) (-1438 (((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374))) 74) (((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258))) 73) (((-1234) |#1| (-1065 (-374)) (-1065 (-374))) 64) (((-1234) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258))) 63) (((-1234) (-855 |#1|) (-1065 (-374))) 56) (((-1234) (-855 |#1|) (-1065 (-374)) (-625 (-258))) 55) (((-1233) (-853 |#1|) (-1065 (-374))) 43) (((-1233) (-853 |#1|) (-1065 (-374)) (-625 (-258))) 42) (((-1233) |#1| (-1065 (-374))) 35) (((-1233) |#1| (-1065 (-374)) (-625 (-258))) 34)))
+(((-254 |#1|) (-10 -7 (-15 -1438 ((-1233) |#1| (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) |#1| (-1065 (-374)))) (-15 -1438 ((-1233) (-853 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-853 |#1|) (-1065 (-374)))) (-15 -1438 ((-1234) (-855 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-855 |#1|) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) (-855 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-855 |#1|) (-1065 (-374)))) (-15 -1438 ((-1234) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) |#1| (-1065 (-374)) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374)))) (-15 -1438 ((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374))))) (-13 (-598 (-528)) (-1073))) (T -254))
+((-3322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-374))) (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *5)))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *6)))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-374))) (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) (-5 *1 (-254 *5)))) (-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) (-5 *1 (-254 *6)))) (-3322 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1234)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) (-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-374))) (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *5)))) (-3322 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *6)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-374))) (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) (-5 *1 (-254 *5)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) (-5 *1 (-254 *6)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1065 (-374))) (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1233)) (-5 *1 (-254 *5)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1233)) (-5 *1 (-254 *6)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1233)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))))
+(-10 -7 (-15 -1438 ((-1233) |#1| (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) |#1| (-1065 (-374)))) (-15 -1438 ((-1233) (-853 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-853 |#1|) (-1065 (-374)))) (-15 -1438 ((-1234) (-855 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-855 |#1|) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) (-855 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-855 |#1|) (-1065 (-374)))) (-15 -1438 ((-1234) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) |#1| (-1065 (-374)) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374)))) (-15 -1438 ((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374)))))
+((-1438 (((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221)) (-625 (-258))) 23) (((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221))) 24) (((-1233) (-625 (-919 (-221))) (-625 (-258))) 16) (((-1233) (-625 (-919 (-221)))) 17) (((-1233) (-625 (-221)) (-625 (-221)) (-625 (-258))) 20) (((-1233) (-625 (-221)) (-625 (-221))) 21)))
+(((-255) (-10 -7 (-15 -1438 ((-1233) (-625 (-221)) (-625 (-221)))) (-15 -1438 ((-1233) (-625 (-221)) (-625 (-221)) (-625 (-258)))) (-15 -1438 ((-1233) (-625 (-919 (-221))))) (-15 -1438 ((-1233) (-625 (-919 (-221))) (-625 (-258)))) (-15 -1438 ((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221)))) (-15 -1438 ((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221)) (-625 (-258)))))) (T -255))
+((-1438 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-625 (-221))) (-5 *4 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-255)))) (-1438 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1234)) (-5 *1 (-255)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *4 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-255)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *2 (-1233)) (-5 *1 (-255)))) (-1438 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-625 (-221))) (-5 *4 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-255)))) (-1438 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1233)) (-5 *1 (-255)))))
+(-10 -7 (-15 -1438 ((-1233) (-625 (-221)) (-625 (-221)))) (-15 -1438 ((-1233) (-625 (-221)) (-625 (-221)) (-625 (-258)))) (-15 -1438 ((-1233) (-625 (-919 (-221))))) (-15 -1438 ((-1233) (-625 (-919 (-221))) (-625 (-258)))) (-15 -1438 ((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221)))) (-15 -1438 ((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221)) (-625 (-258)))))
+((-1797 (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-625 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 26)) (-3422 (((-897) (-625 (-258)) (-897)) 53)) (-3411 (((-897) (-625 (-258)) (-897)) 52)) (-4124 (((-625 (-374)) (-625 (-258)) (-625 (-374))) 69)) (-3458 (((-374) (-625 (-258)) (-374)) 58)) (-3445 (((-897) (-625 (-258)) (-897)) 54)) (-3382 (((-112) (-625 (-258)) (-112)) 28)) (-4332 (((-1131) (-625 (-258)) (-1131)) 20)) (-3371 (((-1131) (-625 (-258)) (-1131)) 27)) (-3433 (((-1106 (-221)) (-625 (-258))) 47)) (-1702 (((-625 (-1067 (-374))) (-625 (-258)) (-625 (-1067 (-374)))) 41)) (-3392 (((-850) (-625 (-258)) (-850)) 33)) (-3403 (((-850) (-625 (-258)) (-850)) 34)) (-1673 (((-1 (-919 (-221)) (-919 (-221))) (-625 (-258)) (-1 (-919 (-221)) (-919 (-221)))) 64)) (-3363 (((-112) (-625 (-258)) (-112)) 16)) (-1645 (((-112) (-625 (-258)) (-112)) 15)))
+(((-256) (-10 -7 (-15 -1645 ((-112) (-625 (-258)) (-112))) (-15 -3363 ((-112) (-625 (-258)) (-112))) (-15 -1797 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-625 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4332 ((-1131) (-625 (-258)) (-1131))) (-15 -3371 ((-1131) (-625 (-258)) (-1131))) (-15 -3382 ((-112) (-625 (-258)) (-112))) (-15 -3392 ((-850) (-625 (-258)) (-850))) (-15 -3403 ((-850) (-625 (-258)) (-850))) (-15 -1702 ((-625 (-1067 (-374))) (-625 (-258)) (-625 (-1067 (-374))))) (-15 -3411 ((-897) (-625 (-258)) (-897))) (-15 -3422 ((-897) (-625 (-258)) (-897))) (-15 -3433 ((-1106 (-221)) (-625 (-258)))) (-15 -3445 ((-897) (-625 (-258)) (-897))) (-15 -3458 ((-374) (-625 (-258)) (-374))) (-15 -1673 ((-1 (-919 (-221)) (-919 (-221))) (-625 (-258)) (-1 (-919 (-221)) (-919 (-221))))) (-15 -4124 ((-625 (-374)) (-625 (-258)) (-625 (-374)))))) (T -256))
+((-4124 (*1 *2 *3 *2) (-12 (-5 *2 (-625 (-374))) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-1673 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3458 (*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3445 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-256)))) (-3422 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3411 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-1702 (*1 *2 *3 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3403 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3392 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3382 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3371 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-4332 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-1797 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3363 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-1645 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))))
+(-10 -7 (-15 -1645 ((-112) (-625 (-258)) (-112))) (-15 -3363 ((-112) (-625 (-258)) (-112))) (-15 -1797 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-625 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4332 ((-1131) (-625 (-258)) (-1131))) (-15 -3371 ((-1131) (-625 (-258)) (-1131))) (-15 -3382 ((-112) (-625 (-258)) (-112))) (-15 -3392 ((-850) (-625 (-258)) (-850))) (-15 -3403 ((-850) (-625 (-258)) (-850))) (-15 -1702 ((-625 (-1067 (-374))) (-625 (-258)) (-625 (-1067 (-374))))) (-15 -3411 ((-897) (-625 (-258)) (-897))) (-15 -3422 ((-897) (-625 (-258)) (-897))) (-15 -3433 ((-1106 (-221)) (-625 (-258)))) (-15 -3445 ((-897) (-625 (-258)) (-897))) (-15 -3458 ((-374) (-625 (-258)) (-374))) (-15 -1673 ((-1 (-919 (-221)) (-919 (-221))) (-625 (-258)) (-1 (-919 (-221)) (-919 (-221))))) (-15 -4124 ((-625 (-374)) (-625 (-258)) (-625 (-374)))))
+((-3141 (((-3 |#1| "failed") (-625 (-258)) (-1149)) 17)))
+(((-257 |#1|) (-10 -7 (-15 -3141 ((-3 |#1| "failed") (-625 (-258)) (-1149)))) (-1186)) (T -257))
+((-3141 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) (-5 *1 (-257 *2)) (-4 *2 (-1186)))))
+(-10 -7 (-15 -3141 ((-3 |#1| "failed") (-625 (-258)) (-1149))))
+((-1671 (((-112) $ $) NIL)) (-1797 (($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 15)) (-3422 (($ (-897)) 76)) (-3411 (($ (-897)) 75)) (-3618 (($ (-625 (-374))) 82)) (-3458 (($ (-374)) 58)) (-3445 (($ (-897)) 77)) (-3382 (($ (-112)) 23)) (-4332 (($ (-1131)) 18)) (-3371 (($ (-1131)) 19)) (-3433 (($ (-1106 (-221))) 71)) (-1702 (($ (-625 (-1067 (-374)))) 67)) (-3315 (($ (-625 (-1067 (-374)))) 59) (($ (-625 (-1067 (-402 (-552))))) 66)) (-3345 (($ (-374)) 29) (($ (-850)) 33)) (-3306 (((-112) (-625 $) (-1149)) 91)) (-3141 (((-3 (-52) "failed") (-625 $) (-1149)) 93)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3335 (($ (-374)) 34) (($ (-850)) 35)) (-2780 (($ (-1 (-919 (-221)) (-919 (-221)))) 57)) (-1673 (($ (-1 (-919 (-221)) (-919 (-221)))) 78)) (-3326 (($ (-1 (-221) (-221))) 39) (($ (-1 (-221) (-221) (-221))) 43) (($ (-1 (-221) (-221) (-221) (-221))) 47)) (-1683 (((-839) $) 87)) (-3354 (($ (-112)) 24) (($ (-625 (-1067 (-374)))) 52)) (-1645 (($ (-112)) 25)) (-2281 (((-112) $ $) 89)))
+(((-258) (-13 (-1073) (-10 -8 (-15 -1645 ($ (-112))) (-15 -3354 ($ (-112))) (-15 -1797 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4332 ($ (-1131))) (-15 -3371 ($ (-1131))) (-15 -3382 ($ (-112))) (-15 -3354 ($ (-625 (-1067 (-374))))) (-15 -2780 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -3345 ($ (-374))) (-15 -3345 ($ (-850))) (-15 -3335 ($ (-374))) (-15 -3335 ($ (-850))) (-15 -3326 ($ (-1 (-221) (-221)))) (-15 -3326 ($ (-1 (-221) (-221) (-221)))) (-15 -3326 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -3458 ($ (-374))) (-15 -3315 ($ (-625 (-1067 (-374))))) (-15 -3315 ($ (-625 (-1067 (-402 (-552)))))) (-15 -1702 ($ (-625 (-1067 (-374))))) (-15 -3433 ($ (-1106 (-221)))) (-15 -3411 ($ (-897))) (-15 -3422 ($ (-897))) (-15 -3445 ($ (-897))) (-15 -1673 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -3618 ($ (-625 (-374)))) (-15 -3141 ((-3 (-52) "failed") (-625 $) (-1149))) (-15 -3306 ((-112) (-625 $) (-1149)))))) (T -258))
+((-1645 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-3354 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-258)))) (-4332 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-258)))) (-3371 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-258)))) (-3382 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-3354 (*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258)))) (-2780 (*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-258)))) (-3345 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-3345 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-258)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-258)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-258)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-258)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-258)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-3315 (*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258)))) (-3315 (*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-402 (-552))))) (-5 *1 (-258)))) (-1702 (*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-258)))) (-3411 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258)))) (-1673 (*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-258)))) (-3618 (*1 *1 *2) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-258)))) (-3141 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) (-5 *2 (-52)) (-5 *1 (-258)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) (-5 *2 (-112)) (-5 *1 (-258)))))
+(-13 (-1073) (-10 -8 (-15 -1645 ($ (-112))) (-15 -3354 ($ (-112))) (-15 -1797 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4332 ($ (-1131))) (-15 -3371 ($ (-1131))) (-15 -3382 ($ (-112))) (-15 -3354 ($ (-625 (-1067 (-374))))) (-15 -2780 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -3345 ($ (-374))) (-15 -3345 ($ (-850))) (-15 -3335 ($ (-374))) (-15 -3335 ($ (-850))) (-15 -3326 ($ (-1 (-221) (-221)))) (-15 -3326 ($ (-1 (-221) (-221) (-221)))) (-15 -3326 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -3458 ($ (-374))) (-15 -3315 ($ (-625 (-1067 (-374))))) (-15 -3315 ($ (-625 (-1067 (-402 (-552)))))) (-15 -1702 ($ (-625 (-1067 (-374))))) (-15 -3433 ($ (-1106 (-221)))) (-15 -3411 ($ (-897))) (-15 -3422 ($ (-897))) (-15 -3445 ($ (-897))) (-15 -1673 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -3618 ($ (-625 (-374)))) (-15 -3141 ((-3 (-52) "failed") (-625 $) (-1149))) (-15 -3306 ((-112) (-625 $) (-1149)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3169 (((-625 (-751)) $) NIL) (((-625 (-751)) $ |#2|) NIL)) (-3469 (((-751) $) NIL) (((-751) $ |#2|) NIL)) (-3982 (((-625 |#3|) $) NIL)) (-3793 (((-1145 $) $ |#3|) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 |#3|)) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3153 (($ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1098 |#1| |#2|) "failed") $) 21)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1098 |#1| |#2|) $) NIL)) (-3207 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-524 |#3|) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| |#1| (-862 (-374))) (|has| |#3| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| |#1| (-862 (-552))) (|has| |#3| (-862 (-552)))))) (-2172 (((-751) $ |#2|) NIL) (((-751) $) 10)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#1|) |#3|) NIL) (($ (-1145 $) |#3|) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-524 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-625 |#3|) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#3|) NIL)) (-4134 (((-524 |#3|) $) NIL) (((-751) $ |#3|) NIL) (((-625 (-751)) $ (-625 |#3|)) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 |#3|) (-524 |#3|)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3479 (((-1 $ (-751)) |#2|) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-1942 (((-3 |#3| "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2578 ((|#3| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-3162 (((-112) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| |#3|) (|:| -3564 (-751))) "failed") $) NIL)) (-4186 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-625 |#3|) (-625 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-625 |#3|) (-625 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-229))) (($ $ (-625 |#2|) (-625 $)) NIL (|has| |#1| (-229))) (($ $ |#2| |#1|) NIL (|has| |#1| (-229))) (($ $ (-625 |#2|) (-625 |#1|)) NIL (|has| |#1| (-229)))) (-3217 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-3072 (($ $ |#3|) NIL) (($ $ (-625 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-625 |#3|) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3177 (((-625 |#2|) $) NIL)) (-4276 (((-524 |#3|) $) NIL) (((-751) $ |#3|) NIL) (((-625 (-751)) $ (-625 |#3|)) NIL) (((-751) $ |#2|) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#3| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#3| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-598 (-528))) (|has| |#3| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1098 |#1| |#2|)) 30) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-524 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-625 |#3|) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ |#3|) NIL) (($ $ (-625 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-625 |#3|) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-259 |#1| |#2| |#3|) (-13 (-248 |#1| |#2| |#3| (-524 |#3|)) (-1014 (-1098 |#1| |#2|))) (-1025) (-827) (-261 |#2|)) (T -259))
NIL
(-13 (-248 |#1| |#2| |#3| (-524 |#3|)) (-1014 (-1098 |#1| |#2|)))
-((-1577 (((-751) $) 30)) (-3508 (((-3 |#2| "failed") $) 17)) (-3507 ((|#2| $) 27)) (-4170 (($ $) 12) (($ $ (-751)) 15)) (-4317 (((-840) $) 26) (($ |#2|) 10)) (-3387 (((-112) $ $) 20)) (-3018 (((-112) $ $) 29)))
-(((-260 |#1| |#2|) (-10 -8 (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -1577 ((-751) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| "failed") |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-261 |#2|) (-827)) (T -260))
+((-3469 (((-751) $) 30)) (-1893 (((-3 |#2| "failed") $) 17)) (-1895 ((|#2| $) 27)) (-3072 (($ $) 12) (($ $ (-751)) 15)) (-1683 (((-839) $) 26) (($ |#2|) 10)) (-2281 (((-112) $ $) 20)) (-2307 (((-112) $ $) 29)))
+(((-260 |#1| |#2|) (-10 -8 (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -3469 ((-751) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-261 |#2|) (-827)) (T -260))
NIL
-(-10 -8 (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -1577 ((-751) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| "failed") |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-1577 (((-751) $) 22)) (-4191 ((|#1| $) 23)) (-3508 (((-3 |#1| "failed") $) 27)) (-3507 ((|#1| $) 26)) (-4131 (((-751) $) 24)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-1578 (($ |#1| (-751)) 25)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4170 (($ $) 21) (($ $ (-751)) 20)) (-4317 (((-840) $) 11) (($ |#1|) 28)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)))
+(-10 -8 (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -3469 ((-751) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3469 (((-751) $) 22)) (-2195 ((|#1| $) 23)) (-1893 (((-3 |#1| "failed") $) 27)) (-1895 ((|#1| $) 26)) (-2172 (((-751) $) 24)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-3479 (($ |#1| (-751)) 25)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3072 (($ $) 21) (($ $ (-751)) 20)) (-1683 (((-839) $) 11) (($ |#1|) 28)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)))
(((-261 |#1|) (-138) (-827)) (T -261))
-((-4317 (*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-1578 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4170 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-261 *3)) (-4 *3 (-827)))))
-(-13 (-827) (-1014 |t#1|) (-10 -8 (-15 -1578 ($ |t#1| (-751))) (-15 -4131 ((-751) $)) (-15 -4191 (|t#1| $)) (-15 -1577 ((-751) $)) (-15 -4170 ($ $)) (-15 -4170 ($ $ (-751))) (-15 -4317 ($ |t#1|))))
-(((-101) . T) ((-597 (-840)) . T) ((-827) . T) ((-1014 |#1|) . T) ((-1074) . T))
-((-3417 (((-622 (-1149)) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 41)) (-4294 (((-622 (-1149)) (-309 (-221)) (-751)) 80)) (-1581 (((-3 (-309 (-221)) "failed") (-309 (-221))) 51)) (-1582 (((-309 (-221)) (-309 (-221))) 67)) (-1580 (((-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 26)) (-1583 (((-112) (-622 (-309 (-221)))) 84)) (-1587 (((-112) (-309 (-221))) 24)) (-1589 (((-622 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) 106)) (-1586 (((-622 (-309 (-221))) (-622 (-309 (-221)))) 88)) (-1585 (((-622 (-309 (-221))) (-622 (-309 (-221)))) 86)) (-1584 (((-669 (-221)) (-622 (-309 (-221))) (-751)) 95)) (-3260 (((-112) (-309 (-221))) 20) (((-112) (-622 (-309 (-221)))) 85)) (-1579 (((-622 (-221)) (-622 (-819 (-221))) (-221)) 14)) (-1677 (((-373) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 101)) (-1588 (((-1011) (-1149) (-1011)) 34)))
-(((-262) (-10 -7 (-15 -1579 ((-622 (-221)) (-622 (-819 (-221))) (-221))) (-15 -1580 ((-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))) (-15 -1581 ((-3 (-309 (-221)) "failed") (-309 (-221)))) (-15 -1582 ((-309 (-221)) (-309 (-221)))) (-15 -1583 ((-112) (-622 (-309 (-221))))) (-15 -3260 ((-112) (-622 (-309 (-221))))) (-15 -3260 ((-112) (-309 (-221)))) (-15 -1584 ((-669 (-221)) (-622 (-309 (-221))) (-751))) (-15 -1585 ((-622 (-309 (-221))) (-622 (-309 (-221))))) (-15 -1586 ((-622 (-309 (-221))) (-622 (-309 (-221))))) (-15 -1587 ((-112) (-309 (-221)))) (-15 -3417 ((-622 (-1149)) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -4294 ((-622 (-1149)) (-309 (-221)) (-751))) (-15 -1588 ((-1011) (-1149) (-1011))) (-15 -1677 ((-373) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -1589 ((-622 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))))))) (T -262))
-((-1589 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) (-5 *2 (-622 (-1131))) (-5 *1 (-262)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) (-5 *2 (-373)) (-5 *1 (-262)))) (-1588 (*1 *2 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-262)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-221))) (-5 *4 (-751)) (-5 *2 (-622 (-1149))) (-5 *1 (-262)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) (-5 *2 (-622 (-1149))) (-5 *1 (-262)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-622 (-309 (-221)))) (-5 *1 (-262)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-622 (-309 (-221)))) (-5 *1 (-262)))) (-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) (-5 *1 (-262)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-1582 (*1 *2 *2) (-12 (-5 *2 (-309 (-221))) (-5 *1 (-262)))) (-1581 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-221))) (-5 *1 (-262)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (-5 *1 (-262)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-819 (-221)))) (-5 *4 (-221)) (-5 *2 (-622 *4)) (-5 *1 (-262)))))
-(-10 -7 (-15 -1579 ((-622 (-221)) (-622 (-819 (-221))) (-221))) (-15 -1580 ((-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))) (-15 -1581 ((-3 (-309 (-221)) "failed") (-309 (-221)))) (-15 -1582 ((-309 (-221)) (-309 (-221)))) (-15 -1583 ((-112) (-622 (-309 (-221))))) (-15 -3260 ((-112) (-622 (-309 (-221))))) (-15 -3260 ((-112) (-309 (-221)))) (-15 -1584 ((-669 (-221)) (-622 (-309 (-221))) (-751))) (-15 -1585 ((-622 (-309 (-221))) (-622 (-309 (-221))))) (-15 -1586 ((-622 (-309 (-221))) (-622 (-309 (-221))))) (-15 -1587 ((-112) (-309 (-221)))) (-15 -3417 ((-622 (-1149)) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -4294 ((-622 (-1149)) (-309 (-221)) (-751))) (-15 -1588 ((-1011) (-1149) (-1011))) (-15 -1677 ((-373) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -1589 ((-622 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))))))
-((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 44)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 26) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1683 (*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-3479 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))) (-3072 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-261 *3)) (-4 *3 (-827)))))
+(-13 (-827) (-1014 |t#1|) (-10 -8 (-15 -3479 ($ |t#1| (-751))) (-15 -2172 ((-751) $)) (-15 -2195 (|t#1| $)) (-15 -3469 ((-751) $)) (-15 -3072 ($ $)) (-15 -3072 ($ $ (-751))) (-15 -1683 ($ |t#1|))))
+(((-101) . T) ((-597 (-839)) . T) ((-827) . T) ((-1014 |#1|) . T) ((-1073) . T))
+((-3982 (((-625 (-1149)) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 41)) (-3202 (((-625 (-1149)) (-311 (-221)) (-751)) 80)) (-3508 (((-3 (-311 (-221)) "failed") (-311 (-221))) 51)) (-3517 (((-311 (-221)) (-311 (-221))) 67)) (-3499 (((-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 26)) (-3527 (((-112) (-625 (-311 (-221)))) 84)) (-3567 (((-112) (-311 (-221))) 24)) (-3590 (((-625 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))) 106)) (-3557 (((-625 (-311 (-221))) (-625 (-311 (-221)))) 88)) (-3548 (((-625 (-311 (-221))) (-625 (-311 (-221)))) 86)) (-3536 (((-669 (-221)) (-625 (-311 (-221))) (-751)) 95)) (-2745 (((-112) (-311 (-221))) 20) (((-112) (-625 (-311 (-221)))) 85)) (-3489 (((-625 (-221)) (-625 (-820 (-221))) (-221)) 14)) (-2093 (((-374) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 101)) (-3577 (((-1011) (-1149) (-1011)) 34)))
+(((-262) (-10 -7 (-15 -3489 ((-625 (-221)) (-625 (-820 (-221))) (-221))) (-15 -3499 ((-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))) (-15 -3508 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -3517 ((-311 (-221)) (-311 (-221)))) (-15 -3527 ((-112) (-625 (-311 (-221))))) (-15 -2745 ((-112) (-625 (-311 (-221))))) (-15 -2745 ((-112) (-311 (-221)))) (-15 -3536 ((-669 (-221)) (-625 (-311 (-221))) (-751))) (-15 -3548 ((-625 (-311 (-221))) (-625 (-311 (-221))))) (-15 -3557 ((-625 (-311 (-221))) (-625 (-311 (-221))))) (-15 -3567 ((-112) (-311 (-221)))) (-15 -3982 ((-625 (-1149)) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3202 ((-625 (-1149)) (-311 (-221)) (-751))) (-15 -3577 ((-1011) (-1149) (-1011))) (-15 -2093 ((-374) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3590 ((-625 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))))))) (T -262))
+((-3590 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))) (-5 *2 (-625 (-1131))) (-5 *1 (-262)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) (-5 *2 (-374)) (-5 *1 (-262)))) (-3577 (*1 *2 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-262)))) (-3202 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-751)) (-5 *2 (-625 (-1149))) (-5 *1 (-262)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) (-5 *2 (-625 (-1149))) (-5 *1 (-262)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3557 (*1 *2 *2) (-12 (-5 *2 (-625 (-311 (-221)))) (-5 *1 (-262)))) (-3548 (*1 *2 *2) (-12 (-5 *2 (-625 (-311 (-221)))) (-5 *1 (-262)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) (-5 *1 (-262)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3517 (*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))) (-3508 (*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (-5 *1 (-262)))) (-3489 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-820 (-221)))) (-5 *4 (-221)) (-5 *2 (-625 *4)) (-5 *1 (-262)))))
+(-10 -7 (-15 -3489 ((-625 (-221)) (-625 (-820 (-221))) (-221))) (-15 -3499 ((-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))) (-15 -3508 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -3517 ((-311 (-221)) (-311 (-221)))) (-15 -3527 ((-112) (-625 (-311 (-221))))) (-15 -2745 ((-112) (-625 (-311 (-221))))) (-15 -2745 ((-112) (-311 (-221)))) (-15 -3536 ((-669 (-221)) (-625 (-311 (-221))) (-751))) (-15 -3548 ((-625 (-311 (-221))) (-625 (-311 (-221))))) (-15 -3557 ((-625 (-311 (-221))) (-625 (-311 (-221))))) (-15 -3567 ((-112) (-311 (-221)))) (-15 -3982 ((-625 (-1149)) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3202 ((-625 (-1149)) (-311 (-221)) (-751))) (-15 -3577 ((-1011) (-1149) (-1011))) (-15 -2093 ((-374) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3590 ((-625 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))))))
+((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 44)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 26) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-263) (-816)) (T -263))
NIL
(-816)
-((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 58) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 54)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 34) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 36)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 58) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 54)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 34) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 36)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-264) (-816)) (T -264))
NIL
(-816)
-((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 76) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 73)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 44) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 55)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 76) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 73)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 44) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 55)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-265) (-816)) (T -265))
NIL
(-816)
-((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 50)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 31) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 50)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 31) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-266) (-816)) (T -266))
NIL
(-816)
-((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 50)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 28) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 50)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 28) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-267) (-816)) (T -267))
NIL
(-816)
-((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 73)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 28) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 73)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 28) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-268) (-816)) (T -268))
NIL
(-816)
-((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 77)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 25) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 77)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 25) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL)))
(((-269) (-816)) (T -269))
NIL
(-816)
-((-2898 (((-112) $ $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1591 (((-622 (-538)) $) 19)) (-4307 (((-751) $) 17)) (-4317 (((-840) $) 23) (($ (-622 (-538))) 15)) (-1590 (($ (-751)) 20)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 9)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 11)))
-(((-270) (-13 (-827) (-10 -8 (-15 -4317 ($ (-622 (-538)))) (-15 -4307 ((-751) $)) (-15 -1591 ((-622 (-538)) $)) (-15 -1590 ($ (-751)))))) (T -270))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-270)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-270)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-270)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-270)))))
-(-13 (-827) (-10 -8 (-15 -4317 ($ (-622 (-538)))) (-15 -4307 ((-751) $)) (-15 -1591 ((-622 (-538)) $)) (-15 -1590 ($ (-751)))))
-((-3846 ((|#2| |#2|) 77)) (-4002 ((|#2| |#2|) 65)) (-1620 (((-3 |#2| "failed") |#2| (-622 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3844 ((|#2| |#2|) 75)) (-4001 ((|#2| |#2|) 63)) (-3848 ((|#2| |#2|) 79)) (-4000 ((|#2| |#2|) 67)) (-3990 ((|#2|) 46)) (-3380 (((-113) (-113)) 95)) (-4302 ((|#2| |#2|) 61)) (-1621 (((-112) |#2|) 134)) (-1610 ((|#2| |#2|) 181)) (-1598 ((|#2| |#2|) 157)) (-1593 ((|#2|) 59)) (-1592 ((|#2|) 58)) (-1608 ((|#2| |#2|) 177)) (-1596 ((|#2| |#2|) 153)) (-1612 ((|#2| |#2|) 185)) (-1600 ((|#2| |#2|) 161)) (-1595 ((|#2| |#2|) 149)) (-1594 ((|#2| |#2|) 151)) (-1613 ((|#2| |#2|) 187)) (-1601 ((|#2| |#2|) 163)) (-1611 ((|#2| |#2|) 183)) (-1599 ((|#2| |#2|) 159)) (-1609 ((|#2| |#2|) 179)) (-1597 ((|#2| |#2|) 155)) (-1616 ((|#2| |#2|) 193)) (-1604 ((|#2| |#2|) 169)) (-1614 ((|#2| |#2|) 189)) (-1602 ((|#2| |#2|) 165)) (-1618 ((|#2| |#2|) 197)) (-1606 ((|#2| |#2|) 173)) (-1619 ((|#2| |#2|) 199)) (-1607 ((|#2| |#2|) 175)) (-1617 ((|#2| |#2|) 195)) (-1605 ((|#2| |#2|) 171)) (-1615 ((|#2| |#2|) 191)) (-1603 ((|#2| |#2|) 167)) (-4303 ((|#2| |#2|) 62)) (-3849 ((|#2| |#2|) 80)) (-3999 ((|#2| |#2|) 68)) (-3847 ((|#2| |#2|) 78)) (-3998 ((|#2| |#2|) 66)) (-3845 ((|#2| |#2|) 76)) (-3997 ((|#2| |#2|) 64)) (-2338 (((-112) (-113)) 93)) (-3852 ((|#2| |#2|) 83)) (-3840 ((|#2| |#2|) 71)) (-3850 ((|#2| |#2|) 81)) (-3838 ((|#2| |#2|) 69)) (-3854 ((|#2| |#2|) 85)) (-3842 ((|#2| |#2|) 73)) (-3855 ((|#2| |#2|) 86)) (-3843 ((|#2| |#2|) 74)) (-3853 ((|#2| |#2|) 84)) (-3841 ((|#2| |#2|) 72)) (-3851 ((|#2| |#2|) 82)) (-3839 ((|#2| |#2|) 70)))
-(((-271 |#1| |#2|) (-10 -7 (-15 -4303 (|#2| |#2|)) (-15 -4302 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3854 (|#2| |#2|)) (-15 -3855 (|#2| |#2|)) (-15 -3990 (|#2|)) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1592 (|#2|)) (-15 -1593 (|#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -1619 (|#2| |#2|)) (-15 -1620 ((-3 |#2| "failed") |#2| (-622 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1621 ((-112) |#2|))) (-13 (-827) (-545)) (-13 (-416 |#1|) (-978))) (T -271))
-((-1621 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3)) (-4 *3 (-13 (-416 *4) (-978))))) (-1620 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-622 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-416 *4) (-978))) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-271 *4 *2)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1615 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1611 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1604 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1602 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1593 (*1 *2) (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-545))))) (-1592 (*1 *2) (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-545))))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *4)) (-4 *4 (-13 (-416 *3) (-978))))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-416 *4) (-978))))) (-3990 (*1 *2) (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-545))))) (-3855 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-4302 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-4303 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))))
-(-10 -7 (-15 -4303 (|#2| |#2|)) (-15 -4302 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3854 (|#2| |#2|)) (-15 -3855 (|#2| |#2|)) (-15 -3990 (|#2|)) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1592 (|#2|)) (-15 -1593 (|#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -1619 (|#2| |#2|)) (-15 -1620 ((-3 |#2| "failed") |#2| (-622 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1621 ((-112) |#2|)))
-((-1624 (((-3 |#2| "failed") (-622 (-595 |#2|)) |#2| (-1149)) 135)) (-1626 ((|#2| (-402 (-538)) |#2|) 51)) (-1625 ((|#2| |#2| (-595 |#2|)) 128)) (-1622 (((-2 (|:| |func| |#2|) (|:| |kers| (-622 (-595 |#2|))) (|:| |vals| (-622 |#2|))) |#2| (-1149)) 127)) (-1623 ((|#2| |#2| (-1149)) 20) ((|#2| |#2|) 23)) (-2692 ((|#2| |#2| (-1149)) 141) ((|#2| |#2|) 139)))
-(((-272 |#1| |#2|) (-10 -7 (-15 -2692 (|#2| |#2|)) (-15 -2692 (|#2| |#2| (-1149))) (-15 -1622 ((-2 (|:| |func| |#2|) (|:| |kers| (-622 (-595 |#2|))) (|:| |vals| (-622 |#2|))) |#2| (-1149))) (-15 -1623 (|#2| |#2|)) (-15 -1623 (|#2| |#2| (-1149))) (-15 -1624 ((-3 |#2| "failed") (-622 (-595 |#2|)) |#2| (-1149))) (-15 -1625 (|#2| |#2| (-595 |#2|))) (-15 -1626 (|#2| (-402 (-538)) |#2|))) (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -272))
-((-1626 (*1 *2 *3 *2) (-12 (-5 *3 (-402 (-538))) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-1625 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *4 *2)))) (-1624 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-622 (-595 *2))) (-5 *4 (-1149)) (-4 *2 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *5 *2)))) (-1623 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) (-1622 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-622 (-595 *3))) (|:| |vals| (-622 *3)))) (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-2692 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))))
-(-10 -7 (-15 -2692 (|#2| |#2|)) (-15 -2692 (|#2| |#2| (-1149))) (-15 -1622 ((-2 (|:| |func| |#2|) (|:| |kers| (-622 (-595 |#2|))) (|:| |vals| (-622 |#2|))) |#2| (-1149))) (-15 -1623 (|#2| |#2|)) (-15 -1623 (|#2| |#2| (-1149))) (-15 -1624 ((-3 |#2| "failed") (-622 (-595 |#2|)) |#2| (-1149))) (-15 -1625 (|#2| |#2| (-595 |#2|))) (-15 -1626 (|#2| (-402 (-538)) |#2|)))
-((-3308 (((-3 |#3| #1="failed") |#3|) 110)) (-3846 ((|#3| |#3|) 131)) (-3296 (((-3 |#3| #1#) |#3|) 82)) (-4002 ((|#3| |#3|) 121)) (-3306 (((-3 |#3| #1#) |#3|) 58)) (-3844 ((|#3| |#3|) 129)) (-3294 (((-3 |#3| #1#) |#3|) 46)) (-4001 ((|#3| |#3|) 119)) (-3310 (((-3 |#3| #1#) |#3|) 112)) (-3848 ((|#3| |#3|) 133)) (-3298 (((-3 |#3| #1#) |#3|) 84)) (-4000 ((|#3| |#3|) 123)) (-3291 (((-3 |#3| #1#) |#3| (-751)) 36)) (-3293 (((-3 |#3| #1#) |#3|) 74)) (-4302 ((|#3| |#3|) 118)) (-3292 (((-3 |#3| #1#) |#3|) 44)) (-4303 ((|#3| |#3|) 117)) (-3311 (((-3 |#3| #1#) |#3|) 113)) (-3849 ((|#3| |#3|) 134)) (-3299 (((-3 |#3| #1#) |#3|) 85)) (-3999 ((|#3| |#3|) 124)) (-3309 (((-3 |#3| #1#) |#3|) 111)) (-3847 ((|#3| |#3|) 132)) (-3297 (((-3 |#3| #1#) |#3|) 83)) (-3998 ((|#3| |#3|) 122)) (-3307 (((-3 |#3| #1#) |#3|) 60)) (-3845 ((|#3| |#3|) 130)) (-3295 (((-3 |#3| #1#) |#3|) 48)) (-3997 ((|#3| |#3|) 120)) (-3314 (((-3 |#3| #1#) |#3|) 66)) (-3852 ((|#3| |#3|) 137)) (-3302 (((-3 |#3| #1#) |#3|) 104)) (-3840 ((|#3| |#3|) 142)) (-3312 (((-3 |#3| #1#) |#3|) 62)) (-3850 ((|#3| |#3|) 135)) (-3300 (((-3 |#3| #1#) |#3|) 50)) (-3838 ((|#3| |#3|) 125)) (-3316 (((-3 |#3| #1#) |#3|) 70)) (-3854 ((|#3| |#3|) 139)) (-3304 (((-3 |#3| #1#) |#3|) 54)) (-3842 ((|#3| |#3|) 127)) (-3317 (((-3 |#3| #1#) |#3|) 72)) (-3855 ((|#3| |#3|) 140)) (-3305 (((-3 |#3| #1#) |#3|) 56)) (-3843 ((|#3| |#3|) 128)) (-3315 (((-3 |#3| #1#) |#3|) 68)) (-3853 ((|#3| |#3|) 138)) (-3303 (((-3 |#3| #1#) |#3|) 107)) (-3841 ((|#3| |#3|) 143)) (-3313 (((-3 |#3| #1#) |#3|) 64)) (-3851 ((|#3| |#3|) 136)) (-3301 (((-3 |#3| #1#) |#3|) 52)) (-3839 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-402 (-538))) 40 (|has| |#1| (-358)))))
-(((-273 |#1| |#2| |#3|) (-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-538)))) |%noBranch|) (-15 -4303 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3855 (|#3| |#3|)))) (-38 (-402 (-538))) (-1224 |#1|) (-1195 |#1| |#2|)) (T -273))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-538))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1224 *4)) (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1195 *4 *5)))) (-4303 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-4302 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3855 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))))
-(-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-538)))) |%noBranch|) (-15 -4303 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3855 (|#3| |#3|))))
-((-3308 (((-3 |#3| #1="failed") |#3|) 66)) (-3846 ((|#3| |#3|) 129)) (-3296 (((-3 |#3| #1#) |#3|) 50)) (-4002 ((|#3| |#3|) 117)) (-3306 (((-3 |#3| #1#) |#3|) 62)) (-3844 ((|#3| |#3|) 127)) (-3294 (((-3 |#3| #1#) |#3|) 46)) (-4001 ((|#3| |#3|) 115)) (-3310 (((-3 |#3| #1#) |#3|) 70)) (-3848 ((|#3| |#3|) 131)) (-3298 (((-3 |#3| #1#) |#3|) 54)) (-4000 ((|#3| |#3|) 119)) (-3291 (((-3 |#3| #1#) |#3| (-751)) 35)) (-3293 (((-3 |#3| #1#) |#3|) 44)) (-4302 ((|#3| |#3|) 104)) (-3292 (((-3 |#3| #1#) |#3|) 42)) (-4303 ((|#3| |#3|) 114)) (-3311 (((-3 |#3| #1#) |#3|) 72)) (-3849 ((|#3| |#3|) 132)) (-3299 (((-3 |#3| #1#) |#3|) 56)) (-3999 ((|#3| |#3|) 120)) (-3309 (((-3 |#3| #1#) |#3|) 68)) (-3847 ((|#3| |#3|) 130)) (-3297 (((-3 |#3| #1#) |#3|) 52)) (-3998 ((|#3| |#3|) 118)) (-3307 (((-3 |#3| #1#) |#3|) 64)) (-3845 ((|#3| |#3|) 128)) (-3295 (((-3 |#3| #1#) |#3|) 48)) (-3997 ((|#3| |#3|) 116)) (-3314 (((-3 |#3| #1#) |#3|) 74)) (-3852 ((|#3| |#3|) 135)) (-3302 (((-3 |#3| #1#) |#3|) 58)) (-3840 ((|#3| |#3|) 123)) (-3312 (((-3 |#3| #1#) |#3|) 105)) (-3850 ((|#3| |#3|) 133)) (-3300 (((-3 |#3| #1#) |#3|) 94)) (-3838 ((|#3| |#3|) 121)) (-3316 (((-3 |#3| #1#) |#3|) 109)) (-3854 ((|#3| |#3|) 137)) (-3304 (((-3 |#3| #1#) |#3|) 101)) (-3842 ((|#3| |#3|) 125)) (-3317 (((-3 |#3| #1#) |#3|) 110)) (-3855 ((|#3| |#3|) 138)) (-3305 (((-3 |#3| #1#) |#3|) 103)) (-3843 ((|#3| |#3|) 126)) (-3315 (((-3 |#3| #1#) |#3|) 76)) (-3853 ((|#3| |#3|) 136)) (-3303 (((-3 |#3| #1#) |#3|) 60)) (-3841 ((|#3| |#3|) 124)) (-3313 (((-3 |#3| #1#) |#3|) 106)) (-3851 ((|#3| |#3|) 134)) (-3301 (((-3 |#3| #1#) |#3|) 97)) (-3839 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-402 (-538))) 40 (|has| |#1| (-358)))))
-(((-274 |#1| |#2| |#3| |#4|) (-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-538)))) |%noBranch|) (-15 -4303 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3855 (|#3| |#3|)))) (-38 (-402 (-538))) (-1193 |#1|) (-1216 |#1| |#2|) (-959 |#2|)) (T -274))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-538))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1193 *4)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1216 *4 *5)) (-4 *6 (-959 *5)))) (-4303 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-4302 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3855 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))))
-(-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-538)))) |%noBranch|) (-15 -4303 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3855 (|#3| |#3|))))
-((-3185 (((-112) $) 19)) (-1630 (((-182) $) 7)) (-3932 (((-3 (-1149) "failed") $) 14)) (-3931 (((-3 (-622 $) "failed") $) NIL)) (-1628 (((-3 (-1149) "failed") $) 21)) (-1629 (((-3 (-1076) "failed") $) 17)) (-4312 (((-112) $) 15)) (-4317 (((-840) $) NIL)) (-1627 (((-112) $) 9)))
-(((-275) (-13 (-597 (-840)) (-10 -8 (-15 -1630 ((-182) $)) (-15 -4312 ((-112) $)) (-15 -1629 ((-3 (-1076) "failed") $)) (-15 -3185 ((-112) $)) (-15 -1628 ((-3 (-1149) "failed") $)) (-15 -1627 ((-112) $)) (-15 -3932 ((-3 (-1149) "failed") $)) (-15 -3931 ((-3 (-622 $) "failed") $))))) (T -275))
-((-1630 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-275)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-1629 (*1 *2 *1) (|partial| -12 (-5 *2 (-1076)) (-5 *1 (-275)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-1628 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-3932 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))) (-3931 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 (-275))) (-5 *1 (-275)))))
-(-13 (-597 (-840)) (-10 -8 (-15 -1630 ((-182) $)) (-15 -4312 ((-112) $)) (-15 -1629 ((-3 (-1076) "failed") $)) (-15 -3185 ((-112) $)) (-15 -1628 ((-3 (-1149) "failed") $)) (-15 -1627 ((-112) $)) (-15 -3932 ((-3 (-1149) "failed") $)) (-15 -3931 ((-3 (-622 $) "failed") $))))
-((-4073 (($ (-1 (-112) |#2|) $) 24)) (-1398 (($ $) 36)) (-3764 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3765 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3192 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2382 (($ |#2| $ (-538)) 20) (($ $ $ (-538)) 22)) (-2383 (($ $ (-538)) 11) (($ $ (-1198 (-538))) 14)) (-4150 (($ $ |#2|) 30) (($ $ $) NIL)) (-4161 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-622 $)) NIL)))
-(((-276 |#1| |#2|) (-10 -8 (-15 -3192 (|#1| |#1| |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -3765 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4073 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3765 (|#1| |#2| |#1|)) (-15 -1398 (|#1| |#1|))) (-277 |#2|) (-1185)) (T -276))
-NIL
-(-10 -8 (-15 -3192 (|#1| |#1| |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -3765 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4073 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3765 (|#1| |#2| |#1|)) (-15 -1398 (|#1| |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) 85)) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2455 (($ $) 83 (|has| |#1| (-1074)))) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1074)))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3192 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3970 (($ |#1| $ (-538)) 88) (($ $ $ (-538)) 87)) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-1632 (($ $ (-538)) 91) (($ $ (-1198 (-538))) 90)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 70)) (-4150 (($ $ |#1|) 93) (($ $ $) 92)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-277 |#1|) (-138) (-1185)) (T -277))
-((-4150 (*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)))) (-4150 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)))) (-1632 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-1632 (*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-3764 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-3970 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-277 *2)) (-4 *2 (-1185)))) (-3970 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-3192 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-1631 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-3764 (*1 *1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-1074)))) (-2455 (*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-1074)))) (-3192 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-827)))))
-(-13 (-631 |t#1|) (-10 -8 (-6 -4354) (-15 -4150 ($ $ |t#1|)) (-15 -4150 ($ $ $)) (-15 -1632 ($ $ (-538))) (-15 -1632 ($ $ (-1198 (-538)))) (-15 -3764 ($ (-1 (-112) |t#1|) $)) (-15 -3970 ($ |t#1| $ (-538))) (-15 -3970 ($ $ $ (-538))) (-15 -3192 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1631 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -3764 ($ |t#1| $)) (-15 -2455 ($ $))) |%noBranch|) (IF (|has| |t#1| (-827)) (-15 -3192 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
+((-1671 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3611 (((-625 (-552)) $) 19)) (-4276 (((-751) $) 17)) (-1683 (((-839) $) 23) (($ (-625 (-552))) 15)) (-3601 (($ (-751)) 20)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 9)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 11)))
+(((-270) (-13 (-827) (-10 -8 (-15 -1683 ($ (-625 (-552)))) (-15 -4276 ((-751) $)) (-15 -3611 ((-625 (-552)) $)) (-15 -3601 ($ (-751)))))) (T -270))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-270)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-270)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-270)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-270)))))
+(-13 (-827) (-10 -8 (-15 -1683 ($ (-625 (-552)))) (-15 -4276 ((-751) $)) (-15 -3611 ((-625 (-552)) $)) (-15 -3601 ($ (-751)))))
+((-3728 ((|#2| |#2|) 77)) (-3604 ((|#2| |#2|) 65)) (-2762 (((-3 |#2| "failed") |#2| (-625 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3710 ((|#2| |#2|) 75)) (-3581 ((|#2| |#2|) 63)) (-3749 ((|#2| |#2|) 79)) (-3627 ((|#2| |#2|) 67)) (-1385 ((|#2|) 46)) (-1563 (((-114) (-114)) 95)) (-2458 ((|#2| |#2|) 61)) (-2771 (((-112) |#2|) 134)) (-2661 ((|#2| |#2|) 181)) (-2544 ((|#2| |#2|) 157)) (-3633 ((|#2|) 59)) (-3622 ((|#2|) 58)) (-2644 ((|#2| |#2|) 177)) (-2526 ((|#2| |#2|) 153)) (-2685 ((|#2| |#2|) 185)) (-2563 ((|#2| |#2|) 161)) (-2517 ((|#2| |#2|) 149)) (-3643 ((|#2| |#2|) 151)) (-2695 ((|#2| |#2|) 187)) (-2573 ((|#2| |#2|) 163)) (-2674 ((|#2| |#2|) 183)) (-2553 ((|#2| |#2|) 159)) (-2652 ((|#2| |#2|) 179)) (-2536 ((|#2| |#2|) 155)) (-2724 ((|#2| |#2|) 193)) (-2606 ((|#2| |#2|) 169)) (-2705 ((|#2| |#2|) 189)) (-2582 ((|#2| |#2|) 165)) (-2743 ((|#2| |#2|) 197)) (-2623 ((|#2| |#2|) 173)) (-2752 ((|#2| |#2|) 199)) (-2634 ((|#2| |#2|) 175)) (-2733 ((|#2| |#2|) 195)) (-2613 ((|#2| |#2|) 171)) (-2714 ((|#2| |#2|) 191)) (-2592 ((|#2| |#2|) 167)) (-2863 ((|#2| |#2|) 62)) (-3759 ((|#2| |#2|) 80)) (-3638 ((|#2| |#2|) 68)) (-3738 ((|#2| |#2|) 78)) (-3614 ((|#2| |#2|) 66)) (-3721 ((|#2| |#2|) 76)) (-3593 ((|#2| |#2|) 64)) (-1572 (((-112) (-114)) 93)) (-3789 ((|#2| |#2|) 83)) (-3670 ((|#2| |#2|) 71)) (-3769 ((|#2| |#2|) 81)) (-3648 ((|#2| |#2|) 69)) (-3809 ((|#2| |#2|) 85)) (-3691 ((|#2| |#2|) 73)) (-3742 ((|#2| |#2|) 86)) (-3700 ((|#2| |#2|) 74)) (-3797 ((|#2| |#2|) 84)) (-3681 ((|#2| |#2|) 72)) (-3778 ((|#2| |#2|) 82)) (-3659 ((|#2| |#2|) 70)))
+(((-271 |#1| |#2|) (-10 -7 (-15 -2863 (|#2| |#2|)) (-15 -2458 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -3593 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -3614 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3681 (|#2| |#2|)) (-15 -3691 (|#2| |#2|)) (-15 -3700 (|#2| |#2|)) (-15 -3710 (|#2| |#2|)) (-15 -3721 (|#2| |#2|)) (-15 -3728 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -3769 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3797 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3742 (|#2| |#2|)) (-15 -1385 (|#2|)) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -3622 (|#2|)) (-15 -3633 (|#2|)) (-15 -3643 (|#2| |#2|)) (-15 -2517 (|#2| |#2|)) (-15 -2526 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2544 (|#2| |#2|)) (-15 -2553 (|#2| |#2|)) (-15 -2563 (|#2| |#2|)) (-15 -2573 (|#2| |#2|)) (-15 -2582 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -2606 (|#2| |#2|)) (-15 -2613 (|#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -2652 (|#2| |#2|)) (-15 -2661 (|#2| |#2|)) (-15 -2674 (|#2| |#2|)) (-15 -2685 (|#2| |#2|)) (-15 -2695 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -2714 (|#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -2762 ((-3 |#2| "failed") |#2| (-625 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2771 ((-112) |#2|))) (-13 (-827) (-544)) (-13 (-425 |#1|) (-978))) (T -271))
+((-2771 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3)) (-4 *3 (-13 (-425 *4) (-978))))) (-2762 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-625 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-425 *4) (-978))) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-271 *4 *2)))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2733 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2714 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2685 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2674 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2652 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2644 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2634 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2623 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2613 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2606 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2582 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2563 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2553 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2544 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2526 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2517 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3633 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-544))))) (-3622 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-544))))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *4)) (-4 *4 (-13 (-425 *3) (-978))))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-425 *4) (-978))))) (-1385 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-544))))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3728 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3721 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3700 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3681 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2863 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))))
+(-10 -7 (-15 -2863 (|#2| |#2|)) (-15 -2458 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -3593 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -3614 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3681 (|#2| |#2|)) (-15 -3691 (|#2| |#2|)) (-15 -3700 (|#2| |#2|)) (-15 -3710 (|#2| |#2|)) (-15 -3721 (|#2| |#2|)) (-15 -3728 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -3769 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3797 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3742 (|#2| |#2|)) (-15 -1385 (|#2|)) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -3622 (|#2|)) (-15 -3633 (|#2|)) (-15 -3643 (|#2| |#2|)) (-15 -2517 (|#2| |#2|)) (-15 -2526 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2544 (|#2| |#2|)) (-15 -2553 (|#2| |#2|)) (-15 -2563 (|#2| |#2|)) (-15 -2573 (|#2| |#2|)) (-15 -2582 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -2606 (|#2| |#2|)) (-15 -2613 (|#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -2652 (|#2| |#2|)) (-15 -2661 (|#2| |#2|)) (-15 -2674 (|#2| |#2|)) (-15 -2685 (|#2| |#2|)) (-15 -2695 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -2714 (|#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -2762 ((-3 |#2| "failed") |#2| (-625 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2771 ((-112) |#2|)))
+((-2803 (((-3 |#2| "failed") (-625 (-596 |#2|)) |#2| (-1149)) 135)) (-2828 ((|#2| (-402 (-552)) |#2|) 51)) (-2815 ((|#2| |#2| (-596 |#2|)) 128)) (-2782 (((-2 (|:| |func| |#2|) (|:| |kers| (-625 (-596 |#2|))) (|:| |vals| (-625 |#2|))) |#2| (-1149)) 127)) (-2792 ((|#2| |#2| (-1149)) 20) ((|#2| |#2|) 23)) (-3895 ((|#2| |#2| (-1149)) 141) ((|#2| |#2|) 139)))
+(((-272 |#1| |#2|) (-10 -7 (-15 -3895 (|#2| |#2|)) (-15 -3895 (|#2| |#2| (-1149))) (-15 -2782 ((-2 (|:| |func| |#2|) (|:| |kers| (-625 (-596 |#2|))) (|:| |vals| (-625 |#2|))) |#2| (-1149))) (-15 -2792 (|#2| |#2|)) (-15 -2792 (|#2| |#2| (-1149))) (-15 -2803 ((-3 |#2| "failed") (-625 (-596 |#2|)) |#2| (-1149))) (-15 -2815 (|#2| |#2| (-596 |#2|))) (-15 -2828 (|#2| (-402 (-552)) |#2|))) (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -272))
+((-2828 (*1 *2 *3 *2) (-12 (-5 *3 (-402 (-552))) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-2815 (*1 *2 *2 *3) (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *4 *2)))) (-2803 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-625 (-596 *2))) (-5 *4 (-1149)) (-4 *2 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *5 *2)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-2792 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) (-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-625 (-596 *3))) (|:| |vals| (-625 *3)))) (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-3895 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))))
+(-10 -7 (-15 -3895 (|#2| |#2|)) (-15 -3895 (|#2| |#2| (-1149))) (-15 -2782 ((-2 (|:| |func| |#2|) (|:| |kers| (-625 (-596 |#2|))) (|:| |vals| (-625 |#2|))) |#2| (-1149))) (-15 -2792 (|#2| |#2|)) (-15 -2792 (|#2| |#2| (-1149))) (-15 -2803 ((-3 |#2| "failed") (-625 (-596 |#2|)) |#2| (-1149))) (-15 -2815 (|#2| |#2| (-596 |#2|))) (-15 -2828 (|#2| (-402 (-552)) |#2|)))
+((-2063 (((-3 |#3| "failed") |#3|) 111)) (-3728 ((|#3| |#3|) 132)) (-3125 (((-3 |#3| "failed") |#3|) 82)) (-3604 ((|#3| |#3|) 122)) (-2041 (((-3 |#3| "failed") |#3|) 58)) (-3710 ((|#3| |#3|) 130)) (-3107 (((-3 |#3| "failed") |#3|) 46)) (-3581 ((|#3| |#3|) 120)) (-2084 (((-3 |#3| "failed") |#3|) 113)) (-3749 ((|#3| |#3|) 134)) (-3144 (((-3 |#3| "failed") |#3|) 84)) (-3627 ((|#3| |#3|) 124)) (-3082 (((-3 |#3| "failed") |#3| (-751)) 36)) (-3097 (((-3 |#3| "failed") |#3|) 74)) (-2458 ((|#3| |#3|) 119)) (-3090 (((-3 |#3| "failed") |#3|) 44)) (-2863 ((|#3| |#3|) 118)) (-2095 (((-3 |#3| "failed") |#3|) 114)) (-3759 ((|#3| |#3|) 135)) (-3156 (((-3 |#3| "failed") |#3|) 85)) (-3638 ((|#3| |#3|) 125)) (-2074 (((-3 |#3| "failed") |#3|) 112)) (-3738 ((|#3| |#3|) 133)) (-3133 (((-3 |#3| "failed") |#3|) 83)) (-3614 ((|#3| |#3|) 123)) (-2050 (((-3 |#3| "failed") |#3|) 60)) (-3721 ((|#3| |#3|) 131)) (-3115 (((-3 |#3| "failed") |#3|) 48)) (-3593 ((|#3| |#3|) 121)) (-2124 (((-3 |#3| "failed") |#3|) 66)) (-3789 ((|#3| |#3|) 138)) (-2006 (((-3 |#3| "failed") |#3|) 105)) (-3670 ((|#3| |#3|) 142)) (-2106 (((-3 |#3| "failed") |#3|) 62)) (-3769 ((|#3| |#3|) 136)) (-1985 (((-3 |#3| "failed") |#3|) 50)) (-3648 ((|#3| |#3|) 126)) (-2145 (((-3 |#3| "failed") |#3|) 70)) (-3809 ((|#3| |#3|) 140)) (-2022 (((-3 |#3| "failed") |#3|) 54)) (-3691 ((|#3| |#3|) 128)) (-2160 (((-3 |#3| "failed") |#3|) 72)) (-3742 ((|#3| |#3|) 141)) (-2031 (((-3 |#3| "failed") |#3|) 56)) (-3700 ((|#3| |#3|) 129)) (-2136 (((-3 |#3| "failed") |#3|) 68)) (-3797 ((|#3| |#3|) 139)) (-2013 (((-3 |#3| "failed") |#3|) 108)) (-3681 ((|#3| |#3|) 143)) (-2115 (((-3 |#3| "failed") |#3|) 64)) (-3778 ((|#3| |#3|) 137)) (-1995 (((-3 |#3| "failed") |#3|) 52)) (-3659 ((|#3| |#3|) 127)) (** ((|#3| |#3| (-402 (-552))) 40 (|has| |#1| (-358)))))
+(((-273 |#1| |#2| |#3|) (-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-552)))) |%noBranch|) (-15 -2863 (|#3| |#3|)) (-15 -2458 (|#3| |#3|)) (-15 -3581 (|#3| |#3|)) (-15 -3593 (|#3| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -3614 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3681 (|#3| |#3|)) (-15 -3691 (|#3| |#3|)) (-15 -3700 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3721 (|#3| |#3|)) (-15 -3728 (|#3| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3742 (|#3| |#3|)))) (-38 (-402 (-552))) (-1223 |#1|) (-1194 |#1| |#2|)) (T -273))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-552))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1223 *4)) (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1194 *4 *5)))) (-2863 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3681 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3700 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3721 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3728 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))))
+(-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-552)))) |%noBranch|) (-15 -2863 (|#3| |#3|)) (-15 -2458 (|#3| |#3|)) (-15 -3581 (|#3| |#3|)) (-15 -3593 (|#3| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -3614 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3681 (|#3| |#3|)) (-15 -3691 (|#3| |#3|)) (-15 -3700 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3721 (|#3| |#3|)) (-15 -3728 (|#3| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3742 (|#3| |#3|))))
+((-2063 (((-3 |#3| "failed") |#3|) 66)) (-3728 ((|#3| |#3|) 129)) (-3125 (((-3 |#3| "failed") |#3|) 50)) (-3604 ((|#3| |#3|) 117)) (-2041 (((-3 |#3| "failed") |#3|) 62)) (-3710 ((|#3| |#3|) 127)) (-3107 (((-3 |#3| "failed") |#3|) 46)) (-3581 ((|#3| |#3|) 115)) (-2084 (((-3 |#3| "failed") |#3|) 70)) (-3749 ((|#3| |#3|) 131)) (-3144 (((-3 |#3| "failed") |#3|) 54)) (-3627 ((|#3| |#3|) 119)) (-3082 (((-3 |#3| "failed") |#3| (-751)) 35)) (-3097 (((-3 |#3| "failed") |#3|) 44)) (-2458 ((|#3| |#3|) 105)) (-3090 (((-3 |#3| "failed") |#3|) 42)) (-2863 ((|#3| |#3|) 114)) (-2095 (((-3 |#3| "failed") |#3|) 72)) (-3759 ((|#3| |#3|) 132)) (-3156 (((-3 |#3| "failed") |#3|) 56)) (-3638 ((|#3| |#3|) 120)) (-2074 (((-3 |#3| "failed") |#3|) 68)) (-3738 ((|#3| |#3|) 130)) (-3133 (((-3 |#3| "failed") |#3|) 52)) (-3614 ((|#3| |#3|) 118)) (-2050 (((-3 |#3| "failed") |#3|) 64)) (-3721 ((|#3| |#3|) 128)) (-3115 (((-3 |#3| "failed") |#3|) 48)) (-3593 ((|#3| |#3|) 116)) (-2124 (((-3 |#3| "failed") |#3|) 74)) (-3789 ((|#3| |#3|) 135)) (-2006 (((-3 |#3| "failed") |#3|) 58)) (-3670 ((|#3| |#3|) 123)) (-2106 (((-3 |#3| "failed") |#3|) 106)) (-3769 ((|#3| |#3|) 133)) (-1985 (((-3 |#3| "failed") |#3|) 95)) (-3648 ((|#3| |#3|) 121)) (-2145 (((-3 |#3| "failed") |#3|) 109)) (-3809 ((|#3| |#3|) 137)) (-2022 (((-3 |#3| "failed") |#3|) 102)) (-3691 ((|#3| |#3|) 125)) (-2160 (((-3 |#3| "failed") |#3|) 110)) (-3742 ((|#3| |#3|) 138)) (-2031 (((-3 |#3| "failed") |#3|) 104)) (-3700 ((|#3| |#3|) 126)) (-2136 (((-3 |#3| "failed") |#3|) 76)) (-3797 ((|#3| |#3|) 136)) (-2013 (((-3 |#3| "failed") |#3|) 60)) (-3681 ((|#3| |#3|) 124)) (-2115 (((-3 |#3| "failed") |#3|) 107)) (-3778 ((|#3| |#3|) 134)) (-1995 (((-3 |#3| "failed") |#3|) 98)) (-3659 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-402 (-552))) 40 (|has| |#1| (-358)))))
+(((-274 |#1| |#2| |#3| |#4|) (-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-552)))) |%noBranch|) (-15 -2863 (|#3| |#3|)) (-15 -2458 (|#3| |#3|)) (-15 -3581 (|#3| |#3|)) (-15 -3593 (|#3| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -3614 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3681 (|#3| |#3|)) (-15 -3691 (|#3| |#3|)) (-15 -3700 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3721 (|#3| |#3|)) (-15 -3728 (|#3| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3742 (|#3| |#3|)))) (-38 (-402 (-552))) (-1192 |#1|) (-1215 |#1| |#2|) (-959 |#2|)) (T -274))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-552))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1192 *4)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1215 *4 *5)) (-4 *6 (-959 *5)))) (-2863 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3681 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3700 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3721 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3728 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))))
+(-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-552)))) |%noBranch|) (-15 -2863 (|#3| |#3|)) (-15 -2458 (|#3| |#3|)) (-15 -3581 (|#3| |#3|)) (-15 -3593 (|#3| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -3614 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3681 (|#3| |#3|)) (-15 -3691 (|#3| |#3|)) (-15 -3700 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3721 (|#3| |#3|)) (-15 -3728 (|#3| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3742 (|#3| |#3|))))
+((-3226 (((-112) $) 19)) (-1906 (((-181) $) 7)) (-2442 (((-3 (-1149) "failed") $) 14)) (-1810 (((-3 (-625 $) "failed") $) NIL)) (-2852 (((-3 (-1149) "failed") $) 21)) (-2862 (((-3 (-1077) "failed") $) 17)) (-4307 (((-112) $) 15)) (-1683 (((-839) $) NIL)) (-2839 (((-112) $) 9)))
+(((-275) (-13 (-597 (-839)) (-10 -8 (-15 -1906 ((-181) $)) (-15 -4307 ((-112) $)) (-15 -2862 ((-3 (-1077) "failed") $)) (-15 -3226 ((-112) $)) (-15 -2852 ((-3 (-1149) "failed") $)) (-15 -2839 ((-112) $)) (-15 -2442 ((-3 (-1149) "failed") $)) (-15 -1810 ((-3 (-625 $) "failed") $))))) (T -275))
+((-1906 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-275)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-2862 (*1 *2 *1) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-275)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-2852 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-2442 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))) (-1810 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 (-275))) (-5 *1 (-275)))))
+(-13 (-597 (-839)) (-10 -8 (-15 -1906 ((-181) $)) (-15 -4307 ((-112) $)) (-15 -2862 ((-3 (-1077) "failed") $)) (-15 -3226 ((-112) $)) (-15 -2852 ((-3 (-1149) "failed") $)) (-15 -2839 ((-112) $)) (-15 -2442 ((-3 (-1149) "failed") $)) (-15 -1810 ((-3 (-625 $) "failed") $))))
+((-3488 (($ (-1 (-112) |#2|) $) 24)) (-2959 (($ $) 36)) (-1938 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1416 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3260 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3994 (($ |#2| $ (-552)) 20) (($ $ $ (-552)) 22)) (-4001 (($ $ (-552)) 11) (($ $ (-1199 (-552))) 14)) (-2342 (($ $ |#2|) 30) (($ $ $) NIL)) (-3402 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-625 $)) NIL)))
+(((-276 |#1| |#2|) (-10 -8 (-15 -3260 (|#1| |#1| |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -3260 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -2342 (|#1| |#1| |#2|)) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -1416 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -2959 (|#1| |#1|))) (-277 |#2|) (-1186)) (T -276))
+NIL
+(-10 -8 (-15 -3260 (|#1| |#1| |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -3260 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -2342 (|#1| |#1| |#2|)) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -1416 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -2959 (|#1| |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) 85)) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3238 (($ $) 83 (|has| |#1| (-1073)))) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1073)))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3260 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3966 (($ |#1| $ (-552)) 88) (($ $ $ (-552)) 87)) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-2884 (($ $ (-552)) 91) (($ $ (-1199 (-552))) 90)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 70)) (-2342 (($ $ |#1|) 93) (($ $ $) 92)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-277 |#1|) (-138) (-1186)) (T -277))
+((-2342 (*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)))) (-2342 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-1938 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-3966 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-277 *2)) (-4 *2 (-1186)))) (-3966 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-3260 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-2873 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-1938 (*1 *1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-1073)))) (-3238 (*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-1073)))) (-3260 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-827)))))
+(-13 (-631 |t#1|) (-10 -8 (-6 -4354) (-15 -2342 ($ $ |t#1|)) (-15 -2342 ($ $ $)) (-15 -2884 ($ $ (-552))) (-15 -2884 ($ $ (-1199 (-552)))) (-15 -1938 ($ (-1 (-112) |t#1|) $)) (-15 -3966 ($ |t#1| $ (-552))) (-15 -3966 ($ $ $ (-552))) (-15 -3260 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2873 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1073)) (PROGN (-15 -1938 ($ |t#1| $)) (-15 -3238 ($ $))) |%noBranch|) (IF (|has| |t#1| (-827)) (-15 -3260 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
((** (($ $ $) 10)))
(((-278 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-279)) (T -278))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-4302 (($ $) 6)) (-4303 (($ $) 7)) (** (($ $ $) 8)))
+((-2458 (($ $) 6)) (-2863 (($ $) 7)) (** (($ $ $) 8)))
(((-279) (-138)) (T -279))
-((** (*1 *1 *1 *1) (-4 *1 (-279))) (-4303 (*1 *1 *1) (-4 *1 (-279))) (-4302 (*1 *1 *1) (-4 *1 (-279))))
-(-13 (-10 -8 (-15 -4302 ($ $)) (-15 -4303 ($ $)) (-15 ** ($ $ $))))
-((-1636 (((-622 (-1126 |#1|)) (-1126 |#1|) |#1|) 35)) (-1633 ((|#2| |#2| |#1|) 38)) (-1635 ((|#2| |#2| |#1|) 40)) (-1634 ((|#2| |#2| |#1|) 39)))
-(((-280 |#1| |#2|) (-10 -7 (-15 -1633 (|#2| |#2| |#1|)) (-15 -1634 (|#2| |#2| |#1|)) (-15 -1635 (|#2| |#2| |#1|)) (-15 -1636 ((-622 (-1126 |#1|)) (-1126 |#1|) |#1|))) (-358) (-1224 |#1|)) (T -280))
-((-1636 (*1 *2 *3 *4) (-12 (-4 *4 (-358)) (-5 *2 (-622 (-1126 *4))) (-5 *1 (-280 *4 *5)) (-5 *3 (-1126 *4)) (-4 *5 (-1224 *4)))) (-1635 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3)))) (-1634 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3)))) (-1633 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3)))))
-(-10 -7 (-15 -1633 (|#2| |#2| |#1|)) (-15 -1634 (|#2| |#2| |#1|)) (-15 -1635 (|#2| |#2| |#1|)) (-15 -1636 ((-622 (-1126 |#1|)) (-1126 |#1|) |#1|)))
-((-4159 ((|#2| $ |#1|) 6)))
-(((-281 |#1| |#2|) (-138) (-1074) (-1185)) (T -281))
-((-4159 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))))
-(-13 (-10 -8 (-15 -4159 (|t#2| $ |t#1|))))
-((-1637 ((|#3| $ |#2| |#3|) 12)) (-3448 ((|#3| $ |#2|) 10)))
-(((-282 |#1| |#2| |#3|) (-10 -8 (-15 -1637 (|#3| |#1| |#2| |#3|)) (-15 -3448 (|#3| |#1| |#2|))) (-283 |#2| |#3|) (-1074) (-1185)) (T -282))
-NIL
-(-10 -8 (-15 -1637 (|#3| |#1| |#2| |#3|)) (-15 -3448 (|#3| |#1| |#2|)))
-((-4147 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4354)))) (-1637 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) 11)) (-4159 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-283 |#1| |#2|) (-138) (-1074) (-1185)) (T -283))
-((-4159 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) (-3448 (*1 *2 *1 *3) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) (-4147 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) (-1637 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))))
-(-13 (-281 |t#1| |t#2|) (-10 -8 (-15 -4159 (|t#2| $ |t#1| |t#2|)) (-15 -3448 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -4147 (|t#2| $ |t#1| |t#2|)) (-15 -1637 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-279))) (-2863 (*1 *1 *1) (-4 *1 (-279))) (-2458 (*1 *1 *1) (-4 *1 (-279))))
+(-13 (-10 -8 (-15 -2458 ($ $)) (-15 -2863 ($ $)) (-15 ** ($ $ $))))
+((-2914 (((-625 (-1129 |#1|)) (-1129 |#1|) |#1|) 35)) (-2895 ((|#2| |#2| |#1|) 38)) (-2904 ((|#2| |#2| |#1|) 40)) (-4260 ((|#2| |#2| |#1|) 39)))
+(((-280 |#1| |#2|) (-10 -7 (-15 -2895 (|#2| |#2| |#1|)) (-15 -4260 (|#2| |#2| |#1|)) (-15 -2904 (|#2| |#2| |#1|)) (-15 -2914 ((-625 (-1129 |#1|)) (-1129 |#1|) |#1|))) (-358) (-1223 |#1|)) (T -280))
+((-2914 (*1 *2 *3 *4) (-12 (-4 *4 (-358)) (-5 *2 (-625 (-1129 *4))) (-5 *1 (-280 *4 *5)) (-5 *3 (-1129 *4)) (-4 *5 (-1223 *4)))) (-2904 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3)))) (-4260 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3)))) (-2895 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3)))))
+(-10 -7 (-15 -2895 (|#2| |#2| |#1|)) (-15 -4260 (|#2| |#2| |#1|)) (-15 -2904 (|#2| |#2| |#1|)) (-15 -2914 ((-625 (-1129 |#1|)) (-1129 |#1|) |#1|)))
+((-2154 ((|#2| $ |#1|) 6)))
+(((-281 |#1| |#2|) (-138) (-1073) (-1186)) (T -281))
+((-2154 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))))
+(-13 (-10 -8 (-15 -2154 (|t#2| $ |t#1|))))
+((-3692 ((|#3| $ |#2| |#3|) 12)) (-3631 ((|#3| $ |#2|) 10)))
+(((-282 |#1| |#2| |#3|) (-10 -8 (-15 -3692 (|#3| |#1| |#2| |#3|)) (-15 -3631 (|#3| |#1| |#2|))) (-283 |#2| |#3|) (-1073) (-1186)) (T -282))
+NIL
+(-10 -8 (-15 -3692 (|#3| |#1| |#2| |#3|)) (-15 -3631 (|#3| |#1| |#2|)))
+((-1851 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4354)))) (-3692 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) 11)) (-2154 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-283 |#1| |#2|) (-138) (-1073) (-1186)) (T -283))
+((-2154 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) (-3631 (*1 *2 *1 *3) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) (-1851 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) (-3692 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))))
+(-13 (-281 |t#1| |t#2|) (-10 -8 (-15 -2154 (|t#2| $ |t#1| |t#2|)) (-15 -3631 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -1851 (|t#2| $ |t#1| |t#2|)) (-15 -3692 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-281 |#1| |#2|) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 35)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 40)) (-2178 (($ $) 38)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) 33)) (-4202 (($ |#2| |#3|) 19)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2943 ((|#3| $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 20)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-2494 (((-3 $ "failed") $ $) NIL)) (-1704 (((-751) $) 34)) (-4159 ((|#2| $ |#2|) 42)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 24)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 29 T CONST)) (-2997 (($) 36 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 37)))
-(((-284 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-302) (-10 -8 (-15 -2943 (|#3| $)) (-15 -4317 (|#2| $)) (-15 -4202 ($ |#2| |#3|)) (-15 -2494 ((-3 $ "failed") $ $)) (-15 -3821 ((-3 $ "failed") $)) (-15 -2734 ($ $)) (-15 -4159 (|#2| $ |#2|)))) (-170) (-1207 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -284))
-((-3821 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2943 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1207 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4202 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1207 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2494 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2734 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4159 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1207 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))))
-(-13 (-302) (-10 -8 (-15 -2943 (|#3| $)) (-15 -4317 (|#2| $)) (-15 -4202 ($ |#2| |#3|)) (-15 -2494 ((-3 $ "failed") $ $)) (-15 -3821 ((-3 $ "failed") $)) (-15 -2734 ($ $)) (-15 -4159 (|#2| $ |#2|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 35)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 40)) (-3528 (($ $) 38)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) 33)) (-2163 (($ |#2| |#3|) 19)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1531 ((|#3| $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 20)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3575 (((-3 $ "failed") $ $) NIL)) (-2397 (((-751) $) 34)) (-2154 ((|#2| $ |#2|) 42)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 24)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 29 T CONST)) (-2100 (($) 36 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 37)))
+(((-284 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-302) (-10 -8 (-15 -1531 (|#3| $)) (-15 -1683 (|#2| $)) (-15 -2163 ($ |#2| |#3|)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -4174 ((-3 $ "failed") $)) (-15 -4092 ($ $)) (-15 -2154 (|#2| $ |#2|)))) (-170) (-1208 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -284))
+((-4174 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1531 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1208 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1683 (*1 *2 *1) (-12 (-4 *2 (-1208 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2163 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1208 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3575 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4092 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2154 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1208 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-302) (-10 -8 (-15 -1531 (|#3| $)) (-15 -1683 (|#2| $)) (-15 -2163 ($ |#2| |#3|)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -4174 ((-3 $ "failed") $)) (-15 -4092 ($ $)) (-15 -2154 (|#2| $ |#2|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-285) (-138)) (T -285))
NIL
(-13 (-1025) (-111 $ $) (-10 -7 (-6 -4346)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-1642 (($ (-1149) (-1149) (-1076) $) 17)) (-1640 (($ (-1149) (-622 (-941)) $) 22)) (-1644 (((-622 (-1058)) $) 10)) (-1643 (((-3 (-1076) "failed") (-1149) (-1149) $) 16)) (-1641 (((-3 (-622 (-941)) "failed") (-1149) $) 21)) (-3928 (($) 7)) (-1639 (($) 23)) (-4317 (((-840) $) 27)) (-1638 (($) 24)))
-(((-286) (-13 (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -1644 ((-622 (-1058)) $)) (-15 -1643 ((-3 (-1076) "failed") (-1149) (-1149) $)) (-15 -1642 ($ (-1149) (-1149) (-1076) $)) (-15 -1641 ((-3 (-622 (-941)) "failed") (-1149) $)) (-15 -1640 ($ (-1149) (-622 (-941)) $)) (-15 -1639 ($)) (-15 -1638 ($))))) (T -286))
-((-3928 (*1 *1) (-5 *1 (-286))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-622 (-1058))) (-5 *1 (-286)))) (-1643 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-286)))) (-1642 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-1076)) (-5 *1 (-286)))) (-1641 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-622 (-941))) (-5 *1 (-286)))) (-1640 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-941))) (-5 *1 (-286)))) (-1639 (*1 *1) (-5 *1 (-286))) (-1638 (*1 *1) (-5 *1 (-286))))
-(-13 (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -1644 ((-622 (-1058)) $)) (-15 -1643 ((-3 (-1076) "failed") (-1149) (-1149) $)) (-15 -1642 ($ (-1149) (-1149) (-1076) $)) (-15 -1641 ((-3 (-622 (-941)) "failed") (-1149) $)) (-15 -1640 ($ (-1149) (-622 (-941)) $)) (-15 -1639 ($)) (-15 -1638 ($))))
-((-1648 (((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |geneigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|)))) 85)) (-1647 (((-622 (-669 (-402 (-922 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|)))))) (-669 (-402 (-922 |#1|)))) 80) (((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|))) (-751) (-751)) 38)) (-1649 (((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|)))) 82)) (-1646 (((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|)))) 62)) (-1645 (((-622 (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (-669 (-402 (-922 |#1|)))) 61)) (-2698 (((-922 |#1|) (-669 (-402 (-922 |#1|)))) 50) (((-922 |#1|) (-669 (-402 (-922 |#1|))) (-1149)) 51)))
-(((-287 |#1|) (-10 -7 (-15 -2698 ((-922 |#1|) (-669 (-402 (-922 |#1|))) (-1149))) (-15 -2698 ((-922 |#1|) (-669 (-402 (-922 |#1|))))) (-15 -1645 ((-622 (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (-669 (-402 (-922 |#1|))))) (-15 -1646 ((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|))))) (-15 -1647 ((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|))) (-751) (-751))) (-15 -1647 ((-622 (-669 (-402 (-922 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|)))))) (-669 (-402 (-922 |#1|))))) (-15 -1648 ((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |geneigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|))))) (-15 -1649 ((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|)))))) (-446)) (T -287))
-((-1649 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-622 (-2 (|:| |eigval| (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-922 *4)))))) (-1648 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-622 (-2 (|:| |eigval| (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4)))) (|:| |geneigvec| (-622 (-669 (-402 (-922 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-922 *4)))))) (-1647 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-402 (-922 *5)) (-1138 (-1149) (-922 *5)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 *4)))) (-4 *5 (-446)) (-5 *2 (-622 (-669 (-402 (-922 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-922 *5)))))) (-1647 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-402 (-922 *6)) (-1138 (-1149) (-922 *6)))) (-5 *5 (-751)) (-4 *6 (-446)) (-5 *2 (-622 (-669 (-402 (-922 *6))))) (-5 *1 (-287 *6)) (-5 *4 (-669 (-402 (-922 *6)))))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-402 (-922 *5)) (-1138 (-1149) (-922 *5)))) (-4 *5 (-446)) (-5 *2 (-622 (-669 (-402 (-922 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-922 *5)))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-922 *4)))) (-4 *4 (-446)) (-5 *2 (-622 (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4))))) (-5 *1 (-287 *4)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-922 *4)))) (-5 *2 (-922 *4)) (-5 *1 (-287 *4)) (-4 *4 (-446)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-922 *5)))) (-5 *4 (-1149)) (-5 *2 (-922 *5)) (-5 *1 (-287 *5)) (-4 *5 (-446)))))
-(-10 -7 (-15 -2698 ((-922 |#1|) (-669 (-402 (-922 |#1|))) (-1149))) (-15 -2698 ((-922 |#1|) (-669 (-402 (-922 |#1|))))) (-15 -1645 ((-622 (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (-669 (-402 (-922 |#1|))))) (-15 -1646 ((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|))))) (-15 -1647 ((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|))) (-751) (-751))) (-15 -1647 ((-622 (-669 (-402 (-922 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|)))))) (-669 (-402 (-922 |#1|))))) (-15 -1648 ((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |geneigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|))))) (-15 -1649 ((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|))))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3539 (((-112) $) NIL (|has| |#1| (-21)))) (-1655 (($ $) 12)) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1664 (($ $ $) 94 (|has| |#1| (-293)))) (-3896 (($) NIL (-3891 (|has| |#1| (-21)) (|has| |#1| (-707))) CONST)) (-1653 (($ $) 50 (|has| |#1| (-21)))) (-1651 (((-3 $ "failed") $) 61 (|has| |#1| (-707)))) (-3882 ((|#1| $) 11)) (-3821 (((-3 $ "failed") $) 59 (|has| |#1| (-707)))) (-2502 (((-112) $) NIL (|has| |#1| (-707)))) (-4318 (($ (-1 |#1| |#1|) $) 14)) (-3883 ((|#1| $) 10)) (-1654 (($ $) 49 (|has| |#1| (-21)))) (-1652 (((-3 $ "failed") $) 60 (|has| |#1| (-707)))) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2734 (($ $) 63 (-3891 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-1650 (((-622 $) $) 84 (|has| |#1| (-545)))) (-4127 (($ $ $) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 $)) 28 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-1149) |#1|) 17 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 21 (|has| |#1| (-507 (-1149) |#1|)))) (-3577 (($ |#1| |#1|) 9)) (-4271 (((-133)) 89 (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 86 (|has| |#1| (-876 (-1149))))) (-3342 (($ $ $) NIL (|has| |#1| (-467)))) (-2686 (($ $ $) NIL (|has| |#1| (-467)))) (-4317 (($ (-538)) NIL (|has| |#1| (-1025))) (((-112) $) 36 (|has| |#1| (-1074))) (((-840) $) 35 (|has| |#1| (-1074)))) (-3461 (((-751)) 66 (|has| |#1| (-1025)))) (-2991 (($) 46 (|has| |#1| (-21)) CONST)) (-2997 (($) 56 (|has| |#1| (-707)) CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149))))) (-3387 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1074)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 91 (-3891 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-4197 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4199 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-538)) NIL (|has| |#1| (-467))) (($ $ (-751)) NIL (|has| |#1| (-707))) (($ $ (-895)) NIL (|has| |#1| (-1085)))) (* (($ $ |#1|) 54 (|has| |#1| (-1085))) (($ |#1| $) 53 (|has| |#1| (-1085))) (($ $ $) 52 (|has| |#1| (-1085))) (($ (-538) $) 69 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-895) $) NIL (|has| |#1| (-25)))))
-(((-288 |#1|) (-13 (-1185) (-10 -8 (-15 -3387 ($ |#1| |#1|)) (-15 -3577 ($ |#1| |#1|)) (-15 -1655 ($ $)) (-15 -3883 (|#1| $)) (-15 -3882 (|#1| $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-507 (-1149) |#1|)) (-6 (-507 (-1149) |#1|)) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-6 (-1074)) (-6 (-597 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -4127 ($ $ $)) (-15 -4127 ($ $ (-622 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4199 ($ |#1| $)) (-15 -4199 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1654 ($ $)) (-15 -1653 ($ $)) (-15 -4197 ($ |#1| $)) (-15 -4197 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1085)) (PROGN (-6 (-1085)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-707)) (PROGN (-6 (-707)) (-15 -1652 ((-3 $ "failed") $)) (-15 -1651 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -1652 ((-3 $ "failed") $)) (-15 -1651 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -1650 ((-622 $) $)) |%noBranch|) (IF (|has| |#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1239 |#1|)) (-15 -4308 ($ $ $)) (-15 -2734 ($ $))) |%noBranch|) (IF (|has| |#1| (-293)) (-15 -1664 ($ $ $)) |%noBranch|))) (-1185)) (T -288))
-((-3387 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) (-3577 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) (-1655 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) (-3883 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) (-3882 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-288 *3)))) (-4127 (*1 *1 *1 *1) (-12 (-4 *2 (-304 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)) (-5 *1 (-288 *2)))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-288 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1074)) (-4 *3 (-1185)) (-5 *1 (-288 *3)))) (-4199 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1185)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1185)))) (-1654 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))) (-1653 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))) (-4197 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))) (-1652 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-707)) (-4 *2 (-1185)))) (-1651 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-707)) (-4 *2 (-1185)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-622 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-545)) (-4 *3 (-1185)))) (-1664 (*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-293)) (-4 *2 (-1185)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1085)) (-4 *2 (-1185)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1085)) (-4 *2 (-1185)))) (-4308 (*1 *1 *1 *1) (-3891 (-12 (-5 *1 (-288 *2)) (-4 *2 (-358)) (-4 *2 (-1185))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-467)) (-4 *2 (-1185))))) (-2734 (*1 *1 *1) (-3891 (-12 (-5 *1 (-288 *2)) (-4 *2 (-358)) (-4 *2 (-1185))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-467)) (-4 *2 (-1185))))))
-(-13 (-1185) (-10 -8 (-15 -3387 ($ |#1| |#1|)) (-15 -3577 ($ |#1| |#1|)) (-15 -1655 ($ $)) (-15 -3883 (|#1| $)) (-15 -3882 (|#1| $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-507 (-1149) |#1|)) (-6 (-507 (-1149) |#1|)) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-6 (-1074)) (-6 (-597 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -4127 ($ $ $)) (-15 -4127 ($ $ (-622 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4199 ($ |#1| $)) (-15 -4199 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1654 ($ $)) (-15 -1653 ($ $)) (-15 -4197 ($ |#1| $)) (-15 -4197 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1085)) (PROGN (-6 (-1085)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-707)) (PROGN (-6 (-707)) (-15 -1652 ((-3 $ "failed") $)) (-15 -1651 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -1652 ((-3 $ "failed") $)) (-15 -1651 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -1650 ((-622 $) $)) |%noBranch|) (IF (|has| |#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1239 |#1|)) (-15 -4308 ($ $ $)) (-15 -2734 ($ $))) |%noBranch|) (IF (|has| |#1| (-293)) (-15 -1664 ($ $ $)) |%noBranch|)))
-((-4318 (((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)) 14)))
-(((-289 |#1| |#2|) (-10 -7 (-15 -4318 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) (-1185) (-1185)) (T -289))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-288 *6)) (-5 *1 (-289 *5 *6)))))
-(-10 -7 (-15 -4318 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|))))
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) NIL)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) NIL)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-290 |#1| |#2|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1074) (-1074)) (T -290))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-2961 (($ (-1149) (-1149) (-1077) $) 17)) (-2937 (($ (-1149) (-625 (-941)) $) 22)) (-2982 (((-625 (-1058)) $) 10)) (-2972 (((-3 (-1077) "failed") (-1149) (-1149) $) 16)) (-2947 (((-3 (-625 (-941)) "failed") (-1149) $) 21)) (-3600 (($) 7)) (-3377 (($) 23)) (-1683 (((-839) $) 27)) (-2926 (($) 24)))
+(((-286) (-13 (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2982 ((-625 (-1058)) $)) (-15 -2972 ((-3 (-1077) "failed") (-1149) (-1149) $)) (-15 -2961 ($ (-1149) (-1149) (-1077) $)) (-15 -2947 ((-3 (-625 (-941)) "failed") (-1149) $)) (-15 -2937 ($ (-1149) (-625 (-941)) $)) (-15 -3377 ($)) (-15 -2926 ($))))) (T -286))
+((-3600 (*1 *1) (-5 *1 (-286))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-625 (-1058))) (-5 *1 (-286)))) (-2972 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-1077)) (-5 *1 (-286)))) (-2961 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-1077)) (-5 *1 (-286)))) (-2947 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-625 (-941))) (-5 *1 (-286)))) (-2937 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-941))) (-5 *1 (-286)))) (-3377 (*1 *1) (-5 *1 (-286))) (-2926 (*1 *1) (-5 *1 (-286))))
+(-13 (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2982 ((-625 (-1058)) $)) (-15 -2972 ((-3 (-1077) "failed") (-1149) (-1149) $)) (-15 -2961 ($ (-1149) (-1149) (-1077) $)) (-15 -2947 ((-3 (-625 (-941)) "failed") (-1149) $)) (-15 -2937 ($ (-1149) (-625 (-941)) $)) (-15 -3377 ($)) (-15 -2926 ($))))
+((-3029 (((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |geneigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|)))) 85)) (-3018 (((-625 (-669 (-402 (-928 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|)))))) (-669 (-402 (-928 |#1|)))) 80) (((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|))) (-751) (-751)) 38)) (-3040 (((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|)))) 82)) (-3006 (((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|)))) 62)) (-2995 (((-625 (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (-669 (-402 (-928 |#1|)))) 61)) (-3974 (((-928 |#1|) (-669 (-402 (-928 |#1|)))) 50) (((-928 |#1|) (-669 (-402 (-928 |#1|))) (-1149)) 51)))
+(((-287 |#1|) (-10 -7 (-15 -3974 ((-928 |#1|) (-669 (-402 (-928 |#1|))) (-1149))) (-15 -3974 ((-928 |#1|) (-669 (-402 (-928 |#1|))))) (-15 -2995 ((-625 (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (-669 (-402 (-928 |#1|))))) (-15 -3006 ((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|))))) (-15 -3018 ((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|))) (-751) (-751))) (-15 -3018 ((-625 (-669 (-402 (-928 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|)))))) (-669 (-402 (-928 |#1|))))) (-15 -3029 ((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |geneigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|))))) (-15 -3040 ((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|)))))) (-446)) (T -287))
+((-3040 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-625 (-2 (|:| |eigval| (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-928 *4)))))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-625 (-2 (|:| |eigval| (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4)))) (|:| |geneigvec| (-625 (-669 (-402 (-928 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-928 *4)))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-402 (-928 *5)) (-1138 (-1149) (-928 *5)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 *4)))) (-4 *5 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-928 *5)))))) (-3018 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-402 (-928 *6)) (-1138 (-1149) (-928 *6)))) (-5 *5 (-751)) (-4 *6 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *6))))) (-5 *1 (-287 *6)) (-5 *4 (-669 (-402 (-928 *6)))))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-402 (-928 *5)) (-1138 (-1149) (-928 *5)))) (-4 *5 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-928 *5)))))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-928 *4)))) (-4 *4 (-446)) (-5 *2 (-625 (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4))))) (-5 *1 (-287 *4)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-928 *4)))) (-5 *2 (-928 *4)) (-5 *1 (-287 *4)) (-4 *4 (-446)))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-928 *5)))) (-5 *4 (-1149)) (-5 *2 (-928 *5)) (-5 *1 (-287 *5)) (-4 *5 (-446)))))
+(-10 -7 (-15 -3974 ((-928 |#1|) (-669 (-402 (-928 |#1|))) (-1149))) (-15 -3974 ((-928 |#1|) (-669 (-402 (-928 |#1|))))) (-15 -2995 ((-625 (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (-669 (-402 (-928 |#1|))))) (-15 -3006 ((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|))))) (-15 -3018 ((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|))) (-751) (-751))) (-15 -3018 ((-625 (-669 (-402 (-928 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|)))))) (-669 (-402 (-928 |#1|))))) (-15 -3029 ((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |geneigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|))))) (-15 -3040 ((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|))))))
+((-1996 (((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)) 14)))
+(((-288 |#1| |#2|) (-10 -7 (-15 -1996 ((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)))) (-1186) (-1186)) (T -288))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-289 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-289 *6)) (-5 *1 (-288 *5 *6)))))
+(-10 -7 (-15 -1996 ((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3641 (((-112) $) NIL (|has| |#1| (-21)))) (-1904 (($ $) 12)) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3831 (($ $ $) 94 (|has| |#1| (-297)))) (-3101 (($) NIL (-1523 (|has| |#1| (-21)) (|has| |#1| (-707))) CONST)) (-3080 (($ $) 50 (|has| |#1| (-21)))) (-3061 (((-3 $ "failed") $) 61 (|has| |#1| (-707)))) (-2662 ((|#1| $) 11)) (-4174 (((-3 $ "failed") $) 59 (|has| |#1| (-707)))) (-3650 (((-112) $) NIL (|has| |#1| (-707)))) (-1996 (($ (-1 |#1| |#1|) $) 14)) (-2651 ((|#1| $) 10)) (-3088 (($ $) 49 (|has| |#1| (-21)))) (-3071 (((-3 $ "failed") $) 60 (|has| |#1| (-707)))) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-4092 (($ $) 63 (-1523 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-3051 (((-625 $) $) 84 (|has| |#1| (-544)))) (-4073 (($ $ $) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 $)) 28 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-1149) |#1|) 17 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 21 (|has| |#1| (-507 (-1149) |#1|)))) (-2438 (($ |#1| |#1|) 9)) (-3904 (((-133)) 89 (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 86 (|has| |#1| (-876 (-1149))))) (-2410 (($ $ $) NIL (|has| |#1| (-467)))) (-3828 (($ $ $) NIL (|has| |#1| (-467)))) (-1683 (($ (-552)) NIL (|has| |#1| (-1025))) (((-112) $) 36 (|has| |#1| (-1073))) (((-839) $) 35 (|has| |#1| (-1073)))) (-4141 (((-751)) 66 (|has| |#1| (-1025)))) (-2089 (($) 46 (|has| |#1| (-21)) CONST)) (-2100 (($) 56 (|has| |#1| (-707)) CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149))))) (-2281 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1073)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 91 (-1523 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-2393 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2382 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-552)) NIL (|has| |#1| (-467))) (($ $ (-751)) NIL (|has| |#1| (-707))) (($ $ (-897)) NIL (|has| |#1| (-1085)))) (* (($ $ |#1|) 54 (|has| |#1| (-1085))) (($ |#1| $) 53 (|has| |#1| (-1085))) (($ $ $) 52 (|has| |#1| (-1085))) (($ (-552) $) 69 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-897) $) NIL (|has| |#1| (-25)))))
+(((-289 |#1|) (-13 (-1186) (-10 -8 (-15 -2281 ($ |#1| |#1|)) (-15 -2438 ($ |#1| |#1|)) (-15 -1904 ($ $)) (-15 -2651 (|#1| $)) (-15 -2662 (|#1| $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-507 (-1149) |#1|)) (-6 (-507 (-1149) |#1|)) |%noBranch|) (IF (|has| |#1| (-1073)) (PROGN (-6 (-1073)) (-6 (-597 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -4073 ($ $ $)) (-15 -4073 ($ $ (-625 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2382 ($ |#1| $)) (-15 -2382 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3088 ($ $)) (-15 -3080 ($ $)) (-15 -2393 ($ |#1| $)) (-15 -2393 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1085)) (PROGN (-6 (-1085)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-707)) (PROGN (-6 (-707)) (-15 -3071 ((-3 $ "failed") $)) (-15 -3061 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -3071 ((-3 $ "failed") $)) (-15 -3061 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -3051 ((-625 $) $)) |%noBranch|) (IF (|has| |#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1239 |#1|)) (-15 -2404 ($ $ $)) (-15 -4092 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -3831 ($ $ $)) |%noBranch|))) (-1186)) (T -289))
+((-2281 (*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) (-2438 (*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) (-1904 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) (-2651 (*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) (-2662 (*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-289 *3)))) (-4073 (*1 *1 *1 *1) (-12 (-4 *2 (-304 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)) (-5 *1 (-289 *2)))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-289 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1073)) (-4 *3 (-1186)) (-5 *1 (-289 *3)))) (-2382 (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1186)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1186)))) (-3088 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))) (-3080 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))) (-2393 (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))) (-3071 (*1 *1 *1) (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-707)) (-4 *2 (-1186)))) (-3061 (*1 *1 *1) (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-707)) (-4 *2 (-1186)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-625 (-289 *3))) (-5 *1 (-289 *3)) (-4 *3 (-544)) (-4 *3 (-1186)))) (-3831 (*1 *1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-297)) (-4 *2 (-1186)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1085)) (-4 *2 (-1186)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1085)) (-4 *2 (-1186)))) (-2404 (*1 *1 *1 *1) (-1523 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1186))) (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1186))))) (-4092 (*1 *1 *1) (-1523 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1186))) (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1186))))))
+(-13 (-1186) (-10 -8 (-15 -2281 ($ |#1| |#1|)) (-15 -2438 ($ |#1| |#1|)) (-15 -1904 ($ $)) (-15 -2651 (|#1| $)) (-15 -2662 (|#1| $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-507 (-1149) |#1|)) (-6 (-507 (-1149) |#1|)) |%noBranch|) (IF (|has| |#1| (-1073)) (PROGN (-6 (-1073)) (-6 (-597 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -4073 ($ $ $)) (-15 -4073 ($ $ (-625 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2382 ($ |#1| $)) (-15 -2382 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3088 ($ $)) (-15 -3080 ($ $)) (-15 -2393 ($ |#1| $)) (-15 -2393 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1085)) (PROGN (-6 (-1085)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-707)) (PROGN (-6 (-707)) (-15 -3071 ((-3 $ "failed") $)) (-15 -3061 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -3071 ((-3 $ "failed") $)) (-15 -3061 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -3051 ((-625 $) $)) |%noBranch|) (IF (|has| |#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1239 |#1|)) (-15 -2404 ($ $ $)) (-15 -4092 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -3831 ($ $ $)) |%noBranch|)))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) NIL)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-290 |#1| |#2|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1073) (-1073)) (T -290))
NIL
(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353)))
-((-1656 (((-306) (-1131) (-622 (-1131))) 16) (((-306) (-1131) (-1131)) 15) (((-306) (-622 (-1131))) 14) (((-306) (-1131)) 12)))
-(((-291) (-10 -7 (-15 -1656 ((-306) (-1131))) (-15 -1656 ((-306) (-622 (-1131)))) (-15 -1656 ((-306) (-1131) (-1131))) (-15 -1656 ((-306) (-1131) (-622 (-1131)))))) (T -291))
-((-1656 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-1131))) (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291)))) (-1656 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-306)) (-5 *1 (-291)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291)))))
-(-10 -7 (-15 -1656 ((-306) (-1131))) (-15 -1656 ((-306) (-622 (-1131)))) (-15 -1656 ((-306) (-1131) (-1131))) (-15 -1656 ((-306) (-1131) (-622 (-1131)))))
-((-1660 (((-622 (-595 $)) $) 30)) (-1664 (($ $ (-288 $)) 81) (($ $ (-622 (-288 $))) 123) (($ $ (-622 (-595 $)) (-622 $)) NIL)) (-3508 (((-3 (-595 $) "failed") $) 113)) (-3507 (((-595 $) $) 112)) (-2903 (($ $) 19) (($ (-622 $)) 56)) (-1659 (((-622 (-113)) $) 38)) (-3380 (((-113) (-113)) 91)) (-3006 (((-112) $) 131)) (-4318 (($ (-1 $ $) (-595 $)) 89)) (-1662 (((-3 (-595 $) "failed") $) 93)) (-2317 (($ (-113) $) 61) (($ (-113) (-622 $)) 100)) (-2964 (((-112) $ (-113)) 117) (((-112) $ (-1149)) 116)) (-2933 (((-751) $) 46)) (-1658 (((-112) $ $) 59) (((-112) $ (-1149)) 51)) (-3007 (((-112) $) 129)) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL) (($ $ (-622 (-288 $))) 121) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) 84) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-1149) (-1 $ (-622 $))) 69) (($ $ (-1149) (-1 $ $)) 75) (($ $ (-622 (-113)) (-622 (-1 $ $))) 83) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) 85) (($ $ (-113) (-1 $ (-622 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-4159 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-622 $)) 109)) (-1663 (($ $) 53) (($ $ $) 119)) (-2920 (($ $) 17) (($ (-622 $)) 55)) (-2338 (((-112) (-113)) 22)))
-(((-292 |#1|) (-10 -8 (-15 -3006 ((-112) |#1|)) (-15 -3007 ((-112) |#1|)) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| |#1|)))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| |#1|)))) (-15 -1658 ((-112) |#1| (-1149))) (-15 -1658 ((-112) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#1| |#1|) (-595 |#1|))) (-15 -2317 (|#1| (-113) (-622 |#1|))) (-15 -2317 (|#1| (-113) |#1|)) (-15 -2964 ((-112) |#1| (-1149))) (-15 -2964 ((-112) |#1| (-113))) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1659 ((-622 (-113)) |#1|)) (-15 -1660 ((-622 (-595 |#1|)) |#1|)) (-15 -1662 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -2933 ((-751) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -2903 (|#1| (-622 |#1|))) (-15 -2903 (|#1| |#1|)) (-15 -2920 (|#1| (-622 |#1|))) (-15 -2920 (|#1| |#1|)) (-15 -1664 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -1664 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -1664 (|#1| |#1| (-288 |#1|))) (-15 -4159 (|#1| (-113) (-622 |#1|))) (-15 -4159 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-595 |#1|) |#1|)) (-15 -3507 ((-595 |#1|) |#1|)) (-15 -3508 ((-3 (-595 |#1|) "failed") |#1|))) (-293)) (T -292))
-((-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-292 *3)) (-4 *3 (-293)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-292 *4)) (-4 *4 (-293)))))
-(-10 -8 (-15 -3006 ((-112) |#1|)) (-15 -3007 ((-112) |#1|)) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| |#1|)))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| |#1|)))) (-15 -1658 ((-112) |#1| (-1149))) (-15 -1658 ((-112) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#1| |#1|) (-595 |#1|))) (-15 -2317 (|#1| (-113) (-622 |#1|))) (-15 -2317 (|#1| (-113) |#1|)) (-15 -2964 ((-112) |#1| (-1149))) (-15 -2964 ((-112) |#1| (-113))) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1659 ((-622 (-113)) |#1|)) (-15 -1660 ((-622 (-595 |#1|)) |#1|)) (-15 -1662 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -2933 ((-751) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -2903 (|#1| (-622 |#1|))) (-15 -2903 (|#1| |#1|)) (-15 -2920 (|#1| (-622 |#1|))) (-15 -2920 (|#1| |#1|)) (-15 -1664 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -1664 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -1664 (|#1| |#1| (-288 |#1|))) (-15 -4159 (|#1| (-113) (-622 |#1|))) (-15 -4159 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-595 |#1|) |#1|)) (-15 -3507 ((-595 |#1|) |#1|)) (-15 -3508 ((-3 (-595 |#1|) "failed") |#1|)))
-((-2898 (((-112) $ $) 7)) (-1660 (((-622 (-595 $)) $) 44)) (-1664 (($ $ (-288 $)) 56) (($ $ (-622 (-288 $))) 55) (($ $ (-622 (-595 $)) (-622 $)) 54)) (-3508 (((-3 (-595 $) "failed") $) 69)) (-3507 (((-595 $) $) 68)) (-2903 (($ $) 51) (($ (-622 $)) 50)) (-1659 (((-622 (-113)) $) 43)) (-3380 (((-113) (-113)) 42)) (-3006 (((-112) $) 22 (|has| $ (-1014 (-538))))) (-1657 (((-1143 $) (-595 $)) 25 (|has| $ (-1025)))) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-4318 (($ (-1 $ $) (-595 $)) 36)) (-1662 (((-3 (-595 $) "failed") $) 46)) (-3593 (((-1131) $) 9)) (-1661 (((-622 (-595 $)) $) 45)) (-2317 (($ (-113) $) 38) (($ (-113) (-622 $)) 37)) (-2964 (((-112) $ (-113)) 40) (((-112) $ (-1149)) 39)) (-2933 (((-751) $) 47)) (-3594 (((-1093) $) 10)) (-1658 (((-112) $ $) 35) (((-112) $ (-1149)) 34)) (-3007 (((-112) $) 23 (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) 67) (($ $ (-622 (-595 $)) (-622 $)) 66) (($ $ (-622 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-622 $) (-622 $)) 62) (($ $ (-622 (-1149)) (-622 (-1 $ $))) 33) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) 32) (($ $ (-1149) (-1 $ (-622 $))) 31) (($ $ (-1149) (-1 $ $)) 30) (($ $ (-622 (-113)) (-622 (-1 $ $))) 29) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) 28) (($ $ (-113) (-1 $ (-622 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-4159 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-622 $)) 57)) (-1663 (($ $) 49) (($ $ $) 48)) (-3536 (($ $) 24 (|has| $ (-1025)))) (-4317 (((-840) $) 11) (($ (-595 $)) 70)) (-2920 (($ $) 53) (($ (-622 $)) 52)) (-2338 (((-112) (-113)) 41)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)))
-(((-293) (-138)) (T -293))
-((-4159 (*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-4159 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-4159 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-4159 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-4159 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 *1)) (-4 *1 (-293)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-293)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-288 *1))) (-4 *1 (-293)))) (-1664 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-595 *1))) (-5 *3 (-622 *1)) (-4 *1 (-293)))) (-2920 (*1 *1 *1) (-4 *1 (-293))) (-2920 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-293)))) (-2903 (*1 *1 *1) (-4 *1 (-293))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-293)))) (-1663 (*1 *1 *1) (-4 *1 (-293))) (-1663 (*1 *1 *1 *1) (-4 *1 (-293))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-751)))) (-1662 (*1 *2 *1) (|partial| -12 (-5 *2 (-595 *1)) (-4 *1 (-293)))) (-1661 (*1 *2 *1) (-12 (-5 *2 (-622 (-595 *1))) (-4 *1 (-293)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-622 (-595 *1))) (-4 *1 (-293)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-622 (-113))))) (-3380 (*1 *2 *2) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-2338 (*1 *2 *3) (-12 (-4 *1 (-293)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2964 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2964 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1149)) (-5 *2 (-112)))) (-2317 (*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-2317 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 *1)) (-4 *1 (-293)))) (-4318 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-595 *1)) (-4 *1 (-293)))) (-1658 (*1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-112)))) (-1658 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1149)) (-5 *2 (-112)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-1 *1 *1))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 (-622 *1))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 (-1 *1 *1))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-622 *1))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-595 *1)) (-4 *1 (-1025)) (-4 *1 (-293)) (-5 *2 (-1143 *1)))) (-3536 (*1 *1 *1) (-12 (-4 *1 (-1025)) (-4 *1 (-293)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1014 (-538))) (-4 *1 (-293)) (-5 *2 (-112)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-1014 (-538))) (-4 *1 (-293)) (-5 *2 (-112)))))
-(-13 (-827) (-1014 (-595 $)) (-507 (-595 $) $) (-304 $) (-10 -8 (-15 -4159 ($ (-113) $)) (-15 -4159 ($ (-113) $ $)) (-15 -4159 ($ (-113) $ $ $)) (-15 -4159 ($ (-113) $ $ $ $)) (-15 -4159 ($ (-113) (-622 $))) (-15 -1664 ($ $ (-288 $))) (-15 -1664 ($ $ (-622 (-288 $)))) (-15 -1664 ($ $ (-622 (-595 $)) (-622 $))) (-15 -2920 ($ $)) (-15 -2920 ($ (-622 $))) (-15 -2903 ($ $)) (-15 -2903 ($ (-622 $))) (-15 -1663 ($ $)) (-15 -1663 ($ $ $)) (-15 -2933 ((-751) $)) (-15 -1662 ((-3 (-595 $) "failed") $)) (-15 -1661 ((-622 (-595 $)) $)) (-15 -1660 ((-622 (-595 $)) $)) (-15 -1659 ((-622 (-113)) $)) (-15 -3380 ((-113) (-113))) (-15 -2338 ((-112) (-113))) (-15 -2964 ((-112) $ (-113))) (-15 -2964 ((-112) $ (-1149))) (-15 -2317 ($ (-113) $)) (-15 -2317 ($ (-113) (-622 $))) (-15 -4318 ($ (-1 $ $) (-595 $))) (-15 -1658 ((-112) $ $)) (-15 -1658 ((-112) $ (-1149))) (-15 -4127 ($ $ (-622 (-1149)) (-622 (-1 $ $)))) (-15 -4127 ($ $ (-622 (-1149)) (-622 (-1 $ (-622 $))))) (-15 -4127 ($ $ (-1149) (-1 $ (-622 $)))) (-15 -4127 ($ $ (-1149) (-1 $ $))) (-15 -4127 ($ $ (-622 (-113)) (-622 (-1 $ $)))) (-15 -4127 ($ $ (-622 (-113)) (-622 (-1 $ (-622 $))))) (-15 -4127 ($ $ (-113) (-1 $ (-622 $)))) (-15 -4127 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1025)) (PROGN (-15 -1657 ((-1143 $) (-595 $))) (-15 -3536 ($ $))) |%noBranch|) (IF (|has| $ (-1014 (-538))) (PROGN (-15 -3007 ((-112) $)) (-15 -3006 ((-112) $))) |%noBranch|)))
-(((-101) . T) ((-597 (-840)) . T) ((-304 $) . T) ((-507 (-595 $) $) . T) ((-507 $ $) . T) ((-827) . T) ((-1014 (-595 $)) . T) ((-1074) . T))
-((-4318 ((|#2| (-1 |#2| |#1|) (-1131) (-595 |#1|)) 18)))
-(((-294 |#1| |#2|) (-10 -7 (-15 -4318 (|#2| (-1 |#2| |#1|) (-1131) (-595 |#1|)))) (-293) (-1185)) (T -294))
-((-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1131)) (-5 *5 (-595 *6)) (-4 *6 (-293)) (-4 *2 (-1185)) (-5 *1 (-294 *6 *2)))))
-(-10 -7 (-15 -4318 (|#2| (-1 |#2| |#1|) (-1131) (-595 |#1|))))
-((-4318 ((|#2| (-1 |#2| |#1|) (-595 |#1|)) 17)))
-(((-295 |#1| |#2|) (-10 -7 (-15 -4318 (|#2| (-1 |#2| |#1|) (-595 |#1|)))) (-293) (-293)) (T -295))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-595 *5)) (-4 *5 (-293)) (-4 *2 (-293)) (-5 *1 (-295 *5 *2)))))
-(-10 -7 (-15 -4318 (|#2| (-1 |#2| |#1|) (-595 |#1|))))
-((-1667 (((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221)))) 93)) (-1668 (((-1126 (-221)) (-1231 (-309 (-221))) (-622 (-1149)) (-1062 (-819 (-221)))) 107) (((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221)))) 61)) (-1689 (((-622 (-1131)) (-1126 (-221))) NIL)) (-1666 (((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221)))) 58)) (-1669 (((-622 (-221)) (-922 (-402 (-538))) (-1149) (-1062 (-819 (-221)))) 49)) (-1688 (((-622 (-1131)) (-622 (-221))) NIL)) (-1690 (((-221) (-1062 (-819 (-221)))) 25)) (-1691 (((-221) (-1062 (-819 (-221)))) 26)) (-1665 (((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 54)) (-1686 (((-1131) (-221)) NIL)))
-(((-296) (-10 -7 (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -1665 ((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1666 ((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221))))) (-15 -1667 ((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-1231 (-309 (-221))) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1669 ((-622 (-221)) (-922 (-402 (-538))) (-1149) (-1062 (-819 (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))))) (T -296))
-((-1689 (*1 *2 *3) (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-296)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-296)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-296)))) (-1669 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *4 (-1149)) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-622 (-221))) (-5 *1 (-296)))) (-1668 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *4 (-622 (-1149))) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296)))) (-1668 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-221))) (-5 *4 (-622 (-1149))) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296)))) (-1667 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-221))) (-5 *4 (-622 (-1149))) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296)))) (-1666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-221))) (-5 *4 (-1149)) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-622 (-221))) (-5 *1 (-296)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-112)) (-5 *1 (-296)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-296)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-296)))))
-(-10 -7 (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -1665 ((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1666 ((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221))))) (-15 -1667 ((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-1231 (-309 (-221))) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1669 ((-622 (-221)) (-922 (-402 (-538))) (-1149) (-1062 (-819 (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))))
-((-2099 (((-112) (-221)) 10)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -2099 ((-112) (-221)))) (-221) (-221)) (T -297))
-((-2099 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-297 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2099 ((-112) (-221))))
-((-1685 (((-1231 (-309 (-373))) (-1231 (-309 (-221)))) 105)) (-1673 (((-1062 (-819 (-221))) (-1062 (-819 (-373)))) 40)) (-1689 (((-622 (-1131)) (-1126 (-221))) 87)) (-1696 (((-309 (-373)) (-922 (-221))) 50)) (-1697 (((-221) (-922 (-221))) 46)) (-1692 (((-1131) (-373)) 169)) (-1672 (((-819 (-221)) (-819 (-373))) 34)) (-1678 (((-2 (|:| |additions| (-538)) (|:| |multiplications| (-538)) (|:| |exponentiations| (-538)) (|:| |functionCalls| (-538))) (-1231 (-309 (-221)))) 143)) (-1693 (((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) 181) (((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) 179)) (-1700 (((-669 (-221)) (-622 (-221)) (-751)) 14)) (-1683 (((-1231 (-679)) (-622 (-221))) 94)) (-1688 (((-622 (-1131)) (-622 (-221))) 75)) (-2989 (((-3 (-309 (-221)) "failed") (-309 (-221))) 120)) (-2099 (((-112) (-221) (-1062 (-819 (-221)))) 109)) (-1695 (((-1011) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) 198)) (-1690 (((-221) (-1062 (-819 (-221)))) 107)) (-1691 (((-221) (-1062 (-819 (-221)))) 108)) (-1699 (((-221) (-402 (-538))) 27)) (-1687 (((-1131) (-373)) 73)) (-1670 (((-221) (-373)) 17)) (-1677 (((-373) (-1231 (-309 (-221)))) 154)) (-1671 (((-309 (-221)) (-309 (-373))) 23)) (-1675 (((-402 (-538)) (-309 (-221))) 53)) (-1679 (((-309 (-402 (-538))) (-309 (-221))) 69)) (-1684 (((-309 (-373)) (-309 (-221))) 98)) (-1676 (((-221) (-309 (-221))) 54)) (-1681 (((-622 (-221)) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) 64)) (-1680 (((-1062 (-819 (-221))) (-1062 (-819 (-221)))) 61)) (-1686 (((-1131) (-221)) 72)) (-1682 (((-679) (-221)) 90)) (-1674 (((-402 (-538)) (-221)) 55)) (-1698 (((-309 (-373)) (-221)) 49)) (-4330 (((-622 (-1062 (-819 (-221)))) (-622 (-1062 (-819 (-373))))) 43)) (-4161 (((-1011) (-622 (-1011))) 165) (((-1011) (-1011) (-1011)) 162)) (-1694 (((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-298) (-10 -7 (-15 -1670 ((-221) (-373))) (-15 -1671 ((-309 (-221)) (-309 (-373)))) (-15 -1672 ((-819 (-221)) (-819 (-373)))) (-15 -1673 ((-1062 (-819 (-221))) (-1062 (-819 (-373))))) (-15 -4330 ((-622 (-1062 (-819 (-221)))) (-622 (-1062 (-819 (-373)))))) (-15 -1674 ((-402 (-538)) (-221))) (-15 -1675 ((-402 (-538)) (-309 (-221)))) (-15 -1676 ((-221) (-309 (-221)))) (-15 -2989 ((-3 (-309 (-221)) "failed") (-309 (-221)))) (-15 -1677 ((-373) (-1231 (-309 (-221))))) (-15 -1678 ((-2 (|:| |additions| (-538)) (|:| |multiplications| (-538)) (|:| |exponentiations| (-538)) (|:| |functionCalls| (-538))) (-1231 (-309 (-221))))) (-15 -1679 ((-309 (-402 (-538))) (-309 (-221)))) (-15 -1680 ((-1062 (-819 (-221))) (-1062 (-819 (-221))))) (-15 -1681 ((-622 (-221)) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) (-15 -1682 ((-679) (-221))) (-15 -1683 ((-1231 (-679)) (-622 (-221)))) (-15 -1684 ((-309 (-373)) (-309 (-221)))) (-15 -1685 ((-1231 (-309 (-373))) (-1231 (-309 (-221))))) (-15 -2099 ((-112) (-221) (-1062 (-819 (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1687 ((-1131) (-373))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))) (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -4161 ((-1011) (-1011) (-1011))) (-15 -4161 ((-1011) (-622 (-1011)))) (-15 -1692 ((-1131) (-373))) (-15 -1693 ((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))))) (-15 -1693 ((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))))) (-15 -1694 ((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1695 ((-1011) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -1696 ((-309 (-373)) (-922 (-221)))) (-15 -1697 ((-221) (-922 (-221)))) (-15 -1698 ((-309 (-373)) (-221))) (-15 -1699 ((-221) (-402 (-538)))) (-15 -1700 ((-669 (-221)) (-622 (-221)) (-751))))) (T -298))
-((-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-221))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) (-5 *1 (-298)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-402 (-538))) (-5 *2 (-221)) (-5 *1 (-298)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-309 (-373))) (-5 *1 (-298)))) (-1697 (*1 *2 *3) (-12 (-5 *3 (-922 (-221))) (-5 *2 (-221)) (-5 *1 (-298)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-922 (-221))) (-5 *2 (-309 (-373))) (-5 *1 (-298)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *2 (-1011)) (-5 *1 (-298)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1011)) (-5 *1 (-298)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) (-5 *2 (-1011)) (-5 *1 (-298)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *2 (-1011)) (-5 *1 (-298)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1131)) (-5 *1 (-298)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-622 (-1011))) (-5 *2 (-1011)) (-5 *1 (-298)))) (-4161 (*1 *2 *2 *2) (-12 (-5 *2 (-1011)) (-5 *1 (-298)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-298)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-298)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-298)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-298)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1131)) (-5 *1 (-298)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-298)))) (-2099 (*1 *2 *3 *4) (-12 (-5 *4 (-1062 (-819 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-298)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 (-1231 (-309 (-373)))) (-5 *1 (-298)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-309 (-373))) (-5 *1 (-298)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1231 (-679))) (-5 *1 (-298)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-679)) (-5 *1 (-298)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *2 (-622 (-221))) (-5 *1 (-298)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-1062 (-819 (-221)))) (-5 *1 (-298)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-309 (-402 (-538)))) (-5 *1 (-298)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 (-2 (|:| |additions| (-538)) (|:| |multiplications| (-538)) (|:| |exponentiations| (-538)) (|:| |functionCalls| (-538)))) (-5 *1 (-298)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 (-373)) (-5 *1 (-298)))) (-2989 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-221))) (-5 *1 (-298)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-221)) (-5 *1 (-298)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-402 (-538))) (-5 *1 (-298)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-538))) (-5 *1 (-298)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-622 (-1062 (-819 (-373))))) (-5 *2 (-622 (-1062 (-819 (-221))))) (-5 *1 (-298)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-373)))) (-5 *2 (-1062 (-819 (-221)))) (-5 *1 (-298)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-819 (-373))) (-5 *2 (-819 (-221))) (-5 *1 (-298)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-309 (-373))) (-5 *2 (-309 (-221))) (-5 *1 (-298)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-221)) (-5 *1 (-298)))))
-(-10 -7 (-15 -1670 ((-221) (-373))) (-15 -1671 ((-309 (-221)) (-309 (-373)))) (-15 -1672 ((-819 (-221)) (-819 (-373)))) (-15 -1673 ((-1062 (-819 (-221))) (-1062 (-819 (-373))))) (-15 -4330 ((-622 (-1062 (-819 (-221)))) (-622 (-1062 (-819 (-373)))))) (-15 -1674 ((-402 (-538)) (-221))) (-15 -1675 ((-402 (-538)) (-309 (-221)))) (-15 -1676 ((-221) (-309 (-221)))) (-15 -2989 ((-3 (-309 (-221)) "failed") (-309 (-221)))) (-15 -1677 ((-373) (-1231 (-309 (-221))))) (-15 -1678 ((-2 (|:| |additions| (-538)) (|:| |multiplications| (-538)) (|:| |exponentiations| (-538)) (|:| |functionCalls| (-538))) (-1231 (-309 (-221))))) (-15 -1679 ((-309 (-402 (-538))) (-309 (-221)))) (-15 -1680 ((-1062 (-819 (-221))) (-1062 (-819 (-221))))) (-15 -1681 ((-622 (-221)) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) (-15 -1682 ((-679) (-221))) (-15 -1683 ((-1231 (-679)) (-622 (-221)))) (-15 -1684 ((-309 (-373)) (-309 (-221)))) (-15 -1685 ((-1231 (-309 (-373))) (-1231 (-309 (-221))))) (-15 -2099 ((-112) (-221) (-1062 (-819 (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1687 ((-1131) (-373))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))) (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -4161 ((-1011) (-1011) (-1011))) (-15 -4161 ((-1011) (-622 (-1011)))) (-15 -1692 ((-1131) (-373))) (-15 -1693 ((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))))) (-15 -1693 ((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))))) (-15 -1694 ((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1695 ((-1011) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -1696 ((-309 (-373)) (-922 (-221)))) (-15 -1697 ((-221) (-922 (-221)))) (-15 -1698 ((-309 (-373)) (-221))) (-15 -1699 ((-221) (-402 (-538)))) (-15 -1700 ((-669 (-221)) (-622 (-221)) (-751))))
-((-1701 (((-622 |#1|) (-622 |#1|)) 10)))
-(((-299 |#1|) (-10 -7 (-15 -1701 ((-622 |#1|) (-622 |#1|)))) (-825)) (T -299))
-((-1701 (*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-825)) (-5 *1 (-299 *3)))))
-(-10 -7 (-15 -1701 ((-622 |#1|) (-622 |#1|))))
-((-4318 (((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|)) 17)))
-(((-300 |#1| |#2|) (-10 -7 (-15 -4318 ((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|)))) (-1025) (-1025)) (T -300))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-669 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-669 *6)) (-5 *1 (-300 *5 *6)))))
-(-10 -7 (-15 -4318 ((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|))))
-((-1705 (((-112) $ $) 11)) (-2894 (($ $ $) 15)) (-2893 (($ $ $) 14)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 44)) (-1702 (((-3 (-622 $) "failed") (-622 $) $) 53)) (-3495 (($ $ $) 21) (($ (-622 $)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3820 (((-3 $ "failed") $ $) 17)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 46)))
-(((-301 |#1|) (-10 -8 (-15 -1702 ((-3 (-622 |#1|) "failed") (-622 |#1|) |#1|)) (-15 -1703 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1703 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2894 (|#1| |#1| |#1|)) (-15 -2893 (|#1| |#1| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3073 ((-3 (-622 |#1|) "failed") (-622 |#1|) |#1|)) (-15 -3074 ((-2 (|:| -4313 (-622 |#1|)) (|:| -2501 |#1|)) (-622 |#1|))) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|))) (-302)) (T -301))
-NIL
-(-10 -8 (-15 -1702 ((-3 (-622 |#1|) "failed") (-622 |#1|) |#1|)) (-15 -1703 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1703 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2894 (|#1| |#1| |#1|)) (-15 -2893 (|#1| |#1| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3073 ((-3 (-622 |#1|) "failed") (-622 |#1|) |#1|)) (-15 -3074 ((-2 (|:| -4313 (-622 |#1|)) (|:| -2501 |#1|)) (-622 |#1|))) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-2502 (((-112) $) 30)) (-1702 (((-3 (-622 $) "failed") (-622 $) $) 50)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-1939 (((-307) (-1131) (-625 (-1131))) 16) (((-307) (-1131) (-1131)) 15) (((-307) (-625 (-1131))) 14) (((-307) (-1131)) 12)))
+(((-291) (-10 -7 (-15 -1939 ((-307) (-1131))) (-15 -1939 ((-307) (-625 (-1131)))) (-15 -1939 ((-307) (-1131) (-1131))) (-15 -1939 ((-307) (-1131) (-625 (-1131)))))) (T -291))
+((-1939 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-1131))) (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-291)))) (-1939 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-291)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-307)) (-5 *1 (-291)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-291)))))
+(-10 -7 (-15 -1939 ((-307) (-1131))) (-15 -1939 ((-307) (-625 (-1131)))) (-15 -1939 ((-307) (-1131) (-1131))) (-15 -1939 ((-307) (-1131) (-625 (-1131)))))
+((-1996 ((|#2| (-1 |#2| |#1|) (-1131) (-596 |#1|)) 18)))
+(((-292 |#1| |#2|) (-10 -7 (-15 -1996 (|#2| (-1 |#2| |#1|) (-1131) (-596 |#1|)))) (-297) (-1186)) (T -292))
+((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1131)) (-5 *5 (-596 *6)) (-4 *6 (-297)) (-4 *2 (-1186)) (-5 *1 (-292 *6 *2)))))
+(-10 -7 (-15 -1996 (|#2| (-1 |#2| |#1|) (-1131) (-596 |#1|))))
+((-1996 ((|#2| (-1 |#2| |#1|) (-596 |#1|)) 17)))
+(((-293 |#1| |#2|) (-10 -7 (-15 -1996 (|#2| (-1 |#2| |#1|) (-596 |#1|)))) (-297) (-297)) (T -293))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-596 *5)) (-4 *5 (-297)) (-4 *2 (-297)) (-5 *1 (-293 *5 *2)))))
+(-10 -7 (-15 -1996 (|#2| (-1 |#2| |#1|) (-596 |#1|))))
+((-4019 (((-112) (-221)) 10)))
+(((-294 |#1| |#2|) (-10 -7 (-15 -4019 ((-112) (-221)))) (-221) (-221)) (T -294))
+((-4019 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-294 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -4019 ((-112) (-221))))
+((-1993 (((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221)))) 93)) (-2004 (((-1129 (-221)) (-1232 (-311 (-221))) (-625 (-1149)) (-1067 (-820 (-221)))) 107) (((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221)))) 61)) (-2222 (((-625 (-1131)) (-1129 (-221))) NIL)) (-1983 (((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221)))) 58)) (-2011 (((-625 (-221)) (-928 (-402 (-552))) (-1149) (-1067 (-820 (-221)))) 49)) (-2212 (((-625 (-1131)) (-625 (-221))) NIL)) (-2234 (((-221) (-1067 (-820 (-221)))) 25)) (-2245 (((-221) (-1067 (-820 (-221)))) 26)) (-1976 (((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 54)) (-2190 (((-1131) (-221)) NIL)))
+(((-295) (-10 -7 (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -1976 ((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1983 ((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221))))) (-15 -1993 ((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-1232 (-311 (-221))) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2011 ((-625 (-221)) (-928 (-402 (-552))) (-1149) (-1067 (-820 (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))))) (T -295))
+((-2222 (*1 *2 *3) (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-295)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-295)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-295)))) (-2011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *4 (-1149)) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-295)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *4 (-625 (-1149))) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-625 (-1149))) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295)))) (-1993 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-625 (-1149))) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295)))) (-1983 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1149)) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-295)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-112)) (-5 *1 (-295)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-295)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-295)))))
+(-10 -7 (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -1976 ((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1983 ((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221))))) (-15 -1993 ((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-1232 (-311 (-221))) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2011 ((-625 (-221)) (-928 (-402 (-552))) (-1149) (-1067 (-820 (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))))
+((-3715 (((-625 (-596 $)) $) 30)) (-3831 (($ $ (-289 $)) 81) (($ $ (-625 (-289 $))) 123) (($ $ (-625 (-596 $)) (-625 $)) NIL)) (-1893 (((-3 (-596 $) "failed") $) 113)) (-1895 (((-596 $) $) 112)) (-2411 (($ $) 19) (($ (-625 $)) 56)) (-1940 (((-625 (-114)) $) 38)) (-1563 (((-114) (-114)) 91)) (-3932 (((-112) $) 131)) (-1996 (($ (-1 $ $) (-596 $)) 89)) (-1952 (((-3 (-596 $) "failed") $) 93)) (-1425 (($ (-114) $) 61) (($ (-114) (-625 $)) 100)) (-1721 (((-112) $ (-114)) 117) (((-112) $ (-1149)) 116)) (-2207 (((-751) $) 46)) (-1929 (((-112) $ $) 59) (((-112) $ (-1149)) 51)) (-3943 (((-112) $) 129)) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL) (($ $ (-625 (-289 $))) 121) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) 84) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-1149) (-1 $ (-625 $))) 69) (($ $ (-1149) (-1 $ $)) 75) (($ $ (-625 (-114)) (-625 (-1 $ $))) 83) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) 85) (($ $ (-114) (-1 $ (-625 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-2154 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-625 $)) 109)) (-1963 (($ $) 53) (($ $ $) 119)) (-3779 (($ $) 17) (($ (-625 $)) 55)) (-1572 (((-112) (-114)) 22)))
+(((-296 |#1|) (-10 -8 (-15 -3932 ((-112) |#1|)) (-15 -3943 ((-112) |#1|)) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| |#1|)))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| |#1|)))) (-15 -1929 ((-112) |#1| (-1149))) (-15 -1929 ((-112) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#1| |#1|) (-596 |#1|))) (-15 -1425 (|#1| (-114) (-625 |#1|))) (-15 -1425 (|#1| (-114) |#1|)) (-15 -1721 ((-112) |#1| (-1149))) (-15 -1721 ((-112) |#1| (-114))) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1940 ((-625 (-114)) |#1|)) (-15 -3715 ((-625 (-596 |#1|)) |#1|)) (-15 -1952 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -2207 ((-751) |#1|)) (-15 -1963 (|#1| |#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -2411 (|#1| (-625 |#1|))) (-15 -2411 (|#1| |#1|)) (-15 -3779 (|#1| (-625 |#1|))) (-15 -3779 (|#1| |#1|)) (-15 -3831 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -3831 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3831 (|#1| |#1| (-289 |#1|))) (-15 -2154 (|#1| (-114) (-625 |#1|))) (-15 -2154 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-596 |#1|) |#1|)) (-15 -1895 ((-596 |#1|) |#1|)) (-15 -1893 ((-3 (-596 |#1|) "failed") |#1|))) (-297)) (T -296))
+((-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-296 *3)) (-4 *3 (-297)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297)))))
+(-10 -8 (-15 -3932 ((-112) |#1|)) (-15 -3943 ((-112) |#1|)) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| |#1|)))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| |#1|)))) (-15 -1929 ((-112) |#1| (-1149))) (-15 -1929 ((-112) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#1| |#1|) (-596 |#1|))) (-15 -1425 (|#1| (-114) (-625 |#1|))) (-15 -1425 (|#1| (-114) |#1|)) (-15 -1721 ((-112) |#1| (-1149))) (-15 -1721 ((-112) |#1| (-114))) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1940 ((-625 (-114)) |#1|)) (-15 -3715 ((-625 (-596 |#1|)) |#1|)) (-15 -1952 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -2207 ((-751) |#1|)) (-15 -1963 (|#1| |#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -2411 (|#1| (-625 |#1|))) (-15 -2411 (|#1| |#1|)) (-15 -3779 (|#1| (-625 |#1|))) (-15 -3779 (|#1| |#1|)) (-15 -3831 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -3831 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3831 (|#1| |#1| (-289 |#1|))) (-15 -2154 (|#1| (-114) (-625 |#1|))) (-15 -2154 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-596 |#1|) |#1|)) (-15 -1895 ((-596 |#1|) |#1|)) (-15 -1893 ((-3 (-596 |#1|) "failed") |#1|)))
+((-1671 (((-112) $ $) 7)) (-3715 (((-625 (-596 $)) $) 44)) (-3831 (($ $ (-289 $)) 56) (($ $ (-625 (-289 $))) 55) (($ $ (-625 (-596 $)) (-625 $)) 54)) (-1893 (((-3 (-596 $) "failed") $) 69)) (-1895 (((-596 $) $) 68)) (-2411 (($ $) 51) (($ (-625 $)) 50)) (-1940 (((-625 (-114)) $) 43)) (-1563 (((-114) (-114)) 42)) (-3932 (((-112) $) 22 (|has| $ (-1014 (-552))))) (-1917 (((-1145 $) (-596 $)) 25 (|has| $ (-1025)))) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-1996 (($ (-1 $ $) (-596 $)) 36)) (-1952 (((-3 (-596 $) "failed") $) 46)) (-2883 (((-1131) $) 9)) (-3783 (((-625 (-596 $)) $) 45)) (-1425 (($ (-114) $) 38) (($ (-114) (-625 $)) 37)) (-1721 (((-112) $ (-114)) 40) (((-112) $ (-1149)) 39)) (-2207 (((-751) $) 47)) (-2831 (((-1093) $) 10)) (-1929 (((-112) $ $) 35) (((-112) $ (-1149)) 34)) (-3943 (((-112) $) 23 (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) 67) (($ $ (-625 (-596 $)) (-625 $)) 66) (($ $ (-625 (-289 $))) 65) (($ $ (-289 $)) 64) (($ $ $ $) 63) (($ $ (-625 $) (-625 $)) 62) (($ $ (-625 (-1149)) (-625 (-1 $ $))) 33) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) 32) (($ $ (-1149) (-1 $ (-625 $))) 31) (($ $ (-1149) (-1 $ $)) 30) (($ $ (-625 (-114)) (-625 (-1 $ $))) 29) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) 28) (($ $ (-114) (-1 $ (-625 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2154 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-625 $)) 57)) (-1963 (($ $) 49) (($ $ $) 48)) (-3610 (($ $) 24 (|has| $ (-1025)))) (-1683 (((-839) $) 11) (($ (-596 $)) 70)) (-3779 (($ $) 53) (($ (-625 $)) 52)) (-1572 (((-112) (-114)) 41)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)))
+(((-297) (-138)) (T -297))
+((-2154 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2154 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2154 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2154 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2154 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 *1)) (-4 *1 (-297)))) (-3831 (*1 *1 *1 *2) (-12 (-5 *2 (-289 *1)) (-4 *1 (-297)))) (-3831 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-289 *1))) (-4 *1 (-297)))) (-3831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-596 *1))) (-5 *3 (-625 *1)) (-4 *1 (-297)))) (-3779 (*1 *1 *1) (-4 *1 (-297))) (-3779 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-297)))) (-2411 (*1 *1 *1) (-4 *1 (-297))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-297)))) (-1963 (*1 *1 *1) (-4 *1 (-297))) (-1963 (*1 *1 *1 *1) (-4 *1 (-297))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-751)))) (-1952 (*1 *2 *1) (|partial| -12 (-5 *2 (-596 *1)) (-4 *1 (-297)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-625 (-596 *1))) (-4 *1 (-297)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-625 (-596 *1))) (-4 *1 (-297)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-625 (-114))))) (-1563 (*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-1572 (*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1721 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1721 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1149)) (-5 *2 (-112)))) (-1425 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-1425 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 *1)) (-4 *1 (-297)))) (-1996 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-596 *1)) (-4 *1 (-297)))) (-1929 (*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112)))) (-1929 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1149)) (-5 *2 (-112)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-1 *1 *1))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-1 *1 (-625 *1)))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 (-625 *1))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 (-1 *1 *1))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 (-1 *1 (-625 *1)))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-625 *1))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-596 *1)) (-4 *1 (-1025)) (-4 *1 (-297)) (-5 *2 (-1145 *1)))) (-3610 (*1 *1 *1) (-12 (-4 *1 (-1025)) (-4 *1 (-297)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-1014 (-552))) (-4 *1 (-297)) (-5 *2 (-112)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1014 (-552))) (-4 *1 (-297)) (-5 *2 (-112)))))
+(-13 (-827) (-1014 (-596 $)) (-507 (-596 $) $) (-304 $) (-10 -8 (-15 -2154 ($ (-114) $)) (-15 -2154 ($ (-114) $ $)) (-15 -2154 ($ (-114) $ $ $)) (-15 -2154 ($ (-114) $ $ $ $)) (-15 -2154 ($ (-114) (-625 $))) (-15 -3831 ($ $ (-289 $))) (-15 -3831 ($ $ (-625 (-289 $)))) (-15 -3831 ($ $ (-625 (-596 $)) (-625 $))) (-15 -3779 ($ $)) (-15 -3779 ($ (-625 $))) (-15 -2411 ($ $)) (-15 -2411 ($ (-625 $))) (-15 -1963 ($ $)) (-15 -1963 ($ $ $)) (-15 -2207 ((-751) $)) (-15 -1952 ((-3 (-596 $) "failed") $)) (-15 -3783 ((-625 (-596 $)) $)) (-15 -3715 ((-625 (-596 $)) $)) (-15 -1940 ((-625 (-114)) $)) (-15 -1563 ((-114) (-114))) (-15 -1572 ((-112) (-114))) (-15 -1721 ((-112) $ (-114))) (-15 -1721 ((-112) $ (-1149))) (-15 -1425 ($ (-114) $)) (-15 -1425 ($ (-114) (-625 $))) (-15 -1996 ($ (-1 $ $) (-596 $))) (-15 -1929 ((-112) $ $)) (-15 -1929 ((-112) $ (-1149))) (-15 -4073 ($ $ (-625 (-1149)) (-625 (-1 $ $)))) (-15 -4073 ($ $ (-625 (-1149)) (-625 (-1 $ (-625 $))))) (-15 -4073 ($ $ (-1149) (-1 $ (-625 $)))) (-15 -4073 ($ $ (-1149) (-1 $ $))) (-15 -4073 ($ $ (-625 (-114)) (-625 (-1 $ $)))) (-15 -4073 ($ $ (-625 (-114)) (-625 (-1 $ (-625 $))))) (-15 -4073 ($ $ (-114) (-1 $ (-625 $)))) (-15 -4073 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1025)) (PROGN (-15 -1917 ((-1145 $) (-596 $))) (-15 -3610 ($ $))) |%noBranch|) (IF (|has| $ (-1014 (-552))) (PROGN (-15 -3943 ((-112) $)) (-15 -3932 ((-112) $))) |%noBranch|)))
+(((-101) . T) ((-597 (-839)) . T) ((-304 $) . T) ((-507 (-596 $) $) . T) ((-507 $ $) . T) ((-827) . T) ((-1014 (-596 $)) . T) ((-1073) . T))
+((-2364 (((-625 |#1|) (-625 |#1|)) 10)))
+(((-298 |#1|) (-10 -7 (-15 -2364 ((-625 |#1|) (-625 |#1|)))) (-825)) (T -298))
+((-2364 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-825)) (-5 *1 (-298 *3)))))
+(-10 -7 (-15 -2364 ((-625 |#1|) (-625 |#1|))))
+((-1996 (((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|)) 17)))
+(((-299 |#1| |#2|) (-10 -7 (-15 -1996 ((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|)))) (-1025) (-1025)) (T -299))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-669 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-669 *6)) (-5 *1 (-299 *5 *6)))))
+(-10 -7 (-15 -1996 ((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|))))
+((-2178 (((-1232 (-311 (-374))) (-1232 (-311 (-221)))) 105)) (-2048 (((-1067 (-820 (-221))) (-1067 (-820 (-374)))) 40)) (-2222 (((-625 (-1131)) (-1129 (-221))) 87)) (-2297 (((-311 (-374)) (-928 (-221))) 50)) (-2312 (((-221) (-928 (-221))) 46)) (-2254 (((-1131) (-374)) 169)) (-2039 (((-820 (-221)) (-820 (-374))) 34)) (-2104 (((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1232 (-311 (-221)))) 143)) (-2263 (((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) 181) (((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) 179)) (-2351 (((-669 (-221)) (-625 (-221)) (-751)) 14)) (-2158 (((-1232 (-679)) (-625 (-221))) 94)) (-2212 (((-625 (-1131)) (-625 (-221))) 75)) (-2151 (((-3 (-311 (-221)) "failed") (-311 (-221))) 120)) (-4019 (((-112) (-221) (-1067 (-820 (-221)))) 109)) (-2285 (((-1011) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) 198)) (-2234 (((-221) (-1067 (-820 (-221)))) 107)) (-2245 (((-221) (-1067 (-820 (-221)))) 108)) (-2338 (((-221) (-402 (-552))) 27)) (-2201 (((-1131) (-374)) 73)) (-2020 (((-221) (-374)) 17)) (-2093 (((-374) (-1232 (-311 (-221)))) 154)) (-2029 (((-311 (-221)) (-311 (-374))) 23)) (-2072 (((-402 (-552)) (-311 (-221))) 53)) (-2113 (((-311 (-402 (-552))) (-311 (-221))) 69)) (-2168 (((-311 (-374)) (-311 (-221))) 98)) (-2082 (((-221) (-311 (-221))) 54)) (-2134 (((-625 (-221)) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) 64)) (-2122 (((-1067 (-820 (-221))) (-1067 (-820 (-221)))) 61)) (-2190 (((-1131) (-221)) 72)) (-2143 (((-679) (-221)) 90)) (-2061 (((-402 (-552)) (-221)) 55)) (-2325 (((-311 (-374)) (-221)) 49)) (-2042 (((-625 (-1067 (-820 (-221)))) (-625 (-1067 (-820 (-374))))) 43)) (-3402 (((-1011) (-625 (-1011))) 165) (((-1011) (-1011) (-1011)) 162)) (-2274 (((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-300) (-10 -7 (-15 -2020 ((-221) (-374))) (-15 -2029 ((-311 (-221)) (-311 (-374)))) (-15 -2039 ((-820 (-221)) (-820 (-374)))) (-15 -2048 ((-1067 (-820 (-221))) (-1067 (-820 (-374))))) (-15 -2042 ((-625 (-1067 (-820 (-221)))) (-625 (-1067 (-820 (-374)))))) (-15 -2061 ((-402 (-552)) (-221))) (-15 -2072 ((-402 (-552)) (-311 (-221)))) (-15 -2082 ((-221) (-311 (-221)))) (-15 -2151 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -2093 ((-374) (-1232 (-311 (-221))))) (-15 -2104 ((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1232 (-311 (-221))))) (-15 -2113 ((-311 (-402 (-552))) (-311 (-221)))) (-15 -2122 ((-1067 (-820 (-221))) (-1067 (-820 (-221))))) (-15 -2134 ((-625 (-221)) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) (-15 -2143 ((-679) (-221))) (-15 -2158 ((-1232 (-679)) (-625 (-221)))) (-15 -2168 ((-311 (-374)) (-311 (-221)))) (-15 -2178 ((-1232 (-311 (-374))) (-1232 (-311 (-221))))) (-15 -4019 ((-112) (-221) (-1067 (-820 (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2201 ((-1131) (-374))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))) (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -3402 ((-1011) (-1011) (-1011))) (-15 -3402 ((-1011) (-625 (-1011)))) (-15 -2254 ((-1131) (-374))) (-15 -2263 ((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))))) (-15 -2263 ((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))))) (-15 -2274 ((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2285 ((-1011) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))) (-15 -2297 ((-311 (-374)) (-928 (-221)))) (-15 -2312 ((-221) (-928 (-221)))) (-15 -2325 ((-311 (-374)) (-221))) (-15 -2338 ((-221) (-402 (-552)))) (-15 -2351 ((-669 (-221)) (-625 (-221)) (-751))))) (T -300))
+((-2351 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-221))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) (-5 *1 (-300)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-402 (-552))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) (-5 *2 (-1011)) (-5 *1 (-300)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1011)) (-5 *1 (-300)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) (-5 *2 (-1011)) (-5 *1 (-300)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *2 (-1011)) (-5 *1 (-300)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1131)) (-5 *1 (-300)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-625 (-1011))) (-5 *2 (-1011)) (-5 *1 (-300)))) (-3402 (*1 *2 *2 *2) (-12 (-5 *2 (-1011)) (-5 *1 (-300)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-300)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-300)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1131)) (-5 *1 (-300)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-300)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *4 (-1067 (-820 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-300)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *2 (-1232 (-311 (-374)))) (-5 *1 (-300)))) (-2168 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1232 (-679))) (-5 *1 (-300)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-679)) (-5 *1 (-300)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *2 (-625 (-221))) (-5 *1 (-300)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-1067 (-820 (-221)))) (-5 *1 (-300)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-402 (-552)))) (-5 *1 (-300)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *2 (-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552)))) (-5 *1 (-300)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-300)))) (-2151 (*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-300)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-402 (-552))) (-5 *1 (-300)))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-552))) (-5 *1 (-300)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-625 (-1067 (-820 (-374))))) (-5 *2 (-625 (-1067 (-820 (-221))))) (-5 *1 (-300)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-374)))) (-5 *2 (-1067 (-820 (-221)))) (-5 *1 (-300)))) (-2039 (*1 *2 *3) (-12 (-5 *3 (-820 (-374))) (-5 *2 (-820 (-221))) (-5 *1 (-300)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-311 (-374))) (-5 *2 (-311 (-221))) (-5 *1 (-300)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-300)))))
+(-10 -7 (-15 -2020 ((-221) (-374))) (-15 -2029 ((-311 (-221)) (-311 (-374)))) (-15 -2039 ((-820 (-221)) (-820 (-374)))) (-15 -2048 ((-1067 (-820 (-221))) (-1067 (-820 (-374))))) (-15 -2042 ((-625 (-1067 (-820 (-221)))) (-625 (-1067 (-820 (-374)))))) (-15 -2061 ((-402 (-552)) (-221))) (-15 -2072 ((-402 (-552)) (-311 (-221)))) (-15 -2082 ((-221) (-311 (-221)))) (-15 -2151 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -2093 ((-374) (-1232 (-311 (-221))))) (-15 -2104 ((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1232 (-311 (-221))))) (-15 -2113 ((-311 (-402 (-552))) (-311 (-221)))) (-15 -2122 ((-1067 (-820 (-221))) (-1067 (-820 (-221))))) (-15 -2134 ((-625 (-221)) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) (-15 -2143 ((-679) (-221))) (-15 -2158 ((-1232 (-679)) (-625 (-221)))) (-15 -2168 ((-311 (-374)) (-311 (-221)))) (-15 -2178 ((-1232 (-311 (-374))) (-1232 (-311 (-221))))) (-15 -4019 ((-112) (-221) (-1067 (-820 (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2201 ((-1131) (-374))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))) (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -3402 ((-1011) (-1011) (-1011))) (-15 -3402 ((-1011) (-625 (-1011)))) (-15 -2254 ((-1131) (-374))) (-15 -2263 ((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))))) (-15 -2263 ((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))))) (-15 -2274 ((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2285 ((-1011) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))) (-15 -2297 ((-311 (-374)) (-928 (-221)))) (-15 -2312 ((-221) (-928 (-221)))) (-15 -2325 ((-311 (-374)) (-221))) (-15 -2338 ((-221) (-402 (-552)))) (-15 -2351 ((-669 (-221)) (-625 (-221)) (-751))))
+((-2408 (((-112) $ $) 11)) (-2851 (($ $ $) 15)) (-2826 (($ $ $) 14)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 44)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 53)) (-2633 (($ $ $) 21) (($ (-625 $)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2802 (((-3 $ "failed") $ $) 17)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 46)))
+(((-301 |#1|) (-10 -8 (-15 -2375 ((-3 (-625 |#1|) "failed") (-625 |#1|) |#1|)) (-15 -2385 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2385 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2826 (|#1| |#1| |#1|)) (-15 -2408 ((-112) |#1| |#1|)) (-15 -1468 ((-3 (-625 |#1|) "failed") (-625 |#1|) |#1|)) (-15 -1480 ((-2 (|:| -3340 (-625 |#1|)) (|:| -3212 |#1|)) (-625 |#1|))) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|))) (-302)) (T -301))
+NIL
+(-10 -8 (-15 -2375 ((-3 (-625 |#1|) "failed") (-625 |#1|) |#1|)) (-15 -2385 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2385 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2826 (|#1| |#1| |#1|)) (-15 -2408 ((-112) |#1| |#1|)) (-15 -1468 ((-3 (-625 |#1|) "failed") (-625 |#1|) |#1|)) (-15 -1480 ((-2 (|:| -3340 (-625 |#1|)) (|:| -3212 |#1|)) (-625 |#1|))) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-3650 (((-112) $) 30)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-302) (-138)) (T -302))
-((-1705 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-751)))) (-3214 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-302)))) (-2893 (*1 *1 *1 *1) (-4 *1 (-302))) (-2894 (*1 *1 *1 *1) (-4 *1 (-302))) (-1703 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1))) (-4 *1 (-302)))) (-1703 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-302)))) (-1702 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-302)))))
-(-13 (-897) (-10 -8 (-15 -1705 ((-112) $ $)) (-15 -1704 ((-751) $)) (-15 -3214 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2893 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -1703 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $)) (-15 -1703 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1702 ((-3 (-622 $) "failed") (-622 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-4127 (($ $ (-622 |#2|) (-622 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-288 |#2|)) 11) (($ $ (-622 (-288 |#2|))) NIL)))
-(((-303 |#1| |#2|) (-10 -8 (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|)))) (-304 |#2|) (-1074)) (T -303))
-NIL
-(-10 -8 (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|))))
-((-4127 (($ $ (-622 |#1|) (-622 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-288 |#1|)) 11) (($ $ (-622 (-288 |#1|))) 10)))
-(((-304 |#1|) (-138) (-1074)) (T -304))
-((-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1074)))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-288 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1074)))))
-(-13 (-507 |t#1| |t#1|) (-10 -8 (-15 -4127 ($ $ (-288 |t#1|))) (-15 -4127 ($ $ (-622 (-288 |t#1|))))))
+((-2408 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-751)))) (-3481 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-302)))) (-2826 (*1 *1 *1 *1) (-4 *1 (-302))) (-2851 (*1 *1 *1 *1) (-4 *1 (-302))) (-2385 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1))) (-4 *1 (-302)))) (-2385 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-302)))) (-2375 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-302)))))
+(-13 (-896) (-10 -8 (-15 -2408 ((-112) $ $)) (-15 -2397 ((-751) $)) (-15 -3481 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2826 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -2385 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $)) (-15 -2385 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2375 ((-3 (-625 $) "failed") (-625 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-4073 (($ $ (-625 |#2|) (-625 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-289 |#2|)) 11) (($ $ (-625 (-289 |#2|))) NIL)))
+(((-303 |#1| |#2|) (-10 -8 (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|)))) (-304 |#2|) (-1073)) (T -303))
+NIL
+(-10 -8 (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|))))
+((-4073 (($ $ (-625 |#1|) (-625 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-289 |#1|)) 11) (($ $ (-625 (-289 |#1|))) 10)))
+(((-304 |#1|) (-138) (-1073)) (T -304))
+((-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-289 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1073)))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-289 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1073)))))
+(-13 (-507 |t#1| |t#1|) (-10 -8 (-15 -4073 ($ $ (-289 |t#1|))) (-15 -4073 ($ $ (-625 (-289 |t#1|))))))
(((-507 |#1| |#1|) . T))
-((-4127 ((|#1| (-1 |#1| (-538)) (-1151 (-402 (-538)))) 25)))
-(((-305 |#1|) (-10 -7 (-15 -4127 (|#1| (-1 |#1| (-538)) (-1151 (-402 (-538)))))) (-38 (-402 (-538)))) (T -305))
-((-4127 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-538))) (-5 *4 (-1151 (-402 (-538)))) (-5 *1 (-305 *2)) (-4 *2 (-38 (-402 (-538)))))))
-(-10 -7 (-15 -4127 (|#1| (-1 |#1| (-538)) (-1151 (-402 (-538))))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 7)) (-3387 (((-112) $ $) 9)))
-(((-306) (-1074)) (T -306))
-NIL
-(-1074)
-((-2898 (((-112) $ $) NIL)) (-3860 (((-538) $) 12)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 9)) (-4317 (((-840) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-307) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3860 ((-538) $))))) (T -307))
-((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-307)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-307)))))
-(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3860 ((-538) $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 62)) (-3464 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-1218 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-538)))) (((-3 (-1212 |#2| |#3| |#4|) #2#) $) 25)) (-3507 (((-1218 |#1| |#2| |#3| |#4|) $) NIL) (((-1149) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-538)))) (((-538) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-538)))) (((-1212 |#2| |#3| |#4|) $) NIL)) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-1218 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1231 (-1218 |#1| |#2| |#3| |#4|)))) (-669 $) (-1231 $)) NIL) (((-669 (-1218 |#1| |#2| |#3| |#4|)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-1218 |#1| |#2| |#3| |#4|) $) 21)) (-3803 (((-3 $ "failed") $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1124)))) (-3538 (((-112) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-3678 (($ $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-4318 (($ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) $) NIL)) (-4143 (((-3 (-819 |#2|) "failed") $) 78)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-302)))) (-3465 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-1218 |#1| |#2| |#3| |#4|)) (-622 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-288 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-622 (-288 (-1218 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-622 (-1149)) (-622 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-507 (-1149) (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-1149) (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-507 (-1149) (-1218 |#1| |#2| |#3| |#4|))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-281 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) (-751)) NIL) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-1218 |#1| |#2| |#3| |#4|) $) 17)) (-4330 (((-866 (-538)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-527)))) (((-373) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-996))) (((-221) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1218 |#1| |#2| |#3| |#4|) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-1218 |#1| |#2| |#3| |#4|)) 29) (($ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (($ (-1212 |#2| |#3| |#4|)) 36)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-1218 |#1| |#2| |#3| |#4|) (-886))) (|has| (-1218 |#1| |#2| |#3| |#4|) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-2991 (($) 41 T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) (-751)) NIL) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-4308 (($ $ $) 34) (($ (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) 31)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-1218 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1218 |#1| |#2| |#3| |#4|)) NIL)))
-(((-308 |#1| |#2| |#3| |#4|) (-13 (-967 (-1218 |#1| |#2| |#3| |#4|)) (-1014 (-1212 |#2| |#3| |#4|)) (-10 -8 (-15 -4143 ((-3 (-819 |#2|) "failed") $)) (-15 -4317 ($ (-1212 |#2| |#3| |#4|))))) (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446)) (-13 (-27) (-1171) (-416 |#1|)) (-1149) |#2|) (T -308))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1212 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4) (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) (-5 *1 (-308 *3 *4 *5 *6)))) (-4143 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) (-5 *2 (-819 *4)) (-5 *1 (-308 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4))))
-(-13 (-967 (-1218 |#1| |#2| |#3| |#4|)) (-1014 (-1212 |#2| |#3| |#4|)) (-10 -8 (-15 -4143 ((-3 (-819 |#2|) "failed") $)) (-15 -4317 ($ (-1212 |#2| |#3| |#4|)))))
-((-2898 (((-112) $ $) NIL)) (-1667 (((-622 $) $ (-1149)) NIL (|has| |#1| (-545))) (((-622 $) $) NIL (|has| |#1| (-545))) (((-622 $) (-1143 $) (-1149)) NIL (|has| |#1| (-545))) (((-622 $) (-1143 $)) NIL (|has| |#1| (-545))) (((-622 $) (-922 $)) NIL (|has| |#1| (-545)))) (-1265 (($ $ (-1149)) NIL (|has| |#1| (-545))) (($ $) NIL (|has| |#1| (-545))) (($ (-1143 $) (-1149)) NIL (|has| |#1| (-545))) (($ (-1143 $)) NIL (|has| |#1| (-545))) (($ (-922 $)) NIL (|has| |#1| (-545)))) (-3539 (((-112) $) 27 (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))) (-3417 (((-622 (-1149)) $) 351)) (-3419 (((-402 (-1143 $)) $ (-595 $)) NIL (|has| |#1| (-545)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-1660 (((-622 (-595 $)) $) NIL)) (-3846 (($ $) 161 (|has| |#1| (-545)))) (-4002 (($ $) 137 (|has| |#1| (-545)))) (-1417 (($ $ (-1065 $)) 222 (|has| |#1| (-545))) (($ $ (-1149)) 218 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) NIL (-3891 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))) (-1664 (($ $ (-288 $)) NIL) (($ $ (-622 (-288 $))) 368) (($ $ (-622 (-595 $)) (-622 $)) 412)) (-3040 (((-400 (-1143 $)) (-1143 $)) 295 (-12 (|has| |#1| (-446)) (|has| |#1| (-545))))) (-4134 (($ $) NIL (|has| |#1| (-545)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-545)))) (-3370 (($ $) NIL (|has| |#1| (-545)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3844 (($ $) 157 (|has| |#1| (-545)))) (-4001 (($ $) 133 (|has| |#1| (-545)))) (-1706 (($ $ (-538)) 72 (|has| |#1| (-545)))) (-3848 (($ $) 165 (|has| |#1| (-545)))) (-4000 (($ $) 141 (|has| |#1| (-545)))) (-3896 (($) NIL (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085))) CONST)) (-1266 (((-622 $) $ (-1149)) NIL (|has| |#1| (-545))) (((-622 $) $) NIL (|has| |#1| (-545))) (((-622 $) (-1143 $) (-1149)) NIL (|has| |#1| (-545))) (((-622 $) (-1143 $)) NIL (|has| |#1| (-545))) (((-622 $) (-922 $)) NIL (|has| |#1| (-545)))) (-3534 (($ $ (-1149)) NIL (|has| |#1| (-545))) (($ $) NIL (|has| |#1| (-545))) (($ (-1143 $) (-1149)) 124 (|has| |#1| (-545))) (($ (-1143 $)) NIL (|has| |#1| (-545))) (($ (-922 $)) NIL (|has| |#1| (-545)))) (-3508 (((-3 (-595 $) #1="failed") $) 17) (((-3 (-1149) #1#) $) NIL) (((-3 |#1| #1#) $) 421) (((-3 (-48) #1#) $) 323 (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538))))) (((-3 (-538) #1#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-922 |#1|)) #1#) $) NIL (|has| |#1| (-545))) (((-3 (-922 |#1|) #1#) $) NIL (|has| |#1| (-1025))) (((-3 (-402 (-538)) #1#) $) 46 (-3891 (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-3507 (((-595 $) $) 11) (((-1149) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-922 |#1|)) $) NIL (|has| |#1| (-545))) (((-922 |#1|) $) NIL (|has| |#1| (-1025))) (((-402 (-538)) $) 306 (-3891 (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-2894 (($ $ $) NIL (|has| |#1| (-545)))) (-2362 (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 117 (|has| |#1| (-1025))) (((-669 |#1|) (-669 $)) 107 (|has| |#1| (-1025))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))) (-4202 (($ $) 89 (|has| |#1| (-545)))) (-3821 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (-2893 (($ $ $) NIL (|has| |#1| (-545)))) (-4304 (($ $ (-1065 $)) 226 (|has| |#1| (-545))) (($ $ (-1149)) 224 (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-545)))) (-4086 (((-112) $) NIL (|has| |#1| (-545)))) (-3745 (($ $ $) 192 (|has| |#1| (-545)))) (-3990 (($) 127 (|has| |#1| (-545)))) (-1414 (($ $ $) 212 (|has| |#1| (-545)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 374 (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 381 (|has| |#1| (-862 (-373))))) (-2903 (($ $) NIL) (($ (-622 $)) NIL)) (-1659 (((-622 (-113)) $) NIL)) (-3380 (((-113) (-113)) 267)) (-2502 (((-112) $) 25 (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (-3006 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-3329 (($ $) 71 (|has| |#1| (-1025)))) (-3331 (((-1098 |#1| (-595 $)) $) 84 (|has| |#1| (-1025)))) (-1707 (((-112) $) 64 (|has| |#1| (-545)))) (-3344 (($ $ (-538)) NIL (|has| |#1| (-545)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| |#1| (-545)))) (-1657 (((-1143 $) (-595 $)) 268 (|has| $ (-1025)))) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 $ $) (-595 $)) 408)) (-1662 (((-3 (-595 $) "failed") $) NIL)) (-4302 (($ $) 131 (|has| |#1| (-545)))) (-2341 (($ $) 237 (|has| |#1| (-545)))) (-2013 (($ (-622 $)) NIL (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-3593 (((-1131) $) NIL)) (-1661 (((-622 (-595 $)) $) 49)) (-2317 (($ (-113) $) NIL) (($ (-113) (-622 $)) 413)) (-3156 (((-3 (-622 $) #3="failed") $) NIL (|has| |#1| (-1085)))) (-3158 (((-3 (-2 (|:| |val| $) (|:| -2493 (-538))) #3#) $) NIL (|has| |#1| (-1025)))) (-3155 (((-3 (-622 $) #3#) $) 416 (|has| |#1| (-25)))) (-1913 (((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 $))) #3#) $) 420 (|has| |#1| (-25)))) (-3157 (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $) NIL (|has| |#1| (-1085))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $ (-113)) NIL (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $ (-1149)) NIL (|has| |#1| (-1025)))) (-2964 (((-112) $ (-113)) NIL) (((-112) $ (-1149)) 53)) (-2734 (($ $) NIL (-3891 (|has| |#1| (-467)) (|has| |#1| (-545))))) (-3165 (($ $ (-1149)) 241 (|has| |#1| (-545))) (($ $ (-1065 $)) 243 (|has| |#1| (-545)))) (-2933 (((-751) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) 43)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 288 (|has| |#1| (-545)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-1658 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-1418 (($ $ (-1149)) 216 (|has| |#1| (-545))) (($ $) 214 (|has| |#1| (-545)))) (-1412 (($ $) 208 (|has| |#1| (-545)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 293 (-12 (|has| |#1| (-446)) (|has| |#1| (-545))))) (-4092 (((-400 $) $) NIL (|has| |#1| (-545)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-545))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-545)))) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-545)))) (-4303 (($ $) 129 (|has| |#1| (-545)))) (-3007 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) 407) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-1149) (-1 $ (-622 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-622 (-113)) (-622 (-1 $ $))) 361) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-113) (-1 $ (-622 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1149)) NIL (|has| |#1| (-598 (-527)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-598 (-527)))) (($ $) NIL (|has| |#1| (-598 (-527)))) (($ $ (-113) $ (-1149)) 349 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-113)) (-622 $) (-1149)) 348 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ $))) NIL (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ (-622 $)))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-622 $))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ $)) NIL (|has| |#1| (-1025)))) (-1704 (((-751) $) NIL (|has| |#1| (-545)))) (-2339 (($ $) 229 (|has| |#1| (-545)))) (-4159 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-622 $)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-2340 (($ $) 239 (|has| |#1| (-545)))) (-3744 (($ $) 190 (|has| |#1| (-545)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-1025))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-1025))) (($ $ (-1149)) NIL (|has| |#1| (-1025)))) (-3328 (($ $) 73 (|has| |#1| (-545)))) (-3330 (((-1098 |#1| (-595 $)) $) 86 (|has| |#1| (-545)))) (-3536 (($ $) 304 (|has| $ (-1025)))) (-3849 (($ $) 167 (|has| |#1| (-545)))) (-3999 (($ $) 143 (|has| |#1| (-545)))) (-3847 (($ $) 163 (|has| |#1| (-545)))) (-3998 (($ $) 139 (|has| |#1| (-545)))) (-3845 (($ $) 159 (|has| |#1| (-545)))) (-3997 (($ $) 135 (|has| |#1| (-545)))) (-4330 (((-866 (-538)) $) NIL (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| |#1| (-598 (-866 (-373))))) (($ (-400 $)) NIL (|has| |#1| (-545))) (((-527) $) 346 (|has| |#1| (-598 (-527))))) (-3342 (($ $ $) NIL (|has| |#1| (-467)))) (-2686 (($ $ $) NIL (|has| |#1| (-467)))) (-4317 (((-840) $) 406) (($ (-595 $)) 397) (($ (-1149)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-545))) (($ (-48)) 299 (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538))))) (($ (-1098 |#1| (-595 $))) 88 (|has| |#1| (-1025))) (($ (-402 |#1|)) NIL (|has| |#1| (-545))) (($ (-922 (-402 |#1|))) NIL (|has| |#1| (-545))) (($ (-402 (-922 (-402 |#1|)))) NIL (|has| |#1| (-545))) (($ (-402 (-922 |#1|))) NIL (|has| |#1| (-545))) (($ (-922 |#1|)) NIL (|has| |#1| (-1025))) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-545)) (|has| |#1| (-1014 (-402 (-538)))))) (($ (-538)) 34 (-3891 (|has| |#1| (-1014 (-538))) (|has| |#1| (-1025))))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL (|has| |#1| (-1025)))) (-2920 (($ $) NIL) (($ (-622 $)) NIL)) (-3437 (($ $ $) 210 (|has| |#1| (-545)))) (-3748 (($ $ $) 196 (|has| |#1| (-545)))) (-3750 (($ $ $) 200 (|has| |#1| (-545)))) (-3747 (($ $ $) 194 (|has| |#1| (-545)))) (-3749 (($ $ $) 198 (|has| |#1| (-545)))) (-2338 (((-112) (-113)) 9)) (-3852 (($ $) 173 (|has| |#1| (-545)))) (-3840 (($ $) 149 (|has| |#1| (-545)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) 169 (|has| |#1| (-545)))) (-3838 (($ $) 145 (|has| |#1| (-545)))) (-3854 (($ $) 177 (|has| |#1| (-545)))) (-3842 (($ $) 153 (|has| |#1| (-545)))) (-1914 (($ (-1149) $) NIL) (($ (-1149) $ $) NIL) (($ (-1149) $ $ $) NIL) (($ (-1149) $ $ $ $) NIL) (($ (-1149) (-622 $)) NIL)) (-3752 (($ $) 204 (|has| |#1| (-545)))) (-3751 (($ $) 202 (|has| |#1| (-545)))) (-3855 (($ $) 179 (|has| |#1| (-545)))) (-3843 (($ $) 155 (|has| |#1| (-545)))) (-3853 (($ $) 175 (|has| |#1| (-545)))) (-3841 (($ $) 151 (|has| |#1| (-545)))) (-3851 (($ $) 171 (|has| |#1| (-545)))) (-3839 (($ $) 147 (|has| |#1| (-545)))) (-3742 (($ $) 182 (|has| |#1| (-545)))) (-2991 (($) 20 (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))) CONST)) (-2343 (($ $) 233 (|has| |#1| (-545)))) (-2997 (($) 22 (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085))) CONST)) (-3746 (($ $) 184 (|has| |#1| (-545))) (($ $ $) 186 (|has| |#1| (-545)))) (-2344 (($ $) 231 (|has| |#1| (-545)))) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-1025))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-1025))) (($ $ (-1149)) NIL (|has| |#1| (-1025)))) (-2342 (($ $) 235 (|has| |#1| (-545)))) (-3743 (($ $ $) 188 (|has| |#1| (-545)))) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 81)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 80)) (-4308 (($ (-1098 |#1| (-595 $)) (-1098 |#1| (-595 $))) 98 (|has| |#1| (-545))) (($ $ $) 42 (-3891 (|has| |#1| (-467)) (|has| |#1| (-545))))) (-4197 (($ $ $) 40 (-3891 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))) (($ $) 29 (-3891 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))) (-4199 (($ $ $) 38 (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))) (** (($ $ $) 66 (|has| |#1| (-545))) (($ $ (-402 (-538))) 301 (|has| |#1| (-545))) (($ $ (-538)) 76 (-3891 (|has| |#1| (-467)) (|has| |#1| (-545)))) (($ $ (-751)) 74 (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085)))) (($ $ (-895)) 78 (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (* (($ (-402 (-538)) $) NIL (|has| |#1| (-545))) (($ $ (-402 (-538))) NIL (|has| |#1| (-545))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085)))) (($ (-538) $) 32 (-3891 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))) (($ (-751) $) NIL (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))) (($ (-895) $) NIL (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))))
-(((-309 |#1|) (-13 (-416 |#1|) (-10 -8 (IF (|has| |#1| (-545)) (PROGN (-6 (-29 |#1|)) (-6 (-1171)) (-6 (-158)) (-6 (-612)) (-6 (-1112)) (-15 -4202 ($ $)) (-15 -1707 ((-112) $)) (-15 -1706 ($ $ (-538))) (IF (|has| |#1| (-446)) (PROGN (-15 -3039 ((-400 (-1143 $)) (-1143 $))) (-15 -3040 ((-400 (-1143 $)) (-1143 $)))) |%noBranch|) (IF (|has| |#1| (-1014 (-538))) (-6 (-1014 (-48))) |%noBranch|)) |%noBranch|))) (-827)) (T -309))
-((-4202 (*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-545)) (-4 *2 (-827)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-545)) (-4 *3 (-827)))) (-1706 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-309 *3)) (-4 *3 (-545)) (-4 *3 (-827)))) (-3039 (*1 *2 *3) (-12 (-5 *2 (-400 (-1143 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1143 *1)) (-4 *4 (-446)) (-4 *4 (-545)) (-4 *4 (-827)))) (-3040 (*1 *2 *3) (-12 (-5 *2 (-400 (-1143 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1143 *1)) (-4 *4 (-446)) (-4 *4 (-545)) (-4 *4 (-827)))))
-(-13 (-416 |#1|) (-10 -8 (IF (|has| |#1| (-545)) (PROGN (-6 (-29 |#1|)) (-6 (-1171)) (-6 (-158)) (-6 (-612)) (-6 (-1112)) (-15 -4202 ($ $)) (-15 -1707 ((-112) $)) (-15 -1706 ($ $ (-538))) (IF (|has| |#1| (-446)) (PROGN (-15 -3039 ((-400 (-1143 $)) (-1143 $))) (-15 -3040 ((-400 (-1143 $)) (-1143 $)))) |%noBranch|) (IF (|has| |#1| (-1014 (-538))) (-6 (-1014 (-48))) |%noBranch|)) |%noBranch|)))
-((-4318 (((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)) 13)))
-(((-310 |#1| |#2|) (-10 -7 (-15 -4318 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)))) (-827) (-827)) (T -310))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-5 *2 (-309 *6)) (-5 *1 (-310 *5 *6)))))
-(-10 -7 (-15 -4318 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|))))
-((-4089 (((-51) |#2| (-288 |#2|) (-751)) 33) (((-51) |#2| (-288 |#2|)) 24) (((-51) |#2| (-751)) 28) (((-51) |#2|) 25) (((-51) (-1149)) 21)) (-4178 (((-51) |#2| (-288 |#2|) (-402 (-538))) 51) (((-51) |#2| (-288 |#2|)) 48) (((-51) |#2| (-402 (-538))) 50) (((-51) |#2|) 49) (((-51) (-1149)) 47)) (-4141 (((-51) |#2| (-288 |#2|) (-402 (-538))) 46) (((-51) |#2| (-288 |#2|)) 43) (((-51) |#2| (-402 (-538))) 45) (((-51) |#2|) 44) (((-51) (-1149)) 42)) (-4138 (((-51) |#2| (-288 |#2|) (-538)) 39) (((-51) |#2| (-288 |#2|)) 35) (((-51) |#2| (-538)) 38) (((-51) |#2|) 36) (((-51) (-1149)) 34)))
-(((-311 |#1| |#2|) (-10 -7 (-15 -4089 ((-51) (-1149))) (-15 -4089 ((-51) |#2|)) (-15 -4089 ((-51) |#2| (-751))) (-15 -4089 ((-51) |#2| (-288 |#2|))) (-15 -4089 ((-51) |#2| (-288 |#2|) (-751))) (-15 -4138 ((-51) (-1149))) (-15 -4138 ((-51) |#2|)) (-15 -4138 ((-51) |#2| (-538))) (-15 -4138 ((-51) |#2| (-288 |#2|))) (-15 -4138 ((-51) |#2| (-288 |#2|) (-538))) (-15 -4141 ((-51) (-1149))) (-15 -4141 ((-51) |#2|)) (-15 -4141 ((-51) |#2| (-402 (-538)))) (-15 -4141 ((-51) |#2| (-288 |#2|))) (-15 -4141 ((-51) |#2| (-288 |#2|) (-402 (-538)))) (-15 -4178 ((-51) (-1149))) (-15 -4178 ((-51) |#2|)) (-15 -4178 ((-51) |#2| (-402 (-538)))) (-15 -4178 ((-51) |#2| (-288 |#2|))) (-15 -4178 ((-51) |#2| (-288 |#2|) (-402 (-538))))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -311))
-((-4178 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *6 *3)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-538))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-4178 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))) (-4141 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *6 *3)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-538))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-4141 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))) (-4138 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-1014 *5) (-621 *5))) (-5 *5 (-538)) (-5 *2 (-51)) (-5 *1 (-311 *6 *3)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-4 *5 (-13 (-446) (-827) (-1014 *4) (-621 *4))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))) (-4089 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-751)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *6 *3)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-4089 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))))
-(-10 -7 (-15 -4089 ((-51) (-1149))) (-15 -4089 ((-51) |#2|)) (-15 -4089 ((-51) |#2| (-751))) (-15 -4089 ((-51) |#2| (-288 |#2|))) (-15 -4089 ((-51) |#2| (-288 |#2|) (-751))) (-15 -4138 ((-51) (-1149))) (-15 -4138 ((-51) |#2|)) (-15 -4138 ((-51) |#2| (-538))) (-15 -4138 ((-51) |#2| (-288 |#2|))) (-15 -4138 ((-51) |#2| (-288 |#2|) (-538))) (-15 -4141 ((-51) (-1149))) (-15 -4141 ((-51) |#2|)) (-15 -4141 ((-51) |#2| (-402 (-538)))) (-15 -4141 ((-51) |#2| (-288 |#2|))) (-15 -4141 ((-51) |#2| (-288 |#2|) (-402 (-538)))) (-15 -4178 ((-51) (-1149))) (-15 -4178 ((-51) |#2|)) (-15 -4178 ((-51) |#2| (-402 (-538)))) (-15 -4178 ((-51) |#2| (-288 |#2|))) (-15 -4178 ((-51) |#2| (-288 |#2|) (-402 (-538)))))
-((-1708 (((-51) |#2| (-113) (-288 |#2|) (-622 |#2|)) 88) (((-51) |#2| (-113) (-288 |#2|) (-288 |#2|)) 84) (((-51) |#2| (-113) (-288 |#2|) |#2|) 86) (((-51) (-288 |#2|) (-113) (-288 |#2|) |#2|) 87) (((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|))) 80) (((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 |#2|)) 82) (((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 |#2|)) 83) (((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|))) 81) (((-51) (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|)) 89) (((-51) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|)) 85)))
-(((-312 |#1| |#2|) (-10 -7 (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|)))) (-15 -1708 ((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|)))) (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) |#2|)) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) (-622 |#2|)))) (-13 (-827) (-545) (-598 (-527))) (-416 |#1|)) (T -312))
-((-1708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-622 *3)) (-4 *3 (-416 *7)) (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *7 *3)))) (-1708 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *3)))) (-1708 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *3)))) (-1708 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *5)))) (-1708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 (-113))) (-5 *6 (-622 (-288 *8))) (-4 *8 (-416 *7)) (-5 *5 (-288 *8)) (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *7 *8)))) (-1708 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-622 *7)) (-5 *4 (-622 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *7)))) (-1708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-622 (-288 *8))) (-5 *4 (-622 (-113))) (-5 *5 (-288 *8)) (-5 *6 (-622 *8)) (-4 *8 (-416 *7)) (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *7 *8)))) (-1708 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-622 (-288 *7))) (-5 *4 (-622 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *7)))) (-1708 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-622 *7)) (-4 *7 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *7)))) (-1708 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-416 *5)) (-4 *5 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *5 *6)))))
-(-10 -7 (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|)))) (-15 -1708 ((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|)))) (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) |#2|)) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) (-622 |#2|))))
-((-1710 (((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538) (-1131)) 46) (((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538)) 47) (((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538) (-1131)) 43) (((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538)) 44)) (-1709 (((-1 (-221) (-221)) (-221)) 45)))
-(((-313) (-10 -7 (-15 -1709 ((-1 (-221) (-221)) (-221))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538) (-1131))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538) (-1131))))) (T -313))
-((-1710 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) (-5 *6 (-221)) (-5 *7 (-538)) (-5 *8 (-1131)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) (-1710 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) (-5 *6 (-221)) (-5 *7 (-538)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) (-1710 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) (-5 *6 (-538)) (-5 *7 (-1131)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) (-1710 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) (-5 *6 (-538)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) (-1709 (*1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221)))))
-(-10 -7 (-15 -1709 ((-1 (-221) (-221)) (-221))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538) (-1131))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538) (-1131))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 25)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) NIL) (($ $ (-402 (-538)) (-402 (-538))) NIL)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) 20)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) 32)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) NIL) (((-402 (-538)) $ (-402 (-538))) 16)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) NIL) (($ $ (-402 (-538))) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-402 (-538))) NIL) (($ $ (-1055) (-402 (-538))) NIL) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))))))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-1711 (((-402 (-538)) $) 17)) (-3426 (($ (-1212 |#1| |#2| |#3|)) 11)) (-2493 (((-1212 |#1| |#2| |#3|) $) 12)) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) NIL) (($ $ $) NIL (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-4307 (((-402 (-538)) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 10)) (-4317 (((-840) $) 38) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) 30)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 27)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 33)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-314 |#1| |#2| |#3|) (-13 (-1214 |#1|) (-772) (-10 -8 (-15 -3426 ($ (-1212 |#1| |#2| |#3|))) (-15 -2493 ((-1212 |#1| |#2| |#3|) $)) (-15 -1711 ((-402 (-538)) $)))) (-13 (-358) (-827)) (-1149) |#1|) (T -314))
-((-3426 (*1 *1 *2) (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1212 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3))))
-(-13 (-1214 |#1|) (-772) (-10 -8 (-15 -3426 ($ (-1212 |#1| |#2| |#3|))) (-15 -2493 ((-1212 |#1| |#2| |#3|) $)) (-15 -1711 ((-402 (-538)) $))))
-((-3344 (((-2 (|:| -2493 (-751)) (|:| -4313 |#1|) (|:| |radicand| (-622 |#1|))) (-400 |#1|) (-751)) 24)) (-4302 (((-622 (-2 (|:| -4313 (-751)) (|:| |logand| |#1|))) (-400 |#1|)) 28)))
-(((-315 |#1|) (-10 -7 (-15 -3344 ((-2 (|:| -2493 (-751)) (|:| -4313 |#1|) (|:| |radicand| (-622 |#1|))) (-400 |#1|) (-751))) (-15 -4302 ((-622 (-2 (|:| -4313 (-751)) (|:| |logand| |#1|))) (-400 |#1|)))) (-545)) (T -315))
-((-4302 (*1 *2 *3) (-12 (-5 *3 (-400 *4)) (-4 *4 (-545)) (-5 *2 (-622 (-2 (|:| -4313 (-751)) (|:| |logand| *4)))) (-5 *1 (-315 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *5)) (-4 *5 (-545)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *5) (|:| |radicand| (-622 *5)))) (-5 *1 (-315 *5)) (-5 *4 (-751)))))
-(-10 -7 (-15 -3344 ((-2 (|:| -2493 (-751)) (|:| -4313 |#1|) (|:| |radicand| (-622 |#1|))) (-400 |#1|) (-751))) (-15 -4302 ((-622 (-2 (|:| -4313 (-751)) (|:| |logand| |#1|))) (-400 |#1|))))
-((-3417 (((-622 |#2|) (-1143 |#4|)) 43)) (-1716 ((|#3| (-538)) 46)) (-1714 (((-1143 |#4|) (-1143 |#3|)) 30)) (-1715 (((-1143 |#4|) (-1143 |#4|) (-538)) 56)) (-1713 (((-1143 |#3|) (-1143 |#4|)) 21)) (-4307 (((-622 (-751)) (-1143 |#4|) (-622 |#2|)) 40)) (-1712 (((-1143 |#3|) (-1143 |#4|) (-622 |#2|) (-622 |#3|)) 35)))
-(((-316 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1712 ((-1143 |#3|) (-1143 |#4|) (-622 |#2|) (-622 |#3|))) (-15 -4307 ((-622 (-751)) (-1143 |#4|) (-622 |#2|))) (-15 -3417 ((-622 |#2|) (-1143 |#4|))) (-15 -1713 ((-1143 |#3|) (-1143 |#4|))) (-15 -1714 ((-1143 |#4|) (-1143 |#3|))) (-15 -1715 ((-1143 |#4|) (-1143 |#4|) (-538))) (-15 -1716 (|#3| (-538)))) (-773) (-827) (-1025) (-926 |#3| |#1| |#2|)) (T -316))
-((-1716 (*1 *2 *3) (-12 (-5 *3 (-538)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1025)) (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-926 *2 *4 *5)))) (-1715 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *7)) (-5 *3 (-538)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *1 (-316 *4 *5 *6 *7)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1143 *6)) (-4 *6 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-1143 *7)) (-5 *1 (-316 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1143 *7)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-1143 *6)) (-5 *1 (-316 *4 *5 *6 *7)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-1143 *7)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-622 *5)) (-5 *1 (-316 *4 *5 *6 *7)))) (-4307 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *8)) (-5 *4 (-622 *6)) (-4 *6 (-827)) (-4 *8 (-926 *7 *5 *6)) (-4 *5 (-773)) (-4 *7 (-1025)) (-5 *2 (-622 (-751))) (-5 *1 (-316 *5 *6 *7 *8)))) (-1712 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-5 *5 (-622 *8)) (-4 *7 (-827)) (-4 *8 (-1025)) (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 (-1143 *8)) (-5 *1 (-316 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1712 ((-1143 |#3|) (-1143 |#4|) (-622 |#2|) (-622 |#3|))) (-15 -4307 ((-622 (-751)) (-1143 |#4|) (-622 |#2|))) (-15 -3417 ((-622 |#2|) (-1143 |#4|))) (-15 -1713 ((-1143 |#3|) (-1143 |#4|))) (-15 -1714 ((-1143 |#4|) (-1143 |#3|))) (-15 -1715 ((-1143 |#4|) (-1143 |#4|) (-538))) (-15 -1716 (|#3| (-538))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 14)) (-4133 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-538)))) $) 18)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751) $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-2768 ((|#1| $ (-538)) NIL)) (-1719 (((-538) $ (-538)) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2371 (($ (-1 |#1| |#1|) $) NIL)) (-1718 (($ (-1 (-538) (-538)) $) 10)) (-3593 (((-1131) $) NIL)) (-1717 (($ $ $) NIL (|has| (-538) (-772)))) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (($ |#1|) NIL)) (-4040 (((-538) |#1| $) NIL)) (-2991 (($) 15 T CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) 21 (|has| |#1| (-827)))) (-4197 (($ $) 11) (($ $ $) 20)) (-4199 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ (-538)) NIL) (($ (-538) |#1|) 19)))
-(((-317 |#1|) (-13 (-21) (-698 (-538)) (-318 |#1| (-538)) (-10 -7 (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) (-1074)) (T -317))
-NIL
-(-13 (-21) (-698 (-538)) (-318 |#1| (-538)) (-10 -7 (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-4133 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))) $) 27)) (-1368 (((-3 $ "failed") $ $) 19)) (-3471 (((-751) $) 28)) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| "failed") $) 32)) (-3507 ((|#1| $) 31)) (-2768 ((|#1| $ (-538)) 25)) (-1719 ((|#2| $ (-538)) 26)) (-2371 (($ (-1 |#1| |#1|) $) 22)) (-1718 (($ (-1 |#2| |#2|) $) 23)) (-3593 (((-1131) $) 9)) (-1717 (($ $ $) 21 (|has| |#2| (-772)))) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ |#1|) 33)) (-4040 ((|#2| |#1| $) 24)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ |#2| |#1|) 29)))
-(((-318 |#1| |#2|) (-138) (-1074) (-130)) (T -318))
-((-4199 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-130)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)) (-5 *2 (-751)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)) (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4)))))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1074)) (-4 *2 (-130)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1074)))) (-4040 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-130)))) (-1718 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)))) (-2371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)))) (-1717 (*1 *1 *1 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-130)) (-4 *3 (-772)))))
-(-13 (-130) (-1014 |t#1|) (-10 -8 (-15 -4199 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3471 ((-751) $)) (-15 -4133 ((-622 (-2 (|:| |gen| |t#1|) (|:| -4303 |t#2|))) $)) (-15 -1719 (|t#2| $ (-538))) (-15 -2768 (|t#1| $ (-538))) (-15 -4040 (|t#2| |t#1| $)) (-15 -1718 ($ (-1 |t#2| |t#2|) $)) (-15 -2371 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-772)) (-15 -1717 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1014 |#1|) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4133 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751) $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-2768 ((|#1| $ (-538)) NIL)) (-1719 (((-751) $ (-538)) NIL)) (-2371 (($ (-1 |#1| |#1|) $) NIL)) (-1718 (($ (-1 (-751) (-751)) $) NIL)) (-3593 (((-1131) $) NIL)) (-1717 (($ $ $) NIL (|has| (-751) (-772)))) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (($ |#1|) NIL)) (-4040 (((-751) |#1| $) NIL)) (-2991 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4199 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-751) |#1|) NIL)))
-(((-319 |#1|) (-318 |#1| (-751)) (-1074)) (T -319))
+((-4073 ((|#1| (-1 |#1| (-552)) (-1151 (-402 (-552)))) 25)))
+(((-305 |#1|) (-10 -7 (-15 -4073 (|#1| (-1 |#1| (-552)) (-1151 (-402 (-552)))))) (-38 (-402 (-552)))) (T -305))
+((-4073 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-552))) (-5 *4 (-1151 (-402 (-552)))) (-5 *1 (-305 *2)) (-4 *2 (-38 (-402 (-552)))))))
+(-10 -7 (-15 -4073 (|#1| (-1 |#1| (-552)) (-1151 (-402 (-552))))))
+((-1671 (((-112) $ $) NIL)) (-3671 (((-552) $) 12)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 9)) (-1683 (((-839) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-306) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -3671 ((-552) $))))) (T -306))
+((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-306)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-306)))))
+(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -3671 ((-552) $))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 7)) (-2281 (((-112) $ $) 9)))
+(((-307) (-1073)) (T -307))
+NIL
+(-1073)
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 62)) (-4177 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-1218 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-552)))) (((-3 (-1217 |#2| |#3| |#4|) "failed") $) 25)) (-1895 (((-1218 |#1| |#2| |#3| |#4|) $) NIL) (((-1149) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-552)))) (((-552) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-552)))) (((-1217 |#2| |#3| |#4|) $) NIL)) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-1218 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1232 (-1218 |#1| |#2| |#3| |#4|)))) (-669 $) (-1232 $)) NIL) (((-669 (-1218 |#1| |#2| |#3| |#4|)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-1218 |#1| |#2| |#3| |#4|) $) 21)) (-4034 (((-3 $ "failed") $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1124)))) (-3630 (((-112) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-3332 (($ $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-1996 (($ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) $) NIL)) (-2267 (((-3 (-820 |#2|) "failed") $) 78)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-302)))) (-4189 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-1218 |#1| |#2| |#3| |#4|)) (-625 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-289 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-625 (-289 (-1218 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-625 (-1149)) (-625 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-507 (-1149) (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-1149) (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-507 (-1149) (-1218 |#1| |#2| |#3| |#4|))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-281 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) (-751)) NIL) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-1218 |#1| |#2| |#3| |#4|) $) 17)) (-2042 (((-868 (-552)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-528)))) (((-374) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-998))) (((-221) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1218 |#1| |#2| |#3| |#4|) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-1218 |#1| |#2| |#3| |#4|)) 29) (($ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (($ (-1217 |#2| |#3| |#4|)) 36)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-1218 |#1| |#2| |#3| |#4|) (-885))) (|has| (-1218 |#1| |#2| |#3| |#4|) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-2089 (($) 41 T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) (-751)) NIL) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-2404 (($ $ $) 34) (($ (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) 31)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-1218 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1218 |#1| |#2| |#3| |#4|)) NIL)))
+(((-308 |#1| |#2| |#3| |#4|) (-13 (-968 (-1218 |#1| |#2| |#3| |#4|)) (-1014 (-1217 |#2| |#3| |#4|)) (-10 -8 (-15 -2267 ((-3 (-820 |#2|) "failed") $)) (-15 -1683 ($ (-1217 |#2| |#3| |#4|))))) (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446)) (-13 (-27) (-1171) (-425 |#1|)) (-1149) |#2|) (T -308))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1217 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149)) (-14 *6 *4) (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) (-5 *1 (-308 *3 *4 *5 *6)))) (-2267 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) (-5 *2 (-820 *4)) (-5 *1 (-308 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149)) (-14 *6 *4))))
+(-13 (-968 (-1218 |#1| |#2| |#3| |#4|)) (-1014 (-1217 |#2| |#3| |#4|)) (-10 -8 (-15 -2267 ((-3 (-820 |#2|) "failed") $)) (-15 -1683 ($ (-1217 |#2| |#3| |#4|)))))
+((-1996 (((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|)) 13)))
+(((-309 |#1| |#2|) (-10 -7 (-15 -1996 ((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|)))) (-827) (-827)) (T -309))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-311 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-5 *2 (-311 *6)) (-5 *1 (-309 *5 *6)))))
+(-10 -7 (-15 -1996 ((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|))))
+((-4041 (((-52) |#2| (-289 |#2|) (-751)) 33) (((-52) |#2| (-289 |#2|)) 24) (((-52) |#2| (-751)) 28) (((-52) |#2|) 25) (((-52) (-1149)) 21)) (-3615 (((-52) |#2| (-289 |#2|) (-402 (-552))) 51) (((-52) |#2| (-289 |#2|)) 48) (((-52) |#2| (-402 (-552))) 50) (((-52) |#2|) 49) (((-52) (-1149)) 47)) (-4066 (((-52) |#2| (-289 |#2|) (-402 (-552))) 46) (((-52) |#2| (-289 |#2|)) 43) (((-52) |#2| (-402 (-552))) 45) (((-52) |#2|) 44) (((-52) (-1149)) 42)) (-4053 (((-52) |#2| (-289 |#2|) (-552)) 39) (((-52) |#2| (-289 |#2|)) 35) (((-52) |#2| (-552)) 38) (((-52) |#2|) 36) (((-52) (-1149)) 34)))
+(((-310 |#1| |#2|) (-10 -7 (-15 -4041 ((-52) (-1149))) (-15 -4041 ((-52) |#2|)) (-15 -4041 ((-52) |#2| (-751))) (-15 -4041 ((-52) |#2| (-289 |#2|))) (-15 -4041 ((-52) |#2| (-289 |#2|) (-751))) (-15 -4053 ((-52) (-1149))) (-15 -4053 ((-52) |#2|)) (-15 -4053 ((-52) |#2| (-552))) (-15 -4053 ((-52) |#2| (-289 |#2|))) (-15 -4053 ((-52) |#2| (-289 |#2|) (-552))) (-15 -4066 ((-52) (-1149))) (-15 -4066 ((-52) |#2|)) (-15 -4066 ((-52) |#2| (-402 (-552)))) (-15 -4066 ((-52) |#2| (-289 |#2|))) (-15 -4066 ((-52) |#2| (-289 |#2|) (-402 (-552)))) (-15 -3615 ((-52) (-1149))) (-15 -3615 ((-52) |#2|)) (-15 -3615 ((-52) |#2| (-402 (-552)))) (-15 -3615 ((-52) |#2| (-289 |#2|))) (-15 -3615 ((-52) |#2| (-289 |#2|) (-402 (-552))))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -310))
+((-3615 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-552))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-3615 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-425 *4))))) (-4066 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-552))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-4066 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-425 *4))))) (-4053 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-1014 *5) (-621 *5))) (-5 *5 (-552)) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *5 (-13 (-446) (-827) (-1014 *4) (-621 *4))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-4053 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-425 *4))))) (-4041 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-751)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-4041 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-425 *4))))))
+(-10 -7 (-15 -4041 ((-52) (-1149))) (-15 -4041 ((-52) |#2|)) (-15 -4041 ((-52) |#2| (-751))) (-15 -4041 ((-52) |#2| (-289 |#2|))) (-15 -4041 ((-52) |#2| (-289 |#2|) (-751))) (-15 -4053 ((-52) (-1149))) (-15 -4053 ((-52) |#2|)) (-15 -4053 ((-52) |#2| (-552))) (-15 -4053 ((-52) |#2| (-289 |#2|))) (-15 -4053 ((-52) |#2| (-289 |#2|) (-552))) (-15 -4066 ((-52) (-1149))) (-15 -4066 ((-52) |#2|)) (-15 -4066 ((-52) |#2| (-402 (-552)))) (-15 -4066 ((-52) |#2| (-289 |#2|))) (-15 -4066 ((-52) |#2| (-289 |#2|) (-402 (-552)))) (-15 -3615 ((-52) (-1149))) (-15 -3615 ((-52) |#2|)) (-15 -3615 ((-52) |#2| (-402 (-552)))) (-15 -3615 ((-52) |#2| (-289 |#2|))) (-15 -3615 ((-52) |#2| (-289 |#2|) (-402 (-552)))))
+((-1671 (((-112) $ $) NIL)) (-1993 (((-625 $) $ (-1149)) NIL (|has| |#1| (-544))) (((-625 $) $) NIL (|has| |#1| (-544))) (((-625 $) (-1145 $) (-1149)) NIL (|has| |#1| (-544))) (((-625 $) (-1145 $)) NIL (|has| |#1| (-544))) (((-625 $) (-928 $)) NIL (|has| |#1| (-544)))) (-3428 (($ $ (-1149)) NIL (|has| |#1| (-544))) (($ $) NIL (|has| |#1| (-544))) (($ (-1145 $) (-1149)) NIL (|has| |#1| (-544))) (($ (-1145 $)) NIL (|has| |#1| (-544))) (($ (-928 $)) NIL (|has| |#1| (-544)))) (-3641 (((-112) $) 27 (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))) (-3982 (((-625 (-1149)) $) 351)) (-3793 (((-402 (-1145 $)) $ (-596 $)) NIL (|has| |#1| (-544)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-3715 (((-625 (-596 $)) $) NIL)) (-3728 (($ $) 161 (|has| |#1| (-544)))) (-3604 (($ $) 137 (|has| |#1| (-544)))) (-1331 (($ $ (-1065 $)) 222 (|has| |#1| (-544))) (($ $ (-1149)) 218 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) NIL (-1523 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))) (-3831 (($ $ (-289 $)) NIL) (($ $ (-625 (-289 $))) 368) (($ $ (-625 (-596 $)) (-625 $)) 412)) (-4296 (((-413 (-1145 $)) (-1145 $)) 295 (-12 (|has| |#1| (-446)) (|has| |#1| (-544))))) (-2194 (($ $) NIL (|has| |#1| (-544)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-544)))) (-3837 (($ $) NIL (|has| |#1| (-544)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3710 (($ $) 157 (|has| |#1| (-544)))) (-3581 (($ $) 133 (|has| |#1| (-544)))) (-2417 (($ $ (-552)) 72 (|has| |#1| (-544)))) (-3749 (($ $) 165 (|has| |#1| (-544)))) (-3627 (($ $) 141 (|has| |#1| (-544)))) (-3101 (($) NIL (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085))) CONST)) (-3438 (((-625 $) $ (-1149)) NIL (|has| |#1| (-544))) (((-625 $) $) NIL (|has| |#1| (-544))) (((-625 $) (-1145 $) (-1149)) NIL (|has| |#1| (-544))) (((-625 $) (-1145 $)) NIL (|has| |#1| (-544))) (((-625 $) (-928 $)) NIL (|has| |#1| (-544)))) (-3588 (($ $ (-1149)) NIL (|has| |#1| (-544))) (($ $) NIL (|has| |#1| (-544))) (($ (-1145 $) (-1149)) 124 (|has| |#1| (-544))) (($ (-1145 $)) NIL (|has| |#1| (-544))) (($ (-928 $)) NIL (|has| |#1| (-544)))) (-1893 (((-3 (-596 $) "failed") $) 17) (((-3 (-1149) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-928 |#1|)) "failed") $) NIL (|has| |#1| (-544))) (((-3 (-928 |#1|) "failed") $) NIL (|has| |#1| (-1025))) (((-3 (-402 (-552)) "failed") $) 46 (-1523 (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-1895 (((-596 $) $) 11) (((-1149) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-928 |#1|)) $) NIL (|has| |#1| (-544))) (((-928 |#1|) $) NIL (|has| |#1| (-1025))) (((-402 (-552)) $) 306 (-1523 (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-2851 (($ $ $) NIL (|has| |#1| (-544)))) (-1794 (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 117 (|has| |#1| (-1025))) (((-669 |#1|) (-669 $)) 107 (|has| |#1| (-1025))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))) (-2163 (($ $) 89 (|has| |#1| (-544)))) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (-2826 (($ $ $) NIL (|has| |#1| (-544)))) (-4244 (($ $ (-1065 $)) 226 (|has| |#1| (-544))) (($ $ (-1149)) 224 (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-544)))) (-2951 (((-112) $) NIL (|has| |#1| (-544)))) (-1759 (($ $ $) 192 (|has| |#1| (-544)))) (-1385 (($) 127 (|has| |#1| (-544)))) (-1302 (($ $ $) 212 (|has| |#1| (-544)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 374 (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 381 (|has| |#1| (-862 (-374))))) (-2411 (($ $) NIL) (($ (-625 $)) NIL)) (-1940 (((-625 (-114)) $) NIL)) (-1563 (((-114) (-114)) 267)) (-3650 (((-112) $) 25 (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (-3932 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-2276 (($ $) 71 (|has| |#1| (-1025)))) (-1356 (((-1098 |#1| (-596 $)) $) 84 (|has| |#1| (-1025)))) (-2427 (((-112) $) 64 (|has| |#1| (-544)))) (-2429 (($ $ (-552)) NIL (|has| |#1| (-544)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-544)))) (-1917 (((-1145 $) (-596 $)) 268 (|has| $ (-1025)))) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 $ $) (-596 $)) 408)) (-1952 (((-3 (-596 $) "failed") $) NIL)) (-2458 (($ $) 131 (|has| |#1| (-544)))) (-3654 (($ $) 237 (|has| |#1| (-544)))) (-2605 (($ (-625 $)) NIL (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-2883 (((-1131) $) NIL)) (-3783 (((-625 (-596 $)) $) 49)) (-1425 (($ (-114) $) NIL) (($ (-114) (-625 $)) 413)) (-4172 (((-3 (-625 $) "failed") $) NIL (|has| |#1| (-1085)))) (-4194 (((-3 (-2 (|:| |val| $) (|:| -3564 (-552))) "failed") $) NIL (|has| |#1| (-1025)))) (-4160 (((-3 (-625 $) "failed") $) 416 (|has| |#1| (-25)))) (-2692 (((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 $))) "failed") $) 420 (|has| |#1| (-25)))) (-4182 (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $) NIL (|has| |#1| (-1085))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-114)) NIL (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-1149)) NIL (|has| |#1| (-1025)))) (-1721 (((-112) $ (-114)) NIL) (((-112) $ (-1149)) 53)) (-4092 (($ $) NIL (-1523 (|has| |#1| (-467)) (|has| |#1| (-544))))) (-4269 (($ $ (-1149)) 241 (|has| |#1| (-544))) (($ $ (-1065 $)) 243 (|has| |#1| (-544)))) (-2207 (((-751) $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) 43)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 288 (|has| |#1| (-544)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-1929 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-1342 (($ $ (-1149)) 216 (|has| |#1| (-544))) (($ $) 214 (|has| |#1| (-544)))) (-1279 (($ $) 208 (|has| |#1| (-544)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 293 (-12 (|has| |#1| (-446)) (|has| |#1| (-544))))) (-3824 (((-413 $) $) NIL (|has| |#1| (-544)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-544))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-544)))) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-544)))) (-2863 (($ $) 129 (|has| |#1| (-544)))) (-3943 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) 407) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-1149) (-1 $ (-625 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-625 (-114)) (-625 (-1 $ $))) 361) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-114) (-1 $ (-625 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1149)) NIL (|has| |#1| (-598 (-528)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-598 (-528)))) (($ $) NIL (|has| |#1| (-598 (-528)))) (($ $ (-114) $ (-1149)) 349 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-114)) (-625 $) (-1149)) 348 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ $))) NIL (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ (-625 $)))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-625 $))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ $)) NIL (|has| |#1| (-1025)))) (-2397 (((-751) $) NIL (|has| |#1| (-544)))) (-2349 (($ $) 229 (|has| |#1| (-544)))) (-2154 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-625 $)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-1963 (($ $) NIL) (($ $ $) NIL)) (-3569 (($ $) 239 (|has| |#1| (-544)))) (-1749 (($ $) 190 (|has| |#1| (-544)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-1025))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-1025))) (($ $ (-1149)) NIL (|has| |#1| (-1025)))) (-2265 (($ $) 73 (|has| |#1| (-544)))) (-1368 (((-1098 |#1| (-596 $)) $) 86 (|has| |#1| (-544)))) (-3610 (($ $) 304 (|has| $ (-1025)))) (-3759 (($ $) 167 (|has| |#1| (-544)))) (-3638 (($ $) 143 (|has| |#1| (-544)))) (-3738 (($ $) 163 (|has| |#1| (-544)))) (-3614 (($ $) 139 (|has| |#1| (-544)))) (-3721 (($ $) 159 (|has| |#1| (-544)))) (-3593 (($ $) 135 (|has| |#1| (-544)))) (-2042 (((-868 (-552)) $) NIL (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| |#1| (-598 (-868 (-374))))) (($ (-413 $)) NIL (|has| |#1| (-544))) (((-528) $) 346 (|has| |#1| (-598 (-528))))) (-2410 (($ $ $) NIL (|has| |#1| (-467)))) (-3828 (($ $ $) NIL (|has| |#1| (-467)))) (-1683 (((-839) $) 406) (($ (-596 $)) 397) (($ (-1149)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-544))) (($ (-48)) 299 (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552))))) (($ (-1098 |#1| (-596 $))) 88 (|has| |#1| (-1025))) (($ (-402 |#1|)) NIL (|has| |#1| (-544))) (($ (-928 (-402 |#1|))) NIL (|has| |#1| (-544))) (($ (-402 (-928 (-402 |#1|)))) NIL (|has| |#1| (-544))) (($ (-402 (-928 |#1|))) NIL (|has| |#1| (-544))) (($ (-928 |#1|)) NIL (|has| |#1| (-1025))) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-544)) (|has| |#1| (-1014 (-402 (-552)))))) (($ (-552)) 34 (-1523 (|has| |#1| (-1014 (-552))) (|has| |#1| (-1025))))) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL (|has| |#1| (-1025)))) (-3779 (($ $) NIL) (($ (-625 $)) NIL)) (-3901 (($ $ $) 210 (|has| |#1| (-544)))) (-1792 (($ $ $) 196 (|has| |#1| (-544)))) (-1815 (($ $ $) 200 (|has| |#1| (-544)))) (-1780 (($ $ $) 194 (|has| |#1| (-544)))) (-1804 (($ $ $) 198 (|has| |#1| (-544)))) (-1572 (((-112) (-114)) 9)) (-3789 (($ $) 173 (|has| |#1| (-544)))) (-3670 (($ $) 149 (|has| |#1| (-544)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) 169 (|has| |#1| (-544)))) (-3648 (($ $) 145 (|has| |#1| (-544)))) (-3809 (($ $) 177 (|has| |#1| (-544)))) (-3691 (($ $) 153 (|has| |#1| (-544)))) (-3844 (($ (-1149) $) NIL) (($ (-1149) $ $) NIL) (($ (-1149) $ $ $) NIL) (($ (-1149) $ $ $ $) NIL) (($ (-1149) (-625 $)) NIL)) (-1836 (($ $) 204 (|has| |#1| (-544)))) (-1825 (($ $) 202 (|has| |#1| (-544)))) (-3742 (($ $) 179 (|has| |#1| (-544)))) (-3700 (($ $) 155 (|has| |#1| (-544)))) (-3797 (($ $) 175 (|has| |#1| (-544)))) (-3681 (($ $) 151 (|has| |#1| (-544)))) (-3778 (($ $) 171 (|has| |#1| (-544)))) (-3659 (($ $) 147 (|has| |#1| (-544)))) (-1727 (($ $) 182 (|has| |#1| (-544)))) (-2089 (($) 20 (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))) CONST)) (-1594 (($ $) 233 (|has| |#1| (-544)))) (-2100 (($) 22 (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085))) CONST)) (-1769 (($ $) 184 (|has| |#1| (-544))) (($ $ $) 186 (|has| |#1| (-544)))) (-1606 (($ $) 231 (|has| |#1| (-544)))) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-1025))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-1025))) (($ $ (-1149)) NIL (|has| |#1| (-1025)))) (-1582 (($ $) 235 (|has| |#1| (-544)))) (-1739 (($ $ $) 188 (|has| |#1| (-544)))) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 81)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 80)) (-2404 (($ (-1098 |#1| (-596 $)) (-1098 |#1| (-596 $))) 98 (|has| |#1| (-544))) (($ $ $) 42 (-1523 (|has| |#1| (-467)) (|has| |#1| (-544))))) (-2393 (($ $ $) 40 (-1523 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))) (($ $) 29 (-1523 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))) (-2382 (($ $ $) 38 (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))) (** (($ $ $) 66 (|has| |#1| (-544))) (($ $ (-402 (-552))) 301 (|has| |#1| (-544))) (($ $ (-552)) 76 (-1523 (|has| |#1| (-467)) (|has| |#1| (-544)))) (($ $ (-751)) 74 (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085)))) (($ $ (-897)) 78 (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (* (($ (-402 (-552)) $) NIL (|has| |#1| (-544))) (($ $ (-402 (-552))) NIL (|has| |#1| (-544))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085)))) (($ (-552) $) 32 (-1523 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))) (($ (-751) $) NIL (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))) (($ (-897) $) NIL (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))))
+(((-311 |#1|) (-13 (-425 |#1|) (-10 -8 (IF (|has| |#1| (-544)) (PROGN (-6 (-29 |#1|)) (-6 (-1171)) (-6 (-158)) (-6 (-611)) (-6 (-1112)) (-15 -2163 ($ $)) (-15 -2427 ((-112) $)) (-15 -2417 ($ $ (-552))) (IF (|has| |#1| (-446)) (PROGN (-15 -4286 ((-413 (-1145 $)) (-1145 $))) (-15 -4296 ((-413 (-1145 $)) (-1145 $)))) |%noBranch|) (IF (|has| |#1| (-1014 (-552))) (-6 (-1014 (-48))) |%noBranch|)) |%noBranch|))) (-827)) (T -311))
+((-2163 (*1 *1 *1) (-12 (-5 *1 (-311 *2)) (-4 *2 (-544)) (-4 *2 (-827)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-311 *3)) (-4 *3 (-544)) (-4 *3 (-827)))) (-2417 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-311 *3)) (-4 *3 (-544)) (-4 *3 (-827)))) (-4286 (*1 *2 *3) (-12 (-5 *2 (-413 (-1145 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1145 *1)) (-4 *4 (-446)) (-4 *4 (-544)) (-4 *4 (-827)))) (-4296 (*1 *2 *3) (-12 (-5 *2 (-413 (-1145 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1145 *1)) (-4 *4 (-446)) (-4 *4 (-544)) (-4 *4 (-827)))))
+(-13 (-425 |#1|) (-10 -8 (IF (|has| |#1| (-544)) (PROGN (-6 (-29 |#1|)) (-6 (-1171)) (-6 (-158)) (-6 (-611)) (-6 (-1112)) (-15 -2163 ($ $)) (-15 -2427 ((-112) $)) (-15 -2417 ($ $ (-552))) (IF (|has| |#1| (-446)) (PROGN (-15 -4286 ((-413 (-1145 $)) (-1145 $))) (-15 -4296 ((-413 (-1145 $)) (-1145 $)))) |%noBranch|) (IF (|has| |#1| (-1014 (-552))) (-6 (-1014 (-48))) |%noBranch|)) |%noBranch|)))
+((-2436 (((-52) |#2| (-114) (-289 |#2|) (-625 |#2|)) 88) (((-52) |#2| (-114) (-289 |#2|) (-289 |#2|)) 84) (((-52) |#2| (-114) (-289 |#2|) |#2|) 86) (((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|) 87) (((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|))) 80) (((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 |#2|)) 82) (((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 |#2|)) 83) (((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|))) 81) (((-52) (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|)) 89) (((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|)) 85)))
+(((-312 |#1| |#2|) (-10 -7 (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|))) (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|)))) (-15 -2436 ((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|)))) (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|)) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) |#2|)) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) (-289 |#2|))) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) (-625 |#2|)))) (-13 (-827) (-544) (-598 (-528))) (-425 |#1|)) (T -312))
+((-2436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-5 *6 (-625 *3)) (-4 *3 (-425 *7)) (-4 *7 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *3)))) (-2436 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *3)))) (-2436 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *3)))) (-2436 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-289 *5)) (-5 *4 (-114)) (-4 *5 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *5)))) (-2436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 (-114))) (-5 *6 (-625 (-289 *8))) (-4 *8 (-425 *7)) (-5 *5 (-289 *8)) (-4 *7 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *8)))) (-2436 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-625 *7)) (-5 *4 (-625 (-114))) (-5 *5 (-289 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-2436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 (-289 *8))) (-5 *4 (-625 (-114))) (-5 *5 (-289 *8)) (-5 *6 (-625 *8)) (-4 *8 (-425 *7)) (-4 *7 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *8)))) (-2436 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-625 (-289 *7))) (-5 *4 (-625 (-114))) (-5 *5 (-289 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-2436 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-625 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-2436 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-289 *6)) (-5 *4 (-114)) (-4 *6 (-425 *5)) (-4 *5 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *5 *6)))))
+(-10 -7 (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|))) (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|)))) (-15 -2436 ((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|)))) (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|)) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) |#2|)) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) (-289 |#2|))) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) (-625 |#2|))))
+((-2459 (((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552) (-1131)) 46) (((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552)) 47) (((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552) (-1131)) 43) (((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552)) 44)) (-2447 (((-1 (-221) (-221)) (-221)) 45)))
+(((-313) (-10 -7 (-15 -2447 ((-1 (-221) (-221)) (-221))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552) (-1131))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552) (-1131))))) (T -313))
+((-2459 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1067 (-221))) (-5 *6 (-221)) (-5 *7 (-552)) (-5 *8 (-1131)) (-5 *2 (-1181 (-902))) (-5 *1 (-313)))) (-2459 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1067 (-221))) (-5 *6 (-221)) (-5 *7 (-552)) (-5 *2 (-1181 (-902))) (-5 *1 (-313)))) (-2459 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1067 (-221))) (-5 *6 (-552)) (-5 *7 (-1131)) (-5 *2 (-1181 (-902))) (-5 *1 (-313)))) (-2459 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1067 (-221))) (-5 *6 (-552)) (-5 *2 (-1181 (-902))) (-5 *1 (-313)))) (-2447 (*1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221)))))
+(-10 -7 (-15 -2447 ((-1 (-221) (-221)) (-221))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552) (-1131))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552) (-1131))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 25)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) NIL) (($ $ (-402 (-552)) (-402 (-552))) NIL)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) 20)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) 32)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) NIL) (((-402 (-552)) $ (-402 (-552))) 16)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) NIL) (($ $ (-402 (-552))) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-402 (-552))) NIL) (($ $ (-1055) (-402 (-552))) NIL) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171)))))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2468 (((-402 (-552)) $) 17)) (-3792 (($ (-1217 |#1| |#2| |#3|)) 11)) (-3564 (((-1217 |#1| |#2| |#3|) $) 12)) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) NIL) (($ $ $) NIL (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-4276 (((-402 (-552)) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 10)) (-1683 (((-839) $) 38) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) 30)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) NIL)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 27)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 33)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-314 |#1| |#2| |#3|) (-13 (-1213 |#1|) (-772) (-10 -8 (-15 -3792 ($ (-1217 |#1| |#2| |#3|))) (-15 -3564 ((-1217 |#1| |#2| |#3|) $)) (-15 -2468 ((-402 (-552)) $)))) (-13 (-358) (-827)) (-1149) |#1|) (T -314))
+((-3792 (*1 *1 *2) (-12 (-5 *2 (-1217 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-1217 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3))) (-2468 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3))))
+(-13 (-1213 |#1|) (-772) (-10 -8 (-15 -3792 ($ (-1217 |#1| |#2| |#3|))) (-15 -3564 ((-1217 |#1| |#2| |#3|) $)) (-15 -2468 ((-402 (-552)) $))))
+((-2429 (((-2 (|:| -3564 (-751)) (|:| -3340 |#1|) (|:| |radicand| (-625 |#1|))) (-413 |#1|) (-751)) 24)) (-2458 (((-625 (-2 (|:| -3340 (-751)) (|:| |logand| |#1|))) (-413 |#1|)) 28)))
+(((-315 |#1|) (-10 -7 (-15 -2429 ((-2 (|:| -3564 (-751)) (|:| -3340 |#1|) (|:| |radicand| (-625 |#1|))) (-413 |#1|) (-751))) (-15 -2458 ((-625 (-2 (|:| -3340 (-751)) (|:| |logand| |#1|))) (-413 |#1|)))) (-544)) (T -315))
+((-2458 (*1 *2 *3) (-12 (-5 *3 (-413 *4)) (-4 *4 (-544)) (-5 *2 (-625 (-2 (|:| -3340 (-751)) (|:| |logand| *4)))) (-5 *1 (-315 *4)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-413 *5)) (-4 *5 (-544)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *5) (|:| |radicand| (-625 *5)))) (-5 *1 (-315 *5)) (-5 *4 (-751)))))
+(-10 -7 (-15 -2429 ((-2 (|:| -3564 (-751)) (|:| -3340 |#1|) (|:| |radicand| (-625 |#1|))) (-413 |#1|) (-751))) (-15 -2458 ((-625 (-2 (|:| -3340 (-751)) (|:| |logand| |#1|))) (-413 |#1|))))
+((-3982 (((-625 |#2|) (-1145 |#4|)) 43)) (-1296 ((|#3| (-552)) 46)) (-2498 (((-1145 |#4|) (-1145 |#3|)) 30)) (-1284 (((-1145 |#4|) (-1145 |#4|) (-552)) 56)) (-2489 (((-1145 |#3|) (-1145 |#4|)) 21)) (-4276 (((-625 (-751)) (-1145 |#4|) (-625 |#2|)) 40)) (-2477 (((-1145 |#3|) (-1145 |#4|) (-625 |#2|) (-625 |#3|)) 35)))
+(((-316 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 ((-1145 |#3|) (-1145 |#4|) (-625 |#2|) (-625 |#3|))) (-15 -4276 ((-625 (-751)) (-1145 |#4|) (-625 |#2|))) (-15 -3982 ((-625 |#2|) (-1145 |#4|))) (-15 -2489 ((-1145 |#3|) (-1145 |#4|))) (-15 -2498 ((-1145 |#4|) (-1145 |#3|))) (-15 -1284 ((-1145 |#4|) (-1145 |#4|) (-552))) (-15 -1296 (|#3| (-552)))) (-773) (-827) (-1025) (-925 |#3| |#1| |#2|)) (T -316))
+((-1296 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1025)) (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-925 *2 *4 *5)))) (-1284 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 *7)) (-5 *3 (-552)) (-4 *7 (-925 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *1 (-316 *4 *5 *6 *7)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-1145 *6)) (-4 *6 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-1145 *7)) (-5 *1 (-316 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-1145 *7)) (-4 *7 (-925 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-1145 *6)) (-5 *1 (-316 *4 *5 *6 *7)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-1145 *7)) (-4 *7 (-925 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-625 *5)) (-5 *1 (-316 *4 *5 *6 *7)))) (-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *8)) (-5 *4 (-625 *6)) (-4 *6 (-827)) (-4 *8 (-925 *7 *5 *6)) (-4 *5 (-773)) (-4 *7 (-1025)) (-5 *2 (-625 (-751))) (-5 *1 (-316 *5 *6 *7 *8)))) (-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-5 *5 (-625 *8)) (-4 *7 (-827)) (-4 *8 (-1025)) (-4 *9 (-925 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 (-1145 *8)) (-5 *1 (-316 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2477 ((-1145 |#3|) (-1145 |#4|) (-625 |#2|) (-625 |#3|))) (-15 -4276 ((-625 (-751)) (-1145 |#4|) (-625 |#2|))) (-15 -3982 ((-625 |#2|) (-1145 |#4|))) (-15 -2489 ((-1145 |#3|) (-1145 |#4|))) (-15 -2498 ((-1145 |#4|) (-1145 |#3|))) (-15 -1284 ((-1145 |#4|) (-1145 |#4|) (-552))) (-15 -1296 (|#3| (-552))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 14)) (-2182 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-552)))) $) 18)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751) $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-3461 ((|#1| $ (-552)) NIL)) (-1326 (((-552) $ (-552)) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1817 (($ (-1 |#1| |#1|) $) NIL)) (-1315 (($ (-1 (-552) (-552)) $) 10)) (-2883 (((-1131) $) NIL)) (-1307 (($ $ $) NIL (|has| (-552) (-772)))) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (($ |#1|) NIL)) (-3637 (((-552) |#1| $) NIL)) (-2089 (($) 15 T CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) 21 (|has| |#1| (-827)))) (-2393 (($ $) 11) (($ $ $) 20)) (-2382 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL) (($ (-552) |#1|) 19)))
+(((-317 |#1|) (-13 (-21) (-698 (-552)) (-318 |#1| (-552)) (-10 -7 (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) (-1073)) (T -317))
+NIL
+(-13 (-21) (-698 (-552)) (-318 |#1| (-552)) (-10 -7 (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2182 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))) $) 27)) (-2077 (((-3 $ "failed") $ $) 19)) (-2894 (((-751) $) 28)) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 32)) (-1895 ((|#1| $) 31)) (-3461 ((|#1| $ (-552)) 25)) (-1326 ((|#2| $ (-552)) 26)) (-1817 (($ (-1 |#1| |#1|) $) 22)) (-1315 (($ (-1 |#2| |#2|) $) 23)) (-2883 (((-1131) $) 9)) (-1307 (($ $ $) 21 (|has| |#2| (-772)))) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ |#1|) 33)) (-3637 ((|#2| |#1| $) 24)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ |#2| |#1|) 29)))
+(((-318 |#1| |#2|) (-138) (-1073) (-130)) (T -318))
+((-2382 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-130)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130)) (-5 *2 (-751)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130)) (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4)))))) (-1326 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1073)) (-4 *2 (-130)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1073)))) (-3637 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-130)))) (-1315 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130)))) (-1307 (*1 *1 *1 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-130)) (-4 *3 (-772)))))
+(-13 (-130) (-1014 |t#1|) (-10 -8 (-15 -2382 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2894 ((-751) $)) (-15 -2182 ((-625 (-2 (|:| |gen| |t#1|) (|:| -2863 |t#2|))) $)) (-15 -1326 (|t#2| $ (-552))) (-15 -3461 (|t#1| $ (-552))) (-15 -3637 (|t#2| |t#1| $)) (-15 -1315 ($ (-1 |t#2| |t#2|) $)) (-15 -1817 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-772)) (-15 -1307 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1014 |#1|) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2182 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751) $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-3461 ((|#1| $ (-552)) NIL)) (-1326 (((-751) $ (-552)) NIL)) (-1817 (($ (-1 |#1| |#1|) $) NIL)) (-1315 (($ (-1 (-751) (-751)) $) NIL)) (-2883 (((-1131) $) NIL)) (-1307 (($ $ $) NIL (|has| (-751) (-772)))) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (($ |#1|) NIL)) (-3637 (((-751) |#1| $) NIL)) (-2089 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-751) |#1|) NIL)))
+(((-319 |#1|) (-318 |#1| (-751)) (-1073)) (T -319))
NIL
(-318 |#1| (-751))
-((-3857 (($ $) 53)) (-1721 (($ $ |#2| |#3| $) 14)) (-1722 (($ (-1 |#3| |#3|) $) 33)) (-1916 (((-112) $) 24)) (-1915 ((|#2| $) 26)) (-3820 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3150 ((|#2| $) 49)) (-4177 (((-622 |#2|) $) 36)) (-1720 (($ $ $ (-751)) 20)) (-4308 (($ $ |#2|) 40)))
-(((-320 |#1| |#2| |#3|) (-10 -8 (-15 -3857 (|#1| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1720 (|#1| |#1| |#1| (-751))) (-15 -1721 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1722 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4177 ((-622 |#2|) |#1|)) (-15 -1915 (|#2| |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4308 (|#1| |#1| |#2|))) (-321 |#2| |#3|) (-1025) (-772)) (T -320))
+((-1294 (($ $) 53)) (-1347 (($ $ |#2| |#3| $) 14)) (-1357 (($ (-1 |#3| |#3|) $) 33)) (-4105 (((-112) $) 24)) (-4117 ((|#2| $) 26)) (-2802 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-4108 ((|#2| $) 49)) (-2512 (((-625 |#2|) $) 36)) (-1336 (($ $ $ (-751)) 20)) (-2404 (($ $ |#2|) 40)))
+(((-320 |#1| |#2| |#3|) (-10 -8 (-15 -1294 (|#1| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1336 (|#1| |#1| |#1| (-751))) (-15 -1347 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1357 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2512 ((-625 |#2|) |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -4105 ((-112) |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2404 (|#1| |#1| |#2|))) (-321 |#2| |#3|) (-1025) (-772)) (T -320))
NIL
-(-10 -8 (-15 -3857 (|#1| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1720 (|#1| |#1| |#1| (-751))) (-15 -1721 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1722 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4177 ((-622 |#2|) |#1|)) (-15 -1915 (|#2| |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4308 (|#1| |#1| |#2|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 88 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 86 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 85)) (-3507 (((-538) $) 89 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 87 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 84)) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-3857 (($ $) 73 (|has| |#1| (-446)))) (-1721 (($ $ |#1| |#2| $) 77)) (-2502 (((-112) $) 30)) (-2510 (((-751) $) 80)) (-4297 (((-112) $) 60)) (-3226 (($ |#1| |#2|) 59)) (-3153 ((|#2| $) 79)) (-1722 (($ (-1 |#2| |#2|) $) 78)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 83)) (-1915 ((|#1| $) 82)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-545)))) (-4307 ((|#2| $) 62)) (-3150 ((|#1| $) 74 (|has| |#1| (-446)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 47 (|has| |#1| (-545))) (($ |#1|) 45) (($ (-402 (-538))) 55 (-3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| |#1| (-38 (-402 (-538))))))) (-4177 (((-622 |#1|) $) 81)) (-4040 ((|#1| $ |#2|) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-1720 (($ $ $ (-751)) 76 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538)))))))
+(-10 -8 (-15 -1294 (|#1| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1336 (|#1| |#1| |#1| (-751))) (-15 -1347 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1357 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2512 ((-625 |#2|) |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -4105 ((-112) |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2404 (|#1| |#1| |#2|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 88 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 86 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 85)) (-1895 (((-552) $) 89 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 87 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 84)) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-1294 (($ $) 73 (|has| |#1| (-446)))) (-1347 (($ $ |#1| |#2| $) 77)) (-3650 (((-112) $) 30)) (-3723 (((-751) $) 80)) (-4201 (((-112) $) 60)) (-3957 (($ |#1| |#2|) 59)) (-4134 ((|#2| $) 79)) (-1357 (($ (-1 |#2| |#2|) $) 78)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 83)) (-4117 ((|#1| $) 82)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-544)))) (-4276 ((|#2| $) 62)) (-4108 ((|#1| $) 74 (|has| |#1| (-446)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45) (($ (-402 (-552))) 55 (-1523 (|has| |#1| (-1014 (-402 (-552)))) (|has| |#1| (-38 (-402 (-552))))))) (-2512 (((-625 |#1|) $) 81)) (-3637 ((|#1| $ |#2|) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-1336 (($ $ $ (-751)) 76 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552)))))))
(((-321 |#1| |#2|) (-138) (-1025) (-772)) (T -321))
-((-1916 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-622 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-751)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-1722 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-1721 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-1720 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *3 (-170)))) (-3820 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-545)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-3857 (*1 *1 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-446)))))
-(-13 (-47 |t#1| |t#2|) (-407 |t#1|) (-10 -8 (-15 -1916 ((-112) $)) (-15 -1915 (|t#1| $)) (-15 -4177 ((-622 |t#1|) $)) (-15 -2510 ((-751) $)) (-15 -3153 (|t#2| $)) (-15 -1722 ($ (-1 |t#2| |t#2|) $)) (-15 -1721 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -1720 ($ $ $ (-751))) |%noBranch|) (IF (|has| |t#1| (-545)) (-15 -3820 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -3150 (|t#1| $)) (-15 -3857 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-285) |has| |#1| (-545)) ((-407 |#1|) . T) ((-545) |has| |#1| (-545)) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-2107 (((-112) (-112)) NIL)) (-4147 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) NIL)) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-1074)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) NIL (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) NIL)) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2108 (($ $ (-538)) NIL)) (-2109 (((-751) $) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3192 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3970 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2110 (($ (-622 |#1|)) NIL)) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-1632 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4150 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-322 |#1|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2110 ($ (-622 |#1|))) (-15 -2109 ((-751) $)) (-15 -2108 ($ $ (-538))) (-15 -2107 ((-112) (-112))))) (-1185)) (T -322))
-((-2110 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-322 *3)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-322 *3)) (-4 *3 (-1185)))) (-2108 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-322 *3)) (-4 *3 (-1185)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1185)))))
-(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2110 ($ (-622 |#1|))) (-15 -2109 ((-751) $)) (-15 -2108 ($ $ (-538))) (-15 -2107 ((-112) (-112)))))
-((-4292 (((-112) $) 42)) (-4289 (((-751)) 22)) (-3689 ((|#2| $) 46) (($ $ (-895)) 101)) (-3471 (((-751)) 102)) (-1911 (($ (-1231 |#2|)) 20)) (-2127 (((-112) $) 115)) (-3467 ((|#2| $) 48) (($ $ (-895)) 99)) (-2130 (((-1143 |#2|) $) NIL) (((-1143 $) $ (-895)) 95)) (-1724 (((-1143 |#2|) $) 82)) (-1723 (((-1143 |#2|) $) 79) (((-3 (-1143 |#2|) "failed") $ $) 76)) (-1725 (($ $ (-1143 |#2|)) 53)) (-4290 (((-812 (-895))) 28) (((-895)) 43)) (-4271 (((-133)) 25)) (-4307 (((-812 (-895)) $) 30) (((-895) $) 117)) (-1726 (($) 108)) (-3575 (((-1231 |#2|) $) NIL) (((-669 |#2|) (-1231 $)) 39)) (-3035 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4293 (((-112) $) 41)))
-(((-323 |#1| |#2|) (-10 -8 (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3471 ((-751))) (-15 -3035 (|#1| |#1|)) (-15 -1723 ((-3 (-1143 |#2|) "failed") |#1| |#1|)) (-15 -1723 ((-1143 |#2|) |#1|)) (-15 -1724 ((-1143 |#2|) |#1|)) (-15 -1725 (|#1| |#1| (-1143 |#2|))) (-15 -2127 ((-112) |#1|)) (-15 -1726 (|#1|)) (-15 -3689 (|#1| |#1| (-895))) (-15 -3467 (|#1| |#1| (-895))) (-15 -2130 ((-1143 |#1|) |#1| (-895))) (-15 -3689 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -4307 ((-895) |#1|)) (-15 -4290 ((-895))) (-15 -2130 ((-1143 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -4289 ((-751))) (-15 -4290 ((-812 (-895)))) (-15 -4307 ((-812 (-895)) |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4293 ((-112) |#1|)) (-15 -4271 ((-133)))) (-324 |#2|) (-358)) (T -323))
-((-4271 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4290 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-812 (-895))) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4289 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4290 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-895)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-3471 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))))
-(-10 -8 (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3471 ((-751))) (-15 -3035 (|#1| |#1|)) (-15 -1723 ((-3 (-1143 |#2|) "failed") |#1| |#1|)) (-15 -1723 ((-1143 |#2|) |#1|)) (-15 -1724 ((-1143 |#2|) |#1|)) (-15 -1725 (|#1| |#1| (-1143 |#2|))) (-15 -2127 ((-112) |#1|)) (-15 -1726 (|#1|)) (-15 -3689 (|#1| |#1| (-895))) (-15 -3467 (|#1| |#1| (-895))) (-15 -2130 ((-1143 |#1|) |#1| (-895))) (-15 -3689 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -4307 ((-895) |#1|)) (-15 -4290 ((-895))) (-15 -2130 ((-1143 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -4289 ((-751))) (-15 -4290 ((-812 (-895)))) (-15 -4307 ((-812 (-895)) |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4293 ((-112) |#1|)) (-15 -4271 ((-133))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-4292 (((-112) $) 91)) (-4289 (((-751)) 87)) (-3689 ((|#1| $) 137) (($ $ (-895)) 134 (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) 119 (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-1705 (((-112) $ $) 57)) (-3471 (((-751)) 109 (|has| |#1| (-363)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| "failed") $) 98)) (-3507 ((|#1| $) 97)) (-1911 (($ (-1231 |#1|)) 143)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-363)))) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-3327 (($) 106 (|has| |#1| (-363)))) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-3166 (($) 121 (|has| |#1| (-363)))) (-1796 (((-112) $) 122 (|has| |#1| (-363)))) (-1886 (($ $ (-751)) 84 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 83 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) 68)) (-4131 (((-895) $) 124 (|has| |#1| (-363))) (((-812 (-895)) $) 81 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) 30)) (-2129 (($) 132 (|has| |#1| (-363)))) (-2127 (((-112) $) 131 (|has| |#1| (-363)))) (-3467 ((|#1| $) 138) (($ $ (-895)) 135 (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) 110 (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2130 (((-1143 |#1|) $) 142) (((-1143 $) $ (-895)) 136 (|has| |#1| (-363)))) (-2126 (((-895) $) 107 (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) 128 (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) 127 (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) 126 (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) 129 (|has| |#1| (-363)))) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3804 (($) 111 (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) 108 (|has| |#1| (-363)))) (-4291 (((-112) $) 90)) (-3594 (((-1093) $) 10)) (-2501 (($) 130 (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 118 (|has| |#1| (-363)))) (-4092 (((-400 $) $) 71)) (-4290 (((-812 (-895))) 88) (((-895)) 140)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-1887 (((-751) $) 123 (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) 82 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) 96)) (-4170 (($ $) 115 (|has| |#1| (-363))) (($ $ (-751)) 113 (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) 89) (((-895) $) 139)) (-3536 (((-1143 |#1|)) 141)) (-1790 (($) 120 (|has| |#1| (-363)))) (-1726 (($) 133 (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) 145) (((-669 |#1|) (-1231 $)) 144)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 117 (|has| |#1| (-363)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ |#1|) 99)) (-3035 (($ $) 116 (|has| |#1| (-363))) (((-3 $ "failed") $) 80 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) 28)) (-2128 (((-1231 $)) 147) (((-1231 $) (-895)) 146)) (-2177 (((-112) $ $) 37)) (-4293 (((-112) $) 92)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-4288 (($ $) 86 (|has| |#1| (-363))) (($ $ (-751)) 85 (|has| |#1| (-363)))) (-3002 (($ $) 114 (|has| |#1| (-363))) (($ $ (-751)) 112 (|has| |#1| (-363)))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62) (($ $ |#1|) 95)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
+((-4105 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-625 *3)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-751)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-1357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-1347 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-1336 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *3 (-170)))) (-2802 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-544)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-1294 (*1 *1 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-446)))))
+(-13 (-47 |t#1| |t#2|) (-406 |t#1|) (-10 -8 (-15 -4105 ((-112) $)) (-15 -4117 (|t#1| $)) (-15 -2512 ((-625 |t#1|) $)) (-15 -3723 ((-751) $)) (-15 -4134 (|t#2| $)) (-15 -1357 ($ (-1 |t#2| |t#2|) $)) (-15 -1347 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -1336 ($ $ $ (-751))) |%noBranch|) (IF (|has| |t#1| (-544)) (-15 -2802 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -4108 (|t#1| $)) (-15 -1294 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-285) |has| |#1| (-544)) ((-406 |#1|) . T) ((-544) |has| |#1| (-544)) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-4107 (((-112) (-112)) NIL)) (-1851 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) NIL)) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-3238 (($ $) NIL (|has| |#1| (-1073)))) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) NIL (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) NIL)) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-4119 (($ $ (-552)) NIL)) (-4133 (((-751) $) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3260 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3966 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-4146 (($ (-625 |#1|)) NIL)) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2884 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-2342 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-322 |#1|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -4146 ($ (-625 |#1|))) (-15 -4133 ((-751) $)) (-15 -4119 ($ $ (-552))) (-15 -4107 ((-112) (-112))))) (-1186)) (T -322))
+((-4146 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-322 *3)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-322 *3)) (-4 *3 (-1186)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-322 *3)) (-4 *3 (-1186)))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1186)))))
+(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -4146 ($ (-625 |#1|))) (-15 -4133 ((-751) $)) (-15 -4119 ($ $ (-552))) (-15 -4107 ((-112) (-112)))))
+((-4156 (((-112) $) 42)) (-4116 (((-751)) 22)) (-1650 ((|#2| $) 46) (($ $ (-897)) 101)) (-2894 (((-751)) 102)) (-2670 (($ (-1232 |#2|)) 20)) (-4328 (((-112) $) 115)) (-4209 ((|#2| $) 48) (($ $ (-897)) 99)) (-1291 (((-1145 |#2|) $) NIL) (((-1145 $) $ (-897)) 95)) (-1378 (((-1145 |#2|) $) 82)) (-1369 (((-1145 |#2|) $) 79) (((-3 (-1145 |#2|) "failed") $ $) 76)) (-1386 (($ $ (-1145 |#2|)) 53)) (-4130 (((-813 (-897))) 28) (((-897)) 43)) (-3904 (((-133)) 25)) (-4276 (((-813 (-897)) $) 30) (((-897) $) 117)) (-1397 (($) 108)) (-2780 (((-1232 |#2|) $) NIL) (((-669 |#2|) (-1232 $)) 39)) (-4243 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4168 (((-112) $) 41)))
+(((-323 |#1| |#2|) (-10 -8 (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -2894 ((-751))) (-15 -4243 (|#1| |#1|)) (-15 -1369 ((-3 (-1145 |#2|) "failed") |#1| |#1|)) (-15 -1369 ((-1145 |#2|) |#1|)) (-15 -1378 ((-1145 |#2|) |#1|)) (-15 -1386 (|#1| |#1| (-1145 |#2|))) (-15 -4328 ((-112) |#1|)) (-15 -1397 (|#1|)) (-15 -1650 (|#1| |#1| (-897))) (-15 -4209 (|#1| |#1| (-897))) (-15 -1291 ((-1145 |#1|) |#1| (-897))) (-15 -1650 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -4276 ((-897) |#1|)) (-15 -4130 ((-897))) (-15 -1291 ((-1145 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -4116 ((-751))) (-15 -4130 ((-813 (-897)))) (-15 -4276 ((-813 (-897)) |#1|)) (-15 -4156 ((-112) |#1|)) (-15 -4168 ((-112) |#1|)) (-15 -3904 ((-133)))) (-324 |#2|) (-358)) (T -323))
+((-3904 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4130 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-813 (-897))) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4116 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4130 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-897)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-2894 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))))
+(-10 -8 (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -2894 ((-751))) (-15 -4243 (|#1| |#1|)) (-15 -1369 ((-3 (-1145 |#2|) "failed") |#1| |#1|)) (-15 -1369 ((-1145 |#2|) |#1|)) (-15 -1378 ((-1145 |#2|) |#1|)) (-15 -1386 (|#1| |#1| (-1145 |#2|))) (-15 -4328 ((-112) |#1|)) (-15 -1397 (|#1|)) (-15 -1650 (|#1| |#1| (-897))) (-15 -4209 (|#1| |#1| (-897))) (-15 -1291 ((-1145 |#1|) |#1| (-897))) (-15 -1650 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -4276 ((-897) |#1|)) (-15 -4130 ((-897))) (-15 -1291 ((-1145 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -4116 ((-751))) (-15 -4130 ((-813 (-897)))) (-15 -4276 ((-813 (-897)) |#1|)) (-15 -4156 ((-112) |#1|)) (-15 -4168 ((-112) |#1|)) (-15 -3904 ((-133))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-4156 (((-112) $) 91)) (-4116 (((-751)) 87)) (-1650 ((|#1| $) 137) (($ $ (-897)) 134 (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) 119 (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-2408 (((-112) $ $) 57)) (-2894 (((-751)) 109 (|has| |#1| (-363)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 98)) (-1895 ((|#1| $) 97)) (-2670 (($ (-1232 |#1|)) 143)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-363)))) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-3702 (($) 106 (|has| |#1| (-363)))) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-4279 (($) 121 (|has| |#1| (-363)))) (-3872 (((-112) $) 122 (|has| |#1| (-363)))) (-3554 (($ $ (-751)) 84 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 83 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) 68)) (-2172 (((-897) $) 124 (|has| |#1| (-363))) (((-813 (-897)) $) 81 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) 30)) (-1280 (($) 132 (|has| |#1| (-363)))) (-4328 (((-112) $) 131 (|has| |#1| (-363)))) (-4209 ((|#1| $) 138) (($ $ (-897)) 135 (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) 110 (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-1291 (((-1145 |#1|) $) 142) (((-1145 $) $ (-897)) 136 (|has| |#1| (-363)))) (-4318 (((-897) $) 107 (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) 128 (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) 127 (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) 126 (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) 129 (|has| |#1| (-363)))) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2071 (($) 111 (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) 108 (|has| |#1| (-363)))) (-4143 (((-112) $) 90)) (-2831 (((-1093) $) 10)) (-3212 (($) 130 (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 118 (|has| |#1| (-363)))) (-3824 (((-413 $) $) 71)) (-4130 (((-813 (-897))) 88) (((-897)) 140)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-3563 (((-751) $) 123 (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) 82 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) 96)) (-3072 (($ $) 115 (|has| |#1| (-363))) (($ $ (-751)) 113 (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) 89) (((-897) $) 139)) (-3610 (((-1145 |#1|)) 141)) (-3798 (($) 120 (|has| |#1| (-363)))) (-1397 (($) 133 (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) 145) (((-669 |#1|) (-1232 $)) 144)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 117 (|has| |#1| (-363)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ |#1|) 99)) (-4243 (($ $) 116 (|has| |#1| (-363))) (((-3 $ "failed") $) 80 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) 28)) (-1270 (((-1232 $)) 147) (((-1232 $) (-897)) 146)) (-3518 (((-112) $ $) 37)) (-4168 (((-112) $) 92)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-4104 (($ $) 86 (|has| |#1| (-363))) (($ $ (-751)) 85 (|has| |#1| (-363)))) (-3768 (($ $) 114 (|has| |#1| (-363))) (($ $ (-751)) 112 (|has| |#1| (-363)))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62) (($ $ |#1|) 95)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
(((-324 |#1|) (-138) (-358)) (T -324))
-((-2128 (*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1231 *1)) (-4 *1 (-324 *3)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-895)) (-4 *4 (-358)) (-5 *2 (-1231 *1)) (-4 *1 (-324 *4)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1231 *3)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3)))) (-2130 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1143 *3)))) (-3536 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1143 *3)))) (-4290 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-895)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-895)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (-895)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1143 *1)) (-4 *1 (-324 *4)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-3689 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-1726 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-2129 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2501 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3)) (-4 *3 (-358)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1143 *3)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1143 *3)))) (-1723 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1143 *3)))))
-(-13 (-1250 |t#1|) (-1014 |t#1|) (-10 -8 (-15 -2128 ((-1231 $))) (-15 -2128 ((-1231 $) (-895))) (-15 -3575 ((-1231 |t#1|) $)) (-15 -3575 ((-669 |t#1|) (-1231 $))) (-15 -1911 ($ (-1231 |t#1|))) (-15 -2130 ((-1143 |t#1|) $)) (-15 -3536 ((-1143 |t#1|))) (-15 -4290 ((-895))) (-15 -4307 ((-895) $)) (-15 -3467 (|t#1| $)) (-15 -3689 (|t#1| $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-345)) (-15 -2130 ((-1143 $) $ (-895))) (-15 -3467 ($ $ (-895))) (-15 -3689 ($ $ (-895))) (-15 -1726 ($)) (-15 -2129 ($)) (-15 -2127 ((-112) $)) (-15 -2501 ($)) (-15 -1725 ($ $ (-1143 |t#1|))) (-15 -1724 ((-1143 |t#1|) $)) (-15 -1723 ((-1143 |t#1|) $)) (-15 -1723 ((-3 (-1143 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3891 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-229) |has| |#1| (-363)) ((-239) . T) ((-285) . T) ((-302) . T) ((-1250 |#1|) . T) ((-358) . T) ((-397) -3891 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-363) |has| |#1| (-363)) ((-345) |has| |#1| (-363)) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1014 |#1|) . T) ((-1031 #1#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| |#1| (-363)) ((-1190) . T) ((-1239 |#1|) . T))
-((-2898 (((-112) $ $) NIL)) (-1744 (($ (-1148) $) 88)) (-1735 (($) 77)) (-1727 (((-1093) (-1093)) 11)) (-1734 (($) 78)) (-1738 (($) 90) (($ (-309 (-679))) 98) (($ (-309 (-681))) 94) (($ (-309 (-674))) 102) (($ (-309 (-373))) 109) (($ (-309 (-538))) 105) (($ (-309 (-166 (-373)))) 113)) (-1743 (($ (-1148) $) 89)) (-1733 (($ (-622 (-840))) 79)) (-1729 (((-1237) $) 75)) (-1731 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1742 (($ (-1093)) 51)) (-1728 (((-1076) $) 25)) (-1745 (($ (-1065 (-922 (-538))) $) 85) (($ (-1065 (-922 (-538))) (-922 (-538)) $) 86)) (-1741 (($ (-1093)) 87)) (-1737 (($ (-1148) $) 115) (($ (-1148) $ $) 116)) (-1732 (($ (-1149) (-622 (-1149))) 76)) (-1740 (($ (-1131)) 82) (($ (-622 (-1131))) 80)) (-4317 (((-840) $) 118)) (-1730 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-622 (-922 (-538)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-840)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3762 (-112)) (|:| -3761 (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |blockBranch| (-622 $)) (|:| |commentBranch| (-622 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -1561 (-1065 (-922 (-538)))) (|:| |span| (-922 (-538))) (|:| -3584 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -3584 $))) (|:| |commonBranch| (-2 (|:| -3905 (-1149)) (|:| |contents| (-622 (-1149))))) (|:| |printBranch| (-622 (-840)))) $) 44)) (-1739 (($ (-1131)) 187)) (-1736 (($ (-622 $)) 114)) (-2916 (($ (-1149) (-1131)) 120) (($ (-1149) (-309 (-681))) 160) (($ (-1149) (-309 (-679))) 161) (($ (-1149) (-309 (-674))) 162) (($ (-1149) (-669 (-681))) 123) (($ (-1149) (-669 (-679))) 126) (($ (-1149) (-669 (-674))) 129) (($ (-1149) (-1231 (-681))) 132) (($ (-1149) (-1231 (-679))) 135) (($ (-1149) (-1231 (-674))) 138) (($ (-1149) (-669 (-309 (-681)))) 141) (($ (-1149) (-669 (-309 (-679)))) 144) (($ (-1149) (-669 (-309 (-674)))) 147) (($ (-1149) (-1231 (-309 (-681)))) 150) (($ (-1149) (-1231 (-309 (-679)))) 153) (($ (-1149) (-1231 (-309 (-674)))) 156) (($ (-1149) (-622 (-922 (-538))) (-309 (-681))) 157) (($ (-1149) (-622 (-922 (-538))) (-309 (-679))) 158) (($ (-1149) (-622 (-922 (-538))) (-309 (-674))) 159) (($ (-1149) (-309 (-538))) 184) (($ (-1149) (-309 (-373))) 185) (($ (-1149) (-309 (-166 (-373)))) 186) (($ (-1149) (-669 (-309 (-538)))) 165) (($ (-1149) (-669 (-309 (-373)))) 168) (($ (-1149) (-669 (-309 (-166 (-373))))) 171) (($ (-1149) (-1231 (-309 (-538)))) 174) (($ (-1149) (-1231 (-309 (-373)))) 177) (($ (-1149) (-1231 (-309 (-166 (-373))))) 180) (($ (-1149) (-622 (-922 (-538))) (-309 (-538))) 181) (($ (-1149) (-622 (-922 (-538))) (-309 (-373))) 182) (($ (-1149) (-622 (-922 (-538))) (-309 (-166 (-373)))) 183)) (-3387 (((-112) $ $) NIL)))
-(((-325) (-13 (-1074) (-10 -8 (-15 -4317 ((-840) $)) (-15 -1745 ($ (-1065 (-922 (-538))) $)) (-15 -1745 ($ (-1065 (-922 (-538))) (-922 (-538)) $)) (-15 -1744 ($ (-1148) $)) (-15 -1743 ($ (-1148) $)) (-15 -1742 ($ (-1093))) (-15 -1741 ($ (-1093))) (-15 -1740 ($ (-1131))) (-15 -1740 ($ (-622 (-1131)))) (-15 -1739 ($ (-1131))) (-15 -1738 ($)) (-15 -1738 ($ (-309 (-679)))) (-15 -1738 ($ (-309 (-681)))) (-15 -1738 ($ (-309 (-674)))) (-15 -1738 ($ (-309 (-373)))) (-15 -1738 ($ (-309 (-538)))) (-15 -1738 ($ (-309 (-166 (-373))))) (-15 -1737 ($ (-1148) $)) (-15 -1737 ($ (-1148) $ $)) (-15 -2916 ($ (-1149) (-1131))) (-15 -2916 ($ (-1149) (-309 (-681)))) (-15 -2916 ($ (-1149) (-309 (-679)))) (-15 -2916 ($ (-1149) (-309 (-674)))) (-15 -2916 ($ (-1149) (-669 (-681)))) (-15 -2916 ($ (-1149) (-669 (-679)))) (-15 -2916 ($ (-1149) (-669 (-674)))) (-15 -2916 ($ (-1149) (-1231 (-681)))) (-15 -2916 ($ (-1149) (-1231 (-679)))) (-15 -2916 ($ (-1149) (-1231 (-674)))) (-15 -2916 ($ (-1149) (-669 (-309 (-681))))) (-15 -2916 ($ (-1149) (-669 (-309 (-679))))) (-15 -2916 ($ (-1149) (-669 (-309 (-674))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-681))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-679))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-674))))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-681)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-679)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-674)))) (-15 -2916 ($ (-1149) (-309 (-538)))) (-15 -2916 ($ (-1149) (-309 (-373)))) (-15 -2916 ($ (-1149) (-309 (-166 (-373))))) (-15 -2916 ($ (-1149) (-669 (-309 (-538))))) (-15 -2916 ($ (-1149) (-669 (-309 (-373))))) (-15 -2916 ($ (-1149) (-669 (-309 (-166 (-373)))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-538))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-373))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-166 (-373)))))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-538)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-373)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-166 (-373))))) (-15 -1736 ($ (-622 $))) (-15 -1735 ($)) (-15 -1734 ($)) (-15 -1733 ($ (-622 (-840)))) (-15 -1732 ($ (-1149) (-622 (-1149)))) (-15 -1731 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1730 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-622 (-922 (-538)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-840)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3762 (-112)) (|:| -3761 (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |blockBranch| (-622 $)) (|:| |commentBranch| (-622 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -1561 (-1065 (-922 (-538)))) (|:| |span| (-922 (-538))) (|:| -3584 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -3584 $))) (|:| |commonBranch| (-2 (|:| -3905 (-1149)) (|:| |contents| (-622 (-1149))))) (|:| |printBranch| (-622 (-840)))) $)) (-15 -1729 ((-1237) $)) (-15 -1728 ((-1076) $)) (-15 -1727 ((-1093) (-1093)))))) (T -325))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-325)))) (-1745 (*1 *1 *2 *1) (-12 (-5 *2 (-1065 (-922 (-538)))) (-5 *1 (-325)))) (-1745 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1065 (-922 (-538)))) (-5 *3 (-922 (-538))) (-5 *1 (-325)))) (-1744 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-1743 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-1742 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))) (-1741 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))) (-1740 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))) (-1740 (*1 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-325)))) (-1739 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))) (-1738 (*1 *1) (-5 *1 (-325))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-325)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-681))) (-5 *1 (-325)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-674))) (-5 *1 (-325)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-5 *1 (-325)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-5 *1 (-325)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-166 (-373)))) (-5 *1 (-325)))) (-1737 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-1737 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-681))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-679))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-674))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-681))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-679))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-674))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-681))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-679))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-674))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-681)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-679)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-674)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-681)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-679)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-674)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-681))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-679))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-674))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-538))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-373))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-166 (-373)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-538)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-373)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-166 (-373))))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-538)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-373)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-166 (-373))))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-538))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-373))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-166 (-373)))) (-5 *1 (-325)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-5 *1 (-325)))) (-1735 (*1 *1) (-5 *1 (-325))) (-1734 (*1 *1) (-5 *1 (-325))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-325)))) (-1732 (*1 *1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1149)) (-5 *1 (-325)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-325)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-622 (-922 (-538)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-840)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| (-325)) (|:| |elseClause| (-325)))) (|:| |returnBranch| (-2 (|:| -3762 (-112)) (|:| -3761 (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |blockBranch| (-622 (-325))) (|:| |commentBranch| (-622 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -1561 (-1065 (-922 (-538)))) (|:| |span| (-922 (-538))) (|:| -3584 (-325)))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -3584 (-325)))) (|:| |commonBranch| (-2 (|:| -3905 (-1149)) (|:| |contents| (-622 (-1149))))) (|:| |printBranch| (-622 (-840))))) (-5 *1 (-325)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-325)))) (-1728 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-325)))) (-1727 (*1 *2 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))))
-(-13 (-1074) (-10 -8 (-15 -4317 ((-840) $)) (-15 -1745 ($ (-1065 (-922 (-538))) $)) (-15 -1745 ($ (-1065 (-922 (-538))) (-922 (-538)) $)) (-15 -1744 ($ (-1148) $)) (-15 -1743 ($ (-1148) $)) (-15 -1742 ($ (-1093))) (-15 -1741 ($ (-1093))) (-15 -1740 ($ (-1131))) (-15 -1740 ($ (-622 (-1131)))) (-15 -1739 ($ (-1131))) (-15 -1738 ($)) (-15 -1738 ($ (-309 (-679)))) (-15 -1738 ($ (-309 (-681)))) (-15 -1738 ($ (-309 (-674)))) (-15 -1738 ($ (-309 (-373)))) (-15 -1738 ($ (-309 (-538)))) (-15 -1738 ($ (-309 (-166 (-373))))) (-15 -1737 ($ (-1148) $)) (-15 -1737 ($ (-1148) $ $)) (-15 -2916 ($ (-1149) (-1131))) (-15 -2916 ($ (-1149) (-309 (-681)))) (-15 -2916 ($ (-1149) (-309 (-679)))) (-15 -2916 ($ (-1149) (-309 (-674)))) (-15 -2916 ($ (-1149) (-669 (-681)))) (-15 -2916 ($ (-1149) (-669 (-679)))) (-15 -2916 ($ (-1149) (-669 (-674)))) (-15 -2916 ($ (-1149) (-1231 (-681)))) (-15 -2916 ($ (-1149) (-1231 (-679)))) (-15 -2916 ($ (-1149) (-1231 (-674)))) (-15 -2916 ($ (-1149) (-669 (-309 (-681))))) (-15 -2916 ($ (-1149) (-669 (-309 (-679))))) (-15 -2916 ($ (-1149) (-669 (-309 (-674))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-681))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-679))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-674))))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-681)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-679)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-674)))) (-15 -2916 ($ (-1149) (-309 (-538)))) (-15 -2916 ($ (-1149) (-309 (-373)))) (-15 -2916 ($ (-1149) (-309 (-166 (-373))))) (-15 -2916 ($ (-1149) (-669 (-309 (-538))))) (-15 -2916 ($ (-1149) (-669 (-309 (-373))))) (-15 -2916 ($ (-1149) (-669 (-309 (-166 (-373)))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-538))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-373))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-166 (-373)))))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-538)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-373)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-166 (-373))))) (-15 -1736 ($ (-622 $))) (-15 -1735 ($)) (-15 -1734 ($)) (-15 -1733 ($ (-622 (-840)))) (-15 -1732 ($ (-1149) (-622 (-1149)))) (-15 -1731 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1730 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-622 (-922 (-538)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-840)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3762 (-112)) (|:| -3761 (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |blockBranch| (-622 $)) (|:| |commentBranch| (-622 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -1561 (-1065 (-922 (-538)))) (|:| |span| (-922 (-538))) (|:| -3584 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -3584 $))) (|:| |commonBranch| (-2 (|:| -3905 (-1149)) (|:| |contents| (-622 (-1149))))) (|:| |printBranch| (-622 (-840)))) $)) (-15 -1729 ((-1237) $)) (-15 -1728 ((-1076) $)) (-15 -1727 ((-1093) (-1093)))))
-((-2898 (((-112) $ $) NIL)) (-1746 (((-112) $) 11)) (-4001 (($ |#1|) 8)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3997 (($ |#1|) 9)) (-4317 (((-840) $) 17)) (-2318 ((|#1| $) 12)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 19)))
-(((-326 |#1|) (-13 (-827) (-10 -8 (-15 -4001 ($ |#1|)) (-15 -3997 ($ |#1|)) (-15 -1746 ((-112) $)) (-15 -2318 (|#1| $)))) (-827)) (T -326))
-((-4001 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) (-3997 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) (-1746 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-827)))) (-2318 (*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))))
-(-13 (-827) (-10 -8 (-15 -4001 ($ |#1|)) (-15 -3997 ($ |#1|)) (-15 -1746 ((-112) $)) (-15 -2318 (|#1| $))))
-((-1747 (((-325) (-1149) (-922 (-538))) 23)) (-1748 (((-325) (-1149) (-922 (-538))) 27)) (-2409 (((-325) (-1149) (-1065 (-922 (-538))) (-1065 (-922 (-538)))) 26) (((-325) (-1149) (-922 (-538)) (-922 (-538))) 24)) (-1749 (((-325) (-1149) (-922 (-538))) 31)))
-(((-327) (-10 -7 (-15 -1747 ((-325) (-1149) (-922 (-538)))) (-15 -2409 ((-325) (-1149) (-922 (-538)) (-922 (-538)))) (-15 -2409 ((-325) (-1149) (-1065 (-922 (-538))) (-1065 (-922 (-538))))) (-15 -1748 ((-325) (-1149) (-922 (-538)))) (-15 -1749 ((-325) (-1149) (-922 (-538)))))) (T -327))
-((-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))) (-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))) (-2409 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1065 (-922 (-538)))) (-5 *2 (-325)) (-5 *1 (-327)))) (-2409 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))))
-(-10 -7 (-15 -1747 ((-325) (-1149) (-922 (-538)))) (-15 -2409 ((-325) (-1149) (-922 (-538)) (-922 (-538)))) (-15 -2409 ((-325) (-1149) (-1065 (-922 (-538))) (-1065 (-922 (-538))))) (-15 -1748 ((-325) (-1149) (-922 (-538)))) (-15 -1749 ((-325) (-1149) (-922 (-538)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4202 (($ $) 33)) (-1752 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-1750 (((-1231 |#4|) $) 125)) (-2092 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 31)) (-3594 (((-1093) $) NIL)) (-2501 (((-3 |#4| "failed") $) 36)) (-1751 (((-1231 |#4|) $) 118)) (-1753 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-538)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3794 (((-2 (|:| -2417 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4317 (((-840) $) 17)) (-2991 (($) 14 T CONST)) (-3387 (((-112) $ $) 20)) (-4197 (($ $) 27) (($ $ $) NIL)) (-4199 (($ $ $) 25)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 23)))
-(((-328 |#1| |#2| |#3| |#4|) (-13 (-331 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1751 ((-1231 |#4|) $)) (-15 -1750 ((-1231 |#4|) $)))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -328))
-((-1751 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-1231 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))) (-1750 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-1231 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))))
-(-13 (-331 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1751 ((-1231 |#4|) $)) (-15 -1750 ((-1231 |#4|) $))))
-((-4318 (((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)) 33)))
-(((-329 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4318 ((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-358) (-1207 |#5|) (-1207 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -329))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-328 *5 *6 *7 *8)) (-4 *5 (-358)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *9 (-358)) (-4 *10 (-1207 *9)) (-4 *11 (-1207 (-402 *10))) (-5 *2 (-328 *9 *10 *11 *12)) (-5 *1 (-329 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-337 *9 *10 *11)))))
-(-10 -7 (-15 -4318 ((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|))))
-((-1752 (((-112) $) 14)))
-(((-330 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1752 ((-112) |#1|))) (-331 |#2| |#3| |#4| |#5|) (-358) (-1207 |#2|) (-1207 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -330))
-NIL
-(-10 -8 (-15 -1752 ((-112) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4202 (($ $) 26)) (-1752 (((-112) $) 25)) (-3593 (((-1131) $) 9)) (-2092 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 32)) (-3594 (((-1093) $) 10)) (-2501 (((-3 |#4| "failed") $) 24)) (-1753 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-538)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3794 (((-2 (|:| -2417 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20)))
-(((-331 |#1| |#2| |#3| |#4|) (-138) (-358) (-1207 |t#1|) (-1207 (-402 |t#2|)) (-337 |t#1| |t#2| |t#3|)) (T -331))
-((-2092 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-408 *4 (-402 *4) *5 *6)))) (-1753 (*1 *1 *2) (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358)) (-4 *1 (-331 *3 *4 *5 *6)))) (-1753 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *1 (-331 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5)))) (-1753 (*1 *1 *2 *2) (-12 (-4 *2 (-358)) (-4 *3 (-1207 *2)) (-4 *4 (-1207 (-402 *3))) (-4 *1 (-331 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4)))) (-1753 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-538)) (-4 *2 (-358)) (-4 *4 (-1207 *2)) (-4 *5 (-1207 (-402 *4))) (-4 *1 (-331 *2 *4 *5 *6)) (-4 *6 (-337 *2 *4 *5)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-2 (|:| -2417 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6))))) (-4202 (*1 *1 *1) (-12 (-4 *1 (-331 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1207 *2)) (-4 *4 (-1207 (-402 *3))) (-4 *5 (-337 *2 *3 *4)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112)))) (-2501 (*1 *2 *1) (|partial| -12 (-4 *1 (-331 *3 *4 *5 *2)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *2 (-337 *3 *4 *5)))) (-1753 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-358)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) (-4 *1 (-331 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -2092 ((-408 |t#2| (-402 |t#2|) |t#3| |t#4|) $)) (-15 -1753 ($ (-408 |t#2| (-402 |t#2|) |t#3| |t#4|))) (-15 -1753 ($ |t#4|)) (-15 -1753 ($ |t#1| |t#1|)) (-15 -1753 ($ |t#1| |t#1| (-538))) (-15 -3794 ((-2 (|:| -2417 (-408 |t#2| (-402 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4202 ($ $)) (-15 -1752 ((-112) $)) (-15 -2501 ((-3 |t#4| "failed") $)) (-15 -1753 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-4127 (($ $ (-1149) |#2|) NIL) (($ $ (-622 (-1149)) (-622 |#2|)) 20) (($ $ (-622 (-288 |#2|))) 15) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-622 |#2|) (-622 |#2|)) NIL)) (-4159 (($ $ |#2|) 11)))
-(((-332 |#1| |#2|) (-10 -8 (-15 -4159 (|#1| |#1| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 |#2|))) (-15 -4127 (|#1| |#1| (-1149) |#2|))) (-333 |#2|) (-1074)) (T -332))
-NIL
-(-10 -8 (-15 -4159 (|#1| |#1| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 |#2|))) (-15 -4127 (|#1| |#1| (-1149) |#2|)))
-((-4318 (($ (-1 |#1| |#1|) $) 6)) (-4127 (($ $ (-1149) |#1|) 17 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 16 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-622 (-288 |#1|))) 15 (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) 14 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-304 |#1|))) (($ $ (-622 |#1|) (-622 |#1|)) 12 (|has| |#1| (-304 |#1|)))) (-4159 (($ $ |#1|) 11 (|has| |#1| (-281 |#1| |#1|)))))
-(((-333 |#1|) (-138) (-1074)) (T -333))
-((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1074)))))
-(-13 (-10 -8 (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-281 |t#1| |t#1|)) (-6 (-281 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-507 (-1149) |t#1|)) (-6 (-507 (-1149) |t#1|)) |%noBranch|)))
+((-1270 (*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1232 *1)) (-4 *1 (-324 *3)))) (-1270 (*1 *2 *3) (-12 (-5 *3 (-897)) (-4 *4 (-358)) (-5 *2 (-1232 *1)) (-4 *1 (-324 *4)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1232 *3)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3)))) (-1291 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1145 *3)))) (-3610 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1145 *3)))) (-4130 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-897)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-897)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-1291 (*1 *2 *1 *3) (-12 (-5 *3 (-897)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1145 *1)) (-4 *1 (-324 *4)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-1650 (*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-1397 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-1280 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-4328 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3212 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3)) (-4 *3 (-358)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1145 *3)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1145 *3)))) (-1369 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1145 *3)))))
+(-13 (-1251 |t#1|) (-1014 |t#1|) (-10 -8 (-15 -1270 ((-1232 $))) (-15 -1270 ((-1232 $) (-897))) (-15 -2780 ((-1232 |t#1|) $)) (-15 -2780 ((-669 |t#1|) (-1232 $))) (-15 -2670 ($ (-1232 |t#1|))) (-15 -1291 ((-1145 |t#1|) $)) (-15 -3610 ((-1145 |t#1|))) (-15 -4130 ((-897))) (-15 -4276 ((-897) $)) (-15 -4209 (|t#1| $)) (-15 -1650 (|t#1| $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-344)) (-15 -1291 ((-1145 $) $ (-897))) (-15 -4209 ($ $ (-897))) (-15 -1650 ($ $ (-897))) (-15 -1397 ($)) (-15 -1280 ($)) (-15 -4328 ((-112) $)) (-15 -3212 ($)) (-15 -1386 ($ $ (-1145 |t#1|))) (-15 -1378 ((-1145 |t#1|) $)) (-15 -1369 ((-1145 |t#1|) $)) (-15 -1369 ((-3 (-1145 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1523 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-229) |has| |#1| (-363)) ((-239) . T) ((-285) . T) ((-302) . T) ((-1251 |#1|) . T) ((-358) . T) ((-397) -1523 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-363) |has| |#1| (-363)) ((-344) |has| |#1| (-363)) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1014 |#1|) . T) ((-1031 #0#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| |#1| (-363)) ((-1190) . T) ((-1239 |#1|) . T))
+((-1671 (((-112) $ $) NIL)) (-1493 (($ (-1148) $) 88)) (-3316 (($) 77)) (-1406 (((-1093) (-1093)) 11)) (-3198 (($) 78)) (-1460 (($) 90) (($ (-311 (-679))) 98) (($ (-311 (-681))) 94) (($ (-311 (-674))) 102) (($ (-311 (-374))) 109) (($ (-311 (-552))) 105) (($ (-311 (-167 (-374)))) 113)) (-1483 (($ (-1148) $) 89)) (-1439 (($ (-625 (-839))) 79)) (-1427 (((-1237) $) 75)) (-3423 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1472 (($ (-1093)) 51)) (-1417 (((-1077) $) 25)) (-1503 (($ (-1065 (-928 (-552))) $) 85) (($ (-1065 (-928 (-552))) (-928 (-552)) $) 86)) (-1560 (($ (-1093)) 87)) (-2185 (($ (-1148) $) 115) (($ (-1148) $ $) 116)) (-2272 (($ (-1149) (-625 (-1149))) 76)) (-3376 (($ (-1131)) 82) (($ (-625 (-1131))) 80)) (-1683 (((-839) $) 118)) (-4185 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-625 (-928 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-839)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1916 (-112)) (|:| -3800 (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |blockBranch| (-625 $)) (|:| |commentBranch| (-625 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -3315 (-1065 (-928 (-552)))) (|:| |span| (-928 (-552))) (|:| -1300 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -1300 $))) (|:| |commonBranch| (-2 (|:| -1288 (-1149)) (|:| |contents| (-625 (-1149))))) (|:| |printBranch| (-625 (-839)))) $) 44)) (-2761 (($ (-1131)) 187)) (-1450 (($ (-625 $)) 114)) (-2539 (($ (-1149) (-1131)) 120) (($ (-1149) (-311 (-681))) 160) (($ (-1149) (-311 (-679))) 161) (($ (-1149) (-311 (-674))) 162) (($ (-1149) (-669 (-681))) 123) (($ (-1149) (-669 (-679))) 126) (($ (-1149) (-669 (-674))) 129) (($ (-1149) (-1232 (-681))) 132) (($ (-1149) (-1232 (-679))) 135) (($ (-1149) (-1232 (-674))) 138) (($ (-1149) (-669 (-311 (-681)))) 141) (($ (-1149) (-669 (-311 (-679)))) 144) (($ (-1149) (-669 (-311 (-674)))) 147) (($ (-1149) (-1232 (-311 (-681)))) 150) (($ (-1149) (-1232 (-311 (-679)))) 153) (($ (-1149) (-1232 (-311 (-674)))) 156) (($ (-1149) (-625 (-928 (-552))) (-311 (-681))) 157) (($ (-1149) (-625 (-928 (-552))) (-311 (-679))) 158) (($ (-1149) (-625 (-928 (-552))) (-311 (-674))) 159) (($ (-1149) (-311 (-552))) 184) (($ (-1149) (-311 (-374))) 185) (($ (-1149) (-311 (-167 (-374)))) 186) (($ (-1149) (-669 (-311 (-552)))) 165) (($ (-1149) (-669 (-311 (-374)))) 168) (($ (-1149) (-669 (-311 (-167 (-374))))) 171) (($ (-1149) (-1232 (-311 (-552)))) 174) (($ (-1149) (-1232 (-311 (-374)))) 177) (($ (-1149) (-1232 (-311 (-167 (-374))))) 180) (($ (-1149) (-625 (-928 (-552))) (-311 (-552))) 181) (($ (-1149) (-625 (-928 (-552))) (-311 (-374))) 182) (($ (-1149) (-625 (-928 (-552))) (-311 (-167 (-374)))) 183)) (-2281 (((-112) $ $) NIL)))
+(((-325) (-13 (-1073) (-10 -8 (-15 -1683 ((-839) $)) (-15 -1503 ($ (-1065 (-928 (-552))) $)) (-15 -1503 ($ (-1065 (-928 (-552))) (-928 (-552)) $)) (-15 -1493 ($ (-1148) $)) (-15 -1483 ($ (-1148) $)) (-15 -1472 ($ (-1093))) (-15 -1560 ($ (-1093))) (-15 -3376 ($ (-1131))) (-15 -3376 ($ (-625 (-1131)))) (-15 -2761 ($ (-1131))) (-15 -1460 ($)) (-15 -1460 ($ (-311 (-679)))) (-15 -1460 ($ (-311 (-681)))) (-15 -1460 ($ (-311 (-674)))) (-15 -1460 ($ (-311 (-374)))) (-15 -1460 ($ (-311 (-552)))) (-15 -1460 ($ (-311 (-167 (-374))))) (-15 -2185 ($ (-1148) $)) (-15 -2185 ($ (-1148) $ $)) (-15 -2539 ($ (-1149) (-1131))) (-15 -2539 ($ (-1149) (-311 (-681)))) (-15 -2539 ($ (-1149) (-311 (-679)))) (-15 -2539 ($ (-1149) (-311 (-674)))) (-15 -2539 ($ (-1149) (-669 (-681)))) (-15 -2539 ($ (-1149) (-669 (-679)))) (-15 -2539 ($ (-1149) (-669 (-674)))) (-15 -2539 ($ (-1149) (-1232 (-681)))) (-15 -2539 ($ (-1149) (-1232 (-679)))) (-15 -2539 ($ (-1149) (-1232 (-674)))) (-15 -2539 ($ (-1149) (-669 (-311 (-681))))) (-15 -2539 ($ (-1149) (-669 (-311 (-679))))) (-15 -2539 ($ (-1149) (-669 (-311 (-674))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-681))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-679))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-674))))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-681)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-679)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-674)))) (-15 -2539 ($ (-1149) (-311 (-552)))) (-15 -2539 ($ (-1149) (-311 (-374)))) (-15 -2539 ($ (-1149) (-311 (-167 (-374))))) (-15 -2539 ($ (-1149) (-669 (-311 (-552))))) (-15 -2539 ($ (-1149) (-669 (-311 (-374))))) (-15 -2539 ($ (-1149) (-669 (-311 (-167 (-374)))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-552))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-374))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-167 (-374)))))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-552)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-374)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-167 (-374))))) (-15 -1450 ($ (-625 $))) (-15 -3316 ($)) (-15 -3198 ($)) (-15 -1439 ($ (-625 (-839)))) (-15 -2272 ($ (-1149) (-625 (-1149)))) (-15 -3423 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4185 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-625 (-928 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-839)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1916 (-112)) (|:| -3800 (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |blockBranch| (-625 $)) (|:| |commentBranch| (-625 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -3315 (-1065 (-928 (-552)))) (|:| |span| (-928 (-552))) (|:| -1300 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -1300 $))) (|:| |commonBranch| (-2 (|:| -1288 (-1149)) (|:| |contents| (-625 (-1149))))) (|:| |printBranch| (-625 (-839)))) $)) (-15 -1427 ((-1237) $)) (-15 -1417 ((-1077) $)) (-15 -1406 ((-1093) (-1093)))))) (T -325))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-325)))) (-1503 (*1 *1 *2 *1) (-12 (-5 *2 (-1065 (-928 (-552)))) (-5 *1 (-325)))) (-1503 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1065 (-928 (-552)))) (-5 *3 (-928 (-552))) (-5 *1 (-325)))) (-1493 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-1483 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-325)))) (-2761 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))) (-1460 (*1 *1) (-5 *1 (-325))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-679))) (-5 *1 (-325)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-681))) (-5 *1 (-325)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-674))) (-5 *1 (-325)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-325)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-5 *1 (-325)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-2185 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-2185 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-681))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-679))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-674))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-681))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-679))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-674))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-681))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-679))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-674))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-681)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-679)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-674)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-681)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-679)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-674)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-681))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-679))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-674))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-552))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-374))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-552)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-374)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-167 (-374))))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-552)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-374)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-167 (-374))))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-552))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-374))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-1450 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-5 *1 (-325)))) (-3316 (*1 *1) (-5 *1 (-325))) (-3198 (*1 *1) (-5 *1 (-325))) (-1439 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-325)))) (-2272 (*1 *1 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1149)) (-5 *1 (-325)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-325)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-625 (-928 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-839)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| (-325)) (|:| |elseClause| (-325)))) (|:| |returnBranch| (-2 (|:| -1916 (-112)) (|:| -3800 (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |blockBranch| (-625 (-325))) (|:| |commentBranch| (-625 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -3315 (-1065 (-928 (-552)))) (|:| |span| (-928 (-552))) (|:| -1300 (-325)))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -1300 (-325)))) (|:| |commonBranch| (-2 (|:| -1288 (-1149)) (|:| |contents| (-625 (-1149))))) (|:| |printBranch| (-625 (-839))))) (-5 *1 (-325)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-325)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-325)))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))))
+(-13 (-1073) (-10 -8 (-15 -1683 ((-839) $)) (-15 -1503 ($ (-1065 (-928 (-552))) $)) (-15 -1503 ($ (-1065 (-928 (-552))) (-928 (-552)) $)) (-15 -1493 ($ (-1148) $)) (-15 -1483 ($ (-1148) $)) (-15 -1472 ($ (-1093))) (-15 -1560 ($ (-1093))) (-15 -3376 ($ (-1131))) (-15 -3376 ($ (-625 (-1131)))) (-15 -2761 ($ (-1131))) (-15 -1460 ($)) (-15 -1460 ($ (-311 (-679)))) (-15 -1460 ($ (-311 (-681)))) (-15 -1460 ($ (-311 (-674)))) (-15 -1460 ($ (-311 (-374)))) (-15 -1460 ($ (-311 (-552)))) (-15 -1460 ($ (-311 (-167 (-374))))) (-15 -2185 ($ (-1148) $)) (-15 -2185 ($ (-1148) $ $)) (-15 -2539 ($ (-1149) (-1131))) (-15 -2539 ($ (-1149) (-311 (-681)))) (-15 -2539 ($ (-1149) (-311 (-679)))) (-15 -2539 ($ (-1149) (-311 (-674)))) (-15 -2539 ($ (-1149) (-669 (-681)))) (-15 -2539 ($ (-1149) (-669 (-679)))) (-15 -2539 ($ (-1149) (-669 (-674)))) (-15 -2539 ($ (-1149) (-1232 (-681)))) (-15 -2539 ($ (-1149) (-1232 (-679)))) (-15 -2539 ($ (-1149) (-1232 (-674)))) (-15 -2539 ($ (-1149) (-669 (-311 (-681))))) (-15 -2539 ($ (-1149) (-669 (-311 (-679))))) (-15 -2539 ($ (-1149) (-669 (-311 (-674))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-681))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-679))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-674))))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-681)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-679)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-674)))) (-15 -2539 ($ (-1149) (-311 (-552)))) (-15 -2539 ($ (-1149) (-311 (-374)))) (-15 -2539 ($ (-1149) (-311 (-167 (-374))))) (-15 -2539 ($ (-1149) (-669 (-311 (-552))))) (-15 -2539 ($ (-1149) (-669 (-311 (-374))))) (-15 -2539 ($ (-1149) (-669 (-311 (-167 (-374)))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-552))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-374))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-167 (-374)))))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-552)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-374)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-167 (-374))))) (-15 -1450 ($ (-625 $))) (-15 -3316 ($)) (-15 -3198 ($)) (-15 -1439 ($ (-625 (-839)))) (-15 -2272 ($ (-1149) (-625 (-1149)))) (-15 -3423 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4185 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-625 (-928 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-839)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1916 (-112)) (|:| -3800 (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |blockBranch| (-625 $)) (|:| |commentBranch| (-625 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -3315 (-1065 (-928 (-552)))) (|:| |span| (-928 (-552))) (|:| -1300 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -1300 $))) (|:| |commonBranch| (-2 (|:| -1288 (-1149)) (|:| |contents| (-625 (-1149))))) (|:| |printBranch| (-625 (-839)))) $)) (-15 -1427 ((-1237) $)) (-15 -1417 ((-1077) $)) (-15 -1406 ((-1093) (-1093)))))
+((-1671 (((-112) $ $) NIL)) (-1516 (((-112) $) 11)) (-3581 (($ |#1|) 8)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3593 (($ |#1|) 9)) (-1683 (((-839) $) 17)) (-1388 ((|#1| $) 12)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 19)))
+(((-326 |#1|) (-13 (-827) (-10 -8 (-15 -3581 ($ |#1|)) (-15 -3593 ($ |#1|)) (-15 -1516 ((-112) $)) (-15 -1388 (|#1| $)))) (-827)) (T -326))
+((-3581 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) (-3593 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-827)))) (-1388 (*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))))
+(-13 (-827) (-10 -8 (-15 -3581 ($ |#1|)) (-15 -3593 ($ |#1|)) (-15 -1516 ((-112) $)) (-15 -1388 (|#1| $))))
+((-1528 (((-325) (-1149) (-928 (-552))) 23)) (-1539 (((-325) (-1149) (-928 (-552))) 27)) (-4013 (((-325) (-1149) (-1065 (-928 (-552))) (-1065 (-928 (-552)))) 26) (((-325) (-1149) (-928 (-552)) (-928 (-552))) 24)) (-1550 (((-325) (-1149) (-928 (-552))) 31)))
+(((-327) (-10 -7 (-15 -1528 ((-325) (-1149) (-928 (-552)))) (-15 -4013 ((-325) (-1149) (-928 (-552)) (-928 (-552)))) (-15 -4013 ((-325) (-1149) (-1065 (-928 (-552))) (-1065 (-928 (-552))))) (-15 -1539 ((-325) (-1149) (-928 (-552)))) (-15 -1550 ((-325) (-1149) (-928 (-552)))))) (T -327))
+((-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) (-5 *1 (-327)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) (-5 *1 (-327)))) (-4013 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1065 (-928 (-552)))) (-5 *2 (-325)) (-5 *1 (-327)))) (-4013 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) (-5 *1 (-327)))) (-1528 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) (-5 *1 (-327)))))
+(-10 -7 (-15 -1528 ((-325) (-1149) (-928 (-552)))) (-15 -4013 ((-325) (-1149) (-928 (-552)) (-928 (-552)))) (-15 -4013 ((-325) (-1149) (-1065 (-928 (-552))) (-1065 (-928 (-552))))) (-15 -1539 ((-325) (-1149) (-928 (-552)))) (-15 -1550 ((-325) (-1149) (-928 (-552)))))
+((-1996 (((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|)) 33)))
+(((-328 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1996 ((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|)))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-358) (-1208 |#5|) (-1208 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -328))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-331 *5 *6 *7 *8)) (-4 *5 (-358)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *9 (-358)) (-4 *10 (-1208 *9)) (-4 *11 (-1208 (-402 *10))) (-5 *2 (-331 *9 *10 *11 *12)) (-5 *1 (-328 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-337 *9 *10 *11)))))
+(-10 -7 (-15 -1996 ((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|))))
+((-1581 (((-112) $) 14)))
+(((-329 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1581 ((-112) |#1|))) (-330 |#2| |#3| |#4| |#5|) (-358) (-1208 |#2|) (-1208 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -329))
+NIL
+(-10 -8 (-15 -1581 ((-112) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2163 (($ $) 26)) (-1581 (((-112) $) 25)) (-2883 (((-1131) $) 9)) (-3935 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 32)) (-2831 (((-1093) $) 10)) (-3212 (((-3 |#4| "failed") $) 24)) (-1593 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-552)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3950 (((-2 (|:| -2150 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20)))
+(((-330 |#1| |#2| |#3| |#4|) (-138) (-358) (-1208 |t#1|) (-1208 (-402 |t#2|)) (-337 |t#1| |t#2| |t#3|)) (T -330))
+((-3935 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-408 *4 (-402 *4) *5 *6)))) (-1593 (*1 *1 *2) (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358)) (-4 *1 (-330 *3 *4 *5 *6)))) (-1593 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *1 (-330 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5)))) (-1593 (*1 *1 *2 *2) (-12 (-4 *2 (-358)) (-4 *3 (-1208 *2)) (-4 *4 (-1208 (-402 *3))) (-4 *1 (-330 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4)))) (-1593 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-552)) (-4 *2 (-358)) (-4 *4 (-1208 *2)) (-4 *5 (-1208 (-402 *4))) (-4 *1 (-330 *2 *4 *5 *6)) (-4 *6 (-337 *2 *4 *5)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-2 (|:| -2150 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6))))) (-2163 (*1 *1 *1) (-12 (-4 *1 (-330 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1208 *2)) (-4 *4 (-1208 (-402 *3))) (-4 *5 (-337 *2 *3 *4)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112)))) (-3212 (*1 *2 *1) (|partial| -12 (-4 *1 (-330 *3 *4 *5 *2)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *2 (-337 *3 *4 *5)))) (-1593 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-358)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) (-4 *1 (-330 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -3935 ((-408 |t#2| (-402 |t#2|) |t#3| |t#4|) $)) (-15 -1593 ($ (-408 |t#2| (-402 |t#2|) |t#3| |t#4|))) (-15 -1593 ($ |t#4|)) (-15 -1593 ($ |t#1| |t#1|)) (-15 -1593 ($ |t#1| |t#1| (-552))) (-15 -3950 ((-2 (|:| -2150 (-408 |t#2| (-402 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2163 ($ $)) (-15 -1581 ((-112) $)) (-15 -3212 ((-3 |t#4| "failed") $)) (-15 -1593 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2163 (($ $) 33)) (-1581 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-1561 (((-1232 |#4|) $) 125)) (-3935 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 31)) (-2831 (((-1093) $) NIL)) (-3212 (((-3 |#4| "failed") $) 36)) (-1571 (((-1232 |#4|) $) 118)) (-1593 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-552)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3950 (((-2 (|:| -2150 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1683 (((-839) $) 17)) (-2089 (($) 14 T CONST)) (-2281 (((-112) $ $) 20)) (-2393 (($ $) 27) (($ $ $) NIL)) (-2382 (($ $ $) 25)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 23)))
+(((-331 |#1| |#2| |#3| |#4|) (-13 (-330 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1571 ((-1232 |#4|) $)) (-15 -1561 ((-1232 |#4|) $)))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -331))
+((-1571 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-1232 *6)) (-5 *1 (-331 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))) (-1561 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-1232 *6)) (-5 *1 (-331 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))))
+(-13 (-330 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1571 ((-1232 |#4|) $)) (-15 -1561 ((-1232 |#4|) $))))
+((-4073 (($ $ (-1149) |#2|) NIL) (($ $ (-625 (-1149)) (-625 |#2|)) 20) (($ $ (-625 (-289 |#2|))) 15) (($ $ (-289 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-625 |#2|) (-625 |#2|)) NIL)) (-2154 (($ $ |#2|) 11)))
+(((-332 |#1| |#2|) (-10 -8 (-15 -2154 (|#1| |#1| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 |#2|))) (-15 -4073 (|#1| |#1| (-1149) |#2|))) (-333 |#2|) (-1073)) (T -332))
+NIL
+(-10 -8 (-15 -2154 (|#1| |#1| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 |#2|))) (-15 -4073 (|#1| |#1| (-1149) |#2|)))
+((-1996 (($ (-1 |#1| |#1|) $) 6)) (-4073 (($ $ (-1149) |#1|) 17 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 16 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-625 (-289 |#1|))) 15 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 14 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-304 |#1|))) (($ $ (-625 |#1|) (-625 |#1|)) 12 (|has| |#1| (-304 |#1|)))) (-2154 (($ $ |#1|) 11 (|has| |#1| (-281 |#1| |#1|)))))
+(((-333 |#1|) (-138) (-1073)) (T -333))
+((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1073)))))
+(-13 (-10 -8 (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-281 |t#1| |t#1|)) (-6 (-281 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-507 (-1149) |t#1|)) (-6 (-507 (-1149) |t#1|)) |%noBranch|)))
(((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1149)) $) NIL)) (-1754 (((-112)) 91) (((-112) (-112)) 92)) (-1660 (((-622 (-595 $)) $) NIL)) (-3846 (($ $) NIL)) (-4002 (($ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1664 (($ $ (-288 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL)) (-3370 (($ $) NIL)) (-3844 (($ $) NIL)) (-4001 (($ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-595 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-309 |#3|)) 71) (((-3 $ "failed") (-1149)) 97) (((-3 $ "failed") (-309 (-538))) 59 (|has| |#3| (-1014 (-538)))) (((-3 $ "failed") (-402 (-922 (-538)))) 65 (|has| |#3| (-1014 (-538)))) (((-3 $ "failed") (-922 (-538))) 60 (|has| |#3| (-1014 (-538)))) (((-3 $ "failed") (-309 (-373))) 89 (|has| |#3| (-1014 (-373)))) (((-3 $ "failed") (-402 (-922 (-373)))) 83 (|has| |#3| (-1014 (-373)))) (((-3 $ "failed") (-922 (-373))) 78 (|has| |#3| (-1014 (-373))))) (-3507 (((-595 $) $) NIL) ((|#3| $) NIL) (($ (-309 |#3|)) 72) (($ (-1149)) 98) (($ (-309 (-538))) 61 (|has| |#3| (-1014 (-538)))) (($ (-402 (-922 (-538)))) 66 (|has| |#3| (-1014 (-538)))) (($ (-922 (-538))) 62 (|has| |#3| (-1014 (-538)))) (($ (-309 (-373))) 90 (|has| |#3| (-1014 (-373)))) (($ (-402 (-922 (-373)))) 84 (|has| |#3| (-1014 (-373)))) (($ (-922 (-373))) 80 (|has| |#3| (-1014 (-373))))) (-3821 (((-3 $ "failed") $) NIL)) (-3990 (($) 10)) (-2903 (($ $) NIL) (($ (-622 $)) NIL)) (-1659 (((-622 (-113)) $) NIL)) (-3380 (((-113) (-113)) NIL)) (-2502 (((-112) $) NIL)) (-3006 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-1657 (((-1143 $) (-595 $)) NIL (|has| $ (-1025)))) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 $ $) (-595 $)) NIL)) (-1662 (((-3 (-595 $) "failed") $) NIL)) (-1858 (($ $) 94)) (-4302 (($ $) NIL)) (-3593 (((-1131) $) NIL)) (-1661 (((-622 (-595 $)) $) NIL)) (-2317 (($ (-113) $) 93) (($ (-113) (-622 $)) NIL)) (-2964 (((-112) $ (-113)) NIL) (((-112) $ (-1149)) NIL)) (-2933 (((-751) $) NIL)) (-3594 (((-1093) $) NIL)) (-1658 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-4303 (($ $) NIL)) (-3007 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-1149) (-1 $ (-622 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-622 (-113)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-113) (-1 $ (-622 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4159 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-622 $)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL)) (-3536 (($ $) NIL (|has| $ (-1025)))) (-3845 (($ $) NIL)) (-3997 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-595 $)) NIL) (($ |#3|) NIL) (($ (-538)) NIL) (((-309 |#3|) $) 96)) (-3461 (((-751)) NIL)) (-2920 (($ $) NIL) (($ (-622 $)) NIL)) (-2338 (((-112) (-113)) NIL)) (-3840 (($ $) NIL)) (-3838 (($ $) NIL)) (-3839 (($ $) NIL)) (-3742 (($ $) NIL)) (-2991 (($) 95 T CONST)) (-2997 (($) 24 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL)))
-(((-334 |#1| |#2| |#3|) (-13 (-293) (-38 |#3|) (-1014 |#3|) (-876 (-1149)) (-10 -8 (-15 -3507 ($ (-309 |#3|))) (-15 -3508 ((-3 $ "failed") (-309 |#3|))) (-15 -3507 ($ (-1149))) (-15 -3508 ((-3 $ "failed") (-1149))) (-15 -4317 ((-309 |#3|) $)) (IF (|has| |#3| (-1014 (-538))) (PROGN (-15 -3507 ($ (-309 (-538)))) (-15 -3508 ((-3 $ "failed") (-309 (-538)))) (-15 -3507 ($ (-402 (-922 (-538))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-538))))) (-15 -3507 ($ (-922 (-538)))) (-15 -3508 ((-3 $ "failed") (-922 (-538))))) |%noBranch|) (IF (|has| |#3| (-1014 (-373))) (PROGN (-15 -3507 ($ (-309 (-373)))) (-15 -3508 ((-3 $ "failed") (-309 (-373)))) (-15 -3507 ($ (-402 (-922 (-373))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-373))))) (-15 -3507 ($ (-922 (-373)))) (-15 -3508 ((-3 $ "failed") (-922 (-373))))) |%noBranch|) (-15 -3742 ($ $)) (-15 -3370 ($ $)) (-15 -4303 ($ $)) (-15 -4302 ($ $)) (-15 -1858 ($ $)) (-15 -4001 ($ $)) (-15 -3997 ($ $)) (-15 -4002 ($ $)) (-15 -3838 ($ $)) (-15 -3839 ($ $)) (-15 -3840 ($ $)) (-15 -3844 ($ $)) (-15 -3845 ($ $)) (-15 -3846 ($ $)) (-15 -3990 ($)) (-15 -3417 ((-622 (-1149)) $)) (-15 -1754 ((-112))) (-15 -1754 ((-112) (-112))))) (-622 (-1149)) (-622 (-1149)) (-382)) (T -334))
-((-3507 (*1 *1 *2) (-12 (-5 *2 (-309 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 *2)) (-14 *4 (-622 *2)) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 *2)) (-14 *4 (-622 *2)) (-4 *5 (-382)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-309 *5)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-538)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-538)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-922 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-373)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-373)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-922 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3742 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3370 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-4303 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-1858 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-4001 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3997 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-4002 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3839 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3840 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3844 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3845 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3846 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3990 (*1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-382)))) (-1754 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))))
-(-13 (-293) (-38 |#3|) (-1014 |#3|) (-876 (-1149)) (-10 -8 (-15 -3507 ($ (-309 |#3|))) (-15 -3508 ((-3 $ "failed") (-309 |#3|))) (-15 -3507 ($ (-1149))) (-15 -3508 ((-3 $ "failed") (-1149))) (-15 -4317 ((-309 |#3|) $)) (IF (|has| |#3| (-1014 (-538))) (PROGN (-15 -3507 ($ (-309 (-538)))) (-15 -3508 ((-3 $ "failed") (-309 (-538)))) (-15 -3507 ($ (-402 (-922 (-538))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-538))))) (-15 -3507 ($ (-922 (-538)))) (-15 -3508 ((-3 $ "failed") (-922 (-538))))) |%noBranch|) (IF (|has| |#3| (-1014 (-373))) (PROGN (-15 -3507 ($ (-309 (-373)))) (-15 -3508 ((-3 $ "failed") (-309 (-373)))) (-15 -3507 ($ (-402 (-922 (-373))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-373))))) (-15 -3507 ($ (-922 (-373)))) (-15 -3508 ((-3 $ "failed") (-922 (-373))))) |%noBranch|) (-15 -3742 ($ $)) (-15 -3370 ($ $)) (-15 -4303 ($ $)) (-15 -4302 ($ $)) (-15 -1858 ($ $)) (-15 -4001 ($ $)) (-15 -3997 ($ $)) (-15 -4002 ($ $)) (-15 -3838 ($ $)) (-15 -3839 ($ $)) (-15 -3840 ($ $)) (-15 -3844 ($ $)) (-15 -3845 ($ $)) (-15 -3846 ($ $)) (-15 -3990 ($)) (-15 -3417 ((-622 (-1149)) $)) (-15 -1754 ((-112))) (-15 -1754 ((-112) (-112)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-882 |#1|) (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| (-882 |#1|) (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-882 |#1|) "failed") $) NIL)) (-3507 (((-882 |#1|) $) NIL)) (-1911 (($ (-1231 (-882 |#1|))) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-882 |#1|) (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-882 |#1|) (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| (-882 |#1|) (-363)))) (-1796 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363)))) (($ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| (-882 |#1|) (-363))) (((-812 (-895)) $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| (-882 |#1|) (-363)))) (-2127 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-3467 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 (-882 |#1|)) $) NIL) (((-1143 $) $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-2126 (((-895) $) NIL (|has| (-882 |#1|) (-363)))) (-1724 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363)))) (-1723 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-1143 (-882 |#1|)) "failed") $ $) NIL (|has| (-882 |#1|) (-363)))) (-1725 (($ $ (-1143 (-882 |#1|))) NIL (|has| (-882 |#1|) (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-882 |#1|) (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL (|has| (-882 |#1|) (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-882 |#1|) (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 (-882 |#1|))) NIL)) (-1790 (($) NIL (|has| (-882 |#1|) (-363)))) (-1726 (($) NIL (|has| (-882 |#1|) (-363)))) (-3575 (((-1231 (-882 |#1|)) $) NIL) (((-669 (-882 |#1|)) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-882 |#1|) (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-882 |#1|)) NIL)) (-3035 (($ $) NIL (|has| (-882 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3002 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ (-882 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-882 |#1|)) NIL) (($ (-882 |#1|) $) NIL)))
-(((-335 |#1| |#2|) (-324 (-882 |#1|)) (-895) (-895)) (T -335))
-NIL
-(-324 (-882 |#1|))
-((-1763 (((-2 (|:| |num| (-1231 |#3|)) (|:| |den| |#3|)) $) 38)) (-1911 (($ (-1231 (-402 |#3|)) (-1231 $)) NIL) (($ (-1231 (-402 |#3|))) NIL) (($ (-1231 |#3|) |#3|) 161)) (-1768 (((-1231 $) (-1231 $)) 145)) (-1755 (((-622 (-622 |#2|))) 119)) (-1780 (((-112) |#2| |#2|) 73)) (-3857 (($ $) 139)) (-3736 (((-751)) 31)) (-1769 (((-1231 $) (-1231 $)) 198)) (-1756 (((-622 (-922 |#2|)) (-1149)) 110)) (-1772 (((-112) $) 158)) (-1771 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1758 (((-3 |#3| "failed")) 50)) (-1782 (((-751)) 170)) (-4159 ((|#2| $ |#2| |#2|) 132)) (-1759 (((-3 |#3| "failed")) 68)) (-4170 (($ $ (-1 (-402 |#3|) (-402 |#3|)) (-751)) NIL) (($ $ (-1 (-402 |#3|) (-402 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-1770 (((-1231 $) (-1231 $)) 151)) (-1757 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1781 (((-112)) 33)))
-(((-336 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -1755 ((-622 (-622 |#2|)))) (-15 -1756 ((-622 (-922 |#2|)) (-1149))) (-15 -1757 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1758 ((-3 |#3| "failed"))) (-15 -1759 ((-3 |#3| "failed"))) (-15 -4159 (|#2| |#1| |#2| |#2|)) (-15 -3857 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1771 ((-112) |#1| |#3|)) (-15 -1771 ((-112) |#1| |#2|)) (-15 -1911 (|#1| (-1231 |#3|) |#3|)) (-15 -1763 ((-2 (|:| |num| (-1231 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1768 ((-1231 |#1|) (-1231 |#1|))) (-15 -1769 ((-1231 |#1|) (-1231 |#1|))) (-15 -1770 ((-1231 |#1|) (-1231 |#1|))) (-15 -1771 ((-112) |#1|)) (-15 -1772 ((-112) |#1|)) (-15 -1780 ((-112) |#2| |#2|)) (-15 -1781 ((-112))) (-15 -1782 ((-751))) (-15 -3736 ((-751))) (-15 -4170 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -4170 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-751))) (-15 -1911 (|#1| (-1231 (-402 |#3|)))) (-15 -1911 (|#1| (-1231 (-402 |#3|)) (-1231 |#1|)))) (-337 |#2| |#3| |#4|) (-1190) (-1207 |#2|) (-1207 (-402 |#3|))) (T -336))
-((-3736 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-1782 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-1781 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-1780 (*1 *2 *3 *3) (-12 (-4 *3 (-1190)) (-4 *5 (-1207 *3)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6)))) (-1759 (*1 *2) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-1758 (*1 *2) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *5 (-1190)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-5 *2 (-622 (-922 *5))) (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7)))) (-1755 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-622 (-622 *4))) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))))
-(-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -1755 ((-622 (-622 |#2|)))) (-15 -1756 ((-622 (-922 |#2|)) (-1149))) (-15 -1757 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1758 ((-3 |#3| "failed"))) (-15 -1759 ((-3 |#3| "failed"))) (-15 -4159 (|#2| |#1| |#2| |#2|)) (-15 -3857 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1771 ((-112) |#1| |#3|)) (-15 -1771 ((-112) |#1| |#2|)) (-15 -1911 (|#1| (-1231 |#3|) |#3|)) (-15 -1763 ((-2 (|:| |num| (-1231 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1768 ((-1231 |#1|) (-1231 |#1|))) (-15 -1769 ((-1231 |#1|) (-1231 |#1|))) (-15 -1770 ((-1231 |#1|) (-1231 |#1|))) (-15 -1771 ((-112) |#1|)) (-15 -1772 ((-112) |#1|)) (-15 -1780 ((-112) |#2| |#2|)) (-15 -1781 ((-112))) (-15 -1782 ((-751))) (-15 -3736 ((-751))) (-15 -4170 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -4170 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-751))) (-15 -1911 (|#1| (-1231 (-402 |#3|)))) (-15 -1911 (|#1| (-1231 (-402 |#3|)) (-1231 |#1|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1763 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) 193)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (|has| (-402 |#2|) (-358)))) (-2178 (($ $) 92 (|has| (-402 |#2|) (-358)))) (-2176 (((-112) $) 94 (|has| (-402 |#2|) (-358)))) (-1901 (((-669 (-402 |#2|)) (-1231 $)) 44) (((-669 (-402 |#2|))) 59)) (-3689 (((-402 |#2|) $) 50)) (-1791 (((-1158 (-895) (-751)) (-538)) 144 (|has| (-402 |#2|) (-345)))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 111 (|has| (-402 |#2|) (-358)))) (-4329 (((-400 $) $) 112 (|has| (-402 |#2|) (-358)))) (-1705 (((-112) $ $) 102 (|has| (-402 |#2|) (-358)))) (-3471 (((-751)) 85 (|has| (-402 |#2|) (-363)))) (-1777 (((-112)) 210)) (-1776 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 166 (|has| (-402 |#2|) (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 164 (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-3 (-402 |#2|) #1#) $) 163)) (-3507 (((-538) $) 167 (|has| (-402 |#2|) (-1014 (-538)))) (((-402 (-538)) $) 165 (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-402 |#2|) $) 162)) (-1911 (($ (-1231 (-402 |#2|)) (-1231 $)) 46) (($ (-1231 (-402 |#2|))) 62) (($ (-1231 |#2|) |#2|) 192)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-402 |#2|) (-345)))) (-2894 (($ $ $) 106 (|has| (-402 |#2|) (-358)))) (-1900 (((-669 (-402 |#2|)) $ (-1231 $)) 51) (((-669 (-402 |#2|)) $) 57)) (-2362 (((-669 (-538)) (-669 $)) 161 (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 160 (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-402 |#2|))) (|:| |vec| (-1231 (-402 |#2|)))) (-669 $) (-1231 $)) 159) (((-669 (-402 |#2|)) (-669 $)) 158)) (-1768 (((-1231 $) (-1231 $)) 198)) (-4202 (($ |#3|) 155) (((-3 $ "failed") (-402 |#3|)) 152 (|has| (-402 |#2|) (-358)))) (-3821 (((-3 $ "failed") $) 32)) (-1755 (((-622 (-622 |#1|))) 179 (|has| |#1| (-363)))) (-1780 (((-112) |#1| |#1|) 214)) (-3444 (((-895)) 52)) (-3327 (($) 88 (|has| (-402 |#2|) (-363)))) (-1775 (((-112)) 207)) (-1774 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2893 (($ $ $) 105 (|has| (-402 |#2|) (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 100 (|has| (-402 |#2|) (-358)))) (-3857 (($ $) 185)) (-3166 (($) 146 (|has| (-402 |#2|) (-345)))) (-1796 (((-112) $) 147 (|has| (-402 |#2|) (-345)))) (-1886 (($ $ (-751)) 138 (|has| (-402 |#2|) (-345))) (($ $) 137 (|has| (-402 |#2|) (-345)))) (-4086 (((-112) $) 113 (|has| (-402 |#2|) (-358)))) (-4131 (((-895) $) 149 (|has| (-402 |#2|) (-345))) (((-812 (-895)) $) 135 (|has| (-402 |#2|) (-345)))) (-2502 (((-112) $) 30)) (-3736 (((-751)) 217)) (-1769 (((-1231 $) (-1231 $)) 199)) (-3467 (((-402 |#2|) $) 49)) (-1756 (((-622 (-922 |#1|)) (-1149)) 180 (|has| |#1| (-358)))) (-3803 (((-3 $ "failed") $) 139 (|has| (-402 |#2|) (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 109 (|has| (-402 |#2|) (-358)))) (-2130 ((|#3| $) 42 (|has| (-402 |#2|) (-358)))) (-2126 (((-895) $) 87 (|has| (-402 |#2|) (-363)))) (-3413 ((|#3| $) 153)) (-2013 (($ (-622 $)) 98 (|has| (-402 |#2|) (-358))) (($ $ $) 97 (|has| (-402 |#2|) (-358)))) (-3593 (((-1131) $) 9)) (-1764 (((-669 (-402 |#2|))) 194)) (-1766 (((-669 (-402 |#2|))) 196)) (-2734 (($ $) 114 (|has| (-402 |#2|) (-358)))) (-1761 (($ (-1231 |#2|) |#2|) 190)) (-1765 (((-669 (-402 |#2|))) 195)) (-1767 (((-669 (-402 |#2|))) 197)) (-1760 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1762 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) 191)) (-1773 (((-1231 $)) 203)) (-4278 (((-1231 $)) 204)) (-1772 (((-112) $) 202)) (-1771 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3804 (($) 140 (|has| (-402 |#2|) (-345)) CONST)) (-2492 (($ (-895)) 86 (|has| (-402 |#2|) (-363)))) (-1758 (((-3 |#2| "failed")) 182)) (-3594 (((-1093) $) 10)) (-1782 (((-751)) 216)) (-2501 (($) 157)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 99 (|has| (-402 |#2|) (-358)))) (-3495 (($ (-622 $)) 96 (|has| (-402 |#2|) (-358))) (($ $ $) 95 (|has| (-402 |#2|) (-358)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 143 (|has| (-402 |#2|) (-345)))) (-4092 (((-400 $) $) 110 (|has| (-402 |#2|) (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 107 (|has| (-402 |#2|) (-358)))) (-3820 (((-3 $ "failed") $ $) 90 (|has| (-402 |#2|) (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 101 (|has| (-402 |#2|) (-358)))) (-1704 (((-751) $) 103 (|has| (-402 |#2|) (-358)))) (-4159 ((|#1| $ |#1| |#1|) 184)) (-1759 (((-3 |#2| "failed")) 183)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 104 (|has| (-402 |#2|) (-358)))) (-4117 (((-402 |#2|) (-1231 $)) 45) (((-402 |#2|)) 58)) (-1887 (((-751) $) 148 (|has| (-402 |#2|) (-345))) (((-3 (-751) "failed") $ $) 136 (|has| (-402 |#2|) (-345)))) (-4170 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) 120 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 119 (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-622 (-1149)) (-622 (-751))) 127 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149) (-751)) 128 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-622 (-1149))) 129 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149)) 130 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-751)) 132 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3191 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) 134 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3191 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-2500 (((-669 (-402 |#2|)) (-1231 $) (-1 (-402 |#2|) (-402 |#2|))) 151 (|has| (-402 |#2|) (-358)))) (-3536 ((|#3|) 156)) (-1790 (($) 145 (|has| (-402 |#2|) (-345)))) (-3575 (((-1231 (-402 |#2|)) $ (-1231 $)) 48) (((-669 (-402 |#2|)) (-1231 $) (-1231 $)) 47) (((-1231 (-402 |#2|)) $) 64) (((-669 (-402 |#2|)) (-1231 $)) 63)) (-4330 (((-1231 (-402 |#2|)) $) 61) (($ (-1231 (-402 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 142 (|has| (-402 |#2|) (-345)))) (-1770 (((-1231 $) (-1231 $)) 200)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 |#2|)) 35) (($ (-402 (-538))) 84 (-3891 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-1014 (-402 (-538)))))) (($ $) 89 (|has| (-402 |#2|) (-358)))) (-3035 (($ $) 141 (|has| (-402 |#2|) (-345))) (((-3 $ "failed") $) 41 (|has| (-402 |#2|) (-143)))) (-2698 ((|#3| $) 43)) (-3461 (((-751)) 28)) (-1779 (((-112)) 213)) (-1778 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-2128 (((-1231 $)) 65)) (-2177 (((-112) $ $) 93 (|has| (-402 |#2|) (-358)))) (-1757 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1781 (((-112)) 215)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) 122 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 121 (|has| (-402 |#2|) (-358))) (($ $ (-622 (-1149)) (-622 (-751))) 123 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149) (-751)) 124 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-622 (-1149))) 125 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149)) 126 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-751)) 131 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3191 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) 133 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3191 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 118 (|has| (-402 |#2|) (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 115 (|has| (-402 |#2|) (-358)))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 |#2|)) 37) (($ (-402 |#2|) $) 36) (($ (-402 (-538)) $) 117 (|has| (-402 |#2|) (-358))) (($ $ (-402 (-538))) 116 (|has| (-402 |#2|) (-358)))))
-(((-337 |#1| |#2| |#3|) (-138) (-1190) (-1207 |t#1|) (-1207 (-402 |t#2|))) (T -337))
-((-3736 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-751)))) (-1782 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-751)))) (-1781 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1780 (*1 *2 *3 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1779 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1778 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1778 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) (-1777 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1776 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1776 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) (-1775 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1774 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1774 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) (-4278 (*1 *2) (-12 (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)))) (-1773 (*1 *2) (-12 (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))) (-1767 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1766 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1765 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1764 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1231 *4)) (|:| |den| *4))))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1207 *4)) (-4 *4 (-1190)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1207 (-402 *3))))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1231 *4)) (|:| |den| *4))))) (-1761 (*1 *1 *2 *3) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1207 *4)) (-4 *4 (-1190)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1207 (-402 *3))))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-2 (|:| |num| (-669 *5)) (|:| |den| *5))))) (-1771 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))) (-3857 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1207 *2)) (-4 *4 (-1207 (-402 *3))))) (-4159 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1207 *2)) (-4 *4 (-1207 (-402 *3))))) (-1759 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) (-4 *4 (-1207 (-402 *2))) (-4 *2 (-1207 *3)))) (-1758 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) (-4 *4 (-1207 (-402 *2))) (-4 *2 (-1207 *3)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-1190)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-337 *4 *5 *6)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-4 *4 (-358)) (-5 *2 (-622 (-922 *4))))) (-1755 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-622 (-622 *3))))))
-(-13 (-705 (-402 |t#2|) |t#3|) (-10 -8 (-15 -3736 ((-751))) (-15 -1782 ((-751))) (-15 -1781 ((-112))) (-15 -1780 ((-112) |t#1| |t#1|)) (-15 -1779 ((-112))) (-15 -1778 ((-112) |t#1|)) (-15 -1778 ((-112) |t#2|)) (-15 -1777 ((-112))) (-15 -1776 ((-112) |t#1|)) (-15 -1776 ((-112) |t#2|)) (-15 -1775 ((-112))) (-15 -1774 ((-112) |t#1|)) (-15 -1774 ((-112) |t#2|)) (-15 -4278 ((-1231 $))) (-15 -1773 ((-1231 $))) (-15 -1772 ((-112) $)) (-15 -1771 ((-112) $)) (-15 -1770 ((-1231 $) (-1231 $))) (-15 -1769 ((-1231 $) (-1231 $))) (-15 -1768 ((-1231 $) (-1231 $))) (-15 -1767 ((-669 (-402 |t#2|)))) (-15 -1766 ((-669 (-402 |t#2|)))) (-15 -1765 ((-669 (-402 |t#2|)))) (-15 -1764 ((-669 (-402 |t#2|)))) (-15 -1763 ((-2 (|:| |num| (-1231 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1911 ($ (-1231 |t#2|) |t#2|)) (-15 -1762 ((-2 (|:| |num| (-1231 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1761 ($ (-1231 |t#2|) |t#2|)) (-15 -1760 ((-2 (|:| |num| (-669 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1771 ((-112) $ |t#1|)) (-15 -1771 ((-112) $ |t#2|)) (-15 -4170 ($ $ (-1 |t#2| |t#2|))) (-15 -3857 ($ $)) (-15 -4159 (|t#1| $ |t#1| |t#1|)) (-15 -1759 ((-3 |t#2| "failed"))) (-15 -1758 ((-3 |t#2| "failed"))) (-15 -1757 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-358)) (-15 -1756 ((-622 (-922 |t#1|)) (-1149))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1755 ((-622 (-622 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-38 #2=(-402 |#2|)) . T) ((-38 $) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-101) . T) ((-111 #1# #1#) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-143))) ((-145) |has| (-402 |#2|) (-145)) ((-597 (-840)) . T) ((-170) . T) ((-598 |#3|) . T) ((-227 #2#) |has| (-402 |#2|) (-358)) ((-229) -3891 (|has| (-402 |#2|) (-345)) (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358)))) ((-239) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-285) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-302) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-358) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-397) |has| (-402 |#2|) (-345)) ((-363) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-363))) ((-345) |has| (-402 |#2|) (-345)) ((-365 #2# |#3|) . T) ((-405 #2# |#3|) . T) ((-372 #2#) . T) ((-407 #2#) . T) ((-446) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-545) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-628 #1#) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-628 #2#) . T) ((-628 $) . T) ((-621 #2#) . T) ((-621 (-538)) |has| (-402 |#2|) (-621 (-538))) ((-698 #1#) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-698 #2#) . T) ((-698 $) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-705 #2# |#3|) . T) ((-707) . T) ((-876 (-1149)) -12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) ((-897) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-1014 (-402 (-538))) |has| (-402 |#2|) (-1014 (-402 (-538)))) ((-1014 #2#) . T) ((-1014 (-538)) |has| (-402 |#2|) (-1014 (-538))) ((-1031 #1#) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-1031 #2#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| (-402 |#2|) (-345)) ((-1190) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))))
-((-4318 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-338 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4318 (|#8| (-1 |#5| |#1|) |#4|))) (-1190) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-1190) (-1207 |#5|) (-1207 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -338))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1190)) (-4 *8 (-1190)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *9 (-1207 *8)) (-4 *2 (-337 *8 *9 *10)) (-5 *1 (-338 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-337 *5 *6 *7)) (-4 *10 (-1207 (-402 *9))))))
-(-10 -7 (-15 -4318 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-882 |#1|) (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| (-882 |#1|) (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-882 |#1|) "failed") $) NIL)) (-3507 (((-882 |#1|) $) NIL)) (-1911 (($ (-1231 (-882 |#1|))) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-882 |#1|) (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-882 |#1|) (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| (-882 |#1|) (-363)))) (-1796 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363)))) (($ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| (-882 |#1|) (-363))) (((-812 (-895)) $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| (-882 |#1|) (-363)))) (-2127 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-3467 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 (-882 |#1|)) $) NIL) (((-1143 $) $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-2126 (((-895) $) NIL (|has| (-882 |#1|) (-363)))) (-1724 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363)))) (-1723 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-1143 (-882 |#1|)) "failed") $ $) NIL (|has| (-882 |#1|) (-363)))) (-1725 (($ $ (-1143 (-882 |#1|))) NIL (|has| (-882 |#1|) (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-882 |#1|) (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-1783 (((-934 (-1093))) NIL)) (-2501 (($) NIL (|has| (-882 |#1|) (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-882 |#1|) (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 (-882 |#1|))) NIL)) (-1790 (($) NIL (|has| (-882 |#1|) (-363)))) (-1726 (($) NIL (|has| (-882 |#1|) (-363)))) (-3575 (((-1231 (-882 |#1|)) $) NIL) (((-669 (-882 |#1|)) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-882 |#1|) (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-882 |#1|)) NIL)) (-3035 (($ $) NIL (|has| (-882 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3002 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ (-882 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-882 |#1|)) NIL) (($ (-882 |#1|) $) NIL)))
-(((-339 |#1| |#2|) (-13 (-324 (-882 |#1|)) (-10 -7 (-15 -1783 ((-934 (-1093)))))) (-895) (-895)) (T -339))
-((-1783 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-339 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))))
-(-13 (-324 (-882 |#1|)) (-10 -7 (-15 -1783 ((-934 (-1093))))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 44)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) 41 (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) 115)) (-3507 ((|#1| $) 86)) (-1911 (($ (-1231 |#1|)) 104)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) 98 (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) 129 (|has| |#1| (-363)))) (-1796 (((-112) $) 48 (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) 45 (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) 131 (|has| |#1| (-363)))) (-2127 (((-112) $) NIL (|has| |#1| (-363)))) (-3467 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) 90) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) 139 (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) NIL (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) NIL (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 146)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) 71 (|has| |#1| (-363)))) (-4291 (((-112) $) 118)) (-3594 (((-1093) $) NIL)) (-1783 (((-934 (-1093))) 42)) (-2501 (($) 127 (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 93 (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) 67) (((-895)) 68)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) 130 (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) 125 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 |#1|)) 96)) (-1790 (($) 128 (|has| |#1| (-363)))) (-1726 (($) 136 (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) 59) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) 142) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 75)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) 138)) (-2128 (((-1231 $)) 117) (((-1231 $) (-895)) 73)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) 49 T CONST)) (-2997 (($) 46 T CONST)) (-4288 (($ $) 81 (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) 47)) (-4308 (($ $ $) 144) (($ $ |#1|) 145)) (-4197 (($ $) 126) (($ $ $) NIL)) (-4199 (($ $ $) 61)) (** (($ $ (-895)) 148) (($ $ (-751)) 149) (($ $ (-538)) 147)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 77) (($ $ $) 76) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
-(((-340 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1783 ((-934 (-1093)))))) (-345) (-1143 |#1|)) (T -340))
-((-1783 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-340 *3 *4)) (-4 *3 (-345)) (-14 *4 (-1143 *3)))))
-(-13 (-324 |#1|) (-10 -7 (-15 -1783 ((-934 (-1093))))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-1911 (($ (-1231 |#1|)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| |#1| (-363)))) (-1796 (((-112) $) NIL (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| |#1| (-363)))) (-2127 (((-112) $) NIL (|has| |#1| (-363)))) (-3467 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) NIL) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) NIL (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) NIL (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-1783 (((-934 (-1093))) NIL)) (-2501 (($) NIL (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 |#1|)) NIL)) (-1790 (($) NIL (|has| |#1| (-363)))) (-1726 (($) NIL (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) NIL) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) NIL)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-341 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1783 ((-934 (-1093)))))) (-345) (-895)) (T -341))
-((-1783 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-341 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895)))))
-(-13 (-324 |#1|) (-10 -7 (-15 -1783 ((-934 (-1093))))))
-((-1793 (((-751) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) 42)) (-1784 (((-934 (-1093)) (-1143 |#1|)) 85)) (-1785 (((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) (-1143 |#1|)) 78)) (-1786 (((-669 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) 86)) (-1787 (((-3 (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) "failed") (-895)) 13)) (-1788 (((-3 (-1143 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) (-895)) 18)))
-(((-342 |#1|) (-10 -7 (-15 -1784 ((-934 (-1093)) (-1143 |#1|))) (-15 -1785 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) (-1143 |#1|))) (-15 -1786 ((-669 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1793 ((-751) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1787 ((-3 (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) "failed") (-895))) (-15 -1788 ((-3 (-1143 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) (-895)))) (-345)) (T -342))
-((-1788 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-3 (-1143 *4) (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093))))))) (-5 *1 (-342 *4)) (-4 *4 (-345)))) (-1787 (*1 *2 *3) (|partial| -12 (-5 *3 (-895)) (-5 *2 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) (-5 *1 (-342 *4)) (-4 *4 (-345)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) (-4 *4 (-345)) (-5 *2 (-751)) (-5 *1 (-342 *4)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) (-4 *4 (-345)) (-5 *2 (-669 *4)) (-5 *1 (-342 *4)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) (-5 *1 (-342 *4)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-934 (-1093))) (-5 *1 (-342 *4)))))
-(-10 -7 (-15 -1784 ((-934 (-1093)) (-1143 |#1|))) (-15 -1785 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) (-1143 |#1|))) (-15 -1786 ((-669 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1793 ((-751) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1787 ((-3 (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) "failed") (-895))) (-15 -1788 ((-3 (-1143 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) (-895))))
-((-4317 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-343 |#1| |#2| |#3|) (-10 -7 (-15 -4317 (|#3| |#1|)) (-15 -4317 (|#1| |#3|))) (-324 |#2|) (-345) (-324 |#2|)) (T -343))
-((-4317 (*1 *2 *3) (-12 (-4 *4 (-345)) (-4 *2 (-324 *4)) (-5 *1 (-343 *2 *4 *3)) (-4 *3 (-324 *4)))) (-4317 (*1 *2 *3) (-12 (-4 *4 (-345)) (-4 *2 (-324 *4)) (-5 *1 (-343 *3 *4 *2)) (-4 *3 (-324 *4)))))
-(-10 -7 (-15 -4317 (|#3| |#1|)) (-15 -4317 (|#1| |#3|)))
-((-1796 (((-112) $) 51)) (-4131 (((-812 (-895)) $) 21) (((-895) $) 52)) (-3803 (((-3 $ "failed") $) 16)) (-3804 (($) 9)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 93)) (-1887 (((-3 (-751) "failed") $ $) 71) (((-751) $) 60)) (-4170 (($ $ (-751)) NIL) (($ $) 8)) (-1790 (($) 44)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 34)) (-3035 (((-3 $ "failed") $) 38) (($ $) 37)))
-(((-344 |#1|) (-10 -8 (-15 -4131 ((-895) |#1|)) (-15 -1887 ((-751) |#1|)) (-15 -1796 ((-112) |#1|)) (-15 -1790 (|#1|)) (-15 -3036 ((-3 (-1231 |#1|) "failed") (-669 |#1|))) (-15 -3035 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -1887 ((-3 (-751) "failed") |#1| |#1|)) (-15 -4131 ((-812 (-895)) |#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)))) (-345)) (T -344))
-NIL
-(-10 -8 (-15 -4131 ((-895) |#1|)) (-15 -1887 ((-751) |#1|)) (-15 -1796 ((-112) |#1|)) (-15 -1790 (|#1|)) (-15 -3036 ((-3 (-1231 |#1|) "failed") (-669 |#1|))) (-15 -3035 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -1887 ((-3 (-751) "failed") |#1| |#1|)) (-15 -4131 ((-812 (-895)) |#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1791 (((-1158 (-895) (-751)) (-538)) 90)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-1705 (((-112) $ $) 57)) (-3471 (((-751)) 100)) (-3896 (($) 17 T CONST)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-3327 (($) 103)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-3166 (($) 88)) (-1796 (((-112) $) 87)) (-1886 (($ $) 76) (($ $ (-751)) 75)) (-4086 (((-112) $) 68)) (-4131 (((-812 (-895)) $) 78) (((-895) $) 85)) (-2502 (((-112) $) 30)) (-3803 (((-3 $ "failed") $) 99)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2126 (((-895) $) 102)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3804 (($) 98 T CONST)) (-2492 (($ (-895)) 101)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 91)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-1887 (((-3 (-751) "failed") $ $) 77) (((-751) $) 86)) (-4170 (($ $ (-751)) 96) (($ $) 94)) (-1790 (($) 89)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 92)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63)) (-3035 (((-3 $ "failed") $) 79) (($ $) 93)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-751)) 97) (($ $) 95)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64)))
-(((-345) (-138)) (T -345))
-((-3035 (*1 *1 *1) (-4 *1 (-345))) (-3036 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-345)) (-5 *2 (-1231 *1)))) (-1792 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))))) (-1791 (*1 *2 *3) (-12 (-4 *1 (-345)) (-5 *3 (-538)) (-5 *2 (-1158 (-895) (-751))))) (-1790 (*1 *1) (-4 *1 (-345))) (-3166 (*1 *1) (-4 *1 (-345))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-112)))) (-1887 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-751)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-895)))) (-1789 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-397) (-363) (-1124) (-229) (-10 -8 (-15 -3035 ($ $)) (-15 -3036 ((-3 (-1231 $) "failed") (-669 $))) (-15 -1792 ((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538)))))) (-15 -1791 ((-1158 (-895) (-751)) (-538))) (-15 -1790 ($)) (-15 -3166 ($)) (-15 -1796 ((-112) $)) (-15 -1887 ((-751) $)) (-15 -4131 ((-895) $)) (-15 -1789 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-597 (-840)) . T) ((-170) . T) ((-229) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) . T) ((-363) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) . T) ((-1190) . T))
-((-4279 (((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|) 53)) (-4278 (((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))) 51)))
-(((-346 |#1| |#2| |#3|) (-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|))) (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))) (-1207 |#1|) (-405 |#1| |#2|)) (T -346))
-((-4279 (*1 *2 *3) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-4278 (*1 *2) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-405 *3 *4)))))
-(-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-882 |#1|) (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1793 (((-751)) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| (-882 |#1|) (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-882 |#1|) "failed") $) NIL)) (-3507 (((-882 |#1|) $) NIL)) (-1911 (($ (-1231 (-882 |#1|))) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-882 |#1|) (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-882 |#1|) (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| (-882 |#1|) (-363)))) (-1796 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363)))) (($ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| (-882 |#1|) (-363))) (((-812 (-895)) $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| (-882 |#1|) (-363)))) (-2127 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-3467 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 (-882 |#1|)) $) NIL) (((-1143 $) $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-2126 (((-895) $) NIL (|has| (-882 |#1|) (-363)))) (-1724 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363)))) (-1723 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-1143 (-882 |#1|)) "failed") $ $) NIL (|has| (-882 |#1|) (-363)))) (-1725 (($ $ (-1143 (-882 |#1|))) NIL (|has| (-882 |#1|) (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-882 |#1|) (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-1795 (((-1231 (-622 (-2 (|:| -3761 (-882 |#1|)) (|:| -2492 (-1093)))))) NIL)) (-1794 (((-669 (-882 |#1|))) NIL)) (-2501 (($) NIL (|has| (-882 |#1|) (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-882 |#1|) (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 (-882 |#1|))) NIL)) (-1790 (($) NIL (|has| (-882 |#1|) (-363)))) (-1726 (($) NIL (|has| (-882 |#1|) (-363)))) (-3575 (((-1231 (-882 |#1|)) $) NIL) (((-669 (-882 |#1|)) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-882 |#1|) (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-882 |#1|)) NIL)) (-3035 (($ $) NIL (|has| (-882 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3002 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ (-882 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-882 |#1|)) NIL) (($ (-882 |#1|) $) NIL)))
-(((-347 |#1| |#2|) (-13 (-324 (-882 |#1|)) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 (-882 |#1|)) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 (-882 |#1|)))) (-15 -1793 ((-751))))) (-895) (-895)) (T -347))
-((-1795 (*1 *2) (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 (-882 *3)) (|:| -2492 (-1093)))))) (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-1794 (*1 *2) (-12 (-5 *2 (-669 (-882 *3))) (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-1793 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))))
-(-13 (-324 (-882 |#1|)) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 (-882 |#1|)) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 (-882 |#1|)))) (-15 -1793 ((-751)))))
-((-2898 (((-112) $ $) 61)) (-3539 (((-112) $) 74)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) 92) (($ $ (-895)) 90 (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) 148 (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1793 (((-751)) 89)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) 162 (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) 112)) (-3507 ((|#1| $) 91)) (-1911 (($ (-1231 |#1|)) 58)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) 158 (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) 149 (|has| |#1| (-363)))) (-1796 (((-112) $) NIL (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) 98 (|has| |#1| (-363)))) (-2127 (((-112) $) 175 (|has| |#1| (-363)))) (-3467 ((|#1| $) 94) (($ $ (-895)) 93 (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) 189) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) 134 (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) 73 (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) 70 (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) 82 (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) 69 (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 192)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) 137 (|has| |#1| (-363)))) (-4291 (((-112) $) 108)) (-3594 (((-1093) $) NIL)) (-1795 (((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) 83)) (-1794 (((-669 |#1|)) 87)) (-2501 (($) 96 (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 150 (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) 151)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) 62)) (-3536 (((-1143 |#1|)) 152)) (-1790 (($) 133 (|has| |#1| (-363)))) (-1726 (($) NIL (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) 106) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) 124) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 57)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) 156)) (-2128 (((-1231 $)) 172) (((-1231 $) (-895)) 101)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) 117 T CONST)) (-2997 (($) 33 T CONST)) (-4288 (($ $) 107 (|has| |#1| (-363))) (($ $ (-751)) 99 (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) 183)) (-4308 (($ $ $) 104) (($ $ |#1|) 105)) (-4197 (($ $) 177) (($ $ $) 181)) (-4199 (($ $ $) 179)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 138)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 186) (($ $ $) 142) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
-(((-348 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 |#1|))) (-15 -1793 ((-751))))) (-345) (-3 (-1143 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (T -348))
-((-1795 (*1 *2) (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093)))))) (-5 *1 (-348 *3 *4)) (-4 *3 (-345)) (-14 *4 (-3 (-1143 *3) *2)))) (-1794 (*1 *2) (-12 (-5 *2 (-669 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-345)) (-14 *4 (-3 (-1143 *3) (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093))))))))) (-1793 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-348 *3 *4)) (-4 *3 (-345)) (-14 *4 (-3 (-1143 *3) (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093))))))))))
-(-13 (-324 |#1|) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 |#1|))) (-15 -1793 ((-751)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1793 (((-751)) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-1911 (($ (-1231 |#1|)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| |#1| (-363)))) (-1796 (((-112) $) NIL (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| |#1| (-363)))) (-2127 (((-112) $) NIL (|has| |#1| (-363)))) (-3467 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) NIL) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) NIL (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) NIL (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-1795 (((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) NIL)) (-1794 (((-669 |#1|)) NIL)) (-2501 (($) NIL (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 |#1|)) NIL)) (-1790 (($) NIL (|has| |#1| (-363)))) (-1726 (($) NIL (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) NIL) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) NIL)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-349 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 |#1|))) (-15 -1793 ((-751))))) (-345) (-895)) (T -349))
-((-1795 (*1 *2) (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093)))))) (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895)))) (-1794 (*1 *2) (-12 (-5 *2 (-669 *3)) (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895)))) (-1793 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895)))))
-(-13 (-324 |#1|) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 |#1|))) (-15 -1793 ((-751)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) 120 (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) 140 (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) 93)) (-3507 ((|#1| $) 90)) (-1911 (($ (-1231 |#1|)) 85)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) 82 (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) 42 (|has| |#1| (-363)))) (-1796 (((-112) $) NIL (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) 121 (|has| |#1| (-363)))) (-2127 (((-112) $) 74 (|has| |#1| (-363)))) (-3467 ((|#1| $) 39) (($ $ (-895)) 43 (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) 65) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) 97 (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) NIL (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) NIL (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) 95 (|has| |#1| (-363)))) (-4291 (((-112) $) 142)) (-3594 (((-1093) $) NIL)) (-2501 (($) 36 (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 115 (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) 139)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) 59)) (-3536 (((-1143 |#1|)) 88)) (-1790 (($) 126 (|has| |#1| (-363)))) (-1726 (($) NIL (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) 53) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) 138) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 87)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) 144)) (-2128 (((-1231 $)) 109) (((-1231 $) (-895)) 49)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) 111 T CONST)) (-2997 (($) 32 T CONST)) (-4288 (($ $) 68 (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) 107)) (-4308 (($ $ $) 99) (($ $ |#1|) 100)) (-4197 (($ $) 80) (($ $ $) 105)) (-4199 (($ $ $) 103)) (** (($ $ (-895)) NIL) (($ $ (-751)) 44) (($ $ (-538)) 130)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 78) (($ $ $) 56) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
-(((-350 |#1| |#2|) (-324 |#1|) (-345) (-1143 |#1|)) (T -350))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1149)) $) NIL)) (-1605 (((-112)) 91) (((-112) (-112)) 92)) (-3715 (((-625 (-596 $)) $) NIL)) (-3728 (($ $) NIL)) (-3604 (($ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3831 (($ $ (-289 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL)) (-3837 (($ $) NIL)) (-3710 (($ $) NIL)) (-3581 (($ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-596 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-311 |#3|)) 71) (((-3 $ "failed") (-1149)) 97) (((-3 $ "failed") (-311 (-552))) 59 (|has| |#3| (-1014 (-552)))) (((-3 $ "failed") (-402 (-928 (-552)))) 65 (|has| |#3| (-1014 (-552)))) (((-3 $ "failed") (-928 (-552))) 60 (|has| |#3| (-1014 (-552)))) (((-3 $ "failed") (-311 (-374))) 89 (|has| |#3| (-1014 (-374)))) (((-3 $ "failed") (-402 (-928 (-374)))) 83 (|has| |#3| (-1014 (-374)))) (((-3 $ "failed") (-928 (-374))) 78 (|has| |#3| (-1014 (-374))))) (-1895 (((-596 $) $) NIL) ((|#3| $) NIL) (($ (-311 |#3|)) 72) (($ (-1149)) 98) (($ (-311 (-552))) 61 (|has| |#3| (-1014 (-552)))) (($ (-402 (-928 (-552)))) 66 (|has| |#3| (-1014 (-552)))) (($ (-928 (-552))) 62 (|has| |#3| (-1014 (-552)))) (($ (-311 (-374))) 90 (|has| |#3| (-1014 (-374)))) (($ (-402 (-928 (-374)))) 84 (|has| |#3| (-1014 (-374)))) (($ (-928 (-374))) 80 (|has| |#3| (-1014 (-374))))) (-4174 (((-3 $ "failed") $) NIL)) (-1385 (($) 10)) (-2411 (($ $) NIL) (($ (-625 $)) NIL)) (-1940 (((-625 (-114)) $) NIL)) (-1563 (((-114) (-114)) NIL)) (-3650 (((-112) $) NIL)) (-3932 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-1917 (((-1145 $) (-596 $)) NIL (|has| $ (-1025)))) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 $ $) (-596 $)) NIL)) (-1952 (((-3 (-596 $) "failed") $) NIL)) (-4138 (($ $) 94)) (-2458 (($ $) NIL)) (-2883 (((-1131) $) NIL)) (-3783 (((-625 (-596 $)) $) NIL)) (-1425 (($ (-114) $) 93) (($ (-114) (-625 $)) NIL)) (-1721 (((-112) $ (-114)) NIL) (((-112) $ (-1149)) NIL)) (-2207 (((-751) $) NIL)) (-2831 (((-1093) $) NIL)) (-1929 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-2863 (($ $) NIL)) (-3943 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-1149) (-1 $ (-625 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-625 (-114)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-114) (-1 $ (-625 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2154 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-625 $)) NIL)) (-1963 (($ $) NIL) (($ $ $) NIL)) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL)) (-3610 (($ $) NIL (|has| $ (-1025)))) (-3721 (($ $) NIL)) (-3593 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-596 $)) NIL) (($ |#3|) NIL) (($ (-552)) NIL) (((-311 |#3|) $) 96)) (-4141 (((-751)) NIL)) (-3779 (($ $) NIL) (($ (-625 $)) NIL)) (-1572 (((-112) (-114)) NIL)) (-3670 (($ $) NIL)) (-3648 (($ $) NIL)) (-3659 (($ $) NIL)) (-1727 (($ $) NIL)) (-2089 (($) 95 T CONST)) (-2100 (($) 24 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL)))
+(((-334 |#1| |#2| |#3|) (-13 (-297) (-38 |#3|) (-1014 |#3|) (-876 (-1149)) (-10 -8 (-15 -1895 ($ (-311 |#3|))) (-15 -1893 ((-3 $ "failed") (-311 |#3|))) (-15 -1895 ($ (-1149))) (-15 -1893 ((-3 $ "failed") (-1149))) (-15 -1683 ((-311 |#3|) $)) (IF (|has| |#3| (-1014 (-552))) (PROGN (-15 -1895 ($ (-311 (-552)))) (-15 -1893 ((-3 $ "failed") (-311 (-552)))) (-15 -1895 ($ (-402 (-928 (-552))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-552))))) (-15 -1895 ($ (-928 (-552)))) (-15 -1893 ((-3 $ "failed") (-928 (-552))))) |%noBranch|) (IF (|has| |#3| (-1014 (-374))) (PROGN (-15 -1895 ($ (-311 (-374)))) (-15 -1893 ((-3 $ "failed") (-311 (-374)))) (-15 -1895 ($ (-402 (-928 (-374))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-374))))) (-15 -1895 ($ (-928 (-374)))) (-15 -1893 ((-3 $ "failed") (-928 (-374))))) |%noBranch|) (-15 -1727 ($ $)) (-15 -3837 ($ $)) (-15 -2863 ($ $)) (-15 -2458 ($ $)) (-15 -4138 ($ $)) (-15 -3581 ($ $)) (-15 -3593 ($ $)) (-15 -3604 ($ $)) (-15 -3648 ($ $)) (-15 -3659 ($ $)) (-15 -3670 ($ $)) (-15 -3710 ($ $)) (-15 -3721 ($ $)) (-15 -3728 ($ $)) (-15 -1385 ($)) (-15 -3982 ((-625 (-1149)) $)) (-15 -1605 ((-112))) (-15 -1605 ((-112) (-112))))) (-625 (-1149)) (-625 (-1149)) (-382)) (T -334))
+((-1895 (*1 *1 *2) (-12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 *2)) (-14 *4 (-625 *2)) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 *2)) (-14 *4 (-625 *2)) (-4 *5 (-382)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-311 *5)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-552))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-552)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-928 (-552)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-928 (-552))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-552))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-374)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-928 (-374)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-928 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1727 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-2863 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-2458 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-4138 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3581 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3604 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3648 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3659 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3670 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3710 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3721 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3728 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-1385 (*1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-382)))) (-1605 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))))
+(-13 (-297) (-38 |#3|) (-1014 |#3|) (-876 (-1149)) (-10 -8 (-15 -1895 ($ (-311 |#3|))) (-15 -1893 ((-3 $ "failed") (-311 |#3|))) (-15 -1895 ($ (-1149))) (-15 -1893 ((-3 $ "failed") (-1149))) (-15 -1683 ((-311 |#3|) $)) (IF (|has| |#3| (-1014 (-552))) (PROGN (-15 -1895 ($ (-311 (-552)))) (-15 -1893 ((-3 $ "failed") (-311 (-552)))) (-15 -1895 ($ (-402 (-928 (-552))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-552))))) (-15 -1895 ($ (-928 (-552)))) (-15 -1893 ((-3 $ "failed") (-928 (-552))))) |%noBranch|) (IF (|has| |#3| (-1014 (-374))) (PROGN (-15 -1895 ($ (-311 (-374)))) (-15 -1893 ((-3 $ "failed") (-311 (-374)))) (-15 -1895 ($ (-402 (-928 (-374))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-374))))) (-15 -1895 ($ (-928 (-374)))) (-15 -1893 ((-3 $ "failed") (-928 (-374))))) |%noBranch|) (-15 -1727 ($ $)) (-15 -3837 ($ $)) (-15 -2863 ($ $)) (-15 -2458 ($ $)) (-15 -4138 ($ $)) (-15 -3581 ($ $)) (-15 -3593 ($ $)) (-15 -3604 ($ $)) (-15 -3648 ($ $)) (-15 -3659 ($ $)) (-15 -3670 ($ $)) (-15 -3710 ($ $)) (-15 -3721 ($ $)) (-15 -3728 ($ $)) (-15 -1385 ($)) (-15 -3982 ((-625 (-1149)) $)) (-15 -1605 ((-112))) (-15 -1605 ((-112) (-112)))))
+((-1996 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1996 (|#8| (-1 |#5| |#1|) |#4|))) (-1190) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-1190) (-1208 |#5|) (-1208 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -335))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1190)) (-4 *8 (-1190)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *9 (-1208 *8)) (-4 *2 (-337 *8 *9 *10)) (-5 *1 (-335 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-337 *5 *6 *7)) (-4 *10 (-1208 (-402 *9))))))
+(-10 -7 (-15 -1996 (|#8| (-1 |#5| |#1|) |#4|)))
+((-1706 (((-2 (|:| |num| (-1232 |#3|)) (|:| |den| |#3|)) $) 38)) (-2670 (($ (-1232 (-402 |#3|)) (-1232 $)) NIL) (($ (-1232 (-402 |#3|))) NIL) (($ (-1232 |#3|) |#3|) 161)) (-1760 (((-1232 $) (-1232 $)) 145)) (-1615 (((-625 (-625 |#2|))) 119)) (-3701 (((-112) |#2| |#2|) 73)) (-1294 (($ $) 139)) (-1682 (((-751)) 31)) (-1770 (((-1232 $) (-1232 $)) 198)) (-1626 (((-625 (-928 |#2|)) (-1149)) 110)) (-1805 (((-112) $) 158)) (-1793 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1649 (((-3 |#3| "failed")) 50)) (-3722 (((-751)) 170)) (-2154 ((|#2| $ |#2| |#2|) 132)) (-1661 (((-3 |#3| "failed")) 68)) (-3072 (($ $ (-1 (-402 |#3|) (-402 |#3|)) (-751)) NIL) (($ $ (-1 (-402 |#3|) (-402 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-1781 (((-1232 $) (-1232 $)) 151)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3711 (((-112)) 33)))
+(((-336 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -1615 ((-625 (-625 |#2|)))) (-15 -1626 ((-625 (-928 |#2|)) (-1149))) (-15 -1639 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1649 ((-3 |#3| "failed"))) (-15 -1661 ((-3 |#3| "failed"))) (-15 -2154 (|#2| |#1| |#2| |#2|)) (-15 -1294 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1793 ((-112) |#1| |#3|)) (-15 -1793 ((-112) |#1| |#2|)) (-15 -2670 (|#1| (-1232 |#3|) |#3|)) (-15 -1706 ((-2 (|:| |num| (-1232 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1760 ((-1232 |#1|) (-1232 |#1|))) (-15 -1770 ((-1232 |#1|) (-1232 |#1|))) (-15 -1781 ((-1232 |#1|) (-1232 |#1|))) (-15 -1793 ((-112) |#1|)) (-15 -1805 ((-112) |#1|)) (-15 -3701 ((-112) |#2| |#2|)) (-15 -3711 ((-112))) (-15 -3722 ((-751))) (-15 -1682 ((-751))) (-15 -3072 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -3072 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-751))) (-15 -2670 (|#1| (-1232 (-402 |#3|)))) (-15 -2670 (|#1| (-1232 (-402 |#3|)) (-1232 |#1|)))) (-337 |#2| |#3| |#4|) (-1190) (-1208 |#2|) (-1208 (-402 |#3|))) (T -336))
+((-1682 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-3722 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-3711 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *3 (-1190)) (-4 *5 (-1208 *3)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6)))) (-1661 (*1 *2) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 (-402 *2))) (-4 *2 (-1208 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-1649 (*1 *2) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 (-402 *2))) (-4 *2 (-1208 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *5 (-1190)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-5 *2 (-625 (-928 *5))) (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7)))) (-1615 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-625 (-625 *4))) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))))
+(-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -1615 ((-625 (-625 |#2|)))) (-15 -1626 ((-625 (-928 |#2|)) (-1149))) (-15 -1639 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1649 ((-3 |#3| "failed"))) (-15 -1661 ((-3 |#3| "failed"))) (-15 -2154 (|#2| |#1| |#2| |#2|)) (-15 -1294 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1793 ((-112) |#1| |#3|)) (-15 -1793 ((-112) |#1| |#2|)) (-15 -2670 (|#1| (-1232 |#3|) |#3|)) (-15 -1706 ((-2 (|:| |num| (-1232 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1760 ((-1232 |#1|) (-1232 |#1|))) (-15 -1770 ((-1232 |#1|) (-1232 |#1|))) (-15 -1781 ((-1232 |#1|) (-1232 |#1|))) (-15 -1793 ((-112) |#1|)) (-15 -1805 ((-112) |#1|)) (-15 -3701 ((-112) |#2| |#2|)) (-15 -3711 ((-112))) (-15 -3722 ((-751))) (-15 -1682 ((-751))) (-15 -3072 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -3072 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-751))) (-15 -2670 (|#1| (-1232 (-402 |#3|)))) (-15 -2670 (|#1| (-1232 (-402 |#3|)) (-1232 |#1|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-1706 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) 193)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (|has| (-402 |#2|) (-358)))) (-3528 (($ $) 92 (|has| (-402 |#2|) (-358)))) (-3509 (((-112) $) 94 (|has| (-402 |#2|) (-358)))) (-2570 (((-669 (-402 |#2|)) (-1232 $)) 44) (((-669 (-402 |#2|))) 59)) (-1650 (((-402 |#2|) $) 50)) (-3811 (((-1159 (-897) (-751)) (-552)) 144 (|has| (-402 |#2|) (-344)))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 111 (|has| (-402 |#2|) (-358)))) (-1330 (((-413 $) $) 112 (|has| (-402 |#2|) (-358)))) (-2408 (((-112) $ $) 102 (|has| (-402 |#2|) (-358)))) (-2894 (((-751)) 85 (|has| (-402 |#2|) (-363)))) (-1861 (((-112)) 210)) (-1852 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 166 (|has| (-402 |#2|) (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 164 (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-3 (-402 |#2|) "failed") $) 163)) (-1895 (((-552) $) 167 (|has| (-402 |#2|) (-1014 (-552)))) (((-402 (-552)) $) 165 (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-402 |#2|) $) 162)) (-2670 (($ (-1232 (-402 |#2|)) (-1232 $)) 46) (($ (-1232 (-402 |#2|))) 62) (($ (-1232 |#2|) |#2|) 192)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-402 |#2|) (-344)))) (-2851 (($ $ $) 106 (|has| (-402 |#2|) (-358)))) (-2559 (((-669 (-402 |#2|)) $ (-1232 $)) 51) (((-669 (-402 |#2|)) $) 57)) (-1794 (((-669 (-552)) (-669 $)) 161 (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 160 (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-402 |#2|))) (|:| |vec| (-1232 (-402 |#2|)))) (-669 $) (-1232 $)) 159) (((-669 (-402 |#2|)) (-669 $)) 158)) (-1760 (((-1232 $) (-1232 $)) 198)) (-2163 (($ |#3|) 155) (((-3 $ "failed") (-402 |#3|)) 152 (|has| (-402 |#2|) (-358)))) (-4174 (((-3 $ "failed") $) 32)) (-1615 (((-625 (-625 |#1|))) 179 (|has| |#1| (-363)))) (-3701 (((-112) |#1| |#1|) 214)) (-3442 (((-897)) 52)) (-3702 (($) 88 (|has| (-402 |#2|) (-363)))) (-1839 (((-112)) 207)) (-1826 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2826 (($ $ $) 105 (|has| (-402 |#2|) (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 100 (|has| (-402 |#2|) (-358)))) (-1294 (($ $) 185)) (-4279 (($) 146 (|has| (-402 |#2|) (-344)))) (-3872 (((-112) $) 147 (|has| (-402 |#2|) (-344)))) (-3554 (($ $ (-751)) 138 (|has| (-402 |#2|) (-344))) (($ $) 137 (|has| (-402 |#2|) (-344)))) (-2951 (((-112) $) 113 (|has| (-402 |#2|) (-358)))) (-2172 (((-897) $) 149 (|has| (-402 |#2|) (-344))) (((-813 (-897)) $) 135 (|has| (-402 |#2|) (-344)))) (-3650 (((-112) $) 30)) (-1682 (((-751)) 217)) (-1770 (((-1232 $) (-1232 $)) 199)) (-4209 (((-402 |#2|) $) 49)) (-1626 (((-625 (-928 |#1|)) (-1149)) 180 (|has| |#1| (-358)))) (-4034 (((-3 $ "failed") $) 139 (|has| (-402 |#2|) (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 109 (|has| (-402 |#2|) (-358)))) (-1291 ((|#3| $) 42 (|has| (-402 |#2|) (-358)))) (-4318 (((-897) $) 87 (|has| (-402 |#2|) (-363)))) (-2148 ((|#3| $) 153)) (-2605 (($ (-625 $)) 98 (|has| (-402 |#2|) (-358))) (($ $ $) 97 (|has| (-402 |#2|) (-358)))) (-2883 (((-1131) $) 9)) (-1718 (((-669 (-402 |#2|))) 194)) (-1740 (((-669 (-402 |#2|))) 196)) (-4092 (($ $) 114 (|has| (-402 |#2|) (-358)))) (-1684 (($ (-1232 |#2|) |#2|) 190)) (-1729 (((-669 (-402 |#2|))) 195)) (-1750 (((-669 (-402 |#2|))) 197)) (-1672 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1696 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) 191)) (-1816 (((-1232 $)) 203)) (-3993 (((-1232 $)) 204)) (-1805 (((-112) $) 202)) (-1793 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-2071 (($) 140 (|has| (-402 |#2|) (-344)) CONST)) (-3123 (($ (-897)) 86 (|has| (-402 |#2|) (-363)))) (-1649 (((-3 |#2| "failed")) 182)) (-2831 (((-1093) $) 10)) (-3722 (((-751)) 216)) (-3212 (($) 157)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 99 (|has| (-402 |#2|) (-358)))) (-2633 (($ (-625 $)) 96 (|has| (-402 |#2|) (-358))) (($ $ $) 95 (|has| (-402 |#2|) (-358)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 143 (|has| (-402 |#2|) (-344)))) (-3824 (((-413 $) $) 110 (|has| (-402 |#2|) (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 107 (|has| (-402 |#2|) (-358)))) (-2802 (((-3 $ "failed") $ $) 90 (|has| (-402 |#2|) (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 101 (|has| (-402 |#2|) (-358)))) (-2397 (((-751) $) 103 (|has| (-402 |#2|) (-358)))) (-2154 ((|#1| $ |#1| |#1|) 184)) (-1661 (((-3 |#2| "failed")) 183)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 104 (|has| (-402 |#2|) (-358)))) (-3217 (((-402 |#2|) (-1232 $)) 45) (((-402 |#2|)) 58)) (-3563 (((-751) $) 148 (|has| (-402 |#2|) (-344))) (((-3 (-751) "failed") $ $) 136 (|has| (-402 |#2|) (-344)))) (-3072 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) 120 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 119 (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-625 (-1149)) (-625 (-751))) 127 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149) (-751)) 128 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-625 (-1149))) 129 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149)) 130 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-751)) 132 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3743 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) 134 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3743 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-3640 (((-669 (-402 |#2|)) (-1232 $) (-1 (-402 |#2|) (-402 |#2|))) 151 (|has| (-402 |#2|) (-358)))) (-3610 ((|#3|) 156)) (-3798 (($) 145 (|has| (-402 |#2|) (-344)))) (-2780 (((-1232 (-402 |#2|)) $ (-1232 $)) 48) (((-669 (-402 |#2|)) (-1232 $) (-1232 $)) 47) (((-1232 (-402 |#2|)) $) 64) (((-669 (-402 |#2|)) (-1232 $)) 63)) (-2042 (((-1232 (-402 |#2|)) $) 61) (($ (-1232 (-402 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 142 (|has| (-402 |#2|) (-344)))) (-1781 (((-1232 $) (-1232 $)) 200)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 |#2|)) 35) (($ (-402 (-552))) 84 (-1523 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-1014 (-402 (-552)))))) (($ $) 89 (|has| (-402 |#2|) (-358)))) (-4243 (($ $) 141 (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) 41 (|has| (-402 |#2|) (-143)))) (-3974 ((|#3| $) 43)) (-4141 (((-751)) 28)) (-1882 (((-112)) 213)) (-1872 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-1270 (((-1232 $)) 65)) (-3518 (((-112) $ $) 93 (|has| (-402 |#2|) (-358)))) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-3711 (((-112)) 215)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) 122 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 121 (|has| (-402 |#2|) (-358))) (($ $ (-625 (-1149)) (-625 (-751))) 123 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149) (-751)) 124 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-625 (-1149))) 125 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149)) 126 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-751)) 131 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3743 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) 133 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3743 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 118 (|has| (-402 |#2|) (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 115 (|has| (-402 |#2|) (-358)))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 |#2|)) 37) (($ (-402 |#2|) $) 36) (($ (-402 (-552)) $) 117 (|has| (-402 |#2|) (-358))) (($ $ (-402 (-552))) 116 (|has| (-402 |#2|) (-358)))))
+(((-337 |#1| |#2| |#3|) (-138) (-1190) (-1208 |t#1|) (-1208 (-402 |t#2|))) (T -337))
+((-1682 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-751)))) (-3722 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-751)))) (-3711 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1882 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1872 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1872 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) (-1861 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1852 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1852 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) (-1839 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1826 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1826 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) (-3993 (*1 *2) (-12 (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)))) (-1816 (*1 *2) (-12 (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1781 (*1 *2 *2) (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))) (-1750 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1740 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1729 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1718 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1232 *4)) (|:| |den| *4))))) (-2670 (*1 *1 *2 *3) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1208 *4)) (-4 *4 (-1190)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1208 (-402 *3))))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1232 *4)) (|:| |den| *4))))) (-1684 (*1 *1 *2 *3) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1208 *4)) (-4 *4 (-1190)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1208 (-402 *3))))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-2 (|:| |num| (-669 *5)) (|:| |den| *5))))) (-1793 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1793 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))) (-1294 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1208 *2)) (-4 *4 (-1208 (-402 *3))))) (-2154 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1208 *2)) (-4 *4 (-1208 (-402 *3))))) (-1661 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) (-4 *4 (-1208 (-402 *2))) (-4 *2 (-1208 *3)))) (-1649 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) (-4 *4 (-1208 (-402 *2))) (-4 *2 (-1208 *3)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-1190)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-337 *4 *5 *6)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-4 *4 (-358)) (-5 *2 (-625 (-928 *4))))) (-1615 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-625 (-625 *3))))))
+(-13 (-705 (-402 |t#2|) |t#3|) (-10 -8 (-15 -1682 ((-751))) (-15 -3722 ((-751))) (-15 -3711 ((-112))) (-15 -3701 ((-112) |t#1| |t#1|)) (-15 -1882 ((-112))) (-15 -1872 ((-112) |t#1|)) (-15 -1872 ((-112) |t#2|)) (-15 -1861 ((-112))) (-15 -1852 ((-112) |t#1|)) (-15 -1852 ((-112) |t#2|)) (-15 -1839 ((-112))) (-15 -1826 ((-112) |t#1|)) (-15 -1826 ((-112) |t#2|)) (-15 -3993 ((-1232 $))) (-15 -1816 ((-1232 $))) (-15 -1805 ((-112) $)) (-15 -1793 ((-112) $)) (-15 -1781 ((-1232 $) (-1232 $))) (-15 -1770 ((-1232 $) (-1232 $))) (-15 -1760 ((-1232 $) (-1232 $))) (-15 -1750 ((-669 (-402 |t#2|)))) (-15 -1740 ((-669 (-402 |t#2|)))) (-15 -1729 ((-669 (-402 |t#2|)))) (-15 -1718 ((-669 (-402 |t#2|)))) (-15 -1706 ((-2 (|:| |num| (-1232 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2670 ($ (-1232 |t#2|) |t#2|)) (-15 -1696 ((-2 (|:| |num| (-1232 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1684 ($ (-1232 |t#2|) |t#2|)) (-15 -1672 ((-2 (|:| |num| (-669 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1793 ((-112) $ |t#1|)) (-15 -1793 ((-112) $ |t#2|)) (-15 -3072 ($ $ (-1 |t#2| |t#2|))) (-15 -1294 ($ $)) (-15 -2154 (|t#1| $ |t#1| |t#1|)) (-15 -1661 ((-3 |t#2| "failed"))) (-15 -1649 ((-3 |t#2| "failed"))) (-15 -1639 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-358)) (-15 -1626 ((-625 (-928 |t#1|)) (-1149))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1615 ((-625 (-625 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-38 #1=(-402 |#2|)) . T) ((-38 $) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-101) . T) ((-111 #0# #0#) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-143))) ((-145) |has| (-402 |#2|) (-145)) ((-597 (-839)) . T) ((-170) . T) ((-598 |#3|) . T) ((-227 #1#) |has| (-402 |#2|) (-358)) ((-229) -1523 (|has| (-402 |#2|) (-344)) (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358)))) ((-239) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-285) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-302) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-358) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-397) |has| (-402 |#2|) (-344)) ((-363) -1523 (|has| (-402 |#2|) (-363)) (|has| (-402 |#2|) (-344))) ((-344) |has| (-402 |#2|) (-344)) ((-365 #1# |#3|) . T) ((-404 #1# |#3|) . T) ((-372 #1#) . T) ((-406 #1#) . T) ((-446) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-544) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-628 #0#) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-628 #1#) . T) ((-628 $) . T) ((-621 #1#) . T) ((-621 (-552)) |has| (-402 |#2|) (-621 (-552))) ((-698 #0#) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-698 #1#) . T) ((-698 $) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-705 #1# |#3|) . T) ((-707) . T) ((-876 (-1149)) -12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) ((-896) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-1014 (-402 (-552))) |has| (-402 |#2|) (-1014 (-402 (-552)))) ((-1014 #1#) . T) ((-1014 (-552)) |has| (-402 |#2|) (-1014 (-552))) ((-1031 #0#) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| (-402 |#2|) (-344)) ((-1190) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-886 |#1|) (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| (-886 |#1|) (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-886 |#1|) "failed") $) NIL)) (-1895 (((-886 |#1|) $) NIL)) (-2670 (($ (-1232 (-886 |#1|))) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-886 |#1|) (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-886 |#1|) (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| (-886 |#1|) (-363)))) (-3872 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363)))) (($ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| (-886 |#1|) (-363))) (((-813 (-897)) $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| (-886 |#1|) (-363)))) (-4328 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-4209 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-886 |#1|) (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 (-886 |#1|)) $) NIL) (((-1145 $) $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4318 (((-897) $) NIL (|has| (-886 |#1|) (-363)))) (-1378 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363)))) (-1369 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-1145 (-886 |#1|)) "failed") $ $) NIL (|has| (-886 |#1|) (-363)))) (-1386 (($ $ (-1145 (-886 |#1|))) NIL (|has| (-886 |#1|) (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-886 |#1|) (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3729 (((-934 (-1093))) NIL)) (-3212 (($) NIL (|has| (-886 |#1|) (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-886 |#1|) (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 (-886 |#1|))) NIL)) (-3798 (($) NIL (|has| (-886 |#1|) (-363)))) (-1397 (($) NIL (|has| (-886 |#1|) (-363)))) (-2780 (((-1232 (-886 |#1|)) $) NIL) (((-669 (-886 |#1|)) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-886 |#1|) (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-886 |#1|)) NIL)) (-4243 (($ $) NIL (|has| (-886 |#1|) (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-3768 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ (-886 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-886 |#1|)) NIL) (($ (-886 |#1|) $) NIL)))
+(((-338 |#1| |#2|) (-13 (-324 (-886 |#1|)) (-10 -7 (-15 -3729 ((-934 (-1093)))))) (-897) (-897)) (T -338))
+((-3729 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-338 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))))
+(-13 (-324 (-886 |#1|)) (-10 -7 (-15 -3729 ((-934 (-1093))))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 44)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) 41 (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 115)) (-1895 ((|#1| $) 86)) (-2670 (($ (-1232 |#1|)) 104)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) 98 (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) 129 (|has| |#1| (-363)))) (-3872 (((-112) $) 48 (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) 45 (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) 131 (|has| |#1| (-363)))) (-4328 (((-112) $) NIL (|has| |#1| (-363)))) (-4209 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) 90) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) 139 (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) NIL (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) NIL (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 146)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) 71 (|has| |#1| (-363)))) (-4143 (((-112) $) 118)) (-2831 (((-1093) $) NIL)) (-3729 (((-934 (-1093))) 42)) (-3212 (($) 127 (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 93 (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) 67) (((-897)) 68)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) 130 (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) 125 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 |#1|)) 96)) (-3798 (($) 128 (|has| |#1| (-363)))) (-1397 (($) 136 (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) 59) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) 142) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 75)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) 138)) (-1270 (((-1232 $)) 117) (((-1232 $) (-897)) 73)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) 49 T CONST)) (-2100 (($) 46 T CONST)) (-4104 (($ $) 81 (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) 47)) (-2404 (($ $ $) 144) (($ $ |#1|) 145)) (-2393 (($ $) 126) (($ $ $) NIL)) (-2382 (($ $ $) 61)) (** (($ $ (-897)) 148) (($ $ (-751)) 149) (($ $ (-552)) 147)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 77) (($ $ $) 76) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
+(((-339 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -3729 ((-934 (-1093)))))) (-344) (-1145 |#1|)) (T -339))
+((-3729 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-339 *3 *4)) (-4 *3 (-344)) (-14 *4 (-1145 *3)))))
+(-13 (-324 |#1|) (-10 -7 (-15 -3729 ((-934 (-1093))))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2670 (($ (-1232 |#1|)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| |#1| (-363)))) (-3872 (((-112) $) NIL (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| |#1| (-363)))) (-4328 (((-112) $) NIL (|has| |#1| (-363)))) (-4209 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) NIL) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) NIL (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) NIL (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3729 (((-934 (-1093))) NIL)) (-3212 (($) NIL (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 |#1|)) NIL)) (-3798 (($) NIL (|has| |#1| (-363)))) (-1397 (($) NIL (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) NIL) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) NIL)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-340 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -3729 ((-934 (-1093)))))) (-344) (-897)) (T -340))
+((-3729 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-340 *3 *4)) (-4 *3 (-344)) (-14 *4 (-897)))))
+(-13 (-324 |#1|) (-10 -7 (-15 -3729 ((-934 (-1093))))))
+((-3832 (((-751) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) 42)) (-3739 (((-934 (-1093)) (-1145 |#1|)) 85)) (-3750 (((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) (-1145 |#1|)) 78)) (-3760 (((-669 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) 86)) (-3770 (((-3 (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) "failed") (-897)) 13)) (-3780 (((-3 (-1145 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) (-897)) 18)))
+(((-341 |#1|) (-10 -7 (-15 -3739 ((-934 (-1093)) (-1145 |#1|))) (-15 -3750 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) (-1145 |#1|))) (-15 -3760 ((-669 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3832 ((-751) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3770 ((-3 (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) "failed") (-897))) (-15 -3780 ((-3 (-1145 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) (-897)))) (-344)) (T -341))
+((-3780 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-3 (-1145 *4) (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093))))))) (-5 *1 (-341 *4)) (-4 *4 (-344)))) (-3770 (*1 *2 *3) (|partial| -12 (-5 *3 (-897)) (-5 *2 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) (-5 *1 (-341 *4)) (-4 *4 (-344)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) (-4 *4 (-344)) (-5 *2 (-751)) (-5 *1 (-341 *4)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) (-4 *4 (-344)) (-5 *2 (-669 *4)) (-5 *1 (-341 *4)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) (-5 *1 (-341 *4)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-934 (-1093))) (-5 *1 (-341 *4)))))
+(-10 -7 (-15 -3739 ((-934 (-1093)) (-1145 |#1|))) (-15 -3750 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) (-1145 |#1|))) (-15 -3760 ((-669 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3832 ((-751) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3770 ((-3 (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) "failed") (-897))) (-15 -3780 ((-3 (-1145 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) (-897))))
+((-1683 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-342 |#1| |#2| |#3|) (-10 -7 (-15 -1683 (|#3| |#1|)) (-15 -1683 (|#1| |#3|))) (-324 |#2|) (-344) (-324 |#2|)) (T -342))
+((-1683 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *2 *4 *3)) (-4 *3 (-324 *4)))) (-1683 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *3 *4 *2)) (-4 *3 (-324 *4)))))
+(-10 -7 (-15 -1683 (|#3| |#1|)) (-15 -1683 (|#1| |#3|)))
+((-3872 (((-112) $) 51)) (-2172 (((-813 (-897)) $) 21) (((-897) $) 52)) (-4034 (((-3 $ "failed") $) 16)) (-2071 (($) 9)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 93)) (-3563 (((-3 (-751) "failed") $ $) 71) (((-751) $) 60)) (-3072 (($ $ (-751)) NIL) (($ $) 8)) (-3798 (($) 44)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 34)) (-4243 (((-3 $ "failed") $) 38) (($ $) 37)))
+(((-343 |#1|) (-10 -8 (-15 -2172 ((-897) |#1|)) (-15 -3563 ((-751) |#1|)) (-15 -3872 ((-112) |#1|)) (-15 -3798 (|#1|)) (-15 -4253 ((-3 (-1232 |#1|) "failed") (-669 |#1|))) (-15 -4243 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -3563 ((-3 (-751) "failed") |#1| |#1|)) (-15 -2172 ((-813 (-897)) |#1|)) (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|)))) (-344)) (T -343))
+NIL
+(-10 -8 (-15 -2172 ((-897) |#1|)) (-15 -3563 ((-751) |#1|)) (-15 -3872 ((-112) |#1|)) (-15 -3798 (|#1|)) (-15 -4253 ((-3 (-1232 |#1|) "failed") (-669 |#1|))) (-15 -4243 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -3563 ((-3 (-751) "failed") |#1| |#1|)) (-15 -2172 ((-813 (-897)) |#1|)) (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-3811 (((-1159 (-897) (-751)) (-552)) 90)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-2408 (((-112) $ $) 57)) (-2894 (((-751)) 100)) (-3101 (($) 17 T CONST)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-3702 (($) 103)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-4279 (($) 88)) (-3872 (((-112) $) 87)) (-3554 (($ $) 76) (($ $ (-751)) 75)) (-2951 (((-112) $) 68)) (-2172 (((-813 (-897)) $) 78) (((-897) $) 85)) (-3650 (((-112) $) 30)) (-4034 (((-3 $ "failed") $) 99)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-4318 (((-897) $) 102)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2071 (($) 98 T CONST)) (-3123 (($ (-897)) 101)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 91)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-3563 (((-3 (-751) "failed") $ $) 77) (((-751) $) 86)) (-3072 (($ $ (-751)) 96) (($ $) 94)) (-3798 (($) 89)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 92)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63)) (-4243 (((-3 $ "failed") $) 79) (($ $) 93)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-751)) 97) (($ $) 95)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64)))
+(((-344) (-138)) (T -344))
+((-4243 (*1 *1 *1) (-4 *1 (-344))) (-4253 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-344)) (-5 *2 (-1232 *1)))) (-3820 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))))) (-3811 (*1 *2 *3) (-12 (-4 *1 (-344)) (-5 *3 (-552)) (-5 *2 (-1159 (-897) (-751))))) (-3798 (*1 *1) (-4 *1 (-344))) (-4279 (*1 *1) (-4 *1 (-344))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-112)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-751)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-897)))) (-3790 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-397) (-363) (-1124) (-229) (-10 -8 (-15 -4243 ($ $)) (-15 -4253 ((-3 (-1232 $) "failed") (-669 $))) (-15 -3820 ((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552)))))) (-15 -3811 ((-1159 (-897) (-751)) (-552))) (-15 -3798 ($)) (-15 -4279 ($)) (-15 -3872 ((-112) $)) (-15 -3563 ((-751) $)) (-15 -2172 ((-897) $)) (-15 -3790 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-597 (-839)) . T) ((-170) . T) ((-229) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) . T) ((-363) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) . T) ((-1190) . T))
+((-4006 (((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|) 53)) (-3993 (((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))) 51)))
+(((-345 |#1| |#2| |#3|) (-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|))) (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))) (-1208 |#1|) (-404 |#1| |#2|)) (T -345))
+((-4006 (*1 *2 *3) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3993 (*1 *2) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4)))))
+(-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-886 |#1|) (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3832 (((-751)) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| (-886 |#1|) (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-886 |#1|) "failed") $) NIL)) (-1895 (((-886 |#1|) $) NIL)) (-2670 (($ (-1232 (-886 |#1|))) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-886 |#1|) (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-886 |#1|) (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| (-886 |#1|) (-363)))) (-3872 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363)))) (($ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| (-886 |#1|) (-363))) (((-813 (-897)) $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| (-886 |#1|) (-363)))) (-4328 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-4209 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-886 |#1|) (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 (-886 |#1|)) $) NIL) (((-1145 $) $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4318 (((-897) $) NIL (|has| (-886 |#1|) (-363)))) (-1378 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363)))) (-1369 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-1145 (-886 |#1|)) "failed") $ $) NIL (|has| (-886 |#1|) (-363)))) (-1386 (($ $ (-1145 (-886 |#1|))) NIL (|has| (-886 |#1|) (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-886 |#1|) (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3859 (((-1232 (-625 (-2 (|:| -3800 (-886 |#1|)) (|:| -3123 (-1093)))))) NIL)) (-3845 (((-669 (-886 |#1|))) NIL)) (-3212 (($) NIL (|has| (-886 |#1|) (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-886 |#1|) (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 (-886 |#1|))) NIL)) (-3798 (($) NIL (|has| (-886 |#1|) (-363)))) (-1397 (($) NIL (|has| (-886 |#1|) (-363)))) (-2780 (((-1232 (-886 |#1|)) $) NIL) (((-669 (-886 |#1|)) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-886 |#1|) (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-886 |#1|)) NIL)) (-4243 (($ $) NIL (|has| (-886 |#1|) (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-3768 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ (-886 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-886 |#1|)) NIL) (($ (-886 |#1|) $) NIL)))
+(((-346 |#1| |#2|) (-13 (-324 (-886 |#1|)) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 (-886 |#1|)) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 (-886 |#1|)))) (-15 -3832 ((-751))))) (-897) (-897)) (T -346))
+((-3859 (*1 *2) (-12 (-5 *2 (-1232 (-625 (-2 (|:| -3800 (-886 *3)) (|:| -3123 (-1093)))))) (-5 *1 (-346 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) (-3845 (*1 *2) (-12 (-5 *2 (-669 (-886 *3))) (-5 *1 (-346 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) (-3832 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-346 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))))
+(-13 (-324 (-886 |#1|)) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 (-886 |#1|)) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 (-886 |#1|)))) (-15 -3832 ((-751)))))
+((-1671 (((-112) $ $) 61)) (-3641 (((-112) $) 74)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) 92) (($ $ (-897)) 90 (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) 148 (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3832 (((-751)) 89)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) 162 (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 112)) (-1895 ((|#1| $) 91)) (-2670 (($ (-1232 |#1|)) 58)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) 158 (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) 149 (|has| |#1| (-363)))) (-3872 (((-112) $) NIL (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) 98 (|has| |#1| (-363)))) (-4328 (((-112) $) 175 (|has| |#1| (-363)))) (-4209 ((|#1| $) 94) (($ $ (-897)) 93 (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) 189) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) 134 (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) 73 (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) 70 (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) 82 (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) 69 (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 192)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) 137 (|has| |#1| (-363)))) (-4143 (((-112) $) 108)) (-2831 (((-1093) $) NIL)) (-3859 (((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) 83)) (-3845 (((-669 |#1|)) 87)) (-3212 (($) 96 (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 150 (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) 151)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) 62)) (-3610 (((-1145 |#1|)) 152)) (-3798 (($) 133 (|has| |#1| (-363)))) (-1397 (($) NIL (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) 106) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) 124) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 57)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) 156)) (-1270 (((-1232 $)) 172) (((-1232 $) (-897)) 101)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) 117 T CONST)) (-2100 (($) 33 T CONST)) (-4104 (($ $) 107 (|has| |#1| (-363))) (($ $ (-751)) 99 (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) 183)) (-2404 (($ $ $) 104) (($ $ |#1|) 105)) (-2393 (($ $) 177) (($ $ $) 181)) (-2382 (($ $ $) 179)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 138)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 186) (($ $ $) 142) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-347 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 |#1|))) (-15 -3832 ((-751))))) (-344) (-3 (-1145 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (T -347))
+((-3859 (*1 *2) (-12 (-5 *2 (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1145 *3) *2)))) (-3845 (*1 *2) (-12 (-5 *2 (-669 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1145 *3) (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093))))))))) (-3832 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1145 *3) (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093))))))))))
+(-13 (-324 |#1|) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 |#1|))) (-15 -3832 ((-751)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3832 (((-751)) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2670 (($ (-1232 |#1|)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| |#1| (-363)))) (-3872 (((-112) $) NIL (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| |#1| (-363)))) (-4328 (((-112) $) NIL (|has| |#1| (-363)))) (-4209 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) NIL) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) NIL (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) NIL (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3859 (((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) NIL)) (-3845 (((-669 |#1|)) NIL)) (-3212 (($) NIL (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 |#1|)) NIL)) (-3798 (($) NIL (|has| |#1| (-363)))) (-1397 (($) NIL (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) NIL) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) NIL)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-348 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 |#1|))) (-15 -3832 ((-751))))) (-344) (-897)) (T -348))
+((-3859 (*1 *2) (-12 (-5 *2 (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093)))))) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-897)))) (-3845 (*1 *2) (-12 (-5 *2 (-669 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-897)))) (-3832 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-897)))))
+(-13 (-324 |#1|) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 |#1|))) (-15 -3832 ((-751)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-886 |#1|) (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| (-886 |#1|) (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-886 |#1|) "failed") $) NIL)) (-1895 (((-886 |#1|) $) NIL)) (-2670 (($ (-1232 (-886 |#1|))) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-886 |#1|) (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-886 |#1|) (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| (-886 |#1|) (-363)))) (-3872 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363)))) (($ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| (-886 |#1|) (-363))) (((-813 (-897)) $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| (-886 |#1|) (-363)))) (-4328 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-4209 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-886 |#1|) (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 (-886 |#1|)) $) NIL) (((-1145 $) $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4318 (((-897) $) NIL (|has| (-886 |#1|) (-363)))) (-1378 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363)))) (-1369 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-1145 (-886 |#1|)) "failed") $ $) NIL (|has| (-886 |#1|) (-363)))) (-1386 (($ $ (-1145 (-886 |#1|))) NIL (|has| (-886 |#1|) (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-886 |#1|) (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL (|has| (-886 |#1|) (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-886 |#1|) (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 (-886 |#1|))) NIL)) (-3798 (($) NIL (|has| (-886 |#1|) (-363)))) (-1397 (($) NIL (|has| (-886 |#1|) (-363)))) (-2780 (((-1232 (-886 |#1|)) $) NIL) (((-669 (-886 |#1|)) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-886 |#1|) (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-886 |#1|)) NIL)) (-4243 (($ $) NIL (|has| (-886 |#1|) (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-3768 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ (-886 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-886 |#1|)) NIL) (($ (-886 |#1|) $) NIL)))
+(((-349 |#1| |#2|) (-324 (-886 |#1|)) (-897) (-897)) (T -349))
+NIL
+(-324 (-886 |#1|))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) 120 (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) 140 (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 93)) (-1895 ((|#1| $) 90)) (-2670 (($ (-1232 |#1|)) 85)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) 82 (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) 42 (|has| |#1| (-363)))) (-3872 (((-112) $) NIL (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) 121 (|has| |#1| (-363)))) (-4328 (((-112) $) 74 (|has| |#1| (-363)))) (-4209 ((|#1| $) 39) (($ $ (-897)) 43 (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) 65) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) 97 (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) NIL (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) NIL (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) 95 (|has| |#1| (-363)))) (-4143 (((-112) $) 142)) (-2831 (((-1093) $) NIL)) (-3212 (($) 36 (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 115 (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) 139)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) 59)) (-3610 (((-1145 |#1|)) 88)) (-3798 (($) 126 (|has| |#1| (-363)))) (-1397 (($) NIL (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) 53) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) 138) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 87)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) 144)) (-1270 (((-1232 $)) 109) (((-1232 $) (-897)) 49)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) 111 T CONST)) (-2100 (($) 32 T CONST)) (-4104 (($ $) 68 (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) 107)) (-2404 (($ $ $) 99) (($ $ |#1|) 100)) (-2393 (($ $) 80) (($ $ $) 105)) (-2382 (($ $ $) 103)) (** (($ $ (-897)) NIL) (($ $ (-751)) 44) (($ $ (-552)) 130)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 78) (($ $ $) 56) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+(((-350 |#1| |#2|) (-324 |#1|) (-344) (-1145 |#1|)) (T -350))
NIL
(-324 |#1|)
-((-1811 (((-934 (-1143 |#1|)) (-1143 |#1|)) 36)) (-3327 (((-1143 |#1|) (-895) (-895)) 113) (((-1143 |#1|) (-895)) 112)) (-1796 (((-112) (-1143 |#1|)) 84)) (-1798 (((-895) (-895)) 71)) (-1799 (((-895) (-895)) 74)) (-1797 (((-895) (-895)) 69)) (-2127 (((-112) (-1143 |#1|)) 88)) (-1806 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 101)) (-1809 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 104)) (-1808 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 103)) (-1807 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 102)) (-1805 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 98)) (-1810 (((-1143 |#1|) (-1143 |#1|)) 62)) (-1801 (((-1143 |#1|) (-895)) 107)) (-1804 (((-1143 |#1|) (-895)) 110)) (-1803 (((-1143 |#1|) (-895)) 109)) (-1802 (((-1143 |#1|) (-895)) 108)) (-1800 (((-1143 |#1|) (-895)) 105)))
-(((-351 |#1|) (-10 -7 (-15 -1796 ((-112) (-1143 |#1|))) (-15 -2127 ((-112) (-1143 |#1|))) (-15 -1797 ((-895) (-895))) (-15 -1798 ((-895) (-895))) (-15 -1799 ((-895) (-895))) (-15 -1800 ((-1143 |#1|) (-895))) (-15 -1801 ((-1143 |#1|) (-895))) (-15 -1802 ((-1143 |#1|) (-895))) (-15 -1803 ((-1143 |#1|) (-895))) (-15 -1804 ((-1143 |#1|) (-895))) (-15 -1805 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1806 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1807 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1808 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1809 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -3327 ((-1143 |#1|) (-895))) (-15 -3327 ((-1143 |#1|) (-895) (-895))) (-15 -1810 ((-1143 |#1|) (-1143 |#1|))) (-15 -1811 ((-934 (-1143 |#1|)) (-1143 |#1|)))) (-345)) (T -351))
-((-1811 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-934 (-1143 *4))) (-5 *1 (-351 *4)) (-5 *3 (-1143 *4)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-3327 (*1 *2 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1809 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-1808 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-1807 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-1806 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-1805 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1799 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345)))) (-1797 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-351 *4)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-351 *4)))))
-(-10 -7 (-15 -1796 ((-112) (-1143 |#1|))) (-15 -2127 ((-112) (-1143 |#1|))) (-15 -1797 ((-895) (-895))) (-15 -1798 ((-895) (-895))) (-15 -1799 ((-895) (-895))) (-15 -1800 ((-1143 |#1|) (-895))) (-15 -1801 ((-1143 |#1|) (-895))) (-15 -1802 ((-1143 |#1|) (-895))) (-15 -1803 ((-1143 |#1|) (-895))) (-15 -1804 ((-1143 |#1|) (-895))) (-15 -1805 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1806 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1807 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1808 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1809 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -3327 ((-1143 |#1|) (-895))) (-15 -3327 ((-1143 |#1|) (-895) (-895))) (-15 -1810 ((-1143 |#1|) (-1143 |#1|))) (-15 -1811 ((-934 (-1143 |#1|)) (-1143 |#1|))))
-((-1812 ((|#1| (-1143 |#2|)) 52)))
-(((-352 |#1| |#2|) (-10 -7 (-15 -1812 (|#1| (-1143 |#2|)))) (-13 (-397) (-10 -7 (-15 -4317 (|#1| |#2|)) (-15 -2126 ((-895) |#1|)) (-15 -2128 ((-1231 |#1|) (-895))) (-15 -4288 (|#1| |#1|)))) (-345)) (T -352))
-((-1812 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-4 *2 (-13 (-397) (-10 -7 (-15 -4317 (*2 *4)) (-15 -2126 ((-895) *2)) (-15 -2128 ((-1231 *2) (-895))) (-15 -4288 (*2 *2))))) (-5 *1 (-352 *2 *4)))))
-(-10 -7 (-15 -1812 (|#1| (-1143 |#2|))))
-((-3037 (((-3 (-622 |#3|) "failed") (-622 |#3|) |#3|) 34)))
-(((-353 |#1| |#2| |#3|) (-10 -7 (-15 -3037 ((-3 (-622 |#3|) "failed") (-622 |#3|) |#3|))) (-345) (-1207 |#1|) (-1207 |#2|)) (T -353))
-((-3037 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-345)) (-5 *1 (-353 *4 *5 *3)))))
-(-10 -7 (-15 -3037 ((-3 (-622 |#3|) "failed") (-622 |#3|) |#3|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-1911 (($ (-1231 |#1|)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| |#1| (-363)))) (-1796 (((-112) $) NIL (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| |#1| (-363)))) (-2127 (((-112) $) NIL (|has| |#1| (-363)))) (-3467 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) NIL) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) NIL (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) NIL (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 |#1|)) NIL)) (-1790 (($) NIL (|has| |#1| (-363)))) (-1726 (($) NIL (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) NIL) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) NIL)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-354 |#1| |#2|) (-324 |#1|) (-345) (-895)) (T -354))
+((-4074 ((|#1| (-1145 |#2|)) 52)))
+(((-351 |#1| |#2|) (-10 -7 (-15 -4074 (|#1| (-1145 |#2|)))) (-13 (-397) (-10 -7 (-15 -1683 (|#1| |#2|)) (-15 -4318 ((-897) |#1|)) (-15 -1270 ((-1232 |#1|) (-897))) (-15 -4104 (|#1| |#1|)))) (-344)) (T -351))
+((-4074 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-4 *2 (-13 (-397) (-10 -7 (-15 -1683 (*2 *4)) (-15 -4318 ((-897) *2)) (-15 -1270 ((-1232 *2) (-897))) (-15 -4104 (*2 *2))))) (-5 *1 (-351 *2 *4)))))
+(-10 -7 (-15 -4074 (|#1| (-1145 |#2|))))
+((-4060 (((-934 (-1145 |#1|)) (-1145 |#1|)) 36)) (-3702 (((-1145 |#1|) (-897) (-897)) 113) (((-1145 |#1|) (-897)) 112)) (-3872 (((-112) (-1145 |#1|)) 84)) (-3899 (((-897) (-897)) 71)) (-3912 (((-897) (-897)) 74)) (-3886 (((-897) (-897)) 69)) (-4328 (((-112) (-1145 |#1|)) 88)) (-4000 (((-3 (-1145 |#1|) "failed") (-1145 |#1|)) 101)) (-4035 (((-3 (-1145 |#1|) "failed") (-1145 |#1|)) 104)) (-4023 (((-3 (-1145 |#1|) "failed") (-1145 |#1|)) 103)) (-4012 (((-3 (-1145 |#1|) "failed") (-1145 |#1|)) 102)) (-3988 (((-3 (-1145 |#1|) "failed") (-1145 |#1|)) 98)) (-4047 (((-1145 |#1|) (-1145 |#1|)) 62)) (-3939 (((-1145 |#1|) (-897)) 107)) (-3976 (((-1145 |#1|) (-897)) 110)) (-3964 (((-1145 |#1|) (-897)) 109)) (-3951 (((-1145 |#1|) (-897)) 108)) (-3926 (((-1145 |#1|) (-897)) 105)))
+(((-352 |#1|) (-10 -7 (-15 -3872 ((-112) (-1145 |#1|))) (-15 -4328 ((-112) (-1145 |#1|))) (-15 -3886 ((-897) (-897))) (-15 -3899 ((-897) (-897))) (-15 -3912 ((-897) (-897))) (-15 -3926 ((-1145 |#1|) (-897))) (-15 -3939 ((-1145 |#1|) (-897))) (-15 -3951 ((-1145 |#1|) (-897))) (-15 -3964 ((-1145 |#1|) (-897))) (-15 -3976 ((-1145 |#1|) (-897))) (-15 -3988 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4000 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4012 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4023 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4035 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -3702 ((-1145 |#1|) (-897))) (-15 -3702 ((-1145 |#1|) (-897) (-897))) (-15 -4047 ((-1145 |#1|) (-1145 |#1|))) (-15 -4060 ((-934 (-1145 |#1|)) (-1145 |#1|)))) (-344)) (T -352))
+((-4060 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-934 (-1145 *4))) (-5 *1 (-352 *4)) (-5 *3 (-1145 *4)))) (-4047 (*1 *2 *2) (-12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3702 (*1 *2 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-4035 (*1 *2 *2) (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-4023 (*1 *2 *2) (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-4012 (*1 *2 *2) (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-4000 (*1 *2 *2) (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3988 (*1 *2 *2) (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-352 *4)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-352 *4)))))
+(-10 -7 (-15 -3872 ((-112) (-1145 |#1|))) (-15 -4328 ((-112) (-1145 |#1|))) (-15 -3886 ((-897) (-897))) (-15 -3899 ((-897) (-897))) (-15 -3912 ((-897) (-897))) (-15 -3926 ((-1145 |#1|) (-897))) (-15 -3939 ((-1145 |#1|) (-897))) (-15 -3951 ((-1145 |#1|) (-897))) (-15 -3964 ((-1145 |#1|) (-897))) (-15 -3976 ((-1145 |#1|) (-897))) (-15 -3988 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4000 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4012 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4023 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4035 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -3702 ((-1145 |#1|) (-897))) (-15 -3702 ((-1145 |#1|) (-897) (-897))) (-15 -4047 ((-1145 |#1|) (-1145 |#1|))) (-15 -4060 ((-934 (-1145 |#1|)) (-1145 |#1|))))
+((-4264 (((-3 (-625 |#3|) "failed") (-625 |#3|) |#3|) 34)))
+(((-353 |#1| |#2| |#3|) (-10 -7 (-15 -4264 ((-3 (-625 |#3|) "failed") (-625 |#3|) |#3|))) (-344) (-1208 |#1|) (-1208 |#2|)) (T -353))
+((-4264 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-344)) (-5 *1 (-353 *4 *5 *3)))))
+(-10 -7 (-15 -4264 ((-3 (-625 |#3|) "failed") (-625 |#3|) |#3|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2670 (($ (-1232 |#1|)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| |#1| (-363)))) (-3872 (((-112) $) NIL (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| |#1| (-363)))) (-4328 (((-112) $) NIL (|has| |#1| (-363)))) (-4209 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) NIL) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) NIL (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) NIL (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 |#1|)) NIL)) (-3798 (($) NIL (|has| |#1| (-363)))) (-1397 (($) NIL (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) NIL) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) NIL)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-354 |#1| |#2|) (-324 |#1|) (-344) (-897)) (T -354))
NIL
(-324 |#1|)
-((-2333 (((-112) (-622 (-922 |#1|))) 34)) (-2335 (((-622 (-922 |#1|)) (-622 (-922 |#1|))) 46)) (-2334 (((-3 (-622 (-922 |#1|)) "failed") (-622 (-922 |#1|))) 41)))
-(((-355 |#1| |#2|) (-10 -7 (-15 -2333 ((-112) (-622 (-922 |#1|)))) (-15 -2334 ((-3 (-622 (-922 |#1|)) "failed") (-622 (-922 |#1|)))) (-15 -2335 ((-622 (-922 |#1|)) (-622 (-922 |#1|))))) (-446) (-622 (-1149))) (T -355))
-((-2335 (*1 *2 *2) (-12 (-5 *2 (-622 (-922 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-622 (-1149))))) (-2334 (*1 *2 *2) (|partial| -12 (-5 *2 (-622 (-922 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-622 (-1149))))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-446)) (-5 *2 (-112)) (-5 *1 (-355 *4 *5)) (-14 *5 (-622 (-1149))))))
-(-10 -7 (-15 -2333 ((-112) (-622 (-922 |#1|)))) (-15 -2334 ((-3 (-622 (-922 |#1|)) "failed") (-622 (-922 |#1|)))) (-15 -2335 ((-622 (-922 |#1|)) (-622 (-922 |#1|)))))
-((-2898 (((-112) $ $) NIL)) (-3471 (((-751) $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) 15)) (-2768 ((|#1| $ (-538)) NIL)) (-2769 (((-538) $ (-538)) NIL)) (-2371 (($ (-1 |#1| |#1|) $) 32)) (-2372 (($ (-1 (-538) (-538)) $) 24)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 26)) (-3594 (((-1093) $) NIL)) (-2767 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-538)))) $) 28)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) 38) (($ |#1|) NIL)) (-2997 (($) 9 T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL) (($ |#1| (-538)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-356 |#1|) (-13 (-467) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-538))) (-15 -3471 ((-751) $)) (-15 -2769 ((-538) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2372 ($ (-1 (-538) (-538)) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-538)))) $)))) (-1074)) (T -356))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1074)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1074)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-356 *2)) (-4 *2 (-1074)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-356 *3)) (-4 *3 (-1074)))) (-2769 (*1 *2 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-356 *3)) (-4 *3 (-1074)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-356 *2)) (-4 *2 (-1074)))) (-2372 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-538) (-538))) (-5 *1 (-356 *3)) (-4 *3 (-1074)))) (-2371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-356 *3)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-538))))) (-5 *1 (-356 *3)) (-4 *3 (-1074)))))
-(-13 (-467) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-538))) (-15 -3471 ((-751) $)) (-15 -2769 ((-538) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2372 ($ (-1 (-538) (-538)) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-538)))) $))))
-((-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 13)) (-2178 (($ $) 14)) (-4329 (((-400 $) $) 30)) (-4086 (((-112) $) 26)) (-2734 (($ $) 19)) (-3495 (($ $ $) 23) (($ (-622 $)) NIL)) (-4092 (((-400 $) $) 31)) (-3820 (((-3 $ "failed") $ $) 22)) (-1704 (((-751) $) 25)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 35)) (-2177 (((-112) $ $) 16)) (-4308 (($ $ $) 33)))
-(((-357 |#1|) (-10 -8 (-15 -4308 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -1704 ((-751) |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2177 ((-112) |#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|))) (-358)) (T -357))
-NIL
-(-10 -8 (-15 -4308 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -1704 ((-751) |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2177 ((-112) |#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-2502 (((-112) $) 30)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64)))
+((-1518 (((-112) (-625 (-928 |#1|))) 34)) (-1540 (((-625 (-928 |#1|)) (-625 (-928 |#1|))) 46)) (-1529 (((-3 (-625 (-928 |#1|)) "failed") (-625 (-928 |#1|))) 41)))
+(((-355 |#1| |#2|) (-10 -7 (-15 -1518 ((-112) (-625 (-928 |#1|)))) (-15 -1529 ((-3 (-625 (-928 |#1|)) "failed") (-625 (-928 |#1|)))) (-15 -1540 ((-625 (-928 |#1|)) (-625 (-928 |#1|))))) (-446) (-625 (-1149))) (T -355))
+((-1540 (*1 *2 *2) (-12 (-5 *2 (-625 (-928 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-625 (-1149))))) (-1529 (*1 *2 *2) (|partial| -12 (-5 *2 (-625 (-928 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-625 (-1149))))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-446)) (-5 *2 (-112)) (-5 *1 (-355 *4 *5)) (-14 *5 (-625 (-1149))))))
+(-10 -7 (-15 -1518 ((-112) (-625 (-928 |#1|)))) (-15 -1529 ((-3 (-625 (-928 |#1|)) "failed") (-625 (-928 |#1|)))) (-15 -1540 ((-625 (-928 |#1|)) (-625 (-928 |#1|)))))
+((-1671 (((-112) $ $) NIL)) (-2894 (((-751) $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) 15)) (-3461 ((|#1| $ (-552)) NIL)) (-3472 (((-552) $ (-552)) NIL)) (-1817 (($ (-1 |#1| |#1|) $) 32)) (-1827 (($ (-1 (-552) (-552)) $) 24)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 26)) (-2831 (((-1093) $) NIL)) (-3449 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-552)))) $) 28)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) 38) (($ |#1|) NIL)) (-2100 (($) 9 T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL) (($ |#1| (-552)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-356 |#1|) (-13 (-467) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-552))) (-15 -2894 ((-751) $)) (-15 -3472 ((-552) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -1827 ($ (-1 (-552) (-552)) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-552)))) $)))) (-1073)) (T -356))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1073)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1073)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-356 *2)) (-4 *2 (-1073)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-356 *3)) (-4 *3 (-1073)))) (-3472 (*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-356 *3)) (-4 *3 (-1073)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-356 *2)) (-4 *2 (-1073)))) (-1827 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-552) (-552))) (-5 *1 (-356 *3)) (-4 *3 (-1073)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-356 *3)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-552))))) (-5 *1 (-356 *3)) (-4 *3 (-1073)))))
+(-13 (-467) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-552))) (-15 -2894 ((-751) $)) (-15 -3472 ((-552) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -1827 ($ (-1 (-552) (-552)) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-552)))) $))))
+((-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 13)) (-3528 (($ $) 14)) (-1330 (((-413 $) $) 30)) (-2951 (((-112) $) 26)) (-4092 (($ $) 19)) (-2633 (($ $ $) 23) (($ (-625 $)) NIL)) (-3824 (((-413 $) $) 31)) (-2802 (((-3 $ "failed") $ $) 22)) (-2397 (((-751) $) 25)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 35)) (-3518 (((-112) $ $) 16)) (-2404 (($ $ $) 33)))
+(((-357 |#1|) (-10 -8 (-15 -2404 (|#1| |#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2397 ((-751) |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|)) (-15 -3518 ((-112) |#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|))) (-358)) (T -357))
+NIL
+(-10 -8 (-15 -2404 (|#1| |#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2397 ((-751) |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|)) (-15 -3518 ((-112) |#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-3650 (((-112) $) 30)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64)))
(((-358) (-138)) (T -358))
-((-4308 (*1 *1 *1 *1) (-4 *1 (-358))))
-(-13 (-302) (-1190) (-239) (-10 -8 (-15 -4308 ($ $ $)) (-6 -4351) (-6 -4345)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T))
-((-2898 (((-112) $ $) NIL)) (-1813 ((|#1| $ |#1|) 30)) (-1817 (($ $ (-1131)) 22)) (-3982 (((-3 |#1| "failed") $) 29)) (-1814 ((|#1| $) 27)) (-1818 (($ (-383)) 21) (($ (-383) (-1131)) 20)) (-3905 (((-383) $) 24)) (-3593 (((-1131) $) NIL)) (-1815 (((-1131) $) 25)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19)) (-1816 (($ $) 23)) (-3387 (((-112) $ $) 18)))
-(((-359 |#1|) (-13 (-360 (-383) |#1|) (-10 -8 (-15 -3982 ((-3 |#1| "failed") $)))) (-1074)) (T -359))
-((-3982 (*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1074)))))
-(-13 (-360 (-383) |#1|) (-10 -8 (-15 -3982 ((-3 |#1| "failed") $))))
-((-2898 (((-112) $ $) 7)) (-1813 ((|#2| $ |#2|) 13)) (-1817 (($ $ (-1131)) 18)) (-1814 ((|#2| $) 14)) (-1818 (($ |#1|) 20) (($ |#1| (-1131)) 19)) (-3905 ((|#1| $) 16)) (-3593 (((-1131) $) 9)) (-1815 (((-1131) $) 15)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-1816 (($ $) 17)) (-3387 (((-112) $ $) 6)))
-(((-360 |#1| |#2|) (-138) (-1074) (-1074)) (T -360))
-((-1818 (*1 *1 *2) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-1818 (*1 *1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *1 (-360 *2 *4)) (-4 *2 (-1074)) (-4 *4 (-1074)))) (-1817 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-360 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-1816 (*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1074)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-1131)))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))) (-1813 (*1 *2 *1 *2) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))))
-(-13 (-1074) (-10 -8 (-15 -1818 ($ |t#1|)) (-15 -1818 ($ |t#1| (-1131))) (-15 -1817 ($ $ (-1131))) (-15 -1816 ($ $)) (-15 -3905 (|t#1| $)) (-15 -1815 ((-1131) $)) (-15 -1814 (|t#2| $)) (-15 -1813 (|t#2| $ |t#2|))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-3574 (((-1231 (-669 |#2|)) (-1231 $)) 61)) (-1907 (((-669 |#2|) (-1231 $)) 120)) (-1843 ((|#2| $) 32)) (-1905 (((-669 |#2|) $ (-1231 $)) 123)) (-2496 (((-3 $ "failed") $) 75)) (-1841 ((|#2| $) 35)) (-1821 (((-1143 |#2|) $) 83)) (-1909 ((|#2| (-1231 $)) 106)) (-1839 (((-1143 |#2|) $) 28)) (-1833 (((-112)) 100)) (-1911 (($ (-1231 |#2|) (-1231 $)) 113)) (-3821 (((-3 $ "failed") $) 79)) (-1826 (((-112)) 95)) (-1824 (((-112)) 90)) (-1828 (((-112)) 53)) (-1908 (((-669 |#2|) (-1231 $)) 118)) (-1844 ((|#2| $) 31)) (-1906 (((-669 |#2|) $ (-1231 $)) 122)) (-2497 (((-3 $ "failed") $) 73)) (-1842 ((|#2| $) 34)) (-1822 (((-1143 |#2|) $) 82)) (-1910 ((|#2| (-1231 $)) 104)) (-1840 (((-1143 |#2|) $) 26)) (-1834 (((-112)) 99)) (-1825 (((-112)) 92)) (-1827 (((-112)) 51)) (-1829 (((-112)) 87)) (-1832 (((-112)) 101)) (-3575 (((-1231 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) (-1231 $) (-1231 $)) 111)) (-1838 (((-112)) 97)) (-1823 (((-622 (-1231 |#2|))) 86)) (-1836 (((-112)) 98)) (-1837 (((-112)) 96)) (-1835 (((-112)) 46)) (-1831 (((-112)) 102)))
-(((-361 |#1| |#2|) (-10 -8 (-15 -1821 ((-1143 |#2|) |#1|)) (-15 -1822 ((-1143 |#2|) |#1|)) (-15 -1823 ((-622 (-1231 |#2|)))) (-15 -2496 ((-3 |#1| "failed") |#1|)) (-15 -2497 ((-3 |#1| "failed") |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 -1824 ((-112))) (-15 -1825 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-112))) (-15 -1835 ((-112))) (-15 -1836 ((-112))) (-15 -1837 ((-112))) (-15 -1838 ((-112))) (-15 -1839 ((-1143 |#2|) |#1|)) (-15 -1840 ((-1143 |#2|) |#1|)) (-15 -1907 ((-669 |#2|) (-1231 |#1|))) (-15 -1908 ((-669 |#2|) (-1231 |#1|))) (-15 -1909 (|#2| (-1231 |#1|))) (-15 -1910 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1841 (|#2| |#1|)) (-15 -1842 (|#2| |#1|)) (-15 -1843 (|#2| |#1|)) (-15 -1844 (|#2| |#1|)) (-15 -1905 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -1906 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -3574 ((-1231 (-669 |#2|)) (-1231 |#1|)))) (-362 |#2|) (-170)) (T -361))
-((-1838 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1837 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1836 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1835 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1834 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1833 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1832 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1831 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1829 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1828 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1827 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1826 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1825 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1824 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1823 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-622 (-1231 *4))) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))))
-(-10 -8 (-15 -1821 ((-1143 |#2|) |#1|)) (-15 -1822 ((-1143 |#2|) |#1|)) (-15 -1823 ((-622 (-1231 |#2|)))) (-15 -2496 ((-3 |#1| "failed") |#1|)) (-15 -2497 ((-3 |#1| "failed") |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 -1824 ((-112))) (-15 -1825 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-112))) (-15 -1835 ((-112))) (-15 -1836 ((-112))) (-15 -1837 ((-112))) (-15 -1838 ((-112))) (-15 -1839 ((-1143 |#2|) |#1|)) (-15 -1840 ((-1143 |#2|) |#1|)) (-15 -1907 ((-669 |#2|) (-1231 |#1|))) (-15 -1908 ((-669 |#2|) (-1231 |#1|))) (-15 -1909 (|#2| (-1231 |#1|))) (-15 -1910 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1841 (|#2| |#1|)) (-15 -1842 (|#2| |#1|)) (-15 -1843 (|#2| |#1|)) (-15 -1844 (|#2| |#1|)) (-15 -1905 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -1906 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -3574 ((-1231 (-669 |#2|)) (-1231 |#1|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1892 (((-3 $ "failed")) 37 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3574 (((-1231 (-669 |#1|)) (-1231 $)) 78)) (-1845 (((-1231 $)) 81)) (-3896 (($) 17 T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed")) 40 (|has| |#1| (-545)))) (-1819 (((-3 $ "failed")) 38 (|has| |#1| (-545)))) (-1907 (((-669 |#1|) (-1231 $)) 65)) (-1843 ((|#1| $) 74)) (-1905 (((-669 |#1|) $ (-1231 $)) 76)) (-2496 (((-3 $ "failed") $) 45 (|has| |#1| (-545)))) (-2499 (($ $ (-895)) 28)) (-1841 ((|#1| $) 72)) (-1821 (((-1143 |#1|) $) 42 (|has| |#1| (-545)))) (-1909 ((|#1| (-1231 $)) 67)) (-1839 (((-1143 |#1|) $) 63)) (-1833 (((-112)) 57)) (-1911 (($ (-1231 |#1|) (-1231 $)) 69)) (-3821 (((-3 $ "failed") $) 47 (|has| |#1| (-545)))) (-3444 (((-895)) 80)) (-1830 (((-112)) 54)) (-2524 (($ $ (-895)) 33)) (-1826 (((-112)) 50)) (-1824 (((-112)) 48)) (-1828 (((-112)) 52)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed")) 41 (|has| |#1| (-545)))) (-1820 (((-3 $ "failed")) 39 (|has| |#1| (-545)))) (-1908 (((-669 |#1|) (-1231 $)) 66)) (-1844 ((|#1| $) 75)) (-1906 (((-669 |#1|) $ (-1231 $)) 77)) (-2497 (((-3 $ "failed") $) 46 (|has| |#1| (-545)))) (-2498 (($ $ (-895)) 29)) (-1842 ((|#1| $) 73)) (-1822 (((-1143 |#1|) $) 43 (|has| |#1| (-545)))) (-1910 ((|#1| (-1231 $)) 68)) (-1840 (((-1143 |#1|) $) 64)) (-1834 (((-112)) 58)) (-3593 (((-1131) $) 9)) (-1825 (((-112)) 49)) (-1827 (((-112)) 51)) (-1829 (((-112)) 53)) (-3594 (((-1093) $) 10)) (-1832 (((-112)) 56)) (-3575 (((-1231 |#1|) $ (-1231 $)) 71) (((-669 |#1|) (-1231 $) (-1231 $)) 70)) (-2014 (((-622 (-922 |#1|)) (-1231 $)) 79)) (-2686 (($ $ $) 25)) (-1838 (((-112)) 62)) (-4317 (((-840) $) 11)) (-1823 (((-622 (-1231 |#1|))) 44 (|has| |#1| (-545)))) (-2687 (($ $ $ $) 26)) (-1836 (((-112)) 60)) (-2685 (($ $ $) 24)) (-1837 (((-112)) 61)) (-1835 (((-112)) 59)) (-1831 (((-112)) 55)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-2404 (*1 *1 *1 *1) (-4 *1 (-358))))
+(-13 (-302) (-1190) (-239) (-10 -8 (-15 -2404 ($ $ $)) (-6 -4351) (-6 -4345)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T))
+((-1671 (((-112) $ $) 7)) (-4086 ((|#2| $ |#2|) 13)) (-4137 (($ $ (-1131)) 18)) (-4099 ((|#2| $) 14)) (-2508 (($ |#1|) 20) (($ |#1| (-1131)) 19)) (-1288 ((|#1| $) 16)) (-2883 (((-1131) $) 9)) (-4111 (((-1131) $) 15)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-4125 (($ $) 17)) (-2281 (((-112) $ $) 6)))
+(((-359 |#1| |#2|) (-138) (-1073) (-1073)) (T -359))
+((-2508 (*1 *1 *2) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-2508 (*1 *1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *1 (-359 *2 *4)) (-4 *2 (-1073)) (-4 *4 (-1073)))) (-4137 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-359 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-4125 (*1 *1 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1073)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-5 *2 (-1131)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))) (-4086 (*1 *2 *1 *2) (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))))
+(-13 (-1073) (-10 -8 (-15 -2508 ($ |t#1|)) (-15 -2508 ($ |t#1| (-1131))) (-15 -4137 ($ $ (-1131))) (-15 -4125 ($ $)) (-15 -1288 (|t#1| $)) (-15 -4111 ((-1131) $)) (-15 -4099 (|t#2| $)) (-15 -4086 (|t#2| $ |t#2|))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-4086 ((|#1| $ |#1|) 30)) (-4137 (($ $ (-1131)) 22)) (-4076 (((-3 |#1| "failed") $) 29)) (-4099 ((|#1| $) 27)) (-2508 (($ (-383)) 21) (($ (-383) (-1131)) 20)) (-1288 (((-383) $) 24)) (-2883 (((-1131) $) NIL)) (-4111 (((-1131) $) 25)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19)) (-4125 (($ $) 23)) (-2281 (((-112) $ $) 18)))
+(((-360 |#1|) (-13 (-359 (-383) |#1|) (-10 -8 (-15 -4076 ((-3 |#1| "failed") $)))) (-1073)) (T -360))
+((-4076 (*1 *2 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1073)))))
+(-13 (-359 (-383) |#1|) (-10 -8 (-15 -4076 ((-3 |#1| "failed") $))))
+((-2770 (((-1232 (-669 |#2|)) (-1232 $)) 61)) (-2629 (((-669 |#2|) (-1232 $)) 120)) (-3192 ((|#2| $) 32)) (-2612 (((-669 |#2|) $ (-1232 $)) 123)) (-3598 (((-3 $ "failed") $) 75)) (-3174 ((|#2| $) 35)) (-4175 (((-1145 |#2|) $) 83)) (-2648 ((|#2| (-1232 $)) 106)) (-3159 (((-1145 |#2|) $) 28)) (-4303 (((-112)) 100)) (-2670 (($ (-1232 |#2|) (-1232 $)) 113)) (-4174 (((-3 $ "failed") $) 79)) (-4228 (((-112)) 95)) (-4207 (((-112)) 90)) (-4250 (((-112)) 53)) (-2640 (((-669 |#2|) (-1232 $)) 118)) (-3199 ((|#2| $) 31)) (-2619 (((-669 |#2|) $ (-1232 $)) 122)) (-3609 (((-3 $ "failed") $) 73)) (-3182 ((|#2| $) 34)) (-4187 (((-1145 |#2|) $) 82)) (-2658 ((|#2| (-1232 $)) 104)) (-3166 (((-1145 |#2|) $) 26)) (-4312 (((-112)) 99)) (-4218 (((-112)) 92)) (-4239 (((-112)) 51)) (-4261 (((-112)) 87)) (-4293 (((-112)) 101)) (-2780 (((-1232 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) (-1232 $) (-1232 $)) 111)) (-3148 (((-112)) 97)) (-4197 (((-625 (-1232 |#2|))) 86)) (-4333 (((-112)) 98)) (-3137 (((-112)) 96)) (-4322 (((-112)) 46)) (-4283 (((-112)) 102)))
+(((-361 |#1| |#2|) (-10 -8 (-15 -4175 ((-1145 |#2|) |#1|)) (-15 -4187 ((-1145 |#2|) |#1|)) (-15 -4197 ((-625 (-1232 |#2|)))) (-15 -3598 ((-3 |#1| "failed") |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 -4207 ((-112))) (-15 -4218 ((-112))) (-15 -4228 ((-112))) (-15 -4239 ((-112))) (-15 -4250 ((-112))) (-15 -4261 ((-112))) (-15 -4283 ((-112))) (-15 -4293 ((-112))) (-15 -4303 ((-112))) (-15 -4312 ((-112))) (-15 -4322 ((-112))) (-15 -4333 ((-112))) (-15 -3137 ((-112))) (-15 -3148 ((-112))) (-15 -3159 ((-1145 |#2|) |#1|)) (-15 -3166 ((-1145 |#2|) |#1|)) (-15 -2629 ((-669 |#2|) (-1232 |#1|))) (-15 -2640 ((-669 |#2|) (-1232 |#1|))) (-15 -2648 (|#2| (-1232 |#1|))) (-15 -2658 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -3174 (|#2| |#1|)) (-15 -3182 (|#2| |#1|)) (-15 -3192 (|#2| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -2612 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2619 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2770 ((-1232 (-669 |#2|)) (-1232 |#1|)))) (-362 |#2|) (-170)) (T -361))
+((-3148 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-3137 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4333 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4322 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4312 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4303 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4293 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4283 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4261 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4250 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4239 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4228 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4218 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4207 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4197 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-625 (-1232 *4))) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))))
+(-10 -8 (-15 -4175 ((-1145 |#2|) |#1|)) (-15 -4187 ((-1145 |#2|) |#1|)) (-15 -4197 ((-625 (-1232 |#2|)))) (-15 -3598 ((-3 |#1| "failed") |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 -4207 ((-112))) (-15 -4218 ((-112))) (-15 -4228 ((-112))) (-15 -4239 ((-112))) (-15 -4250 ((-112))) (-15 -4261 ((-112))) (-15 -4283 ((-112))) (-15 -4293 ((-112))) (-15 -4303 ((-112))) (-15 -4312 ((-112))) (-15 -4322 ((-112))) (-15 -4333 ((-112))) (-15 -3137 ((-112))) (-15 -3148 ((-112))) (-15 -3159 ((-1145 |#2|) |#1|)) (-15 -3166 ((-1145 |#2|) |#1|)) (-15 -2629 ((-669 |#2|) (-1232 |#1|))) (-15 -2640 ((-669 |#2|) (-1232 |#1|))) (-15 -2648 (|#2| (-1232 |#1|))) (-15 -2658 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -3174 (|#2| |#1|)) (-15 -3182 (|#2| |#1|)) (-15 -3192 (|#2| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -2612 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2619 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2770 ((-1232 (-669 |#2|)) (-1232 |#1|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3618 (((-3 $ "failed")) 37 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) 19)) (-2770 (((-1232 (-669 |#1|)) (-1232 $)) 78)) (-3208 (((-1232 $)) 81)) (-3101 (($) 17 T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 40 (|has| |#1| (-544)))) (-4152 (((-3 $ "failed")) 38 (|has| |#1| (-544)))) (-2629 (((-669 |#1|) (-1232 $)) 65)) (-3192 ((|#1| $) 74)) (-2612 (((-669 |#1|) $ (-1232 $)) 76)) (-3598 (((-3 $ "failed") $) 45 (|has| |#1| (-544)))) (-3629 (($ $ (-897)) 28)) (-3174 ((|#1| $) 72)) (-4175 (((-1145 |#1|) $) 42 (|has| |#1| (-544)))) (-2648 ((|#1| (-1232 $)) 67)) (-3159 (((-1145 |#1|) $) 63)) (-4303 (((-112)) 57)) (-2670 (($ (-1232 |#1|) (-1232 $)) 69)) (-4174 (((-3 $ "failed") $) 47 (|has| |#1| (-544)))) (-3442 (((-897)) 80)) (-4272 (((-112)) 54)) (-2712 (($ $ (-897)) 33)) (-4228 (((-112)) 50)) (-4207 (((-112)) 48)) (-4250 (((-112)) 52)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 41 (|has| |#1| (-544)))) (-4164 (((-3 $ "failed")) 39 (|has| |#1| (-544)))) (-2640 (((-669 |#1|) (-1232 $)) 66)) (-3199 ((|#1| $) 75)) (-2619 (((-669 |#1|) $ (-1232 $)) 77)) (-3609 (((-3 $ "failed") $) 46 (|has| |#1| (-544)))) (-3619 (($ $ (-897)) 29)) (-3182 ((|#1| $) 73)) (-4187 (((-1145 |#1|) $) 43 (|has| |#1| (-544)))) (-2658 ((|#1| (-1232 $)) 68)) (-3166 (((-1145 |#1|) $) 64)) (-4312 (((-112)) 58)) (-2883 (((-1131) $) 9)) (-4218 (((-112)) 49)) (-4239 (((-112)) 51)) (-4261 (((-112)) 53)) (-2831 (((-1093) $) 10)) (-4293 (((-112)) 56)) (-2780 (((-1232 |#1|) $ (-1232 $)) 71) (((-669 |#1|) (-1232 $) (-1232 $)) 70)) (-2533 (((-625 (-928 |#1|)) (-1232 $)) 79)) (-3828 (($ $ $) 25)) (-3148 (((-112)) 62)) (-1683 (((-839) $) 11)) (-4197 (((-625 (-1232 |#1|))) 44 (|has| |#1| (-544)))) (-3842 (($ $ $ $) 26)) (-4333 (((-112)) 60)) (-3818 (($ $ $) 24)) (-3137 (((-112)) 61)) (-4322 (((-112)) 59)) (-4283 (((-112)) 55)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 30)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-362 |#1|) (-138) (-170)) (T -362))
-((-1845 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1231 *1)) (-4 *1 (-362 *3)))) (-3444 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-895)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-622 (-922 *4))))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1231 (-669 *4))))) (-1906 (*1 *2 *1 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-1905 (*1 *2 *1 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3575 (*1 *2 *1 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1231 *4)))) (-3575 (*1 *2 *3 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1231 *1)) (-4 *4 (-170)) (-4 *1 (-362 *4)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1143 *3)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1143 *3)))) (-1838 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1837 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1836 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1835 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1834 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1833 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1832 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1831 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1830 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1829 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1828 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1827 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1826 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1825 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1824 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3821 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) (-2497 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) (-2496 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) (-1823 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) (-5 *2 (-622 (-1231 *3))))) (-1822 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) (-5 *2 (-1143 *3)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) (-5 *2 (-1143 *3)))) (-2029 (*1 *2) (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2128 (-622 *1)))) (-4 *1 (-362 *3)))) (-2028 (*1 *2) (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2128 (-622 *1)))) (-4 *1 (-362 *3)))) (-1820 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170)))) (-1819 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170)))) (-1892 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170)))))
-(-13 (-725 |t#1|) (-10 -8 (-15 -1845 ((-1231 $))) (-15 -3444 ((-895))) (-15 -2014 ((-622 (-922 |t#1|)) (-1231 $))) (-15 -3574 ((-1231 (-669 |t#1|)) (-1231 $))) (-15 -1906 ((-669 |t#1|) $ (-1231 $))) (-15 -1905 ((-669 |t#1|) $ (-1231 $))) (-15 -1844 (|t#1| $)) (-15 -1843 (|t#1| $)) (-15 -1842 (|t#1| $)) (-15 -1841 (|t#1| $)) (-15 -3575 ((-1231 |t#1|) $ (-1231 $))) (-15 -3575 ((-669 |t#1|) (-1231 $) (-1231 $))) (-15 -1911 ($ (-1231 |t#1|) (-1231 $))) (-15 -1910 (|t#1| (-1231 $))) (-15 -1909 (|t#1| (-1231 $))) (-15 -1908 ((-669 |t#1|) (-1231 $))) (-15 -1907 ((-669 |t#1|) (-1231 $))) (-15 -1840 ((-1143 |t#1|) $)) (-15 -1839 ((-1143 |t#1|) $)) (-15 -1838 ((-112))) (-15 -1837 ((-112))) (-15 -1836 ((-112))) (-15 -1835 ((-112))) (-15 -1834 ((-112))) (-15 -1833 ((-112))) (-15 -1832 ((-112))) (-15 -1831 ((-112))) (-15 -1830 ((-112))) (-15 -1829 ((-112))) (-15 -1828 ((-112))) (-15 -1827 ((-112))) (-15 -1826 ((-112))) (-15 -1825 ((-112))) (-15 -1824 ((-112))) (IF (|has| |t#1| (-545)) (PROGN (-15 -3821 ((-3 $ "failed") $)) (-15 -2497 ((-3 $ "failed") $)) (-15 -2496 ((-3 $ "failed") $)) (-15 -1823 ((-622 (-1231 |t#1|)))) (-15 -1822 ((-1143 |t#1|) $)) (-15 -1821 ((-1143 |t#1|) $)) (-15 -2029 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -2028 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -1820 ((-3 $ "failed"))) (-15 -1819 ((-3 $ "failed"))) (-15 -1892 ((-3 $ "failed"))) (-6 -4350)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-725 |#1|) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 7)) (-3471 (((-751)) 16)) (-3327 (($) 13)) (-2126 (((-895) $) 14)) (-3593 (((-1131) $) 9)) (-2492 (($ (-895)) 15)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)))
+((-3208 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1232 *1)) (-4 *1 (-362 *3)))) (-3442 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-897)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-625 (-928 *4))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1232 (-669 *4))))) (-2619 (*1 *2 *1 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1232 *4)))) (-2780 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-2670 (*1 *1 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1232 *1)) (-4 *4 (-170)) (-4 *1 (-362 *4)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1145 *3)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1145 *3)))) (-3148 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3137 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4333 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4322 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4312 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4303 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4293 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4283 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4272 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4261 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4250 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4239 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4228 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4218 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4207 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4174 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) (-3609 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) (-3598 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) (-4197 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544)) (-5 *2 (-625 (-1232 *3))))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544)) (-5 *2 (-1145 *3)))) (-4175 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544)) (-5 *2 (-1145 *3)))) (-1467 (*1 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1270 (-625 *1)))) (-4 *1 (-362 *3)))) (-1456 (*1 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1270 (-625 *1)))) (-4 *1 (-362 *3)))) (-4164 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170)))) (-4152 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170)))) (-3618 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170)))))
+(-13 (-725 |t#1|) (-10 -8 (-15 -3208 ((-1232 $))) (-15 -3442 ((-897))) (-15 -2533 ((-625 (-928 |t#1|)) (-1232 $))) (-15 -2770 ((-1232 (-669 |t#1|)) (-1232 $))) (-15 -2619 ((-669 |t#1|) $ (-1232 $))) (-15 -2612 ((-669 |t#1|) $ (-1232 $))) (-15 -3199 (|t#1| $)) (-15 -3192 (|t#1| $)) (-15 -3182 (|t#1| $)) (-15 -3174 (|t#1| $)) (-15 -2780 ((-1232 |t#1|) $ (-1232 $))) (-15 -2780 ((-669 |t#1|) (-1232 $) (-1232 $))) (-15 -2670 ($ (-1232 |t#1|) (-1232 $))) (-15 -2658 (|t#1| (-1232 $))) (-15 -2648 (|t#1| (-1232 $))) (-15 -2640 ((-669 |t#1|) (-1232 $))) (-15 -2629 ((-669 |t#1|) (-1232 $))) (-15 -3166 ((-1145 |t#1|) $)) (-15 -3159 ((-1145 |t#1|) $)) (-15 -3148 ((-112))) (-15 -3137 ((-112))) (-15 -4333 ((-112))) (-15 -4322 ((-112))) (-15 -4312 ((-112))) (-15 -4303 ((-112))) (-15 -4293 ((-112))) (-15 -4283 ((-112))) (-15 -4272 ((-112))) (-15 -4261 ((-112))) (-15 -4250 ((-112))) (-15 -4239 ((-112))) (-15 -4228 ((-112))) (-15 -4218 ((-112))) (-15 -4207 ((-112))) (IF (|has| |t#1| (-544)) (PROGN (-15 -4174 ((-3 $ "failed") $)) (-15 -3609 ((-3 $ "failed") $)) (-15 -3598 ((-3 $ "failed") $)) (-15 -4197 ((-625 (-1232 |t#1|)))) (-15 -4187 ((-1145 |t#1|) $)) (-15 -4175 ((-1145 |t#1|) $)) (-15 -1467 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -1456 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -4164 ((-3 $ "failed"))) (-15 -4152 ((-3 $ "failed"))) (-15 -3618 ((-3 $ "failed"))) (-6 -4350)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-725 |#1|) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 7)) (-2894 (((-751)) 16)) (-3702 (($) 13)) (-4318 (((-897) $) 14)) (-2883 (((-1131) $) 9)) (-3123 (($ (-897)) 15)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)))
(((-363) (-138)) (T -363))
-((-3471 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-751)))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-363)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-895)))) (-3327 (*1 *1) (-4 *1 (-363))))
-(-13 (-1074) (-10 -8 (-15 -3471 ((-751))) (-15 -2492 ($ (-895))) (-15 -2126 ((-895) $)) (-15 -3327 ($))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-1901 (((-669 |#2|) (-1231 $)) 40)) (-1911 (($ (-1231 |#2|) (-1231 $)) 34)) (-1900 (((-669 |#2|) $ (-1231 $)) 42)) (-4117 ((|#2| (-1231 $)) 13)) (-3575 (((-1231 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) (-1231 $) (-1231 $)) 25)))
-(((-364 |#1| |#2| |#3|) (-10 -8 (-15 -1901 ((-669 |#2|) (-1231 |#1|))) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1900 ((-669 |#2|) |#1| (-1231 |#1|)))) (-365 |#2| |#3|) (-170) (-1207 |#2|)) (T -364))
-NIL
-(-10 -8 (-15 -1901 ((-669 |#2|) (-1231 |#1|))) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1900 ((-669 |#2|) |#1| (-1231 |#1|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1901 (((-669 |#1|) (-1231 $)) 44)) (-3689 ((|#1| $) 50)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-1911 (($ (-1231 |#1|) (-1231 $)) 46)) (-1900 (((-669 |#1|) $ (-1231 $)) 51)) (-3821 (((-3 $ "failed") $) 32)) (-3444 (((-895)) 52)) (-2502 (((-112) $) 30)) (-3467 ((|#1| $) 49)) (-2130 ((|#2| $) 42 (|has| |#1| (-358)))) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4117 ((|#1| (-1231 $)) 45)) (-3575 (((-1231 |#1|) $ (-1231 $)) 48) (((-669 |#1|) (-1231 $) (-1231 $)) 47)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35)) (-3035 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2698 ((|#2| $) 43)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-365 |#1| |#2|) (-138) (-170) (-1207 |t#1|)) (T -365))
-((-3444 (*1 *2) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-895)))) (-1900 (*1 *2 *1 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170)))) (-3575 (*1 *2 *1 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *4)))) (-3575 (*1 *2 *3 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1231 *1)) (-4 *4 (-170)) (-4 *1 (-365 *4 *5)) (-4 *5 (-1207 *4)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1207 *2)) (-4 *2 (-170)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3)))) (-2130 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358)) (-4 *2 (-1207 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3444 ((-895))) (-15 -1900 ((-669 |t#1|) $ (-1231 $))) (-15 -3689 (|t#1| $)) (-15 -3467 (|t#1| $)) (-15 -3575 ((-1231 |t#1|) $ (-1231 $))) (-15 -3575 ((-669 |t#1|) (-1231 $) (-1231 $))) (-15 -1911 ($ (-1231 |t#1|) (-1231 $))) (-15 -4117 (|t#1| (-1231 $))) (-15 -1901 ((-669 |t#1|) (-1231 $))) (-15 -2698 (|t#2| $)) (IF (|has| |t#1| (-358)) (-15 -2130 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-1848 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1846 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3242 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2378 (($ $) 25)) (-3778 (((-538) (-1 (-112) |#2|) $) NIL) (((-538) |#2| $) 11) (((-538) |#2| $ (-538)) NIL)) (-3872 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-366 |#1| |#2|) (-10 -8 (-15 -1846 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -3242 (|#1| |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3242 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-367 |#2|) (-1185)) (T -366))
-NIL
-(-10 -8 (-15 -1846 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -3242 (|#1| |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3242 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-3778 (((-538) (-1 (-112) |#1|) $) 97) (((-538) |#1| $) 96 (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) 95 (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 70)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) 85 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 82 (|has| |#1| (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-367 |#1|) (-138) (-1185)) (T -367))
-((-3872 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))) (-2378 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)))) (-3242 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))) (-1848 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1185)) (-5 *2 (-112)))) (-3778 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1185)) (-5 *2 (-538)))) (-3778 (*1 *2 *3 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-538)))) (-3778 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)))) (-3872 (*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827)))) (-3242 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-827)) (-5 *2 (-112)))) (-1847 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-538)) (|has| *1 (-6 -4354)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))) (-2377 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-367 *2)) (-4 *2 (-1185)))) (-1846 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))) (-1846 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827)))))
-(-13 (-631 |t#1|) (-10 -8 (-6 -4353) (-15 -3872 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2378 ($ $)) (-15 -3242 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1848 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3778 ((-538) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -3778 ((-538) |t#1| $)) (-15 -3778 ((-538) |t#1| $ (-538)))) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-6 (-827)) (-15 -3872 ($ $ $)) (-15 -3242 ($ $)) (-15 -1848 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -1847 ($ $ $ (-538))) (-15 -2377 ($ $)) (-15 -1846 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-827)) (-15 -1846 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-101) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1074) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-1185) . T))
-((-4201 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4202 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4318 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-368 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4202 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4201 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1185) (-367 |#1|) (-1185) (-367 |#3|)) (T -368))
-((-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-4 *2 (-367 *5)) (-5 *1 (-368 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-368 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *2 (-367 *6)) (-5 *1 (-368 *5 *4 *6 *2)) (-4 *4 (-367 *5)))))
-(-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4202 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4201 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-4294 (((-622 |#1|) $) 32)) (-4306 (($ $ (-751)) 33)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4299 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 36)) (-4296 (($ $) 34)) (-4300 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 37)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4127 (($ $ |#1| $) 31) (($ $ (-622 |#1|) (-622 $)) 30)) (-4307 (((-751) $) 38)) (-3884 (($ $ $) 29)) (-4317 (((-840) $) 11) (($ |#1|) 41) (((-1247 |#1| |#2|) $) 40) (((-1256 |#1| |#2|) $) 39)) (-4313 ((|#2| (-1256 |#1| |#2|) $) 42)) (-2991 (($) 18 T CONST)) (-1849 (($ (-652 |#1|)) 35)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#2|) 28 (|has| |#2| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+((-2894 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-751)))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-363)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-897)))) (-3702 (*1 *1) (-4 *1 (-363))))
+(-13 (-1073) (-10 -8 (-15 -2894 ((-751))) (-15 -3123 ($ (-897))) (-15 -4318 ((-897) $)) (-15 -3702 ($))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-2570 (((-669 |#2|) (-1232 $)) 40)) (-2670 (($ (-1232 |#2|) (-1232 $)) 34)) (-2559 (((-669 |#2|) $ (-1232 $)) 42)) (-3217 ((|#2| (-1232 $)) 13)) (-2780 (((-1232 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) (-1232 $) (-1232 $)) 25)))
+(((-364 |#1| |#2| |#3|) (-10 -8 (-15 -2570 ((-669 |#2|) (-1232 |#1|))) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2559 ((-669 |#2|) |#1| (-1232 |#1|)))) (-365 |#2| |#3|) (-170) (-1208 |#2|)) (T -364))
+NIL
+(-10 -8 (-15 -2570 ((-669 |#2|) (-1232 |#1|))) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2559 ((-669 |#2|) |#1| (-1232 |#1|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2570 (((-669 |#1|) (-1232 $)) 44)) (-1650 ((|#1| $) 50)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2670 (($ (-1232 |#1|) (-1232 $)) 46)) (-2559 (((-669 |#1|) $ (-1232 $)) 51)) (-4174 (((-3 $ "failed") $) 32)) (-3442 (((-897)) 52)) (-3650 (((-112) $) 30)) (-4209 ((|#1| $) 49)) (-1291 ((|#2| $) 42 (|has| |#1| (-358)))) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3217 ((|#1| (-1232 $)) 45)) (-2780 (((-1232 |#1|) $ (-1232 $)) 48) (((-669 |#1|) (-1232 $) (-1232 $)) 47)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-4243 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3974 ((|#2| $) 43)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-365 |#1| |#2|) (-138) (-170) (-1208 |t#1|)) (T -365))
+((-3442 (*1 *2) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-897)))) (-2559 (*1 *2 *1 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-1232 *4)))) (-2780 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) (-2670 (*1 *1 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1232 *1)) (-4 *4 (-170)) (-4 *1 (-365 *4 *5)) (-4 *5 (-1208 *4)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1208 *2)) (-4 *2 (-170)))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3)))) (-1291 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358)) (-4 *2 (-1208 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3442 ((-897))) (-15 -2559 ((-669 |t#1|) $ (-1232 $))) (-15 -1650 (|t#1| $)) (-15 -4209 (|t#1| $)) (-15 -2780 ((-1232 |t#1|) $ (-1232 $))) (-15 -2780 ((-669 |t#1|) (-1232 $) (-1232 $))) (-15 -2670 ($ (-1232 |t#1|) (-1232 $))) (-15 -3217 (|t#1| (-1232 $))) (-15 -2570 ((-669 |t#1|) (-1232 $))) (-15 -3974 (|t#2| $)) (IF (|has| |t#1| (-358)) (-15 -1291 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1454 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2163 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1996 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2163 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1454 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1186) (-368 |#1|) (-1186) (-368 |#3|)) (T -366))
+((-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1186)) (-4 *5 (-1186)) (-4 *2 (-368 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-368 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-4 *2 (-368 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-368 *5)))))
+(-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2163 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1454 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3237 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3218 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1800 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2306 (($ $) 25)) (-2483 (((-552) (-1 (-112) |#2|) $) NIL) (((-552) |#2| $) 11) (((-552) |#2| $ (-552)) NIL)) (-3280 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-367 |#1| |#2|) (-10 -8 (-15 -3218 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -1800 (|#1| |#1|)) (-15 -3280 (|#1| |#1| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1800 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-368 |#2|) (-1186)) (T -367))
+NIL
+(-10 -8 (-15 -3218 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -1800 (|#1| |#1|)) (-15 -3280 (|#1| |#1| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1800 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-2483 (((-552) (-1 (-112) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 70)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 83 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) 85 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 82 (|has| |#1| (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-368 |#1|) (-138) (-1186)) (T -368))
+((-3280 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1186)))) (-2306 (*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)))) (-1800 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1186)))) (-3237 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-368 *4)) (-4 *4 (-1186)) (-5 *2 (-112)))) (-2483 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-368 *4)) (-4 *4 (-1186)) (-5 *2 (-552)))) (-2483 (*1 *2 *3 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-552)))) (-2483 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-368 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)))) (-3280 (*1 *1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)) (-4 *2 (-827)))) (-1800 (*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)) (-4 *2 (-827)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1186)) (-4 *3 (-827)) (-5 *2 (-112)))) (-3228 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (|has| *1 (-6 -4354)) (-4 *1 (-368 *3)) (-4 *3 (-1186)))) (-1883 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-368 *2)) (-4 *2 (-1186)))) (-3218 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-368 *3)) (-4 *3 (-1186)))) (-3218 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-368 *2)) (-4 *2 (-1186)) (-4 *2 (-827)))))
+(-13 (-631 |t#1|) (-10 -8 (-6 -4353) (-15 -3280 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2306 ($ $)) (-15 -1800 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3237 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2483 ((-552) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1073)) (PROGN (-15 -2483 ((-552) |t#1| $)) (-15 -2483 ((-552) |t#1| $ (-552)))) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-6 (-827)) (-15 -3280 ($ $ $)) (-15 -1800 ($ $)) (-15 -3237 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -3228 ($ $ $ (-552))) (-15 -1883 ($ $)) (-15 -3218 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-827)) (-15 -3218 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-101) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1073) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-1186) . T))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3202 (((-625 |#1|) $) 32)) (-4266 (($ $ (-751)) 33)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4211 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 36)) (-4191 (($ $) 34)) (-4222 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 37)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4073 (($ $ |#1| $) 31) (($ $ (-625 |#1|) (-625 $)) 30)) (-4276 (((-751) $) 38)) (-1695 (($ $ $) 29)) (-1683 (((-839) $) 11) (($ |#1|) 41) (((-1247 |#1| |#2|) $) 40) (((-1256 |#1| |#2|) $) 39)) (-3340 ((|#2| (-1256 |#1| |#2|) $) 42)) (-2089 (($) 18 T CONST)) (-3246 (($ (-652 |#1|)) 35)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#2|) 28 (|has| |#2| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
(((-369 |#1| |#2|) (-138) (-827) (-170)) (T -369))
-((-4313 (*1 *2 *3 *1) (-12 (-5 *3 (-1256 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-827)) (-4 *2 (-170)))) (-4317 (*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-1247 *3 *4)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-1256 *3 *4)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-751)))) (-4300 (*1 *2 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4299 (*1 *2 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-1849 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-4 *1 (-369 *3 *4)) (-4 *4 (-170)))) (-4296 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4306 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-622 *3)))) (-4127 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-827)) (-4 *5 (-170)))))
-(-13 (-617 |t#2|) (-10 -8 (-15 -4313 (|t#2| (-1256 |t#1| |t#2|) $)) (-15 -4317 ($ |t#1|)) (-15 -4317 ((-1247 |t#1| |t#2|) $)) (-15 -4317 ((-1256 |t#1| |t#2|) $)) (-15 -4307 ((-751) $)) (-15 -4300 ((-1256 |t#1| |t#2|) (-1256 |t#1| |t#2|) $)) (-15 -4299 ((-1256 |t#1| |t#2|) (-1256 |t#1| |t#2|) $)) (-15 -1849 ($ (-652 |t#1|))) (-15 -4296 ($ $)) (-15 -4306 ($ $ (-751))) (-15 -4294 ((-622 |t#1|) $)) (-15 -4127 ($ $ |t#1| $)) (-15 -4127 ($ $ (-622 |t#1|) (-622 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#2|) . T) ((-617 |#2|) . T) ((-698 |#2|) . T) ((-1031 |#2|) . T) ((-1074) . T))
-((-1852 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-1850 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1851 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
-(((-370 |#1| |#2|) (-10 -7 (-15 -1850 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1851 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1852 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1185) (-13 (-367 |#1|) (-10 -7 (-6 -4354)))) (T -370))
-((-1852 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))))) (-1851 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))))) (-1850 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))))))
-(-10 -7 (-15 -1850 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1851 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1852 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-2362 (((-669 |#2|) (-669 $)) NIL) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 22) (((-669 (-538)) (-669 $)) 14)))
-(((-371 |#1| |#2|) (-10 -8 (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 |#2|) (-669 |#1|)))) (-372 |#2|) (-1025)) (T -371))
-NIL
-(-10 -8 (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 |#2|) (-669 |#1|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2362 (((-669 |#1|) (-669 $)) 34) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 33) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 41 (|has| |#1| (-621 (-538)))) (((-669 (-538)) (-669 $)) 40 (|has| |#1| (-621 (-538))))) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-3340 (*1 *2 *3 *1) (-12 (-5 *3 (-1256 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-827)) (-4 *2 (-170)))) (-1683 (*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-1247 *3 *4)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-1256 *3 *4)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-751)))) (-4222 (*1 *2 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4211 (*1 *2 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-4 *1 (-369 *3 *4)) (-4 *4 (-170)))) (-4191 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-625 *3)))) (-4073 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-827)) (-4 *5 (-170)))))
+(-13 (-616 |t#2|) (-10 -8 (-15 -3340 (|t#2| (-1256 |t#1| |t#2|) $)) (-15 -1683 ($ |t#1|)) (-15 -1683 ((-1247 |t#1| |t#2|) $)) (-15 -1683 ((-1256 |t#1| |t#2|) $)) (-15 -4276 ((-751) $)) (-15 -4222 ((-1256 |t#1| |t#2|) (-1256 |t#1| |t#2|) $)) (-15 -4211 ((-1256 |t#1| |t#2|) (-1256 |t#1| |t#2|) $)) (-15 -3246 ($ (-652 |t#1|))) (-15 -4191 ($ $)) (-15 -4266 ($ $ (-751))) (-15 -3202 ((-625 |t#1|) $)) (-15 -4073 ($ $ |t#1| $)) (-15 -4073 ($ $ (-625 |t#1|) (-625 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#2|) . T) ((-616 |#2|) . T) ((-698 |#2|) . T) ((-1031 |#2|) . T) ((-1073) . T))
+((-3273 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-3255 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3264 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
+(((-370 |#1| |#2|) (-10 -7 (-15 -3255 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3264 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3273 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1186) (-13 (-368 |#1|) (-10 -7 (-6 -4354)))) (T -370))
+((-3273 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))))) (-3264 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))))) (-3255 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))))))
+(-10 -7 (-15 -3255 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3264 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3273 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-1794 (((-669 |#2|) (-669 $)) NIL) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 22) (((-669 (-552)) (-669 $)) 14)))
+(((-371 |#1| |#2|) (-10 -8 (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 |#2|) (-669 |#1|)))) (-372 |#2|) (-1025)) (T -371))
+NIL
+(-10 -8 (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 |#2|) (-669 |#1|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1794 (((-669 |#1|) (-669 $)) 34) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 33) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 41 (|has| |#1| (-621 (-552)))) (((-669 (-552)) (-669 $)) 40 (|has| |#1| (-621 (-552))))) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-372 |#1|) (-138) (-1025)) (T -372))
NIL
-(-13 (-621 |t#1|) (-10 -7 (IF (|has| |t#1| (-621 (-538))) (-6 (-621 (-538))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 33)) (-3464 (((-538) $) 55)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4130 (($ $) 110)) (-3846 (($ $) 82)) (-4002 (($ $) 71)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) 44)) (-1705 (((-112) $ $) NIL)) (-3844 (($ $) 80)) (-4001 (($ $) 69)) (-3986 (((-538) $) 64)) (-2690 (($ $ (-538)) 62)) (-3848 (($ $) NIL)) (-4000 (($ $) NIL)) (-3896 (($) NIL T CONST)) (-3462 (($ $) 112)) (-3508 (((-3 (-538) #1="failed") $) 189) (((-3 (-402 (-538)) #1#) $) 185)) (-3507 (((-538) $) 187) (((-402 (-538)) $) 183)) (-2894 (($ $ $) NIL)) (-1861 (((-538) $ $) 102)) (-3821 (((-3 $ "failed") $) 114)) (-1860 (((-402 (-538)) $ (-751)) 190) (((-402 (-538)) $ (-751) (-751)) 182)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2466 (((-895)) 73) (((-895) (-895)) 98 (|has| $ (-6 -4344)))) (-3537 (((-112) $) 106)) (-3990 (($) 40)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL)) (-1853 (((-1237) (-751)) 152)) (-1854 (((-1237)) 157) (((-1237) (-751)) 158)) (-1856 (((-1237)) 159) (((-1237) (-751)) 160)) (-1855 (((-1237)) 155) (((-1237) (-751)) 156)) (-4131 (((-538) $) 58)) (-2502 (((-112) $) 104)) (-3344 (($ $ (-538)) NIL)) (-2692 (($ $) 48)) (-3467 (($ $) NIL)) (-3538 (((-112) $) 35)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-3678 (($ $ $) NIL) (($) 99 (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-2467 (((-538) $) 17)) (-1859 (($) 87) (($ $) 92)) (-1858 (($) 91) (($ $) 93)) (-4302 (($ $) 83)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 116)) (-1889 (((-895) (-538)) 43 (|has| $ (-6 -4344)))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) 53)) (-3465 (($ $) 109)) (-3605 (($ (-538) (-538)) 107) (($ (-538) (-538) (-895)) 108)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-2493 (((-538) $) 19)) (-1857 (($) 94)) (-4303 (($ $) 79)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-2944 (((-895)) 100) (((-895) (-895)) 101 (|has| $ (-6 -4344)))) (-4170 (($ $ (-751)) NIL) (($ $) 115)) (-1888 (((-895) (-538)) 47 (|has| $ (-6 -4344)))) (-3849 (($ $) NIL)) (-3999 (($ $) NIL)) (-3847 (($ $) NIL)) (-3998 (($ $) NIL)) (-3845 (($ $) 81)) (-3997 (($ $) 70)) (-4330 (((-373) $) 175) (((-221) $) 177) (((-866 (-373)) $) NIL) (((-1131) $) 162) (((-527) $) 173) (($ (-221)) 181)) (-4317 (((-840) $) 164) (($ (-538)) 186) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-538)) 186) (($ (-402 (-538))) NIL) (((-221) $) 178)) (-3461 (((-751)) NIL)) (-3466 (($ $) 111)) (-1890 (((-895)) 54) (((-895) (-895)) 66 (|has| $ (-6 -4344)))) (-3027 (((-895)) 103)) (-3852 (($ $) 86)) (-3840 (($ $) 46) (($ $ $) 52)) (-2177 (((-112) $ $) NIL)) (-3850 (($ $) 84)) (-3838 (($ $) 37)) (-3854 (($ $) NIL)) (-3842 (($ $) NIL)) (-3855 (($ $) NIL)) (-3843 (($ $) NIL)) (-3853 (($ $) NIL)) (-3841 (($ $) NIL)) (-3851 (($ $) 85)) (-3839 (($ $) 49)) (-3742 (($ $) 51)) (-2991 (($) 34 T CONST)) (-2997 (($) 38 T CONST)) (-2834 (((-1131) $) 27) (((-1131) $ (-112)) 29) (((-1237) (-803) $) 30) (((-1237) (-803) $ (-112)) 31)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 39)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 42)) (-4308 (($ $ $) 45) (($ $ (-538)) 41)) (-4197 (($ $) 36) (($ $ $) 50)) (-4199 (($ $ $) 61)) (** (($ $ (-895)) 67) (($ $ (-751)) NIL) (($ $ (-538)) 88) (($ $ (-402 (-538))) 125) (($ $ $) 117)) (* (($ (-895) $) 65) (($ (-751) $) NIL) (($ (-538) $) 68) (($ $ $) 60) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL)))
-(((-373) (-13 (-399) (-229) (-598 (-1131)) (-801) (-597 (-221)) (-1171) (-598 (-527)) (-10 -8 (-15 -4308 ($ $ (-538))) (-15 ** ($ $ $)) (-15 -2692 ($ $)) (-15 -1861 ((-538) $ $)) (-15 -2690 ($ $ (-538))) (-15 -1860 ((-402 (-538)) $ (-751))) (-15 -1860 ((-402 (-538)) $ (-751) (-751))) (-15 -1859 ($)) (-15 -1858 ($)) (-15 -1857 ($)) (-15 -3840 ($ $ $)) (-15 -1859 ($ $)) (-15 -1858 ($ $)) (-15 -4330 ($ (-221))) (-15 -1856 ((-1237))) (-15 -1856 ((-1237) (-751))) (-15 -1855 ((-1237))) (-15 -1855 ((-1237) (-751))) (-15 -1854 ((-1237))) (-15 -1854 ((-1237) (-751))) (-15 -1853 ((-1237) (-751))) (-6 -4344) (-6 -4336)))) (T -373))
-((** (*1 *1 *1 *1) (-5 *1 (-373))) (-4308 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-373)))) (-2692 (*1 *1 *1) (-5 *1 (-373))) (-1861 (*1 *2 *1 *1) (-12 (-5 *2 (-538)) (-5 *1 (-373)))) (-2690 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-373)))) (-1860 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-373)))) (-1860 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-373)))) (-1859 (*1 *1) (-5 *1 (-373))) (-1858 (*1 *1) (-5 *1 (-373))) (-1857 (*1 *1) (-5 *1 (-373))) (-3840 (*1 *1 *1 *1) (-5 *1 (-373))) (-1859 (*1 *1 *1) (-5 *1 (-373))) (-1858 (*1 *1 *1) (-5 *1 (-373))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-373)))) (-1856 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))) (-1855 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))) (-1854 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))))
-(-13 (-399) (-229) (-598 (-1131)) (-801) (-597 (-221)) (-1171) (-598 (-527)) (-10 -8 (-15 -4308 ($ $ (-538))) (-15 ** ($ $ $)) (-15 -2692 ($ $)) (-15 -1861 ((-538) $ $)) (-15 -2690 ($ $ (-538))) (-15 -1860 ((-402 (-538)) $ (-751))) (-15 -1860 ((-402 (-538)) $ (-751) (-751))) (-15 -1859 ($)) (-15 -1858 ($)) (-15 -1857 ($)) (-15 -3840 ($ $ $)) (-15 -1859 ($ $)) (-15 -1858 ($ $)) (-15 -4330 ($ (-221))) (-15 -1856 ((-1237))) (-15 -1856 ((-1237) (-751))) (-15 -1855 ((-1237))) (-15 -1855 ((-1237) (-751))) (-15 -1854 ((-1237))) (-15 -1854 ((-1237) (-751))) (-15 -1853 ((-1237) (-751))) (-6 -4344) (-6 -4336)))
-((-1862 (((-622 (-288 (-922 (-166 |#1|)))) (-288 (-402 (-922 (-166 (-538))))) |#1|) 51) (((-622 (-288 (-922 (-166 |#1|)))) (-402 (-922 (-166 (-538)))) |#1|) 50) (((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-288 (-402 (-922 (-166 (-538)))))) |#1|) 47) (((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-402 (-922 (-166 (-538))))) |#1|) 41)) (-1863 (((-622 (-622 (-166 |#1|))) (-622 (-402 (-922 (-166 (-538))))) (-622 (-1149)) |#1|) 30) (((-622 (-166 |#1|)) (-402 (-922 (-166 (-538)))) |#1|) 18)))
-(((-374 |#1|) (-10 -7 (-15 -1862 ((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-402 (-922 (-166 (-538))))) |#1|)) (-15 -1862 ((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-288 (-402 (-922 (-166 (-538)))))) |#1|)) (-15 -1862 ((-622 (-288 (-922 (-166 |#1|)))) (-402 (-922 (-166 (-538)))) |#1|)) (-15 -1862 ((-622 (-288 (-922 (-166 |#1|)))) (-288 (-402 (-922 (-166 (-538))))) |#1|)) (-15 -1863 ((-622 (-166 |#1|)) (-402 (-922 (-166 (-538)))) |#1|)) (-15 -1863 ((-622 (-622 (-166 |#1|))) (-622 (-402 (-922 (-166 (-538))))) (-622 (-1149)) |#1|))) (-13 (-358) (-825))) (T -374))
-((-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-402 (-922 (-166 (-538)))))) (-5 *4 (-622 (-1149))) (-5 *2 (-622 (-622 (-166 *5)))) (-5 *1 (-374 *5)) (-4 *5 (-13 (-358) (-825))))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 (-166 (-538))))) (-5 *2 (-622 (-166 *4))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825))))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-402 (-922 (-166 (-538)))))) (-5 *2 (-622 (-288 (-922 (-166 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825))))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 (-166 (-538))))) (-5 *2 (-622 (-288 (-922 (-166 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825))))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-288 (-402 (-922 (-166 (-538))))))) (-5 *2 (-622 (-622 (-288 (-922 (-166 *4)))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825))))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 (-166 (-538)))))) (-5 *2 (-622 (-622 (-288 (-922 (-166 *4)))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825))))))
-(-10 -7 (-15 -1862 ((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-402 (-922 (-166 (-538))))) |#1|)) (-15 -1862 ((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-288 (-402 (-922 (-166 (-538)))))) |#1|)) (-15 -1862 ((-622 (-288 (-922 (-166 |#1|)))) (-402 (-922 (-166 (-538)))) |#1|)) (-15 -1862 ((-622 (-288 (-922 (-166 |#1|)))) (-288 (-402 (-922 (-166 (-538))))) |#1|)) (-15 -1863 ((-622 (-166 |#1|)) (-402 (-922 (-166 (-538)))) |#1|)) (-15 -1863 ((-622 (-622 (-166 |#1|))) (-622 (-402 (-922 (-166 (-538))))) (-622 (-1149)) |#1|)))
-((-3936 (((-622 (-288 (-922 |#1|))) (-288 (-402 (-922 (-538)))) |#1|) 46) (((-622 (-288 (-922 |#1|))) (-402 (-922 (-538))) |#1|) 45) (((-622 (-622 (-288 (-922 |#1|)))) (-622 (-288 (-402 (-922 (-538))))) |#1|) 42) (((-622 (-622 (-288 (-922 |#1|)))) (-622 (-402 (-922 (-538)))) |#1|) 36)) (-1864 (((-622 |#1|) (-402 (-922 (-538))) |#1|) 20) (((-622 (-622 |#1|)) (-622 (-402 (-922 (-538)))) (-622 (-1149)) |#1|) 30)))
-(((-375 |#1|) (-10 -7 (-15 -3936 ((-622 (-622 (-288 (-922 |#1|)))) (-622 (-402 (-922 (-538)))) |#1|)) (-15 -3936 ((-622 (-622 (-288 (-922 |#1|)))) (-622 (-288 (-402 (-922 (-538))))) |#1|)) (-15 -3936 ((-622 (-288 (-922 |#1|))) (-402 (-922 (-538))) |#1|)) (-15 -3936 ((-622 (-288 (-922 |#1|))) (-288 (-402 (-922 (-538)))) |#1|)) (-15 -1864 ((-622 (-622 |#1|)) (-622 (-402 (-922 (-538)))) (-622 (-1149)) |#1|)) (-15 -1864 ((-622 |#1|) (-402 (-922 (-538))) |#1|))) (-13 (-825) (-358))) (T -375))
-((-1864 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 (-538)))) (-5 *2 (-622 *4)) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-1864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-402 (-922 (-538))))) (-5 *4 (-622 (-1149))) (-5 *2 (-622 (-622 *5))) (-5 *1 (-375 *5)) (-4 *5 (-13 (-825) (-358))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-402 (-922 (-538))))) (-5 *2 (-622 (-288 (-922 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 (-538)))) (-5 *2 (-622 (-288 (-922 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-288 (-402 (-922 (-538)))))) (-5 *2 (-622 (-622 (-288 (-922 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 (-538))))) (-5 *2 (-622 (-622 (-288 (-922 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))))
-(-10 -7 (-15 -3936 ((-622 (-622 (-288 (-922 |#1|)))) (-622 (-402 (-922 (-538)))) |#1|)) (-15 -3936 ((-622 (-622 (-288 (-922 |#1|)))) (-622 (-288 (-402 (-922 (-538))))) |#1|)) (-15 -3936 ((-622 (-288 (-922 |#1|))) (-402 (-922 (-538))) |#1|)) (-15 -3936 ((-622 (-288 (-922 |#1|))) (-288 (-402 (-922 (-538)))) |#1|)) (-15 -1864 ((-622 (-622 |#1|)) (-622 (-402 (-922 (-538)))) (-622 (-1149)) |#1|)) (-15 -1864 ((-622 |#1|) (-402 (-922 (-538))) |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3226 (($ |#1| |#2|) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2106 ((|#2| $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 28)) (-2991 (($) 12 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-376 |#1| |#2|) (-13 (-111 |#1| |#1|) (-502 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|))) (-1025) (-827)) (T -376))
+(-13 (-621 |t#1|) (-10 -7 (IF (|has| |t#1| (-621 (-552))) (-6 (-621 (-552))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-3359 (((-625 (-289 (-928 (-167 |#1|)))) (-289 (-402 (-928 (-167 (-552))))) |#1|) 51) (((-625 (-289 (-928 (-167 |#1|)))) (-402 (-928 (-167 (-552)))) |#1|) 50) (((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-289 (-402 (-928 (-167 (-552)))))) |#1|) 47) (((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-402 (-928 (-167 (-552))))) |#1|) 41)) (-3368 (((-625 (-625 (-167 |#1|))) (-625 (-402 (-928 (-167 (-552))))) (-625 (-1149)) |#1|) 30) (((-625 (-167 |#1|)) (-402 (-928 (-167 (-552)))) |#1|) 18)))
+(((-373 |#1|) (-10 -7 (-15 -3359 ((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-402 (-928 (-167 (-552))))) |#1|)) (-15 -3359 ((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-289 (-402 (-928 (-167 (-552)))))) |#1|)) (-15 -3359 ((-625 (-289 (-928 (-167 |#1|)))) (-402 (-928 (-167 (-552)))) |#1|)) (-15 -3359 ((-625 (-289 (-928 (-167 |#1|)))) (-289 (-402 (-928 (-167 (-552))))) |#1|)) (-15 -3368 ((-625 (-167 |#1|)) (-402 (-928 (-167 (-552)))) |#1|)) (-15 -3368 ((-625 (-625 (-167 |#1|))) (-625 (-402 (-928 (-167 (-552))))) (-625 (-1149)) |#1|))) (-13 (-358) (-825))) (T -373))
+((-3368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-402 (-928 (-167 (-552)))))) (-5 *4 (-625 (-1149))) (-5 *2 (-625 (-625 (-167 *5)))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-358) (-825))))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 (-167 (-552))))) (-5 *2 (-625 (-167 *4))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-928 (-167 (-552)))))) (-5 *2 (-625 (-289 (-928 (-167 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 (-167 (-552))))) (-5 *2 (-625 (-289 (-928 (-167 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-289 (-402 (-928 (-167 (-552))))))) (-5 *2 (-625 (-625 (-289 (-928 (-167 *4)))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 (-167 (-552)))))) (-5 *2 (-625 (-625 (-289 (-928 (-167 *4)))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825))))))
+(-10 -7 (-15 -3359 ((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-402 (-928 (-167 (-552))))) |#1|)) (-15 -3359 ((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-289 (-402 (-928 (-167 (-552)))))) |#1|)) (-15 -3359 ((-625 (-289 (-928 (-167 |#1|)))) (-402 (-928 (-167 (-552)))) |#1|)) (-15 -3359 ((-625 (-289 (-928 (-167 |#1|)))) (-289 (-402 (-928 (-167 (-552))))) |#1|)) (-15 -3368 ((-625 (-167 |#1|)) (-402 (-928 (-167 (-552)))) |#1|)) (-15 -3368 ((-625 (-625 (-167 |#1|))) (-625 (-402 (-928 (-167 (-552))))) (-625 (-1149)) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 33)) (-4177 (((-552) $) 55)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2162 (($ $) 110)) (-3728 (($ $) 82)) (-3604 (($ $) 71)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) 44)) (-2408 (((-112) $ $) NIL)) (-3710 (($ $) 80)) (-3581 (($ $) 69)) (-4127 (((-552) $) 64)) (-3420 (($ $ (-552)) 62)) (-3749 (($ $) NIL)) (-3627 (($ $) NIL)) (-3101 (($) NIL T CONST)) (-4154 (($ $) 112)) (-1893 (((-3 (-552) "failed") $) 189) (((-3 (-402 (-552)) "failed") $) 185)) (-1895 (((-552) $) 187) (((-402 (-552)) $) 183)) (-2851 (($ $ $) NIL)) (-3350 (((-552) $ $) 102)) (-4174 (((-3 $ "failed") $) 114)) (-3341 (((-402 (-552)) $ (-751)) 190) (((-402 (-552)) $ (-751) (-751)) 182)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1923 (((-897)) 73) (((-897) (-897)) 98 (|has| $ (-6 -4344)))) (-3620 (((-112) $) 106)) (-1385 (($) 40)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL)) (-3283 (((-1237) (-751)) 152)) (-3292 (((-1237)) 157) (((-1237) (-751)) 158)) (-3312 (((-1237)) 159) (((-1237) (-751)) 160)) (-3302 (((-1237)) 155) (((-1237) (-751)) 156)) (-2172 (((-552) $) 58)) (-3650 (((-112) $) 104)) (-2429 (($ $ (-552)) NIL)) (-3895 (($ $) 48)) (-4209 (($ $) NIL)) (-3630 (((-112) $) 35)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL) (($) NIL (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-3332 (($ $ $) NIL) (($) 99 (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-2594 (((-552) $) 17)) (-3331 (($) 87) (($ $) 92)) (-4138 (($) 91) (($ $) 93)) (-2458 (($ $) 83)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 116)) (-3586 (((-897) (-552)) 43 (|has| $ (-6 -4344)))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) 53)) (-4189 (($ $) 109)) (-2189 (($ (-552) (-552)) 107) (($ (-552) (-552) (-897)) 108)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3564 (((-552) $) 19)) (-3323 (($) 94)) (-2863 (($ $) 79)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1542 (((-897)) 100) (((-897) (-897)) 101 (|has| $ (-6 -4344)))) (-3072 (($ $ (-751)) NIL) (($ $) 115)) (-3574 (((-897) (-552)) 47 (|has| $ (-6 -4344)))) (-3759 (($ $) NIL)) (-3638 (($ $) NIL)) (-3738 (($ $) NIL)) (-3614 (($ $) NIL)) (-3721 (($ $) 81)) (-3593 (($ $) 70)) (-2042 (((-374) $) 175) (((-221) $) 177) (((-868 (-374)) $) NIL) (((-1131) $) 162) (((-528) $) 173) (($ (-221)) 181)) (-1683 (((-839) $) 164) (($ (-552)) 186) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-552)) 186) (($ (-402 (-552))) NIL) (((-221) $) 178)) (-4141 (((-751)) NIL)) (-4199 (($ $) 111)) (-3597 (((-897)) 54) (((-897) (-897)) 66 (|has| $ (-6 -4344)))) (-3929 (((-897)) 103)) (-3789 (($ $) 86)) (-3670 (($ $) 46) (($ $ $) 52)) (-3518 (((-112) $ $) NIL)) (-3769 (($ $) 84)) (-3648 (($ $) 37)) (-3809 (($ $) NIL)) (-3691 (($ $) NIL)) (-3742 (($ $) NIL)) (-3700 (($ $) NIL)) (-3797 (($ $) NIL)) (-3681 (($ $) NIL)) (-3778 (($ $) 85)) (-3659 (($ $) 49)) (-1727 (($ $) 51)) (-2089 (($) 34 T CONST)) (-2100 (($) 38 T CONST)) (-3010 (((-1131) $) 27) (((-1131) $ (-112)) 29) (((-1237) (-802) $) 30) (((-1237) (-802) $ (-112)) 31)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 39)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 42)) (-2404 (($ $ $) 45) (($ $ (-552)) 41)) (-2393 (($ $) 36) (($ $ $) 50)) (-2382 (($ $ $) 61)) (** (($ $ (-897)) 67) (($ $ (-751)) NIL) (($ $ (-552)) 88) (($ $ (-402 (-552))) 125) (($ $ $) 117)) (* (($ (-897) $) 65) (($ (-751) $) NIL) (($ (-552) $) 68) (($ $ $) 60) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL)))
+(((-374) (-13 (-399) (-229) (-598 (-1131)) (-808) (-597 (-221)) (-1171) (-598 (-528)) (-10 -8 (-15 -2404 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -3895 ($ $)) (-15 -3350 ((-552) $ $)) (-15 -3420 ($ $ (-552))) (-15 -3341 ((-402 (-552)) $ (-751))) (-15 -3341 ((-402 (-552)) $ (-751) (-751))) (-15 -3331 ($)) (-15 -4138 ($)) (-15 -3323 ($)) (-15 -3670 ($ $ $)) (-15 -3331 ($ $)) (-15 -4138 ($ $)) (-15 -2042 ($ (-221))) (-15 -3312 ((-1237))) (-15 -3312 ((-1237) (-751))) (-15 -3302 ((-1237))) (-15 -3302 ((-1237) (-751))) (-15 -3292 ((-1237))) (-15 -3292 ((-1237) (-751))) (-15 -3283 ((-1237) (-751))) (-6 -4344) (-6 -4336)))) (T -374))
+((** (*1 *1 *1 *1) (-5 *1 (-374))) (-2404 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-374)))) (-3895 (*1 *1 *1) (-5 *1 (-374))) (-3350 (*1 *2 *1 *1) (-12 (-5 *2 (-552)) (-5 *1 (-374)))) (-3420 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-374)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-374)))) (-3341 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-374)))) (-3331 (*1 *1) (-5 *1 (-374))) (-4138 (*1 *1) (-5 *1 (-374))) (-3323 (*1 *1) (-5 *1 (-374))) (-3670 (*1 *1 *1 *1) (-5 *1 (-374))) (-3331 (*1 *1 *1) (-5 *1 (-374))) (-4138 (*1 *1 *1) (-5 *1 (-374))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-374)))) (-3312 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))) (-3302 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))) (-3292 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))))
+(-13 (-399) (-229) (-598 (-1131)) (-808) (-597 (-221)) (-1171) (-598 (-528)) (-10 -8 (-15 -2404 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -3895 ($ $)) (-15 -3350 ((-552) $ $)) (-15 -3420 ($ $ (-552))) (-15 -3341 ((-402 (-552)) $ (-751))) (-15 -3341 ((-402 (-552)) $ (-751) (-751))) (-15 -3331 ($)) (-15 -4138 ($)) (-15 -3323 ($)) (-15 -3670 ($ $ $)) (-15 -3331 ($ $)) (-15 -4138 ($ $)) (-15 -2042 ($ (-221))) (-15 -3312 ((-1237))) (-15 -3312 ((-1237) (-751))) (-15 -3302 ((-1237))) (-15 -3302 ((-1237) (-751))) (-15 -3292 ((-1237))) (-15 -3292 ((-1237) (-751))) (-15 -3283 ((-1237) (-751))) (-6 -4344) (-6 -4336)))
+((-1728 (((-625 (-289 (-928 |#1|))) (-289 (-402 (-928 (-552)))) |#1|) 46) (((-625 (-289 (-928 |#1|))) (-402 (-928 (-552))) |#1|) 45) (((-625 (-625 (-289 (-928 |#1|)))) (-625 (-289 (-402 (-928 (-552))))) |#1|) 42) (((-625 (-625 (-289 (-928 |#1|)))) (-625 (-402 (-928 (-552)))) |#1|) 36)) (-3378 (((-625 |#1|) (-402 (-928 (-552))) |#1|) 20) (((-625 (-625 |#1|)) (-625 (-402 (-928 (-552)))) (-625 (-1149)) |#1|) 30)))
+(((-375 |#1|) (-10 -7 (-15 -1728 ((-625 (-625 (-289 (-928 |#1|)))) (-625 (-402 (-928 (-552)))) |#1|)) (-15 -1728 ((-625 (-625 (-289 (-928 |#1|)))) (-625 (-289 (-402 (-928 (-552))))) |#1|)) (-15 -1728 ((-625 (-289 (-928 |#1|))) (-402 (-928 (-552))) |#1|)) (-15 -1728 ((-625 (-289 (-928 |#1|))) (-289 (-402 (-928 (-552)))) |#1|)) (-15 -3378 ((-625 (-625 |#1|)) (-625 (-402 (-928 (-552)))) (-625 (-1149)) |#1|)) (-15 -3378 ((-625 |#1|) (-402 (-928 (-552))) |#1|))) (-13 (-825) (-358))) (T -375))
+((-3378 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 (-552)))) (-5 *2 (-625 *4)) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-3378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-402 (-928 (-552))))) (-5 *4 (-625 (-1149))) (-5 *2 (-625 (-625 *5))) (-5 *1 (-375 *5)) (-4 *5 (-13 (-825) (-358))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-928 (-552))))) (-5 *2 (-625 (-289 (-928 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 (-552)))) (-5 *2 (-625 (-289 (-928 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-289 (-402 (-928 (-552)))))) (-5 *2 (-625 (-625 (-289 (-928 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 (-552))))) (-5 *2 (-625 (-625 (-289 (-928 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))))
+(-10 -7 (-15 -1728 ((-625 (-625 (-289 (-928 |#1|)))) (-625 (-402 (-928 (-552)))) |#1|)) (-15 -1728 ((-625 (-625 (-289 (-928 |#1|)))) (-625 (-289 (-402 (-928 (-552))))) |#1|)) (-15 -1728 ((-625 (-289 (-928 |#1|))) (-402 (-928 (-552))) |#1|)) (-15 -1728 ((-625 (-289 (-928 |#1|))) (-289 (-402 (-928 (-552)))) |#1|)) (-15 -3378 ((-625 (-625 |#1|)) (-625 (-402 (-928 (-552)))) (-625 (-1149)) |#1|)) (-15 -3378 ((-625 |#1|) (-402 (-928 (-552))) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) 26)) (-1895 ((|#2| $) 28)) (-4169 (($ $) NIL)) (-3723 (((-751) $) 10)) (-4148 (((-625 $) $) 20)) (-4201 (((-112) $) NIL)) (-2243 (($ |#2| |#1|) 18)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3388 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-4131 ((|#2| $) 15)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 45) (($ |#2|) 27)) (-2512 (((-625 |#1|) $) 17)) (-3637 ((|#1| $ |#2|) 47)) (-2089 (($) 29 T CONST)) (-2032 (((-625 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
+(((-376 |#1| |#2|) (-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1025) (-827)) (T -376))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-376 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827)))))
+(-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#2| "failed") $) 44)) (-1895 ((|#2| $) 43)) (-4169 (($ $) 30)) (-3723 (((-751) $) 34)) (-4148 (((-625 $) $) 35)) (-4201 (((-112) $) 38)) (-2243 (($ |#2| |#1|) 39)) (-1996 (($ (-1 |#1| |#1|) $) 40)) (-3388 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-4131 ((|#2| $) 33)) (-4144 ((|#1| $) 32)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ |#2|) 45)) (-2512 (((-625 |#1|) $) 36)) (-3637 ((|#1| $ |#2|) 41)) (-2089 (($) 18 T CONST)) (-2032 (((-625 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-377 |#1| |#2|) (-138) (-1025) (-1073)) (T -377))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1073)))) (-3637 (*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1025)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)))) (-2243 (*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1073)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-112)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-625 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-625 *3)))) (-4148 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-625 *1)) (-4 *1 (-377 *3 *4)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-751)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1073)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1025)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4169 (*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1073)))))
+(-13 (-111 |t#1| |t#1|) (-1014 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3637 (|t#1| $ |t#2|)) (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (-15 -2243 ($ |t#2| |t#1|)) (-15 -4201 ((-112) $)) (-15 -2032 ((-625 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2512 ((-625 |t#1|) $)) (-15 -4148 ((-625 $) $)) (-15 -3723 ((-751) $)) (-15 -4131 (|t#2| $)) (-15 -4144 (|t#1| $)) (-15 -3388 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4169 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-698 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-698 |#1|) |has| |#1| (-170)) ((-1014 |#2|) . T) ((-1031 |#1|) . T) ((-1073) . T))
+((-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8) (($ (-669 (-679))) 14) (($ (-625 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 11)))
+(((-378) (-138)) (T -378))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-669 (-679))) (-4 *1 (-378)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-378)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-4 *1 (-378)))))
+(-13 (-390) (-10 -8 (-15 -1683 ($ (-669 (-679)))) (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-325))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))))))
+(((-597 (-839)) . T) ((-390) . T) ((-1186) . T))
+((-1893 (((-3 $ "failed") (-669 (-311 (-374)))) 21) (((-3 $ "failed") (-669 (-311 (-552)))) 19) (((-3 $ "failed") (-669 (-928 (-374)))) 17) (((-3 $ "failed") (-669 (-928 (-552)))) 15) (((-3 $ "failed") (-669 (-402 (-928 (-374))))) 13) (((-3 $ "failed") (-669 (-402 (-928 (-552))))) 11)) (-1895 (($ (-669 (-311 (-374)))) 22) (($ (-669 (-311 (-552)))) 20) (($ (-669 (-928 (-374)))) 18) (($ (-669 (-928 (-552)))) 16) (($ (-669 (-402 (-928 (-374))))) 14) (($ (-669 (-402 (-928 (-552))))) 12)) (-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8) (($ (-625 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 23)))
+(((-379) (-138)) (T -379))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-379)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-379)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-311 (-374)))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-311 (-374)))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-311 (-552)))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-311 (-552)))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-928 (-374)))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-928 (-374)))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-928 (-552)))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-928 (-552)))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-928 (-374))))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-402 (-928 (-374))))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-928 (-552))))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-402 (-928 (-552))))) (-4 *1 (-379)))))
+(-13 (-390) (-10 -8 (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-325))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))) (-15 -1895 ($ (-669 (-311 (-374))))) (-15 -1893 ((-3 $ "failed") (-669 (-311 (-374))))) (-15 -1895 ($ (-669 (-311 (-552))))) (-15 -1893 ((-3 $ "failed") (-669 (-311 (-552))))) (-15 -1895 ($ (-669 (-928 (-374))))) (-15 -1893 ((-3 $ "failed") (-669 (-928 (-374))))) (-15 -1895 ($ (-669 (-928 (-552))))) (-15 -1893 ((-3 $ "failed") (-669 (-928 (-552))))) (-15 -1895 ($ (-669 (-402 (-928 (-374)))))) (-15 -1893 ((-3 $ "failed") (-669 (-402 (-928 (-374)))))) (-15 -1895 ($ (-669 (-402 (-928 (-552)))))) (-15 -1893 ((-3 $ "failed") (-669 (-402 (-928 (-552))))))))
+(((-597 (-839)) . T) ((-390) . T) ((-1186) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-3957 (($ |#1| |#2|) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4094 ((|#2| $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 28)) (-2089 (($) 12 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-380 |#1| |#2|) (-13 (-111 |#1| |#1|) (-502 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|))) (-1025) (-827)) (T -380))
NIL
(-13 (-111 |#1| |#1|) (-502 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| "failed") $) 26)) (-3507 ((|#2| $) 28)) (-4319 (($ $) NIL)) (-2510 (((-751) $) 10)) (-3154 (((-622 $) $) 20)) (-4297 (((-112) $) NIL)) (-4298 (($ |#2| |#1|) 18)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-1865 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3227 ((|#2| $) 15)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 45) (($ |#2|) 27)) (-4177 (((-622 |#1|) $) 17)) (-4040 ((|#1| $ |#2|) 47)) (-2991 (($) 29 T CONST)) (-2996 (((-622 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
-(((-377 |#1| |#2|) (-13 (-379 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1025) (-827)) (T -377))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827)))))
-(-13 (-379 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8) (($ (-669 (-679))) 14) (($ (-622 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 11)))
-(((-378) (-138)) (T -378))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-669 (-679))) (-4 *1 (-378)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-378)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-378)))))
-(-13 (-391) (-10 -8 (-15 -4317 ($ (-669 (-679)))) (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-325))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))))))
-(((-597 (-840)) . T) ((-391) . T) ((-1185) . T))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#2| "failed") $) 44)) (-3507 ((|#2| $) 43)) (-4319 (($ $) 30)) (-2510 (((-751) $) 34)) (-3154 (((-622 $) $) 35)) (-4297 (((-112) $) 38)) (-4298 (($ |#2| |#1|) 39)) (-4318 (($ (-1 |#1| |#1|) $) 40)) (-1865 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3227 ((|#2| $) 33)) (-3525 ((|#1| $) 32)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ |#2|) 45)) (-4177 (((-622 |#1|) $) 36)) (-4040 ((|#1| $ |#2|) 41)) (-2991 (($) 18 T CONST)) (-2996 (((-622 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-379 |#1| |#2|) (-138) (-1025) (-1074)) (T -379))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1074)))) (-4040 (*1 *2 *1 *3) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1025)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)))) (-4298 (*1 *1 *2 *3) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1074)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-112)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-622 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-622 *3)))) (-3154 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-622 *1)) (-4 *1 (-379 *3 *4)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-751)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1074)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1025)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4319 (*1 *1 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1074)))))
-(-13 (-111 |t#1| |t#1|) (-1014 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4040 (|t#1| $ |t#2|)) (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (-15 -4298 ($ |t#2| |t#1|)) (-15 -4297 ((-112) $)) (-15 -2996 ((-622 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4177 ((-622 |t#1|) $)) (-15 -3154 ((-622 $) $)) (-15 -2510 ((-751) $)) (-15 -3227 (|t#2| $)) (-15 -3525 (|t#1| $)) (-15 -1865 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4319 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-698 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-698 |#1|) |has| |#1| (-170)) ((-1014 |#2|) . T) ((-1031 |#1|) . T) ((-1074) . T))
-((-3508 (((-3 $ "failed") (-669 (-309 (-373)))) 21) (((-3 $ "failed") (-669 (-309 (-538)))) 19) (((-3 $ "failed") (-669 (-922 (-373)))) 17) (((-3 $ "failed") (-669 (-922 (-538)))) 15) (((-3 $ "failed") (-669 (-402 (-922 (-373))))) 13) (((-3 $ "failed") (-669 (-402 (-922 (-538))))) 11)) (-3507 (($ (-669 (-309 (-373)))) 22) (($ (-669 (-309 (-538)))) 20) (($ (-669 (-922 (-373)))) 18) (($ (-669 (-922 (-538)))) 16) (($ (-669 (-402 (-922 (-373))))) 14) (($ (-669 (-402 (-922 (-538))))) 12)) (-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8) (($ (-622 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 23)))
-(((-380) (-138)) (T -380))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-380)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-380)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-309 (-373)))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-309 (-373)))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-309 (-538)))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-309 (-538)))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-922 (-373)))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-922 (-373)))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-922 (-538)))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-922 (-538)))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-922 (-373))))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-402 (-922 (-373))))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-922 (-538))))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-402 (-922 (-538))))) (-4 *1 (-380)))))
-(-13 (-391) (-10 -8 (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-325))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))) (-15 -3507 ($ (-669 (-309 (-373))))) (-15 -3508 ((-3 $ "failed") (-669 (-309 (-373))))) (-15 -3507 ($ (-669 (-309 (-538))))) (-15 -3508 ((-3 $ "failed") (-669 (-309 (-538))))) (-15 -3507 ($ (-669 (-922 (-373))))) (-15 -3508 ((-3 $ "failed") (-669 (-922 (-373))))) (-15 -3507 ($ (-669 (-922 (-538))))) (-15 -3508 ((-3 $ "failed") (-669 (-922 (-538))))) (-15 -3507 ($ (-669 (-402 (-922 (-373)))))) (-15 -3508 ((-3 $ "failed") (-669 (-402 (-922 (-373)))))) (-15 -3507 ($ (-669 (-402 (-922 (-538)))))) (-15 -3508 ((-3 $ "failed") (-669 (-402 (-922 (-538))))))))
-(((-597 (-840)) . T) ((-391) . T) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-3471 (((-751) $) 59)) (-3896 (($) NIL T CONST)) (-4299 (((-3 $ "failed") $ $) 61)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2770 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2502 (((-112) $) 15)) (-2768 ((|#1| $ (-538)) NIL)) (-2769 (((-751) $ (-538)) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2371 (($ (-1 |#1| |#1|) $) 38)) (-2372 (($ (-1 (-751) (-751)) $) 35)) (-4300 (((-3 $ "failed") $ $) 50)) (-3593 (((-1131) $) NIL)) (-2771 (($ $ $) 26)) (-2772 (($ $ $) 24)) (-3594 (((-1093) $) NIL)) (-2767 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $) 32)) (-3214 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4317 (((-840) $) 22) (($ |#1|) NIL)) (-2997 (($) 9 T CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 41)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) 63 (|has| |#1| (-827)))) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ |#1| (-751)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-381 |#1|) (-13 (-707) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -2772 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -4300 ((-3 $ "failed") $ $)) (-15 -4299 ((-3 $ "failed") $ $)) (-15 -3214 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2770 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3471 ((-751) $)) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $)) (-15 -2769 ((-751) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2372 ($ (-1 (-751) (-751)) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) (-1074)) (T -381))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-2772 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-2771 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-4300 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-4299 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-3214 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) (-2770 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-751))))) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-751)) (-5 *1 (-381 *4)) (-4 *4 (-1074)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-2372 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-751) (-751))) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) (-2371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-381 *3)))))
-(-13 (-707) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -2772 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -4300 ((-3 $ "failed") $ $)) (-15 -4299 ((-3 $ "failed") $ $)) (-15 -3214 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2770 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3471 ((-751) $)) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $)) (-15 -2769 ((-751) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2372 ($ (-1 (-751) (-751)) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) "failed") $) 45)) (-3507 (((-538) $) 44)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3677 (($ $ $) 52)) (-3678 (($ $ $) 51)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ $) 40)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-538)) 46)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 49)) (-2897 (((-112) $ $) 48)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 50)) (-3018 (((-112) $ $) 47)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-1671 (((-112) $ $) NIL)) (-2894 (((-751) $) 59)) (-3101 (($) NIL T CONST)) (-4211 (((-3 $ "failed") $ $) 61)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3482 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3650 (((-112) $) 15)) (-3461 ((|#1| $ (-552)) NIL)) (-3472 (((-751) $ (-552)) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1817 (($ (-1 |#1| |#1|) $) 38)) (-1827 (($ (-1 (-751) (-751)) $) 35)) (-4222 (((-3 $ "failed") $ $) 50)) (-2883 (((-1131) $) NIL)) (-3492 (($ $ $) 26)) (-3502 (($ $ $) 24)) (-2831 (((-1093) $) NIL)) (-3449 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $) 32)) (-3481 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1683 (((-839) $) 22) (($ |#1|) NIL)) (-2100 (($) 9 T CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 41)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) 63 (|has| |#1| (-827)))) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ |#1| (-751)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-381 |#1|) (-13 (-707) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -3502 ($ $ $)) (-15 -3492 ($ $ $)) (-15 -4222 ((-3 $ "failed") $ $)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -3481 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3482 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2894 ((-751) $)) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $)) (-15 -3472 ((-751) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -1827 ($ (-1 (-751) (-751)) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) (-1073)) (T -381))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-3502 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-3492 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-4222 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-4211 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-3481 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) (-3482 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-751))))) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) (-3472 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-751)) (-5 *1 (-381 *4)) (-4 *4 (-1073)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-1827 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-751) (-751))) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-381 *3)))))
+(-13 (-707) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -3502 ($ $ $)) (-15 -3492 ($ $ $)) (-15 -4222 ((-3 $ "failed") $ $)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -3481 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3482 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2894 ((-751) $)) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $)) (-15 -3472 ((-751) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -1827 ($ (-1 (-751) (-751)) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 45)) (-1895 (((-552) $) 44)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-3658 (($ $ $) 52)) (-3332 (($ $ $) 51)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ $) 40)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 46)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 49)) (-2320 (((-112) $ $) 48)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 50)) (-2307 (((-112) $ $) 47)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-382) (-138)) (T -382))
NIL
-(-13 (-545) (-827) (-1014 (-538)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-1014 (-538)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-1866 (((-112) $) 20)) (-1867 (((-112) $) 19)) (-3977 (($ (-1131) (-1131) (-1131)) 21)) (-3905 (((-1131) $) 16)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1871 (($ (-1131) (-1131) (-1131)) 14)) (-1869 (((-1131) $) 17)) (-1868 (((-112) $) 18)) (-1870 (((-1131) $) 15)) (-4317 (((-840) $) 12) (($ (-1131)) 13) (((-1131) $) 9)) (-3387 (((-112) $ $) 7)))
+(-13 (-544) (-827) (-1014 (-552)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-1014 (-552)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3399 (((-112) $) 20)) (-3408 (((-112) $) 19)) (-2183 (($ (-1131) (-1131) (-1131)) 21)) (-1288 (((-1131) $) 16)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2994 (($ (-1131) (-1131) (-1131)) 14)) (-3429 (((-1131) $) 17)) (-3416 (((-112) $) 18)) (-1930 (((-1131) $) 15)) (-1683 (((-839) $) 12) (($ (-1131)) 13) (((-1131) $) 9)) (-2281 (((-112) $ $) 7)))
(((-383) (-384)) (T -383))
NIL
(-384)
-((-2898 (((-112) $ $) 7)) (-1866 (((-112) $) 14)) (-1867 (((-112) $) 15)) (-3977 (($ (-1131) (-1131) (-1131)) 13)) (-3905 (((-1131) $) 18)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-1871 (($ (-1131) (-1131) (-1131)) 20)) (-1869 (((-1131) $) 17)) (-1868 (((-112) $) 16)) (-1870 (((-1131) $) 19)) (-4317 (((-840) $) 11) (($ (-1131)) 22) (((-1131) $) 21)) (-3387 (((-112) $ $) 6)))
+((-1671 (((-112) $ $) 7)) (-3399 (((-112) $) 14)) (-3408 (((-112) $) 15)) (-2183 (($ (-1131) (-1131) (-1131)) 13)) (-1288 (((-1131) $) 18)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2994 (($ (-1131) (-1131) (-1131)) 20)) (-3429 (((-1131) $) 17)) (-3416 (((-112) $) 16)) (-1930 (((-1131) $) 19)) (-1683 (((-839) $) 11) (($ (-1131)) 22) (((-1131) $) 21)) (-2281 (((-112) $ $) 6)))
(((-384) (-138)) (T -384))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-1871 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-3977 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))))
-(-13 (-1074) (-10 -8 (-15 -4317 ($ (-1131))) (-15 -4317 ((-1131) $)) (-15 -1871 ($ (-1131) (-1131) (-1131))) (-15 -1870 ((-1131) $)) (-15 -3905 ((-1131) $)) (-15 -1869 ((-1131) $)) (-15 -1868 ((-112) $)) (-15 -1867 ((-112) $)) (-15 -1866 ((-112) $)) (-15 -3977 ($ (-1131) (-1131) (-1131)))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1872 (((-840) $) 50)) (-3896 (($) NIL T CONST)) (-2499 (($ $ (-895)) NIL)) (-2524 (($ $ (-895)) NIL)) (-2498 (($ $ (-895)) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($ (-751)) 26)) (-4271 (((-751)) 17)) (-1873 (((-840) $) 52)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) NIL)) (-2687 (($ $ $ $) NIL)) (-2685 (($ $ $) NIL)) (-2991 (($) 20 T CONST)) (-3387 (((-112) $ $) 28)) (-4197 (($ $) 34) (($ $ $) 36)) (-4199 (($ $ $) 37)) (** (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-385 |#1| |#2| |#3|) (-13 (-725 |#3|) (-10 -8 (-15 -4271 ((-751))) (-15 -1873 ((-840) $)) (-15 -1872 ((-840) $)) (-15 -2501 ($ (-751))))) (-751) (-751) (-170)) (T -385))
-((-4271 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-170)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-170)))) (-2501 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))))
-(-13 (-725 |#3|) (-10 -8 (-15 -4271 ((-751))) (-15 -1873 ((-840) $)) (-15 -1872 ((-840) $)) (-15 -2501 ($ (-751)))))
-((-1878 (((-1131)) 10)) (-1875 (((-1120 (-1131))) 28)) (-1877 (((-1237) (-1131)) 25) (((-1237) (-383)) 24)) (-1876 (((-1237)) 26)) (-1874 (((-1120 (-1131))) 27)))
-(((-386) (-10 -7 (-15 -1874 ((-1120 (-1131)))) (-15 -1875 ((-1120 (-1131)))) (-15 -1876 ((-1237))) (-15 -1877 ((-1237) (-383))) (-15 -1877 ((-1237) (-1131))) (-15 -1878 ((-1131))))) (T -386))
-((-1878 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-386)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-386)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-386)))) (-1876 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-386)))) (-1875 (*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386)))) (-1874 (*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386)))))
-(-10 -7 (-15 -1874 ((-1120 (-1131)))) (-15 -1875 ((-1120 (-1131)))) (-15 -1876 ((-1237))) (-15 -1877 ((-1237) (-383))) (-15 -1877 ((-1237) (-1131))) (-15 -1878 ((-1131))))
-((-4131 (((-751) (-328 |#1| |#2| |#3| |#4|)) 16)))
-(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4131 ((-751) (-328 |#1| |#2| |#3| |#4|)))) (-13 (-363) (-358)) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -387))
-((-4131 (*1 *2 *3) (-12 (-5 *3 (-328 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358))) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-4 *7 (-337 *4 *5 *6)) (-5 *2 (-751)) (-5 *1 (-387 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4131 ((-751) (-328 |#1| |#2| |#3| |#4|))))
-((-2898 (((-112) $ $) NIL)) (-3973 (((-622 (-1131)) $ (-622 (-1131))) 38)) (-1879 (((-622 (-1131)) $ (-622 (-1131))) 39)) (-3975 (((-622 (-1131)) $ (-622 (-1131))) 40)) (-3976 (((-622 (-1131)) $) 35)) (-3977 (($) 23)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1880 (((-622 (-1131)) $) 36)) (-3979 (((-622 (-1131)) $) 37)) (-3980 (((-1237) $ (-538)) 33) (((-1237) $) 34)) (-4330 (($ (-840) (-538)) 30)) (-4317 (((-840) $) 42) (($ (-840)) 25)) (-3387 (((-112) $ $) NIL)))
-(((-388) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-840))) (-15 -4330 ($ (-840) (-538))) (-15 -3980 ((-1237) $ (-538))) (-15 -3980 ((-1237) $)) (-15 -3979 ((-622 (-1131)) $)) (-15 -1880 ((-622 (-1131)) $)) (-15 -3977 ($)) (-15 -3976 ((-622 (-1131)) $)) (-15 -3975 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -1879 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3973 ((-622 (-1131)) $ (-622 (-1131))))))) (T -388))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-388)))) (-4330 (*1 *1 *2 *3) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-388)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-388)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-388)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) (-3977 (*1 *1) (-5 *1 (-388))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) (-3975 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) (-1879 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) (-3973 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))))
-(-13 (-1074) (-10 -8 (-15 -4317 ($ (-840))) (-15 -4330 ($ (-840) (-538))) (-15 -3980 ((-1237) $ (-538))) (-15 -3980 ((-1237) $)) (-15 -3979 ((-622 (-1131)) $)) (-15 -1880 ((-622 (-1131)) $)) (-15 -3977 ($)) (-15 -3976 ((-622 (-1131)) $)) (-15 -3975 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -1879 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3973 ((-622 (-1131)) $ (-622 (-1131))))))
-((-4317 (((-388) |#1|) 11)))
-(((-389 |#1|) (-10 -7 (-15 -4317 ((-388) |#1|))) (-1074)) (T -389))
-((-4317 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-389 *3)) (-4 *3 (-1074)))))
-(-10 -7 (-15 -4317 ((-388) |#1|)))
-((-1882 (((-622 (-1131)) (-622 (-1131))) 9)) (-3739 (((-1237) (-383)) 27)) (-1881 (((-1076) (-1149) (-622 (-1149)) (-1152) (-622 (-1149))) 60) (((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149)) (-1149)) 35) (((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149))) 34)))
-(((-390) (-10 -7 (-15 -1881 ((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149)))) (-15 -1881 ((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149)) (-1149))) (-15 -1881 ((-1076) (-1149) (-622 (-1149)) (-1152) (-622 (-1149)))) (-15 -3739 ((-1237) (-383))) (-15 -1882 ((-622 (-1131)) (-622 (-1131)))))) (T -390))
-((-1882 (*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-390)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-390)))) (-1881 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-622 (-1149))) (-5 *5 (-1152)) (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-390)))) (-1881 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-622 (-622 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-622 (-3 (|:| |array| (-622 *3)) (|:| |scalar| (-1149))))) (-5 *6 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-390)))) (-1881 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-622 (-622 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-622 (-3 (|:| |array| (-622 *3)) (|:| |scalar| (-1149))))) (-5 *6 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-390)))))
-(-10 -7 (-15 -1881 ((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149)))) (-15 -1881 ((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149)) (-1149))) (-15 -1881 ((-1076) (-1149) (-622 (-1149)) (-1152) (-622 (-1149)))) (-15 -3739 ((-1237) (-383))) (-15 -1882 ((-622 (-1131)) (-622 (-1131)))))
-((-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8)))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-2994 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-2183 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))))
+(-13 (-1073) (-10 -8 (-15 -1683 ($ (-1131))) (-15 -1683 ((-1131) $)) (-15 -2994 ($ (-1131) (-1131) (-1131))) (-15 -1930 ((-1131) $)) (-15 -1288 ((-1131) $)) (-15 -3429 ((-1131) $)) (-15 -3416 ((-112) $)) (-15 -3408 ((-112) $)) (-15 -3399 ((-112) $)) (-15 -2183 ($ (-1131) (-1131) (-1131)))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3439 (((-839) $) 50)) (-3101 (($) NIL T CONST)) (-3629 (($ $ (-897)) NIL)) (-2712 (($ $ (-897)) NIL)) (-3619 (($ $ (-897)) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($ (-751)) 26)) (-3904 (((-751)) 17)) (-3452 (((-839) $) 52)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) NIL)) (-3842 (($ $ $ $) NIL)) (-3818 (($ $ $) NIL)) (-2089 (($) 20 T CONST)) (-2281 (((-112) $ $) 28)) (-2393 (($ $) 34) (($ $ $) 36)) (-2382 (($ $ $) 37)) (** (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-385 |#1| |#2| |#3|) (-13 (-725 |#3|) (-10 -8 (-15 -3904 ((-751))) (-15 -3452 ((-839) $)) (-15 -3439 ((-839) $)) (-15 -3212 ($ (-751))))) (-751) (-751) (-170)) (T -385))
+((-3904 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-170)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-170)))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))))
+(-13 (-725 |#3|) (-10 -8 (-15 -3904 ((-751))) (-15 -3452 ((-839) $)) (-15 -3439 ((-839) $)) (-15 -3212 ($ (-751)))))
+((-3485 (((-1131)) 10)) (-3475 (((-1120 (-1131))) 28)) (-2905 (((-1237) (-1131)) 25) (((-1237) (-383)) 24)) (-2915 (((-1237)) 26)) (-3464 (((-1120 (-1131))) 27)))
+(((-386) (-10 -7 (-15 -3464 ((-1120 (-1131)))) (-15 -3475 ((-1120 (-1131)))) (-15 -2915 ((-1237))) (-15 -2905 ((-1237) (-383))) (-15 -2905 ((-1237) (-1131))) (-15 -3485 ((-1131))))) (T -386))
+((-3485 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-386)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-386)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-386)))) (-2915 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-386)))) (-3475 (*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386)))) (-3464 (*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386)))))
+(-10 -7 (-15 -3464 ((-1120 (-1131)))) (-15 -3475 ((-1120 (-1131)))) (-15 -2915 ((-1237))) (-15 -2905 ((-1237) (-383))) (-15 -2905 ((-1237) (-1131))) (-15 -3485 ((-1131))))
+((-2172 (((-751) (-331 |#1| |#2| |#3| |#4|)) 16)))
+(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2172 ((-751) (-331 |#1| |#2| |#3| |#4|)))) (-13 (-363) (-358)) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -387))
+((-2172 (*1 *2 *3) (-12 (-5 *3 (-331 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358))) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-4 *7 (-337 *4 *5 *6)) (-5 *2 (-751)) (-5 *1 (-387 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2172 ((-751) (-331 |#1| |#2| |#3| |#4|))))
+((-1683 (((-389) |#1|) 11)))
+(((-388 |#1|) (-10 -7 (-15 -1683 ((-389) |#1|))) (-1073)) (T -388))
+((-1683 (*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-388 *3)) (-4 *3 (-1073)))))
+(-10 -7 (-15 -1683 ((-389) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-4003 (((-625 (-1131)) $ (-625 (-1131))) 38)) (-3496 (((-625 (-1131)) $ (-625 (-1131))) 39)) (-4026 (((-625 (-1131)) $ (-625 (-1131))) 40)) (-4037 (((-625 (-1131)) $) 35)) (-2183 (($) 23)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1730 (((-625 (-1131)) $) 36)) (-4049 (((-625 (-1131)) $) 37)) (-1407 (((-1237) $ (-552)) 33) (((-1237) $) 34)) (-2042 (($ (-839) (-552)) 30)) (-1683 (((-839) $) 42) (($ (-839)) 25)) (-2281 (((-112) $ $) NIL)))
+(((-389) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-839))) (-15 -2042 ($ (-839) (-552))) (-15 -1407 ((-1237) $ (-552))) (-15 -1407 ((-1237) $)) (-15 -4049 ((-625 (-1131)) $)) (-15 -1730 ((-625 (-1131)) $)) (-15 -2183 ($)) (-15 -4037 ((-625 (-1131)) $)) (-15 -4026 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -3496 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4003 ((-625 (-1131)) $ (-625 (-1131))))))) (T -389))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-389)))) (-2042 (*1 *1 *2 *3) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-389)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-389)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-389)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) (-2183 (*1 *1) (-5 *1 (-389))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) (-4026 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) (-3496 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) (-4003 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))))
+(-13 (-1073) (-10 -8 (-15 -1683 ($ (-839))) (-15 -2042 ($ (-839) (-552))) (-15 -1407 ((-1237) $ (-552))) (-15 -1407 ((-1237) $)) (-15 -4049 ((-625 (-1131)) $)) (-15 -1730 ((-625 (-1131)) $)) (-15 -2183 ($)) (-15 -4037 ((-625 (-1131)) $)) (-15 -4026 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -3496 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4003 ((-625 (-1131)) $ (-625 (-1131))))))
+((-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8)))
+(((-390) (-138)) (T -390))
+((-2927 (*1 *2 *1) (-12 (-4 *1 (-390)) (-5 *2 (-1237)))))
+(-13 (-1186) (-597 (-839)) (-10 -8 (-15 -2927 ((-1237) $))))
+(((-597 (-839)) . T) ((-1186) . T))
+((-1893 (((-3 $ "failed") (-311 (-374))) 21) (((-3 $ "failed") (-311 (-552))) 19) (((-3 $ "failed") (-928 (-374))) 17) (((-3 $ "failed") (-928 (-552))) 15) (((-3 $ "failed") (-402 (-928 (-374)))) 13) (((-3 $ "failed") (-402 (-928 (-552)))) 11)) (-1895 (($ (-311 (-374))) 22) (($ (-311 (-552))) 20) (($ (-928 (-374))) 18) (($ (-928 (-552))) 16) (($ (-402 (-928 (-374)))) 14) (($ (-402 (-928 (-552)))) 12)) (-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8) (($ (-625 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 23)))
(((-391) (-138)) (T -391))
-((-3739 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1237)))))
-(-13 (-1185) (-597 (-840)) (-10 -8 (-15 -3739 ((-1237) $))))
-(((-597 (-840)) . T) ((-1185) . T))
-((-3508 (((-3 $ "failed") (-309 (-373))) 21) (((-3 $ "failed") (-309 (-538))) 19) (((-3 $ "failed") (-922 (-373))) 17) (((-3 $ "failed") (-922 (-538))) 15) (((-3 $ "failed") (-402 (-922 (-373)))) 13) (((-3 $ "failed") (-402 (-922 (-538)))) 11)) (-3507 (($ (-309 (-373))) 22) (($ (-309 (-538))) 20) (($ (-922 (-373))) 18) (($ (-922 (-538))) 16) (($ (-402 (-922 (-373)))) 14) (($ (-402 (-922 (-538)))) 12)) (-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8) (($ (-622 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 23)))
-(((-392) (-138)) (T -392))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-392)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-392)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-373))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-538))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-922 (-373))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-373))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-922 (-538))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-538))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-373)))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-373)))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-538)))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-538)))) (-4 *1 (-392)))))
-(-13 (-391) (-10 -8 (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-325))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))) (-15 -3507 ($ (-309 (-373)))) (-15 -3508 ((-3 $ "failed") (-309 (-373)))) (-15 -3507 ($ (-309 (-538)))) (-15 -3508 ((-3 $ "failed") (-309 (-538)))) (-15 -3507 ($ (-922 (-373)))) (-15 -3508 ((-3 $ "failed") (-922 (-373)))) (-15 -3507 ($ (-922 (-538)))) (-15 -3508 ((-3 $ "failed") (-922 (-538)))) (-15 -3507 ($ (-402 (-922 (-373))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-373))))) (-15 -3507 ($ (-402 (-922 (-538))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-538)))))))
-(((-597 (-840)) . T) ((-391) . T) ((-1185) . T))
-((-3739 (((-1237) $) 38)) (-4317 (((-840) $) 98) (($ (-325)) 100) (($ (-622 (-325))) 99) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 97) (($ (-309 (-681))) 54) (($ (-309 (-679))) 73) (($ (-309 (-674))) 86) (($ (-288 (-309 (-681)))) 68) (($ (-288 (-309 (-679)))) 81) (($ (-288 (-309 (-674)))) 94) (($ (-309 (-538))) 104) (($ (-309 (-373))) 117) (($ (-309 (-166 (-373)))) 130) (($ (-288 (-309 (-538)))) 112) (($ (-288 (-309 (-373)))) 125) (($ (-288 (-309 (-166 (-373))))) 138)))
-(((-393 |#1| |#2| |#3| |#4|) (-13 (-391) (-10 -8 (-15 -4317 ($ (-325))) (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))) (-15 -4317 ($ (-309 (-681)))) (-15 -4317 ($ (-309 (-679)))) (-15 -4317 ($ (-309 (-674)))) (-15 -4317 ($ (-288 (-309 (-681))))) (-15 -4317 ($ (-288 (-309 (-679))))) (-15 -4317 ($ (-288 (-309 (-674))))) (-15 -4317 ($ (-309 (-538)))) (-15 -4317 ($ (-309 (-373)))) (-15 -4317 ($ (-309 (-166 (-373))))) (-15 -4317 ($ (-288 (-309 (-538))))) (-15 -4317 ($ (-288 (-309 (-373))))) (-15 -4317 ($ (-288 (-309 (-166 (-373)))))))) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 "void")) (-622 (-1149)) (-1153)) (T -393))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void"))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-681))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-674))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-681)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-679)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-674)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-166 (-373)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-538)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-373)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-166 (-373))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))))
-(-13 (-391) (-10 -8 (-15 -4317 ($ (-325))) (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))) (-15 -4317 ($ (-309 (-681)))) (-15 -4317 ($ (-309 (-679)))) (-15 -4317 ($ (-309 (-674)))) (-15 -4317 ($ (-288 (-309 (-681))))) (-15 -4317 ($ (-288 (-309 (-679))))) (-15 -4317 ($ (-288 (-309 (-674))))) (-15 -4317 ($ (-309 (-538)))) (-15 -4317 ($ (-309 (-373)))) (-15 -4317 ($ (-309 (-166 (-373))))) (-15 -4317 ($ (-288 (-309 (-538))))) (-15 -4317 ($ (-288 (-309 (-373))))) (-15 -4317 ($ (-288 (-309 (-166 (-373))))))))
-((-2898 (((-112) $ $) NIL)) (-1884 ((|#2| $) 36)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1885 (($ (-402 |#2|)) 85)) (-1883 (((-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|))) $) 37)) (-4170 (($ $) 32) (($ $ (-751)) 34)) (-4330 (((-402 |#2|) $) 46)) (-3884 (($ (-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|)))) 31)) (-4317 (((-840) $) 120)) (-3002 (($ $) 33) (($ $ (-751)) 35)) (-3387 (((-112) $ $) NIL)) (-4199 (($ |#2| $) 39)))
-(((-394 |#1| |#2|) (-13 (-1074) (-598 (-402 |#2|)) (-10 -8 (-15 -4199 ($ |#2| $)) (-15 -1885 ($ (-402 |#2|))) (-15 -1884 (|#2| $)) (-15 -1883 ((-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|))) $)) (-15 -3884 ($ (-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|))))) (-15 -4170 ($ $)) (-15 -3002 ($ $)) (-15 -4170 ($ $ (-751))) (-15 -3002 ($ $ (-751))))) (-13 (-358) (-145)) (-1207 |#1|)) (T -394))
-((-4199 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2)) (-4 *2 (-1207 *3)))) (-1885 (*1 *1 *2) (-12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-1884 (*1 *2 *1) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-394 *3 *2)) (-4 *3 (-13 (-358) (-145))))) (-1883 (*1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *2 (-622 (-2 (|:| -2493 (-751)) (|:| -4132 *4) (|:| |num| *4)))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1207 *3)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -2493 (-751)) (|:| -4132 *4) (|:| |num| *4)))) (-4 *4 (-1207 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-4170 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1207 *2)))) (-3002 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1207 *2)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1207 *3)))) (-3002 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1207 *3)))))
-(-13 (-1074) (-598 (-402 |#2|)) (-10 -8 (-15 -4199 ($ |#2| $)) (-15 -1885 ($ (-402 |#2|))) (-15 -1884 (|#2| $)) (-15 -1883 ((-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|))) $)) (-15 -3884 ($ (-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|))))) (-15 -4170 ($ $)) (-15 -3002 ($ $)) (-15 -4170 ($ $ (-751))) (-15 -3002 ($ $ (-751)))))
-((-2898 (((-112) $ $) 9 (-3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))))) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 15 (|has| |#1| (-862 (-373)))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 14 (|has| |#1| (-862 (-538))))) (-3593 (((-1131) $) 13 (-3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))))) (-3594 (((-1093) $) 12 (-3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))))) (-4317 (((-840) $) 11 (-3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))))) (-3387 (((-112) $ $) 10 (-3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))))))
-(((-395 |#1|) (-138) (-1185)) (T -395))
-NIL
-(-13 (-1185) (-10 -7 (IF (|has| |t#1| (-862 (-538))) (-6 (-862 (-538))) |%noBranch|) (IF (|has| |t#1| (-862 (-373))) (-6 (-862 (-373))) |%noBranch|)))
-(((-101) -3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))) ((-597 (-840)) -3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))) ((-862 (-373)) |has| |#1| (-862 (-373))) ((-862 (-538)) |has| |#1| (-862 (-538))) ((-1074) -3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))) ((-1185) . T))
-((-1886 (($ $) 10) (($ $ (-751)) 11)))
-(((-396 |#1|) (-10 -8 (-15 -1886 (|#1| |#1| (-751))) (-15 -1886 (|#1| |#1|))) (-397)) (T -396))
-NIL
-(-10 -8 (-15 -1886 (|#1| |#1| (-751))) (-15 -1886 (|#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-1886 (($ $) 76) (($ $ (-751)) 75)) (-4086 (((-112) $) 68)) (-4131 (((-812 (-895)) $) 78)) (-2502 (((-112) $) 30)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-1887 (((-3 (-751) "failed") $ $) 77)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63)) (-3035 (((-3 $ "failed") $) 79)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64)))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-391)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-391)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-552))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-928 (-374))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-374))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-928 (-552))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-552))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-374)))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-928 (-374)))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-552)))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-928 (-552)))) (-4 *1 (-391)))))
+(-13 (-390) (-10 -8 (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-325))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))) (-15 -1895 ($ (-311 (-374)))) (-15 -1893 ((-3 $ "failed") (-311 (-374)))) (-15 -1895 ($ (-311 (-552)))) (-15 -1893 ((-3 $ "failed") (-311 (-552)))) (-15 -1895 ($ (-928 (-374)))) (-15 -1893 ((-3 $ "failed") (-928 (-374)))) (-15 -1895 ($ (-928 (-552)))) (-15 -1893 ((-3 $ "failed") (-928 (-552)))) (-15 -1895 ($ (-402 (-928 (-374))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-374))))) (-15 -1895 ($ (-402 (-928 (-552))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-552)))))))
+(((-597 (-839)) . T) ((-390) . T) ((-1186) . T))
+((-3514 (((-625 (-1131)) (-625 (-1131))) 9)) (-2927 (((-1237) (-383)) 27)) (-3505 (((-1077) (-1149) (-625 (-1149)) (-1152) (-625 (-1149))) 60) (((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149)) (-1149)) 35) (((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149))) 34)))
+(((-392) (-10 -7 (-15 -3505 ((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149)))) (-15 -3505 ((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149)) (-1149))) (-15 -3505 ((-1077) (-1149) (-625 (-1149)) (-1152) (-625 (-1149)))) (-15 -2927 ((-1237) (-383))) (-15 -3514 ((-625 (-1131)) (-625 (-1131)))))) (T -392))
+((-3514 (*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-392)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-392)))) (-3505 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-625 (-1149))) (-5 *5 (-1152)) (-5 *3 (-1149)) (-5 *2 (-1077)) (-5 *1 (-392)))) (-3505 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-625 (-625 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-625 (-3 (|:| |array| (-625 *3)) (|:| |scalar| (-1149))))) (-5 *6 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1077)) (-5 *1 (-392)))) (-3505 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-625 (-625 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-625 (-3 (|:| |array| (-625 *3)) (|:| |scalar| (-1149))))) (-5 *6 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1077)) (-5 *1 (-392)))))
+(-10 -7 (-15 -3505 ((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149)))) (-15 -3505 ((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149)) (-1149))) (-15 -3505 ((-1077) (-1149) (-625 (-1149)) (-1152) (-625 (-1149)))) (-15 -2927 ((-1237) (-383))) (-15 -3514 ((-625 (-1131)) (-625 (-1131)))))
+((-2927 (((-1237) $) 38)) (-1683 (((-839) $) 98) (($ (-325)) 100) (($ (-625 (-325))) 99) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 97) (($ (-311 (-681))) 54) (($ (-311 (-679))) 73) (($ (-311 (-674))) 86) (($ (-289 (-311 (-681)))) 68) (($ (-289 (-311 (-679)))) 81) (($ (-289 (-311 (-674)))) 94) (($ (-311 (-552))) 104) (($ (-311 (-374))) 117) (($ (-311 (-167 (-374)))) 130) (($ (-289 (-311 (-552)))) 112) (($ (-289 (-311 (-374)))) 125) (($ (-289 (-311 (-167 (-374))))) 138)))
+(((-393 |#1| |#2| |#3| |#4|) (-13 (-390) (-10 -8 (-15 -1683 ($ (-325))) (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))) (-15 -1683 ($ (-311 (-681)))) (-15 -1683 ($ (-311 (-679)))) (-15 -1683 ($ (-311 (-674)))) (-15 -1683 ($ (-289 (-311 (-681))))) (-15 -1683 ($ (-289 (-311 (-679))))) (-15 -1683 ($ (-289 (-311 (-674))))) (-15 -1683 ($ (-311 (-552)))) (-15 -1683 ($ (-311 (-374)))) (-15 -1683 ($ (-311 (-167 (-374))))) (-15 -1683 ($ (-289 (-311 (-552))))) (-15 -1683 ($ (-289 (-311 (-374))))) (-15 -1683 ($ (-289 (-311 (-167 (-374)))))))) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-1149)) (-1153)) (T -393))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-681))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-679))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-674))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-681)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-679)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-674)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-552)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-167 (-374))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))))
+(-13 (-390) (-10 -8 (-15 -1683 ($ (-325))) (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))) (-15 -1683 ($ (-311 (-681)))) (-15 -1683 ($ (-311 (-679)))) (-15 -1683 ($ (-311 (-674)))) (-15 -1683 ($ (-289 (-311 (-681))))) (-15 -1683 ($ (-289 (-311 (-679))))) (-15 -1683 ($ (-289 (-311 (-674))))) (-15 -1683 ($ (-311 (-552)))) (-15 -1683 ($ (-311 (-374)))) (-15 -1683 ($ (-311 (-167 (-374))))) (-15 -1683 ($ (-289 (-311 (-552))))) (-15 -1683 ($ (-289 (-311 (-374))))) (-15 -1683 ($ (-289 (-311 (-167 (-374))))))))
+((-1671 (((-112) $ $) NIL)) (-3533 ((|#2| $) 36)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3543 (($ (-402 |#2|)) 85)) (-3523 (((-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|))) $) 37)) (-3072 (($ $) 32) (($ $ (-751)) 34)) (-2042 (((-402 |#2|) $) 46)) (-1695 (($ (-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|)))) 31)) (-1683 (((-839) $) 120)) (-3768 (($ $) 33) (($ $ (-751)) 35)) (-2281 (((-112) $ $) NIL)) (-2382 (($ |#2| $) 39)))
+(((-394 |#1| |#2|) (-13 (-1073) (-598 (-402 |#2|)) (-10 -8 (-15 -2382 ($ |#2| $)) (-15 -3543 ($ (-402 |#2|))) (-15 -3533 (|#2| $)) (-15 -3523 ((-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|))) $)) (-15 -1695 ($ (-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|))))) (-15 -3072 ($ $)) (-15 -3768 ($ $)) (-15 -3072 ($ $ (-751))) (-15 -3768 ($ $ (-751))))) (-13 (-358) (-145)) (-1208 |#1|)) (T -394))
+((-2382 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2)) (-4 *2 (-1208 *3)))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-3533 (*1 *2 *1) (-12 (-4 *2 (-1208 *3)) (-5 *1 (-394 *3 *2)) (-4 *3 (-13 (-358) (-145))))) (-3523 (*1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *2 (-625 (-2 (|:| -3564 (-751)) (|:| -2845 *4) (|:| |num| *4)))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1208 *3)))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -3564 (-751)) (|:| -2845 *4) (|:| |num| *4)))) (-4 *4 (-1208 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-3072 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1208 *2)))) (-3768 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1208 *2)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1208 *3)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1208 *3)))))
+(-13 (-1073) (-598 (-402 |#2|)) (-10 -8 (-15 -2382 ($ |#2| $)) (-15 -3543 ($ (-402 |#2|))) (-15 -3533 (|#2| $)) (-15 -3523 ((-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|))) $)) (-15 -1695 ($ (-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|))))) (-15 -3072 ($ $)) (-15 -3768 ($ $)) (-15 -3072 ($ $ (-751))) (-15 -3768 ($ $ (-751)))))
+((-1671 (((-112) $ $) 9 (-1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))))) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 15 (|has| |#1| (-862 (-374)))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 14 (|has| |#1| (-862 (-552))))) (-2883 (((-1131) $) 13 (-1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))))) (-2831 (((-1093) $) 12 (-1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))))) (-1683 (((-839) $) 11 (-1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))))) (-2281 (((-112) $ $) 10 (-1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))))))
+(((-395 |#1|) (-138) (-1186)) (T -395))
+NIL
+(-13 (-1186) (-10 -7 (IF (|has| |t#1| (-862 (-552))) (-6 (-862 (-552))) |%noBranch|) (IF (|has| |t#1| (-862 (-374))) (-6 (-862 (-374))) |%noBranch|)))
+(((-101) -1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))) ((-597 (-839)) -1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))) ((-862 (-374)) |has| |#1| (-862 (-374))) ((-862 (-552)) |has| |#1| (-862 (-552))) ((-1073) -1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))) ((-1186) . T))
+((-3554 (($ $) 10) (($ $ (-751)) 11)))
+(((-396 |#1|) (-10 -8 (-15 -3554 (|#1| |#1| (-751))) (-15 -3554 (|#1| |#1|))) (-397)) (T -396))
+NIL
+(-10 -8 (-15 -3554 (|#1| |#1| (-751))) (-15 -3554 (|#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-3554 (($ $) 76) (($ $ (-751)) 75)) (-2951 (((-112) $) 68)) (-2172 (((-813 (-897)) $) 78)) (-3650 (((-112) $) 30)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-3563 (((-3 (-751) "failed") $ $) 77)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63)) (-4243 (((-3 $ "failed") $) 79)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64)))
(((-397) (-138)) (T -397))
-((-4131 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-812 (-895))))) (-1887 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-751)))) (-1886 (*1 *1 *1) (-4 *1 (-397))) (-1886 (*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-751)))))
-(-13 (-358) (-143) (-10 -8 (-15 -4131 ((-812 (-895)) $)) (-15 -1887 ((-3 (-751) "failed") $ $)) (-15 -1886 ($ $)) (-15 -1886 ($ $ (-751)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-597 (-840)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T))
-((-3605 (($ (-538) (-538)) 11) (($ (-538) (-538) (-895)) NIL)) (-2944 (((-895)) 16) (((-895) (-895)) NIL)))
-(((-398 |#1|) (-10 -8 (-15 -2944 ((-895) (-895))) (-15 -2944 ((-895))) (-15 -3605 (|#1| (-538) (-538) (-895))) (-15 -3605 (|#1| (-538) (-538)))) (-399)) (T -398))
-((-2944 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-398 *3)) (-4 *3 (-399)))))
-(-10 -8 (-15 -2944 ((-895) (-895))) (-15 -2944 ((-895))) (-15 -3605 (|#1| (-538) (-538) (-895))) (-15 -3605 (|#1| (-538) (-538))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3464 (((-538) $) 86)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-4130 (($ $) 84)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-3370 (($ $) 94)) (-1705 (((-112) $ $) 57)) (-3986 (((-538) $) 111)) (-3896 (($) 17 T CONST)) (-3462 (($ $) 83)) (-3508 (((-3 (-538) #1="failed") $) 99) (((-3 (-402 (-538)) #1#) $) 96)) (-3507 (((-538) $) 98) (((-402 (-538)) $) 95)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-2466 (((-895)) 127) (((-895) (-895)) 124 (|has| $ (-6 -4344)))) (-3537 (((-112) $) 109)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 90)) (-4131 (((-538) $) 133)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 93)) (-3467 (($ $) 89)) (-3538 (((-112) $) 110)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 50)) (-3677 (($ $ $) 108) (($) 121 (-12 (-3676 (|has| $ (-6 -4344))) (-3676 (|has| $ (-6 -4336)))))) (-3678 (($ $ $) 107) (($) 120 (-12 (-3676 (|has| $ (-6 -4344))) (-3676 (|has| $ (-6 -4336)))))) (-2467 (((-538) $) 130)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-1889 (((-895) (-538)) 123 (|has| $ (-6 -4344)))) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3463 (($ $) 85)) (-3465 (($ $) 87)) (-3605 (($ (-538) (-538)) 135) (($ (-538) (-538) (-895)) 134)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-2493 (((-538) $) 131)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-2944 (((-895)) 128) (((-895) (-895)) 125 (|has| $ (-6 -4344)))) (-1888 (((-895) (-538)) 122 (|has| $ (-6 -4344)))) (-4330 (((-373) $) 102) (((-221) $) 101) (((-866 (-373)) $) 91)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ (-538)) 100) (($ (-402 (-538))) 97)) (-3461 (((-751)) 28)) (-3466 (($ $) 88)) (-1890 (((-895)) 129) (((-895) (-895)) 126 (|has| $ (-6 -4344)))) (-3027 (((-895)) 132)) (-2177 (((-112) $ $) 37)) (-3742 (($ $) 112)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 105)) (-2897 (((-112) $ $) 104)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 106)) (-3018 (((-112) $ $) 103)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66) (($ $ (-402 (-538))) 92)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64)))
+((-2172 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-813 (-897))))) (-3563 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-751)))) (-3554 (*1 *1 *1) (-4 *1 (-397))) (-3554 (*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-751)))))
+(-13 (-358) (-143) (-10 -8 (-15 -2172 ((-813 (-897)) $)) (-15 -3563 ((-3 (-751) "failed") $ $)) (-15 -3554 ($ $)) (-15 -3554 ($ $ (-751)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-597 (-839)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T))
+((-2189 (($ (-552) (-552)) 11) (($ (-552) (-552) (-897)) NIL)) (-1542 (((-897)) 16) (((-897) (-897)) NIL)))
+(((-398 |#1|) (-10 -8 (-15 -1542 ((-897) (-897))) (-15 -1542 ((-897))) (-15 -2189 (|#1| (-552) (-552) (-897))) (-15 -2189 (|#1| (-552) (-552)))) (-399)) (T -398))
+((-1542 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-398 *3)) (-4 *3 (-399)))))
+(-10 -8 (-15 -1542 ((-897) (-897))) (-15 -1542 ((-897))) (-15 -2189 (|#1| (-552) (-552) (-897))) (-15 -2189 (|#1| (-552) (-552))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-4177 (((-552) $) 86)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2162 (($ $) 84)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-3837 (($ $) 94)) (-2408 (((-112) $ $) 57)) (-4127 (((-552) $) 111)) (-3101 (($) 17 T CONST)) (-4154 (($ $) 83)) (-1893 (((-3 (-552) "failed") $) 99) (((-3 (-402 (-552)) "failed") $) 96)) (-1895 (((-552) $) 98) (((-402 (-552)) $) 95)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-1923 (((-897)) 127) (((-897) (-897)) 124 (|has| $ (-6 -4344)))) (-3620 (((-112) $) 109)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 90)) (-2172 (((-552) $) 133)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 93)) (-4209 (($ $) 89)) (-3630 (((-112) $) 110)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-3658 (($ $ $) 108) (($) 121 (-12 (-2960 (|has| $ (-6 -4344))) (-2960 (|has| $ (-6 -4336)))))) (-3332 (($ $ $) 107) (($) 120 (-12 (-2960 (|has| $ (-6 -4344))) (-2960 (|has| $ (-6 -4336)))))) (-2594 (((-552) $) 130)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-3586 (((-897) (-552)) 123 (|has| $ (-6 -4344)))) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-4166 (($ $) 85)) (-4189 (($ $) 87)) (-2189 (($ (-552) (-552)) 135) (($ (-552) (-552) (-897)) 134)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-3564 (((-552) $) 131)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1542 (((-897)) 128) (((-897) (-897)) 125 (|has| $ (-6 -4344)))) (-3574 (((-897) (-552)) 122 (|has| $ (-6 -4344)))) (-2042 (((-374) $) 102) (((-221) $) 101) (((-868 (-374)) $) 91)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ (-552)) 100) (($ (-402 (-552))) 97)) (-4141 (((-751)) 28)) (-4199 (($ $) 88)) (-3597 (((-897)) 129) (((-897) (-897)) 126 (|has| $ (-6 -4344)))) (-3929 (((-897)) 132)) (-3518 (((-112) $ $) 37)) (-1727 (($ $) 112)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 105)) (-2320 (((-112) $ $) 104)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 106)) (-2307 (((-112) $ $) 103)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66) (($ $ (-402 (-552))) 92)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64)))
(((-399) (-138)) (T -399))
-((-3605 (*1 *1 *2 *2) (-12 (-5 *2 (-538)) (-4 *1 (-399)))) (-3605 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-895)) (-4 *1 (-399)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538)))) (-3027 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538)))) (-1890 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) (-2944 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) (-2466 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-538)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-895)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-538)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-895)))) (-3677 (*1 *1) (-12 (-4 *1 (-399)) (-3676 (|has| *1 (-6 -4344))) (-3676 (|has| *1 (-6 -4336))))) (-3678 (*1 *1) (-12 (-4 *1 (-399)) (-3676 (|has| *1 (-6 -4344))) (-3676 (|has| *1 (-6 -4336))))))
-(-13 (-1034) (-10 -8 (-6 -4129) (-15 -3605 ($ (-538) (-538))) (-15 -3605 ($ (-538) (-538) (-895))) (-15 -4131 ((-538) $)) (-15 -3027 ((-895))) (-15 -2493 ((-538) $)) (-15 -2467 ((-538) $)) (-15 -1890 ((-895))) (-15 -2944 ((-895))) (-15 -2466 ((-895))) (IF (|has| $ (-6 -4344)) (PROGN (-15 -1890 ((-895) (-895))) (-15 -2944 ((-895) (-895))) (-15 -2466 ((-895) (-895))) (-15 -1889 ((-895) (-538))) (-15 -1888 ((-895) (-538)))) |%noBranch|) (IF (|has| $ (-6 -4336)) |%noBranch| (IF (|has| $ (-6 -4344)) |%noBranch| (PROGN (-15 -3677 ($)) (-15 -3678 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-840)) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-373)) . T) ((-598 (-866 (-373))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-825) . T) ((-827) . T) ((-862 (-373)) . T) ((-897) . T) ((-978) . T) ((-996) . T) ((-1034) . T) ((-1014 (-402 (-538))) . T) ((-1014 (-538)) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 42)) (-1891 (($ $) 57)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 146)) (-2178 (($ $) NIL)) (-2176 (((-112) $) 36)) (-1892 ((|#1| $) 13)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-1190)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-1190)))) (-1894 (($ |#1| (-538)) 31)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 116)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 55)) (-3821 (((-3 $ "failed") $) 131)) (-3357 (((-3 (-402 (-538)) "failed") $) 63 (|has| |#1| (-537)))) (-3356 (((-112) $) 59 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 70 (|has| |#1| (-537)))) (-1895 (($ |#1| (-538)) 33)) (-4086 (((-112) $) 152 (|has| |#1| (-1190)))) (-2502 (((-112) $) 43)) (-1956 (((-751) $) 38)) (-1896 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-538)) 137)) (-2768 ((|#1| $ (-538)) 136)) (-1897 (((-538) $ (-538)) 135)) (-1899 (($ |#1| (-538)) 30)) (-4318 (($ (-1 |#1| |#1|) $) 143)) (-1953 (($ |#1| (-622 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-538))))) 58)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-1898 (($ |#1| (-538)) 32)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) 147 (|has| |#1| (-446)))) (-1893 (($ |#1| (-538) (-3 #2# #3# #4# #5#)) 29)) (-2767 (((-622 (-2 (|:| -4092 |#1|) (|:| -2493 (-538)))) $) 54)) (-2075 (((-622 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-538)))) $) 12)) (-4092 (((-400 $) $) NIL (|has| |#1| (-1190)))) (-3820 (((-3 $ "failed") $ $) 138)) (-2493 (((-538) $) 132)) (-4323 ((|#1| $) 56)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) 79 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 85 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) $) NIL (|has| |#1| (-507 (-1149) $))) (($ $ (-622 (-1149)) (-622 $)) 86 (|has| |#1| (-507 (-1149) $))) (($ $ (-622 (-288 $))) 82 (|has| |#1| (-304 $))) (($ $ (-288 $)) NIL (|has| |#1| (-304 $))) (($ $ $ $) NIL (|has| |#1| (-304 $))) (($ $ (-622 $) (-622 $)) NIL (|has| |#1| (-304 $)))) (-4159 (($ $ |#1|) 71 (|has| |#1| (-281 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-281 $ $)))) (-4170 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-4330 (((-527) $) 27 (|has| |#1| (-598 (-527)))) (((-373) $) 92 (|has| |#1| (-996))) (((-221) $) 95 (|has| |#1| (-996)))) (-4317 (((-840) $) 114) (($ (-538)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538)))))) (-3461 (((-751)) 48)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 40 T CONST)) (-2997 (($) 39 T CONST)) (-3002 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3387 (((-112) $ $) 96)) (-4197 (($ $) 128) (($ $ $) NIL)) (-4199 (($ $ $) 140)) (** (($ $ (-895)) NIL) (($ $ (-751)) 102)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
-(((-400 |#1|) (-13 (-545) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-407 |#1|) (-10 -8 (-15 -4323 (|#1| $)) (-15 -2493 ((-538) $)) (-15 -1953 ($ |#1| (-622 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-538)))))) (-15 -2075 ((-622 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-538)))) $)) (-15 -1899 ($ |#1| (-538))) (-15 -2767 ((-622 (-2 (|:| -4092 |#1|) (|:| -2493 (-538)))) $)) (-15 -1898 ($ |#1| (-538))) (-15 -1897 ((-538) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -1896 ((-3 #1# #2# #3# #4#) $ (-538))) (-15 -1956 ((-751) $)) (-15 -1895 ($ |#1| (-538))) (-15 -1894 ($ |#1| (-538))) (-15 -1893 ($ |#1| (-538) (-3 #1# #2# #3# #4#))) (-15 -1892 (|#1| $)) (-15 -1891 ($ $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-996)) (-6 (-996)) |%noBranch|) (IF (|has| |#1| (-1190)) (-6 (-1190)) |%noBranch|) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-507 (-1149) $)) (-6 (-507 (-1149) $)) |%noBranch|))) (-545)) (T -400))
-((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-545)) (-5 *1 (-400 *3)))) (-4323 (*1 *2 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-400 *3)) (-4 *3 (-545)))) (-1953 (*1 *1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-538))))) (-4 *2 (-545)) (-5 *1 (-400 *2)))) (-2075 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-538))))) (-5 *1 (-400 *3)) (-4 *3 (-545)))) (-1899 (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| -4092 *3) (|:| -2493 (-538))))) (-5 *1 (-400 *3)) (-4 *3 (-545)))) (-1898 (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1897 (*1 *2 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-400 *3)) (-4 *3 (-545)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1896 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-400 *4)) (-4 *4 (-545)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-400 *3)) (-4 *3 (-545)))) (-1895 (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1894 (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1893 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-538)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1892 (*1 *2 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1891 (*1 *1 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-400 *3)) (-4 *3 (-537)) (-4 *3 (-545)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-400 *3)) (-4 *3 (-537)) (-4 *3 (-545)))) (-3357 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-400 *3)) (-4 *3 (-537)) (-4 *3 (-545)))))
-(-13 (-545) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-407 |#1|) (-10 -8 (-15 -4323 (|#1| $)) (-15 -2493 ((-538) $)) (-15 -1953 ($ |#1| (-622 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-538)))))) (-15 -2075 ((-622 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-538)))) $)) (-15 -1899 ($ |#1| (-538))) (-15 -2767 ((-622 (-2 (|:| -4092 |#1|) (|:| -2493 (-538)))) $)) (-15 -1898 ($ |#1| (-538))) (-15 -1897 ((-538) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -1896 ((-3 #1# #2# #3# #4#) $ (-538))) (-15 -1956 ((-751) $)) (-15 -1895 ($ |#1| (-538))) (-15 -1894 ($ |#1| (-538))) (-15 -1893 ($ |#1| (-538) (-3 #1# #2# #3# #4#))) (-15 -1892 (|#1| $)) (-15 -1891 ($ $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-996)) (-6 (-996)) |%noBranch|) (IF (|has| |#1| (-1190)) (-6 (-1190)) |%noBranch|) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-507 (-1149) $)) (-6 (-507 (-1149) $)) |%noBranch|)))
-((-4318 (((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)) 20)))
-(((-401 |#1| |#2|) (-10 -7 (-15 -4318 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) (-545) (-545)) (T -401))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6)))))
-(-10 -7 (-15 -4318 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 13)) (-3464 ((|#1| $) 21 (|has| |#1| (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| |#1| (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) 17) (((-3 (-1149) #2#) $) NIL (|has| |#1| (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) 70 (|has| |#1| (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538))))) (-3507 ((|#1| $) 15) (((-1149) $) NIL (|has| |#1| (-1014 (-1149)))) (((-402 (-538)) $) 67 (|has| |#1| (-1014 (-538)))) (((-538) $) NIL (|has| |#1| (-1014 (-538))))) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) 50)) (-3327 (($) NIL (|has| |#1| (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| |#1| (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| |#1| (-862 (-373))))) (-2502 (((-112) $) 64)) (-3329 (($ $) NIL)) (-3331 ((|#1| $) 71)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3538 (((-112) $) NIL (|has| |#1| (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| |#1| (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 97)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| |#1| (-302)))) (-3465 ((|#1| $) 28 (|has| |#1| (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 135 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 131 (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-1704 (((-751) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3328 (($ $) NIL)) (-3330 ((|#1| $) 73)) (-4330 (((-866 (-538)) $) NIL (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| |#1| (-598 (-866 (-373))))) (((-527) $) NIL (|has| |#1| (-598 (-527)))) (((-373) $) NIL (|has| |#1| (-996))) (((-221) $) NIL (|has| |#1| (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 10) (($ (-1149)) NIL (|has| |#1| (-1014 (-1149))))) (-3035 (((-3 $ #1#) $) 99 (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 100)) (-3466 ((|#1| $) 26 (|has| |#1| (-537)))) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| |#1| (-800)))) (-2991 (($) 22 T CONST)) (-2997 (($) 8 T CONST)) (-2834 (((-1131) $) 43 (-12 (|has| |#1| (-537)) (|has| |#1| (-801)))) (((-1131) $ (-112)) 44 (-12 (|has| |#1| (-537)) (|has| |#1| (-801)))) (((-1237) (-803) $) 45 (-12 (|has| |#1| (-537)) (|has| |#1| (-801)))) (((-1237) (-803) $ (-112)) 46 (-12 (|has| |#1| (-537)) (|has| |#1| (-801))))) (-3002 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 56)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) 24 (|has| |#1| (-827)))) (-4308 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4197 (($ $) 25) (($ $ $) 55)) (-4199 (($ $ $) 53)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 125)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 60) (($ $ $) 57) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-402 |#1|) (-13 (-967 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4351)) (-6 -4340) |%noBranch|) |%noBranch|) |%noBranch|))) (-545)) (T -402))
-NIL
-(-13 (-967 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4351)) (-6 -4340) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-4318 (((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)) 13)))
-(((-403 |#1| |#2|) (-10 -7 (-15 -4318 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) (-545) (-545)) (T -403))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-5 *2 (-402 *6)) (-5 *1 (-403 *5 *6)))))
-(-10 -7 (-15 -4318 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|))))
-((-1901 (((-669 |#2|) (-1231 $)) NIL) (((-669 |#2|)) 18)) (-1911 (($ (-1231 |#2|) (-1231 $)) NIL) (($ (-1231 |#2|)) 24)) (-1900 (((-669 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) $) 38)) (-2130 ((|#3| $) 60)) (-4117 ((|#2| (-1231 $)) NIL) ((|#2|) 20)) (-3575 (((-1231 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) (-1231 $) (-1231 $)) NIL) (((-1231 |#2|) $) 22) (((-669 |#2|) (-1231 $)) 36)) (-4330 (((-1231 |#2|) $) 11) (($ (-1231 |#2|)) 13)) (-2698 ((|#3| $) 52)))
-(((-404 |#1| |#2| |#3|) (-10 -8 (-15 -1900 ((-669 |#2|) |#1|)) (-15 -4117 (|#2|)) (-15 -1901 ((-669 |#2|))) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -2130 (|#3| |#1|)) (-15 -2698 (|#3| |#1|)) (-15 -1901 ((-669 |#2|) (-1231 |#1|))) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1900 ((-669 |#2|) |#1| (-1231 |#1|)))) (-405 |#2| |#3|) (-170) (-1207 |#2|)) (T -404))
-((-1901 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)) (-5 *1 (-404 *3 *4 *5)) (-4 *3 (-405 *4 *5)))) (-4117 (*1 *2) (-12 (-4 *4 (-1207 *2)) (-4 *2 (-170)) (-5 *1 (-404 *3 *2 *4)) (-4 *3 (-405 *2 *4)))))
-(-10 -8 (-15 -1900 ((-669 |#2|) |#1|)) (-15 -4117 (|#2|)) (-15 -1901 ((-669 |#2|))) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -2130 (|#3| |#1|)) (-15 -2698 (|#3| |#1|)) (-15 -1901 ((-669 |#2|) (-1231 |#1|))) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1900 ((-669 |#2|) |#1| (-1231 |#1|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1901 (((-669 |#1|) (-1231 $)) 44) (((-669 |#1|)) 59)) (-3689 ((|#1| $) 50)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-1911 (($ (-1231 |#1|) (-1231 $)) 46) (($ (-1231 |#1|)) 62)) (-1900 (((-669 |#1|) $ (-1231 $)) 51) (((-669 |#1|) $) 57)) (-3821 (((-3 $ "failed") $) 32)) (-3444 (((-895)) 52)) (-2502 (((-112) $) 30)) (-3467 ((|#1| $) 49)) (-2130 ((|#2| $) 42 (|has| |#1| (-358)))) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4117 ((|#1| (-1231 $)) 45) ((|#1|) 58)) (-3575 (((-1231 |#1|) $ (-1231 $)) 48) (((-669 |#1|) (-1231 $) (-1231 $)) 47) (((-1231 |#1|) $) 64) (((-669 |#1|) (-1231 $)) 63)) (-4330 (((-1231 |#1|) $) 61) (($ (-1231 |#1|)) 60)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35)) (-3035 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2698 ((|#2| $) 43)) (-3461 (((-751)) 28)) (-2128 (((-1231 $)) 65)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-405 |#1| |#2|) (-138) (-170) (-1207 |t#1|)) (T -405))
-((-2128 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-1231 *1)) (-4 *1 (-405 *3 *4)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-1231 *3)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-405 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4)) (-4 *4 (-1207 *3)))) (-4330 (*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-1231 *3)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4)) (-4 *4 (-1207 *3)))) (-1901 (*1 *2) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-669 *3)))) (-4117 (*1 *2) (-12 (-4 *1 (-405 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-669 *3)))))
-(-13 (-365 |t#1| |t#2|) (-10 -8 (-15 -2128 ((-1231 $))) (-15 -3575 ((-1231 |t#1|) $)) (-15 -3575 ((-669 |t#1|) (-1231 $))) (-15 -1911 ($ (-1231 |t#1|))) (-15 -4330 ((-1231 |t#1|) $)) (-15 -4330 ($ (-1231 |t#1|))) (-15 -1901 ((-669 |t#1|))) (-15 -4117 (|t#1|)) (-15 -1900 ((-669 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-365 |#1| |#2|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-3508 (((-3 |#2| #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) 27) (((-3 (-538) #1#) $) 19)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) 24) (((-538) $) 14)) (-4317 (($ |#2|) NIL) (($ (-402 (-538))) 22) (($ (-538)) 11)))
-(((-406 |#1| |#2|) (-10 -8 (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|))) (-407 |#2|) (-1185)) (T -406))
-NIL
-(-10 -8 (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|)))
-((-3508 (((-3 |#1| #1="failed") $) 7) (((-3 (-402 (-538)) #1#) $) 16 (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #1#) $) 13 (|has| |#1| (-1014 (-538))))) (-3507 ((|#1| $) 8) (((-402 (-538)) $) 15 (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) 12 (|has| |#1| (-1014 (-538))))) (-4317 (($ |#1|) 6) (($ (-402 (-538))) 17 (|has| |#1| (-1014 (-402 (-538))))) (($ (-538)) 14 (|has| |#1| (-1014 (-538))))))
-(((-407 |#1|) (-138) (-1185)) (T -407))
-NIL
-(-13 (-1014 |t#1|) (-10 -7 (IF (|has| |t#1| (-1014 (-538))) (-6 (-1014 (-538))) |%noBranch|) (IF (|has| |t#1| (-1014 (-402 (-538)))) (-6 (-1014 (-402 (-538)))) |%noBranch|)))
-(((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T))
-((-2898 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-1902 ((|#4| (-751) (-1231 |#4|)) 56)) (-2502 (((-112) $) NIL)) (-3331 (((-1231 |#4|) $) 17)) (-3467 ((|#2| $) 54)) (-1903 (($ $) 139)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 100)) (-2092 (($ (-1231 |#4|)) 99)) (-3594 (((-1093) $) NIL)) (-3330 ((|#1| $) 18)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) 134)) (-2128 (((-1231 |#4|) $) 129)) (-2997 (($) 11 T CONST)) (-3387 (((-112) $ $) 40)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 122)) (* (($ $ $) 121)))
-(((-408 |#1| |#2| |#3| |#4|) (-13 (-467) (-10 -8 (-15 -2092 ($ (-1231 |#4|))) (-15 -2128 ((-1231 |#4|) $)) (-15 -3467 (|#2| $)) (-15 -3331 ((-1231 |#4|) $)) (-15 -3330 (|#1| $)) (-15 -1903 ($ $)) (-15 -1902 (|#4| (-751) (-1231 |#4|))))) (-302) (-967 |#1|) (-1207 |#2|) (-13 (-405 |#2| |#3|) (-1014 |#2|))) (T -408))
-((-2092 (*1 *1 *2) (-12 (-5 *2 (-1231 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4))) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-4 *3 (-302)) (-5 *1 (-408 *3 *4 *5 *6)))) (-2128 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4))))) (-3467 (*1 *2 *1) (-12 (-4 *4 (-1207 *2)) (-4 *2 (-967 *3)) (-5 *1 (-408 *3 *2 *4 *5)) (-4 *3 (-302)) (-4 *5 (-13 (-405 *2 *4) (-1014 *2))))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4))))) (-3330 (*1 *2 *1) (-12 (-4 *3 (-967 *2)) (-4 *4 (-1207 *3)) (-4 *2 (-302)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1014 *3))))) (-1903 (*1 *1 *1) (-12 (-4 *2 (-302)) (-4 *3 (-967 *2)) (-4 *4 (-1207 *3)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1014 *3))))) (-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-1231 *2)) (-4 *5 (-302)) (-4 *6 (-967 *5)) (-4 *2 (-13 (-405 *6 *7) (-1014 *6))) (-5 *1 (-408 *5 *6 *7 *2)) (-4 *7 (-1207 *6)))))
-(-13 (-467) (-10 -8 (-15 -2092 ($ (-1231 |#4|))) (-15 -2128 ((-1231 |#4|) $)) (-15 -3467 (|#2| $)) (-15 -3331 ((-1231 |#4|) $)) (-15 -3330 (|#1| $)) (-15 -1903 ($ $)) (-15 -1902 (|#4| (-751) (-1231 |#4|)))))
-((-4318 (((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)) 33)))
-(((-409 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4318 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)))) (-302) (-967 |#1|) (-1207 |#2|) (-13 (-405 |#2| |#3|) (-1014 |#2|)) (-302) (-967 |#5|) (-1207 |#6|) (-13 (-405 |#6| |#7|) (-1014 |#6|))) (T -409))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302)) (-4 *6 (-967 *5)) (-4 *7 (-1207 *6)) (-4 *8 (-13 (-405 *6 *7) (-1014 *6))) (-4 *9 (-302)) (-4 *10 (-967 *9)) (-4 *11 (-1207 *10)) (-5 *2 (-408 *9 *10 *11 *12)) (-5 *1 (-409 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-405 *10 *11) (-1014 *10))))))
-(-10 -7 (-15 -4318 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|))))
-((-2898 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3467 ((|#2| $) 61)) (-1904 (($ (-1231 |#4|)) 25) (($ (-408 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1014 |#2|)))) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 34)) (-2128 (((-1231 |#4|) $) 26)) (-2997 (($) 23 T CONST)) (-3387 (((-112) $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ $ $) 72)))
-(((-410 |#1| |#2| |#3| |#4| |#5|) (-13 (-707) (-10 -8 (-15 -2128 ((-1231 |#4|) $)) (-15 -3467 (|#2| $)) (-15 -1904 ($ (-1231 |#4|))) (IF (|has| |#4| (-1014 |#2|)) (-15 -1904 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-302) (-967 |#1|) (-1207 |#2|) (-405 |#2| |#3|) (-1231 |#4|)) (T -410))
-((-2128 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6)) (-5 *1 (-410 *3 *4 *5 *6 *7)) (-4 *6 (-405 *4 *5)) (-14 *7 *2))) (-3467 (*1 *2 *1) (-12 (-4 *4 (-1207 *2)) (-4 *2 (-967 *3)) (-5 *1 (-410 *3 *2 *4 *5 *6)) (-4 *3 (-302)) (-4 *5 (-405 *2 *4)) (-14 *6 (-1231 *5)))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1231 *6)) (-4 *6 (-405 *4 *5)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-4 *3 (-302)) (-5 *1 (-410 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1014 *4)) (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-4 *6 (-405 *4 *5)) (-14 *7 (-1231 *6)) (-5 *1 (-410 *3 *4 *5 *6 *7)))))
-(-13 (-707) (-10 -8 (-15 -2128 ((-1231 |#4|) $)) (-15 -3467 (|#2| $)) (-15 -1904 ($ (-1231 |#4|))) (IF (|has| |#4| (-1014 |#2|)) (-15 -1904 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-4318 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-411 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|))) (-413 |#2|) (-170) (-413 |#4|) (-170)) (T -411))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-413 *6)) (-5 *1 (-411 *4 *5 *2 *6)) (-4 *4 (-413 *5)))))
-(-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1892 (((-3 $ #1="failed")) 86)) (-3574 (((-1231 (-669 |#2|)) (-1231 $)) NIL) (((-1231 (-669 |#2|))) 91)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) 85)) (-1819 (((-3 $ #1#)) 84)) (-1907 (((-669 |#2|) (-1231 $)) NIL) (((-669 |#2|)) 102)) (-1905 (((-669 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) $) 110)) (-2022 (((-1143 (-922 |#2|))) 55)) (-1909 ((|#2| (-1231 $)) NIL) ((|#2|) 106)) (-1911 (($ (-1231 |#2|) (-1231 $)) NIL) (($ (-1231 |#2|)) 112)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) 83)) (-1820 (((-3 $ #1#)) 75)) (-1908 (((-669 |#2|) (-1231 $)) NIL) (((-669 |#2|)) 100)) (-1906 (((-669 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) $) 108)) (-2026 (((-1143 (-922 |#2|))) 54)) (-1910 ((|#2| (-1231 $)) NIL) ((|#2|) 104)) (-3575 (((-1231 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) (-1231 $) (-1231 $)) NIL) (((-1231 |#2|) $) 111) (((-669 |#2|) (-1231 $)) 118)) (-4330 (((-1231 |#2|) $) 96) (($ (-1231 |#2|)) 98)) (-2014 (((-622 (-922 |#2|)) (-1231 $)) NIL) (((-622 (-922 |#2|))) 94)) (-2880 (($ (-669 |#2|) $) 90)))
-(((-412 |#1| |#2|) (-10 -8 (-15 -2880 (|#1| (-669 |#2|) |#1|)) (-15 -2022 ((-1143 (-922 |#2|)))) (-15 -2026 ((-1143 (-922 |#2|)))) (-15 -1905 ((-669 |#2|) |#1|)) (-15 -1906 ((-669 |#2|) |#1|)) (-15 -1907 ((-669 |#2|))) (-15 -1908 ((-669 |#2|))) (-15 -1909 (|#2|)) (-15 -1910 (|#2|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -2014 ((-622 (-922 |#2|)))) (-15 -3574 ((-1231 (-669 |#2|)))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -1892 ((-3 |#1| #1="failed"))) (-15 -1819 ((-3 |#1| #1#))) (-15 -1820 ((-3 |#1| #1#))) (-15 -2028 ((-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) #1#))) (-15 -2029 ((-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) #1#))) (-15 -1907 ((-669 |#2|) (-1231 |#1|))) (-15 -1908 ((-669 |#2|) (-1231 |#1|))) (-15 -1909 (|#2| (-1231 |#1|))) (-15 -1910 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1905 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -1906 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -3574 ((-1231 (-669 |#2|)) (-1231 |#1|))) (-15 -2014 ((-622 (-922 |#2|)) (-1231 |#1|)))) (-413 |#2|) (-170)) (T -412))
-((-3574 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1231 (-669 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-2014 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-622 (-922 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-1910 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2)))) (-1909 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2)))) (-1908 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-1907 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-2026 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1143 (-922 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-2022 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1143 (-922 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))))
-(-10 -8 (-15 -2880 (|#1| (-669 |#2|) |#1|)) (-15 -2022 ((-1143 (-922 |#2|)))) (-15 -2026 ((-1143 (-922 |#2|)))) (-15 -1905 ((-669 |#2|) |#1|)) (-15 -1906 ((-669 |#2|) |#1|)) (-15 -1907 ((-669 |#2|))) (-15 -1908 ((-669 |#2|))) (-15 -1909 (|#2|)) (-15 -1910 (|#2|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -2014 ((-622 (-922 |#2|)))) (-15 -3574 ((-1231 (-669 |#2|)))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -1892 ((-3 |#1| #1="failed"))) (-15 -1819 ((-3 |#1| #1#))) (-15 -1820 ((-3 |#1| #1#))) (-15 -2028 ((-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) #1#))) (-15 -2029 ((-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) #1#))) (-15 -1907 ((-669 |#2|) (-1231 |#1|))) (-15 -1908 ((-669 |#2|) (-1231 |#1|))) (-15 -1909 (|#2| (-1231 |#1|))) (-15 -1910 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1905 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -1906 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -3574 ((-1231 (-669 |#2|)) (-1231 |#1|))) (-15 -2014 ((-622 (-922 |#2|)) (-1231 |#1|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1892 (((-3 $ #1="failed")) 37 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3574 (((-1231 (-669 |#1|)) (-1231 $)) 78) (((-1231 (-669 |#1|))) 100)) (-1845 (((-1231 $)) 81)) (-3896 (($) 17 T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) 40 (|has| |#1| (-545)))) (-1819 (((-3 $ #1#)) 38 (|has| |#1| (-545)))) (-1907 (((-669 |#1|) (-1231 $)) 65) (((-669 |#1|)) 92)) (-1843 ((|#1| $) 74)) (-1905 (((-669 |#1|) $ (-1231 $)) 76) (((-669 |#1|) $) 90)) (-2496 (((-3 $ #1#) $) 45 (|has| |#1| (-545)))) (-2022 (((-1143 (-922 |#1|))) 88 (|has| |#1| (-358)))) (-2499 (($ $ (-895)) 28)) (-1841 ((|#1| $) 72)) (-1821 (((-1143 |#1|) $) 42 (|has| |#1| (-545)))) (-1909 ((|#1| (-1231 $)) 67) ((|#1|) 94)) (-1839 (((-1143 |#1|) $) 63)) (-1833 (((-112)) 57)) (-1911 (($ (-1231 |#1|) (-1231 $)) 69) (($ (-1231 |#1|)) 98)) (-3821 (((-3 $ #1#) $) 47 (|has| |#1| (-545)))) (-3444 (((-895)) 80)) (-1830 (((-112)) 54)) (-2524 (($ $ (-895)) 33)) (-1826 (((-112)) 50)) (-1824 (((-112)) 48)) (-1828 (((-112)) 52)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) 41 (|has| |#1| (-545)))) (-1820 (((-3 $ #1#)) 39 (|has| |#1| (-545)))) (-1908 (((-669 |#1|) (-1231 $)) 66) (((-669 |#1|)) 93)) (-1844 ((|#1| $) 75)) (-1906 (((-669 |#1|) $ (-1231 $)) 77) (((-669 |#1|) $) 91)) (-2497 (((-3 $ #1#) $) 46 (|has| |#1| (-545)))) (-2026 (((-1143 (-922 |#1|))) 89 (|has| |#1| (-358)))) (-2498 (($ $ (-895)) 29)) (-1842 ((|#1| $) 73)) (-1822 (((-1143 |#1|) $) 43 (|has| |#1| (-545)))) (-1910 ((|#1| (-1231 $)) 68) ((|#1|) 95)) (-1840 (((-1143 |#1|) $) 64)) (-1834 (((-112)) 58)) (-3593 (((-1131) $) 9)) (-1825 (((-112)) 49)) (-1827 (((-112)) 51)) (-1829 (((-112)) 53)) (-3594 (((-1093) $) 10)) (-1832 (((-112)) 56)) (-4159 ((|#1| $ (-538)) 101)) (-3575 (((-1231 |#1|) $ (-1231 $)) 71) (((-669 |#1|) (-1231 $) (-1231 $)) 70) (((-1231 |#1|) $) 103) (((-669 |#1|) (-1231 $)) 102)) (-4330 (((-1231 |#1|) $) 97) (($ (-1231 |#1|)) 96)) (-2014 (((-622 (-922 |#1|)) (-1231 $)) 79) (((-622 (-922 |#1|))) 99)) (-2686 (($ $ $) 25)) (-1838 (((-112)) 62)) (-4317 (((-840) $) 11)) (-2128 (((-1231 $)) 104)) (-1823 (((-622 (-1231 |#1|))) 44 (|has| |#1| (-545)))) (-2687 (($ $ $ $) 26)) (-1836 (((-112)) 60)) (-2880 (($ (-669 |#1|) $) 87)) (-2685 (($ $ $) 24)) (-1837 (((-112)) 61)) (-1835 (((-112)) 59)) (-1831 (((-112)) 55)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-413 |#1|) (-138) (-170)) (T -413))
-((-2128 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1231 *1)) (-4 *1 (-413 *3)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 *3)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-413 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-413 *2)) (-4 *2 (-170)))) (-3574 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 (-669 *3))))) (-2014 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-622 (-922 *3))))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3)))) (-4330 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 *3)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3)))) (-1910 (*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170)))) (-1909 (*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170)))) (-1908 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-1907 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-2026 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1143 (-922 *3))))) (-2022 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1143 (-922 *3))))) (-2880 (*1 *1 *2 *1) (-12 (-5 *2 (-669 *3)) (-4 *1 (-413 *3)) (-4 *3 (-170)))))
-(-13 (-362 |t#1|) (-10 -8 (-15 -2128 ((-1231 $))) (-15 -3575 ((-1231 |t#1|) $)) (-15 -3575 ((-669 |t#1|) (-1231 $))) (-15 -4159 (|t#1| $ (-538))) (-15 -3574 ((-1231 (-669 |t#1|)))) (-15 -2014 ((-622 (-922 |t#1|)))) (-15 -1911 ($ (-1231 |t#1|))) (-15 -4330 ((-1231 |t#1|) $)) (-15 -4330 ($ (-1231 |t#1|))) (-15 -1910 (|t#1|)) (-15 -1909 (|t#1|)) (-15 -1908 ((-669 |t#1|))) (-15 -1907 ((-669 |t#1|))) (-15 -1906 ((-669 |t#1|) $)) (-15 -1905 ((-669 |t#1|) $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -2026 ((-1143 (-922 |t#1|)))) (-15 -2022 ((-1143 (-922 |t#1|))))) |%noBranch|) (-15 -2880 ($ (-669 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-362 |#1|) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-725 |#1|) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1074) . T))
-((-3469 (((-400 |#1|) (-400 |#1|) (-1 (-400 |#1|) |#1|)) 21)) (-1912 (((-400 |#1|) (-400 |#1|) (-400 |#1|)) 16)))
-(((-414 |#1|) (-10 -7 (-15 -3469 ((-400 |#1|) (-400 |#1|) (-1 (-400 |#1|) |#1|))) (-15 -1912 ((-400 |#1|) (-400 |#1|) (-400 |#1|)))) (-545)) (T -414))
-((-1912 (*1 *2 *2 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-545)) (-5 *1 (-414 *3)))) (-3469 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-400 *4) *4)) (-4 *4 (-545)) (-5 *2 (-400 *4)) (-5 *1 (-414 *4)))))
-(-10 -7 (-15 -3469 ((-400 |#1|) (-400 |#1|) (-1 (-400 |#1|) |#1|))) (-15 -1912 ((-400 |#1|) (-400 |#1|) (-400 |#1|))))
-((-3417 (((-622 (-1149)) $) 72)) (-3419 (((-402 (-1143 $)) $ (-595 $)) 273)) (-1664 (($ $ (-288 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-622 (-595 $)) (-622 $)) 237)) (-3508 (((-3 (-595 $) #1="failed") $) NIL) (((-3 (-1149) #1#) $) 75) (((-3 (-538) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-402 (-922 |#2|)) #1#) $) 324) (((-3 (-922 |#2|) #1#) $) 235) (((-3 (-402 (-538)) #1#) $) NIL)) (-3507 (((-595 $) $) NIL) (((-1149) $) 30) (((-538) $) NIL) ((|#2| $) 231) (((-402 (-922 |#2|)) $) 305) (((-922 |#2|) $) 232) (((-402 (-538)) $) NIL)) (-3380 (((-113) (-113)) 47)) (-3329 (($ $) 87)) (-1662 (((-3 (-595 $) "failed") $) 228)) (-1661 (((-622 (-595 $)) $) 229)) (-3156 (((-3 (-622 $) "failed") $) 247)) (-3158 (((-3 (-2 (|:| |val| $) (|:| -2493 (-538))) "failed") $) 254)) (-3155 (((-3 (-622 $) "failed") $) 245)) (-1913 (((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 $))) "failed") $) 264)) (-3157 (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $) 251) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-1149)) 219)) (-1916 (((-112) $) 19)) (-1915 ((|#2| $) 21)) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) 236) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) 96) (($ $ (-1149) (-1 $ (-622 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-622 (-113)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-113) (-1 $ (-622 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1149)) 57) (($ $ (-622 (-1149))) 240) (($ $) 241) (($ $ (-113) $ (-1149)) 60) (($ $ (-622 (-113)) (-622 $) (-1149)) 67) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ $))) 107) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ (-622 $)))) 242) (($ $ (-1149) (-751) (-1 $ (-622 $))) 94) (($ $ (-1149) (-751) (-1 $ $)) 93)) (-4159 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-622 $)) 106)) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) 238)) (-3328 (($ $) 284)) (-4330 (((-866 (-538)) $) 257) (((-866 (-373)) $) 261) (($ (-400 $)) 320) (((-527) $) NIL)) (-4317 (((-840) $) 239) (($ (-595 $)) 84) (($ (-1149)) 26) (($ |#2|) NIL) (($ (-1098 |#2| (-595 $))) NIL) (($ (-402 |#2|)) 289) (($ (-922 (-402 |#2|))) 329) (($ (-402 (-922 (-402 |#2|)))) 301) (($ (-402 (-922 |#2|))) 295) (($ $) NIL) (($ (-922 |#2|)) 185) (($ (-402 (-538))) 334) (($ (-538)) NIL)) (-3461 (((-751)) 79)) (-2338 (((-112) (-113)) 41)) (-1914 (($ (-1149) $) 33) (($ (-1149) $ $) 34) (($ (-1149) $ $ $) 35) (($ (-1149) $ $ $ $) 36) (($ (-1149) (-622 $)) 39)) (* (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL)))
-(((-415 |#1| |#2|) (-10 -8 (-15 * (|#1| (-895) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3461 ((-751))) (-15 -4317 (|#1| (-538))) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1="failed") |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-922 |#2|) |#1|)) (-15 -3508 ((-3 (-922 |#2|) #1#) |#1|)) (-15 -4317 (|#1| (-922 |#2|))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4317 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -3507 ((-402 (-922 |#2|)) |#1|)) (-15 -3508 ((-3 (-402 (-922 |#2|)) #1#) |#1|)) (-15 -4317 (|#1| (-402 (-922 |#2|)))) (-15 -3419 ((-402 (-1143 |#1|)) |#1| (-595 |#1|))) (-15 -4317 (|#1| (-402 (-922 (-402 |#2|))))) (-15 -4317 (|#1| (-922 (-402 |#2|)))) (-15 -4317 (|#1| (-402 |#2|))) (-15 -3328 (|#1| |#1|)) (-15 -4330 (|#1| (-400 |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-751) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-751) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-751)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-751)) (-622 (-1 |#1| |#1|)))) (-15 -3158 ((-3 (-2 (|:| |val| |#1|) (|:| -2493 (-538))) "failed") |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1| (-1149))) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1| (-113))) (-15 -3329 (|#1| |#1|)) (-15 -4317 (|#1| (-1098 |#2| (-595 |#1|)))) (-15 -1913 ((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 |#1|))) "failed") |#1|)) (-15 -3155 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1|)) (-15 -3156 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 |#1|) (-1149))) (-15 -4127 (|#1| |#1| (-113) |#1| (-1149))) (-15 -4127 (|#1| |#1|)) (-15 -4127 (|#1| |#1| (-622 (-1149)))) (-15 -4127 (|#1| |#1| (-1149))) (-15 -1914 (|#1| (-1149) (-622 |#1|))) (-15 -1914 (|#1| (-1149) |#1| |#1| |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1| |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1|)) (-15 -3417 ((-622 (-1149)) |#1|)) (-15 -1915 (|#2| |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -4317 (|#1| (-1149))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| |#1|)))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| |#1|)))) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1661 ((-622 (-595 |#1|)) |#1|)) (-15 -1662 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -1664 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -1664 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -1664 (|#1| |#1| (-288 |#1|))) (-15 -4159 (|#1| (-113) (-622 |#1|))) (-15 -4159 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-595 |#1|) |#1|)) (-15 -3507 ((-595 |#1|) |#1|)) (-15 -3508 ((-3 (-595 |#1|) #1#) |#1|)) (-15 -4317 (|#1| (-595 |#1|))) (-15 -4317 ((-840) |#1|))) (-416 |#2|) (-827)) (T -415))
-((-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-827)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-415 *4 *5)) (-4 *4 (-416 *5)))) (-3461 (*1 *2) (-12 (-4 *4 (-827)) (-5 *2 (-751)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))))
-(-10 -8 (-15 * (|#1| (-895) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3461 ((-751))) (-15 -4317 (|#1| (-538))) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1="failed") |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-922 |#2|) |#1|)) (-15 -3508 ((-3 (-922 |#2|) #1#) |#1|)) (-15 -4317 (|#1| (-922 |#2|))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4317 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -3507 ((-402 (-922 |#2|)) |#1|)) (-15 -3508 ((-3 (-402 (-922 |#2|)) #1#) |#1|)) (-15 -4317 (|#1| (-402 (-922 |#2|)))) (-15 -3419 ((-402 (-1143 |#1|)) |#1| (-595 |#1|))) (-15 -4317 (|#1| (-402 (-922 (-402 |#2|))))) (-15 -4317 (|#1| (-922 (-402 |#2|)))) (-15 -4317 (|#1| (-402 |#2|))) (-15 -3328 (|#1| |#1|)) (-15 -4330 (|#1| (-400 |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-751) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-751) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-751)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-751)) (-622 (-1 |#1| |#1|)))) (-15 -3158 ((-3 (-2 (|:| |val| |#1|) (|:| -2493 (-538))) "failed") |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1| (-1149))) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1| (-113))) (-15 -3329 (|#1| |#1|)) (-15 -4317 (|#1| (-1098 |#2| (-595 |#1|)))) (-15 -1913 ((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 |#1|))) "failed") |#1|)) (-15 -3155 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1|)) (-15 -3156 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 |#1|) (-1149))) (-15 -4127 (|#1| |#1| (-113) |#1| (-1149))) (-15 -4127 (|#1| |#1|)) (-15 -4127 (|#1| |#1| (-622 (-1149)))) (-15 -4127 (|#1| |#1| (-1149))) (-15 -1914 (|#1| (-1149) (-622 |#1|))) (-15 -1914 (|#1| (-1149) |#1| |#1| |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1| |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1|)) (-15 -3417 ((-622 (-1149)) |#1|)) (-15 -1915 (|#2| |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -4317 (|#1| (-1149))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| |#1|)))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| |#1|)))) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1661 ((-622 (-595 |#1|)) |#1|)) (-15 -1662 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -1664 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -1664 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -1664 (|#1| |#1| (-288 |#1|))) (-15 -4159 (|#1| (-113) (-622 |#1|))) (-15 -4159 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-595 |#1|) |#1|)) (-15 -3507 ((-595 |#1|) |#1|)) (-15 -3508 ((-3 (-595 |#1|) #1#) |#1|)) (-15 -4317 (|#1| (-595 |#1|))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 113 (|has| |#1| (-25)))) (-3417 (((-622 (-1149)) $) 200)) (-3419 (((-402 (-1143 $)) $ (-595 $)) 168 (|has| |#1| (-545)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 140 (|has| |#1| (-545)))) (-2178 (($ $) 141 (|has| |#1| (-545)))) (-2176 (((-112) $) 143 (|has| |#1| (-545)))) (-1660 (((-622 (-595 $)) $) 44)) (-1368 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1664 (($ $ (-288 $)) 56) (($ $ (-622 (-288 $))) 55) (($ $ (-622 (-595 $)) (-622 $)) 54)) (-4134 (($ $) 160 (|has| |#1| (-545)))) (-4329 (((-400 $) $) 161 (|has| |#1| (-545)))) (-1705 (((-112) $ $) 151 (|has| |#1| (-545)))) (-3896 (($) 101 (-3891 (|has| |#1| (-1085)) (|has| |#1| (-25))) CONST)) (-3508 (((-3 (-595 $) #1="failed") $) 69) (((-3 (-1149) #1#) $) 213) (((-3 (-538) #1#) $) 206 (|has| |#1| (-1014 (-538)))) (((-3 |#1| #1#) $) 204) (((-3 (-402 (-922 |#1|)) #1#) $) 166 (|has| |#1| (-545))) (((-3 (-922 |#1|) #1#) $) 120 (|has| |#1| (-1025))) (((-3 (-402 (-538)) #1#) $) 95 (-3891 (-12 (|has| |#1| (-1014 (-538))) (|has| |#1| (-545))) (|has| |#1| (-1014 (-402 (-538))))))) (-3507 (((-595 $) $) 68) (((-1149) $) 212) (((-538) $) 207 (|has| |#1| (-1014 (-538)))) ((|#1| $) 203) (((-402 (-922 |#1|)) $) 165 (|has| |#1| (-545))) (((-922 |#1|) $) 119 (|has| |#1| (-1025))) (((-402 (-538)) $) 94 (-3891 (-12 (|has| |#1| (-1014 (-538))) (|has| |#1| (-545))) (|has| |#1| (-1014 (-402 (-538))))))) (-2894 (($ $ $) 155 (|has| |#1| (-545)))) (-2362 (((-669 (-538)) (-669 $)) 134 (-3191 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 133 (-3191 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 132 (|has| |#1| (-1025))) (((-669 |#1|) (-669 $)) 131 (|has| |#1| (-1025)))) (-3821 (((-3 $ "failed") $) 103 (|has| |#1| (-1085)))) (-2893 (($ $ $) 154 (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 149 (|has| |#1| (-545)))) (-4086 (((-112) $) 162 (|has| |#1| (-545)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 209 (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 208 (|has| |#1| (-862 (-373))))) (-2903 (($ $) 51) (($ (-622 $)) 50)) (-1659 (((-622 (-113)) $) 43)) (-3380 (((-113) (-113)) 42)) (-2502 (((-112) $) 102 (|has| |#1| (-1085)))) (-3006 (((-112) $) 22 (|has| $ (-1014 (-538))))) (-3329 (($ $) 183 (|has| |#1| (-1025)))) (-3331 (((-1098 |#1| (-595 $)) $) 184 (|has| |#1| (-1025)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 158 (|has| |#1| (-545)))) (-1657 (((-1143 $) (-595 $)) 25 (|has| $ (-1025)))) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-4318 (($ (-1 $ $) (-595 $)) 36)) (-1662 (((-3 (-595 $) "failed") $) 46)) (-2013 (($ (-622 $)) 147 (|has| |#1| (-545))) (($ $ $) 146 (|has| |#1| (-545)))) (-3593 (((-1131) $) 9)) (-1661 (((-622 (-595 $)) $) 45)) (-2317 (($ (-113) $) 38) (($ (-113) (-622 $)) 37)) (-3156 (((-3 (-622 $) "failed") $) 189 (|has| |#1| (-1085)))) (-3158 (((-3 (-2 (|:| |val| $) (|:| -2493 (-538))) "failed") $) 180 (|has| |#1| (-1025)))) (-3155 (((-3 (-622 $) "failed") $) 187 (|has| |#1| (-25)))) (-1913 (((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3157 (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $) 188 (|has| |#1| (-1085))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-113)) 182 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-1149)) 181 (|has| |#1| (-1025)))) (-2964 (((-112) $ (-113)) 40) (((-112) $ (-1149)) 39)) (-2734 (($ $) 105 (-3891 (|has| |#1| (-467)) (|has| |#1| (-545))))) (-2933 (((-751) $) 47)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 202)) (-1915 ((|#1| $) 201)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 148 (|has| |#1| (-545)))) (-3495 (($ (-622 $)) 145 (|has| |#1| (-545))) (($ $ $) 144 (|has| |#1| (-545)))) (-1658 (((-112) $ $) 35) (((-112) $ (-1149)) 34)) (-4092 (((-400 $) $) 159 (|has| |#1| (-545)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 157 (|has| |#1| (-545))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 156 (|has| |#1| (-545)))) (-3820 (((-3 $ "failed") $ $) 139 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 150 (|has| |#1| (-545)))) (-3007 (((-112) $) 23 (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) 67) (($ $ (-622 (-595 $)) (-622 $)) 66) (($ $ (-622 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-622 $) (-622 $)) 62) (($ $ (-622 (-1149)) (-622 (-1 $ $))) 33) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) 32) (($ $ (-1149) (-1 $ (-622 $))) 31) (($ $ (-1149) (-1 $ $)) 30) (($ $ (-622 (-113)) (-622 (-1 $ $))) 29) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) 28) (($ $ (-113) (-1 $ (-622 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1149)) 194 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-1149))) 193 (|has| |#1| (-598 (-527)))) (($ $) 192 (|has| |#1| (-598 (-527)))) (($ $ (-113) $ (-1149)) 191 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-113)) (-622 $) (-1149)) 190 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ $))) 179 (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ (-622 $)))) 178 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-622 $))) 177 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ $)) 176 (|has| |#1| (-1025)))) (-1704 (((-751) $) 152 (|has| |#1| (-545)))) (-4159 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-622 $)) 57)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 153 (|has| |#1| (-545)))) (-1663 (($ $) 49) (($ $ $) 48)) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 125 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 124 (|has| |#1| (-1025))) (($ $ (-622 (-1149))) 123 (|has| |#1| (-1025))) (($ $ (-1149)) 122 (|has| |#1| (-1025)))) (-3328 (($ $) 173 (|has| |#1| (-545)))) (-3330 (((-1098 |#1| (-595 $)) $) 174 (|has| |#1| (-545)))) (-3536 (($ $) 24 (|has| $ (-1025)))) (-4330 (((-866 (-538)) $) 211 (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) 210 (|has| |#1| (-598 (-866 (-373))))) (($ (-400 $)) 175 (|has| |#1| (-545))) (((-527) $) 97 (|has| |#1| (-598 (-527))))) (-3342 (($ $ $) 108 (|has| |#1| (-467)))) (-2686 (($ $ $) 109 (|has| |#1| (-467)))) (-4317 (((-840) $) 11) (($ (-595 $)) 70) (($ (-1149)) 214) (($ |#1|) 205) (($ (-1098 |#1| (-595 $))) 185 (|has| |#1| (-1025))) (($ (-402 |#1|)) 171 (|has| |#1| (-545))) (($ (-922 (-402 |#1|))) 170 (|has| |#1| (-545))) (($ (-402 (-922 (-402 |#1|)))) 169 (|has| |#1| (-545))) (($ (-402 (-922 |#1|))) 167 (|has| |#1| (-545))) (($ $) 138 (|has| |#1| (-545))) (($ (-922 |#1|)) 121 (|has| |#1| (-1025))) (($ (-402 (-538))) 96 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-1014 (-538))) (|has| |#1| (-545))) (|has| |#1| (-1014 (-402 (-538)))))) (($ (-538)) 93 (-3891 (|has| |#1| (-1025)) (|has| |#1| (-1014 (-538)))))) (-3035 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-3461 (((-751)) 130 (|has| |#1| (-1025)))) (-2920 (($ $) 53) (($ (-622 $)) 52)) (-2338 (((-112) (-113)) 41)) (-2177 (((-112) $ $) 142 (|has| |#1| (-545)))) (-1914 (($ (-1149) $) 199) (($ (-1149) $ $) 198) (($ (-1149) $ $ $) 197) (($ (-1149) $ $ $ $) 196) (($ (-1149) (-622 $)) 195)) (-2991 (($) 112 (|has| |#1| (-25)) CONST)) (-2997 (($) 100 (|has| |#1| (-1085)) CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 129 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 128 (|has| |#1| (-1025))) (($ $ (-622 (-1149))) 127 (|has| |#1| (-1025))) (($ $ (-1149)) 126 (|has| |#1| (-1025)))) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4308 (($ (-1098 |#1| (-595 $)) (-1098 |#1| (-595 $))) 172 (|has| |#1| (-545))) (($ $ $) 106 (-3891 (|has| |#1| (-467)) (|has| |#1| (-545))))) (-4197 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-4199 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-538)) 107 (-3891 (|has| |#1| (-467)) (|has| |#1| (-545)))) (($ $ (-751)) 104 (|has| |#1| (-1085))) (($ $ (-895)) 99 (|has| |#1| (-1085)))) (* (($ (-402 (-538)) $) 164 (|has| |#1| (-545))) (($ $ (-402 (-538))) 163 (|has| |#1| (-545))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-538) $) 118 (|has| |#1| (-21))) (($ (-751) $) 114 (|has| |#1| (-25))) (($ (-895) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1085)))))
-(((-416 |#1|) (-138) (-827)) (T -416))
-((-1916 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-827)) (-5 *2 (-112)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-827)) (-5 *2 (-622 (-1149))))) (-1914 (*1 *1 *2 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) (-1914 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) (-1914 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) (-1914 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) (-1914 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 *1)) (-4 *1 (-416 *4)) (-4 *4 (-827)))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)) (-4 *3 (-598 (-527))))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-1149))) (-4 *1 (-416 *3)) (-4 *3 (-827)) (-4 *3 (-598 (-527))))) (-4127 (*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-598 (-527))))) (-4127 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1149)) (-4 *1 (-416 *4)) (-4 *4 (-827)) (-4 *4 (-598 (-527))))) (-4127 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 *1)) (-5 *4 (-1149)) (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-598 (-527))))) (-3156 (*1 *2 *1) (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-416 *3)))) (-3157 (*1 *2 *1) (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *3)))) (-3155 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-416 *3)))) (-1913 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -4313 (-538)) (|:| |var| (-595 *1)))) (-4 *1 (-416 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1098 *3 (-595 *1))) (-4 *3 (-1025)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-595 *1))) (-4 *1 (-416 *3)))) (-3329 (*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-1025)))) (-3157 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1025)) (-4 *4 (-827)) (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *4)))) (-3157 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-1025)) (-4 *4 (-827)) (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *4)))) (-3158 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-2 (|:| |val| *1) (|:| -2493 (-538)))) (-4 *1 (-416 *3)))) (-4127 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-751))) (-5 *4 (-622 (-1 *1 *1))) (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4127 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-751))) (-5 *4 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4127 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 (-622 *1))) (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4127 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 *1)) (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-400 *1)) (-4 *1 (-416 *3)) (-4 *3 (-545)) (-4 *3 (-827)))) (-3330 (*1 *2 *1) (-12 (-4 *3 (-545)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-595 *1))) (-4 *1 (-416 *3)))) (-3328 (*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-545)))) (-4308 (*1 *1 *2 *2) (-12 (-5 *2 (-1098 *3 (-595 *1))) (-4 *3 (-545)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-545)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-922 (-402 *3))) (-4 *3 (-545)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-402 *3)))) (-4 *3 (-545)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *1)) (-4 *1 (-416 *4)) (-4 *4 (-827)) (-4 *4 (-545)) (-5 *2 (-402 (-1143 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-416 *3)) (-4 *3 (-827)) (-4 *3 (-1085)))))
-(-13 (-293) (-1014 (-1149)) (-860 |t#1|) (-395 |t#1|) (-407 |t#1|) (-10 -8 (-15 -1916 ((-112) $)) (-15 -1915 (|t#1| $)) (-15 -3417 ((-622 (-1149)) $)) (-15 -1914 ($ (-1149) $)) (-15 -1914 ($ (-1149) $ $)) (-15 -1914 ($ (-1149) $ $ $)) (-15 -1914 ($ (-1149) $ $ $ $)) (-15 -1914 ($ (-1149) (-622 $))) (IF (|has| |t#1| (-598 (-527))) (PROGN (-6 (-598 (-527))) (-15 -4127 ($ $ (-1149))) (-15 -4127 ($ $ (-622 (-1149)))) (-15 -4127 ($ $)) (-15 -4127 ($ $ (-113) $ (-1149))) (-15 -4127 ($ $ (-622 (-113)) (-622 $) (-1149)))) |%noBranch|) (IF (|has| |t#1| (-1085)) (PROGN (-6 (-707)) (-15 ** ($ $ (-751))) (-15 -3156 ((-3 (-622 $) "failed") $)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-467)) (-6 (-467)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3155 ((-3 (-622 $) "failed") $)) (-15 -1913 ((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-1014 (-922 |t#1|))) (-6 (-876 (-1149))) (-6 (-372 |t#1|)) (-15 -4317 ($ (-1098 |t#1| (-595 $)))) (-15 -3331 ((-1098 |t#1| (-595 $)) $)) (-15 -3329 ($ $)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-113))) (-15 -3157 ((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-1149))) (-15 -3158 ((-3 (-2 (|:| |val| $) (|:| -2493 (-538))) "failed") $)) (-15 -4127 ($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ $)))) (-15 -4127 ($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ (-622 $))))) (-15 -4127 ($ $ (-1149) (-751) (-1 $ (-622 $)))) (-15 -4127 ($ $ (-1149) (-751) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-6 (-358)) (-6 (-1014 (-402 (-922 |t#1|)))) (-15 -4330 ($ (-400 $))) (-15 -3330 ((-1098 |t#1| (-595 $)) $)) (-15 -3328 ($ $)) (-15 -4308 ($ (-1098 |t#1| (-595 $)) (-1098 |t#1| (-595 $)))) (-15 -4317 ($ (-402 |t#1|))) (-15 -4317 ($ (-922 (-402 |t#1|)))) (-15 -4317 ($ (-402 (-922 (-402 |t#1|))))) (-15 -3419 ((-402 (-1143 $)) $ (-595 $))) (IF (|has| |t#1| (-1014 (-538))) (-6 (-1014 (-402 (-538)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-402 (-538))) |has| |#1| (-545)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-545)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-545)) ((-130) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) |has| |#1| (-545)) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-598 (-866 (-373))) |has| |#1| (-598 (-866 (-373)))) ((-598 (-866 (-538))) |has| |#1| (-598 (-866 (-538)))) ((-239) |has| |#1| (-545)) ((-285) |has| |#1| (-545)) ((-302) |has| |#1| (-545)) ((-304 $) . T) ((-293) . T) ((-358) |has| |#1| (-545)) ((-372 |#1|) |has| |#1| (-1025)) ((-395 |#1|) . T) ((-407 |#1|) . T) ((-446) |has| |#1| (-545)) ((-467) |has| |#1| (-467)) ((-507 (-595 $) $) . T) ((-507 $ $) . T) ((-545) |has| |#1| (-545)) ((-628 #1#) |has| |#1| (-545)) ((-628 |#1|) |has| |#1| (-170)) ((-628 $) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-621 (-538)) -12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) ((-621 |#1|) |has| |#1| (-1025)) ((-698 #1#) |has| |#1| (-545)) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) -3891 (|has| |#1| (-1085)) (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-827) . T) ((-876 (-1149)) |has| |#1| (-1025)) ((-862 (-373)) |has| |#1| (-862 (-373))) ((-862 (-538)) |has| |#1| (-862 (-538))) ((-860 |#1|) . T) ((-897) |has| |#1| (-545)) ((-1014 (-402 (-538))) -3891 (|has| |#1| (-1014 (-402 (-538)))) (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538))))) ((-1014 (-402 (-922 |#1|))) |has| |#1| (-545)) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 (-595 $)) . T) ((-1014 (-922 |#1|)) |has| |#1| (-1025)) ((-1014 (-1149)) . T) ((-1014 |#1|) . T) ((-1031 #1#) |has| |#1| (-545)) ((-1031 |#1|) |has| |#1| (-170)) ((-1031 $) |has| |#1| (-545)) ((-1025) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1032) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1085) -3891 (|has| |#1| (-1085)) (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1074) . T) ((-1185) . T) ((-1190) |has| |#1| (-545)))
-((-4318 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1025) (-827)) (-416 |#1|) (-13 (-1025) (-827)) (-416 |#3|)) (T -417))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1025) (-827))) (-4 *6 (-13 (-1025) (-827))) (-4 *2 (-416 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-416 *5)))))
-(-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1920 ((|#2| |#2|) 166)) (-1917 (((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112)) 57)))
-(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1917 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112))) (-15 -1920 (|#2| |#2|))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|)) (-1149) |#2|) (T -418))
-((-1920 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-418 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1171) (-416 *3))) (-14 *4 (-1149)) (-14 *5 *2))) (-1917 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |%expansion| (-308 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-418 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-14 *6 (-1149)) (-14 *7 *3))))
-(-10 -7 (-15 -1917 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112))) (-15 -1920 (|#2| |#2|)))
-((-1920 ((|#2| |#2|) 90)) (-1918 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131)) 48)) (-1919 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131)) 154)))
-(((-419 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1918 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -1919 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -1920 (|#2| |#2|))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|) (-10 -8 (-15 -4317 ($ |#3|)))) (-825) (-13 (-1210 |#2| |#3|) (-358) (-1171) (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $)))) (-959 |#4|) (-1149)) (T -419))
-((-1920 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-4 *2 (-13 (-27) (-1171) (-416 *3) (-10 -8 (-15 -4317 ($ *4))))) (-4 *4 (-825)) (-4 *5 (-13 (-1210 *2 *4) (-358) (-1171) (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $))))) (-5 *1 (-419 *3 *2 *4 *5 *6 *7)) (-4 *6 (-959 *5)) (-14 *7 (-1149)))) (-1919 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-4 *3 (-13 (-27) (-1171) (-416 *6) (-10 -8 (-15 -4317 ($ *7))))) (-4 *7 (-825)) (-4 *8 (-13 (-1210 *3 *7) (-358) (-1171) (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-419 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) (-14 *10 (-1149)))) (-1918 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-4 *3 (-13 (-27) (-1171) (-416 *6) (-10 -8 (-15 -4317 ($ *7))))) (-4 *7 (-825)) (-4 *8 (-13 (-1210 *3 *7) (-358) (-1171) (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-419 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) (-14 *10 (-1149)))))
-(-10 -7 (-15 -1918 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -1919 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -1920 (|#2| |#2|)))
-((-1921 (($) 44)) (-3585 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3587 (($ $ $) 39)) (-3586 (((-112) $ $) 28)) (-3471 (((-751)) 47)) (-3590 (($ (-622 |#2|)) 20) (($) NIL)) (-3327 (($) 53)) (-3592 (((-112) $ $) 13)) (-3677 ((|#2| $) 61)) (-3678 ((|#2| $) 59)) (-2126 (((-895) $) 55)) (-3589 (($ $ $) 35)) (-2492 (($ (-895)) 50)) (-3588 (($ $ |#2|) NIL) (($ $ $) 38)) (-2069 (((-751) (-1 (-112) |#2|) $) NIL) (((-751) |#2| $) 26)) (-3884 (($ (-622 |#2|)) 24)) (-1922 (($ $) 46)) (-4317 (((-840) $) 33)) (-1923 (((-751) $) 21)) (-3591 (($ (-622 |#2|)) 19) (($) NIL)) (-3387 (((-112) $ $) 16)))
-(((-420 |#1| |#2|) (-10 -8 (-15 -3471 ((-751))) (-15 -2492 (|#1| (-895))) (-15 -2126 ((-895) |#1|)) (-15 -3327 (|#1|)) (-15 -3677 (|#2| |#1|)) (-15 -3678 (|#2| |#1|)) (-15 -1921 (|#1|)) (-15 -1922 (|#1| |#1|)) (-15 -1923 ((-751) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3592 ((-112) |#1| |#1|)) (-15 -3591 (|#1|)) (-15 -3591 (|#1| (-622 |#2|))) (-15 -3590 (|#1|)) (-15 -3590 (|#1| (-622 |#2|))) (-15 -3589 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#2|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -3585 (|#1| |#1| |#2|)) (-15 -3585 (|#1| |#2| |#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|))) (-421 |#2|) (-1074)) (T -420))
-((-3471 (*1 *2) (-12 (-4 *4 (-1074)) (-5 *2 (-751)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))))
-(-10 -8 (-15 -3471 ((-751))) (-15 -2492 (|#1| (-895))) (-15 -2126 ((-895) |#1|)) (-15 -3327 (|#1|)) (-15 -3677 (|#2| |#1|)) (-15 -3678 (|#2| |#1|)) (-15 -1921 (|#1|)) (-15 -1922 (|#1| |#1|)) (-15 -1923 ((-751) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3592 ((-112) |#1| |#1|)) (-15 -3591 (|#1|)) (-15 -3591 (|#1| (-622 |#2|))) (-15 -3590 (|#1|)) (-15 -3590 (|#1| (-622 |#2|))) (-15 -3589 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#2|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -3585 (|#1| |#1| |#2|)) (-15 -3585 (|#1| |#2| |#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)))
-((-2898 (((-112) $ $) 19)) (-1921 (($) 67 (|has| |#1| (-363)))) (-3585 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3587 (($ $ $) 78)) (-3586 (((-112) $ $) 79)) (-1271 (((-112) $ (-751)) 8)) (-3471 (((-751)) 61 (|has| |#1| (-363)))) (-3590 (($ (-622 |#1|)) 74) (($) 73)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3327 (($) 64 (|has| |#1| (-363)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) 70)) (-4082 (((-112) $ (-751)) 9)) (-3677 ((|#1| $) 65 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3678 ((|#1| $) 66 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-2126 (((-895) $) 63 (|has| |#1| (-363)))) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22)) (-3589 (($ $ $) 75)) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-2492 (($ (-895)) 62 (|has| |#1| (-363)))) (-3594 (((-1093) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-3588 (($ $ |#1|) 77) (($ $ $) 76)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-1922 (($ $) 68 (|has| |#1| (-363)))) (-4317 (((-840) $) 18)) (-1923 (((-751) $) 69)) (-3591 (($ (-622 |#1|)) 72) (($) 71)) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20)) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-421 |#1|) (-138) (-1074)) (T -421))
-((-1923 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-1074)) (-5 *2 (-751)))) (-1922 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-363)))) (-1921 (*1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-363)) (-4 *2 (-1074)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-827)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-827)))))
-(-13 (-225 |t#1|) (-1072 |t#1|) (-10 -8 (-6 -4353) (-15 -1923 ((-751) $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-15 -1922 ($ $)) (-15 -1921 ($))) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-15 -3678 (|t#1| $)) (-15 -3677 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-225 |#1|) . T) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-363) |has| |#1| (-363)) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1072 |#1|) . T) ((-1074) . T) ((-1185) . T))
-((-4201 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4202 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4318 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4202 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4201 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1074) (-421 |#1|) (-1074) (-421 |#3|)) (T -422))
-((-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1074)) (-4 *5 (-1074)) (-4 *2 (-421 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-421 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1074)) (-4 *2 (-1074)) (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-421 *5)) (-4 *6 (-421 *2)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-421 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-421 *5)))))
-(-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4202 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4201 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-1924 (((-569 |#2|) |#2| (-1149)) 36)) (-2220 (((-569 |#2|) |#2| (-1149)) 20)) (-2261 ((|#2| |#2| (-1149)) 25)))
-(((-423 |#1| |#2|) (-10 -7 (-15 -2220 ((-569 |#2|) |#2| (-1149))) (-15 -1924 ((-569 |#2|) |#2| (-1149))) (-15 -2261 (|#2| |#2| (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-29 |#1|))) (T -423))
-((-2261 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-423 *4 *2)) (-4 *2 (-13 (-1171) (-29 *4))))) (-1924 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5))))) (-2220 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5))))))
-(-10 -7 (-15 -2220 ((-569 |#2|) |#2| (-1149))) (-15 -1924 ((-569 |#2|) |#2| (-1149))) (-15 -2261 (|#2| |#2| (-1149))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-1926 (($ |#2| |#1|) 35)) (-1925 (($ |#2| |#1|) 33)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-326 |#2|)) 25)) (-3461 (((-751)) NIL)) (-2991 (($) 10 T CONST)) (-2997 (($) 16 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 34)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-424 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4340)) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|) |%noBranch|) (-15 -4317 ($ |#1|)) (-15 -4317 ($ (-326 |#2|))) (-15 -1926 ($ |#2| |#1|)) (-15 -1925 ($ |#2| |#1|)))) (-13 (-170) (-38 (-402 (-538)))) (-13 (-827) (-21))) (T -424))
-((-4317 (*1 *1 *2) (-12 (-5 *1 (-424 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-538))))) (-4 *3 (-13 (-827) (-21))))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-827) (-21))) (-5 *1 (-424 *3 *4)) (-4 *3 (-13 (-170) (-38 (-402 (-538))))))) (-1926 (*1 *1 *2 *3) (-12 (-5 *1 (-424 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-538))))) (-4 *2 (-13 (-827) (-21))))) (-1925 (*1 *1 *2 *3) (-12 (-5 *1 (-424 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-538))))) (-4 *2 (-13 (-827) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4340)) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|) |%noBranch|) (-15 -4317 ($ |#1|)) (-15 -4317 ($ (-326 |#2|))) (-15 -1926 ($ |#2| |#1|)) (-15 -1925 ($ |#2| |#1|))))
-((-4172 (((-3 |#2| (-622 |#2|)) |#2| (-1149)) 109)))
-(((-425 |#1| |#2|) (-10 -7 (-15 -4172 ((-3 |#2| (-622 |#2|)) |#2| (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-936) (-29 |#1|))) (T -425))
-((-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 *3 (-622 *3))) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1171) (-936) (-29 *5))))))
-(-10 -7 (-15 -4172 ((-3 |#2| (-622 |#2|)) |#2| (-1149))))
-((-3745 ((|#2| |#2| |#2|) 33)) (-3380 (((-113) (-113)) 44)) (-1928 ((|#2| |#2|) 66)) (-1927 ((|#2| |#2|) 69)) (-3744 ((|#2| |#2|) 32)) (-3748 ((|#2| |#2| |#2|) 35)) (-3750 ((|#2| |#2| |#2|) 37)) (-3747 ((|#2| |#2| |#2|) 34)) (-3749 ((|#2| |#2| |#2|) 36)) (-2338 (((-112) (-113)) 42)) (-3752 ((|#2| |#2|) 39)) (-3751 ((|#2| |#2|) 38)) (-3742 ((|#2| |#2|) 27)) (-3746 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3743 ((|#2| |#2| |#2|) 31)))
-(((-426 |#1| |#2|) (-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -3742 (|#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -3743 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -3745 (|#2| |#2| |#2|)) (-15 -3747 (|#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2|)) (-15 -3752 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -1928 (|#2| |#2|))) (-13 (-827) (-545)) (-416 |#1|)) (T -426))
-((-1928 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-1927 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3752 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3751 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3750 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3749 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3748 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3747 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3745 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3743 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3746 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3746 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *4)) (-4 *4 (-416 *3)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-426 *4 *5)) (-4 *5 (-416 *4)))))
-(-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -3742 (|#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -3743 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -3745 (|#2| |#2| |#2|)) (-15 -3747 (|#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2|)) (-15 -3752 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -1928 (|#2| |#2|)))
-((-3166 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1143 |#2|)) (|:| |pol2| (-1143 |#2|)) (|:| |prim| (-1143 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-622 (-1143 |#2|))) (|:| |prim| (-1143 |#2|))) (-622 |#2|)) 61)))
-(((-427 |#1| |#2|) (-10 -7 (-15 -3166 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-622 (-1143 |#2|))) (|:| |prim| (-1143 |#2|))) (-622 |#2|))) (IF (|has| |#2| (-27)) (-15 -3166 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1143 |#2|)) (|:| |pol2| (-1143 |#2|)) (|:| |prim| (-1143 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-545) (-827) (-145)) (-416 |#1|)) (T -427))
-((-3166 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-545) (-827) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1143 *3)) (|:| |pol2| (-1143 *3)) (|:| |prim| (-1143 *3)))) (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-416 *4)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-416 *4)) (-4 *4 (-13 (-545) (-827) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-622 (-1143 *5))) (|:| |prim| (-1143 *5)))) (-5 *1 (-427 *4 *5)))))
-(-10 -7 (-15 -3166 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-622 (-1143 |#2|))) (|:| |prim| (-1143 |#2|))) (-622 |#2|))) (IF (|has| |#2| (-27)) (-15 -3166 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1143 |#2|)) (|:| |pol2| (-1143 |#2|)) (|:| |prim| (-1143 |#2|))) |#2| |#2|)) |%noBranch|))
-((-1930 (((-1237)) 19)) (-1929 (((-1143 (-402 (-538))) |#2| (-595 |#2|)) 41) (((-402 (-538)) |#2|) 25)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -1929 ((-402 (-538)) |#2|)) (-15 -1929 ((-1143 (-402 (-538))) |#2| (-595 |#2|))) (-15 -1930 ((-1237)))) (-13 (-827) (-545) (-1014 (-538))) (-416 |#1|)) (T -428))
-((-1930 (*1 *2) (-12 (-4 *3 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-1237)) (-5 *1 (-428 *3 *4)) (-4 *4 (-416 *3)))) (-1929 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-416 *5)) (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-428 *5 *3)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-402 (-538))) (-5 *1 (-428 *4 *3)) (-4 *3 (-416 *4)))))
-(-10 -7 (-15 -1929 ((-402 (-538)) |#2|)) (-15 -1929 ((-1143 (-402 (-538))) |#2| (-595 |#2|))) (-15 -1930 ((-1237))))
-((-4008 (((-112) $) 28)) (-1931 (((-112) $) 30)) (-3610 (((-112) $) 31)) (-1933 (((-112) $) 34)) (-1935 (((-112) $) 29)) (-1934 (((-112) $) 33)) (-4317 (((-840) $) 18) (($ (-1131)) 27) (($ (-1149)) 23) (((-1149) $) 22) (((-1076) $) 21)) (-1932 (((-112) $) 32)) (-3387 (((-112) $ $) 15)))
-(((-429) (-13 (-597 (-840)) (-10 -8 (-15 -4317 ($ (-1131))) (-15 -4317 ($ (-1149))) (-15 -4317 ((-1149) $)) (-15 -4317 ((-1076) $)) (-15 -4008 ((-112) $)) (-15 -1935 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -1934 ((-112) $)) (-15 -1933 ((-112) $)) (-15 -1932 ((-112) $)) (-15 -1931 ((-112) $)) (-15 -3387 ((-112) $ $))))) (T -429))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-429)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-429)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3387 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(-13 (-597 (-840)) (-10 -8 (-15 -4317 ($ (-1131))) (-15 -4317 ($ (-1149))) (-15 -4317 ((-1149) $)) (-15 -4317 ((-1076) $)) (-15 -4008 ((-112) $)) (-15 -1935 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -1934 ((-112) $)) (-15 -1933 ((-112) $)) (-15 -1932 ((-112) $)) (-15 -1931 ((-112) $)) (-15 -3387 ((-112) $ $))))
-((-1937 (((-3 (-400 (-1143 (-402 (-538)))) "failed") |#3|) 70)) (-1936 (((-400 |#3|) |#3|) 34)) (-1939 (((-3 (-400 (-1143 (-48))) "failed") |#3|) 46 (|has| |#2| (-1014 (-48))))) (-1938 (((-3 (|:| |overq| (-1143 (-402 (-538)))) (|:| |overan| (-1143 (-48))) (|:| -2970 (-112))) |#3|) 37)))
-(((-430 |#1| |#2| |#3|) (-10 -7 (-15 -1936 ((-400 |#3|) |#3|)) (-15 -1937 ((-3 (-400 (-1143 (-402 (-538)))) "failed") |#3|)) (-15 -1938 ((-3 (|:| |overq| (-1143 (-402 (-538)))) (|:| |overan| (-1143 (-48))) (|:| -2970 (-112))) |#3|)) (IF (|has| |#2| (-1014 (-48))) (-15 -1939 ((-3 (-400 (-1143 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-545) (-827) (-1014 (-538))) (-416 |#1|) (-1207 |#2|)) (T -430))
-((-1939 (*1 *2 *3) (|partial| -12 (-4 *5 (-1014 (-48))) (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) (-5 *2 (-400 (-1143 (-48)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5)))) (-1938 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) (-5 *2 (-3 (|:| |overq| (-1143 (-402 (-538)))) (|:| |overan| (-1143 (-48))) (|:| -2970 (-112)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5)))) (-1937 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) (-5 *2 (-400 (-1143 (-402 (-538))))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5)))) (-1936 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) (-5 *2 (-400 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5)))))
-(-10 -7 (-15 -1936 ((-400 |#3|) |#3|)) (-15 -1937 ((-3 (-400 (-1143 (-402 (-538)))) "failed") |#3|)) (-15 -1938 ((-3 (|:| |overq| (-1143 (-402 (-538)))) (|:| |overan| (-1143 (-48))) (|:| -2970 (-112))) |#3|)) (IF (|has| |#2| (-1014 (-48))) (-15 -1939 ((-3 (-400 (-1143 (-48))) "failed") |#3|)) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-1948 (((-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) $) 11)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1946 (($) 32)) (-1943 (($) 38)) (-1944 (($) 34)) (-1941 (($) 36)) (-1945 (($) 33)) (-1942 (($) 35)) (-1940 (($) 37)) (-1947 (((-112) $) 8)) (-2682 (((-622 (-922 (-538))) $) 19)) (-3884 (($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-1149)) (-112)) 27) (($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-922 (-538))) (-112)) 28)) (-4317 (((-840) $) 23) (($ (-429)) 29)) (-3387 (((-112) $ $) NIL)))
-(((-431) (-13 (-1074) (-10 -8 (-15 -4317 ((-840) $)) (-15 -4317 ($ (-429))) (-15 -1948 ((-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) $)) (-15 -2682 ((-622 (-922 (-538))) $)) (-15 -1947 ((-112) $)) (-15 -3884 ($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-1149)) (-112))) (-15 -3884 ($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-922 (-538))) (-112))) (-15 -1946 ($)) (-15 -1945 ($)) (-15 -1944 ($)) (-15 -1943 ($)) (-15 -1942 ($)) (-15 -1941 ($)) (-15 -1940 ($))))) (T -431))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-431)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-431)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void"))) (-5 *1 (-431)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-622 (-922 (-538)))) (-5 *1 (-431)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-431)))) (-3884 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *3 (-622 (-1149))) (-5 *4 (-112)) (-5 *1 (-431)))) (-3884 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-112)) (-5 *1 (-431)))) (-1946 (*1 *1) (-5 *1 (-431))) (-1945 (*1 *1) (-5 *1 (-431))) (-1944 (*1 *1) (-5 *1 (-431))) (-1943 (*1 *1) (-5 *1 (-431))) (-1942 (*1 *1) (-5 *1 (-431))) (-1941 (*1 *1) (-5 *1 (-431))) (-1940 (*1 *1) (-5 *1 (-431))))
-(-13 (-1074) (-10 -8 (-15 -4317 ((-840) $)) (-15 -4317 ($ (-429))) (-15 -1948 ((-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) $)) (-15 -2682 ((-622 (-922 (-538))) $)) (-15 -1947 ((-112) $)) (-15 -3884 ($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-1149)) (-112))) (-15 -3884 ($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-922 (-538))) (-112))) (-15 -1946 ($)) (-15 -1945 ($)) (-15 -1944 ($)) (-15 -1943 ($)) (-15 -1942 ($)) (-15 -1941 ($)) (-15 -1940 ($))))
-((-2898 (((-112) $ $) NIL)) (-1813 (((-1131) $ (-1131)) NIL)) (-1817 (($ $ (-1131)) NIL)) (-1814 (((-1131) $) NIL)) (-1952 (((-383) (-383) (-383)) 17) (((-383) (-383)) 15)) (-1818 (($ (-383)) NIL) (($ (-383) (-1131)) NIL)) (-3905 (((-383) $) NIL)) (-3593 (((-1131) $) NIL)) (-1815 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1951 (((-1237) (-1131)) 9)) (-1950 (((-1237) (-1131)) 10)) (-1949 (((-1237)) 11)) (-4317 (((-840) $) NIL)) (-1816 (($ $) 35)) (-3387 (((-112) $ $) NIL)))
-(((-432) (-13 (-360 (-383) (-1131)) (-10 -7 (-15 -1952 ((-383) (-383) (-383))) (-15 -1952 ((-383) (-383))) (-15 -1951 ((-1237) (-1131))) (-15 -1950 ((-1237) (-1131))) (-15 -1949 ((-1237)))))) (T -432))
-((-1952 (*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-432)))) (-1952 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-432)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-432)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-432)))) (-1949 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-432)))))
-(-13 (-360 (-383) (-1131)) (-10 -7 (-15 -1952 ((-383) (-383) (-383))) (-15 -1952 ((-383) (-383))) (-15 -1951 ((-1237) (-1131))) (-15 -1950 ((-1237) (-1131))) (-15 -1949 ((-1237)))))
-((-2898 (((-112) $ $) NIL)) (-3905 (((-1149) $) 8)) (-3593 (((-1131) $) 16)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 13)))
-(((-433 |#1|) (-13 (-1074) (-10 -8 (-15 -3905 ((-1149) $)))) (-1149)) (T -433))
-((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-433 *3)) (-14 *3 *2))))
-(-13 (-1074) (-10 -8 (-15 -3905 ((-1149) $))))
-((-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8) (($ (-1231 (-679))) 14) (($ (-622 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 11)))
+((-2189 (*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-399)))) (-2189 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-897)) (-4 *1 (-399)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552)))) (-3929 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552)))) (-2594 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552)))) (-3597 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) (-1542 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) (-1923 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-552)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-897)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-552)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-897)))) (-3658 (*1 *1) (-12 (-4 *1 (-399)) (-2960 (|has| *1 (-6 -4344))) (-2960 (|has| *1 (-6 -4336))))) (-3332 (*1 *1) (-12 (-4 *1 (-399)) (-2960 (|has| *1 (-6 -4344))) (-2960 (|has| *1 (-6 -4336))))))
+(-13 (-1034) (-10 -8 (-6 -2874) (-15 -2189 ($ (-552) (-552))) (-15 -2189 ($ (-552) (-552) (-897))) (-15 -2172 ((-552) $)) (-15 -3929 ((-897))) (-15 -3564 ((-552) $)) (-15 -2594 ((-552) $)) (-15 -3597 ((-897))) (-15 -1542 ((-897))) (-15 -1923 ((-897))) (IF (|has| $ (-6 -4344)) (PROGN (-15 -3597 ((-897) (-897))) (-15 -1542 ((-897) (-897))) (-15 -1923 ((-897) (-897))) (-15 -3586 ((-897) (-552))) (-15 -3574 ((-897) (-552)))) |%noBranch|) (IF (|has| $ (-6 -4336)) |%noBranch| (IF (|has| $ (-6 -4344)) |%noBranch| (PROGN (-15 -3658 ($)) (-15 -3332 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-839)) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-374)) . T) ((-598 (-868 (-374))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-825) . T) ((-827) . T) ((-862 (-374)) . T) ((-896) . T) ((-978) . T) ((-998) . T) ((-1034) . T) ((-1014 (-402 (-552))) . T) ((-1014 (-552)) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T))
+((-1996 (((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)) 20)))
+(((-400 |#1| |#2|) (-10 -7 (-15 -1996 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)))) (-544) (-544)) (T -400))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-5 *2 (-413 *6)) (-5 *1 (-400 *5 *6)))))
+(-10 -7 (-15 -1996 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|))))
+((-1996 (((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)) 13)))
+(((-401 |#1| |#2|) (-10 -7 (-15 -1996 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) (-544) (-544)) (T -401))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-5 *2 (-402 *6)) (-5 *1 (-401 *5 *6)))))
+(-10 -7 (-15 -1996 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 13)) (-4177 ((|#1| $) 21 (|has| |#1| (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| |#1| (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 17) (((-3 (-1149) "failed") $) NIL (|has| |#1| (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) 70 (|has| |#1| (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552))))) (-1895 ((|#1| $) 15) (((-1149) $) NIL (|has| |#1| (-1014 (-1149)))) (((-402 (-552)) $) 67 (|has| |#1| (-1014 (-552)))) (((-552) $) NIL (|has| |#1| (-1014 (-552))))) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) 50)) (-3702 (($) NIL (|has| |#1| (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| |#1| (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| |#1| (-862 (-374))))) (-3650 (((-112) $) 64)) (-2276 (($ $) NIL)) (-1356 ((|#1| $) 71)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3630 (((-112) $) NIL (|has| |#1| (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| |#1| (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 97)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| |#1| (-302)))) (-4189 ((|#1| $) 28 (|has| |#1| (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 135 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 131 (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-2397 (((-751) $) NIL)) (-2154 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2265 (($ $) NIL)) (-1368 ((|#1| $) 73)) (-2042 (((-868 (-552)) $) NIL (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| |#1| (-598 (-868 (-374))))) (((-528) $) NIL (|has| |#1| (-598 (-528)))) (((-374) $) NIL (|has| |#1| (-998))) (((-221) $) NIL (|has| |#1| (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 10) (($ (-1149)) NIL (|has| |#1| (-1014 (-1149))))) (-4243 (((-3 $ "failed") $) 99 (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 100)) (-4199 ((|#1| $) 26 (|has| |#1| (-537)))) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| |#1| (-800)))) (-2089 (($) 22 T CONST)) (-2100 (($) 8 T CONST)) (-3010 (((-1131) $) 43 (-12 (|has| |#1| (-537)) (|has| |#1| (-808)))) (((-1131) $ (-112)) 44 (-12 (|has| |#1| (-537)) (|has| |#1| (-808)))) (((-1237) (-802) $) 45 (-12 (|has| |#1| (-537)) (|has| |#1| (-808)))) (((-1237) (-802) $ (-112)) 46 (-12 (|has| |#1| (-537)) (|has| |#1| (-808))))) (-3768 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 56)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) 24 (|has| |#1| (-827)))) (-2404 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2393 (($ $) 25) (($ $ $) 55)) (-2382 (($ $ $) 53)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 125)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 60) (($ $ $) 57) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-402 |#1|) (-13 (-968 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4351)) (-6 -4340) |%noBranch|) |%noBranch|) |%noBranch|))) (-544)) (T -402))
+NIL
+(-13 (-968 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4351)) (-6 -4340) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-2570 (((-669 |#2|) (-1232 $)) NIL) (((-669 |#2|)) 18)) (-2670 (($ (-1232 |#2|) (-1232 $)) NIL) (($ (-1232 |#2|)) 24)) (-2559 (((-669 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) $) 38)) (-1291 ((|#3| $) 60)) (-3217 ((|#2| (-1232 $)) NIL) ((|#2|) 20)) (-2780 (((-1232 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) (-1232 $) (-1232 $)) NIL) (((-1232 |#2|) $) 22) (((-669 |#2|) (-1232 $)) 36)) (-2042 (((-1232 |#2|) $) 11) (($ (-1232 |#2|)) 13)) (-3974 ((|#3| $) 52)))
+(((-403 |#1| |#2| |#3|) (-10 -8 (-15 -2559 ((-669 |#2|) |#1|)) (-15 -3217 (|#2|)) (-15 -2570 ((-669 |#2|))) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -1291 (|#3| |#1|)) (-15 -3974 (|#3| |#1|)) (-15 -2570 ((-669 |#2|) (-1232 |#1|))) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2559 ((-669 |#2|) |#1| (-1232 |#1|)))) (-404 |#2| |#3|) (-170) (-1208 |#2|)) (T -403))
+((-2570 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)) (-5 *1 (-403 *3 *4 *5)) (-4 *3 (-404 *4 *5)))) (-3217 (*1 *2) (-12 (-4 *4 (-1208 *2)) (-4 *2 (-170)) (-5 *1 (-403 *3 *2 *4)) (-4 *3 (-404 *2 *4)))))
+(-10 -8 (-15 -2559 ((-669 |#2|) |#1|)) (-15 -3217 (|#2|)) (-15 -2570 ((-669 |#2|))) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -1291 (|#3| |#1|)) (-15 -3974 (|#3| |#1|)) (-15 -2570 ((-669 |#2|) (-1232 |#1|))) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2559 ((-669 |#2|) |#1| (-1232 |#1|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2570 (((-669 |#1|) (-1232 $)) 44) (((-669 |#1|)) 59)) (-1650 ((|#1| $) 50)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2670 (($ (-1232 |#1|) (-1232 $)) 46) (($ (-1232 |#1|)) 62)) (-2559 (((-669 |#1|) $ (-1232 $)) 51) (((-669 |#1|) $) 57)) (-4174 (((-3 $ "failed") $) 32)) (-3442 (((-897)) 52)) (-3650 (((-112) $) 30)) (-4209 ((|#1| $) 49)) (-1291 ((|#2| $) 42 (|has| |#1| (-358)))) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3217 ((|#1| (-1232 $)) 45) ((|#1|) 58)) (-2780 (((-1232 |#1|) $ (-1232 $)) 48) (((-669 |#1|) (-1232 $) (-1232 $)) 47) (((-1232 |#1|) $) 64) (((-669 |#1|) (-1232 $)) 63)) (-2042 (((-1232 |#1|) $) 61) (($ (-1232 |#1|)) 60)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-4243 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3974 ((|#2| $) 43)) (-4141 (((-751)) 28)) (-1270 (((-1232 $)) 65)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-404 |#1| |#2|) (-138) (-170) (-1208 |t#1|)) (T -404))
+((-1270 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-1232 *1)) (-4 *1 (-404 *3 *4)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-1232 *3)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-404 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) (-4 *4 (-1208 *3)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-1232 *3)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) (-4 *4 (-1208 *3)))) (-2570 (*1 *2) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-669 *3)))) (-3217 (*1 *2) (-12 (-4 *1 (-404 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170)))) (-2559 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-669 *3)))))
+(-13 (-365 |t#1| |t#2|) (-10 -8 (-15 -1270 ((-1232 $))) (-15 -2780 ((-1232 |t#1|) $)) (-15 -2780 ((-669 |t#1|) (-1232 $))) (-15 -2670 ($ (-1232 |t#1|))) (-15 -2042 ((-1232 |t#1|) $)) (-15 -2042 ($ (-1232 |t#1|))) (-15 -2570 ((-669 |t#1|))) (-15 -3217 (|t#1|)) (-15 -2559 ((-669 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-365 |#1| |#2|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) 27) (((-3 (-552) "failed") $) 19)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) 24) (((-552) $) 14)) (-1683 (($ |#2|) NIL) (($ (-402 (-552))) 22) (($ (-552)) 11)))
+(((-405 |#1| |#2|) (-10 -8 (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1683 (|#1| (-552))) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|))) (-406 |#2|) (-1186)) (T -405))
+NIL
+(-10 -8 (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1683 (|#1| (-552))) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)))
+((-1893 (((-3 |#1| "failed") $) 7) (((-3 (-402 (-552)) "failed") $) 16 (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) 13 (|has| |#1| (-1014 (-552))))) (-1895 ((|#1| $) 8) (((-402 (-552)) $) 15 (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) 12 (|has| |#1| (-1014 (-552))))) (-1683 (($ |#1|) 6) (($ (-402 (-552))) 17 (|has| |#1| (-1014 (-402 (-552))))) (($ (-552)) 14 (|has| |#1| (-1014 (-552))))))
+(((-406 |#1|) (-138) (-1186)) (T -406))
+NIL
+(-13 (-1014 |t#1|) (-10 -7 (IF (|has| |t#1| (-1014 (-552))) (-6 (-1014 (-552))) |%noBranch|) (IF (|has| |t#1| (-1014 (-402 (-552)))) (-6 (-1014 (-402 (-552)))) |%noBranch|)))
+(((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T))
+((-1996 (((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)) 33)))
+(((-407 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1996 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)))) (-302) (-968 |#1|) (-1208 |#2|) (-13 (-404 |#2| |#3|) (-1014 |#2|)) (-302) (-968 |#5|) (-1208 |#6|) (-13 (-404 |#6| |#7|) (-1014 |#6|))) (T -407))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302)) (-4 *6 (-968 *5)) (-4 *7 (-1208 *6)) (-4 *8 (-13 (-404 *6 *7) (-1014 *6))) (-4 *9 (-302)) (-4 *10 (-968 *9)) (-4 *11 (-1208 *10)) (-5 *2 (-408 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-404 *10 *11) (-1014 *10))))))
+(-10 -7 (-15 -1996 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|))))
+((-1671 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-2579 ((|#4| (-751) (-1232 |#4|)) 56)) (-3650 (((-112) $) NIL)) (-1356 (((-1232 |#4|) $) 17)) (-4209 ((|#2| $) 54)) (-2589 (($ $) 139)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 100)) (-3935 (($ (-1232 |#4|)) 99)) (-2831 (((-1093) $) NIL)) (-1368 ((|#1| $) 18)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) 134)) (-1270 (((-1232 |#4|) $) 129)) (-2100 (($) 11 T CONST)) (-2281 (((-112) $ $) 40)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 122)) (* (($ $ $) 121)))
+(((-408 |#1| |#2| |#3| |#4|) (-13 (-467) (-10 -8 (-15 -3935 ($ (-1232 |#4|))) (-15 -1270 ((-1232 |#4|) $)) (-15 -4209 (|#2| $)) (-15 -1356 ((-1232 |#4|) $)) (-15 -1368 (|#1| $)) (-15 -2589 ($ $)) (-15 -2579 (|#4| (-751) (-1232 |#4|))))) (-302) (-968 |#1|) (-1208 |#2|) (-13 (-404 |#2| |#3|) (-1014 |#2|))) (T -408))
+((-3935 (*1 *1 *2) (-12 (-5 *2 (-1232 *6)) (-4 *6 (-13 (-404 *4 *5) (-1014 *4))) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-4 *3 (-302)) (-5 *1 (-408 *3 *4 *5 *6)))) (-1270 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-5 *2 (-1232 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-404 *4 *5) (-1014 *4))))) (-4209 (*1 *2 *1) (-12 (-4 *4 (-1208 *2)) (-4 *2 (-968 *3)) (-5 *1 (-408 *3 *2 *4 *5)) (-4 *3 (-302)) (-4 *5 (-13 (-404 *2 *4) (-1014 *2))))) (-1356 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-5 *2 (-1232 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-404 *4 *5) (-1014 *4))))) (-1368 (*1 *2 *1) (-12 (-4 *3 (-968 *2)) (-4 *4 (-1208 *3)) (-4 *2 (-302)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1014 *3))))) (-2589 (*1 *1 *1) (-12 (-4 *2 (-302)) (-4 *3 (-968 *2)) (-4 *4 (-1208 *3)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1014 *3))))) (-2579 (*1 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-1232 *2)) (-4 *5 (-302)) (-4 *6 (-968 *5)) (-4 *2 (-13 (-404 *6 *7) (-1014 *6))) (-5 *1 (-408 *5 *6 *7 *2)) (-4 *7 (-1208 *6)))))
+(-13 (-467) (-10 -8 (-15 -3935 ($ (-1232 |#4|))) (-15 -1270 ((-1232 |#4|) $)) (-15 -4209 (|#2| $)) (-15 -1356 ((-1232 |#4|) $)) (-15 -1368 (|#1| $)) (-15 -2589 ($ $)) (-15 -2579 (|#4| (-751) (-1232 |#4|)))))
+((-1671 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-4209 ((|#2| $) 61)) (-2602 (($ (-1232 |#4|)) 25) (($ (-408 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1014 |#2|)))) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 34)) (-1270 (((-1232 |#4|) $) 26)) (-2100 (($) 23 T CONST)) (-2281 (((-112) $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ $ $) 72)))
+(((-409 |#1| |#2| |#3| |#4| |#5|) (-13 (-707) (-10 -8 (-15 -1270 ((-1232 |#4|) $)) (-15 -4209 (|#2| $)) (-15 -2602 ($ (-1232 |#4|))) (IF (|has| |#4| (-1014 |#2|)) (-15 -2602 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-302) (-968 |#1|) (-1208 |#2|) (-404 |#2| |#3|) (-1232 |#4|)) (T -409))
+((-1270 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-5 *2 (-1232 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7)) (-4 *6 (-404 *4 *5)) (-14 *7 *2))) (-4209 (*1 *2 *1) (-12 (-4 *4 (-1208 *2)) (-4 *2 (-968 *3)) (-5 *1 (-409 *3 *2 *4 *5 *6)) (-4 *3 (-302)) (-4 *5 (-404 *2 *4)) (-14 *6 (-1232 *5)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-1232 *6)) (-4 *6 (-404 *4 *5)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-4 *3 (-302)) (-5 *1 (-409 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1014 *4)) (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-4 *6 (-404 *4 *5)) (-14 *7 (-1232 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7)))))
+(-13 (-707) (-10 -8 (-15 -1270 ((-1232 |#4|) $)) (-15 -4209 (|#2| $)) (-15 -2602 ($ (-1232 |#4|))) (IF (|has| |#4| (-1014 |#2|)) (-15 -2602 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-1996 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-410 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|))) (-412 |#2|) (-170) (-412 |#4|) (-170)) (T -410))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-412 *6)) (-5 *1 (-410 *4 *5 *2 *6)) (-4 *4 (-412 *5)))))
+(-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3618 (((-3 $ "failed")) 86)) (-2770 (((-1232 (-669 |#2|)) (-1232 $)) NIL) (((-1232 (-669 |#2|))) 91)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 85)) (-4152 (((-3 $ "failed")) 84)) (-2629 (((-669 |#2|) (-1232 $)) NIL) (((-669 |#2|)) 102)) (-2612 (((-669 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) $) 110)) (-1392 (((-1145 (-928 |#2|))) 55)) (-2648 ((|#2| (-1232 $)) NIL) ((|#2|) 106)) (-2670 (($ (-1232 |#2|) (-1232 $)) NIL) (($ (-1232 |#2|)) 112)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 83)) (-4164 (((-3 $ "failed")) 75)) (-2640 (((-669 |#2|) (-1232 $)) NIL) (((-669 |#2|)) 100)) (-2619 (((-669 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) $) 108)) (-1433 (((-1145 (-928 |#2|))) 54)) (-2658 ((|#2| (-1232 $)) NIL) ((|#2|) 104)) (-2780 (((-1232 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) (-1232 $) (-1232 $)) NIL) (((-1232 |#2|) $) 111) (((-669 |#2|) (-1232 $)) 118)) (-2042 (((-1232 |#2|) $) 96) (($ (-1232 |#2|)) 98)) (-2533 (((-625 (-928 |#2|)) (-1232 $)) NIL) (((-625 (-928 |#2|))) 94)) (-2872 (($ (-669 |#2|) $) 90)))
+(((-411 |#1| |#2|) (-10 -8 (-15 -2872 (|#1| (-669 |#2|) |#1|)) (-15 -1392 ((-1145 (-928 |#2|)))) (-15 -1433 ((-1145 (-928 |#2|)))) (-15 -2612 ((-669 |#2|) |#1|)) (-15 -2619 ((-669 |#2|) |#1|)) (-15 -2629 ((-669 |#2|))) (-15 -2640 ((-669 |#2|))) (-15 -2648 (|#2|)) (-15 -2658 (|#2|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2533 ((-625 (-928 |#2|)))) (-15 -2770 ((-1232 (-669 |#2|)))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -3618 ((-3 |#1| "failed"))) (-15 -4152 ((-3 |#1| "failed"))) (-15 -4164 ((-3 |#1| "failed"))) (-15 -1456 ((-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed"))) (-15 -1467 ((-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed"))) (-15 -2629 ((-669 |#2|) (-1232 |#1|))) (-15 -2640 ((-669 |#2|) (-1232 |#1|))) (-15 -2648 (|#2| (-1232 |#1|))) (-15 -2658 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2612 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2619 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2770 ((-1232 (-669 |#2|)) (-1232 |#1|))) (-15 -2533 ((-625 (-928 |#2|)) (-1232 |#1|)))) (-412 |#2|) (-170)) (T -411))
+((-2770 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1232 (-669 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-2533 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-625 (-928 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-2658 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) (-2648 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) (-2640 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-2629 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-1433 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1145 (-928 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-1392 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1145 (-928 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))))
+(-10 -8 (-15 -2872 (|#1| (-669 |#2|) |#1|)) (-15 -1392 ((-1145 (-928 |#2|)))) (-15 -1433 ((-1145 (-928 |#2|)))) (-15 -2612 ((-669 |#2|) |#1|)) (-15 -2619 ((-669 |#2|) |#1|)) (-15 -2629 ((-669 |#2|))) (-15 -2640 ((-669 |#2|))) (-15 -2648 (|#2|)) (-15 -2658 (|#2|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2533 ((-625 (-928 |#2|)))) (-15 -2770 ((-1232 (-669 |#2|)))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -3618 ((-3 |#1| "failed"))) (-15 -4152 ((-3 |#1| "failed"))) (-15 -4164 ((-3 |#1| "failed"))) (-15 -1456 ((-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed"))) (-15 -1467 ((-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed"))) (-15 -2629 ((-669 |#2|) (-1232 |#1|))) (-15 -2640 ((-669 |#2|) (-1232 |#1|))) (-15 -2648 (|#2| (-1232 |#1|))) (-15 -2658 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2612 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2619 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2770 ((-1232 (-669 |#2|)) (-1232 |#1|))) (-15 -2533 ((-625 (-928 |#2|)) (-1232 |#1|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3618 (((-3 $ "failed")) 37 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) 19)) (-2770 (((-1232 (-669 |#1|)) (-1232 $)) 78) (((-1232 (-669 |#1|))) 100)) (-3208 (((-1232 $)) 81)) (-3101 (($) 17 T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 40 (|has| |#1| (-544)))) (-4152 (((-3 $ "failed")) 38 (|has| |#1| (-544)))) (-2629 (((-669 |#1|) (-1232 $)) 65) (((-669 |#1|)) 92)) (-3192 ((|#1| $) 74)) (-2612 (((-669 |#1|) $ (-1232 $)) 76) (((-669 |#1|) $) 90)) (-3598 (((-3 $ "failed") $) 45 (|has| |#1| (-544)))) (-1392 (((-1145 (-928 |#1|))) 88 (|has| |#1| (-358)))) (-3629 (($ $ (-897)) 28)) (-3174 ((|#1| $) 72)) (-4175 (((-1145 |#1|) $) 42 (|has| |#1| (-544)))) (-2648 ((|#1| (-1232 $)) 67) ((|#1|) 94)) (-3159 (((-1145 |#1|) $) 63)) (-4303 (((-112)) 57)) (-2670 (($ (-1232 |#1|) (-1232 $)) 69) (($ (-1232 |#1|)) 98)) (-4174 (((-3 $ "failed") $) 47 (|has| |#1| (-544)))) (-3442 (((-897)) 80)) (-4272 (((-112)) 54)) (-2712 (($ $ (-897)) 33)) (-4228 (((-112)) 50)) (-4207 (((-112)) 48)) (-4250 (((-112)) 52)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 41 (|has| |#1| (-544)))) (-4164 (((-3 $ "failed")) 39 (|has| |#1| (-544)))) (-2640 (((-669 |#1|) (-1232 $)) 66) (((-669 |#1|)) 93)) (-3199 ((|#1| $) 75)) (-2619 (((-669 |#1|) $ (-1232 $)) 77) (((-669 |#1|) $) 91)) (-3609 (((-3 $ "failed") $) 46 (|has| |#1| (-544)))) (-1433 (((-1145 (-928 |#1|))) 89 (|has| |#1| (-358)))) (-3619 (($ $ (-897)) 29)) (-3182 ((|#1| $) 73)) (-4187 (((-1145 |#1|) $) 43 (|has| |#1| (-544)))) (-2658 ((|#1| (-1232 $)) 68) ((|#1|) 95)) (-3166 (((-1145 |#1|) $) 64)) (-4312 (((-112)) 58)) (-2883 (((-1131) $) 9)) (-4218 (((-112)) 49)) (-4239 (((-112)) 51)) (-4261 (((-112)) 53)) (-2831 (((-1093) $) 10)) (-4293 (((-112)) 56)) (-2154 ((|#1| $ (-552)) 101)) (-2780 (((-1232 |#1|) $ (-1232 $)) 71) (((-669 |#1|) (-1232 $) (-1232 $)) 70) (((-1232 |#1|) $) 103) (((-669 |#1|) (-1232 $)) 102)) (-2042 (((-1232 |#1|) $) 97) (($ (-1232 |#1|)) 96)) (-2533 (((-625 (-928 |#1|)) (-1232 $)) 79) (((-625 (-928 |#1|))) 99)) (-3828 (($ $ $) 25)) (-3148 (((-112)) 62)) (-1683 (((-839) $) 11)) (-1270 (((-1232 $)) 104)) (-4197 (((-625 (-1232 |#1|))) 44 (|has| |#1| (-544)))) (-3842 (($ $ $ $) 26)) (-4333 (((-112)) 60)) (-2872 (($ (-669 |#1|) $) 87)) (-3818 (($ $ $) 24)) (-3137 (((-112)) 61)) (-4322 (((-112)) 59)) (-4283 (((-112)) 55)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 30)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-412 |#1|) (-138) (-170)) (T -412))
+((-1270 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1232 *1)) (-4 *1 (-412 *3)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 *3)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-412 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-2770 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 (-669 *3))))) (-2533 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-625 (-928 *3))))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 *3)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))) (-2658 (*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-2648 (*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-2640 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-2629 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-1433 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1145 (-928 *3))))) (-1392 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1145 (-928 *3))))) (-2872 (*1 *1 *2 *1) (-12 (-5 *2 (-669 *3)) (-4 *1 (-412 *3)) (-4 *3 (-170)))))
+(-13 (-362 |t#1|) (-10 -8 (-15 -1270 ((-1232 $))) (-15 -2780 ((-1232 |t#1|) $)) (-15 -2780 ((-669 |t#1|) (-1232 $))) (-15 -2154 (|t#1| $ (-552))) (-15 -2770 ((-1232 (-669 |t#1|)))) (-15 -2533 ((-625 (-928 |t#1|)))) (-15 -2670 ($ (-1232 |t#1|))) (-15 -2042 ((-1232 |t#1|) $)) (-15 -2042 ($ (-1232 |t#1|))) (-15 -2658 (|t#1|)) (-15 -2648 (|t#1|)) (-15 -2640 ((-669 |t#1|))) (-15 -2629 ((-669 |t#1|))) (-15 -2619 ((-669 |t#1|) $)) (-15 -2612 ((-669 |t#1|) $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -1433 ((-1145 (-928 |t#1|)))) (-15 -1392 ((-1145 (-928 |t#1|))))) |%noBranch|) (-15 -2872 ($ (-669 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-362 |#1|) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-725 |#1|) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 42)) (-3608 (($ $) 57)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 146)) (-3528 (($ $) NIL)) (-3509 (((-112) $) 36)) (-3618 ((|#1| $) 13)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-1190)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-1190)))) (-3639 (($ |#1| (-552)) 31)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 116)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 55)) (-4174 (((-3 $ "failed") $) 131)) (-2555 (((-3 (-402 (-552)) "failed") $) 63 (|has| |#1| (-537)))) (-2546 (((-112) $) 59 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 70 (|has| |#1| (-537)))) (-3649 (($ |#1| (-552)) 33)) (-2951 (((-112) $) 152 (|has| |#1| (-1190)))) (-3650 (((-112) $) 43)) (-3110 (((-751) $) 38)) (-3660 (((-3 "nil" "sqfr" "irred" "prime") $ (-552)) 137)) (-3461 ((|#1| $ (-552)) 136)) (-3672 (((-552) $ (-552)) 135)) (-2550 (($ |#1| (-552)) 30)) (-1996 (($ (-1 |#1| |#1|) $) 143)) (-3085 (($ |#1| (-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552))))) 58)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-3682 (($ |#1| (-552)) 32)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) 147 (|has| |#1| (-446)))) (-3628 (($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-3449 (((-625 (-2 (|:| -3824 |#1|) (|:| -3564 (-552)))) $) 54)) (-3734 (((-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $) 12)) (-3824 (((-413 $) $) NIL (|has| |#1| (-1190)))) (-2802 (((-3 $ "failed") $ $) 138)) (-3564 (((-552) $) 132)) (-3455 ((|#1| $) 56)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) 79 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 85 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) $) NIL (|has| |#1| (-507 (-1149) $))) (($ $ (-625 (-1149)) (-625 $)) 86 (|has| |#1| (-507 (-1149) $))) (($ $ (-625 (-289 $))) 82 (|has| |#1| (-304 $))) (($ $ (-289 $)) NIL (|has| |#1| (-304 $))) (($ $ $ $) NIL (|has| |#1| (-304 $))) (($ $ (-625 $) (-625 $)) NIL (|has| |#1| (-304 $)))) (-2154 (($ $ |#1|) 71 (|has| |#1| (-281 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-281 $ $)))) (-3072 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2042 (((-528) $) 27 (|has| |#1| (-598 (-528)))) (((-374) $) 92 (|has| |#1| (-998))) (((-221) $) 95 (|has| |#1| (-998)))) (-1683 (((-839) $) 114) (($ (-552)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552)))))) (-4141 (((-751)) 48)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 40 T CONST)) (-2100 (($) 39 T CONST)) (-3768 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2281 (((-112) $ $) 96)) (-2393 (($ $) 128) (($ $ $) NIL)) (-2382 (($ $ $) 140)) (** (($ $ (-897)) NIL) (($ $ (-751)) 102)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
+(((-413 |#1|) (-13 (-544) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-406 |#1|) (-10 -8 (-15 -3455 (|#1| $)) (-15 -3564 ((-552) $)) (-15 -3085 ($ |#1| (-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))))) (-15 -3734 ((-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $)) (-15 -2550 ($ |#1| (-552))) (-15 -3449 ((-625 (-2 (|:| -3824 |#1|) (|:| -3564 (-552)))) $)) (-15 -3682 ($ |#1| (-552))) (-15 -3672 ((-552) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -3660 ((-3 "nil" "sqfr" "irred" "prime") $ (-552))) (-15 -3110 ((-751) $)) (-15 -3649 ($ |#1| (-552))) (-15 -3639 ($ |#1| (-552))) (-15 -3628 ($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3618 (|#1| $)) (-15 -3608 ($ $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |#1| (-1190)) (-6 (-1190)) |%noBranch|) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-507 (-1149) $)) (-6 (-507 (-1149) $)) |%noBranch|))) (-544)) (T -413))
+((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-544)) (-5 *1 (-413 *3)))) (-3455 (*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-413 *3)) (-4 *3 (-544)))) (-3085 (*1 *1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-552))))) (-4 *2 (-544)) (-5 *1 (-413 *2)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-552))))) (-5 *1 (-413 *3)) (-4 *3 (-544)))) (-2550 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| -3824 *3) (|:| -3564 (-552))))) (-5 *1 (-413 *3)) (-4 *3 (-544)))) (-3682 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3672 (*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-413 *3)) (-4 *3 (-544)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-413 *4)) (-4 *4 (-544)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-413 *3)) (-4 *3 (-544)))) (-3649 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3639 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3628 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3618 (*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3608 (*1 *1 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-413 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-413 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) (-2555 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-413 *3)) (-4 *3 (-537)) (-4 *3 (-544)))))
+(-13 (-544) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-406 |#1|) (-10 -8 (-15 -3455 (|#1| $)) (-15 -3564 ((-552) $)) (-15 -3085 ($ |#1| (-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))))) (-15 -3734 ((-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $)) (-15 -2550 ($ |#1| (-552))) (-15 -3449 ((-625 (-2 (|:| -3824 |#1|) (|:| -3564 (-552)))) $)) (-15 -3682 ($ |#1| (-552))) (-15 -3672 ((-552) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -3660 ((-3 "nil" "sqfr" "irred" "prime") $ (-552))) (-15 -3110 ((-751) $)) (-15 -3649 ($ |#1| (-552))) (-15 -3639 ($ |#1| (-552))) (-15 -3628 ($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3618 (|#1| $)) (-15 -3608 ($ $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |#1| (-1190)) (-6 (-1190)) |%noBranch|) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-507 (-1149) $)) (-6 (-507 (-1149) $)) |%noBranch|)))
+((-4230 (((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|)) 21)) (-2682 (((-413 |#1|) (-413 |#1|) (-413 |#1|)) 16)))
+(((-414 |#1|) (-10 -7 (-15 -4230 ((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|))) (-15 -2682 ((-413 |#1|) (-413 |#1|) (-413 |#1|)))) (-544)) (T -414))
+((-2682 (*1 *2 *2 *2) (-12 (-5 *2 (-413 *3)) (-4 *3 (-544)) (-5 *1 (-414 *3)))) (-4230 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-413 *4) *4)) (-4 *4 (-544)) (-5 *2 (-413 *4)) (-5 *1 (-414 *4)))))
+(-10 -7 (-15 -4230 ((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|))) (-15 -2682 ((-413 |#1|) (-413 |#1|) (-413 |#1|))))
+((-2730 ((|#2| |#2|) 166)) (-2702 (((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112)) 57)))
+(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2702 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112))) (-15 -2730 (|#2| |#2|))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|)) (-1149) |#2|) (T -415))
+((-2730 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-415 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1171) (-425 *3))) (-14 *4 (-1149)) (-14 *5 *2))) (-2702 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |%expansion| (-308 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-415 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-14 *6 (-1149)) (-14 *7 *3))))
+(-10 -7 (-15 -2702 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112))) (-15 -2730 (|#2| |#2|)))
+((-1996 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1025) (-827)) (-425 |#1|) (-13 (-1025) (-827)) (-425 |#3|)) (T -416))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1025) (-827))) (-4 *6 (-13 (-1025) (-827))) (-4 *2 (-425 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-425 *5)))))
+(-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2730 ((|#2| |#2|) 90)) (-2711 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131)) 48)) (-2721 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131)) 154)))
+(((-417 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2711 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -2721 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -2730 (|#2| |#2|))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|) (-10 -8 (-15 -1683 ($ |#3|)))) (-825) (-13 (-1210 |#2| |#3|) (-358) (-1171) (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $)))) (-959 |#4|) (-1149)) (T -417))
+((-2730 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-4 *2 (-13 (-27) (-1171) (-425 *3) (-10 -8 (-15 -1683 ($ *4))))) (-4 *4 (-825)) (-4 *5 (-13 (-1210 *2 *4) (-358) (-1171) (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $))))) (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-959 *5)) (-14 *7 (-1149)))) (-2721 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-4 *3 (-13 (-27) (-1171) (-425 *6) (-10 -8 (-15 -1683 ($ *7))))) (-4 *7 (-825)) (-4 *8 (-13 (-1210 *3 *7) (-358) (-1171) (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) (-14 *10 (-1149)))) (-2711 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-4 *3 (-13 (-27) (-1171) (-425 *6) (-10 -8 (-15 -1683 ($ *7))))) (-4 *7 (-825)) (-4 *8 (-13 (-1210 *3 *7) (-358) (-1171) (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) (-14 *10 (-1149)))))
+(-10 -7 (-15 -2711 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -2721 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -2730 (|#2| |#2|)))
+((-1454 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2163 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1996 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2163 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1454 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1073) (-420 |#1|) (-1073) (-420 |#3|)) (T -418))
+((-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1073)) (-4 *5 (-1073)) (-4 *2 (-420 *5)) (-5 *1 (-418 *6 *4 *5 *2)) (-4 *4 (-420 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1073)) (-4 *2 (-1073)) (-5 *1 (-418 *5 *4 *2 *6)) (-4 *4 (-420 *5)) (-4 *6 (-420 *2)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-420 *6)) (-5 *1 (-418 *5 *4 *6 *2)) (-4 *4 (-420 *5)))))
+(-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2163 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1454 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2740 (($) 44)) (-3419 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2837 (($ $ $) 39)) (-2823 (((-112) $ $) 28)) (-2894 (((-751)) 47)) (-1517 (($ (-625 |#2|)) 20) (($) NIL)) (-3702 (($) 53)) (-2871 (((-112) $ $) 13)) (-3658 ((|#2| $) 61)) (-3332 ((|#2| $) 59)) (-4318 (((-897) $) 55)) (-2860 (($ $ $) 35)) (-3123 (($ (-897)) 50)) (-2849 (($ $ |#2|) NIL) (($ $ $) 38)) (-2840 (((-751) (-1 (-112) |#2|) $) NIL) (((-751) |#2| $) 26)) (-1695 (($ (-625 |#2|)) 24)) (-2749 (($ $) 46)) (-1683 (((-839) $) 33)) (-2758 (((-751) $) 21)) (-3761 (($ (-625 |#2|)) 19) (($) NIL)) (-2281 (((-112) $ $) 16)))
+(((-419 |#1| |#2|) (-10 -8 (-15 -2894 ((-751))) (-15 -3123 (|#1| (-897))) (-15 -4318 ((-897) |#1|)) (-15 -3702 (|#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3332 (|#2| |#1|)) (-15 -2740 (|#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2758 ((-751) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2871 ((-112) |#1| |#1|)) (-15 -3761 (|#1|)) (-15 -3761 (|#1| (-625 |#2|))) (-15 -1517 (|#1|)) (-15 -1517 (|#1| (-625 |#2|))) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2823 ((-112) |#1| |#1|)) (-15 -3419 (|#1| |#1| |#1|)) (-15 -3419 (|#1| |#1| |#2|)) (-15 -3419 (|#1| |#2| |#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|))) (-420 |#2|) (-1073)) (T -419))
+((-2894 (*1 *2) (-12 (-4 *4 (-1073)) (-5 *2 (-751)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))))
+(-10 -8 (-15 -2894 ((-751))) (-15 -3123 (|#1| (-897))) (-15 -4318 ((-897) |#1|)) (-15 -3702 (|#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3332 (|#2| |#1|)) (-15 -2740 (|#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2758 ((-751) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2871 ((-112) |#1| |#1|)) (-15 -3761 (|#1|)) (-15 -3761 (|#1| (-625 |#2|))) (-15 -1517 (|#1|)) (-15 -1517 (|#1| (-625 |#2|))) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2823 ((-112) |#1| |#1|)) (-15 -3419 (|#1| |#1| |#1|)) (-15 -3419 (|#1| |#1| |#2|)) (-15 -3419 (|#1| |#2| |#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)))
+((-1671 (((-112) $ $) 19)) (-2740 (($) 67 (|has| |#1| (-363)))) (-3419 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2837 (($ $ $) 78)) (-2823 (((-112) $ $) 79)) (-3495 (((-112) $ (-751)) 8)) (-2894 (((-751)) 61 (|has| |#1| (-363)))) (-1517 (($ (-625 |#1|)) 74) (($) 73)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3702 (($) 64 (|has| |#1| (-363)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) 70)) (-2909 (((-112) $ (-751)) 9)) (-3658 ((|#1| $) 65 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3332 ((|#1| $) 66 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-4318 (((-897) $) 63 (|has| |#1| (-363)))) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22)) (-2860 (($ $ $) 75)) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-3123 (($ (-897)) 62 (|has| |#1| (-363)))) (-2831 (((-1093) $) 21)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2849 (($ $ |#1|) 77) (($ $ $) 76)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-2749 (($ $) 68 (|has| |#1| (-363)))) (-1683 (((-839) $) 18)) (-2758 (((-751) $) 69)) (-3761 (($ (-625 |#1|)) 72) (($) 71)) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20)) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-420 |#1|) (-138) (-1073)) (T -420))
+((-2758 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-1073)) (-5 *2 (-751)))) (-2749 (*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-363)))) (-2740 (*1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-363)) (-4 *2 (-1073)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-827)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-827)))))
+(-13 (-225 |t#1|) (-1071 |t#1|) (-10 -8 (-6 -4353) (-15 -2758 ((-751) $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-15 -2749 ($ $)) (-15 -2740 ($))) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-15 -3332 (|t#1| $)) (-15 -3658 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-225 |#1|) . T) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-363) |has| |#1| (-363)) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1071 |#1|) . T) ((-1073) . T) ((-1186) . T))
+((-2768 (((-571 |#2|) |#2| (-1149)) 36)) (-2793 (((-571 |#2|) |#2| (-1149)) 20)) (-2030 ((|#2| |#2| (-1149)) 25)))
+(((-421 |#1| |#2|) (-10 -7 (-15 -2793 ((-571 |#2|) |#2| (-1149))) (-15 -2768 ((-571 |#2|) |#2| (-1149))) (-15 -2030 (|#2| |#2| (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-29 |#1|))) (T -421))
+((-2030 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1171) (-29 *4))))) (-2768 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5))))) (-2793 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5))))))
+(-10 -7 (-15 -2793 ((-571 |#2|) |#2| (-1149))) (-15 -2768 ((-571 |#2|) |#2| (-1149))) (-15 -2030 (|#2| |#2| (-1149))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-2789 (($ |#2| |#1|) 35)) (-2778 (($ |#2| |#1|) 33)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-326 |#2|)) 25)) (-4141 (((-751)) NIL)) (-2089 (($) 10 T CONST)) (-2100 (($) 16 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 34)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-422 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4340)) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|) |%noBranch|) (-15 -1683 ($ |#1|)) (-15 -1683 ($ (-326 |#2|))) (-15 -2789 ($ |#2| |#1|)) (-15 -2778 ($ |#2| |#1|)))) (-13 (-170) (-38 (-402 (-552)))) (-13 (-827) (-21))) (T -422))
+((-1683 (*1 *1 *2) (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-552))))) (-4 *3 (-13 (-827) (-21))))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-827) (-21))) (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-402 (-552))))))) (-2789 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-552))))) (-4 *2 (-13 (-827) (-21))))) (-2778 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-552))))) (-4 *2 (-13 (-827) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4340)) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|) |%noBranch|) (-15 -1683 ($ |#1|)) (-15 -1683 ($ (-326 |#2|))) (-15 -2789 ($ |#2| |#1|)) (-15 -2778 ($ |#2| |#1|))))
+((-2481 (((-3 |#2| (-625 |#2|)) |#2| (-1149)) 109)))
+(((-423 |#1| |#2|) (-10 -7 (-15 -2481 ((-3 |#2| (-625 |#2|)) |#2| (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-935) (-29 |#1|))) (T -423))
+((-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 *3 (-625 *3))) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1171) (-935) (-29 *5))))))
+(-10 -7 (-15 -2481 ((-3 |#2| (-625 |#2|)) |#2| (-1149))))
+((-3982 (((-625 (-1149)) $) 72)) (-3793 (((-402 (-1145 $)) $ (-596 $)) 273)) (-3831 (($ $ (-289 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-625 (-596 $)) (-625 $)) 237)) (-1893 (((-3 (-596 $) "failed") $) NIL) (((-3 (-1149) "failed") $) 75) (((-3 (-552) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-402 (-928 |#2|)) "failed") $) 324) (((-3 (-928 |#2|) "failed") $) 235) (((-3 (-402 (-552)) "failed") $) NIL)) (-1895 (((-596 $) $) NIL) (((-1149) $) 30) (((-552) $) NIL) ((|#2| $) 231) (((-402 (-928 |#2|)) $) 305) (((-928 |#2|) $) 232) (((-402 (-552)) $) NIL)) (-1563 (((-114) (-114)) 47)) (-2276 (($ $) 87)) (-1952 (((-3 (-596 $) "failed") $) 228)) (-3783 (((-625 (-596 $)) $) 229)) (-4172 (((-3 (-625 $) "failed") $) 247)) (-4194 (((-3 (-2 (|:| |val| $) (|:| -3564 (-552))) "failed") $) 254)) (-4160 (((-3 (-625 $) "failed") $) 245)) (-2692 (((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 $))) "failed") $) 264)) (-4182 (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $) 251) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-1149)) 219)) (-4105 (((-112) $) 19)) (-4117 ((|#2| $) 21)) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) 236) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) 96) (($ $ (-1149) (-1 $ (-625 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-625 (-114)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-114) (-1 $ (-625 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1149)) 57) (($ $ (-625 (-1149))) 240) (($ $) 241) (($ $ (-114) $ (-1149)) 60) (($ $ (-625 (-114)) (-625 $) (-1149)) 67) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ $))) 107) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ (-625 $)))) 242) (($ $ (-1149) (-751) (-1 $ (-625 $))) 94) (($ $ (-1149) (-751) (-1 $ $)) 93)) (-2154 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-625 $)) 106)) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) 238)) (-2265 (($ $) 284)) (-2042 (((-868 (-552)) $) 257) (((-868 (-374)) $) 261) (($ (-413 $)) 320) (((-528) $) NIL)) (-1683 (((-839) $) 239) (($ (-596 $)) 84) (($ (-1149)) 26) (($ |#2|) NIL) (($ (-1098 |#2| (-596 $))) NIL) (($ (-402 |#2|)) 289) (($ (-928 (-402 |#2|))) 329) (($ (-402 (-928 (-402 |#2|)))) 301) (($ (-402 (-928 |#2|))) 295) (($ $) NIL) (($ (-928 |#2|)) 185) (($ (-402 (-552))) 334) (($ (-552)) NIL)) (-4141 (((-751)) 79)) (-1572 (((-112) (-114)) 41)) (-3844 (($ (-1149) $) 33) (($ (-1149) $ $) 34) (($ (-1149) $ $ $) 35) (($ (-1149) $ $ $ $) 36) (($ (-1149) (-625 $)) 39)) (* (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL)))
+(((-424 |#1| |#2|) (-10 -8 (-15 * (|#1| (-897) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4141 ((-751))) (-15 -1683 (|#1| (-552))) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-928 |#2|) |#1|)) (-15 -1893 ((-3 (-928 |#2|) "failed") |#1|)) (-15 -1683 (|#1| (-928 |#2|))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1683 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -1895 ((-402 (-928 |#2|)) |#1|)) (-15 -1893 ((-3 (-402 (-928 |#2|)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-928 |#2|)))) (-15 -3793 ((-402 (-1145 |#1|)) |#1| (-596 |#1|))) (-15 -1683 (|#1| (-402 (-928 (-402 |#2|))))) (-15 -1683 (|#1| (-928 (-402 |#2|)))) (-15 -1683 (|#1| (-402 |#2|))) (-15 -2265 (|#1| |#1|)) (-15 -2042 (|#1| (-413 |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-751) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-751) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-751)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-751)) (-625 (-1 |#1| |#1|)))) (-15 -4194 ((-3 (-2 (|:| |val| |#1|) (|:| -3564 (-552))) "failed") |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1| (-1149))) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1| (-114))) (-15 -2276 (|#1| |#1|)) (-15 -1683 (|#1| (-1098 |#2| (-596 |#1|)))) (-15 -2692 ((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 |#1|))) "failed") |#1|)) (-15 -4160 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1|)) (-15 -4172 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 |#1|) (-1149))) (-15 -4073 (|#1| |#1| (-114) |#1| (-1149))) (-15 -4073 (|#1| |#1|)) (-15 -4073 (|#1| |#1| (-625 (-1149)))) (-15 -4073 (|#1| |#1| (-1149))) (-15 -3844 (|#1| (-1149) (-625 |#1|))) (-15 -3844 (|#1| (-1149) |#1| |#1| |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1| |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1|)) (-15 -3982 ((-625 (-1149)) |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -4105 ((-112) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1683 (|#1| (-1149))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| |#1|)))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| |#1|)))) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -3783 ((-625 (-596 |#1|)) |#1|)) (-15 -1952 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -3831 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -3831 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3831 (|#1| |#1| (-289 |#1|))) (-15 -2154 (|#1| (-114) (-625 |#1|))) (-15 -2154 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-596 |#1|) |#1|)) (-15 -1895 ((-596 |#1|) |#1|)) (-15 -1893 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -1683 (|#1| (-596 |#1|))) (-15 -1683 ((-839) |#1|))) (-425 |#2|) (-827)) (T -424))
+((-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-827)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *4 (-425 *5)))) (-4141 (*1 *2) (-12 (-4 *4 (-827)) (-5 *2 (-751)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))))
+(-10 -8 (-15 * (|#1| (-897) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4141 ((-751))) (-15 -1683 (|#1| (-552))) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-928 |#2|) |#1|)) (-15 -1893 ((-3 (-928 |#2|) "failed") |#1|)) (-15 -1683 (|#1| (-928 |#2|))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1683 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -1895 ((-402 (-928 |#2|)) |#1|)) (-15 -1893 ((-3 (-402 (-928 |#2|)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-928 |#2|)))) (-15 -3793 ((-402 (-1145 |#1|)) |#1| (-596 |#1|))) (-15 -1683 (|#1| (-402 (-928 (-402 |#2|))))) (-15 -1683 (|#1| (-928 (-402 |#2|)))) (-15 -1683 (|#1| (-402 |#2|))) (-15 -2265 (|#1| |#1|)) (-15 -2042 (|#1| (-413 |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-751) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-751) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-751)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-751)) (-625 (-1 |#1| |#1|)))) (-15 -4194 ((-3 (-2 (|:| |val| |#1|) (|:| -3564 (-552))) "failed") |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1| (-1149))) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1| (-114))) (-15 -2276 (|#1| |#1|)) (-15 -1683 (|#1| (-1098 |#2| (-596 |#1|)))) (-15 -2692 ((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 |#1|))) "failed") |#1|)) (-15 -4160 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1|)) (-15 -4172 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 |#1|) (-1149))) (-15 -4073 (|#1| |#1| (-114) |#1| (-1149))) (-15 -4073 (|#1| |#1|)) (-15 -4073 (|#1| |#1| (-625 (-1149)))) (-15 -4073 (|#1| |#1| (-1149))) (-15 -3844 (|#1| (-1149) (-625 |#1|))) (-15 -3844 (|#1| (-1149) |#1| |#1| |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1| |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1|)) (-15 -3982 ((-625 (-1149)) |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -4105 ((-112) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1683 (|#1| (-1149))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| |#1|)))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| |#1|)))) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -3783 ((-625 (-596 |#1|)) |#1|)) (-15 -1952 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -3831 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -3831 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3831 (|#1| |#1| (-289 |#1|))) (-15 -2154 (|#1| (-114) (-625 |#1|))) (-15 -2154 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-596 |#1|) |#1|)) (-15 -1895 ((-596 |#1|) |#1|)) (-15 -1893 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -1683 (|#1| (-596 |#1|))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 113 (|has| |#1| (-25)))) (-3982 (((-625 (-1149)) $) 200)) (-3793 (((-402 (-1145 $)) $ (-596 $)) 168 (|has| |#1| (-544)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 140 (|has| |#1| (-544)))) (-3528 (($ $) 141 (|has| |#1| (-544)))) (-3509 (((-112) $) 143 (|has| |#1| (-544)))) (-3715 (((-625 (-596 $)) $) 44)) (-2077 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-3831 (($ $ (-289 $)) 56) (($ $ (-625 (-289 $))) 55) (($ $ (-625 (-596 $)) (-625 $)) 54)) (-2194 (($ $) 160 (|has| |#1| (-544)))) (-1330 (((-413 $) $) 161 (|has| |#1| (-544)))) (-2408 (((-112) $ $) 151 (|has| |#1| (-544)))) (-3101 (($) 101 (-1523 (|has| |#1| (-1085)) (|has| |#1| (-25))) CONST)) (-1893 (((-3 (-596 $) "failed") $) 69) (((-3 (-1149) "failed") $) 213) (((-3 (-552) "failed") $) 206 (|has| |#1| (-1014 (-552)))) (((-3 |#1| "failed") $) 204) (((-3 (-402 (-928 |#1|)) "failed") $) 166 (|has| |#1| (-544))) (((-3 (-928 |#1|) "failed") $) 120 (|has| |#1| (-1025))) (((-3 (-402 (-552)) "failed") $) 95 (-1523 (-12 (|has| |#1| (-1014 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1014 (-402 (-552))))))) (-1895 (((-596 $) $) 68) (((-1149) $) 212) (((-552) $) 207 (|has| |#1| (-1014 (-552)))) ((|#1| $) 203) (((-402 (-928 |#1|)) $) 165 (|has| |#1| (-544))) (((-928 |#1|) $) 119 (|has| |#1| (-1025))) (((-402 (-552)) $) 94 (-1523 (-12 (|has| |#1| (-1014 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1014 (-402 (-552))))))) (-2851 (($ $ $) 155 (|has| |#1| (-544)))) (-1794 (((-669 (-552)) (-669 $)) 134 (-3743 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 133 (-3743 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 132 (|has| |#1| (-1025))) (((-669 |#1|) (-669 $)) 131 (|has| |#1| (-1025)))) (-4174 (((-3 $ "failed") $) 103 (|has| |#1| (-1085)))) (-2826 (($ $ $) 154 (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 149 (|has| |#1| (-544)))) (-2951 (((-112) $) 162 (|has| |#1| (-544)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 209 (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 208 (|has| |#1| (-862 (-374))))) (-2411 (($ $) 51) (($ (-625 $)) 50)) (-1940 (((-625 (-114)) $) 43)) (-1563 (((-114) (-114)) 42)) (-3650 (((-112) $) 102 (|has| |#1| (-1085)))) (-3932 (((-112) $) 22 (|has| $ (-1014 (-552))))) (-2276 (($ $) 183 (|has| |#1| (-1025)))) (-1356 (((-1098 |#1| (-596 $)) $) 184 (|has| |#1| (-1025)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 158 (|has| |#1| (-544)))) (-1917 (((-1145 $) (-596 $)) 25 (|has| $ (-1025)))) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-1996 (($ (-1 $ $) (-596 $)) 36)) (-1952 (((-3 (-596 $) "failed") $) 46)) (-2605 (($ (-625 $)) 147 (|has| |#1| (-544))) (($ $ $) 146 (|has| |#1| (-544)))) (-2883 (((-1131) $) 9)) (-3783 (((-625 (-596 $)) $) 45)) (-1425 (($ (-114) $) 38) (($ (-114) (-625 $)) 37)) (-4172 (((-3 (-625 $) "failed") $) 189 (|has| |#1| (-1085)))) (-4194 (((-3 (-2 (|:| |val| $) (|:| -3564 (-552))) "failed") $) 180 (|has| |#1| (-1025)))) (-4160 (((-3 (-625 $) "failed") $) 187 (|has| |#1| (-25)))) (-2692 (((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 $))) "failed") $) 186 (|has| |#1| (-25)))) (-4182 (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $) 188 (|has| |#1| (-1085))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-114)) 182 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-1149)) 181 (|has| |#1| (-1025)))) (-1721 (((-112) $ (-114)) 40) (((-112) $ (-1149)) 39)) (-4092 (($ $) 105 (-1523 (|has| |#1| (-467)) (|has| |#1| (-544))))) (-2207 (((-751) $) 47)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 202)) (-4117 ((|#1| $) 201)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 148 (|has| |#1| (-544)))) (-2633 (($ (-625 $)) 145 (|has| |#1| (-544))) (($ $ $) 144 (|has| |#1| (-544)))) (-1929 (((-112) $ $) 35) (((-112) $ (-1149)) 34)) (-3824 (((-413 $) $) 159 (|has| |#1| (-544)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-544))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 156 (|has| |#1| (-544)))) (-2802 (((-3 $ "failed") $ $) 139 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 150 (|has| |#1| (-544)))) (-3943 (((-112) $) 23 (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) 67) (($ $ (-625 (-596 $)) (-625 $)) 66) (($ $ (-625 (-289 $))) 65) (($ $ (-289 $)) 64) (($ $ $ $) 63) (($ $ (-625 $) (-625 $)) 62) (($ $ (-625 (-1149)) (-625 (-1 $ $))) 33) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) 32) (($ $ (-1149) (-1 $ (-625 $))) 31) (($ $ (-1149) (-1 $ $)) 30) (($ $ (-625 (-114)) (-625 (-1 $ $))) 29) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) 28) (($ $ (-114) (-1 $ (-625 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1149)) 194 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-1149))) 193 (|has| |#1| (-598 (-528)))) (($ $) 192 (|has| |#1| (-598 (-528)))) (($ $ (-114) $ (-1149)) 191 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-114)) (-625 $) (-1149)) 190 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ $))) 179 (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ (-625 $)))) 178 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-625 $))) 177 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ $)) 176 (|has| |#1| (-1025)))) (-2397 (((-751) $) 152 (|has| |#1| (-544)))) (-2154 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-625 $)) 57)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 153 (|has| |#1| (-544)))) (-1963 (($ $) 49) (($ $ $) 48)) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 125 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 124 (|has| |#1| (-1025))) (($ $ (-625 (-1149))) 123 (|has| |#1| (-1025))) (($ $ (-1149)) 122 (|has| |#1| (-1025)))) (-2265 (($ $) 173 (|has| |#1| (-544)))) (-1368 (((-1098 |#1| (-596 $)) $) 174 (|has| |#1| (-544)))) (-3610 (($ $) 24 (|has| $ (-1025)))) (-2042 (((-868 (-552)) $) 211 (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) 210 (|has| |#1| (-598 (-868 (-374))))) (($ (-413 $)) 175 (|has| |#1| (-544))) (((-528) $) 97 (|has| |#1| (-598 (-528))))) (-2410 (($ $ $) 108 (|has| |#1| (-467)))) (-3828 (($ $ $) 109 (|has| |#1| (-467)))) (-1683 (((-839) $) 11) (($ (-596 $)) 70) (($ (-1149)) 214) (($ |#1|) 205) (($ (-1098 |#1| (-596 $))) 185 (|has| |#1| (-1025))) (($ (-402 |#1|)) 171 (|has| |#1| (-544))) (($ (-928 (-402 |#1|))) 170 (|has| |#1| (-544))) (($ (-402 (-928 (-402 |#1|)))) 169 (|has| |#1| (-544))) (($ (-402 (-928 |#1|))) 167 (|has| |#1| (-544))) (($ $) 138 (|has| |#1| (-544))) (($ (-928 |#1|)) 121 (|has| |#1| (-1025))) (($ (-402 (-552))) 96 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-1014 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1014 (-402 (-552)))))) (($ (-552)) 93 (-1523 (|has| |#1| (-1025)) (|has| |#1| (-1014 (-552)))))) (-4243 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-4141 (((-751)) 130 (|has| |#1| (-1025)))) (-3779 (($ $) 53) (($ (-625 $)) 52)) (-1572 (((-112) (-114)) 41)) (-3518 (((-112) $ $) 142 (|has| |#1| (-544)))) (-3844 (($ (-1149) $) 199) (($ (-1149) $ $) 198) (($ (-1149) $ $ $) 197) (($ (-1149) $ $ $ $) 196) (($ (-1149) (-625 $)) 195)) (-2089 (($) 112 (|has| |#1| (-25)) CONST)) (-2100 (($) 100 (|has| |#1| (-1085)) CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 129 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 128 (|has| |#1| (-1025))) (($ $ (-625 (-1149))) 127 (|has| |#1| (-1025))) (($ $ (-1149)) 126 (|has| |#1| (-1025)))) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2404 (($ (-1098 |#1| (-596 $)) (-1098 |#1| (-596 $))) 172 (|has| |#1| (-544))) (($ $ $) 106 (-1523 (|has| |#1| (-467)) (|has| |#1| (-544))))) (-2393 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2382 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-552)) 107 (-1523 (|has| |#1| (-467)) (|has| |#1| (-544)))) (($ $ (-751)) 104 (|has| |#1| (-1085))) (($ $ (-897)) 99 (|has| |#1| (-1085)))) (* (($ (-402 (-552)) $) 164 (|has| |#1| (-544))) (($ $ (-402 (-552))) 163 (|has| |#1| (-544))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-552) $) 118 (|has| |#1| (-21))) (($ (-751) $) 114 (|has| |#1| (-25))) (($ (-897) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1085)))))
+(((-425 |#1|) (-138) (-827)) (T -425))
+((-4105 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-827)) (-5 *2 (-112)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-827)) (-5 *2 (-625 (-1149))))) (-3844 (*1 *1 *2 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) (-3844 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) (-3844 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) (-3844 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-625 *1)) (-4 *1 (-425 *4)) (-4 *4 (-827)))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)) (-4 *3 (-598 (-528))))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-1149))) (-4 *1 (-425 *3)) (-4 *3 (-827)) (-4 *3 (-598 (-528))))) (-4073 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-598 (-528))))) (-4073 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1149)) (-4 *1 (-425 *4)) (-4 *4 (-827)) (-4 *4 (-598 (-528))))) (-4073 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 *1)) (-5 *4 (-1149)) (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-598 (-528))))) (-4172 (*1 *2 *1) (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-425 *3)))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552)))) (-4 *1 (-425 *3)))) (-4160 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-425 *3)))) (-2692 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -3340 (-552)) (|:| |var| (-596 *1)))) (-4 *1 (-425 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1098 *3 (-596 *1))) (-4 *3 (-1025)) (-4 *3 (-827)) (-4 *1 (-425 *3)))) (-1356 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-596 *1))) (-4 *1 (-425 *3)))) (-2276 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-1025)))) (-4182 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1025)) (-4 *4 (-827)) (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552)))) (-4 *1 (-425 *4)))) (-4182 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-1025)) (-4 *4 (-827)) (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552)))) (-4 *1 (-425 *4)))) (-4194 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-2 (|:| |val| *1) (|:| -3564 (-552)))) (-4 *1 (-425 *3)))) (-4073 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-751))) (-5 *4 (-625 (-1 *1 *1))) (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4073 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-751))) (-5 *4 (-625 (-1 *1 (-625 *1)))) (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4073 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 (-625 *1))) (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4073 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 *1)) (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-413 *1)) (-4 *1 (-425 *3)) (-4 *3 (-544)) (-4 *3 (-827)))) (-1368 (*1 *2 *1) (-12 (-4 *3 (-544)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-596 *1))) (-4 *1 (-425 *3)))) (-2265 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-544)))) (-2404 (*1 *1 *2 *2) (-12 (-5 *2 (-1098 *3 (-596 *1))) (-4 *3 (-544)) (-4 *3 (-827)) (-4 *1 (-425 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-544)) (-4 *3 (-827)) (-4 *1 (-425 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-928 (-402 *3))) (-4 *3 (-544)) (-4 *3 (-827)) (-4 *1 (-425 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-402 *3)))) (-4 *3 (-544)) (-4 *3 (-827)) (-4 *1 (-425 *3)))) (-3793 (*1 *2 *1 *3) (-12 (-5 *3 (-596 *1)) (-4 *1 (-425 *4)) (-4 *4 (-827)) (-4 *4 (-544)) (-5 *2 (-402 (-1145 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-425 *3)) (-4 *3 (-827)) (-4 *3 (-1085)))))
+(-13 (-297) (-1014 (-1149)) (-860 |t#1|) (-395 |t#1|) (-406 |t#1|) (-10 -8 (-15 -4105 ((-112) $)) (-15 -4117 (|t#1| $)) (-15 -3982 ((-625 (-1149)) $)) (-15 -3844 ($ (-1149) $)) (-15 -3844 ($ (-1149) $ $)) (-15 -3844 ($ (-1149) $ $ $)) (-15 -3844 ($ (-1149) $ $ $ $)) (-15 -3844 ($ (-1149) (-625 $))) (IF (|has| |t#1| (-598 (-528))) (PROGN (-6 (-598 (-528))) (-15 -4073 ($ $ (-1149))) (-15 -4073 ($ $ (-625 (-1149)))) (-15 -4073 ($ $)) (-15 -4073 ($ $ (-114) $ (-1149))) (-15 -4073 ($ $ (-625 (-114)) (-625 $) (-1149)))) |%noBranch|) (IF (|has| |t#1| (-1085)) (PROGN (-6 (-707)) (-15 ** ($ $ (-751))) (-15 -4172 ((-3 (-625 $) "failed") $)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-467)) (-6 (-467)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4160 ((-3 (-625 $) "failed") $)) (-15 -2692 ((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-1014 (-928 |t#1|))) (-6 (-876 (-1149))) (-6 (-372 |t#1|)) (-15 -1683 ($ (-1098 |t#1| (-596 $)))) (-15 -1356 ((-1098 |t#1| (-596 $)) $)) (-15 -2276 ($ $)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-114))) (-15 -4182 ((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-1149))) (-15 -4194 ((-3 (-2 (|:| |val| $) (|:| -3564 (-552))) "failed") $)) (-15 -4073 ($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ $)))) (-15 -4073 ($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ (-625 $))))) (-15 -4073 ($ $ (-1149) (-751) (-1 $ (-625 $)))) (-15 -4073 ($ $ (-1149) (-751) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-358)) (-6 (-1014 (-402 (-928 |t#1|)))) (-15 -2042 ($ (-413 $))) (-15 -1368 ((-1098 |t#1| (-596 $)) $)) (-15 -2265 ($ $)) (-15 -2404 ($ (-1098 |t#1| (-596 $)) (-1098 |t#1| (-596 $)))) (-15 -1683 ($ (-402 |t#1|))) (-15 -1683 ($ (-928 (-402 |t#1|)))) (-15 -1683 ($ (-402 (-928 (-402 |t#1|))))) (-15 -3793 ((-402 (-1145 $)) $ (-596 $))) (IF (|has| |t#1| (-1014 (-552))) (-6 (-1014 (-402 (-552)))) |%noBranch|)) |%noBranch|)))
+(((-21) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-402 (-552))) |has| |#1| (-544)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-544)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-544)) ((-130) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) |has| |#1| (-544)) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-598 (-868 (-374))) |has| |#1| (-598 (-868 (-374)))) ((-598 (-868 (-552))) |has| |#1| (-598 (-868 (-552)))) ((-239) |has| |#1| (-544)) ((-285) |has| |#1| (-544)) ((-302) |has| |#1| (-544)) ((-304 $) . T) ((-297) . T) ((-358) |has| |#1| (-544)) ((-372 |#1|) |has| |#1| (-1025)) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-446) |has| |#1| (-544)) ((-467) |has| |#1| (-467)) ((-507 (-596 $) $) . T) ((-507 $ $) . T) ((-544) |has| |#1| (-544)) ((-628 #0#) |has| |#1| (-544)) ((-628 |#1|) |has| |#1| (-170)) ((-628 $) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-621 (-552)) -12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) ((-621 |#1|) |has| |#1| (-1025)) ((-698 #0#) |has| |#1| (-544)) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) -1523 (|has| |#1| (-1085)) (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-827) . T) ((-876 (-1149)) |has| |#1| (-1025)) ((-862 (-374)) |has| |#1| (-862 (-374))) ((-862 (-552)) |has| |#1| (-862 (-552))) ((-860 |#1|) . T) ((-896) |has| |#1| (-544)) ((-1014 (-402 (-552))) -1523 (|has| |#1| (-1014 (-402 (-552)))) (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552))))) ((-1014 (-402 (-928 |#1|))) |has| |#1| (-544)) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 (-596 $)) . T) ((-1014 (-928 |#1|)) |has| |#1| (-1025)) ((-1014 (-1149)) . T) ((-1014 |#1|) . T) ((-1031 #0#) |has| |#1| (-544)) ((-1031 |#1|) |has| |#1| (-170)) ((-1031 $) |has| |#1| (-544)) ((-1025) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1032) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1085) -1523 (|has| |#1| (-1085)) (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1073) . T) ((-1186) . T) ((-1190) |has| |#1| (-544)))
+((-1759 ((|#2| |#2| |#2|) 33)) (-1563 (((-114) (-114)) 44)) (-2809 ((|#2| |#2|) 66)) (-2798 ((|#2| |#2|) 69)) (-1749 ((|#2| |#2|) 32)) (-1792 ((|#2| |#2| |#2|) 35)) (-1815 ((|#2| |#2| |#2|) 37)) (-1780 ((|#2| |#2| |#2|) 34)) (-1804 ((|#2| |#2| |#2|) 36)) (-1572 (((-112) (-114)) 42)) (-1836 ((|#2| |#2|) 39)) (-1825 ((|#2| |#2|) 38)) (-1727 ((|#2| |#2|) 27)) (-1769 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1739 ((|#2| |#2| |#2|) 31)))
+(((-426 |#1| |#2|) (-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1727 (|#2| |#2|)) (-15 -1769 (|#2| |#2|)) (-15 -1769 (|#2| |#2| |#2|)) (-15 -1739 (|#2| |#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1759 (|#2| |#2| |#2|)) (-15 -1780 (|#2| |#2| |#2|)) (-15 -1792 (|#2| |#2| |#2|)) (-15 -1804 (|#2| |#2| |#2|)) (-15 -1815 (|#2| |#2| |#2|)) (-15 -1825 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -2798 (|#2| |#2|)) (-15 -2809 (|#2| |#2|))) (-13 (-827) (-544)) (-425 |#1|)) (T -426))
+((-2809 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1836 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1825 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1815 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1804 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1792 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1780 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1759 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1749 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1739 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1769 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1769 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1727 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *4)) (-4 *4 (-425 *3)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-426 *4 *5)) (-4 *5 (-425 *4)))))
+(-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1727 (|#2| |#2|)) (-15 -1769 (|#2| |#2|)) (-15 -1769 (|#2| |#2| |#2|)) (-15 -1739 (|#2| |#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1759 (|#2| |#2| |#2|)) (-15 -1780 (|#2| |#2| |#2|)) (-15 -1792 (|#2| |#2| |#2|)) (-15 -1804 (|#2| |#2| |#2|)) (-15 -1815 (|#2| |#2| |#2|)) (-15 -1825 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -2798 (|#2| |#2|)) (-15 -2809 (|#2| |#2|)))
+((-4279 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1145 |#2|)) (|:| |pol2| (-1145 |#2|)) (|:| |prim| (-1145 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-625 (-1145 |#2|))) (|:| |prim| (-1145 |#2|))) (-625 |#2|)) 61)))
+(((-427 |#1| |#2|) (-10 -7 (-15 -4279 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-625 (-1145 |#2|))) (|:| |prim| (-1145 |#2|))) (-625 |#2|))) (IF (|has| |#2| (-27)) (-15 -4279 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1145 |#2|)) (|:| |pol2| (-1145 |#2|)) (|:| |prim| (-1145 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-544) (-827) (-145)) (-425 |#1|)) (T -427))
+((-4279 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-544) (-827) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1145 *3)) (|:| |pol2| (-1145 *3)) (|:| |prim| (-1145 *3)))) (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-425 *4)))) (-4279 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-544) (-827) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-625 (-1145 *5))) (|:| |prim| (-1145 *5)))) (-5 *1 (-427 *4 *5)))))
+(-10 -7 (-15 -4279 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-625 (-1145 |#2|))) (|:| |prim| (-1145 |#2|))) (-625 |#2|))) (IF (|has| |#2| (-27)) (-15 -4279 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1145 |#2|)) (|:| |pol2| (-1145 |#2|)) (|:| |prim| (-1145 |#2|))) |#2| |#2|)) |%noBranch|))
+((-2835 (((-1237)) 19)) (-2821 (((-1145 (-402 (-552))) |#2| (-596 |#2|)) 41) (((-402 (-552)) |#2|) 25)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -2821 ((-402 (-552)) |#2|)) (-15 -2821 ((-1145 (-402 (-552))) |#2| (-596 |#2|))) (-15 -2835 ((-1237)))) (-13 (-827) (-544) (-1014 (-552))) (-425 |#1|)) (T -428))
+((-2835 (*1 *2) (-12 (-4 *3 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-1237)) (-5 *1 (-428 *3 *4)) (-4 *4 (-425 *3)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *4 (-596 *3)) (-4 *3 (-425 *5)) (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-428 *5 *3)))) (-2821 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-402 (-552))) (-5 *1 (-428 *4 *3)) (-4 *3 (-425 *4)))))
+(-10 -7 (-15 -2821 ((-402 (-552)) |#2|)) (-15 -2821 ((-1145 (-402 (-552))) |#2| (-596 |#2|))) (-15 -2835 ((-1237))))
+((-3301 (((-112) $) 28)) (-2847 (((-112) $) 30)) (-2970 (((-112) $) 31)) (-2869 (((-112) $) 34)) (-2891 (((-112) $) 29)) (-2881 (((-112) $) 33)) (-1683 (((-839) $) 18) (($ (-1131)) 27) (($ (-1149)) 23) (((-1149) $) 22) (((-1077) $) 21)) (-2858 (((-112) $) 32)) (-2281 (((-112) $ $) 15)))
+(((-429) (-13 (-597 (-839)) (-10 -8 (-15 -1683 ($ (-1131))) (-15 -1683 ($ (-1149))) (-15 -1683 ((-1149) $)) (-15 -1683 ((-1077) $)) (-15 -3301 ((-112) $)) (-15 -2891 ((-112) $)) (-15 -2970 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -2869 ((-112) $)) (-15 -2858 ((-112) $)) (-15 -2847 ((-112) $)) (-15 -2281 ((-112) $ $))))) (T -429))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-429)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-429)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
+(-13 (-597 (-839)) (-10 -8 (-15 -1683 ($ (-1131))) (-15 -1683 ($ (-1149))) (-15 -1683 ((-1149) $)) (-15 -1683 ((-1077) $)) (-15 -3301 ((-112) $)) (-15 -2891 ((-112) $)) (-15 -2970 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -2869 ((-112) $)) (-15 -2858 ((-112) $)) (-15 -2847 ((-112) $)) (-15 -2281 ((-112) $ $))))
+((-2911 (((-3 (-413 (-1145 (-402 (-552)))) "failed") |#3|) 70)) (-2901 (((-413 |#3|) |#3|) 34)) (-2933 (((-3 (-413 (-1145 (-48))) "failed") |#3|) 46 (|has| |#2| (-1014 (-48))))) (-2921 (((-3 (|:| |overq| (-1145 (-402 (-552)))) (|:| |overan| (-1145 (-48))) (|:| -3547 (-112))) |#3|) 37)))
+(((-430 |#1| |#2| |#3|) (-10 -7 (-15 -2901 ((-413 |#3|) |#3|)) (-15 -2911 ((-3 (-413 (-1145 (-402 (-552)))) "failed") |#3|)) (-15 -2921 ((-3 (|:| |overq| (-1145 (-402 (-552)))) (|:| |overan| (-1145 (-48))) (|:| -3547 (-112))) |#3|)) (IF (|has| |#2| (-1014 (-48))) (-15 -2933 ((-3 (-413 (-1145 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-544) (-827) (-1014 (-552))) (-425 |#1|) (-1208 |#2|)) (T -430))
+((-2933 (*1 *2 *3) (|partial| -12 (-4 *5 (-1014 (-48))) (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) (-5 *2 (-413 (-1145 (-48)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5)))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) (-5 *2 (-3 (|:| |overq| (-1145 (-402 (-552)))) (|:| |overan| (-1145 (-48))) (|:| -3547 (-112)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5)))) (-2911 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) (-5 *2 (-413 (-1145 (-402 (-552))))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5)))) (-2901 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) (-5 *2 (-413 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5)))))
+(-10 -7 (-15 -2901 ((-413 |#3|) |#3|)) (-15 -2911 ((-3 (-413 (-1145 (-402 (-552)))) "failed") |#3|)) (-15 -2921 ((-3 (|:| |overq| (-1145 (-402 (-552)))) (|:| |overan| (-1145 (-48))) (|:| -3547 (-112))) |#3|)) (IF (|has| |#2| (-1014 (-48))) (-15 -2933 ((-3 (-413 (-1145 (-48))) "failed") |#3|)) |%noBranch|))
+((-1671 (((-112) $ $) NIL)) (-4086 (((-1131) $ (-1131)) NIL)) (-4137 (($ $ (-1131)) NIL)) (-4099 (((-1131) $) NIL)) (-3077 (((-383) (-383) (-383)) 17) (((-383) (-383)) 15)) (-2508 (($ (-383)) NIL) (($ (-383) (-1131)) NIL)) (-1288 (((-383) $) NIL)) (-2883 (((-1131) $) NIL)) (-4111 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3067 (((-1237) (-1131)) 9)) (-3057 (((-1237) (-1131)) 10)) (-3046 (((-1237)) 11)) (-1683 (((-839) $) NIL)) (-4125 (($ $) 35)) (-2281 (((-112) $ $) NIL)))
+(((-431) (-13 (-359 (-383) (-1131)) (-10 -7 (-15 -3077 ((-383) (-383) (-383))) (-15 -3077 ((-383) (-383))) (-15 -3067 ((-1237) (-1131))) (-15 -3057 ((-1237) (-1131))) (-15 -3046 ((-1237)))))) (T -431))
+((-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-431)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-431)))) (-3046 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-431)))))
+(-13 (-359 (-383) (-1131)) (-10 -7 (-15 -3077 ((-383) (-383) (-383))) (-15 -3077 ((-383) (-383))) (-15 -3067 ((-1237) (-1131))) (-15 -3057 ((-1237) (-1131))) (-15 -3046 ((-1237)))))
+((-1671 (((-112) $ $) NIL)) (-3036 (((-3 (|:| |fst| (-429)) (|:| -2781 "void")) $) 11)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3013 (($) 32)) (-2978 (($) 38)) (-2989 (($) 34)) (-2954 (($) 36)) (-3001 (($) 33)) (-2967 (($) 35)) (-2943 (($) 37)) (-3025 (((-112) $) 8)) (-2002 (((-625 (-928 (-552))) $) 19)) (-1695 (($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-1149)) (-112)) 27) (($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-928 (-552))) (-112)) 28)) (-1683 (((-839) $) 23) (($ (-429)) 29)) (-2281 (((-112) $ $) NIL)))
+(((-432) (-13 (-1073) (-10 -8 (-15 -1683 ((-839) $)) (-15 -1683 ($ (-429))) (-15 -3036 ((-3 (|:| |fst| (-429)) (|:| -2781 "void")) $)) (-15 -2002 ((-625 (-928 (-552))) $)) (-15 -3025 ((-112) $)) (-15 -1695 ($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-1149)) (-112))) (-15 -1695 ($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-928 (-552))) (-112))) (-15 -3013 ($)) (-15 -3001 ($)) (-15 -2989 ($)) (-15 -2978 ($)) (-15 -2967 ($)) (-15 -2954 ($)) (-15 -2943 ($))))) (T -432))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-432)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-432)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *1 (-432)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-625 (-928 (-552)))) (-5 *1 (-432)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-432)))) (-1695 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *3 (-625 (-1149))) (-5 *4 (-112)) (-5 *1 (-432)))) (-1695 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-112)) (-5 *1 (-432)))) (-3013 (*1 *1) (-5 *1 (-432))) (-3001 (*1 *1) (-5 *1 (-432))) (-2989 (*1 *1) (-5 *1 (-432))) (-2978 (*1 *1) (-5 *1 (-432))) (-2967 (*1 *1) (-5 *1 (-432))) (-2954 (*1 *1) (-5 *1 (-432))) (-2943 (*1 *1) (-5 *1 (-432))))
+(-13 (-1073) (-10 -8 (-15 -1683 ((-839) $)) (-15 -1683 ($ (-429))) (-15 -3036 ((-3 (|:| |fst| (-429)) (|:| -2781 "void")) $)) (-15 -2002 ((-625 (-928 (-552))) $)) (-15 -3025 ((-112) $)) (-15 -1695 ($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-1149)) (-112))) (-15 -1695 ($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-928 (-552))) (-112))) (-15 -3013 ($)) (-15 -3001 ($)) (-15 -2989 ($)) (-15 -2978 ($)) (-15 -2967 ($)) (-15 -2954 ($)) (-15 -2943 ($))))
+((-1671 (((-112) $ $) NIL)) (-1288 (((-1149) $) 8)) (-2883 (((-1131) $) 16)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 13)))
+(((-433 |#1|) (-13 (-1073) (-10 -8 (-15 -1288 ((-1149) $)))) (-1149)) (T -433))
+((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-433 *3)) (-14 *3 *2))))
+(-13 (-1073) (-10 -8 (-15 -1288 ((-1149) $))))
+((-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8) (($ (-1232 (-679))) 14) (($ (-625 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 11)))
(((-434) (-138)) (T -434))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-679))) (-4 *1 (-434)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-434)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-434)))))
-(-13 (-391) (-10 -8 (-15 -4317 ($ (-1231 (-679)))) (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-325))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))))))
-(((-597 (-840)) . T) ((-391) . T) ((-1185) . T))
-((-3508 (((-3 $ "failed") (-1231 (-309 (-373)))) 21) (((-3 $ "failed") (-1231 (-309 (-538)))) 19) (((-3 $ "failed") (-1231 (-922 (-373)))) 17) (((-3 $ "failed") (-1231 (-922 (-538)))) 15) (((-3 $ "failed") (-1231 (-402 (-922 (-373))))) 13) (((-3 $ "failed") (-1231 (-402 (-922 (-538))))) 11)) (-3507 (($ (-1231 (-309 (-373)))) 22) (($ (-1231 (-309 (-538)))) 20) (($ (-1231 (-922 (-373)))) 18) (($ (-1231 (-922 (-538)))) 16) (($ (-1231 (-402 (-922 (-373))))) 14) (($ (-1231 (-402 (-922 (-538))))) 12)) (-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8) (($ (-622 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 23)))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-679))) (-4 *1 (-434)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-434)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-4 *1 (-434)))))
+(-13 (-390) (-10 -8 (-15 -1683 ($ (-1232 (-679)))) (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-325))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))))))
+(((-597 (-839)) . T) ((-390) . T) ((-1186) . T))
+((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 21) (((-3 $ "failed") (-1232 (-311 (-552)))) 19) (((-3 $ "failed") (-1232 (-928 (-374)))) 17) (((-3 $ "failed") (-1232 (-928 (-552)))) 15) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 13) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 11)) (-1895 (($ (-1232 (-311 (-374)))) 22) (($ (-1232 (-311 (-552)))) 20) (($ (-1232 (-928 (-374)))) 18) (($ (-1232 (-928 (-552)))) 16) (($ (-1232 (-402 (-928 (-374))))) 14) (($ (-1232 (-402 (-928 (-552))))) 12)) (-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8) (($ (-625 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 23)))
(((-435) (-138)) (T -435))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-435)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-309 (-373)))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-309 (-373)))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-309 (-538)))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-309 (-538)))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-922 (-373)))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-922 (-373)))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-922 (-538)))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-922 (-538)))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-402 (-922 (-373))))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-402 (-922 (-373))))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-402 (-922 (-538))))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-402 (-922 (-538))))) (-4 *1 (-435)))))
-(-13 (-391) (-10 -8 (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-325))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))) (-15 -3507 ($ (-1231 (-309 (-373))))) (-15 -3508 ((-3 $ "failed") (-1231 (-309 (-373))))) (-15 -3507 ($ (-1231 (-309 (-538))))) (-15 -3508 ((-3 $ "failed") (-1231 (-309 (-538))))) (-15 -3507 ($ (-1231 (-922 (-373))))) (-15 -3508 ((-3 $ "failed") (-1231 (-922 (-373))))) (-15 -3507 ($ (-1231 (-922 (-538))))) (-15 -3508 ((-3 $ "failed") (-1231 (-922 (-538))))) (-15 -3507 ($ (-1231 (-402 (-922 (-373)))))) (-15 -3508 ((-3 $ "failed") (-1231 (-402 (-922 (-373)))))) (-15 -3507 ($ (-1231 (-402 (-922 (-538)))))) (-15 -3508 ((-3 $ "failed") (-1231 (-402 (-922 (-538))))))))
-(((-597 (-840)) . T) ((-391) . T) ((-1185) . T))
-((-1958 (((-112)) 17)) (-1959 (((-112) (-112)) 18)) (-1960 (((-112)) 13)) (-1961 (((-112) (-112)) 14)) (-1963 (((-112)) 15)) (-1964 (((-112) (-112)) 16)) (-1955 (((-895) (-895)) 21) (((-895)) 20)) (-1956 (((-751) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538))))) 42)) (-1954 (((-895) (-895)) 23) (((-895)) 22)) (-1957 (((-2 (|:| -2908 (-538)) (|:| -2767 (-622 |#1|))) |#1|) 62)) (-1953 (((-400 |#1|) (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538))))))) 126)) (-4094 (((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112)) 152)) (-4093 (((-400 |#1|) |#1| (-751) (-751)) 165) (((-400 |#1|) |#1| (-622 (-751)) (-751)) 162) (((-400 |#1|) |#1| (-622 (-751))) 164) (((-400 |#1|) |#1| (-751)) 163) (((-400 |#1|) |#1|) 161)) (-1975 (((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751) (-112)) 167) (((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751)) 168) (((-3 |#1| "failed") (-895) |#1| (-622 (-751))) 170) (((-3 |#1| "failed") (-895) |#1| (-751)) 169) (((-3 |#1| "failed") (-895) |#1|) 171)) (-4092 (((-400 |#1|) |#1| (-751) (-751)) 160) (((-400 |#1|) |#1| (-622 (-751)) (-751)) 156) (((-400 |#1|) |#1| (-622 (-751))) 158) (((-400 |#1|) |#1| (-751)) 157) (((-400 |#1|) |#1|) 155)) (-1962 (((-112) |#1|) 37)) (-1974 (((-717 (-751)) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538))))) 67)) (-1965 (((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112) (-1070 (-751)) (-751)) 154)))
-(((-436 |#1|) (-10 -7 (-15 -1953 ((-400 |#1|) (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))))) (-15 -1974 ((-717 (-751)) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))))) (-15 -1954 ((-895))) (-15 -1954 ((-895) (-895))) (-15 -1955 ((-895))) (-15 -1955 ((-895) (-895))) (-15 -1956 ((-751) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))))) (-15 -1957 ((-2 (|:| -2908 (-538)) (|:| -2767 (-622 |#1|))) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -1960 ((-112))) (-15 -1961 ((-112) (-112))) (-15 -1962 ((-112) |#1|)) (-15 -1963 ((-112))) (-15 -1964 ((-112) (-112))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4092 ((-400 |#1|) |#1| (-751))) (-15 -4092 ((-400 |#1|) |#1| (-622 (-751)))) (-15 -4092 ((-400 |#1|) |#1| (-622 (-751)) (-751))) (-15 -4092 ((-400 |#1|) |#1| (-751) (-751))) (-15 -4093 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1| (-751))) (-15 -4093 ((-400 |#1|) |#1| (-622 (-751)))) (-15 -4093 ((-400 |#1|) |#1| (-622 (-751)) (-751))) (-15 -4093 ((-400 |#1|) |#1| (-751) (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1|)) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751) (-112))) (-15 -4094 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112))) (-15 -1965 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112) (-1070 (-751)) (-751)))) (-1207 (-538))) (T -436))
-((-1965 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1070 (-751))) (-5 *6 (-751)) (-5 *2 (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4094 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1975 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) (-1975 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) (-1975 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) (-1975 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-751)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) (-1975 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-895)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) (-4093 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4093 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4093 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-751))) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4093 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4093 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-751))) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1964 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1963 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1962 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1960 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1958 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2908 (-538)) (|:| -2767 (-622 *3)))) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -4092 *4) (|:| -4307 (-538))))) (-4 *4 (-1207 (-538))) (-5 *2 (-751)) (-5 *1 (-436 *4)))) (-1955 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1955 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1954 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -4092 *4) (|:| -4307 (-538))))) (-4 *4 (-1207 (-538))) (-5 *2 (-717 (-751))) (-5 *1 (-436 *4)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| *4) (|:| -2487 (-538))))))) (-4 *4 (-1207 (-538))) (-5 *2 (-400 *4)) (-5 *1 (-436 *4)))))
-(-10 -7 (-15 -1953 ((-400 |#1|) (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))))) (-15 -1974 ((-717 (-751)) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))))) (-15 -1954 ((-895))) (-15 -1954 ((-895) (-895))) (-15 -1955 ((-895))) (-15 -1955 ((-895) (-895))) (-15 -1956 ((-751) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))))) (-15 -1957 ((-2 (|:| -2908 (-538)) (|:| -2767 (-622 |#1|))) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -1960 ((-112))) (-15 -1961 ((-112) (-112))) (-15 -1962 ((-112) |#1|)) (-15 -1963 ((-112))) (-15 -1964 ((-112) (-112))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4092 ((-400 |#1|) |#1| (-751))) (-15 -4092 ((-400 |#1|) |#1| (-622 (-751)))) (-15 -4092 ((-400 |#1|) |#1| (-622 (-751)) (-751))) (-15 -4092 ((-400 |#1|) |#1| (-751) (-751))) (-15 -4093 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1| (-751))) (-15 -4093 ((-400 |#1|) |#1| (-622 (-751)))) (-15 -4093 ((-400 |#1|) |#1| (-622 (-751)) (-751))) (-15 -4093 ((-400 |#1|) |#1| (-751) (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1|)) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751) (-112))) (-15 -4094 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112))) (-15 -1965 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112) (-1070 (-751)) (-751))))
-((-1969 (((-538) |#2|) 48) (((-538) |#2| (-751)) 47)) (-1968 (((-538) |#2|) 55)) (-1970 ((|#3| |#2|) 25)) (-3467 ((|#3| |#2| (-895)) 14)) (-4193 ((|#3| |#2|) 15)) (-1971 ((|#3| |#2|) 9)) (-2933 ((|#3| |#2|) 10)) (-1967 ((|#3| |#2| (-895)) 62) ((|#3| |#2|) 30)) (-1966 (((-538) |#2|) 57)))
-(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -1966 ((-538) |#2|)) (-15 -1967 (|#3| |#2|)) (-15 -1967 (|#3| |#2| (-895))) (-15 -1968 ((-538) |#2|)) (-15 -1969 ((-538) |#2| (-751))) (-15 -1969 ((-538) |#2|)) (-15 -3467 (|#3| |#2| (-895))) (-15 -1970 (|#3| |#2|)) (-15 -1971 (|#3| |#2|)) (-15 -2933 (|#3| |#2|)) (-15 -4193 (|#3| |#2|))) (-1025) (-1207 |#1|) (-13 (-399) (-1014 |#1|) (-358) (-1171) (-279))) (T -437))
-((-4193 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) (-2933 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) (-1971 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) (-1970 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1207 *5)))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *5 *3 *6)) (-4 *3 (-1207 *5)) (-4 *6 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))))) (-1968 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))) (-1967 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1207 *5)))) (-1967 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))))
-(-10 -7 (-15 -1966 ((-538) |#2|)) (-15 -1967 (|#3| |#2|)) (-15 -1967 (|#3| |#2| (-895))) (-15 -1968 ((-538) |#2|)) (-15 -1969 ((-538) |#2| (-751))) (-15 -1969 ((-538) |#2|)) (-15 -3467 (|#3| |#2| (-895))) (-15 -1970 (|#3| |#2|)) (-15 -1971 (|#3| |#2|)) (-15 -2933 (|#3| |#2|)) (-15 -4193 (|#3| |#2|)))
-((-3713 ((|#2| (-1231 |#1|)) 36)) (-1973 ((|#2| |#2| |#1|) 49)) (-1972 ((|#2| |#2| |#1|) 41)) (-2378 ((|#2| |#2|) 38)) (-3524 (((-112) |#2|) 30)) (-1976 (((-622 |#2|) (-895) (-400 |#2|)) 17)) (-1975 ((|#2| (-895) (-400 |#2|)) 21)) (-1974 (((-717 (-751)) (-400 |#2|)) 25)))
-(((-438 |#1| |#2|) (-10 -7 (-15 -3524 ((-112) |#2|)) (-15 -3713 (|#2| (-1231 |#1|))) (-15 -2378 (|#2| |#2|)) (-15 -1972 (|#2| |#2| |#1|)) (-15 -1973 (|#2| |#2| |#1|)) (-15 -1974 ((-717 (-751)) (-400 |#2|))) (-15 -1975 (|#2| (-895) (-400 |#2|))) (-15 -1976 ((-622 |#2|) (-895) (-400 |#2|)))) (-1025) (-1207 |#1|)) (T -438))
-((-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-400 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-1025)) (-5 *2 (-622 *6)) (-5 *1 (-438 *5 *6)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-400 *2)) (-4 *2 (-1207 *5)) (-5 *1 (-438 *5 *2)) (-4 *5 (-1025)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-1025)) (-5 *2 (-717 (-751))) (-5 *1 (-438 *4 *5)))) (-1973 (*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3)))) (-1972 (*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3)))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-1025)) (-4 *2 (-1207 *4)) (-5 *1 (-438 *4 *2)))) (-3524 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1207 *4)))))
-(-10 -7 (-15 -3524 ((-112) |#2|)) (-15 -3713 (|#2| (-1231 |#1|))) (-15 -2378 (|#2| |#2|)) (-15 -1972 (|#2| |#2| |#1|)) (-15 -1973 (|#2| |#2| |#1|)) (-15 -1974 ((-717 (-751)) (-400 |#2|))) (-15 -1975 (|#2| (-895) (-400 |#2|))) (-15 -1976 ((-622 |#2|) (-895) (-400 |#2|))))
-((-1979 (((-751)) 41)) (-1983 (((-751)) 23 (|has| |#1| (-399))) (((-751) (-751)) 22 (|has| |#1| (-399)))) (-1982 (((-538) |#1|) 18 (|has| |#1| (-399)))) (-1981 (((-538) |#1|) 20 (|has| |#1| (-399)))) (-1978 (((-751)) 40) (((-751) (-751)) 39)) (-1977 ((|#1| (-751) (-538)) 29)) (-1980 (((-1237)) 43)))
-(((-439 |#1|) (-10 -7 (-15 -1977 (|#1| (-751) (-538))) (-15 -1978 ((-751) (-751))) (-15 -1978 ((-751))) (-15 -1979 ((-751))) (-15 -1980 ((-1237))) (IF (|has| |#1| (-399)) (PROGN (-15 -1981 ((-538) |#1|)) (-15 -1982 ((-538) |#1|)) (-15 -1983 ((-751) (-751))) (-15 -1983 ((-751)))) |%noBranch|)) (-1025)) (T -439))
-((-1983 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-1983 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-1982 (*1 *2 *3) (-12 (-5 *2 (-538)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-1981 (*1 *2 *3) (-12 (-5 *2 (-538)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-1980 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-1979 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-1978 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-1977 (*1 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-538)) (-5 *1 (-439 *2)) (-4 *2 (-1025)))))
-(-10 -7 (-15 -1977 (|#1| (-751) (-538))) (-15 -1978 ((-751) (-751))) (-15 -1978 ((-751))) (-15 -1979 ((-751))) (-15 -1980 ((-1237))) (IF (|has| |#1| (-399)) (PROGN (-15 -1981 ((-538) |#1|)) (-15 -1982 ((-538) |#1|)) (-15 -1983 ((-751) (-751))) (-15 -1983 ((-751)))) |%noBranch|))
-((-1984 (((-622 (-538)) (-538)) 61)) (-4086 (((-112) (-166 (-538))) 65)) (-4092 (((-400 (-166 (-538))) (-166 (-538))) 60)))
-(((-440) (-10 -7 (-15 -4092 ((-400 (-166 (-538))) (-166 (-538)))) (-15 -1984 ((-622 (-538)) (-538))) (-15 -4086 ((-112) (-166 (-538)))))) (T -440))
-((-4086 (*1 *2 *3) (-12 (-5 *3 (-166 (-538))) (-5 *2 (-112)) (-5 *1 (-440)))) (-1984 (*1 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-440)) (-5 *3 (-538)))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 (-166 (-538)))) (-5 *1 (-440)) (-5 *3 (-166 (-538))))))
-(-10 -7 (-15 -4092 ((-400 (-166 (-538))) (-166 (-538)))) (-15 -1984 ((-622 (-538)) (-538))) (-15 -4086 ((-112) (-166 (-538)))))
-((-3279 ((|#4| |#4| (-622 |#4|)) 22 (|has| |#1| (-358)))) (-2335 (((-622 |#4|) (-622 |#4|) (-1131) (-1131)) 41) (((-622 |#4|) (-622 |#4|) (-1131)) 40) (((-622 |#4|) (-622 |#4|)) 35)))
-(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2335 ((-622 |#4|) (-622 |#4|))) (-15 -2335 ((-622 |#4|) (-622 |#4|) (-1131))) (-15 -2335 ((-622 |#4|) (-622 |#4|) (-1131) (-1131))) (IF (|has| |#1| (-358)) (-15 -3279 (|#4| |#4| (-622 |#4|))) |%noBranch|)) (-446) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -441))
-((-3279 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-358)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *2)))) (-2335 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2335 (*1 *2 *2 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-441 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2335 ((-622 |#4|) (-622 |#4|))) (-15 -2335 ((-622 |#4|) (-622 |#4|) (-1131))) (-15 -2335 ((-622 |#4|) (-622 |#4|) (-1131) (-1131))) (IF (|has| |#1| (-358)) (-15 -3279 (|#4| |#4| (-622 |#4|))) |%noBranch|))
-((-1985 ((|#4| |#4| (-622 |#4|)) 61)) (-1986 (((-622 |#4|) (-622 |#4|) (-1131) (-1131)) 17) (((-622 |#4|) (-622 |#4|) (-1131)) 16) (((-622 |#4|) (-622 |#4|)) 11)))
-(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1985 (|#4| |#4| (-622 |#4|))) (-15 -1986 ((-622 |#4|) (-622 |#4|))) (-15 -1986 ((-622 |#4|) (-622 |#4|) (-1131))) (-15 -1986 ((-622 |#4|) (-622 |#4|) (-1131) (-1131)))) (-302) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -442))
-((-1986 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1986 (*1 *2 *2 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1985 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1985 (|#4| |#4| (-622 |#4|))) (-15 -1986 ((-622 |#4|) (-622 |#4|))) (-15 -1986 ((-622 |#4|) (-622 |#4|) (-1131))) (-15 -1986 ((-622 |#4|) (-622 |#4|) (-1131) (-1131))))
-((-1988 (((-622 (-622 |#4|)) (-622 |#4|) (-112)) 73) (((-622 (-622 |#4|)) (-622 |#4|)) 72) (((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|) (-112)) 66) (((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|)) 67)) (-1987 (((-622 (-622 |#4|)) (-622 |#4|) (-112)) 42) (((-622 (-622 |#4|)) (-622 |#4|)) 63)))
-(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1987 ((-622 (-622 |#4|)) (-622 |#4|))) (-15 -1987 ((-622 (-622 |#4|)) (-622 |#4|) (-112))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|) (-112))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-112)))) (-13 (-302) (-145)) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -443))
-((-1988 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-622 *8)))) (-1988 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-1988 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-622 *8)))) (-1988 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-1987 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-622 *8)))) (-1987 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-622 *7)))))
-(-10 -7 (-15 -1987 ((-622 (-622 |#4|)) (-622 |#4|))) (-15 -1987 ((-622 (-622 |#4|)) (-622 |#4|) (-112))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|) (-112))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-112))))
-((-2012 (((-751) |#4|) 12)) (-2000 (((-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|))) |#4| (-751) (-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|)))) 31)) (-2002 (((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2001 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1990 ((|#4| |#4| (-622 |#4|)) 40)) (-1998 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-622 |#4|)) 70)) (-2005 (((-1237) |#4|) 42)) (-2008 (((-1237) (-622 |#4|)) 51)) (-2006 (((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538)) 48)) (-2009 (((-1237) (-538)) 79)) (-2003 (((-622 |#4|) (-622 |#4|)) 77)) (-2011 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|)) |#4| (-751)) 25)) (-2004 (((-538) |#4|) 78)) (-1999 ((|#4| |#4|) 29)) (-1991 (((-622 |#4|) (-622 |#4|) (-538) (-538)) 56)) (-2007 (((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538) (-538)) 89)) (-2010 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1992 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1997 (((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1996 (((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1993 (((-112) |#2| |#2|) 57)) (-1995 (((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1994 (((-112) |#2| |#2| |#2| |#2|) 60)) (-1989 ((|#4| |#4| (-622 |#4|)) 71)))
-(((-444 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1989 (|#4| |#4| (-622 |#4|))) (-15 -1990 (|#4| |#4| (-622 |#4|))) (-15 -1991 ((-622 |#4|) (-622 |#4|) (-538) (-538))) (-15 -1992 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1993 ((-112) |#2| |#2|)) (-15 -1994 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1995 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1996 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1997 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-622 |#4|))) (-15 -1999 (|#4| |#4|)) (-15 -2000 ((-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|))) |#4| (-751) (-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|))))) (-15 -2001 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2002 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2003 ((-622 |#4|) (-622 |#4|))) (-15 -2004 ((-538) |#4|)) (-15 -2005 ((-1237) |#4|)) (-15 -2006 ((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538))) (-15 -2007 ((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538) (-538))) (-15 -2008 ((-1237) (-622 |#4|))) (-15 -2009 ((-1237) (-538))) (-15 -2010 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2011 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|)) |#4| (-751))) (-15 -2012 ((-751) |#4|))) (-446) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -444))
-((-2012 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))) (-2011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-751)) (|:| -2120 *4))) (-5 *5 (-751)) (-4 *4 (-926 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-444 *6 *7 *8 *4)))) (-2010 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-773)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-444 *4 *5 *6 *7)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-538)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-444 *4 *5 *6 *7)))) (-2007 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-773)) (-4 *4 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) (-5 *1 (-444 *5 *6 *7 *4)))) (-2006 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-773)) (-4 *4 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) (-5 *1 (-444 *5 *6 *7 *4)))) (-2005 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))) (-2004 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-538)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))) (-2003 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6)))) (-2002 (*1 *2 *2 *2) (-12 (-5 *2 (-622 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-773)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-773)) (-4 *2 (-926 *4 *5 *6)) (-5 *1 (-444 *4 *5 *6 *2)) (-4 *4 (-446)) (-4 *6 (-827)))) (-2000 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 *3)))) (-5 *4 (-751)) (-4 *3 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-444 *5 *6 *7 *3)))) (-1999 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-926 *3 *4 *5)))) (-1998 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-444 *5 *6 *7 *3)))) (-1997 (*1 *2 *3 *2) (-12 (-5 *2 (-622 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-773)) (-4 *6 (-926 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-827)) (-5 *1 (-444 *4 *3 *5 *6)))) (-1996 (*1 *2 *2) (-12 (-5 *2 (-622 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-773)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1995 (*1 *2 *3 *2) (-12 (-5 *2 (-622 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-773)) (-4 *3 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *3)))) (-1994 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-926 *4 *3 *5)))) (-1993 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-926 *4 *3 *5)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-773)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-444 *4 *5 *6 *7)))) (-1991 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-538)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *7)))) (-1990 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *2)))) (-1989 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1989 (|#4| |#4| (-622 |#4|))) (-15 -1990 (|#4| |#4| (-622 |#4|))) (-15 -1991 ((-622 |#4|) (-622 |#4|) (-538) (-538))) (-15 -1992 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1993 ((-112) |#2| |#2|)) (-15 -1994 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1995 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1996 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1997 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-622 |#4|))) (-15 -1999 (|#4| |#4|)) (-15 -2000 ((-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|))) |#4| (-751) (-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|))))) (-15 -2001 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2002 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2003 ((-622 |#4|) (-622 |#4|))) (-15 -2004 ((-538) |#4|)) (-15 -2005 ((-1237) |#4|)) (-15 -2006 ((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538))) (-15 -2007 ((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538) (-538))) (-15 -2008 ((-1237) (-622 |#4|))) (-15 -2009 ((-1237) (-538))) (-15 -2010 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2011 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|)) |#4| (-751))) (-15 -2012 ((-751) |#4|)))
-((-2013 (($ $ $) 14) (($ (-622 $)) 21)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 41)) (-3495 (($ $ $) NIL) (($ (-622 $)) 22)))
-(((-445 |#1|) (-10 -8 (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2013 (|#1| (-622 |#1|))) (-15 -2013 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|))) (-446)) (T -445))
-NIL
-(-10 -8 (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2013 (|#1| (-622 |#1|))) (-15 -2013 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3820 (((-3 $ "failed") $ $) 40)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-435)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-311 (-374)))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-311 (-374)))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-311 (-552)))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-311 (-552)))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-928 (-374)))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-928 (-374)))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-928 (-552)))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-928 (-552)))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-402 (-928 (-374))))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-402 (-928 (-374))))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-402 (-928 (-552))))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-402 (-928 (-552))))) (-4 *1 (-435)))))
+(-13 (-390) (-10 -8 (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-325))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))) (-15 -1895 ($ (-1232 (-311 (-374))))) (-15 -1893 ((-3 $ "failed") (-1232 (-311 (-374))))) (-15 -1895 ($ (-1232 (-311 (-552))))) (-15 -1893 ((-3 $ "failed") (-1232 (-311 (-552))))) (-15 -1895 ($ (-1232 (-928 (-374))))) (-15 -1893 ((-3 $ "failed") (-1232 (-928 (-374))))) (-15 -1895 ($ (-1232 (-928 (-552))))) (-15 -1893 ((-3 $ "failed") (-1232 (-928 (-552))))) (-15 -1895 ($ (-1232 (-402 (-928 (-374)))))) (-15 -1893 ((-3 $ "failed") (-1232 (-402 (-928 (-374)))))) (-15 -1895 ($ (-1232 (-402 (-928 (-552)))))) (-15 -1893 ((-3 $ "failed") (-1232 (-402 (-928 (-552))))))))
+(((-597 (-839)) . T) ((-390) . T) ((-1186) . T))
+((-1947 (((-112)) 17)) (-1960 (((-112) (-112)) 18)) (-1972 (((-112)) 13)) (-1980 (((-112) (-112)) 14)) (-2000 (((-112)) 15)) (-2010 (((-112) (-112)) 16)) (-3102 (((-897) (-897)) 21) (((-897)) 20)) (-3110 (((-751) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552))))) 42)) (-3093 (((-897) (-897)) 23) (((-897)) 22)) (-3119 (((-2 (|:| -2462 (-552)) (|:| -3449 (-625 |#1|))) |#1|) 62)) (-3085 (((-413 |#1|) (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552))))))) 126)) (-3023 (((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112)) 152)) (-3011 (((-413 |#1|) |#1| (-751) (-751)) 165) (((-413 |#1|) |#1| (-625 (-751)) (-751)) 162) (((-413 |#1|) |#1| (-625 (-751))) 164) (((-413 |#1|) |#1| (-751)) 163) (((-413 |#1|) |#1|) 161)) (-2119 (((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751) (-112)) 167) (((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751)) 168) (((-3 |#1| "failed") (-897) |#1| (-625 (-751))) 170) (((-3 |#1| "failed") (-897) |#1| (-751)) 169) (((-3 |#1| "failed") (-897) |#1|) 171)) (-3824 (((-413 |#1|) |#1| (-751) (-751)) 160) (((-413 |#1|) |#1| (-625 (-751)) (-751)) 156) (((-413 |#1|) |#1| (-625 (-751))) 158) (((-413 |#1|) |#1| (-751)) 157) (((-413 |#1|) |#1|) 155)) (-1989 (((-112) |#1|) 37)) (-2110 (((-718 (-751)) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552))))) 67)) (-2017 (((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112) (-1075 (-751)) (-751)) 154)))
+(((-436 |#1|) (-10 -7 (-15 -3085 ((-413 |#1|) (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))))) (-15 -2110 ((-718 (-751)) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))))) (-15 -3093 ((-897))) (-15 -3093 ((-897) (-897))) (-15 -3102 ((-897))) (-15 -3102 ((-897) (-897))) (-15 -3110 ((-751) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))))) (-15 -3119 ((-2 (|:| -2462 (-552)) (|:| -3449 (-625 |#1|))) |#1|)) (-15 -1947 ((-112))) (-15 -1960 ((-112) (-112))) (-15 -1972 ((-112))) (-15 -1980 ((-112) (-112))) (-15 -1989 ((-112) |#1|)) (-15 -2000 ((-112))) (-15 -2010 ((-112) (-112))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3824 ((-413 |#1|) |#1| (-751))) (-15 -3824 ((-413 |#1|) |#1| (-625 (-751)))) (-15 -3824 ((-413 |#1|) |#1| (-625 (-751)) (-751))) (-15 -3824 ((-413 |#1|) |#1| (-751) (-751))) (-15 -3011 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1| (-751))) (-15 -3011 ((-413 |#1|) |#1| (-625 (-751)))) (-15 -3011 ((-413 |#1|) |#1| (-625 (-751)) (-751))) (-15 -3011 ((-413 |#1|) |#1| (-751) (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1|)) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751) (-112))) (-15 -3023 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112))) (-15 -2017 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112) (-1075 (-751)) (-751)))) (-1208 (-552))) (T -436))
+((-2017 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1075 (-751))) (-5 *6 (-751)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3023 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-2119 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) (-2119 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) (-2119 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) (-2119 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-897)) (-5 *4 (-751)) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) (-2119 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-897)) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) (-3011 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3011 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-751))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3011 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-751))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-2000 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-1989 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-1972 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-1960 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-1947 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3119 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2462 (-552)) (|:| -3449 (-625 *3)))) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3824 *4) (|:| -4276 (-552))))) (-4 *4 (-1208 (-552))) (-5 *2 (-751)) (-5 *1 (-436 *4)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3102 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3093 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3824 *4) (|:| -4276 (-552))))) (-4 *4 (-1208 (-552))) (-5 *2 (-718 (-751))) (-5 *1 (-436 *4)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| *4) (|:| -3515 (-552))))))) (-4 *4 (-1208 (-552))) (-5 *2 (-413 *4)) (-5 *1 (-436 *4)))))
+(-10 -7 (-15 -3085 ((-413 |#1|) (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))))) (-15 -2110 ((-718 (-751)) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))))) (-15 -3093 ((-897))) (-15 -3093 ((-897) (-897))) (-15 -3102 ((-897))) (-15 -3102 ((-897) (-897))) (-15 -3110 ((-751) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))))) (-15 -3119 ((-2 (|:| -2462 (-552)) (|:| -3449 (-625 |#1|))) |#1|)) (-15 -1947 ((-112))) (-15 -1960 ((-112) (-112))) (-15 -1972 ((-112))) (-15 -1980 ((-112) (-112))) (-15 -1989 ((-112) |#1|)) (-15 -2000 ((-112))) (-15 -2010 ((-112) (-112))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3824 ((-413 |#1|) |#1| (-751))) (-15 -3824 ((-413 |#1|) |#1| (-625 (-751)))) (-15 -3824 ((-413 |#1|) |#1| (-625 (-751)) (-751))) (-15 -3824 ((-413 |#1|) |#1| (-751) (-751))) (-15 -3011 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1| (-751))) (-15 -3011 ((-413 |#1|) |#1| (-625 (-751)))) (-15 -3011 ((-413 |#1|) |#1| (-625 (-751)) (-751))) (-15 -3011 ((-413 |#1|) |#1| (-751) (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1|)) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751) (-112))) (-15 -3023 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112))) (-15 -2017 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112) (-1075 (-751)) (-751))))
+((-2056 (((-552) |#2|) 48) (((-552) |#2| (-751)) 47)) (-2044 (((-552) |#2|) 55)) (-2067 ((|#3| |#2|) 25)) (-4209 ((|#3| |#2| (-897)) 14)) (-3456 ((|#3| |#2|) 15)) (-2078 ((|#3| |#2|) 9)) (-2207 ((|#3| |#2|) 10)) (-2035 ((|#3| |#2| (-897)) 62) ((|#3| |#2|) 30)) (-2026 (((-552) |#2|) 57)))
+(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -2026 ((-552) |#2|)) (-15 -2035 (|#3| |#2|)) (-15 -2035 (|#3| |#2| (-897))) (-15 -2044 ((-552) |#2|)) (-15 -2056 ((-552) |#2| (-751))) (-15 -2056 ((-552) |#2|)) (-15 -4209 (|#3| |#2| (-897))) (-15 -2067 (|#3| |#2|)) (-15 -2078 (|#3| |#2|)) (-15 -2207 (|#3| |#2|)) (-15 -3456 (|#3| |#2|))) (-1025) (-1208 |#1|) (-13 (-399) (-1014 |#1|) (-358) (-1171) (-279))) (T -437))
+((-3456 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) (-2078 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) (-2067 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) (-4209 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1208 *5)))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1208 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))) (-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *5 *3 *6)) (-4 *3 (-1208 *5)) (-4 *6 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))))) (-2044 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1208 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))) (-2035 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1208 *5)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) (-2026 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1208 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))))
+(-10 -7 (-15 -2026 ((-552) |#2|)) (-15 -2035 (|#3| |#2|)) (-15 -2035 (|#3| |#2| (-897))) (-15 -2044 ((-552) |#2|)) (-15 -2056 ((-552) |#2| (-751))) (-15 -2056 ((-552) |#2|)) (-15 -4209 (|#3| |#2| (-897))) (-15 -2067 (|#3| |#2|)) (-15 -2078 (|#3| |#2|)) (-15 -2207 (|#3| |#2|)) (-15 -3456 (|#3| |#2|)))
+((-1449 ((|#2| (-1232 |#1|)) 36)) (-2099 ((|#2| |#2| |#1|) 49)) (-2088 ((|#2| |#2| |#1|) 41)) (-2306 ((|#2| |#2|) 38)) (-3507 (((-112) |#2|) 30)) (-2129 (((-625 |#2|) (-897) (-413 |#2|)) 17)) (-2119 ((|#2| (-897) (-413 |#2|)) 21)) (-2110 (((-718 (-751)) (-413 |#2|)) 25)))
+(((-438 |#1| |#2|) (-10 -7 (-15 -3507 ((-112) |#2|)) (-15 -1449 (|#2| (-1232 |#1|))) (-15 -2306 (|#2| |#2|)) (-15 -2088 (|#2| |#2| |#1|)) (-15 -2099 (|#2| |#2| |#1|)) (-15 -2110 ((-718 (-751)) (-413 |#2|))) (-15 -2119 (|#2| (-897) (-413 |#2|))) (-15 -2129 ((-625 |#2|) (-897) (-413 |#2|)))) (-1025) (-1208 |#1|)) (T -438))
+((-2129 (*1 *2 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-413 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-1025)) (-5 *2 (-625 *6)) (-5 *1 (-438 *5 *6)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-413 *2)) (-4 *2 (-1208 *5)) (-5 *1 (-438 *5 *2)) (-4 *5 (-1025)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-413 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-1025)) (-5 *2 (-718 (-751))) (-5 *1 (-438 *4 *5)))) (-2099 (*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3)))) (-2088 (*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3)))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-1025)) (-4 *2 (-1208 *4)) (-5 *1 (-438 *4 *2)))) (-3507 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1208 *4)))))
+(-10 -7 (-15 -3507 ((-112) |#2|)) (-15 -1449 (|#2| (-1232 |#1|))) (-15 -2306 (|#2| |#2|)) (-15 -2088 (|#2| |#2| |#1|)) (-15 -2099 (|#2| |#2| |#1|)) (-15 -2110 ((-718 (-751)) (-413 |#2|))) (-15 -2119 (|#2| (-897) (-413 |#2|))) (-15 -2129 ((-625 |#2|) (-897) (-413 |#2|))))
+((-2165 (((-751)) 41)) (-2209 (((-751)) 23 (|has| |#1| (-399))) (((-751) (-751)) 22 (|has| |#1| (-399)))) (-2197 (((-552) |#1|) 18 (|has| |#1| (-399)))) (-2186 (((-552) |#1|) 20 (|has| |#1| (-399)))) (-2153 (((-751)) 40) (((-751) (-751)) 39)) (-2140 ((|#1| (-751) (-552)) 29)) (-2175 (((-1237)) 43)))
+(((-439 |#1|) (-10 -7 (-15 -2140 (|#1| (-751) (-552))) (-15 -2153 ((-751) (-751))) (-15 -2153 ((-751))) (-15 -2165 ((-751))) (-15 -2175 ((-1237))) (IF (|has| |#1| (-399)) (PROGN (-15 -2186 ((-552) |#1|)) (-15 -2197 ((-552) |#1|)) (-15 -2209 ((-751) (-751))) (-15 -2209 ((-751)))) |%noBranch|)) (-1025)) (T -439))
+((-2209 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-2209 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-2197 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-2186 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-2175 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-2165 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-2153 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-552)) (-5 *1 (-439 *2)) (-4 *2 (-1025)))))
+(-10 -7 (-15 -2140 (|#1| (-751) (-552))) (-15 -2153 ((-751) (-751))) (-15 -2153 ((-751))) (-15 -2165 ((-751))) (-15 -2175 ((-1237))) (IF (|has| |#1| (-399)) (PROGN (-15 -2186 ((-552) |#1|)) (-15 -2197 ((-552) |#1|)) (-15 -2209 ((-751) (-751))) (-15 -2209 ((-751)))) |%noBranch|))
+((-2218 (((-625 (-552)) (-552)) 61)) (-2951 (((-112) (-167 (-552))) 65)) (-3824 (((-413 (-167 (-552))) (-167 (-552))) 60)))
+(((-440) (-10 -7 (-15 -3824 ((-413 (-167 (-552))) (-167 (-552)))) (-15 -2218 ((-625 (-552)) (-552))) (-15 -2951 ((-112) (-167 (-552)))))) (T -440))
+((-2951 (*1 *2 *3) (-12 (-5 *3 (-167 (-552))) (-5 *2 (-112)) (-5 *1 (-440)))) (-2218 (*1 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-440)) (-5 *3 (-552)))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 (-167 (-552)))) (-5 *1 (-440)) (-5 *3 (-167 (-552))))))
+(-10 -7 (-15 -3824 ((-413 (-167 (-552))) (-167 (-552)))) (-15 -2218 ((-625 (-552)) (-552))) (-15 -2951 ((-112) (-167 (-552)))))
+((-2231 ((|#4| |#4| (-625 |#4|)) 61)) (-2240 (((-625 |#4|) (-625 |#4|) (-1131) (-1131)) 17) (((-625 |#4|) (-625 |#4|) (-1131)) 16) (((-625 |#4|) (-625 |#4|)) 11)))
+(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2231 (|#4| |#4| (-625 |#4|))) (-15 -2240 ((-625 |#4|) (-625 |#4|))) (-15 -2240 ((-625 |#4|) (-625 |#4|) (-1131))) (-15 -2240 ((-625 |#4|) (-625 |#4|) (-1131) (-1131)))) (-302) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -441))
+((-2240 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2240 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-441 *3 *4 *5 *6)))) (-2231 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2231 (|#4| |#4| (-625 |#4|))) (-15 -2240 ((-625 |#4|) (-625 |#4|))) (-15 -2240 ((-625 |#4|) (-625 |#4|) (-1131))) (-15 -2240 ((-625 |#4|) (-625 |#4|) (-1131) (-1131))))
+((-2260 (((-625 (-625 |#4|)) (-625 |#4|) (-112)) 73) (((-625 (-625 |#4|)) (-625 |#4|)) 72) (((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|) (-112)) 66) (((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|)) 67)) (-2251 (((-625 (-625 |#4|)) (-625 |#4|) (-112)) 42) (((-625 (-625 |#4|)) (-625 |#4|)) 63)))
+(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2251 ((-625 (-625 |#4|)) (-625 |#4|))) (-15 -2251 ((-625 (-625 |#4|)) (-625 |#4|) (-112))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|) (-112))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-112)))) (-13 (-302) (-145)) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -442))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8)))) (-2260 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2260 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8)))) (-2260 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2251 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8)))) (-2251 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7)))))
+(-10 -7 (-15 -2251 ((-625 (-625 |#4|)) (-625 |#4|))) (-15 -2251 ((-625 (-625 |#4|)) (-625 |#4|) (-112))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|) (-112))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-112))))
+((-2523 (((-751) |#4|) 12)) (-2403 (((-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|))) |#4| (-751) (-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|)))) 31)) (-2424 (((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2414 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2280 ((|#4| |#4| (-625 |#4|)) 40)) (-2381 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-625 |#4|)) 70)) (-2455 (((-1237) |#4|) 42)) (-2484 (((-1237) (-625 |#4|)) 51)) (-2465 (((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552)) 48)) (-2495 (((-1237) (-552)) 79)) (-2433 (((-625 |#4|) (-625 |#4|)) 77)) (-2514 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|)) |#4| (-751)) 25)) (-2444 (((-552) |#4|) 78)) (-2392 ((|#4| |#4|) 29)) (-2293 (((-625 |#4|) (-625 |#4|) (-552) (-552)) 56)) (-2473 (((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552)) 89)) (-2504 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2304 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-2371 (((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2360 (((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2319 (((-112) |#2| |#2|) 57)) (-2345 (((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2333 (((-112) |#2| |#2| |#2| |#2|) 60)) (-2269 ((|#4| |#4| (-625 |#4|)) 71)))
+(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2269 (|#4| |#4| (-625 |#4|))) (-15 -2280 (|#4| |#4| (-625 |#4|))) (-15 -2293 ((-625 |#4|) (-625 |#4|) (-552) (-552))) (-15 -2304 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2319 ((-112) |#2| |#2|)) (-15 -2333 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2345 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2360 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2371 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2381 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-625 |#4|))) (-15 -2392 (|#4| |#4|)) (-15 -2403 ((-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|))) |#4| (-751) (-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|))))) (-15 -2414 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2424 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2433 ((-625 |#4|) (-625 |#4|))) (-15 -2444 ((-552) |#4|)) (-15 -2455 ((-1237) |#4|)) (-15 -2465 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552))) (-15 -2473 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552))) (-15 -2484 ((-1237) (-625 |#4|))) (-15 -2495 ((-1237) (-552))) (-15 -2504 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2514 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|)) |#4| (-751))) (-15 -2523 ((-751) |#4|))) (-446) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -443))
+((-2523 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-751)) (|:| -4256 *4))) (-5 *5 (-751)) (-4 *4 (-925 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-443 *6 *7 *8 *4)))) (-2504 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-773)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2473 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-773)) (-4 *4 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) (-5 *1 (-443 *5 *6 *7 *4)))) (-2465 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-773)) (-4 *4 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) (-5 *1 (-443 *5 *6 *7 *4)))) (-2455 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-552)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))) (-2433 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-443 *3 *4 *5 *6)))) (-2424 (*1 *2 *2 *2) (-12 (-5 *2 (-625 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-773)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) (-5 *1 (-443 *3 *4 *5 *6)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-773)) (-4 *2 (-925 *4 *5 *6)) (-5 *1 (-443 *4 *5 *6 *2)) (-4 *4 (-446)) (-4 *6 (-827)))) (-2403 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 *3)))) (-5 *4 (-751)) (-4 *3 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-443 *5 *6 *7 *3)))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-443 *5 *6 *7 *3)))) (-2371 (*1 *2 *3 *2) (-12 (-5 *2 (-625 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-773)) (-4 *6 (-925 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-827)) (-5 *1 (-443 *4 *3 *5 *6)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-625 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-773)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) (-5 *1 (-443 *3 *4 *5 *6)))) (-2345 (*1 *2 *3 *2) (-12 (-5 *2 (-625 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-773)) (-4 *3 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *3)))) (-2333 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-925 *4 *3 *5)))) (-2319 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-925 *4 *3 *5)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-773)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2293 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-552)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2280 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *2)))) (-2269 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2269 (|#4| |#4| (-625 |#4|))) (-15 -2280 (|#4| |#4| (-625 |#4|))) (-15 -2293 ((-625 |#4|) (-625 |#4|) (-552) (-552))) (-15 -2304 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2319 ((-112) |#2| |#2|)) (-15 -2333 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2345 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2360 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2371 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2381 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-625 |#4|))) (-15 -2392 (|#4| |#4|)) (-15 -2403 ((-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|))) |#4| (-751) (-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|))))) (-15 -2414 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2424 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2433 ((-625 |#4|) (-625 |#4|))) (-15 -2444 ((-552) |#4|)) (-15 -2455 ((-1237) |#4|)) (-15 -2465 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552))) (-15 -2473 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552))) (-15 -2484 ((-1237) (-625 |#4|))) (-15 -2495 ((-1237) (-552))) (-15 -2504 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2514 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|)) |#4| (-751))) (-15 -2523 ((-751) |#4|)))
+((-2949 ((|#4| |#4| (-625 |#4|)) 22 (|has| |#1| (-358)))) (-1540 (((-625 |#4|) (-625 |#4|) (-1131) (-1131)) 41) (((-625 |#4|) (-625 |#4|) (-1131)) 40) (((-625 |#4|) (-625 |#4|)) 35)))
+(((-444 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1540 ((-625 |#4|) (-625 |#4|))) (-15 -1540 ((-625 |#4|) (-625 |#4|) (-1131))) (-15 -1540 ((-625 |#4|) (-625 |#4|) (-1131) (-1131))) (IF (|has| |#1| (-358)) (-15 -2949 (|#4| |#4| (-625 |#4|))) |%noBranch|)) (-446) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -444))
+((-2949 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-358)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *2)))) (-1540 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *7)))) (-1540 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *7)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1540 ((-625 |#4|) (-625 |#4|))) (-15 -1540 ((-625 |#4|) (-625 |#4|) (-1131))) (-15 -1540 ((-625 |#4|) (-625 |#4|) (-1131) (-1131))) (IF (|has| |#1| (-358)) (-15 -2949 (|#4| |#4| (-625 |#4|))) |%noBranch|))
+((-2605 (($ $ $) 14) (($ (-625 $)) 21)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 41)) (-2633 (($ $ $) NIL) (($ (-625 $)) 22)))
+(((-445 |#1|) (-10 -8 (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -2605 (|#1| (-625 |#1|))) (-15 -2605 (|#1| |#1| |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|))) (-446)) (T -445))
+NIL
+(-10 -8 (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -2605 (|#1| (-625 |#1|))) (-15 -2605 (|#1| |#1| |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-2802 (((-3 $ "failed") $ $) 40)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-446) (-138)) (T -446))
-((-3495 (*1 *1 *1 *1) (-4 *1 (-446))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-446)))) (-2013 (*1 *1 *1 *1) (-4 *1 (-446))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-446)))) (-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-446)))))
-(-13 (-545) (-10 -8 (-15 -3495 ($ $ $)) (-15 -3495 ($ (-622 $))) (-15 -2013 ($ $ $)) (-15 -2013 ($ (-622 $))) (-15 -3041 ((-1143 $) (-1143 $) (-1143 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1892 (((-3 $ #1="failed")) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3574 (((-1231 (-669 (-402 (-922 |#1|)))) (-1231 $)) NIL) (((-1231 (-669 (-402 (-922 |#1|))))) NIL)) (-1845 (((-1231 $)) NIL)) (-3896 (($) NIL T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed")) NIL)) (-1819 (((-3 $ #1#)) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-1907 (((-669 (-402 (-922 |#1|))) (-1231 $)) NIL) (((-669 (-402 (-922 |#1|)))) NIL)) (-1843 (((-402 (-922 |#1|)) $) NIL)) (-1905 (((-669 (-402 (-922 |#1|))) $ (-1231 $)) NIL) (((-669 (-402 (-922 |#1|))) $) NIL)) (-2496 (((-3 $ #1#) $) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-2022 (((-1143 (-922 (-402 (-922 |#1|))))) NIL (|has| (-402 (-922 |#1|)) (-358))) (((-1143 (-402 (-922 |#1|)))) 84 (|has| |#1| (-545)))) (-2499 (($ $ (-895)) NIL)) (-1841 (((-402 (-922 |#1|)) $) NIL)) (-1821 (((-1143 (-402 (-922 |#1|))) $) 82 (|has| (-402 (-922 |#1|)) (-545)))) (-1909 (((-402 (-922 |#1|)) (-1231 $)) NIL) (((-402 (-922 |#1|))) NIL)) (-1839 (((-1143 (-402 (-922 |#1|))) $) NIL)) (-1833 (((-112)) NIL)) (-1911 (($ (-1231 (-402 (-922 |#1|))) (-1231 $)) 103) (($ (-1231 (-402 (-922 |#1|)))) NIL)) (-3821 (((-3 $ #1#) $) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-3444 (((-895)) NIL)) (-1830 (((-112)) NIL)) (-2524 (($ $ (-895)) NIL)) (-1826 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-1828 (((-112)) NIL)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed")) NIL)) (-1820 (((-3 $ #1#)) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-1908 (((-669 (-402 (-922 |#1|))) (-1231 $)) NIL) (((-669 (-402 (-922 |#1|)))) NIL)) (-1844 (((-402 (-922 |#1|)) $) NIL)) (-1906 (((-669 (-402 (-922 |#1|))) $ (-1231 $)) NIL) (((-669 (-402 (-922 |#1|))) $) NIL)) (-2497 (((-3 $ #1#) $) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-2026 (((-1143 (-922 (-402 (-922 |#1|))))) NIL (|has| (-402 (-922 |#1|)) (-358))) (((-1143 (-402 (-922 |#1|)))) 83 (|has| |#1| (-545)))) (-2498 (($ $ (-895)) NIL)) (-1842 (((-402 (-922 |#1|)) $) NIL)) (-1822 (((-1143 (-402 (-922 |#1|))) $) 77 (|has| (-402 (-922 |#1|)) (-545)))) (-1910 (((-402 (-922 |#1|)) (-1231 $)) NIL) (((-402 (-922 |#1|))) NIL)) (-1840 (((-1143 (-402 (-922 |#1|))) $) NIL)) (-1834 (((-112)) NIL)) (-3593 (((-1131) $) NIL)) (-1825 (((-112)) NIL)) (-1827 (((-112)) NIL)) (-1829 (((-112)) NIL)) (-3594 (((-1093) $) NIL)) (-2016 (((-402 (-922 |#1|)) $ $) 71 (|has| |#1| (-545)))) (-2020 (((-402 (-922 |#1|)) $) 93 (|has| |#1| (-545)))) (-2019 (((-402 (-922 |#1|)) $) 95 (|has| |#1| (-545)))) (-2021 (((-1143 (-402 (-922 |#1|))) $) 88 (|has| |#1| (-545)))) (-2015 (((-402 (-922 |#1|))) 72 (|has| |#1| (-545)))) (-2018 (((-402 (-922 |#1|)) $ $) 64 (|has| |#1| (-545)))) (-2024 (((-402 (-922 |#1|)) $) 92 (|has| |#1| (-545)))) (-2023 (((-402 (-922 |#1|)) $) 94 (|has| |#1| (-545)))) (-2025 (((-1143 (-402 (-922 |#1|))) $) 87 (|has| |#1| (-545)))) (-2017 (((-402 (-922 |#1|))) 68 (|has| |#1| (-545)))) (-2027 (($) 101) (($ (-1149)) 107) (($ (-1231 (-1149))) 106) (($ (-1231 $)) 96) (($ (-1149) (-1231 $)) 105) (($ (-1231 (-1149)) (-1231 $)) 104)) (-1832 (((-112)) NIL)) (-4159 (((-402 (-922 |#1|)) $ (-538)) NIL)) (-3575 (((-1231 (-402 (-922 |#1|))) $ (-1231 $)) 98) (((-669 (-402 (-922 |#1|))) (-1231 $) (-1231 $)) NIL) (((-1231 (-402 (-922 |#1|))) $) 40) (((-669 (-402 (-922 |#1|))) (-1231 $)) NIL)) (-4330 (((-1231 (-402 (-922 |#1|))) $) NIL) (($ (-1231 (-402 (-922 |#1|)))) 37)) (-2014 (((-622 (-922 (-402 (-922 |#1|)))) (-1231 $)) NIL) (((-622 (-922 (-402 (-922 |#1|))))) NIL) (((-622 (-922 |#1|)) (-1231 $)) 99 (|has| |#1| (-545))) (((-622 (-922 |#1|))) 100 (|has| |#1| (-545)))) (-2686 (($ $ $) NIL)) (-1838 (((-112)) NIL)) (-4317 (((-840) $) NIL) (($ (-1231 (-402 (-922 |#1|)))) NIL)) (-2128 (((-1231 $)) 60)) (-1823 (((-622 (-1231 (-402 (-922 |#1|))))) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-2687 (($ $ $ $) NIL)) (-1836 (((-112)) NIL)) (-2880 (($ (-669 (-402 (-922 |#1|))) $) NIL)) (-2685 (($ $ $) NIL)) (-1837 (((-112)) NIL)) (-1835 (((-112)) NIL)) (-1831 (((-112)) NIL)) (-2991 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) 97)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 56) (($ $ (-402 (-922 |#1|))) NIL) (($ (-402 (-922 |#1|)) $) NIL) (($ (-1115 |#2| (-402 (-922 |#1|))) $) NIL)))
-(((-447 |#1| |#2| |#3| |#4|) (-13 (-413 (-402 (-922 |#1|))) (-628 (-1115 |#2| (-402 (-922 |#1|)))) (-10 -8 (-15 -4317 ($ (-1231 (-402 (-922 |#1|))))) (-15 -2029 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -2028 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -2027 ($)) (-15 -2027 ($ (-1149))) (-15 -2027 ($ (-1231 (-1149)))) (-15 -2027 ($ (-1231 $))) (-15 -2027 ($ (-1149) (-1231 $))) (-15 -2027 ($ (-1231 (-1149)) (-1231 $))) (IF (|has| |#1| (-545)) (PROGN (-15 -2026 ((-1143 (-402 (-922 |#1|))))) (-15 -2025 ((-1143 (-402 (-922 |#1|))) $)) (-15 -2024 ((-402 (-922 |#1|)) $)) (-15 -2023 ((-402 (-922 |#1|)) $)) (-15 -2022 ((-1143 (-402 (-922 |#1|))))) (-15 -2021 ((-1143 (-402 (-922 |#1|))) $)) (-15 -2020 ((-402 (-922 |#1|)) $)) (-15 -2019 ((-402 (-922 |#1|)) $)) (-15 -2018 ((-402 (-922 |#1|)) $ $)) (-15 -2017 ((-402 (-922 |#1|)))) (-15 -2016 ((-402 (-922 |#1|)) $ $)) (-15 -2015 ((-402 (-922 |#1|)))) (-15 -2014 ((-622 (-922 |#1|)) (-1231 $))) (-15 -2014 ((-622 (-922 |#1|))))) |%noBranch|))) (-170) (-895) (-622 (-1149)) (-1231 (-669 |#1|))) (T -447))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-402 (-922 *3)))) (-4 *3 (-170)) (-14 *6 (-1231 (-669 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))))) (-2029 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -2128 (-622 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2028 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -2128 (-622 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2027 (*1 *1) (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-895)) (-14 *4 (-622 (-1149))) (-14 *5 (-1231 (-669 *2))))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 *2)) (-14 *6 (-1231 (-669 *3))))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1231 (-1149))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1231 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2027 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-622 *2)) (-14 *7 (-1231 (-669 *4))))) (-2027 (*1 *1 *2 *3) (-12 (-5 *2 (-1231 (-1149))) (-5 *3 (-1231 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-622 (-1149))) (-14 *7 (-1231 (-669 *4))))) (-2026 (*1 *2) (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2022 (*1 *2) (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2018 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2017 (*1 *2) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2016 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2015 (*1 *2) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1231 (-447 *4 *5 *6 *7))) (-5 *2 (-622 (-922 *4))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-545)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-622 (-1149))) (-14 *7 (-1231 (-669 *4))))) (-2014 (*1 *2) (-12 (-5 *2 (-622 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))))
-(-13 (-413 (-402 (-922 |#1|))) (-628 (-1115 |#2| (-402 (-922 |#1|)))) (-10 -8 (-15 -4317 ($ (-1231 (-402 (-922 |#1|))))) (-15 -2029 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -2028 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -2027 ($)) (-15 -2027 ($ (-1149))) (-15 -2027 ($ (-1231 (-1149)))) (-15 -2027 ($ (-1231 $))) (-15 -2027 ($ (-1149) (-1231 $))) (-15 -2027 ($ (-1231 (-1149)) (-1231 $))) (IF (|has| |#1| (-545)) (PROGN (-15 -2026 ((-1143 (-402 (-922 |#1|))))) (-15 -2025 ((-1143 (-402 (-922 |#1|))) $)) (-15 -2024 ((-402 (-922 |#1|)) $)) (-15 -2023 ((-402 (-922 |#1|)) $)) (-15 -2022 ((-1143 (-402 (-922 |#1|))))) (-15 -2021 ((-1143 (-402 (-922 |#1|))) $)) (-15 -2020 ((-402 (-922 |#1|)) $)) (-15 -2019 ((-402 (-922 |#1|)) $)) (-15 -2018 ((-402 (-922 |#1|)) $ $)) (-15 -2017 ((-402 (-922 |#1|)))) (-15 -2016 ((-402 (-922 |#1|)) $ $)) (-15 -2015 ((-402 (-922 |#1|)))) (-15 -2014 ((-622 (-922 |#1|)) (-1231 $))) (-15 -2014 ((-622 (-922 |#1|))))) |%noBranch|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 13)) (-3417 (((-622 (-841 |#1|)) $) 75)) (-3419 (((-1143 $) $ (-841 |#1|)) 46) (((-1143 |#2|) $) 118)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-2178 (($ $) NIL (|has| |#2| (-545)))) (-2176 (((-112) $) NIL (|has| |#2| (-545)))) (-3152 (((-751) $) 21) (((-751) $ (-622 (-841 |#1|))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL (|has| |#2| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) 44) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-841 |#1|) #2#) $) NIL)) (-3507 ((|#2| $) 42) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-841 |#1|) $) NIL)) (-4116 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-2059 (($ $ (-622 (-538))) 80)) (-4319 (($ $) 68)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#2| (-886)))) (-1721 (($ $ |#2| |#3| $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) 58)) (-3420 (($ (-1143 |#2|) (-841 |#1|)) 123) (($ (-1143 $) (-841 |#1|)) 52)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) 59)) (-3226 (($ |#2| |#3|) 28) (($ $ (-841 |#1|) (-751)) 30) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-841 |#1|)) NIL)) (-3153 ((|#3| $) NIL) (((-751) $ (-841 |#1|)) 50) (((-622 (-751)) $ (-622 (-841 |#1|))) 57)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-1722 (($ (-1 |#3| |#3|) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-3418 (((-3 (-841 |#1|) #3="failed") $) 39)) (-3227 (($ $) NIL)) (-3525 ((|#2| $) 41)) (-2013 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -2493 (-751))) #3#) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) 40)) (-1915 ((|#2| $) 116)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) 128 (|has| |#2| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-886)))) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-841 |#1|) |#2|) 87) (($ $ (-622 (-841 |#1|)) (-622 |#2|)) 90) (($ $ (-841 |#1|) $) 85) (($ $ (-622 (-841 |#1|)) (-622 $)) 106)) (-4117 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4170 (($ $ (-841 |#1|)) 53) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4307 ((|#3| $) 67) (((-751) $ (-841 |#1|)) 37) (((-622 (-751)) $ (-622 (-841 |#1|))) 56)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-841 |#1|) (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#2| $) 125 (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4317 (((-840) $) 145) (($ (-538)) NIL) (($ |#2|) 86) (($ (-841 |#1|)) 31) (($ (-402 (-538))) NIL (-3891 (|has| |#2| (-38 (-402 (-538)))) (|has| |#2| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#2| (-545)))) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ |#3|) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#2| (-545)))) (-2991 (($) 17 T CONST)) (-2997 (($) 25 T CONST)) (-3002 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ |#2|) 64 (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 111)) (** (($ $ (-895)) NIL) (($ $ (-751)) 109)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 29) (($ $ (-402 (-538))) NIL (|has| |#2| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#2| (-38 (-402 (-538))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-448 |#1| |#2| |#3|) (-13 (-926 |#2| |#3| (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538)))))) (-622 (-1149)) (-1025) (-234 (-4316 |#1|) (-751))) (T -448))
-((-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-14 *3 (-622 (-1149))) (-5 *1 (-448 *3 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-234 (-4316 *3) (-751))))))
-(-13 (-926 |#2| |#3| (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538))))))
-((-2033 (((-112) |#1| (-622 |#2|)) 69)) (-2031 (((-3 (-1231 (-622 |#2|)) "failed") (-751) |#1| (-622 |#2|)) 78)) (-2032 (((-3 (-622 |#2|) "failed") |#2| |#1| (-1231 (-622 |#2|))) 80)) (-2152 ((|#2| |#2| |#1|) 28)) (-2030 (((-751) |#2| (-622 |#2|)) 20)))
-(((-449 |#1| |#2|) (-10 -7 (-15 -2152 (|#2| |#2| |#1|)) (-15 -2030 ((-751) |#2| (-622 |#2|))) (-15 -2031 ((-3 (-1231 (-622 |#2|)) "failed") (-751) |#1| (-622 |#2|))) (-15 -2032 ((-3 (-622 |#2|) "failed") |#2| |#1| (-1231 (-622 |#2|)))) (-15 -2033 ((-112) |#1| (-622 |#2|)))) (-302) (-1207 |#1|)) (T -449))
-((-2033 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *5)) (-4 *5 (-1207 *3)) (-4 *3 (-302)) (-5 *2 (-112)) (-5 *1 (-449 *3 *5)))) (-2032 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1231 (-622 *3))) (-4 *4 (-302)) (-5 *2 (-622 *3)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1207 *4)))) (-2031 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-302)) (-4 *6 (-1207 *4)) (-5 *2 (-1231 (-622 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-622 *6)))) (-2030 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-302)) (-5 *2 (-751)) (-5 *1 (-449 *5 *3)))) (-2152 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1207 *3)))))
-(-10 -7 (-15 -2152 (|#2| |#2| |#1|)) (-15 -2030 ((-751) |#2| (-622 |#2|))) (-15 -2031 ((-3 (-1231 (-622 |#2|)) "failed") (-751) |#1| (-622 |#2|))) (-15 -2032 ((-3 (-622 |#2|) "failed") |#2| |#1| (-1231 (-622 |#2|)))) (-15 -2033 ((-112) |#1| (-622 |#2|))))
-((-4092 (((-400 |#5|) |#5|) 24)))
-(((-450 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4092 ((-400 |#5|) |#5|))) (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149))))) (-773) (-545) (-545) (-926 |#4| |#2| |#1|)) (T -450))
-((-4092 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149)))))) (-4 *5 (-773)) (-4 *7 (-545)) (-5 *2 (-400 *3)) (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-545)) (-4 *3 (-926 *7 *5 *4)))))
-(-10 -7 (-15 -4092 ((-400 |#5|) |#5|)))
-((-3033 ((|#3|) 37)) (-3041 (((-1143 |#4|) (-1143 |#4|) (-1143 |#4|)) 33)))
-(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3041 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3033 (|#3|))) (-773) (-827) (-886) (-926 |#3| |#1| |#2|)) (T -451))
-((-3033 (*1 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-886)) (-5 *1 (-451 *3 *4 *2 *5)) (-4 *5 (-926 *2 *3 *4)))) (-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-886)) (-5 *1 (-451 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3041 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3033 (|#3|)))
-((-4092 (((-400 (-1143 |#1|)) (-1143 |#1|)) 43)))
-(((-452 |#1|) (-10 -7 (-15 -4092 ((-400 (-1143 |#1|)) (-1143 |#1|)))) (-302)) (T -452))
-((-4092 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-400 (-1143 *4))) (-5 *1 (-452 *4)) (-5 *3 (-1143 *4)))))
-(-10 -7 (-15 -4092 ((-400 (-1143 |#1|)) (-1143 |#1|))))
-((-4089 (((-51) |#2| (-1149) (-288 |#2|) (-1198 (-751))) 42) (((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-751))) 41) (((-51) |#2| (-1149) (-288 |#2|)) 35) (((-51) (-1 |#2| (-538)) (-288 |#2|)) 28)) (-4178 (((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))) 80) (((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))) 79) (((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538))) 78) (((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538))) 77) (((-51) |#2| (-1149) (-288 |#2|)) 72) (((-51) (-1 |#2| (-538)) (-288 |#2|)) 71)) (-4141 (((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))) 66) (((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))) 64)) (-4138 (((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538))) 48) (((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538))) 47)))
-(((-453 |#1| |#2|) (-10 -7 (-15 -4089 ((-51) (-1 |#2| (-538)) (-288 |#2|))) (-15 -4089 ((-51) |#2| (-1149) (-288 |#2|))) (-15 -4089 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-751)))) (-15 -4089 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-751)))) (-15 -4138 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538)))) (-15 -4138 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538)))) (-15 -4141 ((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4141 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4178 ((-51) (-1 |#2| (-538)) (-288 |#2|))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|))) (-15 -4178 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538)))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538)))) (-15 -4178 ((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))))) (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -453))
-((-4178 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-402 (-538)))) (-5 *7 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *8))) (-4 *8 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *8 *3)))) (-4178 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-538)))) (-5 *4 (-288 *8)) (-5 *5 (-1198 (-402 (-538)))) (-5 *6 (-402 (-538))) (-4 *8 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *7 *8)))) (-4178 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *7 *3)))) (-4178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-538))) (-4 *7 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *6 *7)))) (-4178 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *6 *3)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-538))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *5 *6)))) (-4141 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-402 (-538)))) (-5 *7 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *8))) (-4 *8 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *8 *3)))) (-4141 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-538)))) (-5 *4 (-288 *8)) (-5 *5 (-1198 (-402 (-538)))) (-5 *6 (-402 (-538))) (-4 *8 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *7 *8)))) (-4138 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *7 *3)))) (-4138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-538))) (-4 *7 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *6 *7)))) (-4089 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-751))) (-4 *3 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *7 *3)))) (-4089 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-751))) (-4 *7 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *6 *7)))) (-4089 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *6 *3)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-538))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *5 *6)))))
-(-10 -7 (-15 -4089 ((-51) (-1 |#2| (-538)) (-288 |#2|))) (-15 -4089 ((-51) |#2| (-1149) (-288 |#2|))) (-15 -4089 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-751)))) (-15 -4089 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-751)))) (-15 -4138 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538)))) (-15 -4138 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538)))) (-15 -4141 ((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4141 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4178 ((-51) (-1 |#2| (-538)) (-288 |#2|))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|))) (-15 -4178 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538)))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538)))) (-15 -4178 ((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))))
-((-2152 ((|#2| |#2| |#1|) 15)) (-2035 (((-622 |#2|) |#2| (-622 |#2|) |#1| (-895)) 69)) (-2034 (((-2 (|:| |plist| (-622 |#2|)) (|:| |modulo| |#1|)) |#2| (-622 |#2|) |#1| (-895)) 60)))
-(((-454 |#1| |#2|) (-10 -7 (-15 -2034 ((-2 (|:| |plist| (-622 |#2|)) (|:| |modulo| |#1|)) |#2| (-622 |#2|) |#1| (-895))) (-15 -2035 ((-622 |#2|) |#2| (-622 |#2|) |#1| (-895))) (-15 -2152 (|#2| |#2| |#1|))) (-302) (-1207 |#1|)) (T -454))
-((-2152 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1207 *3)))) (-2035 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-622 *3)) (-5 *5 (-895)) (-4 *3 (-1207 *4)) (-4 *4 (-302)) (-5 *1 (-454 *4 *3)))) (-2034 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-895)) (-4 *5 (-302)) (-4 *3 (-1207 *5)) (-5 *2 (-2 (|:| |plist| (-622 *3)) (|:| |modulo| *5))) (-5 *1 (-454 *5 *3)) (-5 *4 (-622 *3)))))
-(-10 -7 (-15 -2034 ((-2 (|:| |plist| (-622 |#2|)) (|:| |modulo| |#1|)) |#2| (-622 |#2|) |#1| (-895))) (-15 -2035 ((-622 |#2|) |#2| (-622 |#2|) |#1| (-895))) (-15 -2152 (|#2| |#2| |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 28)) (-4070 (($ |#3|) 25)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) 32)) (-2036 (($ |#2| |#4| $) 33)) (-3226 (($ |#2| (-694 |#3| |#4| |#5|)) 24)) (-3227 (((-694 |#3| |#4| |#5|) $) 15)) (-2038 ((|#3| $) 19)) (-2039 ((|#4| $) 17)) (-3525 ((|#2| $) 29)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2037 (($ |#2| |#3| |#4|) 26)) (-2991 (($) 36 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 34)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-455 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-698 |#6|) (-698 |#2|) (-10 -8 (-15 -3525 (|#2| $)) (-15 -3227 ((-694 |#3| |#4| |#5|) $)) (-15 -2039 (|#4| $)) (-15 -2038 (|#3| $)) (-15 -4319 ($ $)) (-15 -3226 ($ |#2| (-694 |#3| |#4| |#5|))) (-15 -4070 ($ |#3|)) (-15 -2037 ($ |#2| |#3| |#4|)) (-15 -2036 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-622 (-1149)) (-170) (-827) (-234 (-4316 |#1|) (-751)) (-1 (-112) (-2 (|:| -2492 |#3|) (|:| -2493 |#4|)) (-2 (|:| -2492 |#3|) (|:| -2493 |#4|))) (-926 |#2| |#4| (-841 |#1|))) (T -455))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-4316 *3) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6)) (-2 (|:| -2492 *5) (|:| -2493 *6)))) (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-827)) (-4 *2 (-926 *4 *6 (-841 *3))))) (-3525 (*1 *2 *1) (-12 (-14 *3 (-622 (-1149))) (-4 *5 (-234 (-4316 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *4) (|:| -2493 *5)) (-2 (|:| -2492 *4) (|:| -2493 *5)))) (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-827)) (-4 *7 (-926 *2 *5 (-841 *3))))) (-3227 (*1 *2 *1) (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-4316 *3) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6)) (-2 (|:| -2492 *5) (|:| -2493 *6)))) (-5 *2 (-694 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8)) (-4 *5 (-827)) (-4 *8 (-926 *4 *6 (-841 *3))))) (-2039 (*1 *2 *1) (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *2)) (-2 (|:| -2492 *5) (|:| -2493 *2)))) (-4 *2 (-234 (-4316 *3) (-751))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7)) (-4 *5 (-827)) (-4 *7 (-926 *4 *2 (-841 *3))))) (-2038 (*1 *2 *1) (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-4316 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *5)) (-2 (|:| -2492 *2) (|:| -2493 *5)))) (-4 *2 (-827)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *7 (-926 *4 *5 (-841 *3))))) (-4319 (*1 *1 *1) (-12 (-14 *2 (-622 (-1149))) (-4 *3 (-170)) (-4 *5 (-234 (-4316 *2) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *4) (|:| -2493 *5)) (-2 (|:| -2492 *4) (|:| -2493 *5)))) (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-827)) (-4 *7 (-926 *3 *5 (-841 *2))))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-694 *5 *6 *7)) (-4 *5 (-827)) (-4 *6 (-234 (-4316 *4) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6)) (-2 (|:| -2492 *5) (|:| -2493 *6)))) (-14 *4 (-622 (-1149))) (-4 *2 (-170)) (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) (-4 *8 (-926 *2 *6 (-841 *4))))) (-4070 (*1 *1 *2) (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-4316 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *5)) (-2 (|:| -2492 *2) (|:| -2493 *5)))) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-827)) (-4 *7 (-926 *4 *5 (-841 *3))))) (-2037 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-622 (-1149))) (-4 *2 (-170)) (-4 *4 (-234 (-4316 *5) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *3) (|:| -2493 *4)) (-2 (|:| -2492 *3) (|:| -2493 *4)))) (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-827)) (-4 *7 (-926 *2 *4 (-841 *5))))) (-2036 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-622 (-1149))) (-4 *2 (-170)) (-4 *3 (-234 (-4316 *4) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *3)) (-2 (|:| -2492 *5) (|:| -2493 *3)))) (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-827)) (-4 *7 (-926 *2 *3 (-841 *4))))))
-(-13 (-698 |#6|) (-698 |#2|) (-10 -8 (-15 -3525 (|#2| $)) (-15 -3227 ((-694 |#3| |#4| |#5|) $)) (-15 -2039 (|#4| $)) (-15 -2038 (|#3| $)) (-15 -4319 ($ $)) (-15 -3226 ($ |#2| (-694 |#3| |#4| |#5|))) (-15 -4070 ($ |#3|)) (-15 -2037 ($ |#2| |#3| |#4|)) (-15 -2036 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2040 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2040 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-773) (-827) (-545) (-926 |#3| |#1| |#2|) (-13 (-1014 (-402 (-538))) (-358) (-10 -8 (-15 -4317 ($ |#4|)) (-15 -3331 (|#4| $)) (-15 -3330 (|#4| $))))) (T -456))
-((-2040 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-827)) (-4 *5 (-773)) (-4 *6 (-545)) (-4 *7 (-926 *6 *5 *3)) (-5 *1 (-456 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1014 (-402 (-538))) (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))))
-(-10 -7 (-15 -2040 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2898 (((-112) $ $) NIL)) (-3417 (((-622 |#3|) $) 41)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) NIL (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-3233 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 47)) (-3507 (($ (-622 |#4|)) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3765 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353)))) (-2068 (((-622 |#4|) $) 18 (|has| $ (-6 -4353)))) (-3531 ((|#3| $) 45)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#4|) $) 14 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2072 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 21)) (-3247 (((-622 |#3|) $) NIL)) (-3246 (((-112) |#3| $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-3594 (((-1093) $) NIL)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 39)) (-3928 (($) 17)) (-2069 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) 16)) (-4330 (((-527) $) NIL (|has| |#4| (-598 (-527)))) (($ (-622 |#4|)) 49)) (-3884 (($ (-622 |#4|)) 13)) (-3243 (($ $ |#3|) NIL)) (-3245 (($ $ |#3|) NIL)) (-3244 (($ $ |#3|) NIL)) (-4317 (((-840) $) 38) (((-622 |#4|) $) 48)) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 30)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-457 |#1| |#2| |#3| |#4|) (-13 (-952 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4330 ($ (-622 |#4|))) (-6 -4353) (-6 -4354))) (-1025) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -457))
-((-4330 (*1 *1 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-457 *3 *4 *5 *6)))))
-(-13 (-952 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4330 ($ (-622 |#4|))) (-6 -4353) (-6 -4354)))
-((-2991 (($) 11)) (-2997 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-458 |#1| |#2| |#3|) (-10 -8 (-15 -2997 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2991 (|#1|))) (-459 |#2| |#3|) (-170) (-23)) (T -458))
-NIL
-(-10 -8 (-15 -2997 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2991 (|#1|)))
-((-2898 (((-112) $ $) 7)) (-3508 (((-3 |#1| "failed") $) 26)) (-3507 ((|#1| $) 25)) (-4304 (($ $ $) 23)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4307 ((|#2| $) 19)) (-4317 (((-840) $) 11) (($ |#1|) 27)) (-2991 (($) 18 T CONST)) (-2997 (($) 24 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 15) (($ $ $) 13)) (-4199 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-2633 (*1 *1 *1 *1) (-4 *1 (-446))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-446)))) (-2605 (*1 *1 *1 *1) (-4 *1 (-446))) (-2605 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-446)))) (-4306 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-446)))))
+(-13 (-544) (-10 -8 (-15 -2633 ($ $ $)) (-15 -2633 ($ (-625 $))) (-15 -2605 ($ $ $)) (-15 -2605 ($ (-625 $))) (-15 -4306 ((-1145 $) (-1145 $) (-1145 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3618 (((-3 $ "failed")) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2770 (((-1232 (-669 (-402 (-928 |#1|)))) (-1232 $)) NIL) (((-1232 (-669 (-402 (-928 |#1|))))) NIL)) (-3208 (((-1232 $)) NIL)) (-3101 (($) NIL T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL)) (-4152 (((-3 $ "failed")) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-2629 (((-669 (-402 (-928 |#1|))) (-1232 $)) NIL) (((-669 (-402 (-928 |#1|)))) NIL)) (-3192 (((-402 (-928 |#1|)) $) NIL)) (-2612 (((-669 (-402 (-928 |#1|))) $ (-1232 $)) NIL) (((-669 (-402 (-928 |#1|))) $) NIL)) (-3598 (((-3 $ "failed") $) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-1392 (((-1145 (-928 (-402 (-928 |#1|))))) NIL (|has| (-402 (-928 |#1|)) (-358))) (((-1145 (-402 (-928 |#1|)))) 84 (|has| |#1| (-544)))) (-3629 (($ $ (-897)) NIL)) (-3174 (((-402 (-928 |#1|)) $) NIL)) (-4175 (((-1145 (-402 (-928 |#1|))) $) 82 (|has| (-402 (-928 |#1|)) (-544)))) (-2648 (((-402 (-928 |#1|)) (-1232 $)) NIL) (((-402 (-928 |#1|))) NIL)) (-3159 (((-1145 (-402 (-928 |#1|))) $) NIL)) (-4303 (((-112)) NIL)) (-2670 (($ (-1232 (-402 (-928 |#1|))) (-1232 $)) 103) (($ (-1232 (-402 (-928 |#1|)))) NIL)) (-4174 (((-3 $ "failed") $) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-3442 (((-897)) NIL)) (-4272 (((-112)) NIL)) (-2712 (($ $ (-897)) NIL)) (-4228 (((-112)) NIL)) (-4207 (((-112)) NIL)) (-4250 (((-112)) NIL)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL)) (-4164 (((-3 $ "failed")) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-2640 (((-669 (-402 (-928 |#1|))) (-1232 $)) NIL) (((-669 (-402 (-928 |#1|)))) NIL)) (-3199 (((-402 (-928 |#1|)) $) NIL)) (-2619 (((-669 (-402 (-928 |#1|))) $ (-1232 $)) NIL) (((-669 (-402 (-928 |#1|))) $) NIL)) (-3609 (((-3 $ "failed") $) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-1433 (((-1145 (-928 (-402 (-928 |#1|))))) NIL (|has| (-402 (-928 |#1|)) (-358))) (((-1145 (-402 (-928 |#1|)))) 83 (|has| |#1| (-544)))) (-3619 (($ $ (-897)) NIL)) (-3182 (((-402 (-928 |#1|)) $) NIL)) (-4187 (((-1145 (-402 (-928 |#1|))) $) 77 (|has| (-402 (-928 |#1|)) (-544)))) (-2658 (((-402 (-928 |#1|)) (-1232 $)) NIL) (((-402 (-928 |#1|))) NIL)) (-3166 (((-1145 (-402 (-928 |#1|))) $) NIL)) (-4312 (((-112)) NIL)) (-2883 (((-1131) $) NIL)) (-4218 (((-112)) NIL)) (-4239 (((-112)) NIL)) (-4261 (((-112)) NIL)) (-2831 (((-1093) $) NIL)) (-1332 (((-402 (-928 |#1|)) $ $) 71 (|has| |#1| (-544)))) (-1374 (((-402 (-928 |#1|)) $) 93 (|has| |#1| (-544)))) (-1363 (((-402 (-928 |#1|)) $) 95 (|has| |#1| (-544)))) (-1383 (((-1145 (-402 (-928 |#1|))) $) 88 (|has| |#1| (-544)))) (-1322 (((-402 (-928 |#1|))) 72 (|has| |#1| (-544)))) (-1351 (((-402 (-928 |#1|)) $ $) 64 (|has| |#1| (-544)))) (-1412 (((-402 (-928 |#1|)) $) 92 (|has| |#1| (-544)))) (-1402 (((-402 (-928 |#1|)) $) 94 (|has| |#1| (-544)))) (-1421 (((-1145 (-402 (-928 |#1|))) $) 87 (|has| |#1| (-544)))) (-1343 (((-402 (-928 |#1|))) 68 (|has| |#1| (-544)))) (-1446 (($) 101) (($ (-1149)) 107) (($ (-1232 (-1149))) 106) (($ (-1232 $)) 96) (($ (-1149) (-1232 $)) 105) (($ (-1232 (-1149)) (-1232 $)) 104)) (-4293 (((-112)) NIL)) (-2154 (((-402 (-928 |#1|)) $ (-552)) NIL)) (-2780 (((-1232 (-402 (-928 |#1|))) $ (-1232 $)) 98) (((-669 (-402 (-928 |#1|))) (-1232 $) (-1232 $)) NIL) (((-1232 (-402 (-928 |#1|))) $) 40) (((-669 (-402 (-928 |#1|))) (-1232 $)) NIL)) (-2042 (((-1232 (-402 (-928 |#1|))) $) NIL) (($ (-1232 (-402 (-928 |#1|)))) 37)) (-2533 (((-625 (-928 (-402 (-928 |#1|)))) (-1232 $)) NIL) (((-625 (-928 (-402 (-928 |#1|))))) NIL) (((-625 (-928 |#1|)) (-1232 $)) 99 (|has| |#1| (-544))) (((-625 (-928 |#1|))) 100 (|has| |#1| (-544)))) (-3828 (($ $ $) NIL)) (-3148 (((-112)) NIL)) (-1683 (((-839) $) NIL) (($ (-1232 (-402 (-928 |#1|)))) NIL)) (-1270 (((-1232 $)) 60)) (-4197 (((-625 (-1232 (-402 (-928 |#1|))))) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-3842 (($ $ $ $) NIL)) (-4333 (((-112)) NIL)) (-2872 (($ (-669 (-402 (-928 |#1|))) $) NIL)) (-3818 (($ $ $) NIL)) (-3137 (((-112)) NIL)) (-4322 (((-112)) NIL)) (-4283 (((-112)) NIL)) (-2089 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) 97)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 56) (($ $ (-402 (-928 |#1|))) NIL) (($ (-402 (-928 |#1|)) $) NIL) (($ (-1115 |#2| (-402 (-928 |#1|))) $) NIL)))
+(((-447 |#1| |#2| |#3| |#4|) (-13 (-412 (-402 (-928 |#1|))) (-628 (-1115 |#2| (-402 (-928 |#1|)))) (-10 -8 (-15 -1683 ($ (-1232 (-402 (-928 |#1|))))) (-15 -1467 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -1456 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -1446 ($)) (-15 -1446 ($ (-1149))) (-15 -1446 ($ (-1232 (-1149)))) (-15 -1446 ($ (-1232 $))) (-15 -1446 ($ (-1149) (-1232 $))) (-15 -1446 ($ (-1232 (-1149)) (-1232 $))) (IF (|has| |#1| (-544)) (PROGN (-15 -1433 ((-1145 (-402 (-928 |#1|))))) (-15 -1421 ((-1145 (-402 (-928 |#1|))) $)) (-15 -1412 ((-402 (-928 |#1|)) $)) (-15 -1402 ((-402 (-928 |#1|)) $)) (-15 -1392 ((-1145 (-402 (-928 |#1|))))) (-15 -1383 ((-1145 (-402 (-928 |#1|))) $)) (-15 -1374 ((-402 (-928 |#1|)) $)) (-15 -1363 ((-402 (-928 |#1|)) $)) (-15 -1351 ((-402 (-928 |#1|)) $ $)) (-15 -1343 ((-402 (-928 |#1|)))) (-15 -1332 ((-402 (-928 |#1|)) $ $)) (-15 -1322 ((-402 (-928 |#1|)))) (-15 -2533 ((-625 (-928 |#1|)) (-1232 $))) (-15 -2533 ((-625 (-928 |#1|))))) |%noBranch|))) (-170) (-897) (-625 (-1149)) (-1232 (-669 |#1|))) (T -447))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-402 (-928 *3)))) (-4 *3 (-170)) (-14 *6 (-1232 (-669 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))))) (-1467 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -1270 (-625 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1456 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -1270 (-625 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1446 (*1 *1) (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-897)) (-14 *4 (-625 (-1149))) (-14 *5 (-1232 (-669 *2))))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 *2)) (-14 *6 (-1232 (-669 *3))))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-1232 (-1149))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-1232 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1446 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-897)) (-14 *6 (-625 *2)) (-14 *7 (-1232 (-669 *4))))) (-1446 (*1 *1 *2 *3) (-12 (-5 *2 (-1232 (-1149))) (-5 *3 (-1232 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-897)) (-14 *6 (-625 (-1149))) (-14 *7 (-1232 (-669 *4))))) (-1433 (*1 *2) (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1392 (*1 *2) (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1351 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1343 (*1 *2) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1332 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1322 (*1 *2) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1232 (-447 *4 *5 *6 *7))) (-5 *2 (-625 (-928 *4))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *4 (-170)) (-14 *5 (-897)) (-14 *6 (-625 (-1149))) (-14 *7 (-1232 (-669 *4))))) (-2533 (*1 *2) (-12 (-5 *2 (-625 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
+(-13 (-412 (-402 (-928 |#1|))) (-628 (-1115 |#2| (-402 (-928 |#1|)))) (-10 -8 (-15 -1683 ($ (-1232 (-402 (-928 |#1|))))) (-15 -1467 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -1456 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -1446 ($)) (-15 -1446 ($ (-1149))) (-15 -1446 ($ (-1232 (-1149)))) (-15 -1446 ($ (-1232 $))) (-15 -1446 ($ (-1149) (-1232 $))) (-15 -1446 ($ (-1232 (-1149)) (-1232 $))) (IF (|has| |#1| (-544)) (PROGN (-15 -1433 ((-1145 (-402 (-928 |#1|))))) (-15 -1421 ((-1145 (-402 (-928 |#1|))) $)) (-15 -1412 ((-402 (-928 |#1|)) $)) (-15 -1402 ((-402 (-928 |#1|)) $)) (-15 -1392 ((-1145 (-402 (-928 |#1|))))) (-15 -1383 ((-1145 (-402 (-928 |#1|))) $)) (-15 -1374 ((-402 (-928 |#1|)) $)) (-15 -1363 ((-402 (-928 |#1|)) $)) (-15 -1351 ((-402 (-928 |#1|)) $ $)) (-15 -1343 ((-402 (-928 |#1|)))) (-15 -1332 ((-402 (-928 |#1|)) $ $)) (-15 -1322 ((-402 (-928 |#1|)))) (-15 -2533 ((-625 (-928 |#1|)) (-1232 $))) (-15 -2533 ((-625 (-928 |#1|))))) |%noBranch|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 13)) (-3982 (((-625 (-841 |#1|)) $) 75)) (-3793 (((-1145 $) $ (-841 |#1|)) 46) (((-1145 |#2|) $) 118)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3528 (($ $) NIL (|has| |#2| (-544)))) (-3509 (((-112) $) NIL (|has| |#2| (-544)))) (-4121 (((-751) $) 21) (((-751) $ (-625 (-841 |#1|))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL (|has| |#2| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) 44) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-841 |#1|) "failed") $) NIL)) (-1895 ((|#2| $) 42) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-841 |#1|) $) NIL)) (-3207 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-1801 (($ $ (-625 (-552))) 80)) (-4169 (($ $) 68)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#2| (-885)))) (-1347 (($ $ |#2| |#3| $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) 58)) (-3970 (($ (-1145 |#2|) (-841 |#1|)) 123) (($ (-1145 $) (-841 |#1|)) 52)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) 59)) (-3957 (($ |#2| |#3|) 28) (($ $ (-841 |#1|) (-751)) 30) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-841 |#1|)) NIL)) (-4134 ((|#3| $) NIL) (((-751) $ (-841 |#1|)) 50) (((-625 (-751)) $ (-625 (-841 |#1|))) 57)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1357 (($ (-1 |#3| |#3|) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-1942 (((-3 (-841 |#1|) "failed") $) 39)) (-4131 (($ $) NIL)) (-4144 ((|#2| $) 41)) (-2605 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -3564 (-751))) "failed") $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) 40)) (-4117 ((|#2| $) 116)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) 128 (|has| |#2| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-885)))) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-841 |#1|) |#2|) 87) (($ $ (-625 (-841 |#1|)) (-625 |#2|)) 90) (($ $ (-841 |#1|) $) 85) (($ $ (-625 (-841 |#1|)) (-625 $)) 106)) (-3217 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-3072 (($ $ (-841 |#1|)) 53) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4276 ((|#3| $) 67) (((-751) $ (-841 |#1|)) 37) (((-625 (-751)) $ (-625 (-841 |#1|))) 56)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-841 |#1|) (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#2| $) 125 (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-1683 (((-839) $) 145) (($ (-552)) NIL) (($ |#2|) 86) (($ (-841 |#1|)) 31) (($ (-402 (-552))) NIL (-1523 (|has| |#2| (-38 (-402 (-552)))) (|has| |#2| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ |#3|) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#2| (-544)))) (-2089 (($) 17 T CONST)) (-2100 (($) 25 T CONST)) (-3768 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ |#2|) 64 (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 111)) (** (($ $ (-897)) NIL) (($ $ (-751)) 109)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 29) (($ $ (-402 (-552))) NIL (|has| |#2| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#2| (-38 (-402 (-552))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-448 |#1| |#2| |#3|) (-13 (-925 |#2| |#3| (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552)))))) (-625 (-1149)) (-1025) (-234 (-1471 |#1|) (-751))) (T -448))
+((-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-14 *3 (-625 (-1149))) (-5 *1 (-448 *3 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-234 (-1471 *3) (-751))))))
+(-13 (-925 |#2| |#3| (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552))))))
+((-1512 (((-112) |#1| (-625 |#2|)) 69)) (-1489 (((-3 (-1232 (-625 |#2|)) "failed") (-751) |#1| (-625 |#2|)) 78)) (-1499 (((-3 (-625 |#2|) "failed") |#2| |#1| (-1232 (-625 |#2|))) 80)) (-3297 ((|#2| |#2| |#1|) 28)) (-1479 (((-751) |#2| (-625 |#2|)) 20)))
+(((-449 |#1| |#2|) (-10 -7 (-15 -3297 (|#2| |#2| |#1|)) (-15 -1479 ((-751) |#2| (-625 |#2|))) (-15 -1489 ((-3 (-1232 (-625 |#2|)) "failed") (-751) |#1| (-625 |#2|))) (-15 -1499 ((-3 (-625 |#2|) "failed") |#2| |#1| (-1232 (-625 |#2|)))) (-15 -1512 ((-112) |#1| (-625 |#2|)))) (-302) (-1208 |#1|)) (T -449))
+((-1512 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *5)) (-4 *5 (-1208 *3)) (-4 *3 (-302)) (-5 *2 (-112)) (-5 *1 (-449 *3 *5)))) (-1499 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1232 (-625 *3))) (-4 *4 (-302)) (-5 *2 (-625 *3)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1208 *4)))) (-1489 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-302)) (-4 *6 (-1208 *4)) (-5 *2 (-1232 (-625 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-625 *6)))) (-1479 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-302)) (-5 *2 (-751)) (-5 *1 (-449 *5 *3)))) (-3297 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1208 *3)))))
+(-10 -7 (-15 -3297 (|#2| |#2| |#1|)) (-15 -1479 ((-751) |#2| (-625 |#2|))) (-15 -1489 ((-3 (-1232 (-625 |#2|)) "failed") (-751) |#1| (-625 |#2|))) (-15 -1499 ((-3 (-625 |#2|) "failed") |#2| |#1| (-1232 (-625 |#2|)))) (-15 -1512 ((-112) |#1| (-625 |#2|))))
+((-3824 (((-413 |#5|) |#5|) 24)))
+(((-450 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3824 ((-413 |#5|) |#5|))) (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149))))) (-773) (-544) (-544) (-925 |#4| |#2| |#1|)) (T -450))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-4 *5 (-773)) (-4 *7 (-544)) (-5 *2 (-413 *3)) (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-544)) (-4 *3 (-925 *7 *5 *4)))))
+(-10 -7 (-15 -3824 ((-413 |#5|) |#5|)))
+((-4221 ((|#3|) 37)) (-4306 (((-1145 |#4|) (-1145 |#4|) (-1145 |#4|)) 33)))
+(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4306 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -4221 (|#3|))) (-773) (-827) (-885) (-925 |#3| |#1| |#2|)) (T -451))
+((-4221 (*1 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-885)) (-5 *1 (-451 *3 *4 *2 *5)) (-4 *5 (-925 *2 *3 *4)))) (-4306 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-885)) (-5 *1 (-451 *3 *4 *5 *6)))))
+(-10 -7 (-15 -4306 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -4221 (|#3|)))
+((-3824 (((-413 (-1145 |#1|)) (-1145 |#1|)) 43)))
+(((-452 |#1|) (-10 -7 (-15 -3824 ((-413 (-1145 |#1|)) (-1145 |#1|)))) (-302)) (T -452))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-413 (-1145 *4))) (-5 *1 (-452 *4)) (-5 *3 (-1145 *4)))))
+(-10 -7 (-15 -3824 ((-413 (-1145 |#1|)) (-1145 |#1|))))
+((-4041 (((-52) |#2| (-1149) (-289 |#2|) (-1199 (-751))) 42) (((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-751))) 41) (((-52) |#2| (-1149) (-289 |#2|)) 35) (((-52) (-1 |#2| (-552)) (-289 |#2|)) 28)) (-3615 (((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))) 80) (((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))) 79) (((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552))) 78) (((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552))) 77) (((-52) |#2| (-1149) (-289 |#2|)) 72) (((-52) (-1 |#2| (-552)) (-289 |#2|)) 71)) (-4066 (((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))) 66) (((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))) 64)) (-4053 (((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552))) 48) (((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552))) 47)))
+(((-453 |#1| |#2|) (-10 -7 (-15 -4041 ((-52) (-1 |#2| (-552)) (-289 |#2|))) (-15 -4041 ((-52) |#2| (-1149) (-289 |#2|))) (-15 -4041 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-751)))) (-15 -4041 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-751)))) (-15 -4053 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552)))) (-15 -4053 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552)))) (-15 -4066 ((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -4066 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -3615 ((-52) (-1 |#2| (-552)) (-289 |#2|))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|))) (-15 -3615 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552)))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552)))) (-15 -3615 ((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))))) (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -453))
+((-3615 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-402 (-552)))) (-5 *7 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *8))) (-4 *8 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) (-3615 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-552)))) (-5 *4 (-289 *8)) (-5 *5 (-1199 (-402 (-552)))) (-5 *6 (-402 (-552))) (-4 *8 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) (-3615 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-3615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-552))) (-4 *7 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-3615 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-289 *6)) (-4 *6 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *5 *6)))) (-4066 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-402 (-552)))) (-5 *7 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *8))) (-4 *8 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) (-4066 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-552)))) (-5 *4 (-289 *8)) (-5 *5 (-1199 (-402 (-552)))) (-5 *6 (-402 (-552))) (-4 *8 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) (-4053 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-4053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-552))) (-4 *7 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-4041 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-751))) (-4 *3 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-4041 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-751))) (-4 *7 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-4041 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-289 *6)) (-4 *6 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *5 *6)))))
+(-10 -7 (-15 -4041 ((-52) (-1 |#2| (-552)) (-289 |#2|))) (-15 -4041 ((-52) |#2| (-1149) (-289 |#2|))) (-15 -4041 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-751)))) (-15 -4041 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-751)))) (-15 -4053 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552)))) (-15 -4053 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552)))) (-15 -4066 ((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -4066 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -3615 ((-52) (-1 |#2| (-552)) (-289 |#2|))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|))) (-15 -3615 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552)))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552)))) (-15 -3615 ((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))))
+((-3297 ((|#2| |#2| |#1|) 15)) (-1535 (((-625 |#2|) |#2| (-625 |#2|) |#1| (-897)) 69)) (-1524 (((-2 (|:| |plist| (-625 |#2|)) (|:| |modulo| |#1|)) |#2| (-625 |#2|) |#1| (-897)) 60)))
+(((-454 |#1| |#2|) (-10 -7 (-15 -1524 ((-2 (|:| |plist| (-625 |#2|)) (|:| |modulo| |#1|)) |#2| (-625 |#2|) |#1| (-897))) (-15 -1535 ((-625 |#2|) |#2| (-625 |#2|) |#1| (-897))) (-15 -3297 (|#2| |#2| |#1|))) (-302) (-1208 |#1|)) (T -454))
+((-3297 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1208 *3)))) (-1535 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-625 *3)) (-5 *5 (-897)) (-4 *3 (-1208 *4)) (-4 *4 (-302)) (-5 *1 (-454 *4 *3)))) (-1524 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-897)) (-4 *5 (-302)) (-4 *3 (-1208 *5)) (-5 *2 (-2 (|:| |plist| (-625 *3)) (|:| |modulo| *5))) (-5 *1 (-454 *5 *3)) (-5 *4 (-625 *3)))))
+(-10 -7 (-15 -1524 ((-2 (|:| |plist| (-625 |#2|)) (|:| |modulo| |#1|)) |#2| (-625 |#2|) |#1| (-897))) (-15 -1535 ((-625 |#2|) |#2| (-625 |#2|) |#1| (-897))) (-15 -3297 (|#2| |#2| |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 28)) (-2787 (($ |#3|) 25)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) 32)) (-1545 (($ |#2| |#4| $) 33)) (-3957 (($ |#2| (-694 |#3| |#4| |#5|)) 24)) (-4131 (((-694 |#3| |#4| |#5|) $) 15)) (-1567 ((|#3| $) 19)) (-1577 ((|#4| $) 17)) (-4144 ((|#2| $) 29)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-1556 (($ |#2| |#3| |#4|) 26)) (-2089 (($) 36 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 34)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-455 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-698 |#6|) (-698 |#2|) (-10 -8 (-15 -4144 (|#2| $)) (-15 -4131 ((-694 |#3| |#4| |#5|) $)) (-15 -1577 (|#4| $)) (-15 -1567 (|#3| $)) (-15 -4169 ($ $)) (-15 -3957 ($ |#2| (-694 |#3| |#4| |#5|))) (-15 -2787 ($ |#3|)) (-15 -1556 ($ |#2| |#3| |#4|)) (-15 -1545 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-625 (-1149)) (-170) (-827) (-234 (-1471 |#1|) (-751)) (-1 (-112) (-2 (|:| -3123 |#3|) (|:| -3564 |#4|)) (-2 (|:| -3123 |#3|) (|:| -3564 |#4|))) (-925 |#2| |#4| (-841 |#1|))) (T -455))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-1471 *3) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6)) (-2 (|:| -3123 *5) (|:| -3564 *6)))) (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-827)) (-4 *2 (-925 *4 *6 (-841 *3))))) (-4144 (*1 *2 *1) (-12 (-14 *3 (-625 (-1149))) (-4 *5 (-234 (-1471 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *4) (|:| -3564 *5)) (-2 (|:| -3123 *4) (|:| -3564 *5)))) (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-827)) (-4 *7 (-925 *2 *5 (-841 *3))))) (-4131 (*1 *2 *1) (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-1471 *3) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6)) (-2 (|:| -3123 *5) (|:| -3564 *6)))) (-5 *2 (-694 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8)) (-4 *5 (-827)) (-4 *8 (-925 *4 *6 (-841 *3))))) (-1577 (*1 *2 *1) (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *2)) (-2 (|:| -3123 *5) (|:| -3564 *2)))) (-4 *2 (-234 (-1471 *3) (-751))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7)) (-4 *5 (-827)) (-4 *7 (-925 *4 *2 (-841 *3))))) (-1567 (*1 *2 *1) (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-1471 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *5)) (-2 (|:| -3123 *2) (|:| -3564 *5)))) (-4 *2 (-827)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *7 (-925 *4 *5 (-841 *3))))) (-4169 (*1 *1 *1) (-12 (-14 *2 (-625 (-1149))) (-4 *3 (-170)) (-4 *5 (-234 (-1471 *2) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *4) (|:| -3564 *5)) (-2 (|:| -3123 *4) (|:| -3564 *5)))) (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-827)) (-4 *7 (-925 *3 *5 (-841 *2))))) (-3957 (*1 *1 *2 *3) (-12 (-5 *3 (-694 *5 *6 *7)) (-4 *5 (-827)) (-4 *6 (-234 (-1471 *4) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6)) (-2 (|:| -3123 *5) (|:| -3564 *6)))) (-14 *4 (-625 (-1149))) (-4 *2 (-170)) (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) (-4 *8 (-925 *2 *6 (-841 *4))))) (-2787 (*1 *1 *2) (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-1471 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *5)) (-2 (|:| -3123 *2) (|:| -3564 *5)))) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-827)) (-4 *7 (-925 *4 *5 (-841 *3))))) (-1556 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-625 (-1149))) (-4 *2 (-170)) (-4 *4 (-234 (-1471 *5) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *3) (|:| -3564 *4)) (-2 (|:| -3123 *3) (|:| -3564 *4)))) (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-827)) (-4 *7 (-925 *2 *4 (-841 *5))))) (-1545 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-625 (-1149))) (-4 *2 (-170)) (-4 *3 (-234 (-1471 *4) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *3)) (-2 (|:| -3123 *5) (|:| -3564 *3)))) (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-827)) (-4 *7 (-925 *2 *3 (-841 *4))))))
+(-13 (-698 |#6|) (-698 |#2|) (-10 -8 (-15 -4144 (|#2| $)) (-15 -4131 ((-694 |#3| |#4| |#5|) $)) (-15 -1577 (|#4| $)) (-15 -1567 (|#3| $)) (-15 -4169 ($ $)) (-15 -3957 ($ |#2| (-694 |#3| |#4| |#5|))) (-15 -2787 ($ |#3|)) (-15 -1556 ($ |#2| |#3| |#4|)) (-15 -1545 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-1589 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1589 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-773) (-827) (-544) (-925 |#3| |#1| |#2|) (-13 (-1014 (-402 (-552))) (-358) (-10 -8 (-15 -1683 ($ |#4|)) (-15 -1356 (|#4| $)) (-15 -1368 (|#4| $))))) (T -456))
+((-1589 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-827)) (-4 *5 (-773)) (-4 *6 (-544)) (-4 *7 (-925 *6 *5 *3)) (-5 *1 (-456 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1014 (-402 (-552))) (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))))
+(-10 -7 (-15 -1589 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-1671 (((-112) $ $) NIL)) (-3982 (((-625 |#3|) $) 41)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) NIL (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3624 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 47)) (-1895 (($ (-625 |#4|)) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1416 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353)))) (-3799 (((-625 |#4|) $) 18 (|has| $ (-6 -4353)))) (-3565 ((|#3| $) 45)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#4|) $) 14 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-3683 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 21)) (-2615 (((-625 |#3|) $) NIL)) (-2608 (((-112) |#3| $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2831 (((-1093) $) NIL)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 39)) (-3600 (($) 17)) (-2840 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) 16)) (-2042 (((-528) $) NIL (|has| |#4| (-598 (-528)))) (($ (-625 |#4|)) 49)) (-1695 (($ (-625 |#4|)) 13)) (-3718 (($ $ |#3|) NIL)) (-2595 (($ $ |#3|) NIL)) (-2584 (($ $ |#3|) NIL)) (-1683 (((-839) $) 38) (((-625 |#4|) $) 48)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 30)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-457 |#1| |#2| |#3| |#4|) (-13 (-952 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2042 ($ (-625 |#4|))) (-6 -4353) (-6 -4354))) (-1025) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -457))
+((-2042 (*1 *1 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-457 *3 *4 *5 *6)))))
+(-13 (-952 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2042 ($ (-625 |#4|))) (-6 -4353) (-6 -4354)))
+((-2089 (($) 11)) (-2100 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-458 |#1| |#2| |#3|) (-10 -8 (-15 -2100 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2089 (|#1|))) (-459 |#2| |#3|) (-170) (-23)) (T -458))
+NIL
+(-10 -8 (-15 -2100 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2089 (|#1|)))
+((-1671 (((-112) $ $) 7)) (-1893 (((-3 |#1| "failed") $) 26)) (-1895 ((|#1| $) 25)) (-4244 (($ $ $) 23)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4276 ((|#2| $) 19)) (-1683 (((-839) $) 11) (($ |#1|) 27)) (-2089 (($) 18 T CONST)) (-2100 (($) 24 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 15) (($ $ $) 13)) (-2382 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-459 |#1| |#2|) (-138) (-170) (-23)) (T -459))
-((-2997 (*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4304 (*1 *1 *1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
-(-13 (-464 |t#1| |t#2|) (-1014 |t#1|) (-10 -8 (-15 (-2997) ($) -4311) (-15 -4304 ($ $ $))))
-(((-101) . T) ((-597 (-840)) . T) ((-464 |#1| |#2|) . T) ((-1014 |#1|) . T) ((-1074) . T))
-((-2041 (((-1231 (-1231 (-538))) (-1231 (-1231 (-538))) (-895)) 18)) (-2042 (((-1231 (-1231 (-538))) (-895)) 16)))
-(((-460) (-10 -7 (-15 -2041 ((-1231 (-1231 (-538))) (-1231 (-1231 (-538))) (-895))) (-15 -2042 ((-1231 (-1231 (-538))) (-895))))) (T -460))
-((-2042 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1231 (-1231 (-538)))) (-5 *1 (-460)))) (-2041 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 (-1231 (-538)))) (-5 *3 (-895)) (-5 *1 (-460)))))
-(-10 -7 (-15 -2041 ((-1231 (-1231 (-538))) (-1231 (-1231 (-538))) (-895))) (-15 -2042 ((-1231 (-1231 (-538))) (-895))))
-((-3103 (((-538) (-538)) 30) (((-538)) 22)) (-3107 (((-538) (-538)) 26) (((-538)) 18)) (-3105 (((-538) (-538)) 28) (((-538)) 20)) (-2044 (((-112) (-112)) 12) (((-112)) 10)) (-2043 (((-112) (-112)) 11) (((-112)) 9)) (-2045 (((-112) (-112)) 24) (((-112)) 15)))
-(((-461) (-10 -7 (-15 -2043 ((-112))) (-15 -2044 ((-112))) (-15 -2043 ((-112) (-112))) (-15 -2044 ((-112) (-112))) (-15 -2045 ((-112))) (-15 -3105 ((-538))) (-15 -3107 ((-538))) (-15 -3103 ((-538))) (-15 -2045 ((-112) (-112))) (-15 -3105 ((-538) (-538))) (-15 -3107 ((-538) (-538))) (-15 -3103 ((-538) (-538))))) (T -461))
-((-3103 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-3105 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-3103 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-3107 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-3105 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-2045 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-2044 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-2043 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-2044 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-2043 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
-(-10 -7 (-15 -2043 ((-112))) (-15 -2044 ((-112))) (-15 -2043 ((-112) (-112))) (-15 -2044 ((-112) (-112))) (-15 -2045 ((-112))) (-15 -3105 ((-538))) (-15 -3107 ((-538))) (-15 -3103 ((-538))) (-15 -2045 ((-112) (-112))) (-15 -3105 ((-538) (-538))) (-15 -3107 ((-538) (-538))) (-15 -3103 ((-538) (-538))))
-((-2898 (((-112) $ $) NIL)) (-4211 (((-622 (-373)) $) 28) (((-622 (-373)) $ (-622 (-373))) 96)) (-2050 (((-622 (-1062 (-373))) $) 16) (((-622 (-1062 (-373))) $ (-622 (-1062 (-373)))) 94)) (-2047 (((-622 (-622 (-919 (-221)))) (-622 (-622 (-919 (-221)))) (-622 (-850))) 45)) (-2051 (((-622 (-622 (-919 (-221)))) $) 90)) (-4069 (((-1237) $ (-919 (-221)) (-850)) 108)) (-2052 (($ $) 89) (($ (-622 (-622 (-919 (-221))))) 99) (($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895))) 98) (($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895)) (-622 (-256))) 100)) (-3593 (((-1131) $) NIL)) (-4220 (((-538) $) 71)) (-3594 (((-1093) $) NIL)) (-2053 (($) 97)) (-2046 (((-622 (-221)) (-622 (-622 (-919 (-221))))) 56)) (-2049 (((-1237) $ (-622 (-919 (-221))) (-850) (-850) (-895)) 102) (((-1237) $ (-919 (-221))) 104) (((-1237) $ (-919 (-221)) (-850) (-850) (-895)) 103)) (-4317 (((-840) $) 114) (($ (-622 (-622 (-919 (-221))))) 109)) (-2048 (((-1237) $ (-919 (-221))) 107)) (-3387 (((-112) $ $) NIL)))
-(((-462) (-13 (-1074) (-10 -8 (-15 -2053 ($)) (-15 -2052 ($ $)) (-15 -2052 ($ (-622 (-622 (-919 (-221)))))) (-15 -2052 ($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895)))) (-15 -2052 ($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895)) (-622 (-256)))) (-15 -2051 ((-622 (-622 (-919 (-221)))) $)) (-15 -4220 ((-538) $)) (-15 -2050 ((-622 (-1062 (-373))) $)) (-15 -2050 ((-622 (-1062 (-373))) $ (-622 (-1062 (-373))))) (-15 -4211 ((-622 (-373)) $)) (-15 -4211 ((-622 (-373)) $ (-622 (-373)))) (-15 -2049 ((-1237) $ (-622 (-919 (-221))) (-850) (-850) (-895))) (-15 -2049 ((-1237) $ (-919 (-221)))) (-15 -2049 ((-1237) $ (-919 (-221)) (-850) (-850) (-895))) (-15 -2048 ((-1237) $ (-919 (-221)))) (-15 -4069 ((-1237) $ (-919 (-221)) (-850))) (-15 -4317 ($ (-622 (-622 (-919 (-221)))))) (-15 -4317 ((-840) $)) (-15 -2047 ((-622 (-622 (-919 (-221)))) (-622 (-622 (-919 (-221)))) (-622 (-850)))) (-15 -2046 ((-622 (-221)) (-622 (-622 (-919 (-221))))))))) (T -462))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-462)))) (-2053 (*1 *1) (-5 *1 (-462))) (-2052 (*1 *1 *1) (-5 *1 (-462))) (-2052 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462)))) (-2052 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850))) (-5 *4 (-622 (-895))) (-5 *1 (-462)))) (-2052 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850))) (-5 *4 (-622 (-895))) (-5 *5 (-622 (-256))) (-5 *1 (-462)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-462)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-462)))) (-2050 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-462)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-462)))) (-4211 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-462)))) (-2049 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *4 (-850)) (-5 *5 (-895)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-2049 (*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))) (-2049 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *5 (-895)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-2048 (*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))) (-4069 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462)))) (-2047 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850))) (-5 *1 (-462)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-622 (-221))) (-5 *1 (-462)))))
-(-13 (-1074) (-10 -8 (-15 -2053 ($)) (-15 -2052 ($ $)) (-15 -2052 ($ (-622 (-622 (-919 (-221)))))) (-15 -2052 ($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895)))) (-15 -2052 ($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895)) (-622 (-256)))) (-15 -2051 ((-622 (-622 (-919 (-221)))) $)) (-15 -4220 ((-538) $)) (-15 -2050 ((-622 (-1062 (-373))) $)) (-15 -2050 ((-622 (-1062 (-373))) $ (-622 (-1062 (-373))))) (-15 -4211 ((-622 (-373)) $)) (-15 -4211 ((-622 (-373)) $ (-622 (-373)))) (-15 -2049 ((-1237) $ (-622 (-919 (-221))) (-850) (-850) (-895))) (-15 -2049 ((-1237) $ (-919 (-221)))) (-15 -2049 ((-1237) $ (-919 (-221)) (-850) (-850) (-895))) (-15 -2048 ((-1237) $ (-919 (-221)))) (-15 -4069 ((-1237) $ (-919 (-221)) (-850))) (-15 -4317 ($ (-622 (-622 (-919 (-221)))))) (-15 -4317 ((-840) $)) (-15 -2047 ((-622 (-622 (-919 (-221)))) (-622 (-622 (-919 (-221)))) (-622 (-850)))) (-15 -2046 ((-622 (-221)) (-622 (-622 (-919 (-221))))))))
-((-4197 (($ $) NIL) (($ $ $) 11)))
-(((-463 |#1| |#2| |#3|) (-10 -8 (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|))) (-464 |#2| |#3|) (-170) (-23)) (T -463))
-NIL
-(-10 -8 (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4307 ((|#2| $) 19)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 15) (($ $ $) 13)) (-4199 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-2100 (*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
+(-13 (-464 |t#1| |t#2|) (-1014 |t#1|) (-10 -8 (-15 (-2100) ($) -1426) (-15 -4244 ($ $ $))))
+(((-101) . T) ((-597 (-839)) . T) ((-464 |#1| |#2|) . T) ((-1014 |#1|) . T) ((-1073) . T))
+((-1600 (((-1232 (-1232 (-552))) (-1232 (-1232 (-552))) (-897)) 18)) (-1611 (((-1232 (-1232 (-552))) (-897)) 16)))
+(((-460) (-10 -7 (-15 -1600 ((-1232 (-1232 (-552))) (-1232 (-1232 (-552))) (-897))) (-15 -1611 ((-1232 (-1232 (-552))) (-897))))) (T -460))
+((-1611 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1232 (-1232 (-552)))) (-5 *1 (-460)))) (-1600 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 (-1232 (-552)))) (-5 *3 (-897)) (-5 *1 (-460)))))
+(-10 -7 (-15 -1600 ((-1232 (-1232 (-552))) (-1232 (-1232 (-552))) (-897))) (-15 -1611 ((-1232 (-1232 (-552))) (-897))))
+((-1790 (((-552) (-552)) 30) (((-552)) 22)) (-1834 (((-552) (-552)) 26) (((-552)) 18)) (-1813 (((-552) (-552)) 28) (((-552)) 20)) (-1634 (((-112) (-112)) 12) (((-112)) 10)) (-1622 (((-112) (-112)) 11) (((-112)) 9)) (-1645 (((-112) (-112)) 24) (((-112)) 15)))
+(((-461) (-10 -7 (-15 -1622 ((-112))) (-15 -1634 ((-112))) (-15 -1622 ((-112) (-112))) (-15 -1634 ((-112) (-112))) (-15 -1645 ((-112))) (-15 -1813 ((-552))) (-15 -1834 ((-552))) (-15 -1790 ((-552))) (-15 -1645 ((-112) (-112))) (-15 -1813 ((-552) (-552))) (-15 -1834 ((-552) (-552))) (-15 -1790 ((-552) (-552))))) (T -461))
+((-1790 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1813 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1645 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-1790 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1834 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1813 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1645 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-1634 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-1622 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
+(-10 -7 (-15 -1622 ((-112))) (-15 -1634 ((-112))) (-15 -1622 ((-112) (-112))) (-15 -1634 ((-112) (-112))) (-15 -1645 ((-112))) (-15 -1813 ((-552))) (-15 -1834 ((-552))) (-15 -1790 ((-552))) (-15 -1645 ((-112) (-112))) (-15 -1813 ((-552) (-552))) (-15 -1834 ((-552) (-552))) (-15 -1790 ((-552) (-552))))
+((-1671 (((-112) $ $) NIL)) (-4124 (((-625 (-374)) $) 28) (((-625 (-374)) $ (-625 (-374))) 96)) (-1702 (((-625 (-1067 (-374))) $) 16) (((-625 (-1067 (-374))) $ (-625 (-1067 (-374)))) 94)) (-1667 (((-625 (-625 (-919 (-221)))) (-625 (-625 (-919 (-221)))) (-625 (-850))) 45)) (-1713 (((-625 (-625 (-919 (-221)))) $) 90)) (-3582 (((-1237) $ (-919 (-221)) (-850)) 108)) (-1724 (($ $) 89) (($ (-625 (-625 (-919 (-221))))) 99) (($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897))) 98) (($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897)) (-625 (-258))) 100)) (-2883 (((-1131) $) NIL)) (-2971 (((-552) $) 71)) (-2831 (((-1093) $) NIL)) (-1736 (($) 97)) (-1657 (((-625 (-221)) (-625 (-625 (-919 (-221))))) 56)) (-1691 (((-1237) $ (-625 (-919 (-221))) (-850) (-850) (-897)) 102) (((-1237) $ (-919 (-221))) 104) (((-1237) $ (-919 (-221)) (-850) (-850) (-897)) 103)) (-1683 (((-839) $) 114) (($ (-625 (-625 (-919 (-221))))) 109)) (-1679 (((-1237) $ (-919 (-221))) 107)) (-2281 (((-112) $ $) NIL)))
+(((-462) (-13 (-1073) (-10 -8 (-15 -1736 ($)) (-15 -1724 ($ $)) (-15 -1724 ($ (-625 (-625 (-919 (-221)))))) (-15 -1724 ($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897)))) (-15 -1724 ($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897)) (-625 (-258)))) (-15 -1713 ((-625 (-625 (-919 (-221)))) $)) (-15 -2971 ((-552) $)) (-15 -1702 ((-625 (-1067 (-374))) $)) (-15 -1702 ((-625 (-1067 (-374))) $ (-625 (-1067 (-374))))) (-15 -4124 ((-625 (-374)) $)) (-15 -4124 ((-625 (-374)) $ (-625 (-374)))) (-15 -1691 ((-1237) $ (-625 (-919 (-221))) (-850) (-850) (-897))) (-15 -1691 ((-1237) $ (-919 (-221)))) (-15 -1691 ((-1237) $ (-919 (-221)) (-850) (-850) (-897))) (-15 -1679 ((-1237) $ (-919 (-221)))) (-15 -3582 ((-1237) $ (-919 (-221)) (-850))) (-15 -1683 ($ (-625 (-625 (-919 (-221)))))) (-15 -1683 ((-839) $)) (-15 -1667 ((-625 (-625 (-919 (-221)))) (-625 (-625 (-919 (-221)))) (-625 (-850)))) (-15 -1657 ((-625 (-221)) (-625 (-625 (-919 (-221))))))))) (T -462))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-462)))) (-1736 (*1 *1) (-5 *1 (-462))) (-1724 (*1 *1 *1) (-5 *1 (-462))) (-1724 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462)))) (-1724 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850))) (-5 *4 (-625 (-897))) (-5 *1 (-462)))) (-1724 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850))) (-5 *4 (-625 (-897))) (-5 *5 (-625 (-258))) (-5 *1 (-462)))) (-1713 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-462)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-462)))) (-1702 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-462)))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-462)))) (-4124 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-462)))) (-1691 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *4 (-850)) (-5 *5 (-897)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-1691 (*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))) (-1691 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *5 (-897)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-1679 (*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))) (-3582 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462)))) (-1667 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850))) (-5 *1 (-462)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *2 (-625 (-221))) (-5 *1 (-462)))))
+(-13 (-1073) (-10 -8 (-15 -1736 ($)) (-15 -1724 ($ $)) (-15 -1724 ($ (-625 (-625 (-919 (-221)))))) (-15 -1724 ($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897)))) (-15 -1724 ($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897)) (-625 (-258)))) (-15 -1713 ((-625 (-625 (-919 (-221)))) $)) (-15 -2971 ((-552) $)) (-15 -1702 ((-625 (-1067 (-374))) $)) (-15 -1702 ((-625 (-1067 (-374))) $ (-625 (-1067 (-374))))) (-15 -4124 ((-625 (-374)) $)) (-15 -4124 ((-625 (-374)) $ (-625 (-374)))) (-15 -1691 ((-1237) $ (-625 (-919 (-221))) (-850) (-850) (-897))) (-15 -1691 ((-1237) $ (-919 (-221)))) (-15 -1691 ((-1237) $ (-919 (-221)) (-850) (-850) (-897))) (-15 -1679 ((-1237) $ (-919 (-221)))) (-15 -3582 ((-1237) $ (-919 (-221)) (-850))) (-15 -1683 ($ (-625 (-625 (-919 (-221)))))) (-15 -1683 ((-839) $)) (-15 -1667 ((-625 (-625 (-919 (-221)))) (-625 (-625 (-919 (-221)))) (-625 (-850)))) (-15 -1657 ((-625 (-221)) (-625 (-625 (-919 (-221))))))))
+((-2393 (($ $) NIL) (($ $ $) 11)))
+(((-463 |#1| |#2| |#3|) (-10 -8 (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|))) (-464 |#2| |#3|) (-170) (-23)) (T -463))
+NIL
+(-10 -8 (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4276 ((|#2| $) 19)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 15) (($ $ $) 13)) (-2382 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-464 |#1| |#2|) (-138) (-170) (-23)) (T -464))
-((-4307 (*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2991 (*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4197 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
-(-13 (-1074) (-10 -8 (-15 -4307 (|t#2| $)) (-15 (-2991) ($) -4311) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4197 ($ $)) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2055 (((-3 (-622 (-475 |#1| |#2|)) "failed") (-622 (-475 |#1| |#2|)) (-622 (-841 |#1|))) 92)) (-2054 (((-622 (-622 (-243 |#1| |#2|))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|))) 90)) (-2056 (((-2 (|:| |dpolys| (-622 (-243 |#1| |#2|))) (|:| |coords| (-622 (-538)))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|))) 61)))
-(((-465 |#1| |#2| |#3|) (-10 -7 (-15 -2054 ((-622 (-622 (-243 |#1| |#2|))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|)))) (-15 -2055 ((-3 (-622 (-475 |#1| |#2|)) "failed") (-622 (-475 |#1| |#2|)) (-622 (-841 |#1|)))) (-15 -2056 ((-2 (|:| |dpolys| (-622 (-243 |#1| |#2|))) (|:| |coords| (-622 (-538)))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|))))) (-622 (-1149)) (-446) (-446)) (T -465))
-((-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-841 *5))) (-14 *5 (-622 (-1149))) (-4 *6 (-446)) (-5 *2 (-2 (|:| |dpolys| (-622 (-243 *5 *6))) (|:| |coords| (-622 (-538))))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-622 (-243 *5 *6))) (-4 *7 (-446)))) (-2055 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-475 *4 *5))) (-5 *3 (-622 (-841 *4))) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6)) (-4 *6 (-446)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-841 *5))) (-14 *5 (-622 (-1149))) (-4 *6 (-446)) (-5 *2 (-622 (-622 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-622 (-243 *5 *6))) (-4 *7 (-446)))))
-(-10 -7 (-15 -2054 ((-622 (-622 (-243 |#1| |#2|))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|)))) (-15 -2055 ((-3 (-622 (-475 |#1| |#2|)) "failed") (-622 (-475 |#1| |#2|)) (-622 (-841 |#1|)))) (-15 -2056 ((-2 (|:| |dpolys| (-622 (-243 |#1| |#2|))) (|:| |coords| (-622 (-538)))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|)))))
-((-3821 (((-3 $ "failed") $) 11)) (-3342 (($ $ $) 18)) (-2686 (($ $ $) 19)) (-4308 (($ $ $) 9)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 17)))
-(((-466 |#1|) (-10 -8 (-15 -2686 (|#1| |#1| |#1|)) (-15 -3342 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -4308 (|#1| |#1| |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895)))) (-467)) (T -466))
-NIL
-(-10 -8 (-15 -2686 (|#1| |#1| |#1|)) (-15 -3342 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -4308 (|#1| |#1| |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895))))
-((-2898 (((-112) $ $) 7)) (-3896 (($) 18 T CONST)) (-3821 (((-3 $ "failed") $) 15)) (-2502 (((-112) $) 17)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 24)) (-3594 (((-1093) $) 10)) (-3342 (($ $ $) 21)) (-2686 (($ $ $) 20)) (-4317 (((-840) $) 11)) (-2997 (($) 19 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 23)) (** (($ $ (-895)) 13) (($ $ (-751)) 16) (($ $ (-538)) 22)) (* (($ $ $) 14)))
+((-4276 (*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2089 (*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2382 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2393 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
+(-13 (-1073) (-10 -8 (-15 -4276 (|t#2| $)) (-15 (-2089) ($) -1426) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2393 ($ $)) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1756 (((-3 (-625 (-475 |#1| |#2|)) "failed") (-625 (-475 |#1| |#2|)) (-625 (-841 |#1|))) 92)) (-1746 (((-625 (-625 (-243 |#1| |#2|))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|))) 90)) (-1766 (((-2 (|:| |dpolys| (-625 (-243 |#1| |#2|))) (|:| |coords| (-625 (-552)))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|))) 61)))
+(((-465 |#1| |#2| |#3|) (-10 -7 (-15 -1746 ((-625 (-625 (-243 |#1| |#2|))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|)))) (-15 -1756 ((-3 (-625 (-475 |#1| |#2|)) "failed") (-625 (-475 |#1| |#2|)) (-625 (-841 |#1|)))) (-15 -1766 ((-2 (|:| |dpolys| (-625 (-243 |#1| |#2|))) (|:| |coords| (-625 (-552)))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|))))) (-625 (-1149)) (-446) (-446)) (T -465))
+((-1766 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-841 *5))) (-14 *5 (-625 (-1149))) (-4 *6 (-446)) (-5 *2 (-2 (|:| |dpolys| (-625 (-243 *5 *6))) (|:| |coords| (-625 (-552))))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-625 (-243 *5 *6))) (-4 *7 (-446)))) (-1756 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-475 *4 *5))) (-5 *3 (-625 (-841 *4))) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6)) (-4 *6 (-446)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-841 *5))) (-14 *5 (-625 (-1149))) (-4 *6 (-446)) (-5 *2 (-625 (-625 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-625 (-243 *5 *6))) (-4 *7 (-446)))))
+(-10 -7 (-15 -1746 ((-625 (-625 (-243 |#1| |#2|))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|)))) (-15 -1756 ((-3 (-625 (-475 |#1| |#2|)) "failed") (-625 (-475 |#1| |#2|)) (-625 (-841 |#1|)))) (-15 -1766 ((-2 (|:| |dpolys| (-625 (-243 |#1| |#2|))) (|:| |coords| (-625 (-552)))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|)))))
+((-4174 (((-3 $ "failed") $) 11)) (-2410 (($ $ $) 18)) (-3828 (($ $ $) 19)) (-2404 (($ $ $) 9)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 17)))
+(((-466 |#1|) (-10 -8 (-15 -3828 (|#1| |#1| |#1|)) (-15 -2410 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2404 (|#1| |#1| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897)))) (-467)) (T -466))
+NIL
+(-10 -8 (-15 -3828 (|#1| |#1| |#1|)) (-15 -2410 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2404 (|#1| |#1| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897))))
+((-1671 (((-112) $ $) 7)) (-3101 (($) 18 T CONST)) (-4174 (((-3 $ "failed") $) 15)) (-3650 (((-112) $) 17)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 24)) (-2831 (((-1093) $) 10)) (-2410 (($ $ $) 21)) (-3828 (($ $ $) 20)) (-1683 (((-839) $) 11)) (-2100 (($) 19 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 23)) (** (($ $ (-897)) 13) (($ $ (-751)) 16) (($ $ (-552)) 22)) (* (($ $ $) 14)))
(((-467) (-138)) (T -467))
-((-2734 (*1 *1 *1) (-4 *1 (-467))) (-4308 (*1 *1 *1 *1) (-4 *1 (-467))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-538)))) (-3342 (*1 *1 *1 *1) (-4 *1 (-467))) (-2686 (*1 *1 *1 *1) (-4 *1 (-467))))
-(-13 (-707) (-10 -8 (-15 -2734 ($ $)) (-15 -4308 ($ $ $)) (-15 ** ($ $ (-538))) (-6 -4350) (-15 -3342 ($ $ $)) (-15 -2686 ($ $ $))))
-(((-101) . T) ((-597 (-840)) . T) ((-707) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 17)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) NIL) (($ $ (-402 (-538)) (-402 (-538))) NIL)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) NIL)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) NIL) (((-402 (-538)) $ (-402 (-538))) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) NIL) (($ $ (-402 (-538))) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-402 (-538))) NIL) (($ $ (-1055) (-402 (-538))) NIL) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) 22)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) 26 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 33 (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 27 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) NIL) (($ $ $) NIL (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 25 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $ (-1228 |#2|)) 15)) (-4307 (((-402 (-538)) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1228 |#2|)) NIL) (($ (-1212 |#1| |#2| |#3|)) 9) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 18)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) 24)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-468 |#1| |#2| |#3|) (-13 (-1214 |#1|) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4317 ($ (-1212 |#1| |#2| |#3|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -468))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-468 *3 *4 *5)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))))
-(-13 (-1214 |#1|) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4317 ($ (-1212 |#1| |#2| |#3|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|)))
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) 18)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) 19)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) 16)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) NIL)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-469 |#1| |#2| |#3| |#4|) (-1162 |#1| |#2|) (-1074) (-1074) (-1162 |#1| |#2|) |#2|) (T -469))
+((-4092 (*1 *1 *1) (-4 *1 (-467))) (-2404 (*1 *1 *1 *1) (-4 *1 (-467))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-552)))) (-2410 (*1 *1 *1 *1) (-4 *1 (-467))) (-3828 (*1 *1 *1 *1) (-4 *1 (-467))))
+(-13 (-707) (-10 -8 (-15 -4092 ($ $)) (-15 -2404 ($ $ $)) (-15 ** ($ $ (-552))) (-6 -4350) (-15 -2410 ($ $ $)) (-15 -3828 ($ $ $))))
+(((-101) . T) ((-597 (-839)) . T) ((-707) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 17)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) NIL) (($ $ (-402 (-552)) (-402 (-552))) NIL)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) NIL) (((-402 (-552)) $ (-402 (-552))) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) NIL) (($ $ (-402 (-552))) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-402 (-552))) NIL) (($ $ (-1055) (-402 (-552))) NIL) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) 22)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) 26 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 33 (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 27 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) NIL) (($ $ $) NIL (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) 25 (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $ (-1228 |#2|)) 15)) (-4276 (((-402 (-552)) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1228 |#2|)) NIL) (($ (-1217 |#1| |#2| |#3|)) 9) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 18)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) 24)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-468 |#1| |#2| |#3|) (-13 (-1213 |#1|) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -1683 ($ (-1217 |#1| |#2| |#3|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -468))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1217 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-468 *3 *4 *5)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))))
+(-13 (-1213 |#1|) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -1683 ($ (-1217 |#1| |#2| |#3|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|)))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) 18)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) 19)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 16)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-469 |#1| |#2| |#3| |#4|) (-1162 |#1| |#2|) (-1073) (-1073) (-1162 |#1| |#2|) |#2|) (T -469))
NIL
(-1162 |#1| |#2|)
-((-2898 (((-112) $ $) NIL)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) NIL)) (-4045 (((-622 $) (-622 |#4|)) NIL)) (-3417 (((-622 |#3|) $) NIL)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4051 ((|#4| |#4| $) NIL)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) 26 (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3233 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) NIL)) (-3507 (($ (-622 |#4|)) NIL)) (-4158 (((-3 $ #1#) $) 39)) (-4048 ((|#4| |#4| $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3765 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) NIL)) (-2068 (((-622 |#4|) $) 16 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3531 ((|#3| $) 33)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#4|) $) 17 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2072 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 21)) (-3247 (((-622 |#3|) $) NIL)) (-3246 (((-112) |#3| $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-4157 (((-3 |#4| #1#) $) 37)) (-4060 (((-622 |#4|) $) NIL)) (-4054 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-4062 (((-112) $ $) NIL)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4050 ((|#4| |#4| $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4042 (((-3 $ #1#) $ |#4|) 47)) (-4128 (($ $ |#4|) NIL)) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 15)) (-3928 (($) 13)) (-4307 (((-751) $) NIL)) (-2069 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) 12)) (-4330 (((-527) $) NIL (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 20)) (-3243 (($ $ |#3|) 42)) (-3245 (($ $ |#3|) 44)) (-4047 (($ $) NIL)) (-3244 (($ $ |#3|) NIL)) (-4317 (((-840) $) 31) (((-622 |#4|) $) 40)) (-4041 (((-751) $) NIL (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) NIL)) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) NIL)) (-4293 (((-112) |#3| $) NIL)) (-3387 (((-112) $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-470 |#1| |#2| |#3| |#4|) (-1180 |#1| |#2| |#3| |#4|) (-545) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -470))
-NIL
-(-1180 |#1| |#2| |#3| |#4|)
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3990 (($) 18)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4330 (((-373) $) 22) (((-221) $) 25) (((-402 (-1143 (-538))) $) 19) (((-527) $) 52)) (-4317 (((-840) $) 50) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (((-221) $) 24) (((-373) $) 21)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 36 T CONST)) (-2997 (($) 11 T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL)))
-(((-471) (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))) (-996) (-597 (-221)) (-597 (-373)) (-598 (-402 (-1143 (-538)))) (-598 (-527)) (-10 -8 (-15 -3990 ($))))) (T -471))
-((-3990 (*1 *1) (-5 *1 (-471))))
-(-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))) (-996) (-597 (-221)) (-597 (-373)) (-598 (-402 (-1143 (-538)))) (-598 (-527)) (-10 -8 (-15 -3990 ($))))
-((-2898 (((-112) $ $) NIL)) (-3882 (((-1108) $) 11)) (-3883 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-472) (-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))) (T -472))
-((-3883 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472)))))
-(-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) 16)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) 20)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) 18)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) 13)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 19)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 11 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) 15 (|has| $ (-6 -4353)))))
-(((-473 |#1| |#2| |#3|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1074) (-1074) (-1131)) (T -473))
+((-1671 (((-112) $ $) NIL)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) NIL)) (-3690 (((-625 $) (-625 |#4|)) NIL)) (-3982 (((-625 |#3|) $) NIL)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) 26 (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3624 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) NIL)) (-1895 (($ (-625 |#4|)) NIL)) (-2936 (((-3 $ "failed") $) 39)) (-3720 ((|#4| |#4| $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1416 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3699 ((|#4| |#4| $) NIL)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) NIL)) (-3799 (((-625 |#4|) $) 16 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3565 ((|#3| $) 33)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#4|) $) 17 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-3683 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 21)) (-2615 (((-625 |#3|) $) NIL)) (-2608 (((-112) |#3| $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-1437 (((-3 |#4| "failed") $) 37)) (-2699 (((-625 |#4|) $) NIL)) (-3777 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3727 ((|#4| |#4| $) NIL)) (-2719 (((-112) $ $) NIL)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3737 ((|#4| |#4| $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-3 |#4| "failed") $) 35)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3657 (((-3 $ "failed") $ |#4|) 47)) (-2147 (($ $ |#4|) NIL)) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 15)) (-3600 (($) 13)) (-4276 (((-751) $) NIL)) (-2840 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) 12)) (-2042 (((-528) $) NIL (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 20)) (-3718 (($ $ |#3|) 42)) (-2595 (($ $ |#3|) 44)) (-3709 (($ $) NIL)) (-2584 (($ $ |#3|) NIL)) (-1683 (((-839) $) 31) (((-625 |#4|) $) 40)) (-3647 (((-751) $) NIL (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) NIL)) (-4168 (((-112) |#3| $) NIL)) (-2281 (((-112) $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-470 |#1| |#2| |#3| |#4|) (-1179 |#1| |#2| |#3| |#4|) (-544) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -470))
+NIL
+(-1179 |#1| |#2| |#3| |#4|)
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1385 (($) 18)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-2042 (((-374) $) 22) (((-221) $) 25) (((-402 (-1145 (-552))) $) 19) (((-528) $) 52)) (-1683 (((-839) $) 50) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (((-221) $) 24) (((-374) $) 21)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 36 T CONST)) (-2100 (($) 11 T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL)))
+(((-471) (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))) (-998) (-597 (-221)) (-597 (-374)) (-598 (-402 (-1145 (-552)))) (-598 (-528)) (-10 -8 (-15 -1385 ($))))) (T -471))
+((-1385 (*1 *1) (-5 *1 (-471))))
+(-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))) (-998) (-597 (-221)) (-597 (-374)) (-598 (-402 (-1145 (-552)))) (-598 (-528)) (-10 -8 (-15 -1385 ($))))
+((-1671 (((-112) $ $) NIL)) (-2662 (((-1108) $) 11)) (-2651 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-472) (-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))) (T -472))
+((-2651 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472)))))
+(-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) 16)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) 20)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 18)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) 13)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 19)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 11 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) 15 (|has| $ (-6 -4353)))))
+(((-473 |#1| |#2| |#3|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1073) (-1073) (-1131)) (T -473))
NIL
(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353)))
-((-2057 (((-538) (-538) (-538)) 7)) (-2058 (((-112) (-538) (-538) (-538) (-538)) 11)) (-3811 (((-1231 (-622 (-538))) (-751) (-751)) 23)))
-(((-474) (-10 -7 (-15 -2057 ((-538) (-538) (-538))) (-15 -2058 ((-112) (-538) (-538) (-538) (-538))) (-15 -3811 ((-1231 (-622 (-538))) (-751) (-751))))) (T -474))
-((-3811 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1231 (-622 (-538)))) (-5 *1 (-474)))) (-2058 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-112)) (-5 *1 (-474)))) (-2057 (*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-474)))))
-(-10 -7 (-15 -2057 ((-538) (-538) (-538))) (-15 -2058 ((-112) (-538) (-538) (-538) (-538))) (-15 -3811 ((-1231 (-622 (-538))) (-751) (-751))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-841 |#1|)) $) NIL)) (-3419 (((-1143 $) $ (-841 |#1|)) NIL) (((-1143 |#2|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-2178 (($ $) NIL (|has| |#2| (-545)))) (-2176 (((-112) $) NIL (|has| |#2| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-841 |#1|))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL (|has| |#2| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-841 |#1|) #2#) $) NIL)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-841 |#1|) $) NIL)) (-4116 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-2059 (($ $ (-622 (-538))) NIL)) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#2| (-886)))) (-1721 (($ $ |#2| (-476 (-4316 |#1|) (-751)) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#2|) (-841 |#1|)) NIL) (($ (-1143 $) (-841 |#1|)) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#2| (-476 (-4316 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-841 |#1|)) NIL)) (-3153 (((-476 (-4316 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-1722 (($ (-1 (-476 (-4316 |#1|) (-751)) (-476 (-4316 |#1|) (-751))) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-3418 (((-3 (-841 |#1|) #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#2| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -2493 (-751))) #3#) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#2| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-886)))) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-622 (-841 |#1|)) (-622 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-622 (-841 |#1|)) (-622 $)) NIL)) (-4117 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4170 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4307 (((-476 (-4316 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-841 |#1|) (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#2| (-38 (-402 (-538)))) (|has| |#2| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#2| (-545)))) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-476 (-4316 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#2| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#2| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#2| (-38 (-402 (-538))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-475 |#1| |#2|) (-13 (-926 |#2| (-476 (-4316 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538)))))) (-622 (-1149)) (-1025)) (T -475))
-((-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-475 *3 *4)) (-14 *3 (-622 (-1149))) (-4 *4 (-1025)))))
-(-13 (-926 |#2| (-476 (-4316 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538))))))
-((-2898 (((-112) $ $) NIL (|has| |#2| (-1074)))) (-3539 (((-112) $) NIL (|has| |#2| (-130)))) (-4070 (($ (-895)) NIL (|has| |#2| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) NIL (|has| |#2| (-773)))) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#2| (-363)))) (-3986 (((-538) $) NIL (|has| |#2| (-825)))) (-4147 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1074)))) (-3507 (((-538) $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) ((|#2| $) NIL (|has| |#2| (-1074)))) (-2362 (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-3821 (((-3 $ "failed") $) NIL (|has| |#2| (-707)))) (-3327 (($) NIL (|has| |#2| (-363)))) (-1637 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ (-538)) 11)) (-3537 (((-112) $) NIL (|has| |#2| (-825)))) (-2068 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (|has| |#2| (-707)))) (-3538 (((-112) $) NIL (|has| |#2| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2511 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2072 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#2| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#2| (-1074)))) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#2| (-363)))) (-3594 (((-1093) $) NIL (|has| |#2| (-1074)))) (-4160 ((|#2| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ (-538) |#2|) NIL) ((|#2| $ (-538)) NIL)) (-4196 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-1525 (($ (-1231 |#2|)) NIL)) (-4271 (((-133)) NIL (|has| |#2| (-358)))) (-4170 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2069 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#2|) $) NIL) (($ (-538)) NIL (-3891 (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (|has| |#2| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (($ |#2|) NIL (|has| |#2| (-1074))) (((-840) $) NIL (|has| |#2| (-597 (-840))))) (-3461 (((-751)) NIL (|has| |#2| (-1025)))) (-2071 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#2| (-825)))) (-2991 (($) NIL (|has| |#2| (-130)) CONST)) (-2997 (($) NIL (|has| |#2| (-707)) CONST)) (-3002 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3387 (((-112) $ $) NIL (|has| |#2| (-1074)))) (-3017 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3018 (((-112) $ $) 15 (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-4199 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-895)) NIL (|has| |#2| (-707)))) (* (($ (-538) $) NIL (|has| |#2| (-1025))) (($ $ $) NIL (|has| |#2| (-707))) (($ $ |#2|) NIL (|has| |#2| (-707))) (($ |#2| $) NIL (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-895) $) NIL (|has| |#2| (-25)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
+((-1777 (((-552) (-552) (-552)) 7)) (-1788 (((-112) (-552) (-552) (-552) (-552)) 11)) (-3421 (((-1232 (-625 (-552))) (-751) (-751)) 23)))
+(((-474) (-10 -7 (-15 -1777 ((-552) (-552) (-552))) (-15 -1788 ((-112) (-552) (-552) (-552) (-552))) (-15 -3421 ((-1232 (-625 (-552))) (-751) (-751))))) (T -474))
+((-3421 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1232 (-625 (-552)))) (-5 *1 (-474)))) (-1788 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-112)) (-5 *1 (-474)))) (-1777 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-474)))))
+(-10 -7 (-15 -1777 ((-552) (-552) (-552))) (-15 -1788 ((-112) (-552) (-552) (-552) (-552))) (-15 -3421 ((-1232 (-625 (-552))) (-751) (-751))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-841 |#1|)) $) NIL)) (-3793 (((-1145 $) $ (-841 |#1|)) NIL) (((-1145 |#2|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3528 (($ $) NIL (|has| |#2| (-544)))) (-3509 (((-112) $) NIL (|has| |#2| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-841 |#1|))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL (|has| |#2| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-841 |#1|) "failed") $) NIL)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-841 |#1|) $) NIL)) (-3207 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-1801 (($ $ (-625 (-552))) NIL)) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#2| (-885)))) (-1347 (($ $ |#2| (-476 (-1471 |#1|) (-751)) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#2|) (-841 |#1|)) NIL) (($ (-1145 $) (-841 |#1|)) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#2| (-476 (-1471 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-841 |#1|)) NIL)) (-4134 (((-476 (-1471 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1357 (($ (-1 (-476 (-1471 |#1|) (-751)) (-476 (-1471 |#1|) (-751))) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-1942 (((-3 (-841 |#1|) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#2| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -3564 (-751))) "failed") $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#2| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-885)))) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-625 (-841 |#1|)) (-625 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-625 (-841 |#1|)) (-625 $)) NIL)) (-3217 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-3072 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4276 (((-476 (-1471 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-841 |#1|) (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#2| (-38 (-402 (-552)))) (|has| |#2| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-476 (-1471 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#2| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#2| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#2| (-38 (-402 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-475 |#1| |#2|) (-13 (-925 |#2| (-476 (-1471 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552)))))) (-625 (-1149)) (-1025)) (T -475))
+((-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-475 *3 *4)) (-14 *3 (-625 (-1149))) (-4 *4 (-1025)))))
+(-13 (-925 |#2| (-476 (-1471 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552))))))
+((-1671 (((-112) $ $) NIL (|has| |#2| (-1073)))) (-3641 (((-112) $) NIL (|has| |#2| (-130)))) (-2787 (($ (-897)) NIL (|has| |#2| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) NIL (|has| |#2| (-773)))) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#2| (-363)))) (-4127 (((-552) $) NIL (|has| |#2| (-825)))) (-1851 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1073)))) (-1895 (((-552) $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) ((|#2| $) NIL (|has| |#2| (-1073)))) (-1794 (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-4174 (((-3 $ "failed") $) NIL (|has| |#2| (-707)))) (-3702 (($) NIL (|has| |#2| (-363)))) (-3692 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ (-552)) 11)) (-3620 (((-112) $) NIL (|has| |#2| (-825)))) (-3799 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (|has| |#2| (-707)))) (-3630 (((-112) $) NIL (|has| |#2| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3730 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3683 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#2| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#2| (-1073)))) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#2| (-363)))) (-2831 (((-1093) $) NIL (|has| |#2| (-1073)))) (-2924 ((|#2| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL)) (-1443 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-3878 (($ (-1232 |#2|)) NIL)) (-3904 (((-133)) NIL (|has| |#2| (-358)))) (-3072 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2840 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#2|) $) NIL) (($ (-552)) NIL (-1523 (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (|has| |#2| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (($ |#2|) NIL (|has| |#2| (-1073))) (((-839) $) NIL (|has| |#2| (-597 (-839))))) (-4141 (((-751)) NIL (|has| |#2| (-1025)))) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#2| (-825)))) (-2089 (($) NIL (|has| |#2| (-130)) CONST)) (-2100 (($) NIL (|has| |#2| (-707)) CONST)) (-3768 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2281 (((-112) $ $) NIL (|has| |#2| (-1073)))) (-2334 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2307 (((-112) $ $) 15 (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-2382 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-897)) NIL (|has| |#2| (-707)))) (* (($ (-552) $) NIL (|has| |#2| (-1025))) (($ $ $) NIL (|has| |#2| (-707))) (($ $ |#2|) NIL (|has| |#2| (-707))) (($ |#2| $) NIL (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-897) $) NIL (|has| |#2| (-25)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
(((-476 |#1| |#2|) (-234 |#1| |#2|) (-751) (-773)) (T -476))
NIL
(-234 |#1| |#2|)
-((-2898 (((-112) $ $) NIL)) (-2060 (((-622 (-499)) $) 11)) (-3905 (((-499) $) 10)) (-3593 (((-1131) $) NIL)) (-2061 (($ (-499) (-622 (-499))) 9)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-477) (-13 (-1056) (-10 -8 (-15 -2061 ($ (-499) (-622 (-499)))) (-15 -3905 ((-499) $)) (-15 -2060 ((-622 (-499)) $))))) (T -477))
-((-2061 (*1 *1 *2 *3) (-12 (-5 *3 (-622 (-499))) (-5 *2 (-499)) (-5 *1 (-477)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-477)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-622 (-499))) (-5 *1 (-477)))))
-(-13 (-1056) (-10 -8 (-15 -2061 ($ (-499) (-622 (-499)))) (-15 -3905 ((-499) $)) (-15 -2060 ((-622 (-499)) $))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-3192 (($ $ $) 32)) (-3872 (($ $ $) 31)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3678 ((|#1| $) 26)) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) 27)) (-3970 (($ |#1| $) 10)) (-2062 (($ (-622 |#1|)) 12)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-1334 ((|#1| $) 23)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 9)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 29)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) 21 (|has| $ (-6 -4353)))))
-(((-478 |#1|) (-13 (-944 |#1|) (-10 -8 (-15 -2062 ($ (-622 |#1|))))) (-827)) (T -478))
-((-2062 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-478 *3)))))
-(-13 (-944 |#1|) (-10 -8 (-15 -2062 ($ (-622 |#1|)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4202 (($ $) 69)) (-1752 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-2092 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 44)) (-3594 (((-1093) $) NIL)) (-2501 (((-3 |#4| "failed") $) 107)) (-1753 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-538)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3794 (((-2 (|:| -2417 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4317 (((-840) $) 102)) (-2991 (($) 33 T CONST)) (-3387 (((-112) $ $) 109)) (-4197 (($ $) 72) (($ $ $) NIL)) (-4199 (($ $ $) 70)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 73)))
-(((-479 |#1| |#2| |#3| |#4|) (-331 |#1| |#2| |#3| |#4|) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -479))
-NIL
-(-331 |#1| |#2| |#3| |#4|)
-((-2066 (((-538) (-622 (-538))) 30)) (-2063 ((|#1| (-622 |#1|)) 56)) (-2065 (((-622 |#1|) (-622 |#1|)) 57)) (-2064 (((-622 |#1|) (-622 |#1|)) 59)) (-3495 ((|#1| (-622 |#1|)) 58)) (-3150 (((-622 (-538)) (-622 |#1|)) 33)))
-(((-480 |#1|) (-10 -7 (-15 -3495 (|#1| (-622 |#1|))) (-15 -2063 (|#1| (-622 |#1|))) (-15 -2064 ((-622 |#1|) (-622 |#1|))) (-15 -2065 ((-622 |#1|) (-622 |#1|))) (-15 -3150 ((-622 (-538)) (-622 |#1|))) (-15 -2066 ((-538) (-622 (-538))))) (-1207 (-538))) (T -480))
-((-2066 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-538)) (-5 *1 (-480 *4)) (-4 *4 (-1207 *2)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-1207 (-538))) (-5 *2 (-622 (-538))) (-5 *1 (-480 *4)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1207 (-538))) (-5 *1 (-480 *3)))) (-2064 (*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1207 (-538))) (-5 *1 (-480 *3)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1207 (-538))))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1207 (-538))))))
-(-10 -7 (-15 -3495 (|#1| (-622 |#1|))) (-15 -2063 (|#1| (-622 |#1|))) (-15 -2064 ((-622 |#1|) (-622 |#1|))) (-15 -2065 ((-622 |#1|) (-622 |#1|))) (-15 -3150 ((-622 (-538)) (-622 |#1|))) (-15 -2066 ((-538) (-622 (-538)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-538) $) NIL (|has| (-538) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-538) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-538) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-538) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-538) (-1014 (-538))))) (-3507 (((-538) $) NIL) (((-1149) $) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-538) (-1014 (-538)))) (((-538) $) NIL (|has| (-538) (-1014 (-538))))) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-538) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-538) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-538) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-538) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-538) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-538) (-1124)))) (-3538 (((-112) $) NIL (|has| (-538) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-538) (-827)))) (-4318 (($ (-1 (-538) (-538)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-538) (-1124)) CONST)) (-2067 (($ (-402 (-538))) 9)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-538) (-302))) (((-402 (-538)) $) NIL)) (-3465 (((-538) $) NIL (|has| (-538) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-538)) (-622 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-538) (-538)) NIL (|has| (-538) (-304 (-538)))) (($ $ (-288 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-288 (-538)))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-1149)) (-622 (-538))) NIL (|has| (-538) (-507 (-1149) (-538)))) (($ $ (-1149) (-538)) NIL (|has| (-538) (-507 (-1149) (-538))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-538)) NIL (|has| (-538) (-281 (-538) (-538))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-538) $) NIL)) (-4330 (((-866 (-538)) $) NIL (|has| (-538) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-538) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-538) (-598 (-527)))) (((-373) $) NIL (|has| (-538) (-996))) (((-221) $) NIL (|has| (-538) (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-538) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) 8) (($ (-538)) NIL) (($ (-1149)) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL) (((-980 16) $) 10)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-538) (-886))) (|has| (-538) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-538) $) NIL (|has| (-538) (-537)))) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| (-538) (-800)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-538) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-538) (-827)))) (-4308 (($ $ $) NIL) (($ (-538) (-538)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-538) $) NIL) (($ $ (-538)) NIL)))
-(((-481) (-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 16) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -2067 ($ (-402 (-538))))))) (T -481))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-980 16)) (-5 *1 (-481)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481)))))
-(-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 16) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -2067 ($ (-402 (-538))))))
-((-2511 (((-622 |#2|) $) 23)) (-3596 (((-112) |#2| $) 28)) (-2070 (((-112) (-1 (-112) |#2|) $) 21)) (-4127 (($ $ (-622 (-288 |#2|))) 13) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-622 |#2|) (-622 |#2|)) NIL)) (-2069 (((-751) (-1 (-112) |#2|) $) 22) (((-751) |#2| $) 26)) (-4317 (((-840) $) 37)) (-2071 (((-112) (-1 (-112) |#2|) $) 20)) (-3387 (((-112) $ $) 31)) (-4316 (((-751) $) 17)))
-(((-482 |#1| |#2|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -3596 ((-112) |#2| |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2511 ((-622 |#2|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|))) (-483 |#2|) (-1185)) (T -482))
-NIL
-(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -3596 ((-112) |#2| |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2511 ((-622 |#2|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-483 |#1|) (-138) (-1185)) (T -483))
-((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1185)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-483 *3)) (-4 *3 (-1185)))) (-2071 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1185)) (-5 *2 (-112)))) (-2070 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1185)) (-5 *2 (-112)))) (-2069 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1185)) (-5 *2 (-751)))) (-2068 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-5 *2 (-622 *3)))) (-2511 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-5 *2 (-622 *3)))) (-2069 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-751)))) (-3596 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-597 (-840))) (-6 (-597 (-840))) |%noBranch|) (IF (|has| |t#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |t#1| (-1074)) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4354)) (-15 -2072 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4353)) (PROGN (-15 -2071 ((-112) (-1 (-112) |t#1|) $)) (-15 -2070 ((-112) (-1 (-112) |t#1|) $)) (-15 -2069 ((-751) (-1 (-112) |t#1|) $)) (-15 -2068 ((-622 |t#1|) $)) (-15 -2511 ((-622 |t#1|) $)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -2069 ((-751) |t#1| $)) (-15 -3596 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2073 (($ (-1131)) 8)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 14) (((-1131) $) 11)) (-3387 (((-112) $ $) 10)))
-(((-484) (-13 (-1074) (-597 (-1131)) (-10 -8 (-15 -2073 ($ (-1131)))))) (T -484))
-((-2073 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-484)))))
-(-13 (-1074) (-597 (-1131)) (-10 -8 (-15 -2073 ($ (-1131)))))
-((-3846 (($ $) 15)) (-3844 (($ $) 24)) (-3848 (($ $) 12)) (-3849 (($ $) 10)) (-3847 (($ $) 17)) (-3845 (($ $) 22)))
-(((-485 |#1|) (-10 -8 (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|))) (-486)) (T -485))
-NIL
-(-10 -8 (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)))
-((-3846 (($ $) 11)) (-3844 (($ $) 10)) (-3848 (($ $) 9)) (-3849 (($ $) 8)) (-3847 (($ $) 7)) (-3845 (($ $) 6)))
+((-1671 (((-112) $ $) NIL)) (-3393 (((-625 (-499)) $) 11)) (-1288 (((-499) $) 10)) (-2883 (((-1131) $) NIL)) (-1812 (($ (-499) (-625 (-499))) 9)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-477) (-13 (-1056) (-10 -8 (-15 -1812 ($ (-499) (-625 (-499)))) (-15 -1288 ((-499) $)) (-15 -3393 ((-625 (-499)) $))))) (T -477))
+((-1812 (*1 *1 *2 *3) (-12 (-5 *3 (-625 (-499))) (-5 *2 (-499)) (-5 *1 (-477)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-477)))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-625 (-499))) (-5 *1 (-477)))))
+(-13 (-1056) (-10 -8 (-15 -1812 ($ (-499) (-625 (-499)))) (-15 -1288 ((-499) $)) (-15 -3393 ((-625 (-499)) $))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3260 (($ $ $) 32)) (-3280 (($ $ $) 31)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3332 ((|#1| $) 26)) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) 27)) (-3966 (($ |#1| $) 10)) (-1822 (($ (-625 |#1|)) 12)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2966 ((|#1| $) 23)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 9)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 29)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) 21 (|has| $ (-6 -4353)))))
+(((-478 |#1|) (-13 (-944 |#1|) (-10 -8 (-15 -1822 ($ (-625 |#1|))))) (-827)) (T -478))
+((-1822 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-478 *3)))))
+(-13 (-944 |#1|) (-10 -8 (-15 -1822 ($ (-625 |#1|)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2163 (($ $) 69)) (-1581 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-3935 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 44)) (-2831 (((-1093) $) NIL)) (-3212 (((-3 |#4| "failed") $) 107)) (-1593 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-552)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3950 (((-2 (|:| -2150 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-1683 (((-839) $) 102)) (-2089 (($) 33 T CONST)) (-2281 (((-112) $ $) 109)) (-2393 (($ $) 72) (($ $ $) NIL)) (-2382 (($ $ $) 70)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 73)))
+(((-479 |#1| |#2| |#3| |#4|) (-330 |#1| |#2| |#3| |#4|) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -479))
+NIL
+(-330 |#1| |#2| |#3| |#4|)
+((-1867 (((-552) (-625 (-552))) 30)) (-1833 ((|#1| (-625 |#1|)) 56)) (-1857 (((-625 |#1|) (-625 |#1|)) 57)) (-1846 (((-625 |#1|) (-625 |#1|)) 59)) (-2633 ((|#1| (-625 |#1|)) 58)) (-4108 (((-625 (-552)) (-625 |#1|)) 33)))
+(((-480 |#1|) (-10 -7 (-15 -2633 (|#1| (-625 |#1|))) (-15 -1833 (|#1| (-625 |#1|))) (-15 -1846 ((-625 |#1|) (-625 |#1|))) (-15 -1857 ((-625 |#1|) (-625 |#1|))) (-15 -4108 ((-625 (-552)) (-625 |#1|))) (-15 -1867 ((-552) (-625 (-552))))) (-1208 (-552))) (T -480))
+((-1867 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-552)) (-5 *1 (-480 *4)) (-4 *4 (-1208 *2)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-1208 (-552))) (-5 *2 (-625 (-552))) (-5 *1 (-480 *4)))) (-1857 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1208 (-552))) (-5 *1 (-480 *3)))) (-1846 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1208 (-552))) (-5 *1 (-480 *3)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1208 (-552))))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1208 (-552))))))
+(-10 -7 (-15 -2633 (|#1| (-625 |#1|))) (-15 -1833 (|#1| (-625 |#1|))) (-15 -1846 ((-625 |#1|) (-625 |#1|))) (-15 -1857 ((-625 |#1|) (-625 |#1|))) (-15 -4108 ((-625 (-552)) (-625 |#1|))) (-15 -1867 ((-552) (-625 (-552)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-552) $) NIL (|has| (-552) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-552) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-552) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-552) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1014 (-552))))) (-1895 (((-552) $) NIL) (((-1149) $) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-552) (-1014 (-552)))) (((-552) $) NIL (|has| (-552) (-1014 (-552))))) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-552) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-552) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-552) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-552) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-552) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-552) (-1124)))) (-3630 (((-112) $) NIL (|has| (-552) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-552) (-827)))) (-1996 (($ (-1 (-552) (-552)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-552) (-1124)) CONST)) (-1878 (($ (-402 (-552))) 9)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-552) (-302))) (((-402 (-552)) $) NIL)) (-4189 (((-552) $) NIL (|has| (-552) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-552)) (-625 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-304 (-552)))) (($ $ (-289 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-289 (-552)))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-1149)) (-625 (-552))) NIL (|has| (-552) (-507 (-1149) (-552)))) (($ $ (-1149) (-552)) NIL (|has| (-552) (-507 (-1149) (-552))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-552)) NIL (|has| (-552) (-281 (-552) (-552))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-552) $) NIL)) (-2042 (((-868 (-552)) $) NIL (|has| (-552) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-552) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-552) (-598 (-528)))) (((-374) $) NIL (|has| (-552) (-998))) (((-221) $) NIL (|has| (-552) (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-552) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) 8) (($ (-552)) NIL) (($ (-1149)) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL) (((-980 16) $) 10)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-552) (-885))) (|has| (-552) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-552) $) NIL (|has| (-552) (-537)))) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| (-552) (-800)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2404 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL)))
+(((-481) (-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 16) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -1878 ($ (-402 (-552))))))) (T -481))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-980 16)) (-5 *1 (-481)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481)))) (-1878 (*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481)))))
+(-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 16) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -1878 ($ (-402 (-552))))))
+((-3730 (((-625 |#2|) $) 23)) (-2893 (((-112) |#2| $) 28)) (-1888 (((-112) (-1 (-112) |#2|) $) 21)) (-4073 (($ $ (-625 (-289 |#2|))) 13) (($ $ (-289 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-625 |#2|) (-625 |#2|)) NIL)) (-2840 (((-751) (-1 (-112) |#2|) $) 22) (((-751) |#2| $) 26)) (-1683 (((-839) $) 37)) (-1900 (((-112) (-1 (-112) |#2|) $) 20)) (-2281 (((-112) $ $) 31)) (-1471 (((-751) $) 17)))
+(((-482 |#1| |#2|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -2893 ((-112) |#2| |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -3730 ((-625 |#2|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|))) (-483 |#2|) (-1186)) (T -482))
+NIL
+(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -2893 ((-112) |#2| |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -3730 ((-625 |#2|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-483 |#1|) (-138) (-1186)) (T -483))
+((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1186)))) (-3683 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-483 *3)) (-4 *3 (-1186)))) (-1900 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1186)) (-5 *2 (-112)))) (-1888 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1186)) (-5 *2 (-112)))) (-2840 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1186)) (-5 *2 (-751)))) (-3799 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) (-5 *2 (-625 *3)))) (-3730 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) (-5 *2 (-625 *3)))) (-2840 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-751)))) (-2893 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-597 (-839))) (-6 (-597 (-839))) |%noBranch|) (IF (|has| |t#1| (-1073)) (-6 (-1073)) |%noBranch|) (IF (|has| |t#1| (-1073)) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4354)) (-15 -3683 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4353)) (PROGN (-15 -1900 ((-112) (-1 (-112) |t#1|) $)) (-15 -1888 ((-112) (-1 (-112) |t#1|) $)) (-15 -2840 ((-751) (-1 (-112) |t#1|) $)) (-15 -3799 ((-625 |t#1|) $)) (-15 -3730 ((-625 |t#1|) $)) (IF (|has| |t#1| (-1073)) (PROGN (-15 -2840 ((-751) |t#1| $)) (-15 -2893 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-1913 (($ (-1131)) 8)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 14) (((-1131) $) 11)) (-2281 (((-112) $ $) 10)))
+(((-484) (-13 (-1073) (-597 (-1131)) (-10 -8 (-15 -1913 ($ (-1131)))))) (T -484))
+((-1913 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-484)))))
+(-13 (-1073) (-597 (-1131)) (-10 -8 (-15 -1913 ($ (-1131)))))
+((-3728 (($ $) 15)) (-3710 (($ $) 24)) (-3749 (($ $) 12)) (-3759 (($ $) 10)) (-3738 (($ $) 17)) (-3721 (($ $) 22)))
+(((-485 |#1|) (-10 -8 (-15 -3721 (|#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|))) (-486)) (T -485))
+NIL
+(-10 -8 (-15 -3721 (|#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)))
+((-3728 (($ $) 11)) (-3710 (($ $) 10)) (-3749 (($ $) 9)) (-3759 (($ $) 8)) (-3738 (($ $) 7)) (-3721 (($ $) 6)))
(((-486) (-138)) (T -486))
-((-3846 (*1 *1 *1) (-4 *1 (-486))) (-3844 (*1 *1 *1) (-4 *1 (-486))) (-3848 (*1 *1 *1) (-4 *1 (-486))) (-3849 (*1 *1 *1) (-4 *1 (-486))) (-3847 (*1 *1 *1) (-4 *1 (-486))) (-3845 (*1 *1 *1) (-4 *1 (-486))))
-(-13 (-10 -8 (-15 -3845 ($ $)) (-15 -3847 ($ $)) (-15 -3849 ($ $)) (-15 -3848 ($ $)) (-15 -3844 ($ $)) (-15 -3846 ($ $))))
-((-4092 (((-400 |#4|) |#4| (-1 (-400 |#2|) |#2|)) 42)))
-(((-487 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4| (-1 (-400 |#2|) |#2|)))) (-358) (-1207 |#1|) (-13 (-358) (-145) (-705 |#1| |#2|)) (-1207 |#3|)) (T -487))
-((-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-4 *7 (-13 (-358) (-145) (-705 *5 *6))) (-5 *2 (-400 *3)) (-5 *1 (-487 *5 *6 *7 *3)) (-4 *3 (-1207 *7)))))
-(-10 -7 (-15 -4092 ((-400 |#4|) |#4| (-1 (-400 |#2|) |#2|))))
-((-2898 (((-112) $ $) NIL)) (-1667 (((-622 $) (-1143 $) (-1149)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-922 $)) NIL)) (-1265 (($ (-1143 $) (-1149)) NIL) (($ (-1143 $)) NIL) (($ (-922 $)) NIL)) (-3539 (((-112) $) 39)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-2074 (((-112) $ $) 64)) (-1660 (((-622 (-595 $)) $) 48)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1664 (($ $ (-288 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-1266 (((-622 $) (-1143 $) (-1149)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-922 $)) NIL)) (-3534 (($ (-1143 $) (-1149)) NIL) (($ (-1143 $)) NIL) (($ (-922 $)) NIL)) (-3508 (((-3 (-595 $) #1="failed") $) NIL) (((-3 (-538) #1#) $) NIL) (((-3 (-402 (-538)) #1#) $) NIL)) (-3507 (((-595 $) $) NIL) (((-538) $) NIL) (((-402 (-538)) $) 50)) (-2894 (($ $ $) NIL)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-402 (-538)))) (|:| |vec| (-1231 (-402 (-538))))) (-669 $) (-1231 $)) NIL) (((-669 (-402 (-538))) (-669 $)) NIL)) (-4202 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2903 (($ $) NIL) (($ (-622 $)) NIL)) (-1659 (((-622 (-113)) $) NIL)) (-3380 (((-113) (-113)) NIL)) (-2502 (((-112) $) 42)) (-3006 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-3331 (((-1098 (-538) (-595 $)) $) 37)) (-3344 (($ $ (-538)) NIL)) (-3467 (((-1143 $) (-1143 $) (-595 $)) 78) (((-1143 $) (-1143 $) (-622 (-595 $))) 55) (($ $ (-595 $)) 67) (($ $ (-622 (-595 $))) 68)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-1657 (((-1143 $) (-595 $)) 65 (|has| $ (-1025)))) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 $ $) (-595 $)) NIL)) (-1662 (((-3 (-595 $) "failed") $) NIL)) (-2013 (($ (-622 $)) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-1661 (((-622 (-595 $)) $) NIL)) (-2317 (($ (-113) $) NIL) (($ (-113) (-622 $)) NIL)) (-2964 (((-112) $ (-113)) NIL) (((-112) $ (-1149)) NIL)) (-2734 (($ $) NIL)) (-2933 (((-751) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ (-622 $)) NIL) (($ $ $) NIL)) (-1658 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-1149) (-1 $ (-622 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-622 (-113)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-113) (-1 $ (-622 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1704 (((-751) $) NIL)) (-4159 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-622 $)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-4170 (($ $ (-751)) NIL) (($ $) 36)) (-3330 (((-1098 (-538) (-595 $)) $) 20)) (-3536 (($ $) NIL (|has| $ (-1025)))) (-4330 (((-373) $) 92) (((-221) $) 100) (((-166 (-373)) $) 108)) (-4317 (((-840) $) NIL) (($ (-595 $)) NIL) (($ (-402 (-538))) NIL) (($ $) NIL) (($ (-538)) NIL) (($ (-1098 (-538) (-595 $))) 21)) (-3461 (((-751)) NIL)) (-2920 (($ $) NIL) (($ (-622 $)) NIL)) (-2338 (((-112) (-113)) 84)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 10 T CONST)) (-2997 (($) 22 T CONST)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 24)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4308 (($ $ $) 44)) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-402 (-538))) NIL) (($ $ (-538)) 46) (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL) (($ $ $) 27) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL)))
-(((-488) (-13 (-293) (-27) (-1014 (-538)) (-1014 (-402 (-538))) (-621 (-538)) (-996) (-621 (-402 (-538))) (-145) (-598 (-166 (-373))) (-229) (-10 -8 (-15 -4317 ($ (-1098 (-538) (-595 $)))) (-15 -3331 ((-1098 (-538) (-595 $)) $)) (-15 -3330 ((-1098 (-538) (-595 $)) $)) (-15 -4202 ($ $)) (-15 -2074 ((-112) $ $)) (-15 -3467 ((-1143 $) (-1143 $) (-595 $))) (-15 -3467 ((-1143 $) (-1143 $) (-622 (-595 $)))) (-15 -3467 ($ $ (-595 $))) (-15 -3467 ($ $ (-622 (-595 $))))))) (T -488))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488)))) (-4202 (*1 *1 *1) (-5 *1 (-488))) (-2074 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-488)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 (-488))) (-5 *3 (-595 (-488))) (-5 *1 (-488)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 (-488))) (-5 *3 (-622 (-595 (-488)))) (-5 *1 (-488)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-488))) (-5 *1 (-488)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-595 (-488)))) (-5 *1 (-488)))))
-(-13 (-293) (-27) (-1014 (-538)) (-1014 (-402 (-538))) (-621 (-538)) (-996) (-621 (-402 (-538))) (-145) (-598 (-166 (-373))) (-229) (-10 -8 (-15 -4317 ($ (-1098 (-538) (-595 $)))) (-15 -3331 ((-1098 (-538) (-595 $)) $)) (-15 -3330 ((-1098 (-538) (-595 $)) $)) (-15 -4202 ($ $)) (-15 -2074 ((-112) $ $)) (-15 -3467 ((-1143 $) (-1143 $) (-595 $))) (-15 -3467 ((-1143 $) (-1143 $) (-622 (-595 $)))) (-15 -3467 ($ $ (-595 $))) (-15 -3467 ($ $ (-622 (-595 $))))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) 25 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 22 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 21)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 14)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 12 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) 23 (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) 10 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 13)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) 24) (($ $ (-1198 (-538))) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) 9 (|has| $ (-6 -4353)))))
-(((-489 |#1| |#2|) (-19 |#1|) (-1185) (-538)) (T -489))
+((-3728 (*1 *1 *1) (-4 *1 (-486))) (-3710 (*1 *1 *1) (-4 *1 (-486))) (-3749 (*1 *1 *1) (-4 *1 (-486))) (-3759 (*1 *1 *1) (-4 *1 (-486))) (-3738 (*1 *1 *1) (-4 *1 (-486))) (-3721 (*1 *1 *1) (-4 *1 (-486))))
+(-13 (-10 -8 (-15 -3721 ($ $)) (-15 -3738 ($ $)) (-15 -3759 ($ $)) (-15 -3749 ($ $)) (-15 -3710 ($ $)) (-15 -3728 ($ $))))
+((-3824 (((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|)) 42)))
+(((-487 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|)))) (-358) (-1208 |#1|) (-13 (-358) (-145) (-705 |#1| |#2|)) (-1208 |#3|)) (T -487))
+((-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-4 *7 (-13 (-358) (-145) (-705 *5 *6))) (-5 *2 (-413 *3)) (-5 *1 (-487 *5 *6 *7 *3)) (-4 *3 (-1208 *7)))))
+(-10 -7 (-15 -3824 ((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|))))
+((-1671 (((-112) $ $) NIL)) (-1993 (((-625 $) (-1145 $) (-1149)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-928 $)) NIL)) (-3428 (($ (-1145 $) (-1149)) NIL) (($ (-1145 $)) NIL) (($ (-928 $)) NIL)) (-3641 (((-112) $) 39)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-1925 (((-112) $ $) 64)) (-3715 (((-625 (-596 $)) $) 48)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3831 (($ $ (-289 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-3438 (((-625 $) (-1145 $) (-1149)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-928 $)) NIL)) (-3588 (($ (-1145 $) (-1149)) NIL) (($ (-1145 $)) NIL) (($ (-928 $)) NIL)) (-1893 (((-3 (-596 $) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL)) (-1895 (((-596 $) $) NIL) (((-552) $) NIL) (((-402 (-552)) $) 50)) (-2851 (($ $ $) NIL)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-402 (-552)))) (|:| |vec| (-1232 (-402 (-552))))) (-669 $) (-1232 $)) NIL) (((-669 (-402 (-552))) (-669 $)) NIL)) (-2163 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-2411 (($ $) NIL) (($ (-625 $)) NIL)) (-1940 (((-625 (-114)) $) NIL)) (-1563 (((-114) (-114)) NIL)) (-3650 (((-112) $) 42)) (-3932 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-1356 (((-1098 (-552) (-596 $)) $) 37)) (-2429 (($ $ (-552)) NIL)) (-4209 (((-1145 $) (-1145 $) (-596 $)) 78) (((-1145 $) (-1145 $) (-625 (-596 $))) 55) (($ $ (-596 $)) 67) (($ $ (-625 (-596 $))) 68)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1917 (((-1145 $) (-596 $)) 65 (|has| $ (-1025)))) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 $ $) (-596 $)) NIL)) (-1952 (((-3 (-596 $) "failed") $) NIL)) (-2605 (($ (-625 $)) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3783 (((-625 (-596 $)) $) NIL)) (-1425 (($ (-114) $) NIL) (($ (-114) (-625 $)) NIL)) (-1721 (((-112) $ (-114)) NIL) (((-112) $ (-1149)) NIL)) (-4092 (($ $) NIL)) (-2207 (((-751) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ (-625 $)) NIL) (($ $ $) NIL)) (-1929 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-1149) (-1 $ (-625 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-625 (-114)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-114) (-1 $ (-625 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2397 (((-751) $) NIL)) (-2154 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-625 $)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1963 (($ $) NIL) (($ $ $) NIL)) (-3072 (($ $ (-751)) NIL) (($ $) 36)) (-1368 (((-1098 (-552) (-596 $)) $) 20)) (-3610 (($ $) NIL (|has| $ (-1025)))) (-2042 (((-374) $) 92) (((-221) $) 100) (((-167 (-374)) $) 108)) (-1683 (((-839) $) NIL) (($ (-596 $)) NIL) (($ (-402 (-552))) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-1098 (-552) (-596 $))) 21)) (-4141 (((-751)) NIL)) (-3779 (($ $) NIL) (($ (-625 $)) NIL)) (-1572 (((-112) (-114)) 84)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 10 T CONST)) (-2100 (($) 22 T CONST)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 24)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2404 (($ $ $) 44)) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-402 (-552))) NIL) (($ $ (-552)) 46) (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL) (($ $ $) 27) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL)))
+(((-488) (-13 (-297) (-27) (-1014 (-552)) (-1014 (-402 (-552))) (-621 (-552)) (-998) (-621 (-402 (-552))) (-145) (-598 (-167 (-374))) (-229) (-10 -8 (-15 -1683 ($ (-1098 (-552) (-596 $)))) (-15 -1356 ((-1098 (-552) (-596 $)) $)) (-15 -1368 ((-1098 (-552) (-596 $)) $)) (-15 -2163 ($ $)) (-15 -1925 ((-112) $ $)) (-15 -4209 ((-1145 $) (-1145 $) (-596 $))) (-15 -4209 ((-1145 $) (-1145 $) (-625 (-596 $)))) (-15 -4209 ($ $ (-596 $))) (-15 -4209 ($ $ (-625 (-596 $))))))) (T -488))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488)))) (-2163 (*1 *1 *1) (-5 *1 (-488))) (-1925 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-488)))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 (-488))) (-5 *3 (-596 (-488))) (-5 *1 (-488)))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 (-488))) (-5 *3 (-625 (-596 (-488)))) (-5 *1 (-488)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-596 (-488))) (-5 *1 (-488)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-596 (-488)))) (-5 *1 (-488)))))
+(-13 (-297) (-27) (-1014 (-552)) (-1014 (-402 (-552))) (-621 (-552)) (-998) (-621 (-402 (-552))) (-145) (-598 (-167 (-374))) (-229) (-10 -8 (-15 -1683 ($ (-1098 (-552) (-596 $)))) (-15 -1356 ((-1098 (-552) (-596 $)) $)) (-15 -1368 ((-1098 (-552) (-596 $)) $)) (-15 -2163 ($ $)) (-15 -1925 ((-112) $ $)) (-15 -4209 ((-1145 $) (-1145 $) (-596 $))) (-15 -4209 ((-1145 $) (-1145 $) (-625 (-596 $)))) (-15 -4209 ($ $ (-596 $))) (-15 -4209 ($ $ (-625 (-596 $))))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) 25 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 22 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 21)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 14)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 12 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) 23 (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) 10 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 13)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 24) (($ $ (-1199 (-552))) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) 9 (|has| $ (-6 -4353)))))
+(((-489 |#1| |#2|) (-19 |#1|) (-1186) (-552)) (T -489))
NIL
(-19 |#1|)
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) NIL)) (-1309 (($ $ (-538) (-489 |#1| |#3|)) NIL)) (-1308 (($ $ (-538) (-489 |#1| |#2|)) NIL)) (-3896 (($) NIL T CONST)) (-3447 (((-489 |#1| |#3|) $ (-538)) NIL)) (-1637 ((|#1| $ (-538) (-538) |#1|) NIL)) (-3448 ((|#1| $ (-538) (-538)) NIL)) (-2068 (((-622 |#1|) $) NIL)) (-3450 (((-751) $) NIL)) (-3977 (($ (-751) (-751) |#1|) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) (-538)) NIL) ((|#1| $ (-538) (-538) |#1|) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3446 (((-489 |#1| |#2|) $ (-538)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-490 |#1| |#2| |#3|) (-56 |#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) (-1185) (-538) (-538)) (T -490))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) NIL)) (-2701 (($ $ (-552) (-489 |#1| |#3|)) NIL)) (-2691 (($ $ (-552) (-489 |#1| |#2|)) NIL)) (-3101 (($) NIL T CONST)) (-4015 (((-489 |#1| |#3|) $ (-552)) NIL)) (-3692 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3631 ((|#1| $ (-552) (-552)) NIL)) (-3799 (((-625 |#1|) $) NIL)) (-1773 (((-751) $) NIL)) (-2183 (($ (-751) (-751) |#1|) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-4004 (((-489 |#1| |#2|) $ (-552)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-490 |#1| |#2| |#3|) (-56 |#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) (-1186) (-552) (-552)) (T -490))
NIL
(-56 |#1| (-489 |#1| |#3|) (-489 |#1| |#2|))
-((-2076 (((-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751)) 27)) (-2075 (((-622 (-1143 |#1|)) |#1| (-751) (-751) (-751)) 34)) (-2197 (((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-622 |#3|) (-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751)) 85)))
-(((-491 |#1| |#2| |#3|) (-10 -7 (-15 -2075 ((-622 (-1143 |#1|)) |#1| (-751) (-751) (-751))) (-15 -2076 ((-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751))) (-15 -2197 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-622 |#3|) (-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751)))) (-345) (-1207 |#1|) (-1207 |#2|)) (T -491))
-((-2197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 (-2 (|:| -2128 (-669 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-669 *7))))) (-5 *5 (-751)) (-4 *8 (-1207 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-345)) (-5 *2 (-2 (|:| -2128 (-669 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-669 *7)))) (-5 *1 (-491 *6 *7 *8)))) (-2076 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-4 *5 (-345)) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-2 (|:| -2128 (-669 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-669 *6))))) (-5 *1 (-491 *5 *6 *7)) (-5 *3 (-2 (|:| -2128 (-669 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-669 *6)))) (-4 *7 (-1207 *6)))) (-2075 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-751)) (-4 *3 (-345)) (-4 *5 (-1207 *3)) (-5 *2 (-622 (-1143 *3))) (-5 *1 (-491 *3 *5 *6)) (-4 *6 (-1207 *5)))))
-(-10 -7 (-15 -2075 ((-622 (-1143 |#1|)) |#1| (-751) (-751) (-751))) (-15 -2076 ((-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751))) (-15 -2197 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-622 |#3|) (-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751))))
-((-2082 (((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))) 62)) (-2077 ((|#1| (-669 |#1|) |#1| (-751)) 25)) (-2079 (((-751) (-751) (-751)) 30)) (-2081 (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 42)) (-2080 (((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|) 50) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 47)) (-2078 ((|#1| (-669 |#1|) (-669 |#1|) |#1| (-538)) 29)) (-3688 ((|#1| (-669 |#1|)) 18)))
-(((-492 |#1| |#2| |#3|) (-10 -7 (-15 -3688 (|#1| (-669 |#1|))) (-15 -2077 (|#1| (-669 |#1|) |#1| (-751))) (-15 -2078 (|#1| (-669 |#1|) (-669 |#1|) |#1| (-538))) (-15 -2079 ((-751) (-751) (-751))) (-15 -2080 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2080 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -2081 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2082 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))))) (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))) (-1207 |#1|) (-405 |#1| |#2|)) (T -492))
-((-2082 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2081 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2080 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2080 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2079 (*1 *2 *2 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2078 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-669 *2)) (-5 *4 (-538)) (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *5 (-1207 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-405 *2 *5)))) (-2077 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-669 *2)) (-5 *4 (-751)) (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *5 (-1207 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-405 *2 *5)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-669 *2)) (-4 *4 (-1207 *2)) (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-5 *1 (-492 *2 *4 *5)) (-4 *5 (-405 *2 *4)))))
-(-10 -7 (-15 -3688 (|#1| (-669 |#1|))) (-15 -2077 (|#1| (-669 |#1|) |#1| (-751))) (-15 -2078 (|#1| (-669 |#1|) (-669 |#1|) |#1| (-538))) (-15 -2079 ((-751) (-751) (-751))) (-15 -2080 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2080 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -2081 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2082 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))))))
-((-2898 (((-112) $ $) NIL)) (-3679 (($ $) NIL)) (-3675 (($ $ $) 35)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) $) NIL (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1846 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-112) (-827)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-3242 (($ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-112) $ (-1198 (-538)) (-112)) NIL (|has| $ (-6 -4354))) (((-112) $ (-538) (-112)) 36 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-3765 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-4202 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-1637 (((-112) $ (-538) (-112)) NIL (|has| $ (-6 -4354)))) (-3448 (((-112) $ (-538)) NIL)) (-3778 (((-538) (-112) $ (-538)) NIL (|has| (-112) (-1074))) (((-538) (-112) $) NIL (|has| (-112) (-1074))) (((-538) (-1 (-112) (-112)) $) NIL)) (-2068 (((-622 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3190 (($ $ $) 33)) (-3676 (($ $) NIL)) (-1360 (($ $ $) NIL)) (-3977 (($ (-751) (-112)) 23)) (-1361 (($ $ $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 8 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL)) (-3872 (($ $ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2511 (((-622 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL)) (-2072 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ (-112) $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-112) $) NIL (|has| (-538) (-827)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2306 (($ $ (-112)) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-112)) (-622 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-288 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-622 (-288 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-2312 (((-622 (-112)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 24)) (-4159 (($ $ (-1198 (-538))) NIL) (((-112) $ (-538)) 18) (((-112) $ (-538) (-112)) NIL)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2069 (((-751) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074)))) (((-751) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) 25)) (-4330 (((-527) $) NIL (|has| (-112) (-598 (-527))))) (-3884 (($ (-622 (-112))) NIL)) (-4161 (($ (-622 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4317 (((-840) $) 22)) (-2071 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3191 (($ $ $) 31)) (-3681 (($ $ $) NIL)) (-3672 (($ $ $) 39)) (-3674 (($ $) 37)) (-3673 (($ $ $) 38)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 26)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 27)) (-3680 (($ $ $) NIL)) (-4316 (((-751) $) 10 (|has| $ (-6 -4353)))))
-(((-493 |#1|) (-13 (-123) (-10 -8 (-15 -3674 ($ $)) (-15 -3672 ($ $ $)) (-15 -3673 ($ $ $)))) (-538)) (T -493))
-((-3674 (*1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538)))) (-3672 (*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538)))) (-3673 (*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538)))))
-(-13 (-123) (-10 -8 (-15 -3674 ($ $)) (-15 -3672 ($ $ $)) (-15 -3673 ($ $ $))))
-((-2084 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1143 |#4|)) 35)) (-2083 (((-1143 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1143 |#4|)) 22)) (-2085 (((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1143 |#4|))) 46)) (-2086 (((-1143 (-1143 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2083 (|#2| (-1 |#1| |#4|) (-1143 |#4|))) (-15 -2083 ((-1143 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2084 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1143 |#4|))) (-15 -2085 ((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1143 |#4|)))) (-15 -2086 ((-1143 (-1143 |#4|)) (-1 |#4| |#1|) |#3|))) (-1025) (-1207 |#1|) (-1207 |#2|) (-1025)) (T -494))
-((-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *6 (-1207 *5)) (-5 *2 (-1143 (-1143 *7))) (-5 *1 (-494 *5 *6 *4 *7)) (-4 *4 (-1207 *6)))) (-2085 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-669 (-1143 *8))) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-1207 *5)) (-5 *2 (-669 *6)) (-5 *1 (-494 *5 *6 *7 *8)) (-4 *7 (-1207 *6)))) (-2084 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1143 *7)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1207 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1207 *2)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *4 (-1207 *5)) (-5 *2 (-1143 *7)) (-5 *1 (-494 *5 *4 *6 *7)) (-4 *6 (-1207 *4)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1143 *7)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1207 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1207 *2)))))
-(-10 -7 (-15 -2083 (|#2| (-1 |#1| |#4|) (-1143 |#4|))) (-15 -2083 ((-1143 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2084 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1143 |#4|))) (-15 -2085 ((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1143 |#4|)))) (-15 -2086 ((-1143 (-1143 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2898 (((-112) $ $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2087 (((-1237) $) 19)) (-4159 (((-1131) $ (-1149)) 23)) (-3980 (((-1237) $) 15)) (-4317 (((-840) $) 21) (($ (-1131)) 20)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 9)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 8)))
-(((-495) (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $)) (-15 -4317 ($ (-1131)))))) (T -495))
-((-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1131)) (-5 *1 (-495)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-495)))))
-(-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $)) (-15 -4317 ($ (-1131)))))
-((-4101 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4099 ((|#1| |#4|) 10)) (-4100 ((|#3| |#4|) 17)))
-(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4099 (|#1| |#4|)) (-15 -4100 (|#3| |#4|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-545) (-967 |#1|) (-367 |#1|) (-367 |#2|)) (T -496))
-((-4101 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) (-4100 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-4 *2 (-367 *4)) (-5 *1 (-496 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) (-4099 (*1 *2 *3) (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-496 *2 *4 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-367 *4)))))
-(-10 -7 (-15 -4099 (|#1| |#4|)) (-15 -4100 (|#3| |#4|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2898 (((-112) $ $) NIL)) (-2097 (((-112) $ (-622 |#3|)) 105) (((-112) $) 106)) (-3539 (((-112) $) 149)) (-2089 (($ $ |#4|) 97) (($ $ |#4| (-622 |#3|)) 101)) (-2088 (((-1138 (-622 (-922 |#1|)) (-622 (-288 (-922 |#1|)))) (-622 |#4|)) 142 (|has| |#3| (-598 (-1149))))) (-2096 (($ $ $) 91) (($ $ |#4|) 89)) (-2502 (((-112) $) 148)) (-2093 (($ $) 109)) (-3593 (((-1131) $) NIL)) (-3589 (($ $ $) 83) (($ (-622 $)) 85)) (-2098 (((-112) |#4| $) 108)) (-2099 (((-112) $ $) 72)) (-2092 (($ (-622 |#4|)) 90)) (-3594 (((-1093) $) NIL)) (-2091 (($ (-622 |#4|)) 146)) (-2090 (((-112) $) 147)) (-2335 (($ $) 74)) (-3028 (((-622 |#4|) $) 63)) (-2095 (((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-622 |#3|)) NIL)) (-2100 (((-112) |#4| $) 77)) (-4271 (((-538) $ (-622 |#3|)) 110) (((-538) $) 111)) (-4317 (((-840) $) 145) (($ (-622 |#4|)) 86)) (-2094 (($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $))) NIL)) (-3387 (((-112) $ $) 73)) (-4199 (($ $ $) 93)) (** (($ $ (-751)) 96)) (* (($ $ $) 95)))
-(((-497 |#1| |#2| |#3| |#4|) (-13 (-1074) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 -4199 ($ $ $)) (-15 -2502 ((-112) $)) (-15 -3539 ((-112) $)) (-15 -2100 ((-112) |#4| $)) (-15 -2099 ((-112) $ $)) (-15 -2098 ((-112) |#4| $)) (-15 -2097 ((-112) $ (-622 |#3|))) (-15 -2097 ((-112) $)) (-15 -3589 ($ $ $)) (-15 -3589 ($ (-622 $))) (-15 -2096 ($ $ $)) (-15 -2096 ($ $ |#4|)) (-15 -2335 ($ $)) (-15 -2095 ((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-622 |#3|))) (-15 -2094 ($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)))) (-15 -4271 ((-538) $ (-622 |#3|))) (-15 -4271 ((-538) $)) (-15 -2093 ($ $)) (-15 -2092 ($ (-622 |#4|))) (-15 -2091 ($ (-622 |#4|))) (-15 -2090 ((-112) $)) (-15 -3028 ((-622 |#4|) $)) (-15 -4317 ($ (-622 |#4|))) (-15 -2089 ($ $ |#4|)) (-15 -2089 ($ $ |#4| (-622 |#3|))) (IF (|has| |#3| (-598 (-1149))) (-15 -2088 ((-1138 (-622 (-922 |#1|)) (-622 (-288 (-922 |#1|)))) (-622 |#4|))) |%noBranch|))) (-358) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -497))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-2502 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-3539 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-2100 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))) (-2099 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-2098 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))) (-2097 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))) (-2097 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-3589 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-3589 (*1 *1 *2) (-12 (-5 *2 (-622 (-497 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-2096 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-2096 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-926 *3 *4 *5)))) (-2335 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-2095 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-2 (|:| |mval| (-669 *4)) (|:| |invmval| (-669 *4)) (|:| |genIdeal| (-497 *4 *5 *6 *7)))) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))) (-2094 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-669 *3)) (|:| |invmval| (-669 *3)) (|:| |genIdeal| (-497 *3 *4 *5 *6)))) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-4271 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-538)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))) (-4271 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-538)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-2093 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-2091 (*1 *1 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-2090 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-3028 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *6)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-2089 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-926 *3 *4 *5)))) (-2089 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *1 (-497 *4 *5 *6 *2)) (-4 *2 (-926 *4 *5 *6)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *5 *6)) (-4 *6 (-598 (-1149))) (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1138 (-622 (-922 *4)) (-622 (-288 (-922 *4))))) (-5 *1 (-497 *4 *5 *6 *7)))))
-(-13 (-1074) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 -4199 ($ $ $)) (-15 -2502 ((-112) $)) (-15 -3539 ((-112) $)) (-15 -2100 ((-112) |#4| $)) (-15 -2099 ((-112) $ $)) (-15 -2098 ((-112) |#4| $)) (-15 -2097 ((-112) $ (-622 |#3|))) (-15 -2097 ((-112) $)) (-15 -3589 ($ $ $)) (-15 -3589 ($ (-622 $))) (-15 -2096 ($ $ $)) (-15 -2096 ($ $ |#4|)) (-15 -2335 ($ $)) (-15 -2095 ((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-622 |#3|))) (-15 -2094 ($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)))) (-15 -4271 ((-538) $ (-622 |#3|))) (-15 -4271 ((-538) $)) (-15 -2093 ($ $)) (-15 -2092 ($ (-622 |#4|))) (-15 -2091 ($ (-622 |#4|))) (-15 -2090 ((-112) $)) (-15 -3028 ((-622 |#4|) $)) (-15 -4317 ($ (-622 |#4|))) (-15 -2089 ($ $ |#4|)) (-15 -2089 ($ $ |#4| (-622 |#3|))) (IF (|has| |#3| (-598 (-1149))) (-15 -2088 ((-1138 (-622 (-922 |#1|)) (-622 (-288 (-922 |#1|)))) (-622 |#4|))) |%noBranch|)))
-((-2101 (((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) 150)) (-2102 (((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) 151)) (-2103 (((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) 108)) (-4086 (((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) NIL)) (-2104 (((-622 (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) 153)) (-2105 (((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-622 (-841 |#1|))) 165)))
-(((-498 |#1| |#2|) (-10 -7 (-15 -2101 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2102 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -4086 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2103 ((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2104 ((-622 (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2105 ((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-622 (-841 |#1|))))) (-622 (-1149)) (-751)) (T -498))
-((-2105 (*1 *2 *2 *3) (-12 (-5 *2 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) (-5 *3 (-622 (-841 *4))) (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *1 (-498 *4 *5)))) (-2104 (*1 *2 *3) (-12 (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-622 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538)))))) (-5 *1 (-498 *4 *5)) (-5 *3 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))))) (-2103 (*1 *2 *2) (-12 (-5 *2 (-497 (-402 (-538)) (-235 *4 (-751)) (-841 *3) (-243 *3 (-402 (-538))))) (-14 *3 (-622 (-1149))) (-14 *4 (-751)) (-5 *1 (-498 *3 *4)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5)))))
-(-10 -7 (-15 -2101 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2102 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -4086 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2103 ((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2104 ((-622 (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2105 ((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-622 (-841 |#1|)))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 11) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1149) $) 8)) (-3387 (((-112) $ $) NIL)))
+((-3745 (((-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751)) 27)) (-3734 (((-625 (-1145 |#1|)) |#1| (-751) (-751) (-751)) 34)) (-3706 (((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-625 |#3|) (-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751)) 85)))
+(((-491 |#1| |#2| |#3|) (-10 -7 (-15 -3734 ((-625 (-1145 |#1|)) |#1| (-751) (-751) (-751))) (-15 -3745 ((-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751))) (-15 -3706 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-625 |#3|) (-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751)))) (-344) (-1208 |#1|) (-1208 |#2|)) (T -491))
+((-3706 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 (-2 (|:| -1270 (-669 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-669 *7))))) (-5 *5 (-751)) (-4 *8 (-1208 *7)) (-4 *7 (-1208 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -1270 (-669 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-669 *7)))) (-5 *1 (-491 *6 *7 *8)))) (-3745 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-4 *5 (-344)) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -1270 (-669 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-669 *6))))) (-5 *1 (-491 *5 *6 *7)) (-5 *3 (-2 (|:| -1270 (-669 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-669 *6)))) (-4 *7 (-1208 *6)))) (-3734 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-751)) (-4 *3 (-344)) (-4 *5 (-1208 *3)) (-5 *2 (-625 (-1145 *3))) (-5 *1 (-491 *3 *5 *6)) (-4 *6 (-1208 *5)))))
+(-10 -7 (-15 -3734 ((-625 (-1145 |#1|)) |#1| (-751) (-751) (-751))) (-15 -3745 ((-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751))) (-15 -3706 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-625 |#3|) (-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751))))
+((-3805 (((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))) 62)) (-3754 ((|#1| (-669 |#1|) |#1| (-751)) 25)) (-3774 (((-751) (-751) (-751)) 30)) (-3795 (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 42)) (-3785 (((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|) 50) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 47)) (-3764 ((|#1| (-669 |#1|) (-669 |#1|) |#1| (-552)) 29)) (-2435 ((|#1| (-669 |#1|)) 18)))
+(((-492 |#1| |#2| |#3|) (-10 -7 (-15 -2435 (|#1| (-669 |#1|))) (-15 -3754 (|#1| (-669 |#1|) |#1| (-751))) (-15 -3764 (|#1| (-669 |#1|) (-669 |#1|) |#1| (-552))) (-15 -3774 ((-751) (-751) (-751))) (-15 -3785 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3785 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -3795 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3805 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))))) (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))) (-1208 |#1|) (-404 |#1| |#2|)) (T -492))
+((-3805 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3795 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3785 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3785 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3774 (*1 *2 *2 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3764 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-669 *2)) (-5 *4 (-552)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *5 (-1208 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-404 *2 *5)))) (-3754 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-669 *2)) (-5 *4 (-751)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *5 (-1208 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-404 *2 *5)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-669 *2)) (-4 *4 (-1208 *2)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-5 *1 (-492 *2 *4 *5)) (-4 *5 (-404 *2 *4)))))
+(-10 -7 (-15 -2435 (|#1| (-669 |#1|))) (-15 -3754 (|#1| (-669 |#1|) |#1| (-751))) (-15 -3764 (|#1| (-669 |#1|) (-669 |#1|) |#1| (-552))) (-15 -3774 ((-751) (-751) (-751))) (-15 -3785 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3785 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -3795 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3805 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))))))
+((-1671 (((-112) $ $) NIL)) (-2488 (($ $) NIL)) (-2244 (($ $ $) 35)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) $) NIL (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3218 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-112) (-827)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-1800 (($ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-112) $ (-1199 (-552)) (-112)) NIL (|has| $ (-6 -4354))) (((-112) $ (-552) (-112)) 36 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-1416 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-2163 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-3692 (((-112) $ (-552) (-112)) NIL (|has| $ (-6 -4354)))) (-3631 (((-112) $ (-552)) NIL)) (-2483 (((-552) (-112) $ (-552)) NIL (|has| (-112) (-1073))) (((-552) (-112) $) NIL (|has| (-112) (-1073))) (((-552) (-1 (-112) (-112)) $) NIL)) (-3799 (((-625 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3152 (($ $ $) 33)) (-2960 (($ $) NIL)) (-2025 (($ $ $) NIL)) (-2183 (($ (-751) (-112)) 23)) (-2034 (($ $ $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 8 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL)) (-3280 (($ $ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3730 (((-625 (-112)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL)) (-3683 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ (-112) $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-112) $) NIL (|has| (-552) (-827)))) (-2380 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2518 (($ $ (-112)) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-112)) (-625 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-289 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-625 (-289 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-1358 (((-625 (-112)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 24)) (-2154 (($ $ (-1199 (-552))) NIL) (((-112) $ (-552)) 18) (((-112) $ (-552) (-112)) NIL)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-2840 (((-751) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073)))) (((-751) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) 25)) (-2042 (((-528) $) NIL (|has| (-112) (-598 (-528))))) (-1695 (($ (-625 (-112))) NIL)) (-3402 (($ (-625 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1683 (((-839) $) 22)) (-1900 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3743 (($ $ $) 31)) (-2827 (($ $ $) NIL)) (-3019 (($ $ $) 39)) (-3030 (($ $) 37)) (-3007 (($ $ $) 38)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 26)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 27)) (-2814 (($ $ $) NIL)) (-1471 (((-751) $) 10 (|has| $ (-6 -4353)))))
+(((-493 |#1|) (-13 (-123) (-10 -8 (-15 -3030 ($ $)) (-15 -3019 ($ $ $)) (-15 -3007 ($ $ $)))) (-552)) (T -493))
+((-3030 (*1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552)))) (-3019 (*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552)))) (-3007 (*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552)))))
+(-13 (-123) (-10 -8 (-15 -3030 ($ $)) (-15 -3019 ($ $ $)) (-15 -3007 ($ $ $))))
+((-3826 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1145 |#4|)) 35)) (-3816 (((-1145 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1145 |#4|)) 22)) (-3840 (((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1145 |#4|))) 46)) (-3854 (((-1145 (-1145 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3816 (|#2| (-1 |#1| |#4|) (-1145 |#4|))) (-15 -3816 ((-1145 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3826 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1145 |#4|))) (-15 -3840 ((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1145 |#4|)))) (-15 -3854 ((-1145 (-1145 |#4|)) (-1 |#4| |#1|) |#3|))) (-1025) (-1208 |#1|) (-1208 |#2|) (-1025)) (T -494))
+((-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *6 (-1208 *5)) (-5 *2 (-1145 (-1145 *7))) (-5 *1 (-494 *5 *6 *4 *7)) (-4 *4 (-1208 *6)))) (-3840 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-669 (-1145 *8))) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-1208 *5)) (-5 *2 (-669 *6)) (-5 *1 (-494 *5 *6 *7 *8)) (-4 *7 (-1208 *6)))) (-3826 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1145 *7)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1208 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1208 *2)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *4 (-1208 *5)) (-5 *2 (-1145 *7)) (-5 *1 (-494 *5 *4 *6 *7)) (-4 *6 (-1208 *4)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1145 *7)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1208 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1208 *2)))))
+(-10 -7 (-15 -3816 (|#2| (-1 |#1| |#4|) (-1145 |#4|))) (-15 -3816 ((-1145 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3826 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1145 |#4|))) (-15 -3840 ((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1145 |#4|)))) (-15 -3854 ((-1145 (-1145 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-1671 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3867 (((-1237) $) 19)) (-2154 (((-1131) $ (-1149)) 23)) (-1407 (((-1237) $) 15)) (-1683 (((-839) $) 21) (($ (-1131)) 20)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 9)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 8)))
+(((-495) (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $)) (-15 -1683 ($ (-1131)))))) (T -495))
+((-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1131)) (-5 *1 (-495)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-495)))))
+(-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $)) (-15 -1683 ($ (-1131)))))
+((-3076 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3055 ((|#1| |#4|) 10)) (-3066 ((|#3| |#4|) 17)))
+(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3055 (|#1| |#4|)) (-15 -3066 (|#3| |#4|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-544) (-968 |#1|) (-368 |#1|) (-368 |#2|)) (T -496))
+((-3076 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *6 (-368 *4)) (-4 *3 (-368 *5)))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) (-4 *2 (-368 *4)) (-5 *1 (-496 *4 *5 *2 *3)) (-4 *3 (-368 *5)))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-496 *2 *4 *5 *3)) (-4 *5 (-368 *2)) (-4 *3 (-368 *4)))))
+(-10 -7 (-15 -3055 (|#1| |#4|)) (-15 -3066 (|#3| |#4|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-1671 (((-112) $ $) NIL)) (-3996 (((-112) $ (-625 |#3|)) 105) (((-112) $) 106)) (-3641 (((-112) $) 149)) (-3893 (($ $ |#4|) 97) (($ $ |#4| (-625 |#3|)) 101)) (-3880 (((-1138 (-625 (-928 |#1|)) (-625 (-289 (-928 |#1|)))) (-625 |#4|)) 142 (|has| |#3| (-598 (-1149))))) (-3984 (($ $ $) 91) (($ $ |#4|) 89)) (-3650 (((-112) $) 148)) (-3946 (($ $) 109)) (-2883 (((-1131) $) NIL)) (-2860 (($ $ $) 83) (($ (-625 $)) 85)) (-4008 (((-112) |#4| $) 108)) (-4019 (((-112) $ $) 72)) (-3935 (($ (-625 |#4|)) 90)) (-2831 (((-1093) $) NIL)) (-3921 (($ (-625 |#4|)) 146)) (-3908 (((-112) $) 147)) (-1540 (($ $) 74)) (-4167 (((-625 |#4|) $) 63)) (-3972 (((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-625 |#3|)) NIL)) (-4031 (((-112) |#4| $) 77)) (-3904 (((-552) $ (-625 |#3|)) 110) (((-552) $) 111)) (-1683 (((-839) $) 145) (($ (-625 |#4|)) 86)) (-3959 (($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $))) NIL)) (-2281 (((-112) $ $) 73)) (-2382 (($ $ $) 93)) (** (($ $ (-751)) 96)) (* (($ $ $) 95)))
+(((-497 |#1| |#2| |#3| |#4|) (-13 (-1073) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 -2382 ($ $ $)) (-15 -3650 ((-112) $)) (-15 -3641 ((-112) $)) (-15 -4031 ((-112) |#4| $)) (-15 -4019 ((-112) $ $)) (-15 -4008 ((-112) |#4| $)) (-15 -3996 ((-112) $ (-625 |#3|))) (-15 -3996 ((-112) $)) (-15 -2860 ($ $ $)) (-15 -2860 ($ (-625 $))) (-15 -3984 ($ $ $)) (-15 -3984 ($ $ |#4|)) (-15 -1540 ($ $)) (-15 -3972 ((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-625 |#3|))) (-15 -3959 ($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)))) (-15 -3904 ((-552) $ (-625 |#3|))) (-15 -3904 ((-552) $)) (-15 -3946 ($ $)) (-15 -3935 ($ (-625 |#4|))) (-15 -3921 ($ (-625 |#4|))) (-15 -3908 ((-112) $)) (-15 -4167 ((-625 |#4|) $)) (-15 -1683 ($ (-625 |#4|))) (-15 -3893 ($ $ |#4|)) (-15 -3893 ($ $ |#4| (-625 |#3|))) (IF (|has| |#3| (-598 (-1149))) (-15 -3880 ((-1138 (-625 (-928 |#1|)) (-625 (-289 (-928 |#1|)))) (-625 |#4|))) |%noBranch|))) (-358) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -497))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-2382 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-3650 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-3641 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-4031 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))) (-4019 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-4008 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))) (-3996 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))) (-3996 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-625 (-497 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-3984 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5)))) (-1540 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-3972 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-2 (|:| |mval| (-669 *4)) (|:| |invmval| (-669 *4)) (|:| |genIdeal| (-497 *4 *5 *6 *7)))) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-669 *3)) (|:| |invmval| (-669 *3)) (|:| |genIdeal| (-497 *3 *4 *5 *6)))) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-3904 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-552)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))) (-3904 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-552)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-3946 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-3921 (*1 *1 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-3908 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-4167 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *6)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-3893 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5)))) (-3893 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *1 (-497 *4 *5 *6 *2)) (-4 *2 (-925 *4 *5 *6)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *5 *6)) (-4 *6 (-598 (-1149))) (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1138 (-625 (-928 *4)) (-625 (-289 (-928 *4))))) (-5 *1 (-497 *4 *5 *6 *7)))))
+(-13 (-1073) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 -2382 ($ $ $)) (-15 -3650 ((-112) $)) (-15 -3641 ((-112) $)) (-15 -4031 ((-112) |#4| $)) (-15 -4019 ((-112) $ $)) (-15 -4008 ((-112) |#4| $)) (-15 -3996 ((-112) $ (-625 |#3|))) (-15 -3996 ((-112) $)) (-15 -2860 ($ $ $)) (-15 -2860 ($ (-625 $))) (-15 -3984 ($ $ $)) (-15 -3984 ($ $ |#4|)) (-15 -1540 ($ $)) (-15 -3972 ((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-625 |#3|))) (-15 -3959 ($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)))) (-15 -3904 ((-552) $ (-625 |#3|))) (-15 -3904 ((-552) $)) (-15 -3946 ($ $)) (-15 -3935 ($ (-625 |#4|))) (-15 -3921 ($ (-625 |#4|))) (-15 -3908 ((-112) $)) (-15 -4167 ((-625 |#4|) $)) (-15 -1683 ($ (-625 |#4|))) (-15 -3893 ($ $ |#4|)) (-15 -3893 ($ $ |#4| (-625 |#3|))) (IF (|has| |#3| (-598 (-1149))) (-15 -3880 ((-1138 (-625 (-928 |#1|)) (-625 (-289 (-928 |#1|)))) (-625 |#4|))) |%noBranch|)))
+((-4043 (((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) 150)) (-4055 (((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) 151)) (-1970 (((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) 108)) (-2951 (((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) NIL)) (-4068 (((-625 (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) 153)) (-4081 (((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-625 (-841 |#1|))) 165)))
+(((-498 |#1| |#2|) (-10 -7 (-15 -4043 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4055 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -2951 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -1970 ((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4068 ((-625 (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4081 ((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-625 (-841 |#1|))))) (-625 (-1149)) (-751)) (T -498))
+((-4081 (*1 *2 *2 *3) (-12 (-5 *2 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552))))) (-5 *3 (-625 (-841 *4))) (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *1 (-498 *4 *5)))) (-4068 (*1 *2 *3) (-12 (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-625 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552)))))) (-5 *1 (-498 *4 *5)) (-5 *3 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552))))))) (-1970 (*1 *2 *2) (-12 (-5 *2 (-497 (-402 (-552)) (-236 *4 (-751)) (-841 *3) (-243 *3 (-402 (-552))))) (-14 *3 (-625 (-1149))) (-14 *4 (-751)) (-5 *1 (-498 *3 *4)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552))))) (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552))))) (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552))))) (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5)))))
+(-10 -7 (-15 -4043 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4055 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -2951 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -1970 ((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4068 ((-625 (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4081 ((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-625 (-841 |#1|)))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 11) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1149) $) 8)) (-2281 (((-112) $ $) NIL)))
(((-499) (-13 (-1056) (-597 (-1149)))) (T -499))
NIL
(-13 (-1056) (-597 (-1149)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3226 (($ |#1| |#2|) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2106 ((|#2| $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2991 (($) 12 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) 11) (($ $ $) 24)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 18)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-3957 (($ |#1| |#2|) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4094 ((|#2| $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2089 (($) 12 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) 11) (($ $ $) 24)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 18)))
(((-500 |#1| |#2|) (-13 (-21) (-502 |#1| |#2|)) (-21) (-827)) (T -500))
NIL
(-13 (-21) (-502 |#1| |#2|))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 12)) (-3896 (($) NIL T CONST)) (-4319 (($ $) 28)) (-3226 (($ |#1| |#2|) 25)) (-4318 (($ (-1 |#1| |#1|) $) 27)) (-2106 ((|#2| $) NIL)) (-3525 ((|#1| $) 29)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2991 (($) 10 T CONST)) (-3387 (((-112) $ $) NIL)) (-4199 (($ $ $) 18)) (* (($ (-895) $) NIL) (($ (-751) $) 23)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 12)) (-3101 (($) NIL T CONST)) (-4169 (($ $) 28)) (-3957 (($ |#1| |#2|) 25)) (-1996 (($ (-1 |#1| |#1|) $) 27)) (-4094 ((|#2| $) NIL)) (-4144 ((|#1| $) 29)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2089 (($) 10 T CONST)) (-2281 (((-112) $ $) NIL)) (-2382 (($ $ $) 18)) (* (($ (-897) $) NIL) (($ (-751) $) 23)))
(((-501 |#1| |#2|) (-13 (-23) (-502 |#1| |#2|)) (-23) (-827)) (T -501))
NIL
(-13 (-23) (-502 |#1| |#2|))
-((-2898 (((-112) $ $) 7)) (-4319 (($ $) 13)) (-3226 (($ |#1| |#2|) 16)) (-4318 (($ (-1 |#1| |#1|) $) 17)) (-2106 ((|#2| $) 14)) (-3525 ((|#1| $) 15)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)))
-(((-502 |#1| |#2|) (-138) (-1074) (-827)) (T -502))
-((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-827)))) (-3226 (*1 *1 *2 *3) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-827)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1074)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-502 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-827)))) (-4319 (*1 *1 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-827)))))
-(-13 (-1074) (-10 -8 (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (-15 -3226 ($ |t#1| |t#2|)) (-15 -3525 (|t#1| $)) (-15 -2106 (|t#2| $)) (-15 -4319 ($ $))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-4319 (($ $) 25)) (-3226 (($ |#1| |#2|) 22)) (-4318 (($ (-1 |#1| |#1|) $) 24)) (-2106 ((|#2| $) 27)) (-3525 ((|#1| $) 26)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21)) (-3387 (((-112) $ $) 14)))
-(((-503 |#1| |#2|) (-502 |#1| |#2|) (-1074) (-827)) (T -503))
-NIL
-(-502 |#1| |#2|)
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3226 (($ |#1| |#2|) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2106 ((|#2| $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2991 (($) NIL T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 13)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL)))
-(((-504 |#1| |#2|) (-13 (-772) (-502 |#1| |#2|)) (-772) (-827)) (T -504))
+((-1671 (((-112) $ $) 7)) (-4169 (($ $) 13)) (-3957 (($ |#1| |#2|) 16)) (-1996 (($ (-1 |#1| |#1|) $) 17)) (-4094 ((|#2| $) 14)) (-4144 ((|#1| $) 15)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)))
+(((-502 |#1| |#2|) (-138) (-1073) (-827)) (T -502))
+((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-827)))) (-3957 (*1 *1 *2 *3) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-827)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1073)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-502 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-827)))) (-4169 (*1 *1 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-827)))))
+(-13 (-1073) (-10 -8 (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (-15 -3957 ($ |t#1| |t#2|)) (-15 -4144 (|t#1| $)) (-15 -4094 (|t#2| $)) (-15 -4169 ($ $))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-3957 (($ |#1| |#2|) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4094 ((|#2| $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2089 (($) NIL T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 13)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL)))
+(((-503 |#1| |#2|) (-13 (-772) (-502 |#1| |#2|)) (-772) (-827)) (T -503))
NIL
(-13 (-772) (-502 |#1| |#2|))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2733 (($ $ $) 16)) (-1368 (((-3 $ "failed") $ $) 13)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3226 (($ |#1| |#2|) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2106 ((|#2| $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2991 (($) NIL T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL)))
-(((-505 |#1| |#2|) (-13 (-773) (-502 |#1| |#2|)) (-773) (-827)) (T -505))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1282 (($ $ $) 16)) (-2077 (((-3 $ "failed") $ $) 13)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-3957 (($ |#1| |#2|) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4094 ((|#2| $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2089 (($) NIL T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL)))
+(((-504 |#1| |#2|) (-13 (-773) (-502 |#1| |#2|)) (-773) (-827)) (T -504))
NIL
(-13 (-773) (-502 |#1| |#2|))
-((-4127 (($ $ (-622 |#2|) (-622 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-506 |#1| |#2| |#3|) (-10 -8 (-15 -4127 (|#1| |#1| |#2| |#3|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#3|)))) (-507 |#2| |#3|) (-1074) (-1185)) (T -506))
+((-1671 (((-112) $ $) NIL)) (-4169 (($ $) 25)) (-3957 (($ |#1| |#2|) 22)) (-1996 (($ (-1 |#1| |#1|) $) 24)) (-4094 ((|#2| $) 27)) (-4144 ((|#1| $) 26)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21)) (-2281 (((-112) $ $) 14)))
+(((-505 |#1| |#2|) (-502 |#1| |#2|) (-1073) (-827)) (T -505))
NIL
-(-10 -8 (-15 -4127 (|#1| |#1| |#2| |#3|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#3|))))
-((-4127 (($ $ (-622 |#1|) (-622 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-507 |#1| |#2|) (-138) (-1074) (-1185)) (T -507))
-((-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 *5)) (-4 *1 (-507 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1185)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1185)))))
-(-13 (-10 -8 (-15 -4127 ($ $ |t#1| |t#2|)) (-15 -4127 ($ $ (-622 |t#1|) (-622 |t#2|)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 16)) (-4133 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))) $) 18)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751) $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-2768 ((|#1| $ (-538)) 23)) (-1719 ((|#2| $ (-538)) 21)) (-2371 (($ (-1 |#1| |#1|) $) 46)) (-1718 (($ (-1 |#2| |#2|) $) 43)) (-3593 (((-1131) $) NIL)) (-1717 (($ $ $) 53 (|has| |#2| (-772)))) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 42) (($ |#1|) NIL)) (-4040 ((|#2| |#1| $) 49)) (-2991 (($) 11 T CONST)) (-3387 (((-112) $ $) 29)) (-4199 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-895) $) NIL) (($ (-751) $) 36) (($ |#2| |#1|) 31)))
-(((-508 |#1| |#2| |#3|) (-318 |#1| |#2|) (-1074) (-130) |#2|) (T -508))
+(-502 |#1| |#2|)
+((-4073 (($ $ (-625 |#2|) (-625 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-506 |#1| |#2| |#3|) (-10 -8 (-15 -4073 (|#1| |#1| |#2| |#3|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#3|)))) (-507 |#2| |#3|) (-1073) (-1186)) (T -506))
+NIL
+(-10 -8 (-15 -4073 (|#1| |#1| |#2| |#3|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#3|))))
+((-4073 (($ $ (-625 |#1|) (-625 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-507 |#1| |#2|) (-138) (-1073) (-1186)) (T -507))
+((-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 *5)) (-4 *1 (-507 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1186)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1186)))))
+(-13 (-10 -8 (-15 -4073 ($ $ |t#1| |t#2|)) (-15 -4073 ($ $ (-625 |t#1|) (-625 |t#2|)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 16)) (-2182 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))) $) 18)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751) $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-3461 ((|#1| $ (-552)) 23)) (-1326 ((|#2| $ (-552)) 21)) (-1817 (($ (-1 |#1| |#1|) $) 46)) (-1315 (($ (-1 |#2| |#2|) $) 43)) (-2883 (((-1131) $) NIL)) (-1307 (($ $ $) 53 (|has| |#2| (-772)))) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 42) (($ |#1|) NIL)) (-3637 ((|#2| |#1| $) 49)) (-2089 (($) 11 T CONST)) (-2281 (((-112) $ $) 29)) (-2382 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-897) $) NIL) (($ (-751) $) 36) (($ |#2| |#1|) 31)))
+(((-508 |#1| |#2| |#3|) (-318 |#1| |#2|) (-1073) (-130) |#2|) (T -508))
NIL
(-318 |#1| |#2|)
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-2107 (((-112) (-112)) 25)) (-4147 ((|#1| $ (-538) |#1|) 28 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) 52)) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-2455 (($ $) 56 (|has| |#1| (-1074)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) NIL (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) 44)) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2108 (($ $ (-538)) 13)) (-2109 (((-751) $) 11)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 23)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 21 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3192 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) 20 (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3970 (($ $ $ (-538)) 51) (($ |#1| $ (-538)) 37)) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2110 (($ (-622 |#1|)) 29)) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) 19 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 40)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 16)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) 33) (($ $ (-1198 (-538))) NIL)) (-1632 (($ $ (-1198 (-538))) 50) (($ $ (-538)) 45)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) 41 (|has| $ (-6 -4354)))) (-3759 (($ $) 32)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4150 (($ $ $) 42) (($ $ |#1|) 39)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) 17 (|has| $ (-6 -4353)))))
-(((-509 |#1| |#2|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2110 ($ (-622 |#1|))) (-15 -2109 ((-751) $)) (-15 -2108 ($ $ (-538))) (-15 -2107 ((-112) (-112))))) (-1185) (-538)) (T -509))
-((-2110 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-509 *3 *4)) (-14 *4 (-538)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 (-538)))) (-2108 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 *2))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 (-538)))))
-(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2110 ($ (-622 |#1|))) (-15 -2109 ((-751) $)) (-15 -2108 ($ $ (-538))) (-15 -2107 ((-112) (-112)))))
-((-2898 (((-112) $ $) NIL)) (-2112 (((-1108) $) 11)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2111 (((-1108) $) 13)) (-4282 (((-1108) $) 9)) (-4317 (((-840) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-510) (-13 (-1056) (-10 -8 (-15 -4282 ((-1108) $)) (-15 -2112 ((-1108) $)) (-15 -2111 ((-1108) $))))) (T -510))
-((-4282 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))))
-(-13 (-1056) (-10 -8 (-15 -4282 ((-1108) $)) (-15 -2112 ((-1108) $)) (-15 -2111 ((-1108) $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (((-567 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-567 |#1|) (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-567 |#1|) (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| (-567 |#1|) (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-567 |#1|) "failed") $) NIL)) (-3507 (((-567 |#1|) $) NIL)) (-1911 (($ (-1231 (-567 |#1|))) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-567 |#1|) (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-567 |#1|) (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| (-567 |#1|) (-363)))) (-1796 (((-112) $) NIL (|has| (-567 |#1|) (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363)))) (($ $) NIL (-3891 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| (-567 |#1|) (-363))) (((-812 (-895)) $) NIL (-3891 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| (-567 |#1|) (-363)))) (-2127 (((-112) $) NIL (|has| (-567 |#1|) (-363)))) (-3467 (((-567 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-567 |#1|) (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-567 |#1|) (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 (-567 |#1|)) $) NIL) (((-1143 $) $ (-895)) NIL (|has| (-567 |#1|) (-363)))) (-2126 (((-895) $) NIL (|has| (-567 |#1|) (-363)))) (-1724 (((-1143 (-567 |#1|)) $) NIL (|has| (-567 |#1|) (-363)))) (-1723 (((-1143 (-567 |#1|)) $) NIL (|has| (-567 |#1|) (-363))) (((-3 (-1143 (-567 |#1|)) "failed") $ $) NIL (|has| (-567 |#1|) (-363)))) (-1725 (($ $ (-1143 (-567 |#1|))) NIL (|has| (-567 |#1|) (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-567 |#1|) (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| (-567 |#1|) (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL (|has| (-567 |#1|) (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-567 |#1|) (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| (-567 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 (-567 |#1|))) NIL)) (-1790 (($) NIL (|has| (-567 |#1|) (-363)))) (-1726 (($) NIL (|has| (-567 |#1|) (-363)))) (-3575 (((-1231 (-567 |#1|)) $) NIL) (((-669 (-567 |#1|)) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-567 |#1|) (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-567 |#1|)) NIL)) (-3035 (($ $) NIL (|has| (-567 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-3002 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ (-567 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-567 |#1|)) NIL) (($ (-567 |#1|) $) NIL)))
-(((-511 |#1| |#2|) (-324 (-567 |#1|)) (-895) (-895)) (T -511))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-4107 (((-112) (-112)) 25)) (-1851 ((|#1| $ (-552) |#1|) 28 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) 52)) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-3238 (($ $) 56 (|has| |#1| (-1073)))) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) NIL (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) 44)) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-4119 (($ $ (-552)) 13)) (-4133 (((-751) $) 11)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 23)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 21 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3260 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) 20 (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3966 (($ $ $ (-552)) 51) (($ |#1| $ (-552)) 37)) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-4146 (($ (-625 |#1|)) 29)) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) 19 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 40)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 16)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 33) (($ $ (-1199 (-552))) NIL)) (-2884 (($ $ (-1199 (-552))) 50) (($ $ (-552)) 45)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) 41 (|has| $ (-6 -4354)))) (-1871 (($ $) 32)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-2342 (($ $ $) 42) (($ $ |#1|) 39)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) 17 (|has| $ (-6 -4353)))))
+(((-509 |#1| |#2|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -4146 ($ (-625 |#1|))) (-15 -4133 ((-751) $)) (-15 -4119 ($ $ (-552))) (-15 -4107 ((-112) (-112))))) (-1186) (-552)) (T -509))
+((-4146 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-509 *3 *4)) (-14 *4 (-552)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186)) (-14 *4 (-552)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186)) (-14 *4 *2))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186)) (-14 *4 (-552)))))
+(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -4146 ($ (-625 |#1|))) (-15 -4133 ((-751) $)) (-15 -4119 ($ $ (-552))) (-15 -4107 ((-112) (-112)))))
+((-1671 (((-112) $ $) NIL)) (-4171 (((-1108) $) 11)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4159 (((-1108) $) 13)) (-3848 (((-1108) $) 9)) (-1683 (((-839) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-510) (-13 (-1056) (-10 -8 (-15 -3848 ((-1108) $)) (-15 -4171 ((-1108) $)) (-15 -4159 ((-1108) $))))) (T -510))
+((-3848 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))))
+(-13 (-1056) (-10 -8 (-15 -3848 ((-1108) $)) (-15 -4171 ((-1108) $)) (-15 -4159 ((-1108) $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (((-567 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-567 |#1|) (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-567 |#1|) (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| (-567 |#1|) (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-567 |#1|) "failed") $) NIL)) (-1895 (((-567 |#1|) $) NIL)) (-2670 (($ (-1232 (-567 |#1|))) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-567 |#1|) (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-567 |#1|) (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| (-567 |#1|) (-363)))) (-3872 (((-112) $) NIL (|has| (-567 |#1|) (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363)))) (($ $) NIL (-1523 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| (-567 |#1|) (-363))) (((-813 (-897)) $) NIL (-1523 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| (-567 |#1|) (-363)))) (-4328 (((-112) $) NIL (|has| (-567 |#1|) (-363)))) (-4209 (((-567 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-567 |#1|) (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-567 |#1|) (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 (-567 |#1|)) $) NIL) (((-1145 $) $ (-897)) NIL (|has| (-567 |#1|) (-363)))) (-4318 (((-897) $) NIL (|has| (-567 |#1|) (-363)))) (-1378 (((-1145 (-567 |#1|)) $) NIL (|has| (-567 |#1|) (-363)))) (-1369 (((-1145 (-567 |#1|)) $) NIL (|has| (-567 |#1|) (-363))) (((-3 (-1145 (-567 |#1|)) "failed") $ $) NIL (|has| (-567 |#1|) (-363)))) (-1386 (($ $ (-1145 (-567 |#1|))) NIL (|has| (-567 |#1|) (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-567 |#1|) (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| (-567 |#1|) (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL (|has| (-567 |#1|) (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-567 |#1|) (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| (-567 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 (-567 |#1|))) NIL)) (-3798 (($) NIL (|has| (-567 |#1|) (-363)))) (-1397 (($) NIL (|has| (-567 |#1|) (-363)))) (-2780 (((-1232 (-567 |#1|)) $) NIL) (((-669 (-567 |#1|)) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-567 |#1|) (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-567 |#1|)) NIL)) (-4243 (($ $) NIL (|has| (-567 |#1|) (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-3768 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ (-567 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-567 |#1|)) NIL) (($ (-567 |#1|) $) NIL)))
+(((-511 |#1| |#2|) (-324 (-567 |#1|)) (-897) (-897)) (T -511))
NIL
(-324 (-567 |#1|))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) 35)) (-1309 (($ $ (-538) |#4|) NIL)) (-1308 (($ $ (-538) |#5|) NIL)) (-3896 (($) NIL T CONST)) (-3447 ((|#4| $ (-538)) NIL)) (-1637 ((|#1| $ (-538) (-538) |#1|) 34)) (-3448 ((|#1| $ (-538) (-538)) 32)) (-2068 (((-622 |#1|) $) NIL)) (-3450 (((-751) $) 28)) (-3977 (($ (-751) (-751) |#1|) 25)) (-3449 (((-751) $) 30)) (-4082 (((-112) $ (-751)) NIL)) (-3454 (((-538) $) 26)) (-3452 (((-538) $) 27)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) 29)) (-3451 (((-538) $) 31)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) 38 (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 14)) (-3928 (($) 16)) (-4159 ((|#1| $ (-538) (-538)) 33) ((|#1| $ (-538) (-538) |#1|) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3446 ((|#5| $ (-538)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-512 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1185) (-538) (-538) (-367 |#1|) (-367 |#1|)) (T -512))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) 35)) (-2701 (($ $ (-552) |#4|) NIL)) (-2691 (($ $ (-552) |#5|) NIL)) (-3101 (($) NIL T CONST)) (-4015 ((|#4| $ (-552)) NIL)) (-3692 ((|#1| $ (-552) (-552) |#1|) 34)) (-3631 ((|#1| $ (-552) (-552)) 32)) (-3799 (((-625 |#1|) $) NIL)) (-1773 (((-751) $) 28)) (-2183 (($ (-751) (-751) |#1|) 25)) (-1784 (((-751) $) 30)) (-2909 (((-112) $ (-751)) NIL)) (-4063 (((-552) $) 26)) (-4038 (((-552) $) 27)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) 29)) (-4027 (((-552) $) 31)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) 38 (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 14)) (-3600 (($) 16)) (-2154 ((|#1| $ (-552) (-552)) 33) ((|#1| $ (-552) (-552) |#1|) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-4004 ((|#5| $ (-552)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-512 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1186) (-552) (-552) (-368 |#1|) (-368 |#1|)) (T -512))
NIL
(-56 |#1| |#4| |#5|)
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) NIL)) (-4154 ((|#1| $) NIL)) (-4156 (($ $) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 59 (|has| $ (-6 -4354)))) (-1848 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1846 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4354)))) (-3242 (($ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4146 (($ $ $) 23 (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 21 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4354))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) NIL)) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4155 ((|#1| $) NIL)) (-3896 (($) NIL T CONST)) (-2377 (($ $) 28 (|has| $ (-6 -4354)))) (-2378 (($ $) 29)) (-4158 (($ $) 18) (($ $ (-751)) 32)) (-2455 (($ $) 55 (|has| |#1| (-1074)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) NIL (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) NIL)) (-3765 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3801 (((-112) $) NIL)) (-3778 (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074))) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) (-1 (-112) |#1|) $) NIL)) (-2068 (((-622 |#1|) $) 27 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 31 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3192 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3872 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3897 (($ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) 51 (|has| |#1| (-1074)))) (-4157 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3970 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) 13) (($ $ (-751)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-3802 (((-112) $) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 12)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) 17)) (-3928 (($) 16)) (-4159 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1198 (-538))) NIL) ((|#1| $ (-538)) NIL) ((|#1| $ (-538) |#1|) NIL)) (-3362 (((-538) $ $) NIL)) (-1632 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-3996 (((-112) $) 34)) (-4151 (($ $) NIL)) (-4149 (($ $) NIL (|has| $ (-6 -4354)))) (-4152 (((-751) $) NIL)) (-4153 (($ $) 36)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) 35)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 26)) (-4150 (($ $ $) 54) (($ $ |#1|) NIL)) (-4161 (($ $ $) NIL) (($ |#1| $) 10) (($ (-622 $)) NIL) (($ $ |#1|) NIL)) (-4317 (((-840) $) 46 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 48 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) 9 (|has| $ (-6 -4353)))))
-(((-513 |#1| |#2|) (-646 |#1|) (-1185) (-538)) (T -513))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) NIL)) (-3897 ((|#1| $) NIL)) (-2101 (($ $) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 59 (|has| $ (-6 -4354)))) (-3237 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3218 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4354)))) (-1800 (($ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2301 (($ $ $) 23 (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 21 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4354))) (($ $ "rest" $) 24 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) NIL)) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2673 ((|#1| $) NIL)) (-3101 (($) NIL T CONST)) (-1883 (($ $) 28 (|has| $ (-6 -4354)))) (-2306 (($ $) 29)) (-2936 (($ $) 18) (($ $ (-751)) 32)) (-3238 (($ $) 55 (|has| |#1| (-1073)))) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) NIL (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) NIL)) (-1416 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-4011 (((-112) $) NIL)) (-2483 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073))) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) (-1 (-112) |#1|) $) NIL)) (-3799 (((-625 |#1|) $) 27 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 31 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3260 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3280 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2801 (($ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) 51 (|has| |#1| (-1073)))) (-1437 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3966 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) 13) (($ $ (-751)) NIL)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-4022 (((-112) $) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 12)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) 17)) (-3600 (($) 16)) (-2154 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1199 (-552))) NIL) ((|#1| $ (-552)) NIL) ((|#1| $ (-552) |#1|) NIL)) (-1389 (((-552) $ $) NIL)) (-2884 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-2316 (((-112) $) 34)) (-2356 (($ $) NIL)) (-2330 (($ $) NIL (|has| $ (-6 -4354)))) (-2368 (((-751) $) NIL)) (-2379 (($ $) 36)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) 35)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 26)) (-2342 (($ $ $) 54) (($ $ |#1|) NIL)) (-3402 (($ $ $) NIL) (($ |#1| $) 10) (($ (-625 $)) NIL) (($ $ |#1|) NIL)) (-1683 (((-839) $) 46 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 48 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) 9 (|has| $ (-6 -4353)))))
+(((-513 |#1| |#2|) (-646 |#1|) (-1186) (-552)) (T -513))
NIL
(-646 |#1|)
-((-3445 ((|#4| |#4|) 27)) (-3444 (((-751) |#4|) 32)) (-3443 (((-751) |#4|) 33)) (-3442 (((-622 |#3|) |#4|) 40 (|has| |#3| (-6 -4354)))) (-3952 (((-3 |#4| "failed") |#4|) 51)) (-2113 ((|#4| |#4|) 44)) (-3687 ((|#1| |#4|) 43)))
-(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3445 (|#4| |#4|)) (-15 -3444 ((-751) |#4|)) (-15 -3443 ((-751) |#4|)) (IF (|has| |#3| (-6 -4354)) (-15 -3442 ((-622 |#3|) |#4|)) |%noBranch|) (-15 -3687 (|#1| |#4|)) (-15 -2113 (|#4| |#4|)) (-15 -3952 ((-3 |#4| "failed") |#4|))) (-358) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|)) (T -514))
-((-3952 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-2113 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-358)) (-5 *1 (-514 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5)))) (-3442 (*1 *2 *3) (-12 (|has| *6 (-6 -4354)) (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-622 *6)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3443 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))))
-(-10 -7 (-15 -3445 (|#4| |#4|)) (-15 -3444 ((-751) |#4|)) (-15 -3443 ((-751) |#4|)) (IF (|has| |#3| (-6 -4354)) (-15 -3442 ((-622 |#3|) |#4|)) |%noBranch|) (-15 -3687 (|#1| |#4|)) (-15 -2113 (|#4| |#4|)) (-15 -3952 ((-3 |#4| "failed") |#4|)))
-((-3445 ((|#8| |#4|) 20)) (-3442 (((-622 |#3|) |#4|) 29 (|has| |#7| (-6 -4354)))) (-3952 (((-3 |#8| "failed") |#4|) 23)))
-(((-515 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3445 (|#8| |#4|)) (-15 -3952 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4354)) (-15 -3442 ((-622 |#3|) |#4|)) |%noBranch|)) (-545) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|) (-967 |#1|) (-367 |#5|) (-367 |#5|) (-666 |#5| |#6| |#7|)) (T -515))
-((-3442 (*1 *2 *3) (-12 (|has| *9 (-6 -4354)) (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-967 *4)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)) (-5 *2 (-622 *6)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-666 *4 *5 *6)) (-4 *10 (-666 *7 *8 *9)))) (-3952 (*1 *2 *3) (|partial| -12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-967 *4)) (-4 *2 (-666 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-666 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) (-3445 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-967 *4)) (-4 *2 (-666 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-666 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))))
-(-10 -7 (-15 -3445 (|#8| |#4|)) (-15 -3952 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4354)) (-15 -3442 ((-622 |#3|) |#4|)) |%noBranch|))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751) (-751)) NIL)) (-2431 (($ $ $) NIL)) (-3773 (($ (-586 |#1| |#3|)) NIL) (($ $) NIL)) (-3456 (((-112) $) NIL)) (-2430 (($ $ (-538) (-538)) 12)) (-2429 (($ $ (-538) (-538)) NIL)) (-2428 (($ $ (-538) (-538) (-538) (-538)) NIL)) (-2433 (($ $) NIL)) (-3458 (((-112) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-2427 (($ $ (-538) (-538) $) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538)) $) NIL)) (-1309 (($ $ (-538) (-586 |#1| |#3|)) NIL)) (-1308 (($ $ (-538) (-586 |#1| |#2|)) NIL)) (-3692 (($ (-751) |#1|) NIL)) (-3896 (($) NIL T CONST)) (-3445 (($ $) 21 (|has| |#1| (-302)))) (-3447 (((-586 |#1| |#3|) $ (-538)) NIL)) (-3444 (((-751) $) 24 (|has| |#1| (-545)))) (-1637 ((|#1| $ (-538) (-538) |#1|) NIL)) (-3448 ((|#1| $ (-538) (-538)) NIL)) (-2068 (((-622 |#1|) $) NIL)) (-3443 (((-751) $) 26 (|has| |#1| (-545)))) (-3442 (((-622 (-586 |#1| |#2|)) $) 29 (|has| |#1| (-545)))) (-3450 (((-751) $) NIL)) (-3977 (($ (-751) (-751) |#1|) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3686 ((|#1| $) 19 (|has| |#1| (-6 (-4355 #1="*"))))) (-3454 (((-538) $) 10)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) 11)) (-3451 (((-538) $) NIL)) (-3459 (($ (-622 (-622 |#1|))) NIL)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3956 (((-622 (-622 |#1|)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3952 (((-3 $ #2="failed") $) 33 (|has| |#1| (-358)))) (-2432 (($ $ $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-3820 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-545)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) (-538)) NIL) ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538))) NIL)) (-3691 (($ (-622 |#1|)) NIL) (($ (-622 $)) NIL)) (-3457 (((-112) $) NIL)) (-3687 ((|#1| $) 17 (|has| |#1| (-6 (-4355 #1#))))) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3446 (((-586 |#1| |#2|) $ (-538)) NIL)) (-4317 (($ (-586 |#1| |#2|)) NIL) (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-538) $) NIL) (((-586 |#1| |#2|) $ (-586 |#1| |#2|)) NIL) (((-586 |#1| |#3|) (-586 |#1| |#3|) $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-516 |#1| |#2| |#3|) (-666 |#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) (-1025) (-538) (-538)) (T -516))
-NIL
-(-666 |#1| (-586 |#1| |#3|) (-586 |#1| |#2|))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2114 (((-622 (-1186)) $) 13)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL) (($ (-622 (-1186))) 11)) (-3387 (((-112) $ $) NIL)))
-(((-517) (-13 (-1056) (-10 -8 (-15 -4317 ($ (-622 (-1186)))) (-15 -2114 ((-622 (-1186)) $))))) (T -517))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-517)))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-517)))))
-(-13 (-1056) (-10 -8 (-15 -4317 ($ (-622 (-1186)))) (-15 -2114 ((-622 (-1186)) $))))
-((-2898 (((-112) $ $) NIL)) (-2115 (((-1108) $) 14)) (-3593 (((-1131) $) NIL)) (-2116 (((-1149) $) 11)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-518) (-13 (-1056) (-10 -8 (-15 -2116 ((-1149) $)) (-15 -2115 ((-1108) $))))) (T -518))
-((-2116 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-518)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-518)))))
-(-13 (-1056) (-10 -8 (-15 -2116 ((-1149) $)) (-15 -2115 ((-1108) $))))
-((-2117 (((-1093) $ (-129)) 17)))
-(((-519 |#1|) (-10 -8 (-15 -2117 ((-1093) |#1| (-129)))) (-520)) (T -519))
-NIL
-(-10 -8 (-15 -2117 ((-1093) |#1| (-129))))
-((-2117 (((-1093) $ (-129)) 7)) (-2118 (((-1093) $) 8)) (-1816 (($ $) 6)))
+((-3991 ((|#4| |#4|) 27)) (-3442 (((-751) |#4|) 32)) (-3979 (((-751) |#4|) 33)) (-3967 (((-625 |#3|) |#4|) 40 (|has| |#3| (-6 -4354)))) (-3150 (((-3 |#4| "failed") |#4|) 51)) (-4181 ((|#4| |#4|) 44)) (-2426 ((|#1| |#4|) 43)))
+(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3991 (|#4| |#4|)) (-15 -3442 ((-751) |#4|)) (-15 -3979 ((-751) |#4|)) (IF (|has| |#3| (-6 -4354)) (-15 -3967 ((-625 |#3|) |#4|)) |%noBranch|) (-15 -2426 (|#1| |#4|)) (-15 -4181 (|#4| |#4|)) (-15 -3150 ((-3 |#4| "failed") |#4|))) (-358) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|)) (T -514))
+((-3150 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-4181 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-358)) (-5 *1 (-514 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5)))) (-3967 (*1 *2 *3) (-12 (|has| *6 (-6 -4354)) (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-625 *6)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))))
+(-10 -7 (-15 -3991 (|#4| |#4|)) (-15 -3442 ((-751) |#4|)) (-15 -3979 ((-751) |#4|)) (IF (|has| |#3| (-6 -4354)) (-15 -3967 ((-625 |#3|) |#4|)) |%noBranch|) (-15 -2426 (|#1| |#4|)) (-15 -4181 (|#4| |#4|)) (-15 -3150 ((-3 |#4| "failed") |#4|)))
+((-3991 ((|#8| |#4|) 20)) (-3967 (((-625 |#3|) |#4|) 29 (|has| |#7| (-6 -4354)))) (-3150 (((-3 |#8| "failed") |#4|) 23)))
+(((-515 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3991 (|#8| |#4|)) (-15 -3150 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4354)) (-15 -3967 ((-625 |#3|) |#4|)) |%noBranch|)) (-544) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|) (-968 |#1|) (-368 |#5|) (-368 |#5|) (-667 |#5| |#6| |#7|)) (T -515))
+((-3967 (*1 *2 *3) (-12 (|has| *9 (-6 -4354)) (-4 *4 (-544)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-968 *4)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7)) (-5 *2 (-625 *6)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-667 *4 *5 *6)) (-4 *10 (-667 *7 *8 *9)))) (-3150 (*1 *2 *3) (|partial| -12 (-4 *4 (-544)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-968 *4)) (-4 *2 (-667 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-667 *4 *5 *6)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7)))) (-3991 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-968 *4)) (-4 *2 (-667 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-667 *4 *5 *6)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7)))))
+(-10 -7 (-15 -3991 (|#8| |#4|)) (-15 -3150 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4354)) (-15 -3967 ((-625 |#3|) |#4|)) |%noBranch|))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751) (-751)) NIL)) (-4219 (($ $ $) NIL)) (-2003 (($ (-586 |#1| |#3|)) NIL) (($ $) NIL)) (-4089 (((-112) $) NIL)) (-4208 (($ $ (-552) (-552)) 12)) (-4198 (($ $ (-552) (-552)) NIL)) (-4188 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-4241 (($ $) NIL)) (-4114 (((-112) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-4176 (($ $ (-552) (-552) $) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552)) $) NIL)) (-2701 (($ $ (-552) (-586 |#1| |#3|)) NIL)) (-2691 (($ $ (-552) (-586 |#1| |#2|)) NIL)) (-2467 (($ (-751) |#1|) NIL)) (-3101 (($) NIL T CONST)) (-3991 (($ $) 21 (|has| |#1| (-302)))) (-4015 (((-586 |#1| |#3|) $ (-552)) NIL)) (-3442 (((-751) $) 24 (|has| |#1| (-544)))) (-3692 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3631 ((|#1| $ (-552) (-552)) NIL)) (-3799 (((-625 |#1|) $) NIL)) (-3979 (((-751) $) 26 (|has| |#1| (-544)))) (-3967 (((-625 (-586 |#1| |#2|)) $) 29 (|has| |#1| (-544)))) (-1773 (((-751) $) NIL)) (-2183 (($ (-751) (-751) |#1|) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2416 ((|#1| $) 19 (|has| |#1| (-6 (-4355 "*"))))) (-4063 (((-552) $) 10)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) 11)) (-4027 (((-552) $) NIL)) (-3907 (($ (-625 (-625 |#1|))) NIL)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3803 (((-625 (-625 |#1|)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3150 (((-3 $ "failed") $) 33 (|has| |#1| (-358)))) (-4229 (($ $ $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552))) NIL)) (-2457 (($ (-625 |#1|)) NIL) (($ (-625 $)) NIL)) (-4102 (((-112) $) NIL)) (-2426 ((|#1| $) 17 (|has| |#1| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-4004 (((-586 |#1| |#2|) $ (-552)) NIL)) (-1683 (($ (-586 |#1| |#2|)) NIL) (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-586 |#1| |#2|) $ (-586 |#1| |#2|)) NIL) (((-586 |#1| |#3|) (-586 |#1| |#3|) $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-516 |#1| |#2| |#3|) (-667 |#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) (-1025) (-552) (-552)) (T -516))
+NIL
+(-667 |#1| (-586 |#1| |#3|) (-586 |#1| |#2|))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-4193 (((-625 (-1185)) $) 13)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL) (($ (-625 (-1185))) 11)) (-2281 (((-112) $ $) NIL)))
+(((-517) (-13 (-1056) (-10 -8 (-15 -1683 ($ (-625 (-1185)))) (-15 -4193 ((-625 (-1185)) $))))) (T -517))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-517)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-517)))))
+(-13 (-1056) (-10 -8 (-15 -1683 ($ (-625 (-1185)))) (-15 -4193 ((-625 (-1185)) $))))
+((-1671 (((-112) $ $) NIL)) (-4203 (((-1108) $) 14)) (-2883 (((-1131) $) NIL)) (-4214 (((-1149) $) 11)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-518) (-13 (-1056) (-10 -8 (-15 -4214 ((-1149) $)) (-15 -4203 ((-1108) $))))) (T -518))
+((-4214 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-518)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-518)))))
+(-13 (-1056) (-10 -8 (-15 -4214 ((-1149) $)) (-15 -4203 ((-1108) $))))
+((-4224 (((-1093) $ (-128)) 17)))
+(((-519 |#1|) (-10 -8 (-15 -4224 ((-1093) |#1| (-128)))) (-520)) (T -519))
+NIL
+(-10 -8 (-15 -4224 ((-1093) |#1| (-128))))
+((-4224 (((-1093) $ (-128)) 7)) (-4235 (((-1093) $) 8)) (-4125 (($ $) 6)))
(((-520) (-138)) (T -520))
-((-2118 (*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-1093)))) (-2117 (*1 *2 *1 *3) (-12 (-4 *1 (-520)) (-5 *3 (-129)) (-5 *2 (-1093)))))
-(-13 (-171) (-10 -8 (-15 -2118 ((-1093) $)) (-15 -2117 ((-1093) $ (-129)))))
+((-4235 (*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-1093)))) (-4224 (*1 *2 *1 *3) (-12 (-4 *1 (-520)) (-5 *3 (-128)) (-5 *2 (-1093)))))
+(-13 (-171) (-10 -8 (-15 -4235 ((-1093) $)) (-15 -4224 ((-1093) $ (-128)))))
(((-171) . T))
-((-2121 (((-1143 |#1|) (-751)) 76)) (-3689 (((-1231 |#1|) (-1231 |#1|) (-895)) 69)) (-2119 (((-1237) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) |#1|) 84)) (-2123 (((-1231 |#1|) (-1231 |#1|) (-751)) 36)) (-3327 (((-1231 |#1|) (-895)) 71)) (-2125 (((-1231 |#1|) (-1231 |#1|) (-538)) 24)) (-2120 (((-1143 |#1|) (-1231 |#1|)) 77)) (-2129 (((-1231 |#1|) (-895)) 95)) (-2127 (((-112) (-1231 |#1|)) 80)) (-3467 (((-1231 |#1|) (-1231 |#1|) (-895)) 62)) (-2130 (((-1143 |#1|) (-1231 |#1|)) 89)) (-2126 (((-895) (-1231 |#1|)) 59)) (-2734 (((-1231 |#1|) (-1231 |#1|)) 30)) (-2492 (((-1231 |#1|) (-895) (-895)) 97)) (-2124 (((-1231 |#1|) (-1231 |#1|) (-1093) (-1093)) 23)) (-2122 (((-1231 |#1|) (-1231 |#1|) (-751) (-1093)) 37)) (-2128 (((-1231 (-1231 |#1|)) (-895)) 94)) (-4308 (((-1231 |#1|) (-1231 |#1|) (-1231 |#1|)) 81)) (** (((-1231 |#1|) (-1231 |#1|) (-538)) 45)) (* (((-1231 |#1|) (-1231 |#1|) (-1231 |#1|)) 25)))
-(((-521 |#1|) (-10 -7 (-15 -2119 ((-1237) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) |#1|)) (-15 -3327 ((-1231 |#1|) (-895))) (-15 -2492 ((-1231 |#1|) (-895) (-895))) (-15 -2120 ((-1143 |#1|) (-1231 |#1|))) (-15 -2121 ((-1143 |#1|) (-751))) (-15 -2122 ((-1231 |#1|) (-1231 |#1|) (-751) (-1093))) (-15 -2123 ((-1231 |#1|) (-1231 |#1|) (-751))) (-15 -2124 ((-1231 |#1|) (-1231 |#1|) (-1093) (-1093))) (-15 -2125 ((-1231 |#1|) (-1231 |#1|) (-538))) (-15 ** ((-1231 |#1|) (-1231 |#1|) (-538))) (-15 * ((-1231 |#1|) (-1231 |#1|) (-1231 |#1|))) (-15 -4308 ((-1231 |#1|) (-1231 |#1|) (-1231 |#1|))) (-15 -3467 ((-1231 |#1|) (-1231 |#1|) (-895))) (-15 -3689 ((-1231 |#1|) (-1231 |#1|) (-895))) (-15 -2734 ((-1231 |#1|) (-1231 |#1|))) (-15 -2126 ((-895) (-1231 |#1|))) (-15 -2127 ((-112) (-1231 |#1|))) (-15 -2128 ((-1231 (-1231 |#1|)) (-895))) (-15 -2129 ((-1231 |#1|) (-895))) (-15 -2130 ((-1143 |#1|) (-1231 |#1|)))) (-345)) (T -521))
-((-2130 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1231 (-1231 *4))) (-5 *1 (-521 *4)) (-4 *4 (-345)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-521 *4)))) (-2126 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-895)) (-5 *1 (-521 *4)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3)))) (-3689 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-895)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-895)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-4308 (*1 *2 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-538)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-2125 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-538)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-2124 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1093)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-2123 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-2122 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1231 *5)) (-5 *3 (-751)) (-5 *4 (-1093)) (-4 *5 (-345)) (-5 *1 (-521 *5)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4)))) (-2492 (*1 *2 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) (-4 *4 (-345)) (-5 *2 (-1237)) (-5 *1 (-521 *4)))))
-(-10 -7 (-15 -2119 ((-1237) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) |#1|)) (-15 -3327 ((-1231 |#1|) (-895))) (-15 -2492 ((-1231 |#1|) (-895) (-895))) (-15 -2120 ((-1143 |#1|) (-1231 |#1|))) (-15 -2121 ((-1143 |#1|) (-751))) (-15 -2122 ((-1231 |#1|) (-1231 |#1|) (-751) (-1093))) (-15 -2123 ((-1231 |#1|) (-1231 |#1|) (-751))) (-15 -2124 ((-1231 |#1|) (-1231 |#1|) (-1093) (-1093))) (-15 -2125 ((-1231 |#1|) (-1231 |#1|) (-538))) (-15 ** ((-1231 |#1|) (-1231 |#1|) (-538))) (-15 * ((-1231 |#1|) (-1231 |#1|) (-1231 |#1|))) (-15 -4308 ((-1231 |#1|) (-1231 |#1|) (-1231 |#1|))) (-15 -3467 ((-1231 |#1|) (-1231 |#1|) (-895))) (-15 -3689 ((-1231 |#1|) (-1231 |#1|) (-895))) (-15 -2734 ((-1231 |#1|) (-1231 |#1|))) (-15 -2126 ((-895) (-1231 |#1|))) (-15 -2127 ((-112) (-1231 |#1|))) (-15 -2128 ((-1231 (-1231 |#1|)) (-895))) (-15 -2129 ((-1231 |#1|) (-895))) (-15 -2130 ((-1143 |#1|) (-1231 |#1|))))
-((-2117 (((-1093) $ (-129)) NIL)) (-2118 (((-1093) $) 21)) (-2891 (((-112) $) 19)) (-2132 (($ (-383)) 12) (($ (-1131)) 14)) (-2131 (((-112) $) 22)) (-4317 (((-840) $) 26)) (-1816 (($ $) 23)))
-(((-522) (-13 (-520) (-597 (-840)) (-10 -8 (-15 -2132 ($ (-383))) (-15 -2132 ($ (-1131))) (-15 -2131 ((-112) $)) (-15 -2891 ((-112) $))))) (T -522))
-((-2132 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-522)))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-522)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522)))))
-(-13 (-520) (-597 (-840)) (-10 -8 (-15 -2132 ($ (-383))) (-15 -2132 ($ (-1131))) (-15 -2131 ((-112) $)) (-15 -2891 ((-112) $))))
-((-2134 (((-1 |#1| |#1|) |#1|) 11)) (-2133 (((-1 |#1| |#1|)) 10)))
-(((-523 |#1|) (-10 -7 (-15 -2133 ((-1 |#1| |#1|))) (-15 -2134 ((-1 |#1| |#1|) |#1|))) (-13 (-707) (-25))) (T -523))
-((-2134 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25))))) (-2133 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25))))))
-(-10 -7 (-15 -2133 ((-1 |#1| |#1|))) (-15 -2134 ((-1 |#1| |#1|) |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2733 (($ $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3226 (($ (-751) |#1|) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 (-751) (-751)) $) NIL)) (-2106 ((|#1| $) NIL)) (-3525 (((-751) $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20)) (-2991 (($) NIL T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL)))
+((-4268 (((-1145 |#1|) (-751)) 76)) (-1650 (((-1232 |#1|) (-1232 |#1|) (-897)) 69)) (-4246 (((-1237) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) |#1|) 84)) (-4289 (((-1232 |#1|) (-1232 |#1|) (-751)) 36)) (-3702 (((-1232 |#1|) (-897)) 71)) (-4308 (((-1232 |#1|) (-1232 |#1|) (-552)) 24)) (-4256 (((-1145 |#1|) (-1232 |#1|)) 77)) (-1280 (((-1232 |#1|) (-897)) 95)) (-4328 (((-112) (-1232 |#1|)) 80)) (-4209 (((-1232 |#1|) (-1232 |#1|) (-897)) 62)) (-1291 (((-1145 |#1|) (-1232 |#1|)) 89)) (-4318 (((-897) (-1232 |#1|)) 59)) (-4092 (((-1232 |#1|) (-1232 |#1|)) 30)) (-3123 (((-1232 |#1|) (-897) (-897)) 97)) (-4299 (((-1232 |#1|) (-1232 |#1|) (-1093) (-1093)) 23)) (-4278 (((-1232 |#1|) (-1232 |#1|) (-751) (-1093)) 37)) (-1270 (((-1232 (-1232 |#1|)) (-897)) 94)) (-2404 (((-1232 |#1|) (-1232 |#1|) (-1232 |#1|)) 81)) (** (((-1232 |#1|) (-1232 |#1|) (-552)) 45)) (* (((-1232 |#1|) (-1232 |#1|) (-1232 |#1|)) 25)))
+(((-521 |#1|) (-10 -7 (-15 -4246 ((-1237) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) |#1|)) (-15 -3702 ((-1232 |#1|) (-897))) (-15 -3123 ((-1232 |#1|) (-897) (-897))) (-15 -4256 ((-1145 |#1|) (-1232 |#1|))) (-15 -4268 ((-1145 |#1|) (-751))) (-15 -4278 ((-1232 |#1|) (-1232 |#1|) (-751) (-1093))) (-15 -4289 ((-1232 |#1|) (-1232 |#1|) (-751))) (-15 -4299 ((-1232 |#1|) (-1232 |#1|) (-1093) (-1093))) (-15 -4308 ((-1232 |#1|) (-1232 |#1|) (-552))) (-15 ** ((-1232 |#1|) (-1232 |#1|) (-552))) (-15 * ((-1232 |#1|) (-1232 |#1|) (-1232 |#1|))) (-15 -2404 ((-1232 |#1|) (-1232 |#1|) (-1232 |#1|))) (-15 -4209 ((-1232 |#1|) (-1232 |#1|) (-897))) (-15 -1650 ((-1232 |#1|) (-1232 |#1|) (-897))) (-15 -4092 ((-1232 |#1|) (-1232 |#1|))) (-15 -4318 ((-897) (-1232 |#1|))) (-15 -4328 ((-112) (-1232 |#1|))) (-15 -1270 ((-1232 (-1232 |#1|)) (-897))) (-15 -1280 ((-1232 |#1|) (-897))) (-15 -1291 ((-1145 |#1|) (-1232 |#1|)))) (-344)) (T -521))
+((-1291 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-1145 *4)) (-5 *1 (-521 *4)))) (-1280 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4)) (-4 *4 (-344)))) (-1270 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1232 (-1232 *4))) (-5 *1 (-521 *4)) (-4 *4 (-344)))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-521 *4)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-897)) (-5 *1 (-521 *4)))) (-4092 (*1 *2 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3)))) (-1650 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-897)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-897)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-2404 (*1 *2 *2 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-552)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-4308 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-552)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-4299 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1093)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-4289 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-4278 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1232 *5)) (-5 *3 (-751)) (-5 *4 (-1093)) (-4 *5 (-344)) (-5 *1 (-521 *5)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1145 *4)) (-5 *1 (-521 *4)) (-4 *4 (-344)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-1145 *4)) (-5 *1 (-521 *4)))) (-3123 (*1 *2 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4)) (-4 *4 (-344)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4)) (-4 *4 (-344)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) (-4 *4 (-344)) (-5 *2 (-1237)) (-5 *1 (-521 *4)))))
+(-10 -7 (-15 -4246 ((-1237) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) |#1|)) (-15 -3702 ((-1232 |#1|) (-897))) (-15 -3123 ((-1232 |#1|) (-897) (-897))) (-15 -4256 ((-1145 |#1|) (-1232 |#1|))) (-15 -4268 ((-1145 |#1|) (-751))) (-15 -4278 ((-1232 |#1|) (-1232 |#1|) (-751) (-1093))) (-15 -4289 ((-1232 |#1|) (-1232 |#1|) (-751))) (-15 -4299 ((-1232 |#1|) (-1232 |#1|) (-1093) (-1093))) (-15 -4308 ((-1232 |#1|) (-1232 |#1|) (-552))) (-15 ** ((-1232 |#1|) (-1232 |#1|) (-552))) (-15 * ((-1232 |#1|) (-1232 |#1|) (-1232 |#1|))) (-15 -2404 ((-1232 |#1|) (-1232 |#1|) (-1232 |#1|))) (-15 -4209 ((-1232 |#1|) (-1232 |#1|) (-897))) (-15 -1650 ((-1232 |#1|) (-1232 |#1|) (-897))) (-15 -4092 ((-1232 |#1|) (-1232 |#1|))) (-15 -4318 ((-897) (-1232 |#1|))) (-15 -4328 ((-112) (-1232 |#1|))) (-15 -1270 ((-1232 (-1232 |#1|)) (-897))) (-15 -1280 ((-1232 |#1|) (-897))) (-15 -1291 ((-1145 |#1|) (-1232 |#1|))))
+((-4224 (((-1093) $ (-128)) NIL)) (-4235 (((-1093) $) 21)) (-2341 (((-112) $) 19)) (-3170 (($ (-383)) 12) (($ (-1131)) 14)) (-1303 (((-112) $) 22)) (-1683 (((-839) $) 26)) (-4125 (($ $) 23)))
+(((-522) (-13 (-520) (-597 (-839)) (-10 -8 (-15 -3170 ($ (-383))) (-15 -3170 ($ (-1131))) (-15 -1303 ((-112) $)) (-15 -2341 ((-112) $))))) (T -522))
+((-3170 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-522)))) (-3170 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-522)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522)))))
+(-13 (-520) (-597 (-839)) (-10 -8 (-15 -3170 ($ (-383))) (-15 -3170 ($ (-1131))) (-15 -1303 ((-112) $)) (-15 -2341 ((-112) $))))
+((-3444 (((-1 |#1| |#1|) |#1|) 11)) (-3178 (((-1 |#1| |#1|)) 10)))
+(((-523 |#1|) (-10 -7 (-15 -3178 ((-1 |#1| |#1|))) (-15 -3444 ((-1 |#1| |#1|) |#1|))) (-13 (-707) (-25))) (T -523))
+((-3444 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25))))) (-3178 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25))))))
+(-10 -7 (-15 -3178 ((-1 |#1| |#1|))) (-15 -3444 ((-1 |#1| |#1|) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1282 (($ $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-3957 (($ (-751) |#1|) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 (-751) (-751)) $) NIL)) (-4094 ((|#1| $) NIL)) (-4144 (((-751) $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20)) (-2089 (($) NIL T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL)))
(((-524 |#1|) (-13 (-773) (-502 (-751) |#1|)) (-827)) (T -524))
NIL
(-13 (-773) (-502 (-751) |#1|))
-((-2136 (((-622 |#2|) (-1143 |#1|) |#3|) 83)) (-2137 (((-622 (-2 (|:| |outval| |#2|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-400 (-1143 |#1|)) (-1143 |#1|))) 100)) (-2135 (((-1143 |#1|) (-669 |#1|)) 95)))
-(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -2135 ((-1143 |#1|) (-669 |#1|))) (-15 -2136 ((-622 |#2|) (-1143 |#1|) |#3|)) (-15 -2137 ((-622 (-2 (|:| |outval| |#2|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-400 (-1143 |#1|)) (-1143 |#1|))))) (-358) (-358) (-13 (-358) (-825))) (T -525))
-((-2137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *6)) (-5 *5 (-1 (-400 (-1143 *6)) (-1143 *6))) (-4 *6 (-358)) (-5 *2 (-622 (-2 (|:| |outval| *7) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 *7)))))) (-5 *1 (-525 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-825))))) (-2136 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *5)) (-4 *5 (-358)) (-5 *2 (-622 *6)) (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *2 (-1143 *4)) (-5 *1 (-525 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-825))))))
-(-10 -7 (-15 -2135 ((-1143 |#1|) (-669 |#1|))) (-15 -2136 ((-622 |#2|) (-1143 |#1|) |#3|)) (-15 -2137 ((-622 (-2 (|:| |outval| |#2|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-400 (-1143 |#1|)) (-1143 |#1|)))))
-((-2863 (((-819 (-538))) 12)) (-2862 (((-819 (-538))) 14)) (-2848 (((-812 (-538))) 9)))
-(((-526) (-10 -7 (-15 -2848 ((-812 (-538)))) (-15 -2863 ((-819 (-538)))) (-15 -2862 ((-819 (-538)))))) (T -526))
-((-2862 (*1 *2) (-12 (-5 *2 (-819 (-538))) (-5 *1 (-526)))) (-2863 (*1 *2) (-12 (-5 *2 (-819 (-538))) (-5 *1 (-526)))) (-2848 (*1 *2) (-12 (-5 *2 (-812 (-538))) (-5 *1 (-526)))))
-(-10 -7 (-15 -2848 ((-812 (-538)))) (-15 -2863 ((-819 (-538)))) (-15 -2862 ((-819 (-538)))))
-((-2898 (((-112) $ $) NIL)) (-2141 (((-1131) $) 48)) (-3611 (((-112) $) 43)) (-3607 (((-1149) $) 44)) (-3612 (((-112) $) 41)) (-3898 (((-1131) $) 42)) (-2140 (($ (-1131)) 49)) (-3614 (((-112) $) NIL)) (-3616 (((-112) $) NIL)) (-3613 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-2143 (($ $ (-622 (-1149))) 20)) (-2146 (((-51) $) 22)) (-3610 (((-112) $) NIL)) (-3606 (((-538) $) NIL)) (-3594 (((-1093) $) NIL)) (-2475 (($ $ (-622 (-1149)) (-1149)) 61)) (-3609 (((-112) $) NIL)) (-3605 (((-221) $) NIL)) (-2142 (($ $) 38)) (-3604 (((-840) $) NIL)) (-3617 (((-112) $ $) NIL)) (-4159 (($ $ (-538)) NIL) (($ $ (-622 (-538))) NIL)) (-3608 (((-622 $) $) 28)) (-2139 (((-1149) (-622 $)) 50)) (-4330 (($ (-622 $)) 57) (($ (-1131)) NIL) (($ (-1149)) 18) (($ (-538)) 8) (($ (-221)) 25) (($ (-840)) NIL) (((-1076) $) 11) (($ (-1076)) 12)) (-2138 (((-1149) (-1149) (-622 $)) 53)) (-4317 (((-840) $) 46)) (-3602 (($ $) 52)) (-3603 (($ $) 51)) (-2144 (($ $ (-622 $)) 58)) (-3615 (((-112) $) 27)) (-2991 (($) 9 T CONST)) (-2997 (($) 10 T CONST)) (-3387 (((-112) $ $) 62)) (-4308 (($ $ $) 67)) (-4199 (($ $ $) 63)) (** (($ $ (-751)) 66) (($ $ (-538)) 65)) (* (($ $ $) 64)) (-4316 (((-538) $) NIL)))
-(((-527) (-13 (-1077 (-1131) (-1149) (-538) (-221) (-840)) (-598 (-1076)) (-10 -8 (-15 -2146 ((-51) $)) (-15 -4330 ($ (-1076))) (-15 -2144 ($ $ (-622 $))) (-15 -2475 ($ $ (-622 (-1149)) (-1149))) (-15 -2143 ($ $ (-622 (-1149)))) (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 -4308 ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ (-538))) (-15 0 ($) -4311) (-15 1 ($) -4311) (-15 -2142 ($ $)) (-15 -2141 ((-1131) $)) (-15 -2140 ($ (-1131))) (-15 -2139 ((-1149) (-622 $))) (-15 -2138 ((-1149) (-1149) (-622 $)))))) (T -527))
-((-2146 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-527)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-527)))) (-2144 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-527))) (-5 *1 (-527)))) (-2475 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-1149)) (-5 *1 (-527)))) (-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-527)))) (-4199 (*1 *1 *1 *1) (-5 *1 (-527))) (* (*1 *1 *1 *1) (-5 *1 (-527))) (-4308 (*1 *1 *1 *1) (-5 *1 (-527))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-527)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-527)))) (-2991 (*1 *1) (-5 *1 (-527))) (-2997 (*1 *1) (-5 *1 (-527))) (-2142 (*1 *1 *1) (-5 *1 (-527))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-527)))) (-2140 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-527)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-622 (-527))) (-5 *2 (-1149)) (-5 *1 (-527)))) (-2138 (*1 *2 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-527))) (-5 *1 (-527)))))
-(-13 (-1077 (-1131) (-1149) (-538) (-221) (-840)) (-598 (-1076)) (-10 -8 (-15 -2146 ((-51) $)) (-15 -4330 ($ (-1076))) (-15 -2144 ($ $ (-622 $))) (-15 -2475 ($ $ (-622 (-1149)) (-1149))) (-15 -2143 ($ $ (-622 (-1149)))) (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 -4308 ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ (-538))) (-15 (-2991) ($) -4311) (-15 (-2997) ($) -4311) (-15 -2142 ($ $)) (-15 -2141 ((-1131) $)) (-15 -2140 ($ (-1131))) (-15 -2139 ((-1149) (-622 $))) (-15 -2138 ((-1149) (-1149) (-622 $)))))
-((-2145 (((-527) (-1149)) 15)) (-2146 ((|#1| (-527)) 20)))
-(((-528 |#1|) (-10 -7 (-15 -2145 ((-527) (-1149))) (-15 -2146 (|#1| (-527)))) (-1185)) (T -528))
-((-2146 (*1 *2 *3) (-12 (-5 *3 (-527)) (-5 *1 (-528 *2)) (-4 *2 (-1185)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-527)) (-5 *1 (-528 *4)) (-4 *4 (-1185)))))
-(-10 -7 (-15 -2145 ((-527) (-1149))) (-15 -2146 (|#1| (-527))))
-((-3807 ((|#2| |#2|) 17)) (-3805 ((|#2| |#2|) 13)) (-3808 ((|#2| |#2| (-538) (-538)) 20)) (-3806 ((|#2| |#2|) 15)))
-(((-529 |#1| |#2|) (-10 -7 (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2| (-538) (-538)))) (-13 (-545) (-145)) (-1224 |#1|)) (T -529))
-((-3808 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-538)) (-4 *4 (-13 (-545) (-145))) (-5 *1 (-529 *4 *2)) (-4 *2 (-1224 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3)))))
-(-10 -7 (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2| (-538) (-538))))
-((-2149 (((-622 (-288 (-922 |#2|))) (-622 |#2|) (-622 (-1149))) 32)) (-2147 (((-622 |#2|) (-922 |#1|) |#3|) 53) (((-622 |#2|) (-1143 |#1|) |#3|) 52)) (-2148 (((-622 (-622 |#2|)) (-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)) |#3|) 91)))
-(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -2147 ((-622 |#2|) (-1143 |#1|) |#3|)) (-15 -2147 ((-622 |#2|) (-922 |#1|) |#3|)) (-15 -2148 ((-622 (-622 |#2|)) (-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)) |#3|)) (-15 -2149 ((-622 (-288 (-922 |#2|))) (-622 |#2|) (-622 (-1149))))) (-446) (-358) (-13 (-358) (-825))) (T -530))
-((-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-1149))) (-4 *6 (-358)) (-5 *2 (-622 (-288 (-922 *6)))) (-5 *1 (-530 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-13 (-358) (-825))))) (-2148 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) (-4 *6 (-446)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-358)) (-4 *5 (-13 (-358) (-825))))) (-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-922 *5)) (-4 *5 (-446)) (-5 *2 (-622 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))) (-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *5)) (-4 *5 (-446)) (-5 *2 (-622 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))))
-(-10 -7 (-15 -2147 ((-622 |#2|) (-1143 |#1|) |#3|)) (-15 -2147 ((-622 |#2|) (-922 |#1|) |#3|)) (-15 -2148 ((-622 (-622 |#2|)) (-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)) |#3|)) (-15 -2149 ((-622 (-288 (-922 |#2|))) (-622 |#2|) (-622 (-1149)))))
-((-2152 ((|#2| |#2| |#1|) 17)) (-2150 ((|#2| (-622 |#2|)) 27)) (-2151 ((|#2| (-622 |#2|)) 46)))
-(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2150 (|#2| (-622 |#2|))) (-15 -2151 (|#2| (-622 |#2|))) (-15 -2152 (|#2| |#2| |#1|))) (-302) (-1207 |#1|) |#1| (-1 |#1| |#1| (-751))) (T -531))
-((-2152 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-751))) (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1207 *3)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751))))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751))))))
-(-10 -7 (-15 -2150 (|#2| (-622 |#2|))) (-15 -2151 (|#2| (-622 |#2|))) (-15 -2152 (|#2| |#2| |#1|)))
-((-4092 (((-400 (-1143 |#4|)) (-1143 |#4|) (-1 (-400 (-1143 |#3|)) (-1143 |#3|))) 80) (((-400 |#4|) |#4| (-1 (-400 (-1143 |#3|)) (-1143 |#3|))) 169)))
-(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4| (-1 (-400 (-1143 |#3|)) (-1143 |#3|)))) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|) (-1 (-400 (-1143 |#3|)) (-1143 |#3|))))) (-827) (-773) (-13 (-302) (-145)) (-926 |#3| |#2| |#1|)) (T -532))
-((-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-400 (-1143 *7)) (-1143 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *8 (-926 *7 *6 *5)) (-5 *2 (-400 (-1143 *8))) (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1143 *8)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-400 (-1143 *7)) (-1143 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-400 *3)) (-5 *1 (-532 *5 *6 *7 *3)) (-4 *3 (-926 *7 *6 *5)))))
-(-10 -7 (-15 -4092 ((-400 |#4|) |#4| (-1 (-400 (-1143 |#3|)) (-1143 |#3|)))) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|) (-1 (-400 (-1143 |#3|)) (-1143 |#3|)))))
-((-3807 ((|#4| |#4|) 74)) (-3805 ((|#4| |#4|) 70)) (-3808 ((|#4| |#4| (-538) (-538)) 76)) (-3806 ((|#4| |#4|) 72)))
-(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3805 (|#4| |#4|)) (-15 -3806 (|#4| |#4|)) (-15 -3807 (|#4| |#4|)) (-15 -3808 (|#4| |#4| (-538) (-538)))) (-13 (-358) (-363) (-598 (-538))) (-1207 |#1|) (-705 |#1| |#2|) (-1224 |#3|)) (T -533))
-((-3808 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-538)) (-4 *4 (-13 (-358) (-363) (-598 *3))) (-4 *5 (-1207 *4)) (-4 *6 (-705 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) (-4 *2 (-1224 *6)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5)))))
-(-10 -7 (-15 -3805 (|#4| |#4|)) (-15 -3806 (|#4| |#4|)) (-15 -3807 (|#4| |#4|)) (-15 -3808 (|#4| |#4| (-538) (-538))))
-((-3807 ((|#2| |#2|) 27)) (-3805 ((|#2| |#2|) 23)) (-3808 ((|#2| |#2| (-538) (-538)) 29)) (-3806 ((|#2| |#2|) 25)))
-(((-534 |#1| |#2|) (-10 -7 (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2| (-538) (-538)))) (-13 (-358) (-363) (-598 (-538))) (-1224 |#1|)) (T -534))
-((-3808 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-538)) (-4 *4 (-13 (-358) (-363) (-598 *3))) (-5 *1 (-534 *4 *2)) (-4 *2 (-1224 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1224 *3)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1224 *3)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1224 *3)))))
-(-10 -7 (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2| (-538) (-538))))
-((-2153 (((-3 (-538) #1="failed") |#2| |#1| (-1 (-3 (-538) #1#) |#1|)) 14) (((-3 (-538) #1#) |#2| |#1| (-538) (-1 (-3 (-538) #1#) |#1|)) 13) (((-3 (-538) #1#) |#2| (-538) (-1 (-3 (-538) #1#) |#1|)) 26)))
-(((-535 |#1| |#2|) (-10 -7 (-15 -2153 ((-3 (-538) #1="failed") |#2| (-538) (-1 (-3 (-538) #1#) |#1|))) (-15 -2153 ((-3 (-538) #1#) |#2| |#1| (-538) (-1 (-3 (-538) #1#) |#1|))) (-15 -2153 ((-3 (-538) #1#) |#2| |#1| (-1 (-3 (-538) #1#) |#1|)))) (-1025) (-1207 |#1|)) (T -535))
-((-2153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-538) #1="failed") *4)) (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1207 *4)))) (-2153 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-538) #1#) *4)) (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1207 *4)))) (-2153 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-538) #1#) *5)) (-4 *5 (-1025)) (-5 *2 (-538)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1207 *5)))))
-(-10 -7 (-15 -2153 ((-3 (-538) #1="failed") |#2| (-538) (-1 (-3 (-538) #1#) |#1|))) (-15 -2153 ((-3 (-538) #1#) |#2| |#1| (-538) (-1 (-3 (-538) #1#) |#1|))) (-15 -2153 ((-3 (-538) #1#) |#2| |#1| (-1 (-3 (-538) #1#) |#1|))))
-((-2162 (($ $ $) 79)) (-4329 (((-400 $) $) 47)) (-3508 (((-3 (-538) "failed") $) 59)) (-3507 (((-538) $) 37)) (-3357 (((-3 (-402 (-538)) "failed") $) 74)) (-3356 (((-112) $) 24)) (-3355 (((-402 (-538)) $) 72)) (-4086 (((-112) $) 50)) (-2155 (($ $ $ $) 86)) (-3537 (((-112) $) 16)) (-1414 (($ $ $) 57)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 69)) (-3803 (((-3 $ "failed") $) 64)) (-2159 (($ $) 23)) (-2154 (($ $ $) 84)) (-3804 (($) 60)) (-1412 (($ $) 53)) (-4092 (((-400 $) $) 45)) (-3007 (((-112) $) 14)) (-1704 (((-751) $) 28)) (-4170 (($ $ (-751)) NIL) (($ $) 10)) (-3759 (($ $) 17)) (-4330 (((-538) $) NIL) (((-527) $) 36) (((-866 (-538)) $) 40) (((-373) $) 31) (((-221) $) 33)) (-3461 (((-751)) 8)) (-2164 (((-112) $ $) 20)) (-3437 (($ $ $) 55)))
-(((-536 |#1|) (-10 -8 (-15 -2154 (|#1| |#1| |#1|)) (-15 -2155 (|#1| |#1| |#1| |#1|)) (-15 -2159 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -2162 (|#1| |#1| |#1|)) (-15 -2164 ((-112) |#1| |#1|)) (-15 -3007 ((-112) |#1|)) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -3437 (|#1| |#1| |#1|)) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) "failed") |#1|)) (-15 -4330 ((-538) |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3537 ((-112) |#1|)) (-15 -1704 ((-751) |#1|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -3461 ((-751)))) (-537)) (T -536))
-((-3461 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-536 *3)) (-4 *3 (-537)))))
-(-10 -8 (-15 -2154 (|#1| |#1| |#1|)) (-15 -2155 (|#1| |#1| |#1| |#1|)) (-15 -2159 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -2162 (|#1| |#1| |#1|)) (-15 -2164 ((-112) |#1| |#1|)) (-15 -3007 ((-112) |#1|)) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -3437 (|#1| |#1| |#1|)) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) "failed") |#1|)) (-15 -4330 ((-538) |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3537 ((-112) |#1|)) (-15 -1704 ((-751) |#1|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -3461 ((-751))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-2162 (($ $ $) 82)) (-1368 (((-3 $ "failed") $ $) 19)) (-2157 (($ $ $ $) 71)) (-4134 (($ $) 49)) (-4329 (((-400 $) $) 50)) (-1705 (((-112) $ $) 122)) (-3986 (((-538) $) 111)) (-2690 (($ $ $) 85)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) "failed") $) 103)) (-3507 (((-538) $) 102)) (-2894 (($ $ $) 126)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 101) (((-669 (-538)) (-669 $)) 100)) (-3821 (((-3 $ "failed") $) 32)) (-3357 (((-3 (-402 (-538)) "failed") $) 79)) (-3356 (((-112) $) 81)) (-3355 (((-402 (-538)) $) 80)) (-3327 (($) 78) (($ $) 77)) (-2893 (($ $ $) 125)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 120)) (-4086 (((-112) $) 51)) (-2155 (($ $ $ $) 69)) (-2163 (($ $ $) 83)) (-3537 (((-112) $) 113)) (-1414 (($ $ $) 94)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 97)) (-2502 (((-112) $) 30)) (-3006 (((-112) $) 89)) (-3803 (((-3 $ "failed") $) 91)) (-3538 (((-112) $) 112)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 129)) (-2156 (($ $ $ $) 70)) (-3677 (($ $ $) 114)) (-3678 (($ $ $) 115)) (-2159 (($ $) 73)) (-4193 (($ $) 86)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2154 (($ $ $) 68)) (-3804 (($) 90 T CONST)) (-2161 (($ $) 75)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1412 (($ $) 95)) (-4092 (((-400 $) $) 48)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 127)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 121)) (-3007 (((-112) $) 88)) (-1704 (((-751) $) 123)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 124)) (-4170 (($ $ (-751)) 108) (($ $) 106)) (-2160 (($ $) 74)) (-3759 (($ $) 76)) (-4330 (((-538) $) 105) (((-527) $) 99) (((-866 (-538)) $) 98) (((-373) $) 93) (((-221) $) 92)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-538)) 104)) (-3461 (((-751)) 28)) (-2164 (((-112) $ $) 84)) (-3437 (($ $ $) 96)) (-3027 (($) 87)) (-2177 (((-112) $ $) 37)) (-2158 (($ $ $ $) 72)) (-3742 (($ $) 110)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-751)) 109) (($ $) 107)) (-2896 (((-112) $ $) 117)) (-2897 (((-112) $ $) 118)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 116)) (-3018 (((-112) $ $) 119)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-3194 (((-625 |#2|) (-1145 |#1|) |#3|) 83)) (-3204 (((-625 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-413 (-1145 |#1|)) (-1145 |#1|))) 100)) (-3187 (((-1145 |#1|) (-669 |#1|)) 95)))
+(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -3187 ((-1145 |#1|) (-669 |#1|))) (-15 -3194 ((-625 |#2|) (-1145 |#1|) |#3|)) (-15 -3204 ((-625 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-413 (-1145 |#1|)) (-1145 |#1|))))) (-358) (-358) (-13 (-358) (-825))) (T -525))
+((-3204 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *6)) (-5 *5 (-1 (-413 (-1145 *6)) (-1145 *6))) (-4 *6 (-358)) (-5 *2 (-625 (-2 (|:| |outval| *7) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 *7)))))) (-5 *1 (-525 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-825))))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *5)) (-4 *5 (-358)) (-5 *2 (-625 *6)) (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *2 (-1145 *4)) (-5 *1 (-525 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-825))))))
+(-10 -7 (-15 -3187 ((-1145 |#1|) (-669 |#1|))) (-15 -3194 ((-625 |#2|) (-1145 |#1|) |#3|)) (-15 -3204 ((-625 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-413 (-1145 |#1|)) (-1145 |#1|)))))
+((-1828 (((-820 (-552))) 12)) (-1841 (((-820 (-552))) 14)) (-1396 (((-813 (-552))) 9)))
+(((-526) (-10 -7 (-15 -1396 ((-813 (-552)))) (-15 -1828 ((-820 (-552)))) (-15 -1841 ((-820 (-552)))))) (T -526))
+((-1841 (*1 *2) (-12 (-5 *2 (-820 (-552))) (-5 *1 (-526)))) (-1828 (*1 *2) (-12 (-5 *2 (-820 (-552))) (-5 *1 (-526)))) (-1396 (*1 *2) (-12 (-5 *2 (-813 (-552))) (-5 *1 (-526)))))
+(-10 -7 (-15 -1396 ((-813 (-552)))) (-15 -1828 ((-820 (-552)))) (-15 -1841 ((-820 (-552)))))
+((-3241 (((-528) (-1149)) 15)) (-1509 ((|#1| (-528)) 20)))
+(((-527 |#1|) (-10 -7 (-15 -3241 ((-528) (-1149))) (-15 -1509 (|#1| (-528)))) (-1186)) (T -527))
+((-1509 (*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-527 *2)) (-4 *2 (-1186)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-528)) (-5 *1 (-527 *4)) (-4 *4 (-1186)))))
+(-10 -7 (-15 -3241 ((-528) (-1149))) (-15 -1509 (|#1| (-528))))
+((-1671 (((-112) $ $) NIL)) (-3225 (((-1131) $) 48)) (-2981 (((-112) $) 43)) (-3621 (((-1149) $) 44)) (-2993 (((-112) $) 41)) (-4265 (((-1131) $) 42)) (-3214 (($ (-1131)) 49)) (-3016 (((-112) $) NIL)) (-3039 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-4147 (($ $ (-625 (-1149))) 20)) (-1509 (((-52) $) 22)) (-2970 (((-112) $) NIL)) (-3642 (((-552) $) NIL)) (-2831 (((-1093) $) NIL)) (-2487 (($ $ (-625 (-1149)) (-1149)) 61)) (-2958 (((-112) $) NIL)) (-2189 (((-221) $) NIL)) (-3100 (($ $) 38)) (-2149 (((-839) $) NIL)) (-2772 (((-112) $ $) NIL)) (-2154 (($ $ (-552)) NIL) (($ $ (-625 (-552))) NIL)) (-3905 (((-625 $) $) 28)) (-2574 (((-1149) (-625 $)) 50)) (-2042 (($ (-625 $)) 57) (($ (-1131)) NIL) (($ (-1149)) 18) (($ (-552)) 8) (($ (-221)) 25) (($ (-839)) NIL) (((-1077) $) 11) (($ (-1077)) 12)) (-4024 (((-1149) (-1149) (-625 $)) 53)) (-1683 (((-839) $) 46)) (-2825 (($ $) 52)) (-2812 (($ $) 51)) (-3232 (($ $ (-625 $)) 58)) (-3028 (((-112) $) 27)) (-2089 (($) 9 T CONST)) (-2100 (($) 10 T CONST)) (-2281 (((-112) $ $) 62)) (-2404 (($ $ $) 67)) (-2382 (($ $ $) 63)) (** (($ $ (-751)) 66) (($ $ (-552)) 65)) (* (($ $ $) 64)) (-1471 (((-552) $) NIL)))
+(((-528) (-13 (-1076 (-1131) (-1149) (-552) (-221) (-839)) (-598 (-1077)) (-10 -8 (-15 -1509 ((-52) $)) (-15 -2042 ($ (-1077))) (-15 -3232 ($ $ (-625 $))) (-15 -2487 ($ $ (-625 (-1149)) (-1149))) (-15 -4147 ($ $ (-625 (-1149)))) (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 -2404 ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ (-552))) (-15 0 ($) -1426) (-15 1 ($) -1426) (-15 -3100 ($ $)) (-15 -3225 ((-1131) $)) (-15 -3214 ($ (-1131))) (-15 -2574 ((-1149) (-625 $))) (-15 -4024 ((-1149) (-1149) (-625 $)))))) (T -528))
+((-1509 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-528)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-528)))) (-3232 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-528))) (-5 *1 (-528)))) (-2487 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-1149)) (-5 *1 (-528)))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-528)))) (-2382 (*1 *1 *1 *1) (-5 *1 (-528))) (* (*1 *1 *1 *1) (-5 *1 (-528))) (-2404 (*1 *1 *1 *1) (-5 *1 (-528))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-528)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-528)))) (-2089 (*1 *1) (-5 *1 (-528))) (-2100 (*1 *1) (-5 *1 (-528))) (-3100 (*1 *1 *1) (-5 *1 (-528))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-528)))) (-3214 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-528)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-625 (-528))) (-5 *2 (-1149)) (-5 *1 (-528)))) (-4024 (*1 *2 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-528))) (-5 *1 (-528)))))
+(-13 (-1076 (-1131) (-1149) (-552) (-221) (-839)) (-598 (-1077)) (-10 -8 (-15 -1509 ((-52) $)) (-15 -2042 ($ (-1077))) (-15 -3232 ($ $ (-625 $))) (-15 -2487 ($ $ (-625 (-1149)) (-1149))) (-15 -4147 ($ $ (-625 (-1149)))) (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 -2404 ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ (-552))) (-15 (-2089) ($) -1426) (-15 (-2100) ($) -1426) (-15 -3100 ($ $)) (-15 -3225 ((-1131) $)) (-15 -3214 ($ (-1131))) (-15 -2574 ((-1149) (-625 $))) (-15 -4024 ((-1149) (-1149) (-625 $)))))
+((-4071 ((|#2| |#2|) 17)) (-4046 ((|#2| |#2|) 13)) (-4084 ((|#2| |#2| (-552) (-552)) 20)) (-4059 ((|#2| |#2|) 15)))
+(((-529 |#1| |#2|) (-10 -7 (-15 -4046 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4084 (|#2| |#2| (-552) (-552)))) (-13 (-544) (-145)) (-1223 |#1|)) (T -529))
+((-4084 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-544) (-145))) (-5 *1 (-529 *4 *2)) (-4 *2 (-1223 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1223 *3)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1223 *3)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1223 *3)))))
+(-10 -7 (-15 -4046 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4084 (|#2| |#2| (-552) (-552))))
+((-3268 (((-625 (-289 (-928 |#2|))) (-625 |#2|) (-625 (-1149))) 32)) (-3250 (((-625 |#2|) (-928 |#1|) |#3|) 53) (((-625 |#2|) (-1145 |#1|) |#3|) 52)) (-3259 (((-625 (-625 |#2|)) (-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)) |#3|) 91)))
+(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -3250 ((-625 |#2|) (-1145 |#1|) |#3|)) (-15 -3250 ((-625 |#2|) (-928 |#1|) |#3|)) (-15 -3259 ((-625 (-625 |#2|)) (-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)) |#3|)) (-15 -3268 ((-625 (-289 (-928 |#2|))) (-625 |#2|) (-625 (-1149))))) (-446) (-358) (-13 (-358) (-825))) (T -530))
+((-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-1149))) (-4 *6 (-358)) (-5 *2 (-625 (-289 (-928 *6)))) (-5 *1 (-530 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-13 (-358) (-825))))) (-3259 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) (-4 *6 (-446)) (-5 *2 (-625 (-625 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-358)) (-4 *5 (-13 (-358) (-825))))) (-3250 (*1 *2 *3 *4) (-12 (-5 *3 (-928 *5)) (-4 *5 (-446)) (-5 *2 (-625 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))) (-3250 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *5)) (-4 *5 (-446)) (-5 *2 (-625 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))))
+(-10 -7 (-15 -3250 ((-625 |#2|) (-1145 |#1|) |#3|)) (-15 -3250 ((-625 |#2|) (-928 |#1|) |#3|)) (-15 -3259 ((-625 (-625 |#2|)) (-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)) |#3|)) (-15 -3268 ((-625 (-289 (-928 |#2|))) (-625 |#2|) (-625 (-1149)))))
+((-3297 ((|#2| |#2| |#1|) 17)) (-3277 ((|#2| (-625 |#2|)) 27)) (-3288 ((|#2| (-625 |#2|)) 46)))
+(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3277 (|#2| (-625 |#2|))) (-15 -3288 (|#2| (-625 |#2|))) (-15 -3297 (|#2| |#2| |#1|))) (-302) (-1208 |#1|) |#1| (-1 |#1| |#1| (-751))) (T -531))
+((-3297 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-751))) (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1208 *3)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751))))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751))))))
+(-10 -7 (-15 -3277 (|#2| (-625 |#2|))) (-15 -3288 (|#2| (-625 |#2|))) (-15 -3297 (|#2| |#2| |#1|)))
+((-3824 (((-413 (-1145 |#4|)) (-1145 |#4|) (-1 (-413 (-1145 |#3|)) (-1145 |#3|))) 80) (((-413 |#4|) |#4| (-1 (-413 (-1145 |#3|)) (-1145 |#3|))) 169)))
+(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4| (-1 (-413 (-1145 |#3|)) (-1145 |#3|)))) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|) (-1 (-413 (-1145 |#3|)) (-1145 |#3|))))) (-827) (-773) (-13 (-302) (-145)) (-925 |#3| |#2| |#1|)) (T -532))
+((-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 (-1145 *7)) (-1145 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *8 (-925 *7 *6 *5)) (-5 *2 (-413 (-1145 *8))) (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1145 *8)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 (-1145 *7)) (-1145 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-413 *3)) (-5 *1 (-532 *5 *6 *7 *3)) (-4 *3 (-925 *7 *6 *5)))))
+(-10 -7 (-15 -3824 ((-413 |#4|) |#4| (-1 (-413 (-1145 |#3|)) (-1145 |#3|)))) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|) (-1 (-413 (-1145 |#3|)) (-1145 |#3|)))))
+((-4071 ((|#4| |#4|) 74)) (-4046 ((|#4| |#4|) 70)) (-4084 ((|#4| |#4| (-552) (-552)) 76)) (-4059 ((|#4| |#4|) 72)))
+(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4046 (|#4| |#4|)) (-15 -4059 (|#4| |#4|)) (-15 -4071 (|#4| |#4|)) (-15 -4084 (|#4| |#4| (-552) (-552)))) (-13 (-358) (-363) (-598 (-552))) (-1208 |#1|) (-705 |#1| |#2|) (-1223 |#3|)) (T -533))
+((-4084 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-358) (-363) (-598 *3))) (-4 *5 (-1208 *4)) (-4 *6 (-705 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) (-4 *2 (-1223 *6)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5)))))
+(-10 -7 (-15 -4046 (|#4| |#4|)) (-15 -4059 (|#4| |#4|)) (-15 -4071 (|#4| |#4|)) (-15 -4084 (|#4| |#4| (-552) (-552))))
+((-4071 ((|#2| |#2|) 27)) (-4046 ((|#2| |#2|) 23)) (-4084 ((|#2| |#2| (-552) (-552)) 29)) (-4059 ((|#2| |#2|) 25)))
+(((-534 |#1| |#2|) (-10 -7 (-15 -4046 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4084 (|#2| |#2| (-552) (-552)))) (-13 (-358) (-363) (-598 (-552))) (-1223 |#1|)) (T -534))
+((-4084 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-358) (-363) (-598 *3))) (-5 *1 (-534 *4 *2)) (-4 *2 (-1223 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1223 *3)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1223 *3)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1223 *3)))))
+(-10 -7 (-15 -4046 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4084 (|#2| |#2| (-552) (-552))))
+((-3307 (((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)) 14) (((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|)) 13) (((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|)) 26)))
+(((-535 |#1| |#2|) (-10 -7 (-15 -3307 ((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3307 ((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3307 ((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)))) (-1025) (-1208 |#1|)) (T -535))
+((-3307 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1208 *4)))) (-3307 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1208 *4)))) (-3307 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-552) "failed") *5)) (-4 *5 (-1025)) (-5 *2 (-552)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1208 *5)))))
+(-10 -7 (-15 -3307 ((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3307 ((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3307 ((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|))))
+((-3364 (($ $ $) 79)) (-1330 (((-413 $) $) 47)) (-1893 (((-3 (-552) "failed") $) 59)) (-1895 (((-552) $) 37)) (-2555 (((-3 (-402 (-552)) "failed") $) 74)) (-2546 (((-112) $) 24)) (-2538 (((-402 (-552)) $) 72)) (-2951 (((-112) $) 50)) (-3327 (($ $ $ $) 86)) (-3620 (((-112) $) 16)) (-1302 (($ $ $) 57)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 69)) (-4034 (((-3 $ "failed") $) 64)) (-2059 (($ $) 23)) (-3317 (($ $ $) 84)) (-2071 (($) 60)) (-1279 (($ $) 53)) (-3824 (((-413 $) $) 45)) (-3943 (((-112) $) 14)) (-2397 (((-751) $) 28)) (-3072 (($ $ (-751)) NIL) (($ $) 10)) (-1871 (($ $) 17)) (-2042 (((-552) $) NIL) (((-528) $) 36) (((-868 (-552)) $) 40) (((-374) $) 31) (((-221) $) 33)) (-4141 (((-751)) 8)) (-3383 (((-112) $ $) 20)) (-3901 (($ $ $) 55)))
+(((-536 |#1|) (-10 -8 (-15 -3317 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -1871 (|#1| |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -3364 (|#1| |#1| |#1|)) (-15 -3383 ((-112) |#1| |#1|)) (-15 -3943 ((-112) |#1|)) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -3901 (|#1| |#1| |#1|)) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -2042 ((-552) |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3620 ((-112) |#1|)) (-15 -2397 ((-751) |#1|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -4141 ((-751)))) (-537)) (T -536))
+((-4141 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-536 *3)) (-4 *3 (-537)))))
+(-10 -8 (-15 -3317 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -1871 (|#1| |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -3364 (|#1| |#1| |#1|)) (-15 -3383 ((-112) |#1| |#1|)) (-15 -3943 ((-112) |#1|)) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -3901 (|#1| |#1| |#1|)) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -2042 ((-552) |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3620 ((-112) |#1|)) (-15 -2397 ((-751) |#1|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -4141 ((-751))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-3364 (($ $ $) 82)) (-2077 (((-3 $ "failed") $ $) 19)) (-3346 (($ $ $ $) 71)) (-2194 (($ $) 49)) (-1330 (((-413 $) $) 50)) (-2408 (((-112) $ $) 122)) (-4127 (((-552) $) 111)) (-3420 (($ $ $) 85)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 103)) (-1895 (((-552) $) 102)) (-2851 (($ $ $) 126)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 101) (((-669 (-552)) (-669 $)) 100)) (-4174 (((-3 $ "failed") $) 32)) (-2555 (((-3 (-402 (-552)) "failed") $) 79)) (-2546 (((-112) $) 81)) (-2538 (((-402 (-552)) $) 80)) (-3702 (($) 78) (($ $) 77)) (-2826 (($ $ $) 125)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 120)) (-2951 (((-112) $) 51)) (-3327 (($ $ $ $) 69)) (-3372 (($ $ $) 83)) (-3620 (((-112) $) 113)) (-1302 (($ $ $) 94)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 97)) (-3650 (((-112) $) 30)) (-3932 (((-112) $) 89)) (-4034 (((-3 $ "failed") $) 91)) (-3630 (((-112) $) 112)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 129)) (-3336 (($ $ $ $) 70)) (-3658 (($ $ $) 114)) (-3332 (($ $ $) 115)) (-2059 (($ $) 73)) (-3456 (($ $) 86)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-3317 (($ $ $) 68)) (-2071 (($) 90 T CONST)) (-1971 (($ $) 75)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-1279 (($ $) 95)) (-3824 (((-413 $) $) 48)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 127)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 121)) (-3943 (((-112) $) 88)) (-2397 (((-751) $) 123)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 124)) (-3072 (($ $ (-751)) 108) (($ $) 106)) (-2715 (($ $) 74)) (-1871 (($ $) 76)) (-2042 (((-552) $) 105) (((-528) $) 99) (((-868 (-552)) $) 98) (((-374) $) 93) (((-221) $) 92)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 104)) (-4141 (((-751)) 28)) (-3383 (((-112) $ $) 84)) (-3901 (($ $ $) 96)) (-3929 (($) 87)) (-3518 (((-112) $ $) 37)) (-3355 (($ $ $ $) 72)) (-1727 (($ $) 110)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-751)) 109) (($ $) 107)) (-2346 (((-112) $ $) 117)) (-2320 (((-112) $ $) 118)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 116)) (-2307 (((-112) $ $) 119)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-537) (-138)) (T -537))
-((-3006 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3027 (*1 *1) (-4 *1 (-537))) (-4193 (*1 *1 *1) (-4 *1 (-537))) (-2690 (*1 *1 *1 *1) (-4 *1 (-537))) (-2164 (*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-2163 (*1 *1 *1 *1) (-4 *1 (-537))) (-2162 (*1 *1 *1 *1) (-4 *1 (-537))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-402 (-538))))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-402 (-538))))) (-3327 (*1 *1) (-4 *1 (-537))) (-3327 (*1 *1 *1) (-4 *1 (-537))) (-3759 (*1 *1 *1) (-4 *1 (-537))) (-2161 (*1 *1 *1) (-4 *1 (-537))) (-2160 (*1 *1 *1) (-4 *1 (-537))) (-2159 (*1 *1 *1) (-4 *1 (-537))) (-2158 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-2157 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-2156 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-2155 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-2154 (*1 *1 *1 *1) (-4 *1 (-537))))
-(-13 (-1190) (-302) (-800) (-229) (-598 (-538)) (-1014 (-538)) (-621 (-538)) (-598 (-527)) (-598 (-866 (-538))) (-862 (-538)) (-141) (-996) (-145) (-1124) (-10 -8 (-15 -3006 ((-112) $)) (-15 -3007 ((-112) $)) (-6 -4352) (-15 -3027 ($)) (-15 -4193 ($ $)) (-15 -2690 ($ $ $)) (-15 -2164 ((-112) $ $)) (-15 -2163 ($ $ $)) (-15 -2162 ($ $ $)) (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $)) (-15 -3327 ($)) (-15 -3327 ($ $)) (-15 -3759 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $ $ $)) (-15 -2157 ($ $ $ $)) (-15 -2156 ($ $ $ $)) (-15 -2155 ($ $ $ $)) (-15 -2154 ($ $ $)) (-6 -4351)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-840)) . T) ((-141) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-373)) . T) ((-598 (-527)) . T) ((-598 (-538)) . T) ((-598 (-866 (-538))) . T) ((-229) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-621 (-538)) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-800) . T) ((-825) . T) ((-827) . T) ((-862 (-538)) . T) ((-897) . T) ((-996) . T) ((-1014 (-538)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) . T) ((-1190) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 25)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 88)) (-2178 (($ $) 89)) (-2176 (((-112) $) NIL)) (-2162 (($ $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2157 (($ $ $ $) 43)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL)) (-2690 (($ $ $) 82)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) "failed") $) NIL)) (-3507 (((-538) $) NIL)) (-2894 (($ $ $) 81)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 62) (((-669 (-538)) (-669 $)) 58)) (-3821 (((-3 $ "failed") $) 85)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL)) (-3356 (((-112) $) NIL)) (-3355 (((-402 (-538)) $) NIL)) (-3327 (($) 64) (($ $) 65)) (-2893 (($ $ $) 80)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2155 (($ $ $ $) NIL)) (-2163 (($ $ $) 55)) (-3537 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL)) (-2502 (((-112) $) 26)) (-3006 (((-112) $) 75)) (-3803 (((-3 $ "failed") $) NIL)) (-3538 (((-112) $) 35)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2156 (($ $ $ $) 44)) (-3677 (($ $ $) 77)) (-3678 (($ $ $) 76)) (-2159 (($ $) NIL)) (-4193 (($ $) 41)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) 54)) (-2154 (($ $ $) NIL)) (-3804 (($) NIL T CONST)) (-2161 (($ $) 31)) (-3594 (((-1093) $) 34)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 119)) (-3495 (($ $ $) 86) (($ (-622 $)) NIL)) (-1412 (($ $) NIL)) (-4092 (((-400 $) $) 105)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) 84)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 79)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-2160 (($ $) 32)) (-3759 (($ $) 30)) (-4330 (((-538) $) 40) (((-527) $) 52) (((-866 (-538)) $) NIL) (((-373) $) 47) (((-221) $) 49) (((-1131) $) 53)) (-4317 (((-840) $) 38) (($ (-538)) 39) (($ $) NIL) (($ (-538)) 39)) (-3461 (((-751)) NIL)) (-2164 (((-112) $ $) NIL)) (-3437 (($ $ $) NIL)) (-3027 (($) 29)) (-2177 (((-112) $ $) NIL)) (-2158 (($ $ $ $) 42)) (-3742 (($ $) 63)) (-2991 (($) 27 T CONST)) (-2997 (($) 28 T CONST)) (-2834 (((-1131) $) 20) (((-1131) $ (-112)) 22) (((-1237) (-803) $) 23) (((-1237) (-803) $ (-112)) 24)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 66)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 67)) (-4197 (($ $) 68) (($ $ $) 70)) (-4199 (($ $ $) 69)) (** (($ $ (-895)) NIL) (($ $ (-751)) 74)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 72) (($ $ $) 71)))
-(((-538) (-13 (-537) (-598 (-1131)) (-801) (-10 -8 (-15 -3327 ($ $)) (-6 -4340) (-6 -4345) (-6 -4341) (-6 -4335)))) (T -538))
-((-3327 (*1 *1 *1) (-5 *1 (-538))))
-(-13 (-537) (-598 (-1131)) (-801) (-10 -8 (-15 -3327 ($ $)) (-6 -4340) (-6 -4345) (-6 -4341) (-6 -4335)))
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) NIL)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) NIL)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-539 |#1| |#2| |#3|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1074) (-1074) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353)))) (T -539))
+((-3932 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3929 (*1 *1) (-4 *1 (-537))) (-3456 (*1 *1 *1) (-4 *1 (-537))) (-3420 (*1 *1 *1 *1) (-4 *1 (-537))) (-3383 (*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3372 (*1 *1 *1 *1) (-4 *1 (-537))) (-3364 (*1 *1 *1 *1) (-4 *1 (-537))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-402 (-552))))) (-2555 (*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-402 (-552))))) (-3702 (*1 *1) (-4 *1 (-537))) (-3702 (*1 *1 *1) (-4 *1 (-537))) (-1871 (*1 *1 *1) (-4 *1 (-537))) (-1971 (*1 *1 *1) (-4 *1 (-537))) (-2715 (*1 *1 *1) (-4 *1 (-537))) (-2059 (*1 *1 *1) (-4 *1 (-537))) (-3355 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3346 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3336 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3327 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3317 (*1 *1 *1 *1) (-4 *1 (-537))))
+(-13 (-1190) (-302) (-800) (-229) (-598 (-552)) (-1014 (-552)) (-621 (-552)) (-598 (-528)) (-598 (-868 (-552))) (-862 (-552)) (-141) (-998) (-145) (-1124) (-10 -8 (-15 -3932 ((-112) $)) (-15 -3943 ((-112) $)) (-6 -4352) (-15 -3929 ($)) (-15 -3456 ($ $)) (-15 -3420 ($ $ $)) (-15 -3383 ((-112) $ $)) (-15 -3372 ($ $ $)) (-15 -3364 ($ $ $)) (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $)) (-15 -3702 ($)) (-15 -3702 ($ $)) (-15 -1871 ($ $)) (-15 -1971 ($ $)) (-15 -2715 ($ $)) (-15 -2059 ($ $)) (-15 -3355 ($ $ $ $)) (-15 -3346 ($ $ $ $)) (-15 -3336 ($ $ $ $)) (-15 -3327 ($ $ $ $)) (-15 -3317 ($ $ $)) (-6 -4351)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-839)) . T) ((-141) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-374)) . T) ((-598 (-528)) . T) ((-598 (-552)) . T) ((-598 (-868 (-552))) . T) ((-229) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-621 (-552)) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-800) . T) ((-825) . T) ((-827) . T) ((-862 (-552)) . T) ((-896) . T) ((-998) . T) ((-1014 (-552)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) . T) ((-1190) . T))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) NIL)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-538 |#1| |#2| |#3|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1073) (-1073) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353)))) (T -538))
NIL
(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353)))
-((-2165 (((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-1 (-1143 |#2|) (-1143 |#2|))) 51)))
-(((-540 |#1| |#2|) (-10 -7 (-15 -2165 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-1 (-1143 |#2|) (-1143 |#2|))))) (-13 (-827) (-545)) (-13 (-27) (-416 |#1|))) (T -540))
-((-2165 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-595 *3)) (-5 *5 (-1 (-1143 *3) (-1143 *3))) (-4 *3 (-13 (-27) (-416 *6))) (-4 *6 (-13 (-827) (-545))) (-5 *2 (-569 *3)) (-5 *1 (-540 *6 *3)))))
-(-10 -7 (-15 -2165 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-1 (-1143 |#2|) (-1143 |#2|)))))
-((-2167 (((-569 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2168 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2166 (((-569 |#5|) |#5| (-1 |#3| |#3|)) 202)))
-(((-541 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2166 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2167 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2168 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-827) (-545) (-1014 (-538))) (-13 (-27) (-416 |#1|)) (-1207 |#2|) (-1207 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -541))
-((-2168 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-27) (-416 *4))) (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-4 *7 (-1207 (-402 *6))) (-5 *1 (-541 *4 *5 *6 *7 *2)) (-4 *2 (-337 *5 *6 *7)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-13 (-27) (-416 *5))) (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-4 *8 (-1207 (-402 *7))) (-5 *2 (-569 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-13 (-27) (-416 *5))) (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-4 *8 (-1207 (-402 *7))) (-5 *2 (-569 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))))
-(-10 -7 (-15 -2166 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2167 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2168 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-2171 (((-112) (-538) (-538)) 10)) (-2169 (((-538) (-538)) 7)) (-2170 (((-538) (-538) (-538)) 8)))
-(((-542) (-10 -7 (-15 -2169 ((-538) (-538))) (-15 -2170 ((-538) (-538) (-538))) (-15 -2171 ((-112) (-538) (-538))))) (T -542))
-((-2171 (*1 *2 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-112)) (-5 *1 (-542)))) (-2170 (*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-542)))) (-2169 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-542)))))
-(-10 -7 (-15 -2169 ((-538) (-538))) (-15 -2170 ((-538) (-538) (-538))) (-15 -2171 ((-112) (-538) (-538))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2934 ((|#1| $) 59)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-3846 (($ $) 89)) (-4002 (($ $) 72)) (-2733 ((|#1| $) 60)) (-1368 (((-3 $ "failed") $ $) 19)) (-3370 (($ $) 71)) (-3844 (($ $) 88)) (-4001 (($ $) 73)) (-3848 (($ $) 87)) (-4000 (($ $) 74)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) "failed") $) 67)) (-3507 (((-538) $) 66)) (-3821 (((-3 $ "failed") $) 32)) (-2174 (($ |#1| |#1|) 64)) (-3537 (((-112) $) 58)) (-3990 (($) 99)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 70)) (-3538 (((-112) $) 57)) (-3677 (($ $ $) 105)) (-3678 (($ $ $) 104)) (-4302 (($ $) 96)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2175 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-402 (-538))) 62)) (-2173 ((|#1| $) 61)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3820 (((-3 $ "failed") $ $) 40)) (-4303 (($ $) 97)) (-3849 (($ $) 86)) (-3999 (($ $) 75)) (-3847 (($ $) 85)) (-3998 (($ $) 76)) (-3845 (($ $) 84)) (-3997 (($ $) 77)) (-2172 (((-112) $ |#1|) 56)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-538)) 68)) (-3461 (((-751)) 28)) (-3852 (($ $) 95)) (-3840 (($ $) 83)) (-2177 (((-112) $ $) 37)) (-3850 (($ $) 94)) (-3838 (($ $) 82)) (-3854 (($ $) 93)) (-3842 (($ $) 81)) (-3855 (($ $) 92)) (-3843 (($ $) 80)) (-3853 (($ $) 91)) (-3841 (($ $) 79)) (-3851 (($ $) 90)) (-3839 (($ $) 78)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 102)) (-2897 (((-112) $ $) 101)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 103)) (-3018 (((-112) $ $) 100)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ $) 98) (($ $ (-402 (-538))) 69)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
-(((-543 |#1|) (-138) (-13 (-399) (-1171))) (T -543))
-((-2175 (*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-2174 (*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-2175 (*1 *1 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-2175 (*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-2934 (*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) (-2172 (*1 *2 *1 *3) (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))))
-(-13 (-446) (-827) (-1171) (-978) (-1014 (-538)) (-10 -8 (-6 -4129) (-15 -2175 ($ |t#1| |t#1|)) (-15 -2174 ($ |t#1| |t#1|)) (-15 -2175 ($ |t#1|)) (-15 -2175 ($ (-402 (-538)))) (-15 -2173 (|t#1| $)) (-15 -2733 (|t#1| $)) (-15 -2934 (|t#1| $)) (-15 -3537 ((-112) $)) (-15 -3538 ((-112) $)) (-15 -2172 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-279) . T) ((-285) . T) ((-446) . T) ((-486) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-978) . T) ((-1014 (-538)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) . T) ((-1174) . T))
-((-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 9)) (-2178 (($ $) 11)) (-2176 (((-112) $) 18)) (-3821 (((-3 $ "failed") $) 16)) (-2177 (((-112) $ $) 20)))
-(((-544 |#1|) (-10 -8 (-15 -2176 ((-112) |#1|)) (-15 -2177 ((-112) |#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|))) (-545)) (T -544))
-NIL
-(-10 -8 (-15 -2176 ((-112) |#1|)) (-15 -2177 ((-112) |#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ $) 40)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
-(((-545) (-138)) (T -545))
-((-3820 (*1 *1 *1 *1) (|partial| -4 *1 (-545))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1892 *1) (|:| -4340 *1) (|:| |associate| *1))) (-4 *1 (-545)))) (-2178 (*1 *1 *1) (-4 *1 (-545))) (-2177 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))))
-(-13 (-170) (-38 $) (-285) (-10 -8 (-15 -3820 ((-3 $ "failed") $ $)) (-15 -2179 ((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $)) (-15 -2178 ($ $)) (-15 -2177 ((-112) $ $)) (-15 -2176 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2181 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-622 |#2|)) 37)) (-2183 (((-569 |#2|) |#2| (-1149)) 62)) (-2182 (((-3 |#2| "failed") |#2| (-1149)) 152)) (-2184 (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1149) (-595 |#2|) (-622 (-595 |#2|))) 155)) (-2180 (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1149) |#2|) 40)))
-(((-546 |#1| |#2|) (-10 -7 (-15 -2180 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1149) |#2|)) (-15 -2181 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-622 |#2|))) (-15 -2182 ((-3 |#2| "failed") |#2| (-1149))) (-15 -2183 ((-569 |#2|) |#2| (-1149))) (-15 -2184 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1149) (-595 |#2|) (-622 (-595 |#2|))))) (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -546))
-((-2184 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1149)) (-5 *6 (-622 (-595 *3))) (-5 *5 (-595 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-546 *7 *3)))) (-2183 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-546 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-2182 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-546 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-2181 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *6 *3)))) (-2180 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-546 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))))
-(-10 -7 (-15 -2180 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1149) |#2|)) (-15 -2181 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-622 |#2|))) (-15 -2182 ((-3 |#2| "failed") |#2| (-1149))) (-15 -2183 ((-569 |#2|) |#2| (-1149))) (-15 -2184 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1149) (-595 |#2|) (-622 (-595 |#2|)))))
-((-4329 (((-400 |#1|) |#1|) 18)) (-4092 (((-400 |#1|) |#1|) 33)) (-2186 (((-3 |#1| "failed") |#1|) 44)) (-2185 (((-400 |#1|) |#1|) 51)))
-(((-547 |#1|) (-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -2185 ((-400 |#1|) |#1|)) (-15 -2186 ((-3 |#1| "failed") |#1|))) (-537)) (T -547))
-((-2186 (*1 *2 *2) (|partial| -12 (-5 *1 (-547 *2)) (-4 *2 (-537)))) (-2185 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537)))) (-4329 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537)))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537)))))
-(-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -2185 ((-400 |#1|) |#1|)) (-15 -2186 ((-3 |#1| "failed") |#1|)))
-((-2187 (($) 9)) (-2190 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 35)) (-2744 (((-622 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 32)) (-3970 (($ (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2189 (($ (-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2191 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-2312 (((-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2188 (((-1237)) 12)))
-(((-548) (-10 -8 (-15 -2187 ($)) (-15 -2188 ((-1237))) (-15 -2744 ((-622 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -2189 ($ (-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3970 ($ (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2190 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2312 ((-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2191 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -548))
-((-2191 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-548)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-548)))) (-2190 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-548)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-548)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-548)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-548)))) (-2188 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-548)))) (-2187 (*1 *1) (-5 *1 (-548))))
-(-10 -8 (-15 -2187 ($)) (-15 -2188 ((-1237))) (-15 -2744 ((-622 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -2189 ($ (-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3970 ($ (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2190 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2312 ((-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2191 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
-((-3419 (((-1143 (-402 (-1143 |#2|))) |#2| (-595 |#2|) (-595 |#2|) (-1143 |#2|)) 32)) (-2194 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) |#2| (-1143 |#2|)) 110)) (-2192 (((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|))) 80) (((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|)) 52)) (-2193 (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-595 |#2|) (-595 |#2|) |#2| (-595 |#2|) |#2| (-402 (-1143 |#2|))) 87) (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-595 |#2|) (-595 |#2|) |#2| |#2| (-1143 |#2|)) 109)) (-2195 (((-3 |#2| #3="failed") |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) (-595 |#2|) |#2| (-402 (-1143 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) |#2| (-1143 |#2|)) 111)) (-2196 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|))) 128 (|has| |#3| (-638 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|)) 127 (|has| |#3| (-638 |#2|)))) (-3420 ((|#2| (-1143 (-402 (-1143 |#2|))) (-595 |#2|) |#2|) 50)) (-3413 (((-1143 (-402 (-1143 |#2|))) (-1143 |#2|) (-595 |#2|)) 31)))
-(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2192 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|))) (-15 -2192 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2193 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-595 |#2|) (-595 |#2|) |#2| |#2| (-1143 |#2|))) (-15 -2193 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-595 |#2|) (-595 |#2|) |#2| (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) |#2| (-1143 |#2|))) (-15 -2194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2195 ((-3 |#2| #3="failed") |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) |#2| (-1143 |#2|))) (-15 -2195 ((-3 |#2| #3#) |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -3419 ((-1143 (-402 (-1143 |#2|))) |#2| (-595 |#2|) (-595 |#2|) (-1143 |#2|))) (-15 -3420 (|#2| (-1143 (-402 (-1143 |#2|))) (-595 |#2|) |#2|)) (-15 -3413 ((-1143 (-402 (-1143 |#2|))) (-1143 |#2|) (-595 |#2|))) (IF (|has| |#3| (-638 |#2|)) (PROGN (-15 -2196 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|))) (-15 -2196 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|))))) |%noBranch|)) (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))) (-13 (-416 |#1|) (-27) (-1171)) (-1074)) (T -549))
-((-2196 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-595 *4)) (-5 *6 (-402 (-1143 *4))) (-4 *4 (-13 (-416 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4)))) (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074)))) (-2196 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-595 *4)) (-5 *6 (-1143 *4)) (-4 *4 (-13 (-416 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2128 (-622 *4)))) (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *6)) (-4 *6 (-13 (-416 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-1143 (-402 (-1143 *6)))) (-5 *1 (-549 *5 *6 *7)) (-5 *3 (-1143 *6)) (-4 *7 (-1074)))) (-3420 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1143 (-402 (-1143 *2)))) (-5 *4 (-595 *2)) (-4 *2 (-13 (-416 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *1 (-549 *5 *2 *6)) (-4 *6 (-1074)))) (-3419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-1143 (-402 (-1143 *3)))) (-5 *1 (-549 *6 *3 *7)) (-5 *5 (-1143 *3)) (-4 *7 (-1074)))) (-2195 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1149))) (-5 *5 (-402 (-1143 *2))) (-4 *2 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1074)))) (-2195 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1149))) (-5 *5 (-1143 *2)) (-4 *2 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1074)))) (-2194 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) (-5 *6 (-402 (-1143 *3))) (-4 *3 (-13 (-416 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1074)))) (-2194 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) (-5 *6 (-1143 *3)) (-4 *3 (-13 (-416 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1074)))) (-2193 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-402 (-1143 *3))) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074)))) (-2193 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-1143 *3)) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074)))) (-2192 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-595 *3)) (-5 *5 (-402 (-1143 *3))) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074)))) (-2192 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-595 *3)) (-5 *5 (-1143 *3)) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074)))))
-(-10 -7 (-15 -2192 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|))) (-15 -2192 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2193 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-595 |#2|) (-595 |#2|) |#2| |#2| (-1143 |#2|))) (-15 -2193 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-595 |#2|) (-595 |#2|) |#2| (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) |#2| (-1143 |#2|))) (-15 -2194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2195 ((-3 |#2| #3="failed") |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) |#2| (-1143 |#2|))) (-15 -2195 ((-3 |#2| #3#) |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -3419 ((-1143 (-402 (-1143 |#2|))) |#2| (-595 |#2|) (-595 |#2|) (-1143 |#2|))) (-15 -3420 (|#2| (-1143 (-402 (-1143 |#2|))) (-595 |#2|) |#2|)) (-15 -3413 ((-1143 (-402 (-1143 |#2|))) (-1143 |#2|) (-595 |#2|))) (IF (|has| |#3| (-638 |#2|)) (PROGN (-15 -2196 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|))) (-15 -2196 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|))))) |%noBranch|))
-((-2206 (((-538) (-538) (-751)) 66)) (-2205 (((-538) (-538)) 65)) (-2204 (((-538) (-538)) 64)) (-2203 (((-538) (-538)) 69)) (-3138 (((-538) (-538) (-538)) 49)) (-2202 (((-538) (-538) (-538)) 46)) (-2201 (((-402 (-538)) (-538)) 20)) (-2200 (((-538) (-538)) 21)) (-2199 (((-538) (-538)) 58)) (-3135 (((-538) (-538)) 32)) (-2198 (((-622 (-538)) (-538)) 63)) (-2197 (((-538) (-538) (-538) (-538) (-538)) 44)) (-3131 (((-402 (-538)) (-538)) 41)))
-(((-550) (-10 -7 (-15 -3131 ((-402 (-538)) (-538))) (-15 -2197 ((-538) (-538) (-538) (-538) (-538))) (-15 -2198 ((-622 (-538)) (-538))) (-15 -3135 ((-538) (-538))) (-15 -2199 ((-538) (-538))) (-15 -2200 ((-538) (-538))) (-15 -2201 ((-402 (-538)) (-538))) (-15 -2202 ((-538) (-538) (-538))) (-15 -3138 ((-538) (-538) (-538))) (-15 -2203 ((-538) (-538))) (-15 -2204 ((-538) (-538))) (-15 -2205 ((-538) (-538))) (-15 -2206 ((-538) (-538) (-751))))) (T -550))
-((-2206 (*1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-751)) (-5 *1 (-550)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2204 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2203 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-3138 (*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2202 (*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2201 (*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-550)) (-5 *3 (-538)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2198 (*1 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-550)) (-5 *3 (-538)))) (-2197 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-3131 (*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-550)) (-5 *3 (-538)))))
-(-10 -7 (-15 -3131 ((-402 (-538)) (-538))) (-15 -2197 ((-538) (-538) (-538) (-538) (-538))) (-15 -2198 ((-622 (-538)) (-538))) (-15 -3135 ((-538) (-538))) (-15 -2199 ((-538) (-538))) (-15 -2200 ((-538) (-538))) (-15 -2201 ((-402 (-538)) (-538))) (-15 -2202 ((-538) (-538) (-538))) (-15 -3138 ((-538) (-538) (-538))) (-15 -2203 ((-538) (-538))) (-15 -2204 ((-538) (-538))) (-15 -2205 ((-538) (-538))) (-15 -2206 ((-538) (-538) (-751))))
-((-2207 (((-2 (|:| |answer| |#4|) (|:| -2250 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2207 ((-2 (|:| |answer| |#4|) (|:| -2250 |#4|)) |#4| (-1 |#2| |#2|)))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -551))
-((-2207 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-4 *7 (-1207 (-402 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2250 *3))) (-5 *1 (-551 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7)))))
-(-10 -7 (-15 -2207 ((-2 (|:| |answer| |#4|) (|:| -2250 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2207 (((-2 (|:| |answer| (-402 |#2|)) (|:| -2250 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 18)))
-(((-552 |#1| |#2|) (-10 -7 (-15 -2207 ((-2 (|:| |answer| (-402 |#2|)) (|:| -2250 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1207 |#1|)) (T -552))
-((-2207 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| (-402 *6)) (|:| -2250 (-402 *6)) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-552 *5 *6)) (-5 *3 (-402 *6)))))
-(-10 -7 (-15 -2207 ((-2 (|:| |answer| (-402 |#2|)) (|:| -2250 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))))
-((-3001 (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749) (-1037)) 108) (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749)) 110)) (-4172 (((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1149)) 172) (((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1131)) 171) (((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373) (-1037)) 176) (((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373)) 177) (((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373)) 178) (((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373))))) 179) (((-1011) (-309 (-373)) (-1062 (-819 (-373)))) 167) (((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373)) 166) (((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373)) 162) (((-1011) (-749)) 155) (((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373) (-1037)) 161)))
-(((-553) (-10 -7 (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373) (-1037))) (-15 -4172 ((-1011) (-749))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373) (-1037))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749) (-1037))) (-15 -4172 ((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1131))) (-15 -4172 ((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1149))))) (T -553))
-((-4172 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-373))) (-5 *4 (-1065 (-819 (-373)))) (-5 *5 (-1149)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-373))) (-5 *4 (-1065 (-819 (-373)))) (-5 *5 (-1131)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) (-5 *1 (-553)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) (-5 *5 (-373)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553)))))
-(-10 -7 (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373) (-1037))) (-15 -4172 ((-1011) (-749))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373) (-1037))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749) (-1037))) (-15 -4172 ((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1131))) (-15 -4172 ((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1149))))
-((-2210 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|)) 184)) (-2208 (((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|)) 98)) (-2209 (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-595 |#2|) (-595 |#2|) |#2|) 180)) (-2211 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1149))) 189)) (-2212 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-1149)) 197 (|has| |#3| (-638 |#2|)))))
-(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -2208 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|))) (-15 -2209 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-595 |#2|) (-595 |#2|) |#2|)) (-15 -2210 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|))) (-15 -2211 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1149)))) (IF (|has| |#3| (-638 |#2|)) (-15 -2212 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-1149))) |%noBranch|)) (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))) (-13 (-416 |#1|) (-27) (-1171)) (-1074)) (T -554))
-((-2212 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-595 *4)) (-5 *6 (-1149)) (-4 *4 (-13 (-416 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074)))) (-2211 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1149))) (-4 *2 (-13 (-416 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1074)))) (-2210 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1074)))) (-2209 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1074)))) (-2208 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1074)))))
-(-10 -7 (-15 -2208 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|))) (-15 -2209 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-595 |#2|) (-595 |#2|) |#2|)) (-15 -2210 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|))) (-15 -2211 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1149)))) (IF (|has| |#3| (-638 |#2|)) (-15 -2212 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-1149))) |%noBranch|))
-((-2213 (((-2 (|:| -2419 |#2|) (|:| |nconst| |#2|)) |#2| (-1149)) 64)) (-2215 (((-3 |#2| "failed") |#2| (-1149) (-819 |#2|) (-819 |#2|)) 164 (-12 (|has| |#2| (-1112)) (|has| |#1| (-598 (-866 (-538)))) (|has| |#1| (-862 (-538))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)) 147 (-12 (|has| |#2| (-612)) (|has| |#1| (-598 (-866 (-538)))) (|has| |#1| (-862 (-538)))))) (-2214 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)) 148 (-12 (|has| |#2| (-612)) (|has| |#1| (-598 (-866 (-538)))) (|has| |#1| (-862 (-538)))))))
-(((-555 |#1| |#2|) (-10 -7 (-15 -2213 ((-2 (|:| -2419 |#2|) (|:| |nconst| |#2|)) |#2| (-1149))) (IF (|has| |#1| (-598 (-866 (-538)))) (IF (|has| |#1| (-862 (-538))) (PROGN (IF (|has| |#2| (-612)) (PROGN (-15 -2214 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) (-15 -2215 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) (IF (|has| |#2| (-1112)) (-15 -2215 ((-3 |#2| "failed") |#2| (-1149) (-819 |#2|) (-819 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-827) (-1014 (-538)) (-446) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -555))
-((-2215 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1149)) (-5 *4 (-819 *2)) (-4 *2 (-1112)) (-4 *2 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-598 (-866 (-538)))) (-4 *5 (-862 (-538))) (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) (-5 *1 (-555 *5 *2)))) (-2215 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-866 (-538)))) (-4 *5 (-862 (-538))) (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-2214 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-866 (-538)))) (-4 *5 (-862 (-538))) (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) (-5 *2 (-2 (|:| -2419 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))))
-(-10 -7 (-15 -2213 ((-2 (|:| -2419 |#2|) (|:| |nconst| |#2|)) |#2| (-1149))) (IF (|has| |#1| (-598 (-866 (-538)))) (IF (|has| |#1| (-862 (-538))) (PROGN (IF (|has| |#2| (-612)) (PROGN (-15 -2214 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) (-15 -2215 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) (IF (|has| |#2| (-1112)) (-15 -2215 ((-3 |#2| "failed") |#2| (-1149) (-819 |#2|) (-819 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2218 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-622 (-402 |#2|))) 41)) (-4172 (((-569 (-402 |#2|)) (-402 |#2|)) 28)) (-2216 (((-3 (-402 |#2|) "failed") (-402 |#2|)) 17)) (-2217 (((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|)) 48)))
-(((-556 |#1| |#2|) (-10 -7 (-15 -4172 ((-569 (-402 |#2|)) (-402 |#2|))) (-15 -2216 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2217 ((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2218 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-622 (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-538))) (-1207 |#1|)) (T -556))
-((-2218 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-622 (-402 *6))) (-5 *3 (-402 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *5 *6)))) (-2217 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| -2251 (-402 *5)) (|:| |coeff| (-402 *5)))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5)))) (-2216 (*1 *2 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-13 (-358) (-145) (-1014 (-538)))) (-5 *1 (-556 *3 *4)))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) (-5 *2 (-569 (-402 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5)))))
-(-10 -7 (-15 -4172 ((-569 (-402 |#2|)) (-402 |#2|))) (-15 -2216 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2217 ((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2218 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-622 (-402 |#2|)))))
-((-2219 (((-3 (-538) "failed") |#1|) 14)) (-3610 (((-112) |#1|) 13)) (-3606 (((-538) |#1|) 9)))
-(((-557 |#1|) (-10 -7 (-15 -3606 ((-538) |#1|)) (-15 -3610 ((-112) |#1|)) (-15 -2219 ((-3 (-538) "failed") |#1|))) (-1014 (-538))) (T -557))
-((-2219 (*1 *2 *3) (|partial| -12 (-5 *2 (-538)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2)))) (-3610 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-557 *3)) (-4 *3 (-1014 (-538))))) (-3606 (*1 *2 *3) (-12 (-5 *2 (-538)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2)))))
-(-10 -7 (-15 -3606 ((-538) |#1|)) (-15 -3610 ((-112) |#1|)) (-15 -2219 ((-3 (-538) "failed") |#1|)))
-((-2222 (((-3 (-2 (|:| |mainpart| (-402 (-922 |#1|))) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 (-922 |#1|))) (|:| |logand| (-402 (-922 |#1|))))))) "failed") (-402 (-922 |#1|)) (-1149) (-622 (-402 (-922 |#1|)))) 48)) (-2220 (((-569 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-1149)) 28)) (-2221 (((-3 (-402 (-922 |#1|)) "failed") (-402 (-922 |#1|)) (-1149)) 23)) (-2223 (((-3 (-2 (|:| -2251 (-402 (-922 |#1|))) (|:| |coeff| (-402 (-922 |#1|)))) "failed") (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|))) 35)))
-(((-558 |#1|) (-10 -7 (-15 -2220 ((-569 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -2221 ((-3 (-402 (-922 |#1|)) "failed") (-402 (-922 |#1|)) (-1149))) (-15 -2222 ((-3 (-2 (|:| |mainpart| (-402 (-922 |#1|))) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 (-922 |#1|))) (|:| |logand| (-402 (-922 |#1|))))))) "failed") (-402 (-922 |#1|)) (-1149) (-622 (-402 (-922 |#1|))))) (-15 -2223 ((-3 (-2 (|:| -2251 (-402 (-922 |#1|))) (|:| |coeff| (-402 (-922 |#1|)))) "failed") (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|))))) (-13 (-545) (-1014 (-538)) (-145))) (T -558))
-((-2223 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-1014 (-538)) (-145))) (-5 *2 (-2 (|:| -2251 (-402 (-922 *5))) (|:| |coeff| (-402 (-922 *5))))) (-5 *1 (-558 *5)) (-5 *3 (-402 (-922 *5))))) (-2222 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 (-402 (-922 *6)))) (-5 *3 (-402 (-922 *6))) (-4 *6 (-13 (-545) (-1014 (-538)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *6)))) (-2221 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-402 (-922 *4))) (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-1014 (-538)) (-145))) (-5 *1 (-558 *4)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-1014 (-538)) (-145))) (-5 *2 (-569 (-402 (-922 *5)))) (-5 *1 (-558 *5)) (-5 *3 (-402 (-922 *5))))))
-(-10 -7 (-15 -2220 ((-569 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -2221 ((-3 (-402 (-922 |#1|)) "failed") (-402 (-922 |#1|)) (-1149))) (-15 -2222 ((-3 (-2 (|:| |mainpart| (-402 (-922 |#1|))) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 (-922 |#1|))) (|:| |logand| (-402 (-922 |#1|))))))) "failed") (-402 (-922 |#1|)) (-1149) (-622 (-402 (-922 |#1|))))) (-15 -2223 ((-3 (-2 (|:| -2251 (-402 (-922 |#1|))) (|:| |coeff| (-402 (-922 |#1|)))) "failed") (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)))))
-((-2898 (((-112) $ $) 58)) (-3539 (((-112) $) 36)) (-2934 ((|#1| $) 30)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) 62)) (-3846 (($ $) 122)) (-4002 (($ $) 102)) (-2733 ((|#1| $) 28)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $) NIL)) (-3844 (($ $) 124)) (-4001 (($ $) 98)) (-3848 (($ $) 126)) (-4000 (($ $) 106)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) "failed") $) 77)) (-3507 (((-538) $) 79)) (-3821 (((-3 $ "failed") $) 61)) (-2174 (($ |#1| |#1|) 26)) (-3537 (((-112) $) 33)) (-3990 (($) 88)) (-2502 (((-112) $) 43)) (-3344 (($ $ (-538)) NIL)) (-3538 (((-112) $) 34)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4302 (($ $) 90)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2175 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-402 (-538))) 76)) (-2173 ((|#1| $) 27)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) 64) (($ (-622 $)) NIL)) (-3820 (((-3 $ "failed") $ $) 63)) (-4303 (($ $) 92)) (-3849 (($ $) 130)) (-3999 (($ $) 104)) (-3847 (($ $) 132)) (-3998 (($ $) 108)) (-3845 (($ $) 128)) (-3997 (($ $) 100)) (-2172 (((-112) $ |#1|) 31)) (-4317 (((-840) $) 84) (($ (-538)) 66) (($ $) NIL) (($ (-538)) 66)) (-3461 (((-751)) 86)) (-3852 (($ $) 144)) (-3840 (($ $) 114)) (-2177 (((-112) $ $) NIL)) (-3850 (($ $) 142)) (-3838 (($ $) 110)) (-3854 (($ $) 140)) (-3842 (($ $) 120)) (-3855 (($ $) 138)) (-3843 (($ $) 118)) (-3853 (($ $) 136)) (-3841 (($ $) 116)) (-3851 (($ $) 134)) (-3839 (($ $) 112)) (-2991 (($) 21 T CONST)) (-2997 (($) 10 T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 37)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 35)) (-4197 (($ $) 41) (($ $ $) 42)) (-4199 (($ $ $) 40)) (** (($ $ (-895)) 54) (($ $ (-751)) NIL) (($ $ $) 94) (($ $ (-402 (-538))) 146)) (* (($ (-895) $) 51) (($ (-751) $) NIL) (($ (-538) $) 50) (($ $ $) 48)))
-(((-559 |#1|) (-543 |#1|) (-13 (-399) (-1171))) (T -559))
-NIL
-(-543 |#1|)
-((-3037 (((-3 (-622 (-1143 (-538))) "failed") (-622 (-1143 (-538))) (-1143 (-538))) 24)))
-(((-560) (-10 -7 (-15 -3037 ((-3 (-622 (-1143 (-538))) "failed") (-622 (-1143 (-538))) (-1143 (-538)))))) (T -560))
-((-3037 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 (-538)))) (-5 *3 (-1143 (-538))) (-5 *1 (-560)))))
-(-10 -7 (-15 -3037 ((-3 (-622 (-1143 (-538))) "failed") (-622 (-1143 (-538))) (-1143 (-538)))))
-((-2224 (((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-1149)) 19)) (-2227 (((-622 (-595 |#2|)) (-622 |#2|) (-1149)) 23)) (-3585 (((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-622 (-595 |#2|))) 11)) (-2228 ((|#2| |#2| (-1149)) 54 (|has| |#1| (-545)))) (-2229 ((|#2| |#2| (-1149)) 78 (-12 (|has| |#2| (-279)) (|has| |#1| (-446))))) (-2226 (((-595 |#2|) (-595 |#2|) (-622 (-595 |#2|)) (-1149)) 25)) (-2225 (((-595 |#2|) (-622 (-595 |#2|))) 24)) (-2230 (((-569 |#2|) |#2| (-1149) (-1 (-569 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) 103 (-12 (|has| |#2| (-279)) (|has| |#2| (-612)) (|has| |#2| (-1014 (-1149))) (|has| |#1| (-598 (-866 (-538)))) (|has| |#1| (-446)) (|has| |#1| (-862 (-538)))))))
-(((-561 |#1| |#2|) (-10 -7 (-15 -2224 ((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-1149))) (-15 -2225 ((-595 |#2|) (-622 (-595 |#2|)))) (-15 -2226 ((-595 |#2|) (-595 |#2|) (-622 (-595 |#2|)) (-1149))) (-15 -3585 ((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-622 (-595 |#2|)))) (-15 -2227 ((-622 (-595 |#2|)) (-622 |#2|) (-1149))) (IF (|has| |#1| (-545)) (-15 -2228 (|#2| |#2| (-1149))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -2229 (|#2| |#2| (-1149))) (IF (|has| |#1| (-598 (-866 (-538)))) (IF (|has| |#1| (-862 (-538))) (IF (|has| |#2| (-612)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2230 ((-569 |#2|) |#2| (-1149) (-1 (-569 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-827) (-416 |#1|)) (T -561))
-((-2230 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-569 *3) *3 (-1149))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1149))) (-4 *3 (-279)) (-4 *3 (-612)) (-4 *3 (-1014 *4)) (-4 *3 (-416 *7)) (-5 *4 (-1149)) (-4 *7 (-598 (-866 (-538)))) (-4 *7 (-446)) (-4 *7 (-862 (-538))) (-4 *7 (-827)) (-5 *2 (-569 *3)) (-5 *1 (-561 *7 *3)))) (-2229 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-446)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2)) (-4 *2 (-279)) (-4 *2 (-416 *4)))) (-2228 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-545)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2)) (-4 *2 (-416 *4)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-1149)) (-4 *6 (-416 *5)) (-4 *5 (-827)) (-5 *2 (-622 (-595 *6))) (-5 *1 (-561 *5 *6)))) (-3585 (*1 *2 *2 *2) (-12 (-5 *2 (-622 (-595 *4))) (-4 *4 (-416 *3)) (-4 *3 (-827)) (-5 *1 (-561 *3 *4)))) (-2226 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-622 (-595 *6))) (-5 *4 (-1149)) (-5 *2 (-595 *6)) (-4 *6 (-416 *5)) (-4 *5 (-827)) (-5 *1 (-561 *5 *6)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-622 (-595 *5))) (-4 *4 (-827)) (-5 *2 (-595 *5)) (-5 *1 (-561 *4 *5)) (-4 *5 (-416 *4)))) (-2224 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-595 *5))) (-5 *3 (-1149)) (-4 *5 (-416 *4)) (-4 *4 (-827)) (-5 *1 (-561 *4 *5)))))
-(-10 -7 (-15 -2224 ((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-1149))) (-15 -2225 ((-595 |#2|) (-622 (-595 |#2|)))) (-15 -2226 ((-595 |#2|) (-595 |#2|) (-622 (-595 |#2|)) (-1149))) (-15 -3585 ((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-622 (-595 |#2|)))) (-15 -2227 ((-622 (-595 |#2|)) (-622 |#2|) (-1149))) (IF (|has| |#1| (-545)) (-15 -2228 (|#2| |#2| (-1149))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -2229 (|#2| |#2| (-1149))) (IF (|has| |#1| (-598 (-866 (-538)))) (IF (|has| |#1| (-862 (-538))) (IF (|has| |#2| (-612)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2230 ((-569 |#2|) |#2| (-1149) (-1 (-569 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2233 (((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-622 |#1|) "failed") (-538) |#1| |#1|)) 172)) (-2236 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-622 (-402 |#2|))) 148)) (-2239 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-622 (-402 |#2|))) 145)) (-2240 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2231 (((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2238 (((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|)) 175)) (-2234 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-402 |#2|)) 178)) (-2242 (((-2 (|:| |ir| (-569 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 84)) (-2243 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2237 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-622 (-402 |#2|))) 152)) (-2241 (((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|)) 137)) (-2232 (((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|)) 162)) (-2235 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-402 |#2|)) 183)))
-(((-562 |#1| |#2|) (-10 -7 (-15 -2231 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2232 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|))) (-15 -2233 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-622 |#1|) "failed") (-538) |#1| |#1|))) (-15 -2234 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-402 |#2|))) (-15 -2235 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-402 |#2|))) (-15 -2236 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-622 (-402 |#2|)))) (-15 -2237 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-622 (-402 |#2|)))) (-15 -2238 ((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -2239 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-622 (-402 |#2|)))) (-15 -2240 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2241 ((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|))) (-15 -2242 ((-2 (|:| |ir| (-569 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -2243 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-358) (-1207 |#1|)) (T -562))
-((-2243 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-562 *5 *3)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |ir| (-569 (-402 *6))) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))) (-2241 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-605 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3472 *4) (|:| |sol?| (-112))) (-538) *4)) (-4 *4 (-358)) (-4 *5 (-1207 *4)) (-5 *1 (-562 *4 *5)))) (-2240 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-358)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1207 *4)))) (-2239 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-622 (-402 *7))) (-4 *7 (-1207 *6)) (-5 *3 (-402 *7)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *7)))) (-2238 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -2251 (-402 *6)) (|:| |coeff| (-402 *6)))) (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))) (-2237 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3472 *7) (|:| |sol?| (-112))) (-538) *7)) (-5 *6 (-622 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1207 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-2236 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2251 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-622 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1207 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-2235 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3472 *6) (|:| |sol?| (-112))) (-538) *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -2251 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2234 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2251 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -2251 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2233 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-622 *6) "failed") (-538) *6 *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2232 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3472 *6) (|:| |sol?| (-112))) (-538) *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2231 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2251 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
-(-10 -7 (-15 -2231 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2232 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|))) (-15 -2233 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-622 |#1|) "failed") (-538) |#1| |#1|))) (-15 -2234 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-402 |#2|))) (-15 -2235 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-402 |#2|))) (-15 -2236 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-622 (-402 |#2|)))) (-15 -2237 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-622 (-402 |#2|)))) (-15 -2238 ((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -2239 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-622 (-402 |#2|)))) (-15 -2240 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2241 ((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|))) (-15 -2242 ((-2 (|:| |ir| (-569 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -2243 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-2244 (((-3 |#2| "failed") |#2| (-1149) (-1149)) 10)))
-(((-563 |#1| |#2|) (-10 -7 (-15 -2244 ((-3 |#2| "failed") |#2| (-1149) (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-936) (-1112) (-29 |#1|))) (T -563))
-((-2244 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1171) (-936) (-1112) (-29 *4))))))
-(-10 -7 (-15 -2244 ((-3 |#2| "failed") |#2| (-1149) (-1149))))
-((-2889 (((-1093) $ (-129)) 12)) (-2890 (((-1093) $ (-128)) 11)) (-2117 (((-1093) $ (-129)) 7)) (-2118 (((-1093) $) 8)) (-1816 (($ $) 6)))
+((-3394 (((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-1 (-1145 |#2|) (-1145 |#2|))) 51)))
+(((-539 |#1| |#2|) (-10 -7 (-15 -3394 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-1 (-1145 |#2|) (-1145 |#2|))))) (-13 (-827) (-544)) (-13 (-27) (-425 |#1|))) (T -539))
+((-3394 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-596 *3)) (-5 *5 (-1 (-1145 *3) (-1145 *3))) (-4 *3 (-13 (-27) (-425 *6))) (-4 *6 (-13 (-827) (-544))) (-5 *2 (-571 *3)) (-5 *1 (-539 *6 *3)))))
+(-10 -7 (-15 -3394 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-1 (-1145 |#2|) (-1145 |#2|)))))
+((-3412 (((-571 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-3424 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-3404 (((-571 |#5|) |#5| (-1 |#3| |#3|)) 202)))
+(((-540 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3404 ((-571 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3412 ((-571 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3424 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-827) (-544) (-1014 (-552))) (-13 (-27) (-425 |#1|)) (-1208 |#2|) (-1208 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -540))
+((-3424 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-27) (-425 *4))) (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-4 *7 (-1208 (-402 *6))) (-5 *1 (-540 *4 *5 *6 *7 *2)) (-4 *2 (-337 *5 *6 *7)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1208 *6)) (-4 *6 (-13 (-27) (-425 *5))) (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) (-4 *8 (-1208 (-402 *7))) (-5 *2 (-571 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1208 *6)) (-4 *6 (-13 (-27) (-425 *5))) (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) (-4 *8 (-1208 (-402 *7))) (-5 *2 (-571 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))))
+(-10 -7 (-15 -3404 ((-571 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3412 ((-571 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3424 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-3459 (((-112) (-552) (-552)) 10)) (-3434 (((-552) (-552)) 7)) (-3446 (((-552) (-552) (-552)) 8)))
+(((-541) (-10 -7 (-15 -3434 ((-552) (-552))) (-15 -3446 ((-552) (-552) (-552))) (-15 -3459 ((-112) (-552) (-552))))) (T -541))
+((-3459 (*1 *2 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-112)) (-5 *1 (-541)))) (-3446 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541)))))
+(-10 -7 (-15 -3434 ((-552) (-552))) (-15 -3446 ((-552) (-552) (-552))) (-15 -3459 ((-112) (-552) (-552))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-1924 ((|#1| $) 59)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-3728 (($ $) 89)) (-3604 (($ $) 72)) (-1282 ((|#1| $) 60)) (-2077 (((-3 $ "failed") $ $) 19)) (-3837 (($ $) 71)) (-3710 (($ $) 88)) (-3581 (($ $) 73)) (-3749 (($ $) 87)) (-3627 (($ $) 74)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 67)) (-1895 (((-552) $) 66)) (-4174 (((-3 $ "failed") $) 32)) (-3490 (($ |#1| |#1|) 64)) (-3620 (((-112) $) 58)) (-1385 (($) 99)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 70)) (-3630 (((-112) $) 57)) (-3658 (($ $ $) 105)) (-3332 (($ $ $) 104)) (-2458 (($ $) 96)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-3500 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-402 (-552))) 62)) (-3480 ((|#1| $) 61)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-2802 (((-3 $ "failed") $ $) 40)) (-2863 (($ $) 97)) (-3759 (($ $) 86)) (-3638 (($ $) 75)) (-3738 (($ $) 85)) (-3614 (($ $) 76)) (-3721 (($ $) 84)) (-3593 (($ $) 77)) (-3470 (((-112) $ |#1|) 56)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 68)) (-4141 (((-751)) 28)) (-3789 (($ $) 95)) (-3670 (($ $) 83)) (-3518 (((-112) $ $) 37)) (-3769 (($ $) 94)) (-3648 (($ $) 82)) (-3809 (($ $) 93)) (-3691 (($ $) 81)) (-3742 (($ $) 92)) (-3700 (($ $) 80)) (-3797 (($ $) 91)) (-3681 (($ $) 79)) (-3778 (($ $) 90)) (-3659 (($ $) 78)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 102)) (-2320 (((-112) $ $) 101)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 103)) (-2307 (((-112) $ $) 100)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ $) 98) (($ $ (-402 (-552))) 69)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
+(((-542 |#1|) (-138) (-13 (-399) (-1171))) (T -542))
+((-3500 (*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-3490 (*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-3500 (*1 *1 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-3500 (*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-1282 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) (-3470 (*1 *2 *1 *3) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))))
+(-13 (-446) (-827) (-1171) (-978) (-1014 (-552)) (-10 -8 (-6 -2874) (-15 -3500 ($ |t#1| |t#1|)) (-15 -3490 ($ |t#1| |t#1|)) (-15 -3500 ($ |t#1|)) (-15 -3500 ($ (-402 (-552)))) (-15 -3480 (|t#1| $)) (-15 -1282 (|t#1| $)) (-15 -1924 (|t#1| $)) (-15 -3620 ((-112) $)) (-15 -3630 ((-112) $)) (-15 -3470 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-279) . T) ((-285) . T) ((-446) . T) ((-486) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-978) . T) ((-1014 (-552)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) . T) ((-1174) . T))
+((-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 9)) (-3528 (($ $) 11)) (-3509 (((-112) $) 18)) (-4174 (((-3 $ "failed") $) 16)) (-3518 (((-112) $ $) 20)))
+(((-543 |#1|) (-10 -8 (-15 -3509 ((-112) |#1|)) (-15 -3518 ((-112) |#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|))) (-544)) (T -543))
+NIL
+(-10 -8 (-15 -3509 ((-112) |#1|)) (-15 -3518 ((-112) |#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ $) 40)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
+(((-544) (-138)) (T -544))
+((-2802 (*1 *1 *1 *1) (|partial| -4 *1 (-544))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3618 *1) (|:| -4340 *1) (|:| |associate| *1))) (-4 *1 (-544)))) (-3528 (*1 *1 *1) (-4 *1 (-544))) (-3518 (*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))))
+(-13 (-170) (-38 $) (-285) (-10 -8 (-15 -2802 ((-3 $ "failed") $ $)) (-15 -3537 ((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $)) (-15 -3528 ($ $)) (-15 -3518 ((-112) $ $)) (-15 -3509 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-3558 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-625 |#2|)) 37)) (-3579 (((-571 |#2|) |#2| (-1149)) 62)) (-3568 (((-3 |#2| "failed") |#2| (-1149)) 152)) (-3591 (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) (-596 |#2|) (-625 (-596 |#2|))) 155)) (-3549 (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) |#2|) 40)))
+(((-545 |#1| |#2|) (-10 -7 (-15 -3549 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) |#2|)) (-15 -3558 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-625 |#2|))) (-15 -3568 ((-3 |#2| "failed") |#2| (-1149))) (-15 -3579 ((-571 |#2|) |#2| (-1149))) (-15 -3591 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) (-596 |#2|) (-625 (-596 |#2|))))) (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -545))
+((-3591 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1149)) (-5 *6 (-625 (-596 *3))) (-5 *5 (-596 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-545 *7 *3)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-545 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-3568 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-545 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-3558 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-545 *6 *3)))) (-3549 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-545 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))))
+(-10 -7 (-15 -3549 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) |#2|)) (-15 -3558 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-625 |#2|))) (-15 -3568 ((-3 |#2| "failed") |#2| (-1149))) (-15 -3579 ((-571 |#2|) |#2| (-1149))) (-15 -3591 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) (-596 |#2|) (-625 (-596 |#2|)))))
+((-1330 (((-413 |#1|) |#1|) 18)) (-3824 (((-413 |#1|) |#1|) 33)) (-3612 (((-3 |#1| "failed") |#1|) 44)) (-3602 (((-413 |#1|) |#1|) 51)))
+(((-546 |#1|) (-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -3602 ((-413 |#1|) |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|))) (-537)) (T -546))
+((-3612 (*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-537)))) (-3602 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) (-1330 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))))
+(-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -3602 ((-413 |#1|) |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)))
+((-3623 (($) 9)) (-2352 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 35)) (-3712 (((-625 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 32)) (-3966 (($ (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3644 (($ (-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-4120 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-1358 (((-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3634 (((-1237)) 12)))
+(((-547) (-10 -8 (-15 -3623 ($)) (-15 -3634 ((-1237))) (-15 -3712 ((-625 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3644 ($ (-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3966 ($ (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2352 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1358 ((-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4120 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -547))
+((-4120 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-547)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-547)))) (-2352 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-547)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-547)))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-547)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-547)))) (-3634 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-547)))) (-3623 (*1 *1) (-5 *1 (-547))))
+(-10 -8 (-15 -3623 ($)) (-15 -3634 ((-1237))) (-15 -3712 ((-625 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3644 ($ (-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3966 ($ (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2352 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1358 ((-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4120 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
+((-3793 (((-1145 (-402 (-1145 |#2|))) |#2| (-596 |#2|) (-596 |#2|) (-1145 |#2|)) 32)) (-3677 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) |#2| (-1145 |#2|)) 110)) (-3653 (((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|))) 80) (((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|)) 52)) (-3665 (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| (-596 |#2|) |#2| (-402 (-1145 |#2|))) 87) (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| |#2| (-1145 |#2|)) 109)) (-3687 (((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) (-596 |#2|) |#2| (-402 (-1145 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) |#2| (-1145 |#2|)) 111)) (-3696 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|))) 128 (|has| |#3| (-636 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|)) 127 (|has| |#3| (-636 |#2|)))) (-3970 ((|#2| (-1145 (-402 (-1145 |#2|))) (-596 |#2|) |#2|) 50)) (-2148 (((-1145 (-402 (-1145 |#2|))) (-1145 |#2|) (-596 |#2|)) 31)))
+(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -3653 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|))) (-15 -3653 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3665 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| |#2| (-1145 |#2|))) (-15 -3665 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3677 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) |#2| (-1145 |#2|))) (-15 -3677 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) |#2| (-1145 |#2|))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3793 ((-1145 (-402 (-1145 |#2|))) |#2| (-596 |#2|) (-596 |#2|) (-1145 |#2|))) (-15 -3970 (|#2| (-1145 (-402 (-1145 |#2|))) (-596 |#2|) |#2|)) (-15 -2148 ((-1145 (-402 (-1145 |#2|))) (-1145 |#2|) (-596 |#2|))) (IF (|has| |#3| (-636 |#2|)) (PROGN (-15 -3696 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|))) (-15 -3696 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|))))) |%noBranch|)) (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))) (-13 (-425 |#1|) (-27) (-1171)) (-1073)) (T -548))
+((-3696 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-596 *4)) (-5 *6 (-402 (-1145 *4))) (-4 *4 (-13 (-425 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073)))) (-3696 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-596 *4)) (-5 *6 (-1145 *4)) (-4 *4 (-13 (-425 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-596 *6)) (-4 *6 (-13 (-425 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-1145 (-402 (-1145 *6)))) (-5 *1 (-548 *5 *6 *7)) (-5 *3 (-1145 *6)) (-4 *7 (-1073)))) (-3970 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1145 (-402 (-1145 *2)))) (-5 *4 (-596 *2)) (-4 *2 (-13 (-425 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *1 (-548 *5 *2 *6)) (-4 *6 (-1073)))) (-3793 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-596 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-1145 (-402 (-1145 *3)))) (-5 *1 (-548 *6 *3 *7)) (-5 *5 (-1145 *3)) (-4 *7 (-1073)))) (-3687 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-596 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) (-5 *5 (-402 (-1145 *2))) (-4 *2 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1073)))) (-3687 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-596 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) (-5 *5 (-1145 *2)) (-4 *2 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1073)))) (-3677 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3)) (-5 *6 (-402 (-1145 *3))) (-4 *3 (-13 (-425 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1073)))) (-3677 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3)) (-5 *6 (-1145 *3)) (-4 *3 (-13 (-425 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1073)))) (-3665 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-402 (-1145 *3))) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))) (-3665 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-1145 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))) (-3653 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-596 *3)) (-5 *5 (-402 (-1145 *3))) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))) (-3653 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-596 *3)) (-5 *5 (-1145 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))))
+(-10 -7 (-15 -3653 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|))) (-15 -3653 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3665 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| |#2| (-1145 |#2|))) (-15 -3665 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3677 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) |#2| (-1145 |#2|))) (-15 -3677 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) |#2| (-1145 |#2|))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3793 ((-1145 (-402 (-1145 |#2|))) |#2| (-596 |#2|) (-596 |#2|) (-1145 |#2|))) (-15 -3970 (|#2| (-1145 (-402 (-1145 |#2|))) (-596 |#2|) |#2|)) (-15 -2148 ((-1145 (-402 (-1145 |#2|))) (-1145 |#2|) (-596 |#2|))) (IF (|has| |#3| (-636 |#2|)) (PROGN (-15 -3696 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|))) (-15 -3696 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|))))) |%noBranch|))
+((-2653 (((-552) (-552) (-751)) 66)) (-2645 (((-552) (-552)) 65)) (-2635 (((-552) (-552)) 64)) (-2624 (((-552) (-552)) 69)) (-3961 (((-552) (-552) (-552)) 49)) (-2614 (((-552) (-552) (-552)) 46)) (-2607 (((-402 (-552)) (-552)) 20)) (-2593 (((-552) (-552)) 21)) (-2583 (((-552) (-552)) 58)) (-3922 (((-552) (-552)) 32)) (-3717 (((-625 (-552)) (-552)) 63)) (-3706 (((-552) (-552) (-552) (-552) (-552)) 44)) (-3868 (((-402 (-552)) (-552)) 41)))
+(((-549) (-10 -7 (-15 -3868 ((-402 (-552)) (-552))) (-15 -3706 ((-552) (-552) (-552) (-552) (-552))) (-15 -3717 ((-625 (-552)) (-552))) (-15 -3922 ((-552) (-552))) (-15 -2583 ((-552) (-552))) (-15 -2593 ((-552) (-552))) (-15 -2607 ((-402 (-552)) (-552))) (-15 -2614 ((-552) (-552) (-552))) (-15 -3961 ((-552) (-552) (-552))) (-15 -2624 ((-552) (-552))) (-15 -2635 ((-552) (-552))) (-15 -2645 ((-552) (-552))) (-15 -2653 ((-552) (-552) (-751))))) (T -549))
+((-2653 (*1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-751)) (-5 *1 (-549)))) (-2645 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3961 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2614 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2607 (*1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) (-2593 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2583 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3717 (*1 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) (-3706 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))))
+(-10 -7 (-15 -3868 ((-402 (-552)) (-552))) (-15 -3706 ((-552) (-552) (-552) (-552) (-552))) (-15 -3717 ((-625 (-552)) (-552))) (-15 -3922 ((-552) (-552))) (-15 -2583 ((-552) (-552))) (-15 -2593 ((-552) (-552))) (-15 -2607 ((-402 (-552)) (-552))) (-15 -2614 ((-552) (-552) (-552))) (-15 -3961 ((-552) (-552) (-552))) (-15 -2624 ((-552) (-552))) (-15 -2635 ((-552) (-552))) (-15 -2645 ((-552) (-552))) (-15 -2653 ((-552) (-552) (-751))))
+((-2663 (((-2 (|:| |answer| |#4|) (|:| -3106 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2663 ((-2 (|:| |answer| |#4|) (|:| -3106 |#4|)) |#4| (-1 |#2| |#2|)))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -550))
+((-2663 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-4 *7 (-1208 (-402 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3106 *3))) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7)))))
+(-10 -7 (-15 -2663 ((-2 (|:| |answer| |#4|) (|:| -3106 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2663 (((-2 (|:| |answer| (-402 |#2|)) (|:| -3106 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 18)))
+(((-551 |#1| |#2|) (-10 -7 (-15 -2663 ((-2 (|:| |answer| (-402 |#2|)) (|:| -3106 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1208 |#1|)) (T -551))
+((-2663 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| (-402 *6)) (|:| -3106 (-402 *6)) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-551 *5 *6)) (-5 *3 (-402 *6)))))
+(-10 -7 (-15 -2663 ((-2 (|:| |answer| (-402 |#2|)) (|:| -3106 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 25)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 88)) (-3528 (($ $) 89)) (-3509 (((-112) $) NIL)) (-3364 (($ $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3346 (($ $ $ $) 43)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL)) (-3420 (($ $ $) 82)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL)) (-1895 (((-552) $) NIL)) (-2851 (($ $ $) 81)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 62) (((-669 (-552)) (-669 $)) 58)) (-4174 (((-3 $ "failed") $) 85)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL)) (-2546 (((-112) $) NIL)) (-2538 (((-402 (-552)) $) NIL)) (-3702 (($) 64) (($ $) 65)) (-2826 (($ $ $) 80)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3327 (($ $ $ $) NIL)) (-3372 (($ $ $) 55)) (-3620 (((-112) $) NIL)) (-1302 (($ $ $) NIL)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL)) (-3650 (((-112) $) 26)) (-3932 (((-112) $) 75)) (-4034 (((-3 $ "failed") $) NIL)) (-3630 (((-112) $) 35)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3336 (($ $ $ $) 44)) (-3658 (($ $ $) 77)) (-3332 (($ $ $) 76)) (-2059 (($ $) NIL)) (-3456 (($ $) 41)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) 54)) (-3317 (($ $ $) NIL)) (-2071 (($) NIL T CONST)) (-1971 (($ $) 31)) (-2831 (((-1093) $) 34)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 119)) (-2633 (($ $ $) 86) (($ (-625 $)) NIL)) (-1279 (($ $) NIL)) (-3824 (((-413 $) $) 105)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) 84)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 79)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-2715 (($ $) 32)) (-1871 (($ $) 30)) (-2042 (((-552) $) 40) (((-528) $) 52) (((-868 (-552)) $) NIL) (((-374) $) 47) (((-221) $) 49) (((-1131) $) 53)) (-1683 (((-839) $) 38) (($ (-552)) 39) (($ $) NIL) (($ (-552)) 39)) (-4141 (((-751)) NIL)) (-3383 (((-112) $ $) NIL)) (-3901 (($ $ $) NIL)) (-3929 (($) 29)) (-3518 (((-112) $ $) NIL)) (-3355 (($ $ $ $) 42)) (-1727 (($ $) 63)) (-2089 (($) 27 T CONST)) (-2100 (($) 28 T CONST)) (-3010 (((-1131) $) 20) (((-1131) $ (-112)) 22) (((-1237) (-802) $) 23) (((-1237) (-802) $ (-112)) 24)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 66)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 67)) (-2393 (($ $) 68) (($ $ $) 70)) (-2382 (($ $ $) 69)) (** (($ $ (-897)) NIL) (($ $ (-751)) 74)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 72) (($ $ $) 71)))
+(((-552) (-13 (-537) (-598 (-1131)) (-808) (-10 -8 (-15 -3702 ($ $)) (-6 -4340) (-6 -4345) (-6 -4341) (-6 -4335)))) (T -552))
+((-3702 (*1 *1 *1) (-5 *1 (-552))))
+(-13 (-537) (-598 (-1131)) (-808) (-10 -8 (-15 -3702 ($ $)) (-6 -4340) (-6 -4345) (-6 -4341) (-6 -4335)))
+((-3890 (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749) (-1037)) 108) (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749)) 110)) (-2481 (((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1149)) 172) (((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1131)) 171) (((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374) (-1037)) 176) (((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374)) 177) (((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374)) 178) (((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374))))) 179) (((-1011) (-311 (-374)) (-1067 (-820 (-374)))) 167) (((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374)) 166) (((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374)) 162) (((-1011) (-749)) 155) (((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374) (-1037)) 161)))
+(((-553) (-10 -7 (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374) (-1037))) (-15 -2481 ((-1011) (-749))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374) (-1037))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749) (-1037))) (-15 -2481 ((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1131))) (-15 -2481 ((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1149))))) (T -553))
+((-2481 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1065 (-820 (-374)))) (-5 *5 (-1149)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1065 (-820 (-374)))) (-5 *5 (-1131)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) (-5 *1 (-553)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) (-5 *5 (-374)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) (-5 *5 (-374)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553)))))
+(-10 -7 (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374) (-1037))) (-15 -2481 ((-1011) (-749))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374) (-1037))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749) (-1037))) (-15 -2481 ((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1131))) (-15 -2481 ((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1149))))
+((-2696 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|)) 184)) (-2675 (((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|)) 98)) (-2686 (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2|) 180)) (-2706 (((-3 |#2| "failed") |#2| |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149))) 189)) (-2716 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-1149)) 197 (|has| |#3| (-636 |#2|)))))
+(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -2675 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|))) (-15 -2686 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2|)) (-15 -2696 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|))) (-15 -2706 ((-3 |#2| "failed") |#2| |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)))) (IF (|has| |#3| (-636 |#2|)) (-15 -2716 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-1149))) |%noBranch|)) (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))) (-13 (-425 |#1|) (-27) (-1171)) (-1073)) (T -554))
+((-2716 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-596 *4)) (-5 *6 (-1149)) (-4 *4 (-13 (-425 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073)))) (-2706 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-596 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) (-4 *2 (-13 (-425 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1073)))) (-2696 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1073)))) (-2686 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-596 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1073)))) (-2675 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-596 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1073)))))
+(-10 -7 (-15 -2675 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|))) (-15 -2686 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2|)) (-15 -2696 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|))) (-15 -2706 ((-3 |#2| "failed") |#2| |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)))) (IF (|has| |#3| (-636 |#2|)) (-15 -2716 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-1149))) |%noBranch|))
+((-2725 (((-2 (|:| -4075 |#2|) (|:| |nconst| |#2|)) |#2| (-1149)) 64)) (-2744 (((-3 |#2| "failed") |#2| (-1149) (-820 |#2|) (-820 |#2|)) 164 (-12 (|has| |#2| (-1112)) (|has| |#1| (-598 (-868 (-552)))) (|has| |#1| (-862 (-552))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)) 147 (-12 (|has| |#2| (-611)) (|has| |#1| (-598 (-868 (-552)))) (|has| |#1| (-862 (-552)))))) (-2734 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)) 148 (-12 (|has| |#2| (-611)) (|has| |#1| (-598 (-868 (-552)))) (|has| |#1| (-862 (-552)))))))
+(((-555 |#1| |#2|) (-10 -7 (-15 -2725 ((-2 (|:| -4075 |#2|) (|:| |nconst| |#2|)) |#2| (-1149))) (IF (|has| |#1| (-598 (-868 (-552)))) (IF (|has| |#1| (-862 (-552))) (PROGN (IF (|has| |#2| (-611)) (PROGN (-15 -2734 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) (-15 -2744 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) (IF (|has| |#2| (-1112)) (-15 -2744 ((-3 |#2| "failed") |#2| (-1149) (-820 |#2|) (-820 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-827) (-1014 (-552)) (-446) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -555))
+((-2744 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1149)) (-5 *4 (-820 *2)) (-4 *2 (-1112)) (-4 *2 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-598 (-868 (-552)))) (-4 *5 (-862 (-552))) (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) (-5 *1 (-555 *5 *2)))) (-2744 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-868 (-552)))) (-4 *5 (-862 (-552))) (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-611)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-2734 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-868 (-552)))) (-4 *5 (-862 (-552))) (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-611)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-2725 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) (-5 *2 (-2 (|:| -4075 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))))
+(-10 -7 (-15 -2725 ((-2 (|:| -4075 |#2|) (|:| |nconst| |#2|)) |#2| (-1149))) (IF (|has| |#1| (-598 (-868 (-552)))) (IF (|has| |#1| (-862 (-552))) (PROGN (IF (|has| |#2| (-611)) (PROGN (-15 -2734 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) (-15 -2744 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) (IF (|has| |#2| (-1112)) (-15 -2744 ((-3 |#2| "failed") |#2| (-1149) (-820 |#2|) (-820 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2773 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-625 (-402 |#2|))) 41)) (-2481 (((-571 (-402 |#2|)) (-402 |#2|)) 28)) (-2753 (((-3 (-402 |#2|) "failed") (-402 |#2|)) 17)) (-2763 (((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|)) 48)))
+(((-556 |#1| |#2|) (-10 -7 (-15 -2481 ((-571 (-402 |#2|)) (-402 |#2|))) (-15 -2753 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2763 ((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2773 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-625 (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-552))) (-1208 |#1|)) (T -556))
+((-2773 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-625 (-402 *6))) (-5 *3 (-402 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *5 *6)))) (-2763 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| -3114 (-402 *5)) (|:| |coeff| (-402 *5)))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5)))) (-2753 (*1 *2 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-13 (-358) (-145) (-1014 (-552)))) (-5 *1 (-556 *3 *4)))) (-2481 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4)) (-5 *2 (-571 (-402 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5)))))
+(-10 -7 (-15 -2481 ((-571 (-402 |#2|)) (-402 |#2|))) (-15 -2753 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2763 ((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2773 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-625 (-402 |#2|)))))
+((-2784 (((-3 (-552) "failed") |#1|) 14)) (-2970 (((-112) |#1|) 13)) (-3642 (((-552) |#1|) 9)))
+(((-557 |#1|) (-10 -7 (-15 -3642 ((-552) |#1|)) (-15 -2970 ((-112) |#1|)) (-15 -2784 ((-3 (-552) "failed") |#1|))) (-1014 (-552))) (T -557))
+((-2784 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2)))) (-2970 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-557 *3)) (-4 *3 (-1014 (-552))))) (-3642 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2)))))
+(-10 -7 (-15 -3642 ((-552) |#1|)) (-15 -2970 ((-112) |#1|)) (-15 -2784 ((-3 (-552) "failed") |#1|)))
+((-2816 (((-3 (-2 (|:| |mainpart| (-402 (-928 |#1|))) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 (-928 |#1|))) (|:| |logand| (-402 (-928 |#1|))))))) "failed") (-402 (-928 |#1|)) (-1149) (-625 (-402 (-928 |#1|)))) 48)) (-2793 (((-571 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-1149)) 28)) (-2804 (((-3 (-402 (-928 |#1|)) "failed") (-402 (-928 |#1|)) (-1149)) 23)) (-2829 (((-3 (-2 (|:| -3114 (-402 (-928 |#1|))) (|:| |coeff| (-402 (-928 |#1|)))) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|))) 35)))
+(((-558 |#1|) (-10 -7 (-15 -2793 ((-571 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -2804 ((-3 (-402 (-928 |#1|)) "failed") (-402 (-928 |#1|)) (-1149))) (-15 -2816 ((-3 (-2 (|:| |mainpart| (-402 (-928 |#1|))) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 (-928 |#1|))) (|:| |logand| (-402 (-928 |#1|))))))) "failed") (-402 (-928 |#1|)) (-1149) (-625 (-402 (-928 |#1|))))) (-15 -2829 ((-3 (-2 (|:| -3114 (-402 (-928 |#1|))) (|:| |coeff| (-402 (-928 |#1|)))) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|))))) (-13 (-544) (-1014 (-552)) (-145))) (T -558))
+((-2829 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-1014 (-552)) (-145))) (-5 *2 (-2 (|:| -3114 (-402 (-928 *5))) (|:| |coeff| (-402 (-928 *5))))) (-5 *1 (-558 *5)) (-5 *3 (-402 (-928 *5))))) (-2816 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 (-402 (-928 *6)))) (-5 *3 (-402 (-928 *6))) (-4 *6 (-13 (-544) (-1014 (-552)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *6)))) (-2804 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-402 (-928 *4))) (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-1014 (-552)) (-145))) (-5 *1 (-558 *4)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-1014 (-552)) (-145))) (-5 *2 (-571 (-402 (-928 *5)))) (-5 *1 (-558 *5)) (-5 *3 (-402 (-928 *5))))))
+(-10 -7 (-15 -2793 ((-571 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -2804 ((-3 (-402 (-928 |#1|)) "failed") (-402 (-928 |#1|)) (-1149))) (-15 -2816 ((-3 (-2 (|:| |mainpart| (-402 (-928 |#1|))) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 (-928 |#1|))) (|:| |logand| (-402 (-928 |#1|))))))) "failed") (-402 (-928 |#1|)) (-1149) (-625 (-402 (-928 |#1|))))) (-15 -2829 ((-3 (-2 (|:| -3114 (-402 (-928 |#1|))) (|:| |coeff| (-402 (-928 |#1|)))) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)))))
+((-1671 (((-112) $ $) 58)) (-3641 (((-112) $) 36)) (-1924 ((|#1| $) 30)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) 62)) (-3728 (($ $) 122)) (-3604 (($ $) 102)) (-1282 ((|#1| $) 28)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $) NIL)) (-3710 (($ $) 124)) (-3581 (($ $) 98)) (-3749 (($ $) 126)) (-3627 (($ $) 106)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) 77)) (-1895 (((-552) $) 79)) (-4174 (((-3 $ "failed") $) 61)) (-3490 (($ |#1| |#1|) 26)) (-3620 (((-112) $) 33)) (-1385 (($) 88)) (-3650 (((-112) $) 43)) (-2429 (($ $ (-552)) NIL)) (-3630 (((-112) $) 34)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2458 (($ $) 90)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-3500 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-402 (-552))) 76)) (-3480 ((|#1| $) 27)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) 64) (($ (-625 $)) NIL)) (-2802 (((-3 $ "failed") $ $) 63)) (-2863 (($ $) 92)) (-3759 (($ $) 130)) (-3638 (($ $) 104)) (-3738 (($ $) 132)) (-3614 (($ $) 108)) (-3721 (($ $) 128)) (-3593 (($ $) 100)) (-3470 (((-112) $ |#1|) 31)) (-1683 (((-839) $) 84) (($ (-552)) 66) (($ $) NIL) (($ (-552)) 66)) (-4141 (((-751)) 86)) (-3789 (($ $) 144)) (-3670 (($ $) 114)) (-3518 (((-112) $ $) NIL)) (-3769 (($ $) 142)) (-3648 (($ $) 110)) (-3809 (($ $) 140)) (-3691 (($ $) 120)) (-3742 (($ $) 138)) (-3700 (($ $) 118)) (-3797 (($ $) 136)) (-3681 (($ $) 116)) (-3778 (($ $) 134)) (-3659 (($ $) 112)) (-2089 (($) 21 T CONST)) (-2100 (($) 10 T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 37)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 35)) (-2393 (($ $) 41) (($ $ $) 42)) (-2382 (($ $ $) 40)) (** (($ $ (-897)) 54) (($ $ (-751)) NIL) (($ $ $) 94) (($ $ (-402 (-552))) 146)) (* (($ (-897) $) 51) (($ (-751) $) NIL) (($ (-552) $) 50) (($ $ $) 48)))
+(((-559 |#1|) (-542 |#1|) (-13 (-399) (-1171))) (T -559))
+NIL
+(-542 |#1|)
+((-4264 (((-3 (-625 (-1145 (-552))) "failed") (-625 (-1145 (-552))) (-1145 (-552))) 24)))
+(((-560) (-10 -7 (-15 -4264 ((-3 (-625 (-1145 (-552))) "failed") (-625 (-1145 (-552))) (-1145 (-552)))))) (T -560))
+((-4264 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 (-552)))) (-5 *3 (-1145 (-552))) (-5 *1 (-560)))))
+(-10 -7 (-15 -4264 ((-3 (-625 (-1145 (-552))) "failed") (-625 (-1145 (-552))) (-1145 (-552)))))
+((-2841 (((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-1149)) 19)) (-2875 (((-625 (-596 |#2|)) (-625 |#2|) (-1149)) 23)) (-3419 (((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-625 (-596 |#2|))) 11)) (-2886 ((|#2| |#2| (-1149)) 54 (|has| |#1| (-544)))) (-2896 ((|#2| |#2| (-1149)) 78 (-12 (|has| |#2| (-279)) (|has| |#1| (-446))))) (-2864 (((-596 |#2|) (-596 |#2|) (-625 (-596 |#2|)) (-1149)) 25)) (-2853 (((-596 |#2|) (-625 (-596 |#2|))) 24)) (-2906 (((-571 |#2|) |#2| (-1149) (-1 (-571 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) 103 (-12 (|has| |#2| (-279)) (|has| |#2| (-611)) (|has| |#2| (-1014 (-1149))) (|has| |#1| (-598 (-868 (-552)))) (|has| |#1| (-446)) (|has| |#1| (-862 (-552)))))))
+(((-561 |#1| |#2|) (-10 -7 (-15 -2841 ((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-1149))) (-15 -2853 ((-596 |#2|) (-625 (-596 |#2|)))) (-15 -2864 ((-596 |#2|) (-596 |#2|) (-625 (-596 |#2|)) (-1149))) (-15 -3419 ((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-625 (-596 |#2|)))) (-15 -2875 ((-625 (-596 |#2|)) (-625 |#2|) (-1149))) (IF (|has| |#1| (-544)) (-15 -2886 (|#2| |#2| (-1149))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -2896 (|#2| |#2| (-1149))) (IF (|has| |#1| (-598 (-868 (-552)))) (IF (|has| |#1| (-862 (-552))) (IF (|has| |#2| (-611)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2906 ((-571 |#2|) |#2| (-1149) (-1 (-571 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-827) (-425 |#1|)) (T -561))
+((-2906 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-571 *3) *3 (-1149))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1149))) (-4 *3 (-279)) (-4 *3 (-611)) (-4 *3 (-1014 *4)) (-4 *3 (-425 *7)) (-5 *4 (-1149)) (-4 *7 (-598 (-868 (-552)))) (-4 *7 (-446)) (-4 *7 (-862 (-552))) (-4 *7 (-827)) (-5 *2 (-571 *3)) (-5 *1 (-561 *7 *3)))) (-2896 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-446)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2)) (-4 *2 (-279)) (-4 *2 (-425 *4)))) (-2886 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-544)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2)) (-4 *2 (-425 *4)))) (-2875 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-1149)) (-4 *6 (-425 *5)) (-4 *5 (-827)) (-5 *2 (-625 (-596 *6))) (-5 *1 (-561 *5 *6)))) (-3419 (*1 *2 *2 *2) (-12 (-5 *2 (-625 (-596 *4))) (-4 *4 (-425 *3)) (-4 *3 (-827)) (-5 *1 (-561 *3 *4)))) (-2864 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-625 (-596 *6))) (-5 *4 (-1149)) (-5 *2 (-596 *6)) (-4 *6 (-425 *5)) (-4 *5 (-827)) (-5 *1 (-561 *5 *6)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-625 (-596 *5))) (-4 *4 (-827)) (-5 *2 (-596 *5)) (-5 *1 (-561 *4 *5)) (-4 *5 (-425 *4)))) (-2841 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-596 *5))) (-5 *3 (-1149)) (-4 *5 (-425 *4)) (-4 *4 (-827)) (-5 *1 (-561 *4 *5)))))
+(-10 -7 (-15 -2841 ((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-1149))) (-15 -2853 ((-596 |#2|) (-625 (-596 |#2|)))) (-15 -2864 ((-596 |#2|) (-596 |#2|) (-625 (-596 |#2|)) (-1149))) (-15 -3419 ((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-625 (-596 |#2|)))) (-15 -2875 ((-625 (-596 |#2|)) (-625 |#2|) (-1149))) (IF (|has| |#1| (-544)) (-15 -2886 (|#2| |#2| (-1149))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -2896 (|#2| |#2| (-1149))) (IF (|has| |#1| (-598 (-868 (-552)))) (IF (|has| |#1| (-862 (-552))) (IF (|has| |#2| (-611)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2906 ((-571 |#2|) |#2| (-1149) (-1 (-571 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2938 (((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-625 |#1|) "failed") (-552) |#1| |#1|)) 172)) (-2973 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-625 (-402 |#2|))) 148)) (-3008 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-625 (-402 |#2|))) 145)) (-3020 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2916 (((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2996 (((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|)) 175)) (-2948 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|)) 178)) (-3041 (((-2 (|:| |ir| (-571 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 84)) (-3052 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2984 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-625 (-402 |#2|))) 152)) (-3031 (((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|)) 137)) (-2928 (((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|)) 162)) (-2962 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-402 |#2|)) 183)))
+(((-562 |#1| |#2|) (-10 -7 (-15 -2916 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2928 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|))) (-15 -2938 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-625 |#1|) "failed") (-552) |#1| |#1|))) (-15 -2948 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|))) (-15 -2962 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-402 |#2|))) (-15 -2973 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-625 (-402 |#2|)))) (-15 -2984 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-625 (-402 |#2|)))) (-15 -2996 ((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -3008 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-625 (-402 |#2|)))) (-15 -3020 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3031 ((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|))) (-15 -3041 ((-2 (|:| |ir| (-571 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3052 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-358) (-1208 |#1|)) (T -562))
+((-3052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-562 *5 *3)))) (-3041 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |ir| (-571 (-402 *6))) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))) (-3031 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-605 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2303 *4) (|:| |sol?| (-112))) (-552) *4)) (-4 *4 (-358)) (-4 *5 (-1208 *4)) (-5 *1 (-562 *4 *5)))) (-3020 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-358)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1208 *4)))) (-3008 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-625 (-402 *7))) (-4 *7 (-1208 *6)) (-5 *3 (-402 *7)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *7)))) (-2996 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3114 (-402 *6)) (|:| |coeff| (-402 *6)))) (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))) (-2984 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2303 *7) (|:| |sol?| (-112))) (-552) *7)) (-5 *6 (-625 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1208 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-2973 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3114 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-625 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1208 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-2962 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2303 *6) (|:| |sol?| (-112))) (-552) *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -3114 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2948 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3114 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -3114 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2938 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-625 *6) "failed") (-552) *6 *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2303 *6) (|:| |sol?| (-112))) (-552) *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3114 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
+(-10 -7 (-15 -2916 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2928 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|))) (-15 -2938 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-625 |#1|) "failed") (-552) |#1| |#1|))) (-15 -2948 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|))) (-15 -2962 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-402 |#2|))) (-15 -2973 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-625 (-402 |#2|)))) (-15 -2984 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-625 (-402 |#2|)))) (-15 -2996 ((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -3008 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-625 (-402 |#2|)))) (-15 -3020 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3031 ((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|))) (-15 -3041 ((-2 (|:| |ir| (-571 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3052 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-3063 (((-3 |#2| "failed") |#2| (-1149) (-1149)) 10)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -3063 ((-3 |#2| "failed") |#2| (-1149) (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-935) (-1112) (-29 |#1|))) (T -563))
+((-3063 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1171) (-935) (-1112) (-29 *4))))))
+(-10 -7 (-15 -3063 ((-3 |#2| "failed") |#2| (-1149) (-1149))))
+((-2315 (((-1093) $ (-128)) 12)) (-2328 (((-1093) $ (-129)) 11)) (-4224 (((-1093) $ (-128)) 7)) (-4235 (((-1093) $) 8)) (-4125 (($ $) 6)))
(((-564) (-138)) (T -564))
NIL
-(-13 (-520) (-838))
-(((-171) . T) ((-520) . T) ((-838) . T))
-((-2898 (((-112) $ $) NIL)) (-3814 (($) 7 T CONST)) (-3593 (((-1131) $) NIL)) (-2246 (($) 6 T CONST)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 14)) (-2245 (($) 8 T CONST)) (-3387 (((-112) $ $) 10)))
-(((-565) (-13 (-1074) (-10 -8 (-15 -2246 ($) -4311) (-15 -3814 ($) -4311) (-15 -2245 ($) -4311)))) (T -565))
-((-2246 (*1 *1) (-5 *1 (-565))) (-3814 (*1 *1) (-5 *1 (-565))) (-2245 (*1 *1) (-5 *1 (-565))))
-(-13 (-1074) (-10 -8 (-15 -2246 ($) -4311) (-15 -3814 ($) -4311) (-15 -2245 ($) -4311)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $ (-538)) 66)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2940 (($ (-1143 (-538)) (-538)) 72)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) 58)) (-2941 (($ $) 34)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4131 (((-751) $) 15)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2943 (((-538)) 29)) (-2942 (((-538) $) 32)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4128 (($ $ (-538)) 21)) (-3820 (((-3 $ "failed") $ $) 59)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) 16)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 61)) (-2944 (((-1126 (-538)) $) 18)) (-3224 (($ $) 23)) (-4317 (((-840) $) 87) (($ (-538)) 52) (($ $) NIL)) (-3461 (((-751)) 14)) (-2177 (((-112) $ $) NIL)) (-4129 (((-538) $ (-538)) 36)) (-2991 (($) 35 T CONST)) (-2997 (($) 19 T CONST)) (-3387 (((-112) $ $) 39)) (-4197 (($ $) 51) (($ $ $) 37)) (-4199 (($ $ $) 50)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 54) (($ $ $) 55)))
-(((-566 |#1| |#2|) (-846 |#1|) (-538) (-112)) (T -566))
-NIL
-(-846 |#1|)
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 21)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (($ $ (-895)) NIL (|has| $ (-363))) (($ $) NIL)) (-1791 (((-1158 (-895) (-751)) (-538)) 47)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 $ "failed") $) 75)) (-3507 (($ $) 74)) (-1911 (($ (-1231 $)) 73)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) 32)) (-3327 (($) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) 49)) (-1796 (((-112) $) NIL)) (-1886 (($ $) NIL) (($ $ (-751)) NIL)) (-4086 (((-112) $) NIL)) (-4131 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-2502 (((-112) $) NIL)) (-2129 (($) 37 (|has| $ (-363)))) (-2127 (((-112) $) NIL (|has| $ (-363)))) (-3467 (($ $ (-895)) NIL (|has| $ (-363))) (($ $) NIL)) (-3803 (((-3 $ "failed") $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 $) $ (-895)) NIL (|has| $ (-363))) (((-1143 $) $) 83)) (-2126 (((-895) $) 55)) (-1724 (((-1143 $) $) NIL (|has| $ (-363)))) (-1723 (((-3 (-1143 $) "failed") $ $) NIL (|has| $ (-363))) (((-1143 $) $) NIL (|has| $ (-363)))) (-1725 (($ $ (-1143 $)) NIL (|has| $ (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL T CONST)) (-2492 (($ (-895)) 48)) (-4291 (((-112) $) 67)) (-3594 (((-1093) $) NIL)) (-2501 (($) 19 (|has| $ (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 42)) (-4092 (((-400 $) $) NIL)) (-4290 (((-895)) 66) (((-812 (-895))) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-3 (-751) "failed") $ $) NIL) (((-751) $) NIL)) (-4271 (((-133)) NIL)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-4307 (((-895) $) 65) (((-812 (-895)) $) NIL)) (-3536 (((-1143 $)) 82)) (-1790 (($) 54)) (-1726 (($) 38 (|has| $ (-363)))) (-3575 (((-669 $) (-1231 $)) NIL) (((-1231 $) $) 71)) (-4330 (((-538) $) 28)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) 30) (($ $) NIL) (($ (-402 (-538))) NIL)) (-3035 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3461 (((-751)) 39)) (-2128 (((-1231 $) (-895)) 77) (((-1231 $)) 76)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) 22 T CONST)) (-2997 (($) 18 T CONST)) (-4288 (($ $ (-751)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 26)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 61) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL)))
-(((-567 |#1|) (-13 (-345) (-324 $) (-598 (-538))) (-895)) (T -567))
-NIL
-(-13 (-345) (-324 $) (-598 (-538)))
-((-2247 (((-1237) (-1131)) 10)))
-(((-568) (-10 -7 (-15 -2247 ((-1237) (-1131))))) (T -568))
-((-2247 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-568)))))
-(-10 -7 (-15 -2247 ((-1237) (-1131))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) 69)) (-3507 ((|#1| $) NIL)) (-2251 ((|#1| $) 26)) (-2249 (((-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2252 (($ |#1| (-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) (-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2250 (((-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) $) 27)) (-3593 (((-1131) $) NIL)) (-3165 (($ |#1| |#1|) 33) (($ |#1| (-1149)) 44 (|has| |#1| (-1014 (-1149))))) (-3594 (((-1093) $) NIL)) (-2248 (((-112) $) 30)) (-4170 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1149)) 82 (|has| |#1| (-876 (-1149))))) (-4317 (((-840) $) 96) (($ |#1|) 25)) (-2991 (($) 16 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) 15) (($ $ $) NIL)) (-4199 (($ $ $) 78)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 14) (($ (-402 (-538)) $) 36) (($ $ (-402 (-538))) NIL)))
-(((-569 |#1|) (-13 (-698 (-402 (-538))) (-1014 |#1|) (-10 -8 (-15 -2252 ($ |#1| (-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) (-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2251 (|#1| $)) (-15 -2250 ((-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) $)) (-15 -2249 ((-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2248 ((-112) $)) (-15 -3165 ($ |#1| |#1|)) (-15 -4170 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-876 (-1149))) (-15 -4170 (|#1| $ (-1149))) |%noBranch|) (IF (|has| |#1| (-1014 (-1149))) (-15 -3165 ($ |#1| (-1149))) |%noBranch|))) (-358)) (T -569))
-((-2252 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 *2)) (|:| |logand| (-1143 *2))))) (-5 *4 (-622 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-358)) (-5 *1 (-569 *2)))) (-2251 (*1 *2 *1) (-12 (-5 *1 (-569 *2)) (-4 *2 (-358)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 *3)) (|:| |logand| (-1143 *3))))) (-5 *1 (-569 *3)) (-4 *3 (-358)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-569 *3)) (-4 *3 (-358)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-358)))) (-3165 (*1 *1 *2 *2) (-12 (-5 *1 (-569 *2)) (-4 *2 (-358)))) (-4170 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-569 *2)) (-4 *2 (-358)))) (-4170 (*1 *2 *1 *3) (-12 (-4 *2 (-358)) (-4 *2 (-876 *3)) (-5 *1 (-569 *2)) (-5 *3 (-1149)))) (-3165 (*1 *1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *1 (-569 *2)) (-4 *2 (-1014 *3)) (-4 *2 (-358)))))
-(-13 (-698 (-402 (-538))) (-1014 |#1|) (-10 -8 (-15 -2252 ($ |#1| (-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) (-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2251 (|#1| $)) (-15 -2250 ((-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) $)) (-15 -2249 ((-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2248 ((-112) $)) (-15 -3165 ($ |#1| |#1|)) (-15 -4170 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-876 (-1149))) (-15 -4170 (|#1| $ (-1149))) |%noBranch|) (IF (|has| |#1| (-1014 (-1149))) (-15 -3165 ($ |#1| (-1149))) |%noBranch|)))
-((-4318 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|)) 30)))
-(((-570 |#1| |#2|) (-10 -7 (-15 -4318 ((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|))) (-15 -4318 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4318 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4318 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-358) (-358)) (T -570))
-((-4318 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-570 *5 *6)))) (-4318 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-358)) (-4 *2 (-358)) (-5 *1 (-570 *5 *2)))) (-4318 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2251 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -2251 *6) (|:| |coeff| *6))) (-5 *1 (-570 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-569 *5)) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-569 *6)) (-5 *1 (-570 *5 *6)))))
-(-10 -7 (-15 -4318 ((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|))) (-15 -4318 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4318 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4318 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-3777 (((-569 |#2|) (-569 |#2|)) 40)) (-4323 (((-622 |#2|) (-569 |#2|)) 42)) (-2260 ((|#2| (-569 |#2|)) 48)))
-(((-571 |#1| |#2|) (-10 -7 (-15 -3777 ((-569 |#2|) (-569 |#2|))) (-15 -4323 ((-622 |#2|) (-569 |#2|))) (-15 -2260 (|#2| (-569 |#2|)))) (-13 (-446) (-1014 (-538)) (-827) (-621 (-538))) (-13 (-29 |#1|) (-1171))) (T -571))
-((-2260 (*1 *2 *3) (-12 (-5 *3 (-569 *2)) (-4 *2 (-13 (-29 *4) (-1171))) (-5 *1 (-571 *4 *2)) (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-569 *5)) (-4 *5 (-13 (-29 *4) (-1171))) (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-622 *5)) (-5 *1 (-571 *4 *5)))) (-3777 (*1 *2 *2) (-12 (-5 *2 (-569 *4)) (-4 *4 (-13 (-29 *3) (-1171))) (-4 *3 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *1 (-571 *3 *4)))))
-(-10 -7 (-15 -3777 ((-569 |#2|) (-569 |#2|))) (-15 -4323 ((-622 |#2|) (-569 |#2|))) (-15 -2260 (|#2| (-569 |#2|))))
-((-2256 (((-112) |#1|) 16)) (-2257 (((-3 |#1| "failed") |#1|) 14)) (-2254 (((-2 (|:| -3027 |#1|) (|:| -2493 (-751))) |#1|) 31) (((-3 |#1| "failed") |#1| (-751)) 18)) (-2253 (((-112) |#1| (-751)) 19)) (-2258 ((|#1| |#1|) 32)) (-2255 ((|#1| |#1| (-751)) 34)))
-(((-572 |#1|) (-10 -7 (-15 -2253 ((-112) |#1| (-751))) (-15 -2254 ((-3 |#1| "failed") |#1| (-751))) (-15 -2254 ((-2 (|:| -3027 |#1|) (|:| -2493 (-751))) |#1|)) (-15 -2255 (|#1| |#1| (-751))) (-15 -2256 ((-112) |#1|)) (-15 -2257 ((-3 |#1| "failed") |#1|)) (-15 -2258 (|#1| |#1|))) (-537)) (T -572))
-((-2258 (*1 *2 *2) (-12 (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-2257 (*1 *2 *2) (|partial| -12 (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537)))) (-2255 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3027 *3) (|:| -2493 (-751)))) (-5 *1 (-572 *3)) (-4 *3 (-537)))) (-2254 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537)))))
-(-10 -7 (-15 -2253 ((-112) |#1| (-751))) (-15 -2254 ((-3 |#1| "failed") |#1| (-751))) (-15 -2254 ((-2 (|:| -3027 |#1|) (|:| -2493 (-751))) |#1|)) (-15 -2255 (|#1| |#1| (-751))) (-15 -2256 ((-112) |#1|)) (-15 -2257 ((-3 |#1| "failed") |#1|)) (-15 -2258 (|#1| |#1|)))
-((-2259 (((-1143 |#1|) (-895)) 27)))
-(((-573 |#1|) (-10 -7 (-15 -2259 ((-1143 |#1|) (-895)))) (-345)) (T -573))
-((-2259 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-573 *4)) (-4 *4 (-345)))))
-(-10 -7 (-15 -2259 ((-1143 |#1|) (-895))))
-((-3777 (((-569 (-402 (-922 |#1|))) (-569 (-402 (-922 |#1|)))) 27)) (-4172 (((-3 (-309 |#1|) (-622 (-309 |#1|))) (-402 (-922 |#1|)) (-1149)) 34 (|has| |#1| (-145)))) (-4323 (((-622 (-309 |#1|)) (-569 (-402 (-922 |#1|)))) 19)) (-2261 (((-309 |#1|) (-402 (-922 |#1|)) (-1149)) 32 (|has| |#1| (-145)))) (-2260 (((-309 |#1|) (-569 (-402 (-922 |#1|)))) 21)))
-(((-574 |#1|) (-10 -7 (-15 -3777 ((-569 (-402 (-922 |#1|))) (-569 (-402 (-922 |#1|))))) (-15 -4323 ((-622 (-309 |#1|)) (-569 (-402 (-922 |#1|))))) (-15 -2260 ((-309 |#1|) (-569 (-402 (-922 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4172 ((-3 (-309 |#1|) (-622 (-309 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -2261 ((-309 |#1|) (-402 (-922 |#1|)) (-1149)))) |%noBranch|)) (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (T -574))
-((-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-309 *5)) (-5 *1 (-574 *5)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-3 (-309 *5) (-622 (-309 *5)))) (-5 *1 (-574 *5)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-569 (-402 (-922 *4)))) (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-309 *4)) (-5 *1 (-574 *4)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-569 (-402 (-922 *4)))) (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-622 (-309 *4))) (-5 *1 (-574 *4)))) (-3777 (*1 *2 *2) (-12 (-5 *2 (-569 (-402 (-922 *3)))) (-4 *3 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *1 (-574 *3)))))
-(-10 -7 (-15 -3777 ((-569 (-402 (-922 |#1|))) (-569 (-402 (-922 |#1|))))) (-15 -4323 ((-622 (-309 |#1|)) (-569 (-402 (-922 |#1|))))) (-15 -2260 ((-309 |#1|) (-569 (-402 (-922 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4172 ((-3 (-309 |#1|) (-622 (-309 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -2261 ((-309 |#1|) (-402 (-922 |#1|)) (-1149)))) |%noBranch|))
-((-2263 (((-622 (-669 (-538))) (-622 (-538)) (-622 (-878 (-538)))) 46) (((-622 (-669 (-538))) (-622 (-538))) 47) (((-669 (-538)) (-622 (-538)) (-878 (-538))) 42)) (-2262 (((-751) (-622 (-538))) 40)))
-(((-575) (-10 -7 (-15 -2262 ((-751) (-622 (-538)))) (-15 -2263 ((-669 (-538)) (-622 (-538)) (-878 (-538)))) (-15 -2263 ((-622 (-669 (-538))) (-622 (-538)))) (-15 -2263 ((-622 (-669 (-538))) (-622 (-538)) (-622 (-878 (-538))))))) (T -575))
-((-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-538))) (-5 *4 (-622 (-878 (-538)))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-575)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-575)))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-538))) (-5 *4 (-878 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-575)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-751)) (-5 *1 (-575)))))
-(-10 -7 (-15 -2262 ((-751) (-622 (-538)))) (-15 -2263 ((-669 (-538)) (-622 (-538)) (-878 (-538)))) (-15 -2263 ((-622 (-669 (-538))) (-622 (-538)))) (-15 -2263 ((-622 (-669 (-538))) (-622 (-538)) (-622 (-878 (-538))))))
-((-3564 (((-622 |#5|) |#5| (-112)) 73)) (-2264 (((-112) |#5| (-622 |#5|)) 30)))
-(((-576 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3564 ((-622 |#5|) |#5| (-112))) (-15 -2264 ((-112) |#5| (-622 |#5|)))) (-13 (-302) (-145)) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -576))
-((-2264 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-576 *5 *6 *7 *8 *3)))) (-3564 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-622 *3)) (-5 *1 (-576 *5 *6 *7 *8 *3)) (-4 *3 (-1082 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3564 ((-622 |#5|) |#5| (-112))) (-15 -2264 ((-112) |#5| (-622 |#5|))))
-((-2898 (((-112) $ $) NIL)) (-3882 (((-1108) $) 11)) (-3883 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-577) (-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))) (T -577))
-((-3883 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577)))))
-(-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))
-((-2898 (((-112) $ $) NIL (|has| (-142) (-1074)))) (-3785 (($ $) 34)) (-3786 (($ $) NIL)) (-3776 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-3783 (((-112) $ $) 51)) (-3782 (((-112) $ $ (-538)) 46)) (-3777 (((-622 $) $ (-142)) 60) (((-622 $) $ (-139)) 61)) (-1848 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-827)))) (-1846 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-142) (-827))))) (-3242 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-142) $ (-538) (-142)) 45 (|has| $ (-6 -4354))) (((-142) $ (-1198 (-538)) (-142)) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-3774 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-3779 (($ $ (-1198 (-538)) $) 44)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-3765 (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353)))) (-1637 (((-142) $ (-538) (-142)) NIL (|has| $ (-6 -4354)))) (-3448 (((-142) $ (-538)) NIL)) (-3784 (((-112) $ $) 72)) (-3778 (((-538) (-1 (-112) (-142)) $) NIL) (((-538) (-142) $) NIL (|has| (-142) (-1074))) (((-538) (-142) $ (-538)) 48 (|has| (-142) (-1074))) (((-538) $ $ (-538)) 47) (((-538) (-139) $ (-538)) 50)) (-2068 (((-622 (-142)) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) (-142)) 9)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 28 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| (-142) (-827)))) (-3872 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-827)))) (-2511 (((-622 (-142)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2308 (((-538) $) 42 (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-142) (-827)))) (-3780 (((-112) $ $ (-142)) 73)) (-3781 (((-751) $ $ (-142)) 70)) (-2072 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3787 (($ $) 37)) (-3788 (($ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3775 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-3593 (((-1131) $) 38 (|has| (-142) (-1074)))) (-2382 (($ (-142) $ (-538)) NIL) (($ $ $ (-538)) 23)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-538) $) 69) (((-1093) $) NIL (|has| (-142) (-1074)))) (-4160 (((-142) $) NIL (|has| (-538) (-827)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2306 (($ $ (-142)) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-288 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-622 (-142)) (-622 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2312 (((-622 (-142)) $) NIL)) (-3762 (((-112) $) 12)) (-3928 (($) 10)) (-4159 (((-142) $ (-538) (-142)) NIL) (((-142) $ (-538)) 52) (($ $ (-1198 (-538))) 21) (($ $ $) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-1847 (($ $ $ (-538)) 66 (|has| $ (-6 -4354)))) (-3759 (($ $) 17)) (-4330 (((-527) $) NIL (|has| (-142) (-598 (-527))))) (-3884 (($ (-622 (-142))) NIL)) (-4161 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-622 $)) 67)) (-4317 (($ (-142)) NIL) (((-840) $) 27 (|has| (-142) (-597 (-840))))) (-2071 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-142) (-827)))) (-3387 (((-112) $ $) 14 (|has| (-142) (-1074)))) (-3017 (((-112) $ $) NIL (|has| (-142) (-827)))) (-3018 (((-112) $ $) 15 (|has| (-142) (-827)))) (-4316 (((-751) $) 13 (|has| $ (-6 -4353)))))
-(((-578 |#1|) (-13 (-1117) (-10 -8 (-15 -3594 ((-538) $)))) (-538)) (T -578))
-((-3594 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-578 *3)) (-14 *3 *2))))
-(-13 (-1117) (-10 -8 (-15 -3594 ((-538) $))))
-((-3886 (((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2| (-1062 |#4|)) 32)))
-(((-579 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3886 ((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2| (-1062 |#4|))) (-15 -3886 ((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2|))) (-773) (-827) (-545) (-926 |#3| |#1| |#2|)) (T -579))
-((-3886 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-538)))) (-5 *1 (-579 *5 *4 *6 *3)) (-4 *3 (-926 *6 *5 *4)))) (-3886 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1062 *3)) (-4 *3 (-926 *7 *6 *4)) (-4 *6 (-773)) (-4 *4 (-827)) (-4 *7 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-538)))) (-5 *1 (-579 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3886 ((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2| (-1062 |#4|))) (-15 -3886 ((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 63)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-538)) 54) (($ $ (-538) (-538)) 55)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) 60)) (-2295 (($ $) 100)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2293 (((-840) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) (-1002 (-819 (-538))) (-1149) |#1| (-402 (-538))) 224)) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) 34)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3225 (((-112) $) NIL)) (-4131 (((-538) $) 58) (((-538) $ (-538)) 59)) (-2502 (((-112) $) NIL)) (-4136 (($ $ (-895)) 76)) (-4175 (($ (-1 |#1| (-538)) $) 73)) (-4297 (((-112) $) 25)) (-3226 (($ |#1| (-538)) 22) (($ $ (-1055) (-538)) NIL) (($ $ (-622 (-1055)) (-622 (-538))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) 67)) (-2299 (($ (-1002 (-819 (-538))) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) 13)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-4172 (($ $) 150 (|has| |#1| (-38 (-402 (-538)))))) (-2296 (((-3 $ "failed") $ $ (-112)) 99)) (-2294 (($ $ $) 108)) (-3594 (((-1093) $) NIL)) (-2297 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) 15)) (-2298 (((-1002 (-819 (-538))) $) 14)) (-4128 (($ $ (-538)) 45)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-538)))))) (-4159 ((|#1| $ (-538)) 57) (($ $ $) NIL (|has| (-538) (-1085)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (-4307 (((-538) $) NIL)) (-3224 (($ $) 46)) (-4317 (((-840) $) NIL) (($ (-538)) 28) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 27 (|has| |#1| (-170)))) (-4040 ((|#1| $ (-538)) 56)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) 37)) (-4132 ((|#1| $) NIL)) (-2274 (($ $) 186 (|has| |#1| (-38 (-402 (-538)))))) (-2286 (($ $) 158 (|has| |#1| (-38 (-402 (-538)))))) (-2276 (($ $) 190 (|has| |#1| (-38 (-402 (-538)))))) (-2288 (($ $) 163 (|has| |#1| (-38 (-402 (-538)))))) (-2272 (($ $) 189 (|has| |#1| (-38 (-402 (-538)))))) (-2284 (($ $) 162 (|has| |#1| (-38 (-402 (-538)))))) (-2291 (($ $ (-402 (-538))) 166 (|has| |#1| (-38 (-402 (-538)))))) (-2292 (($ $ |#1|) 146 (|has| |#1| (-38 (-402 (-538)))))) (-2289 (($ $) 192 (|has| |#1| (-38 (-402 (-538)))))) (-2290 (($ $) 149 (|has| |#1| (-38 (-402 (-538)))))) (-2271 (($ $) 191 (|has| |#1| (-38 (-402 (-538)))))) (-2283 (($ $) 164 (|has| |#1| (-38 (-402 (-538)))))) (-2273 (($ $) 187 (|has| |#1| (-38 (-402 (-538)))))) (-2285 (($ $) 160 (|has| |#1| (-38 (-402 (-538)))))) (-2275 (($ $) 188 (|has| |#1| (-38 (-402 (-538)))))) (-2287 (($ $) 161 (|has| |#1| (-38 (-402 (-538)))))) (-2268 (($ $) 197 (|has| |#1| (-38 (-402 (-538)))))) (-2280 (($ $) 173 (|has| |#1| (-38 (-402 (-538)))))) (-2270 (($ $) 194 (|has| |#1| (-38 (-402 (-538)))))) (-2282 (($ $) 168 (|has| |#1| (-38 (-402 (-538)))))) (-2266 (($ $) 201 (|has| |#1| (-38 (-402 (-538)))))) (-2278 (($ $) 177 (|has| |#1| (-38 (-402 (-538)))))) (-2265 (($ $) 203 (|has| |#1| (-38 (-402 (-538)))))) (-2277 (($ $) 179 (|has| |#1| (-38 (-402 (-538)))))) (-2267 (($ $) 199 (|has| |#1| (-38 (-402 (-538)))))) (-2279 (($ $) 175 (|has| |#1| (-38 (-402 (-538)))))) (-2269 (($ $) 196 (|has| |#1| (-38 (-402 (-538)))))) (-2281 (($ $) 171 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-4129 ((|#1| $ (-538)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-2991 (($) 29 T CONST)) (-2997 (($) 38 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (-3387 (((-112) $ $) 65)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) 84) (($ $ $) 64)) (-4199 (($ $ $) 81)) (** (($ $ (-895)) NIL) (($ $ (-751)) 103)) (* (($ (-895) $) 89) (($ (-751) $) 87) (($ (-538) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-580 |#1|) (-13 (-1210 |#1| (-538)) (-10 -8 (-15 -2299 ($ (-1002 (-819 (-538))) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))))) (-15 -2298 ((-1002 (-819 (-538))) $)) (-15 -2297 ((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $)) (-15 -4178 ($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))))) (-15 -4297 ((-112) $)) (-15 -4175 ($ (-1 |#1| (-538)) $)) (-15 -2296 ((-3 $ "failed") $ $ (-112))) (-15 -2295 ($ $)) (-15 -2294 ($ $ $)) (-15 -2293 ((-840) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) (-1002 (-819 (-538))) (-1149) |#1| (-402 (-538)))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $)) (-15 -2292 ($ $ |#1|)) (-15 -2291 ($ $ (-402 (-538)))) (-15 -2290 ($ $)) (-15 -2289 ($ $)) (-15 -2288 ($ $)) (-15 -2287 ($ $)) (-15 -2286 ($ $)) (-15 -2285 ($ $)) (-15 -2284 ($ $)) (-15 -2283 ($ $)) (-15 -2282 ($ $)) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $))) |%noBranch|))) (-1025)) (T -580))
-((-4297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2299 (*1 *1 *2 *3) (-12 (-5 *2 (-1002 (-819 (-538)))) (-5 *3 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *4)))) (-4 *4 (-1025)) (-5 *1 (-580 *4)))) (-2298 (*1 *2 *1) (-12 (-5 *2 (-1002 (-819 (-538)))) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2297 (*1 *2 *1) (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-4 *3 (-1025)) (-5 *1 (-580 *3)))) (-4175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-538))) (-4 *3 (-1025)) (-5 *1 (-580 *3)))) (-2296 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2295 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))) (-2294 (*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))) (-2293 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *6)))) (-5 *4 (-1002 (-819 (-538)))) (-5 *5 (-1149)) (-5 *7 (-402 (-538))) (-4 *6 (-1025)) (-5 *2 (-840)) (-5 *1 (-580 *6)))) (-4172 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2292 (*1 *1 *1 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2291 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-580 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1025)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2289 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2288 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2287 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2286 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2285 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2283 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2281 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2280 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2278 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2276 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2272 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2270 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(-13 (-1210 |#1| (-538)) (-10 -8 (-15 -2299 ($ (-1002 (-819 (-538))) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))))) (-15 -2298 ((-1002 (-819 (-538))) $)) (-15 -2297 ((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $)) (-15 -4178 ($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))))) (-15 -4297 ((-112) $)) (-15 -4175 ($ (-1 |#1| (-538)) $)) (-15 -2296 ((-3 $ "failed") $ $ (-112))) (-15 -2295 ($ $)) (-15 -2294 ($ $ $)) (-15 -2293 ((-840) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) (-1002 (-819 (-538))) (-1149) |#1| (-402 (-538)))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $)) (-15 -2292 ($ $ |#1|)) (-15 -2291 ($ $ (-402 (-538)))) (-15 -2290 ($ $)) (-15 -2289 ($ $)) (-15 -2288 ($ $)) (-15 -2287 ($ $)) (-15 -2286 ($ $)) (-15 -2285 ($ $)) (-15 -2284 ($ $)) (-15 -2283 ($ $)) (-15 -2282 ($ $)) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $))) |%noBranch|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4178 (($ (-1126 |#1|)) 9)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) 42)) (-3225 (((-112) $) 52)) (-4131 (((-751) $) 55) (((-751) $ (-751)) 54)) (-2502 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ "failed") $ $) 44 (|has| |#1| (-545)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-1126 |#1|) $) 23)) (-3461 (((-751)) 51)) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 10 T CONST)) (-2997 (($) 14 T CONST)) (-3387 (((-112) $ $) 22)) (-4197 (($ $) 30) (($ $ $) 16)) (-4199 (($ $ $) 25)) (** (($ $ (-895)) NIL) (($ $ (-751)) 49)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-538)) 36)))
-(((-581 |#1|) (-13 (-1025) (-10 -8 (-15 -4177 ((-1126 |#1|) $)) (-15 -4178 ($ (-1126 |#1|))) (-15 -3225 ((-112) $)) (-15 -4131 ((-751) $)) (-15 -4131 ((-751) $ (-751))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-538))) (IF (|has| |#1| (-545)) (-6 (-545)) |%noBranch|))) (-1025)) (T -581))
-((-4177 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-581 *3)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-4131 (*1 *2 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))))
-(-13 (-1025) (-10 -8 (-15 -4177 ((-1126 |#1|) $)) (-15 -4178 ($ (-1126 |#1|))) (-15 -3225 ((-112) $)) (-15 -4131 ((-751) $)) (-15 -4131 ((-751) $ (-751))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-538))) (IF (|has| |#1| (-545)) (-6 (-545)) |%noBranch|)))
-((-4318 (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 15)))
-(((-582 |#1| |#2|) (-10 -7 (-15 -4318 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) (-1185) (-1185)) (T -582))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-585 *6)) (-5 *1 (-582 *5 *6)))))
-(-10 -7 (-15 -4318 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))))
-((-4318 (((-1126 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1126 |#2|)) 20) (((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-585 |#2|)) 19) (((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)) 18)))
-(((-583 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|))) (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-585 |#2|))) (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1126 |#2|)))) (-1185) (-1185) (-1185)) (T -583))
-((-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-1126 *7)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8)) (-5 *1 (-583 *6 *7 *8)))) (-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1126 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8)) (-5 *1 (-583 *6 *7 *8)))) (-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-585 *8)) (-5 *1 (-583 *6 *7 *8)))))
-(-10 -7 (-15 -4318 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|))) (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-585 |#2|))) (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1126 |#2|))))
-((-2304 ((|#3| |#3| (-622 (-595 |#3|)) (-622 (-1149))) 55)) (-2303 (((-166 |#2|) |#3|) 117)) (-2300 ((|#3| (-166 |#2|)) 44)) (-2301 ((|#2| |#3|) 19)) (-2302 ((|#3| |#2|) 33)))
-(((-584 |#1| |#2| |#3|) (-10 -7 (-15 -2300 (|#3| (-166 |#2|))) (-15 -2301 (|#2| |#3|)) (-15 -2302 (|#3| |#2|)) (-15 -2303 ((-166 |#2|) |#3|)) (-15 -2304 (|#3| |#3| (-622 (-595 |#3|)) (-622 (-1149))))) (-13 (-545) (-827)) (-13 (-416 |#1|) (-978) (-1171)) (-13 (-416 (-166 |#1|)) (-978) (-1171))) (T -584))
-((-2304 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-622 (-595 *2))) (-5 *4 (-622 (-1149))) (-4 *2 (-13 (-416 (-166 *5)) (-978) (-1171))) (-4 *5 (-13 (-545) (-827))) (-5 *1 (-584 *5 *6 *2)) (-4 *6 (-13 (-416 *5) (-978) (-1171))))) (-2303 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827))) (-5 *2 (-166 *5)) (-5 *1 (-584 *4 *5 *3)) (-4 *5 (-13 (-416 *4) (-978) (-1171))) (-4 *3 (-13 (-416 (-166 *4)) (-978) (-1171))))) (-2302 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827))) (-4 *2 (-13 (-416 (-166 *4)) (-978) (-1171))) (-5 *1 (-584 *4 *3 *2)) (-4 *3 (-13 (-416 *4) (-978) (-1171))))) (-2301 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827))) (-4 *2 (-13 (-416 *4) (-978) (-1171))) (-5 *1 (-584 *4 *2 *3)) (-4 *3 (-13 (-416 (-166 *4)) (-978) (-1171))))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-416 *4) (-978) (-1171))) (-4 *4 (-13 (-545) (-827))) (-4 *2 (-13 (-416 (-166 *4)) (-978) (-1171))) (-5 *1 (-584 *4 *5 *2)))))
-(-10 -7 (-15 -2300 (|#3| (-166 |#2|))) (-15 -2301 (|#2| |#3|)) (-15 -2302 (|#3| |#2|)) (-15 -2303 ((-166 |#2|) |#3|)) (-15 -2304 (|#3| |#3| (-622 (-595 |#3|)) (-622 (-1149)))))
-((-4073 (($ (-1 (-112) |#1|) $) 17)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3811 (($ (-1 |#1| |#1|) |#1|) 9)) (-3810 (($ (-1 (-112) |#1|) $) 13)) (-3809 (($ (-1 (-112) |#1|) $) 15)) (-3884 (((-1126 |#1|) $) 18)) (-4317 (((-840) $) NIL)))
-(((-585 |#1|) (-13 (-597 (-840)) (-10 -8 (-15 -4318 ($ (-1 |#1| |#1|) $)) (-15 -3810 ($ (-1 (-112) |#1|) $)) (-15 -3809 ($ (-1 (-112) |#1|) $)) (-15 -4073 ($ (-1 (-112) |#1|) $)) (-15 -3811 ($ (-1 |#1| |#1|) |#1|)) (-15 -3884 ((-1126 |#1|) $)))) (-1185)) (T -585))
-((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) (-3811 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1185)))))
-(-13 (-597 (-840)) (-10 -8 (-15 -4318 ($ (-1 |#1| |#1|) $)) (-15 -3810 ($ (-1 (-112) |#1|) $)) (-15 -3809 ($ (-1 (-112) |#1|) $)) (-15 -4073 ($ (-1 (-112) |#1|) $)) (-15 -3811 ($ (-1 |#1| |#1|) |#1|)) (-15 -3884 ((-1126 |#1|) $))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751)) NIL (|has| |#1| (-23)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4195 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4192 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-4079 (((-112) $ (-751)) NIL)) (-4193 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-4196 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-1025)))) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4197 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4199 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-538) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-586 |#1| |#2|) (-1230 |#1|) (-1185) (-538)) (T -586))
+(-13 (-520) (-837))
+(((-171) . T) ((-520) . T) ((-837) . T))
+((-1671 (((-112) $ $) NIL)) (-4213 (($) 7 T CONST)) (-2883 (((-1131) $) NIL)) (-1461 (($) 6 T CONST)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 14)) (-3073 (($) 8 T CONST)) (-2281 (((-112) $ $) 10)))
+(((-565) (-13 (-1073) (-10 -8 (-15 -1461 ($) -1426) (-15 -4213 ($) -1426) (-15 -3073 ($) -1426)))) (T -565))
+((-1461 (*1 *1) (-5 *1 (-565))) (-4213 (*1 *1) (-5 *1 (-565))) (-3073 (*1 *1) (-5 *1 (-565))))
+(-13 (-1073) (-10 -8 (-15 -1461 ($) -1426) (-15 -4213 ($) -1426) (-15 -3073 ($) -1426)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $ (-552)) 66)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-1496 (($ (-1145 (-552)) (-552)) 72)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) 58)) (-1507 (($ $) 34)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2172 (((-751) $) 15)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1531 (((-552)) 29)) (-1520 (((-552) $) 32)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2147 (($ $ (-552)) 21)) (-2802 (((-3 $ "failed") $ $) 59)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) 16)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 61)) (-1542 (((-1129 (-552)) $) 18)) (-3580 (($ $) 23)) (-1683 (((-839) $) 87) (($ (-552)) 52) (($ $) NIL)) (-4141 (((-751)) 14)) (-3518 (((-112) $ $) NIL)) (-2874 (((-552) $ (-552)) 36)) (-2089 (($) 35 T CONST)) (-2100 (($) 19 T CONST)) (-2281 (((-112) $ $) 39)) (-2393 (($ $) 51) (($ $ $) 37)) (-2382 (($ $ $) 50)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 54) (($ $ $) 55)))
+(((-566 |#1| |#2|) (-845 |#1|) (-552) (-112)) (T -566))
+NIL
+(-845 |#1|)
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 21)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (($ $ (-897)) NIL (|has| $ (-363))) (($ $) NIL)) (-3811 (((-1159 (-897) (-751)) (-552)) 47)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 $ "failed") $) 75)) (-1895 (($ $) 74)) (-2670 (($ (-1232 $)) 73)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) 32)) (-3702 (($) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) 49)) (-3872 (((-112) $) NIL)) (-3554 (($ $) NIL) (($ $ (-751)) NIL)) (-2951 (((-112) $) NIL)) (-2172 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3650 (((-112) $) NIL)) (-1280 (($) 37 (|has| $ (-363)))) (-4328 (((-112) $) NIL (|has| $ (-363)))) (-4209 (($ $ (-897)) NIL (|has| $ (-363))) (($ $) NIL)) (-4034 (((-3 $ "failed") $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 $) $ (-897)) NIL (|has| $ (-363))) (((-1145 $) $) 83)) (-4318 (((-897) $) 55)) (-1378 (((-1145 $) $) NIL (|has| $ (-363)))) (-1369 (((-3 (-1145 $) "failed") $ $) NIL (|has| $ (-363))) (((-1145 $) $) NIL (|has| $ (-363)))) (-1386 (($ $ (-1145 $)) NIL (|has| $ (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL T CONST)) (-3123 (($ (-897)) 48)) (-4143 (((-112) $) 67)) (-2831 (((-1093) $) NIL)) (-3212 (($) 19 (|has| $ (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 42)) (-3824 (((-413 $) $) NIL)) (-4130 (((-897)) 66) (((-813 (-897))) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-3 (-751) "failed") $ $) NIL) (((-751) $) NIL)) (-3904 (((-133)) NIL)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-4276 (((-897) $) 65) (((-813 (-897)) $) NIL)) (-3610 (((-1145 $)) 82)) (-3798 (($) 54)) (-1397 (($) 38 (|has| $ (-363)))) (-2780 (((-669 $) (-1232 $)) NIL) (((-1232 $) $) 71)) (-2042 (((-552) $) 28)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) 30) (($ $) NIL) (($ (-402 (-552))) NIL)) (-4243 (((-3 $ "failed") $) NIL) (($ $) 84)) (-4141 (((-751)) 39)) (-1270 (((-1232 $) (-897)) 77) (((-1232 $)) 76)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) 22 T CONST)) (-2100 (($) 18 T CONST)) (-4104 (($ $ (-751)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 26)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 61) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL)))
+(((-567 |#1|) (-13 (-344) (-324 $) (-598 (-552))) (-897)) (T -567))
+NIL
+(-13 (-344) (-324 $) (-598 (-552)))
+((-3081 (((-1237) (-1131)) 10)))
+(((-568) (-10 -7 (-15 -3081 ((-1237) (-1131))))) (T -568))
+((-3081 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-568)))))
+(-10 -7 (-15 -3081 ((-1237) (-1131))))
+((-3819 (((-571 |#2|) (-571 |#2|)) 40)) (-3455 (((-625 |#2|) (-571 |#2|)) 42)) (-2021 ((|#2| (-571 |#2|)) 48)))
+(((-569 |#1| |#2|) (-10 -7 (-15 -3819 ((-571 |#2|) (-571 |#2|))) (-15 -3455 ((-625 |#2|) (-571 |#2|))) (-15 -2021 (|#2| (-571 |#2|)))) (-13 (-446) (-1014 (-552)) (-827) (-621 (-552))) (-13 (-29 |#1|) (-1171))) (T -569))
+((-2021 (*1 *2 *3) (-12 (-5 *3 (-571 *2)) (-4 *2 (-13 (-29 *4) (-1171))) (-5 *1 (-569 *4 *2)) (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-571 *5)) (-4 *5 (-13 (-29 *4) (-1171))) (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *2 (-625 *5)) (-5 *1 (-569 *4 *5)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-571 *4)) (-4 *4 (-13 (-29 *3) (-1171))) (-4 *3 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *1 (-569 *3 *4)))))
+(-10 -7 (-15 -3819 ((-571 |#2|) (-571 |#2|))) (-15 -3455 ((-625 |#2|) (-571 |#2|))) (-15 -2021 (|#2| (-571 |#2|))))
+((-1996 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|)) 30)))
+(((-570 |#1| |#2|) (-10 -7 (-15 -1996 ((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|))) (-15 -1996 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1996 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1996 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-358) (-358)) (T -570))
+((-1996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-570 *5 *6)))) (-1996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-358)) (-4 *2 (-358)) (-5 *1 (-570 *5 *2)))) (-1996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3114 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -3114 *6) (|:| |coeff| *6))) (-5 *1 (-570 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-571 *5)) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-571 *6)) (-5 *1 (-570 *5 *6)))))
+(-10 -7 (-15 -1996 ((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|))) (-15 -1996 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1996 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1996 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 69)) (-1895 ((|#1| $) NIL)) (-3114 ((|#1| $) 26)) (-3096 (((-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-3124 (($ |#1| (-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) (-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3106 (((-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) $) 27)) (-2883 (((-1131) $) NIL)) (-4269 (($ |#1| |#1|) 33) (($ |#1| (-1149)) 44 (|has| |#1| (-1014 (-1149))))) (-2831 (((-1093) $) NIL)) (-3089 (((-112) $) 30)) (-3072 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1149)) 82 (|has| |#1| (-876 (-1149))))) (-1683 (((-839) $) 96) (($ |#1|) 25)) (-2089 (($) 16 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) 15) (($ $ $) NIL)) (-2382 (($ $ $) 78)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 14) (($ (-402 (-552)) $) 36) (($ $ (-402 (-552))) NIL)))
+(((-571 |#1|) (-13 (-698 (-402 (-552))) (-1014 |#1|) (-10 -8 (-15 -3124 ($ |#1| (-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) (-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3114 (|#1| $)) (-15 -3106 ((-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) $)) (-15 -3096 ((-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3089 ((-112) $)) (-15 -4269 ($ |#1| |#1|)) (-15 -3072 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-876 (-1149))) (-15 -3072 (|#1| $ (-1149))) |%noBranch|) (IF (|has| |#1| (-1014 (-1149))) (-15 -4269 ($ |#1| (-1149))) |%noBranch|))) (-358)) (T -571))
+((-3124 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 *2)) (|:| |logand| (-1145 *2))))) (-5 *4 (-625 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-358)) (-5 *1 (-571 *2)))) (-3114 (*1 *2 *1) (-12 (-5 *1 (-571 *2)) (-4 *2 (-358)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 *3)) (|:| |logand| (-1145 *3))))) (-5 *1 (-571 *3)) (-4 *3 (-358)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-571 *3)) (-4 *3 (-358)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-358)))) (-4269 (*1 *1 *2 *2) (-12 (-5 *1 (-571 *2)) (-4 *2 (-358)))) (-3072 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-571 *2)) (-4 *2 (-358)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *2 (-358)) (-4 *2 (-876 *3)) (-5 *1 (-571 *2)) (-5 *3 (-1149)))) (-4269 (*1 *1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *1 (-571 *2)) (-4 *2 (-1014 *3)) (-4 *2 (-358)))))
+(-13 (-698 (-402 (-552))) (-1014 |#1|) (-10 -8 (-15 -3124 ($ |#1| (-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) (-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3114 (|#1| $)) (-15 -3106 ((-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) $)) (-15 -3096 ((-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3089 ((-112) $)) (-15 -4269 ($ |#1| |#1|)) (-15 -3072 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-876 (-1149))) (-15 -3072 (|#1| $ (-1149))) |%noBranch|) (IF (|has| |#1| (-1014 (-1149))) (-15 -4269 ($ |#1| (-1149))) |%noBranch|)))
+((-1984 (((-112) |#1|) 16)) (-1994 (((-3 |#1| "failed") |#1|) 14)) (-3143 (((-2 (|:| -3929 |#1|) (|:| -3564 (-751))) |#1|) 31) (((-3 |#1| "failed") |#1| (-751)) 18)) (-3132 (((-112) |#1| (-751)) 19)) (-2005 ((|#1| |#1|) 32)) (-3155 ((|#1| |#1| (-751)) 34)))
+(((-572 |#1|) (-10 -7 (-15 -3132 ((-112) |#1| (-751))) (-15 -3143 ((-3 |#1| "failed") |#1| (-751))) (-15 -3143 ((-2 (|:| -3929 |#1|) (|:| -3564 (-751))) |#1|)) (-15 -3155 (|#1| |#1| (-751))) (-15 -1984 ((-112) |#1|)) (-15 -1994 ((-3 |#1| "failed") |#1|)) (-15 -2005 (|#1| |#1|))) (-537)) (T -572))
+((-2005 (*1 *2 *2) (-12 (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-1994 (*1 *2 *2) (|partial| -12 (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-1984 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537)))) (-3155 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3929 *3) (|:| -3564 (-751)))) (-5 *1 (-572 *3)) (-4 *3 (-537)))) (-3143 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537)))))
+(-10 -7 (-15 -3132 ((-112) |#1| (-751))) (-15 -3143 ((-3 |#1| "failed") |#1| (-751))) (-15 -3143 ((-2 (|:| -3929 |#1|) (|:| -3564 (-751))) |#1|)) (-15 -3155 (|#1| |#1| (-751))) (-15 -1984 ((-112) |#1|)) (-15 -1994 ((-3 |#1| "failed") |#1|)) (-15 -2005 (|#1| |#1|)))
+((-2012 (((-1145 |#1|) (-897)) 27)))
+(((-573 |#1|) (-10 -7 (-15 -2012 ((-1145 |#1|) (-897)))) (-344)) (T -573))
+((-2012 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-573 *4)) (-4 *4 (-344)))))
+(-10 -7 (-15 -2012 ((-1145 |#1|) (-897))))
+((-3819 (((-571 (-402 (-928 |#1|))) (-571 (-402 (-928 |#1|)))) 27)) (-2481 (((-3 (-311 |#1|) (-625 (-311 |#1|))) (-402 (-928 |#1|)) (-1149)) 34 (|has| |#1| (-145)))) (-3455 (((-625 (-311 |#1|)) (-571 (-402 (-928 |#1|)))) 19)) (-2030 (((-311 |#1|) (-402 (-928 |#1|)) (-1149)) 32 (|has| |#1| (-145)))) (-2021 (((-311 |#1|) (-571 (-402 (-928 |#1|)))) 21)))
+(((-574 |#1|) (-10 -7 (-15 -3819 ((-571 (-402 (-928 |#1|))) (-571 (-402 (-928 |#1|))))) (-15 -3455 ((-625 (-311 |#1|)) (-571 (-402 (-928 |#1|))))) (-15 -2021 ((-311 |#1|) (-571 (-402 (-928 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2481 ((-3 (-311 |#1|) (-625 (-311 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -2030 ((-311 |#1|) (-402 (-928 |#1|)) (-1149)))) |%noBranch|)) (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (T -574))
+((-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *2 (-311 *5)) (-5 *1 (-574 *5)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *2 (-3 (-311 *5) (-625 (-311 *5)))) (-5 *1 (-574 *5)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-571 (-402 (-928 *4)))) (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *2 (-311 *4)) (-5 *1 (-574 *4)))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-571 (-402 (-928 *4)))) (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *2 (-625 (-311 *4))) (-5 *1 (-574 *4)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-571 (-402 (-928 *3)))) (-4 *3 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *1 (-574 *3)))))
+(-10 -7 (-15 -3819 ((-571 (-402 (-928 |#1|))) (-571 (-402 (-928 |#1|))))) (-15 -3455 ((-625 (-311 |#1|)) (-571 (-402 (-928 |#1|))))) (-15 -2021 ((-311 |#1|) (-571 (-402 (-928 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2481 ((-3 (-311 |#1|) (-625 (-311 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -2030 ((-311 |#1|) (-402 (-928 |#1|)) (-1149)))) |%noBranch|))
+((-2049 (((-625 (-669 (-552))) (-625 (-552)) (-625 (-881 (-552)))) 46) (((-625 (-669 (-552))) (-625 (-552))) 47) (((-669 (-552)) (-625 (-552)) (-881 (-552))) 42)) (-2040 (((-751) (-625 (-552))) 40)))
+(((-575) (-10 -7 (-15 -2040 ((-751) (-625 (-552)))) (-15 -2049 ((-669 (-552)) (-625 (-552)) (-881 (-552)))) (-15 -2049 ((-625 (-669 (-552))) (-625 (-552)))) (-15 -2049 ((-625 (-669 (-552))) (-625 (-552)) (-625 (-881 (-552))))))) (T -575))
+((-2049 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-552))) (-5 *4 (-625 (-881 (-552)))) (-5 *2 (-625 (-669 (-552)))) (-5 *1 (-575)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-625 (-669 (-552)))) (-5 *1 (-575)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-552))) (-5 *4 (-881 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-575)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-751)) (-5 *1 (-575)))))
+(-10 -7 (-15 -2040 ((-751) (-625 (-552)))) (-15 -2049 ((-669 (-552)) (-625 (-552)) (-881 (-552)))) (-15 -2049 ((-625 (-669 (-552))) (-625 (-552)))) (-15 -2049 ((-625 (-669 (-552))) (-625 (-552)) (-625 (-881 (-552))))))
+((-2694 (((-625 |#5|) |#5| (-112)) 73)) (-2062 (((-112) |#5| (-625 |#5|)) 30)))
+(((-576 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2694 ((-625 |#5|) |#5| (-112))) (-15 -2062 ((-112) |#5| (-625 |#5|)))) (-13 (-302) (-145)) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -576))
+((-2062 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-576 *5 *6 *7 *8 *3)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-625 *3)) (-5 *1 (-576 *5 *6 *7 *8 *3)) (-4 *3 (-1082 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2694 ((-625 |#5|) |#5| (-112))) (-15 -2062 ((-112) |#5| (-625 |#5|))))
+((-1671 (((-112) $ $) NIL)) (-2662 (((-1108) $) 11)) (-2651 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-577) (-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))) (T -577))
+((-2651 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577)))))
+(-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))
+((-1671 (((-112) $ $) NIL (|has| (-142) (-1073)))) (-3829 (($ $) 34)) (-3843 (($ $) NIL)) (-3808 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1975 (((-112) $ $) 51)) (-1951 (((-112) $ $ (-552)) 46)) (-3819 (((-625 $) $ (-142)) 60) (((-625 $) $ (-139)) 61)) (-3237 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-827)))) (-3218 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-142) (-827))))) (-1800 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-142) $ (-552) (-142)) 45 (|has| $ (-6 -4354))) (((-142) $ (-1199 (-552)) (-142)) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-3209 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-1353 (($ $ (-1199 (-552)) $) 44)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1416 (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3692 (((-142) $ (-552) (-142)) NIL (|has| $ (-6 -4354)))) (-3631 (((-142) $ (-552)) NIL)) (-1992 (((-112) $ $) 72)) (-2483 (((-552) (-1 (-112) (-142)) $) NIL) (((-552) (-142) $) NIL (|has| (-142) (-1073))) (((-552) (-142) $ (-552)) 48 (|has| (-142) (-1073))) (((-552) $ $ (-552)) 47) (((-552) (-139) $ (-552)) 50)) (-3799 (((-625 (-142)) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) (-142)) 9)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 28 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| (-142) (-827)))) (-3280 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-827)))) (-3730 (((-625 (-142)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-2537 (((-552) $) 42 (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-142) (-827)))) (-1899 (((-112) $ $ (-142)) 73)) (-2344 (((-751) $ $ (-142)) 70)) (-3683 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3857 (($ $) 37)) (-3870 (($ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3221 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-2883 (((-1131) $) 38 (|has| (-142) (-1073)))) (-3994 (($ (-142) $ (-552)) NIL) (($ $ $ (-552)) 23)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-552) $) 69) (((-1093) $) NIL (|has| (-142) (-1073)))) (-2924 (((-142) $) NIL (|has| (-552) (-827)))) (-2380 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2518 (($ $ (-142)) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-625 (-142)) (-625 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1358 (((-625 (-142)) $) NIL)) (-1916 (((-112) $) 12)) (-3600 (($) 10)) (-2154 (((-142) $ (-552) (-142)) NIL) (((-142) $ (-552)) 52) (($ $ (-1199 (-552))) 21) (($ $ $) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-3228 (($ $ $ (-552)) 66 (|has| $ (-6 -4354)))) (-1871 (($ $) 17)) (-2042 (((-528) $) NIL (|has| (-142) (-598 (-528))))) (-1695 (($ (-625 (-142))) NIL)) (-3402 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-625 $)) 67)) (-1683 (($ (-142)) NIL) (((-839) $) 27 (|has| (-142) (-597 (-839))))) (-1900 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2281 (((-112) $ $) 14 (|has| (-142) (-1073)))) (-2334 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2307 (((-112) $ $) 15 (|has| (-142) (-827)))) (-1471 (((-751) $) 13 (|has| $ (-6 -4353)))))
+(((-578 |#1|) (-13 (-1117) (-10 -8 (-15 -2831 ((-552) $)))) (-552)) (T -578))
+((-2831 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-578 *3)) (-14 *3 *2))))
+(-13 (-1117) (-10 -8 (-15 -2831 ((-552) $))))
+((-1791 (((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1067 |#4|)) 32)))
+(((-579 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1791 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1067 |#4|))) (-15 -1791 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|))) (-773) (-827) (-544) (-925 |#3| |#1| |#2|)) (T -579))
+((-1791 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) (-5 *1 (-579 *5 *4 *6 *3)) (-4 *3 (-925 *6 *5 *4)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1067 *3)) (-4 *3 (-925 *7 *6 *4)) (-4 *6 (-773)) (-4 *4 (-827)) (-4 *7 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) (-5 *1 (-579 *6 *4 *7 *3)))))
+(-10 -7 (-15 -1791 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1067 |#4|))) (-15 -1791 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 63)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-552)) 54) (($ $ (-552) (-552)) 55)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 60)) (-2409 (($ $) 100)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2386 (((-839) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1002 (-820 (-552))) (-1149) |#1| (-402 (-552))) 224)) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 34)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3592 (((-112) $) NIL)) (-2172 (((-552) $) 58) (((-552) $ (-552)) 59)) (-3650 (((-112) $) NIL)) (-2216 (($ $ (-897)) 76)) (-2493 (($ (-1 |#1| (-552)) $) 73)) (-4201 (((-112) $) 25)) (-3957 (($ |#1| (-552)) 22) (($ $ (-1055) (-552)) NIL) (($ $ (-625 (-1055)) (-625 (-552))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) 67)) (-2448 (($ (-1002 (-820 (-552))) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 13)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2481 (($ $) 150 (|has| |#1| (-38 (-402 (-552)))))) (-2418 (((-3 $ "failed") $ $ (-112)) 99)) (-2398 (($ $ $) 108)) (-2831 (((-1093) $) NIL)) (-2428 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 15)) (-2437 (((-1002 (-820 (-552))) $) 14)) (-2147 (($ $ (-552)) 45)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552)))))) (-2154 ((|#1| $ (-552)) 57) (($ $ $) NIL (|has| (-552) (-1085)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-4276 (((-552) $) NIL)) (-3580 (($ $) 46)) (-1683 (((-839) $) NIL) (($ (-552)) 28) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 27 (|has| |#1| (-170)))) (-3637 ((|#1| $ (-552)) 56)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) 37)) (-2845 ((|#1| $) NIL)) (-2169 (($ $) 186 (|has| |#1| (-38 (-402 (-552)))))) (-2298 (($ $) 158 (|has| |#1| (-38 (-402 (-552)))))) (-2191 (($ $) 190 (|has| |#1| (-38 (-402 (-552)))))) (-2326 (($ $) 163 (|has| |#1| (-38 (-402 (-552)))))) (-2144 (($ $) 189 (|has| |#1| (-38 (-402 (-552)))))) (-2275 (($ $) 162 (|has| |#1| (-38 (-402 (-552)))))) (-2365 (($ $ (-402 (-552))) 166 (|has| |#1| (-38 (-402 (-552)))))) (-2376 (($ $ |#1|) 146 (|has| |#1| (-38 (-402 (-552)))))) (-2339 (($ $) 192 (|has| |#1| (-38 (-402 (-552)))))) (-2353 (($ $) 149 (|has| |#1| (-38 (-402 (-552)))))) (-2135 (($ $) 191 (|has| |#1| (-38 (-402 (-552)))))) (-2264 (($ $) 164 (|has| |#1| (-38 (-402 (-552)))))) (-2159 (($ $) 187 (|has| |#1| (-38 (-402 (-552)))))) (-2286 (($ $) 160 (|has| |#1| (-38 (-402 (-552)))))) (-2179 (($ $) 188 (|has| |#1| (-38 (-402 (-552)))))) (-2313 (($ $) 161 (|has| |#1| (-38 (-402 (-552)))))) (-2105 (($ $) 197 (|has| |#1| (-38 (-402 (-552)))))) (-2235 (($ $) 173 (|has| |#1| (-38 (-402 (-552)))))) (-2123 (($ $) 194 (|has| |#1| (-38 (-402 (-552)))))) (-2255 (($ $) 168 (|has| |#1| (-38 (-402 (-552)))))) (-2083 (($ $) 201 (|has| |#1| (-38 (-402 (-552)))))) (-2213 (($ $) 177 (|has| |#1| (-38 (-402 (-552)))))) (-2073 (($ $) 203 (|has| |#1| (-38 (-402 (-552)))))) (-2202 (($ $) 179 (|has| |#1| (-38 (-402 (-552)))))) (-2094 (($ $) 199 (|has| |#1| (-38 (-402 (-552)))))) (-2223 (($ $) 175 (|has| |#1| (-38 (-402 (-552)))))) (-2114 (($ $) 196 (|has| |#1| (-38 (-402 (-552)))))) (-2246 (($ $) 171 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2874 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-2089 (($) 29 T CONST)) (-2100 (($) 38 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-2281 (((-112) $ $) 65)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) 84) (($ $ $) 64)) (-2382 (($ $ $) 81)) (** (($ $ (-897)) NIL) (($ $ (-751)) 103)) (* (($ (-897) $) 89) (($ (-751) $) 87) (($ (-552) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-580 |#1|) (-13 (-1210 |#1| (-552)) (-10 -8 (-15 -2448 ($ (-1002 (-820 (-552))) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -2437 ((-1002 (-820 (-552))) $)) (-15 -2428 ((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $)) (-15 -3615 ($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -4201 ((-112) $)) (-15 -2493 ($ (-1 |#1| (-552)) $)) (-15 -2418 ((-3 $ "failed") $ $ (-112))) (-15 -2409 ($ $)) (-15 -2398 ($ $ $)) (-15 -2386 ((-839) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1002 (-820 (-552))) (-1149) |#1| (-402 (-552)))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $)) (-15 -2376 ($ $ |#1|)) (-15 -2365 ($ $ (-402 (-552)))) (-15 -2353 ($ $)) (-15 -2339 ($ $)) (-15 -2326 ($ $)) (-15 -2313 ($ $)) (-15 -2298 ($ $)) (-15 -2286 ($ $)) (-15 -2275 ($ $)) (-15 -2264 ($ $)) (-15 -2255 ($ $)) (-15 -2246 ($ $)) (-15 -2235 ($ $)) (-15 -2223 ($ $)) (-15 -2213 ($ $)) (-15 -2202 ($ $)) (-15 -2191 ($ $)) (-15 -2179 ($ $)) (-15 -2169 ($ $)) (-15 -2159 ($ $)) (-15 -2144 ($ $)) (-15 -2135 ($ $)) (-15 -2123 ($ $)) (-15 -2114 ($ $)) (-15 -2105 ($ $)) (-15 -2094 ($ $)) (-15 -2083 ($ $)) (-15 -2073 ($ $))) |%noBranch|))) (-1025)) (T -580))
+((-4201 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2448 (*1 *1 *2 *3) (-12 (-5 *2 (-1002 (-820 (-552)))) (-5 *3 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *4)))) (-4 *4 (-1025)) (-5 *1 (-580 *4)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-1002 (-820 (-552)))) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-4 *3 (-1025)) (-5 *1 (-580 *3)))) (-2493 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *3 (-1025)) (-5 *1 (-580 *3)))) (-2418 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2409 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))) (-2398 (*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))) (-2386 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *6)))) (-5 *4 (-1002 (-820 (-552)))) (-5 *5 (-1149)) (-5 *7 (-402 (-552))) (-4 *6 (-1025)) (-5 *2 (-839)) (-5 *1 (-580 *6)))) (-2481 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2365 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-580 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1025)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2339 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2326 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2286 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2255 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2246 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2235 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2223 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2213 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2202 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2191 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2144 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2135 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2123 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2105 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2094 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2083 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2073 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(-13 (-1210 |#1| (-552)) (-10 -8 (-15 -2448 ($ (-1002 (-820 (-552))) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -2437 ((-1002 (-820 (-552))) $)) (-15 -2428 ((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $)) (-15 -3615 ($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -4201 ((-112) $)) (-15 -2493 ($ (-1 |#1| (-552)) $)) (-15 -2418 ((-3 $ "failed") $ $ (-112))) (-15 -2409 ($ $)) (-15 -2398 ($ $ $)) (-15 -2386 ((-839) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1002 (-820 (-552))) (-1149) |#1| (-402 (-552)))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $)) (-15 -2376 ($ $ |#1|)) (-15 -2365 ($ $ (-402 (-552)))) (-15 -2353 ($ $)) (-15 -2339 ($ $)) (-15 -2326 ($ $)) (-15 -2313 ($ $)) (-15 -2298 ($ $)) (-15 -2286 ($ $)) (-15 -2275 ($ $)) (-15 -2264 ($ $)) (-15 -2255 ($ $)) (-15 -2246 ($ $)) (-15 -2235 ($ $)) (-15 -2223 ($ $)) (-15 -2213 ($ $)) (-15 -2202 ($ $)) (-15 -2191 ($ $)) (-15 -2179 ($ $)) (-15 -2169 ($ $)) (-15 -2159 ($ $)) (-15 -2144 ($ $)) (-15 -2135 ($ $)) (-15 -2123 ($ $)) (-15 -2114 ($ $)) (-15 -2105 ($ $)) (-15 -2094 ($ $)) (-15 -2083 ($ $)) (-15 -2073 ($ $))) |%noBranch|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3615 (($ (-1129 |#1|)) 9)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) 42)) (-3592 (((-112) $) 52)) (-2172 (((-751) $) 55) (((-751) $ (-751)) 54)) (-3650 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ $) 44 (|has| |#1| (-544)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-1129 |#1|) $) 23)) (-4141 (((-751)) 51)) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 10 T CONST)) (-2100 (($) 14 T CONST)) (-2281 (((-112) $ $) 22)) (-2393 (($ $) 30) (($ $ $) 16)) (-2382 (($ $ $) 25)) (** (($ $ (-897)) NIL) (($ $ (-751)) 49)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-552)) 36)))
+(((-581 |#1|) (-13 (-1025) (-10 -8 (-15 -2512 ((-1129 |#1|) $)) (-15 -3615 ($ (-1129 |#1|))) (-15 -3592 ((-112) $)) (-15 -2172 ((-751) $)) (-15 -2172 ((-751) $ (-751))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-552))) (IF (|has| |#1| (-544)) (-6 (-544)) |%noBranch|))) (-1025)) (T -581))
+((-2512 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-581 *3)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-2172 (*1 *2 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))))
+(-13 (-1025) (-10 -8 (-15 -2512 ((-1129 |#1|) $)) (-15 -3615 ($ (-1129 |#1|))) (-15 -3592 ((-112) $)) (-15 -2172 ((-751) $)) (-15 -2172 ((-751) $ (-751))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-552))) (IF (|has| |#1| (-544)) (-6 (-544)) |%noBranch|)))
+((-1996 (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 15)))
+(((-582 |#1| |#2|) (-10 -7 (-15 -1996 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) (-1186) (-1186)) (T -582))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-585 *6)) (-5 *1 (-582 *5 *6)))))
+(-10 -7 (-15 -1996 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))))
+((-1996 (((-1129 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1129 |#2|)) 20) (((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-585 |#2|)) 19) (((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)) 18)))
+(((-583 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|))) (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-585 |#2|))) (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1129 |#2|)))) (-1186) (-1186) (-1186)) (T -583))
+((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-1129 *7)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8)) (-5 *1 (-583 *6 *7 *8)))) (-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1129 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8)) (-5 *1 (-583 *6 *7 *8)))) (-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-585 *8)) (-5 *1 (-583 *6 *7 *8)))))
+(-10 -7 (-15 -1996 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|))) (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-585 |#2|))) (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1129 |#2|))))
+((-2499 ((|#3| |#3| (-625 (-596 |#3|)) (-625 (-1149))) 55)) (-2490 (((-167 |#2|) |#3|) 117)) (-2460 ((|#3| (-167 |#2|)) 44)) (-2469 ((|#2| |#3|) 19)) (-2478 ((|#3| |#2|) 33)))
+(((-584 |#1| |#2| |#3|) (-10 -7 (-15 -2460 (|#3| (-167 |#2|))) (-15 -2469 (|#2| |#3|)) (-15 -2478 (|#3| |#2|)) (-15 -2490 ((-167 |#2|) |#3|)) (-15 -2499 (|#3| |#3| (-625 (-596 |#3|)) (-625 (-1149))))) (-13 (-544) (-827)) (-13 (-425 |#1|) (-978) (-1171)) (-13 (-425 (-167 |#1|)) (-978) (-1171))) (T -584))
+((-2499 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-625 (-596 *2))) (-5 *4 (-625 (-1149))) (-4 *2 (-13 (-425 (-167 *5)) (-978) (-1171))) (-4 *5 (-13 (-544) (-827))) (-5 *1 (-584 *5 *6 *2)) (-4 *6 (-13 (-425 *5) (-978) (-1171))))) (-2490 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827))) (-5 *2 (-167 *5)) (-5 *1 (-584 *4 *5 *3)) (-4 *5 (-13 (-425 *4) (-978) (-1171))) (-4 *3 (-13 (-425 (-167 *4)) (-978) (-1171))))) (-2478 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827))) (-4 *2 (-13 (-425 (-167 *4)) (-978) (-1171))) (-5 *1 (-584 *4 *3 *2)) (-4 *3 (-13 (-425 *4) (-978) (-1171))))) (-2469 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827))) (-4 *2 (-13 (-425 *4) (-978) (-1171))) (-5 *1 (-584 *4 *2 *3)) (-4 *3 (-13 (-425 (-167 *4)) (-978) (-1171))))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-425 *4) (-978) (-1171))) (-4 *4 (-13 (-544) (-827))) (-4 *2 (-13 (-425 (-167 *4)) (-978) (-1171))) (-5 *1 (-584 *4 *5 *2)))))
+(-10 -7 (-15 -2460 (|#3| (-167 |#2|))) (-15 -2469 (|#2| |#3|)) (-15 -2478 (|#3| |#2|)) (-15 -2490 ((-167 |#2|) |#3|)) (-15 -2499 (|#3| |#3| (-625 (-596 |#3|)) (-625 (-1149)))))
+((-3488 (($ (-1 (-112) |#1|) $) 17)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (($ (-1 |#1| |#1|) |#1|) 9)) (-3467 (($ (-1 (-112) |#1|) $) 13)) (-3478 (($ (-1 (-112) |#1|) $) 15)) (-1695 (((-1129 |#1|) $) 18)) (-1683 (((-839) $) NIL)))
+(((-585 |#1|) (-13 (-597 (-839)) (-10 -8 (-15 -1996 ($ (-1 |#1| |#1|) $)) (-15 -3467 ($ (-1 (-112) |#1|) $)) (-15 -3478 ($ (-1 (-112) |#1|) $)) (-15 -3488 ($ (-1 (-112) |#1|) $)) (-15 -3421 ($ (-1 |#1| |#1|) |#1|)) (-15 -1695 ((-1129 |#1|) $)))) (-1186)) (T -585))
+((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) (-3467 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) (-3478 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) (-3488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) (-3421 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1186)))))
+(-13 (-597 (-839)) (-10 -8 (-15 -1996 ($ (-1 |#1| |#1|) $)) (-15 -3467 ($ (-1 (-112) |#1|) $)) (-15 -3478 ($ (-1 (-112) |#1|) $)) (-15 -3488 ($ (-1 (-112) |#1|) $)) (-15 -3421 ($ (-1 |#1| |#1|) |#1|)) (-15 -1695 ((-1129 |#1|) $))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751)) NIL (|has| |#1| (-23)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3191 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2638 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2878 (((-112) $ (-751)) NIL)) (-3456 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-1443 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-1431 (($ $ $) NIL (|has| |#1| (-1025)))) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2393 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2382 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-586 |#1| |#2|) (-1230 |#1|) (-1186) (-552)) (T -586))
NIL
(-1230 |#1|)
-((-2305 (((-1237) $ |#2| |#2|) 36)) (-2307 ((|#2| $) 23)) (-2308 ((|#2| $) 21)) (-2072 (($ (-1 |#3| |#3|) $) 32)) (-4318 (($ (-1 |#3| |#3|) $) 30)) (-4160 ((|#3| $) 26)) (-2306 (($ $ |#3|) 33)) (-2309 (((-112) |#3| $) 17)) (-2312 (((-622 |#3|) $) 15)) (-4159 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-587 |#1| |#2| |#3|) (-10 -8 (-15 -2305 ((-1237) |#1| |#2| |#2|)) (-15 -2306 (|#1| |#1| |#3|)) (-15 -4160 (|#3| |#1|)) (-15 -2307 (|#2| |#1|)) (-15 -2308 (|#2| |#1|)) (-15 -2309 ((-112) |#3| |#1|)) (-15 -2312 ((-622 |#3|) |#1|)) (-15 -4159 (|#3| |#1| |#2|)) (-15 -4159 (|#3| |#1| |#2| |#3|)) (-15 -2072 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4318 (|#1| (-1 |#3| |#3|) |#1|))) (-588 |#2| |#3|) (-1074) (-1185)) (T -587))
-NIL
-(-10 -8 (-15 -2305 ((-1237) |#1| |#2| |#2|)) (-15 -2306 (|#1| |#1| |#3|)) (-15 -4160 (|#3| |#1|)) (-15 -2307 (|#2| |#1|)) (-15 -2308 (|#2| |#1|)) (-15 -2309 ((-112) |#3| |#1|)) (-15 -2312 ((-622 |#3|) |#1|)) (-15 -4159 (|#3| |#1| |#2|)) (-15 -4159 (|#3| |#1| |#2| |#3|)) (-15 -2072 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4318 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#2| (-1074)))) (-2305 (((-1237) $ |#1| |#1|) 40 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-1637 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) 51)) (-2068 (((-622 |#2|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2307 ((|#1| $) 43 (|has| |#1| (-827)))) (-2511 (((-622 |#2|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-2308 ((|#1| $) 44 (|has| |#1| (-827)))) (-2072 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#2| (-1074)))) (-2310 (((-622 |#1|) $) 46)) (-2311 (((-112) |#1| $) 47)) (-3594 (((-1093) $) 21 (|has| |#2| (-1074)))) (-4160 ((|#2| $) 42 (|has| |#1| (-827)))) (-2306 (($ $ |#2|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2069 (((-751) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4353))) (((-751) |#2| $) 28 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#2| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#2| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-588 |#1| |#2|) (-138) (-1074) (-1185)) (T -588))
-((-2312 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-622 *4)))) (-2311 (*1 *2 *3 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-112)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-622 *3)))) (-2309 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-588 *4 *3)) (-4 *4 (-1074)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-2308 (*1 *2 *1) (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1185)) (-4 *2 (-1074)) (-4 *2 (-827)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1185)) (-4 *2 (-1074)) (-4 *2 (-827)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1074)) (-4 *3 (-827)) (-4 *2 (-1185)))) (-2306 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) (-2305 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-1237)))))
-(-13 (-483 |t#2|) (-283 |t#1| |t#2|) (-10 -8 (-15 -2312 ((-622 |t#2|) $)) (-15 -2311 ((-112) |t#1| $)) (-15 -2310 ((-622 |t#1|) $)) (IF (|has| |t#2| (-1074)) (IF (|has| $ (-6 -4353)) (-15 -2309 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-15 -2308 (|t#1| $)) (-15 -2307 (|t#1| $)) (-15 -4160 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -2306 ($ $ |t#2|)) (-15 -2305 ((-1237) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#2| (-1074)) ((-597 (-840)) -3891 (|has| |#2| (-1074)) (|has| |#2| (-597 (-840)))) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-483 |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-1074) |has| |#2| (-1074)) ((-1185) . T))
-((-4317 (((-840) $) 19) (((-128) $) 14) (($ (-128)) 13)))
-(((-589) (-13 (-597 (-840)) (-597 (-128)) (-10 -8 (-15 -4317 ($ (-128)))))) (T -589))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-589)))))
-(-13 (-597 (-840)) (-597 (-128)) (-10 -8 (-15 -4317 ($ (-128)))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1186) $) 14) (($ (-622 (-1186))) 13)) (-2313 (((-622 (-1186)) $) 10)) (-3387 (((-112) $ $) NIL)))
-(((-590) (-13 (-1056) (-597 (-1186)) (-10 -8 (-15 -4317 ($ (-622 (-1186)))) (-15 -2313 ((-622 (-1186)) $))))) (T -590))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-590)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-590)))))
-(-13 (-1056) (-597 (-1186)) (-10 -8 (-15 -4317 ($ (-622 (-1186)))) (-15 -2313 ((-622 (-1186)) $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1892 (((-3 $ #1="failed")) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3574 (((-1231 (-669 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-1231 (-669 |#1|)) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1845 (((-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-3896 (($) NIL T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1819 (((-3 $ #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1907 (((-669 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1843 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1905 (((-669 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2496 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2022 (((-1143 (-922 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-358))))) (-2499 (($ $ (-895)) NIL)) (-1841 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1821 (((-1143 |#1|) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1909 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1839 (((-1143 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1833 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1911 (($ (-1231 |#1|)) NIL (|has| |#2| (-413 |#1|))) (($ (-1231 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-3821 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-3444 (((-895)) NIL (|has| |#2| (-362 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2524 (($ $ (-895)) NIL)) (-1826 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1820 (((-3 $ #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1908 (((-669 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1844 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1906 (((-669 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2497 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2026 (((-1143 (-922 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-358))))) (-2498 (($ $ (-895)) NIL)) (-1842 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1822 (((-1143 |#1|) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1910 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1840 (((-1143 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1834 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3593 (((-1131) $) NIL)) (-1825 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1827 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3594 (((-1093) $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4159 ((|#1| $ (-538)) NIL (|has| |#2| (-413 |#1|)))) (-3575 (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-413 |#1|))) (((-1231 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $) (-1231 $)) NIL (|has| |#2| (-362 |#1|))) (((-1231 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-4330 (($ (-1231 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-1231 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-2014 (((-622 (-922 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-622 (-922 |#1|)) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2686 (($ $ $) NIL)) (-1838 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4317 (((-840) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2128 (((-1231 $)) NIL (|has| |#2| (-413 |#1|)))) (-1823 (((-622 (-1231 |#1|))) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2687 (($ $ $ $) NIL)) (-1836 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2880 (($ (-669 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-2685 (($ $ $) NIL)) (-1837 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1835 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1831 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2991 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) 24)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-591 |#1| |#2|) (-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -4317 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-725 |#1|)) (T -591))
-((-4317 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-591 *3 *2)) (-4 *2 (-725 *3)))))
-(-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -4317 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|)))
-((-2898 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) 33)) (-3960 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL) (($) NIL)) (-2305 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-1131) |#1|) 43)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#1| #1="failed") (-1131) $) 46)) (-3896 (($) NIL T CONST)) (-1817 (($ $ (-1131)) 24)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-3764 (((-3 |#1| #1#) (-1131) $) 47) (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (|has| $ (-6 -4353)))) (-3765 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-4202 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-1814 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) 32)) (-1637 ((|#1| $ (-1131) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-1131)) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2355 (($ $) 48)) (-1818 (($ (-383)) 22) (($ (-383) (-1131)) 21)) (-3905 (((-383) $) 34)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (((-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-2308 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-2744 (((-622 (-1131)) $) 39)) (-2315 (((-112) (-1131) $) NIL)) (-1815 (((-1131) $) 35)) (-1333 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-2310 (((-622 (-1131)) $) NIL)) (-2311 (((-112) (-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 ((|#1| $) NIL (|has| (-1131) (-827)))) (-1399 (((-3 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) "failed") (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-622 (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 37)) (-4159 ((|#1| $ (-1131) |#1|) NIL) ((|#1| $ (-1131)) 42)) (-1523 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL) (($) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (((-751) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (((-751) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-4317 (((-840) $) 20)) (-1816 (($ $) 25)) (-1335 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 19)) (-4316 (((-751) $) 41 (|has| $ (-6 -4353)))))
-(((-592 |#1|) (-13 (-360 (-383) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) (-1162 (-1131) |#1|) (-10 -8 (-6 -4353) (-15 -2355 ($ $)))) (-1074)) (T -592))
-((-2355 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1074)))))
-(-13 (-360 (-383) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) (-1162 (-1131) |#1|) (-10 -8 (-6 -4353) (-15 -2355 ($ $))))
-((-3596 (((-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) 15)) (-2744 (((-622 |#2|) $) 19)) (-2315 (((-112) |#2| $) 12)))
-(((-593 |#1| |#2| |#3|) (-10 -8 (-15 -2744 ((-622 |#2|) |#1|)) (-15 -2315 ((-112) |#2| |#1|)) (-15 -3596 ((-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|))) (-594 |#2| |#3|) (-1074) (-1074)) (T -593))
-NIL
-(-10 -8 (-15 -2744 ((-622 |#2|) |#1|)) (-15 -2315 ((-112) |#2| |#1|)) (-15 -3596 ((-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)))
-((-2898 (((-112) $ $) 19 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 55 (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| "failed") |#1| $) 61)) (-3896 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 62)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 54 (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 56 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-2744 (((-622 |#1|) $) 63)) (-2315 (((-112) |#1| $) 64)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 39)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 40)) (-3594 (((-1093) $) 21 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 51)) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 41)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) 26 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 25 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 24 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 23 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-1523 (($) 49) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 48)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 50)) (-4317 (((-840) $) 18 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 42)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-594 |#1| |#2|) (-138) (-1074) (-1074)) (T -594))
-((-2315 (*1 *2 *3 *1) (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-112)))) (-2744 (*1 *2 *1) (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-622 *3)))) (-3764 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))) (-2314 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))))
-(-13 (-225 (-2 (|:| -4220 |t#1|) (|:| -2191 |t#2|))) (-10 -8 (-15 -2315 ((-112) |t#1| $)) (-15 -2744 ((-622 |t#1|) $)) (-15 -3764 ((-3 |t#2| "failed") |t#1| $)) (-15 -2314 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-106 #1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((-101) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) ((-597 (-840)) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840)))) ((-149 #1#) . T) ((-598 (-527)) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))) ((-225 #1#) . T) ((-231 #1#) . T) ((-304 #1#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-483 #1#) . T) ((-507 #1# #1#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-1074) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-2316 (((-3 (-1149) "failed") $) 37)) (-1369 (((-1237) $ (-751)) 26)) (-3778 (((-751) $) 25)) (-3380 (((-113) $) 12)) (-3905 (((-1149) $) 20)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2317 (($ (-113) (-622 |#1|) (-751)) 30) (($ (-1149)) 31)) (-2964 (((-112) $ (-113)) 18) (((-112) $ (-1149)) 16)) (-2933 (((-751) $) 22)) (-3594 (((-1093) $) NIL)) (-4330 (((-866 (-538)) $) 77 (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) 84 (|has| |#1| (-598 (-866 (-373))))) (((-527) $) 69 (|has| |#1| (-598 (-527))))) (-4317 (((-840) $) 55)) (-2318 (((-622 |#1|) $) 24)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 41)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 42)))
-(((-595 |#1|) (-13 (-131) (-860 |#1|) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -3380 ((-113) $)) (-15 -2318 ((-622 |#1|) $)) (-15 -2933 ((-751) $)) (-15 -2317 ($ (-113) (-622 |#1|) (-751))) (-15 -2317 ($ (-1149))) (-15 -2316 ((-3 (-1149) "failed") $)) (-15 -2964 ((-112) $ (-113))) (-15 -2964 ((-112) $ (-1149))) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|))) (-827)) (T -595))
-((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-2318 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-2317 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-622 *5)) (-5 *4 (-751)) (-4 *5 (-827)) (-5 *1 (-595 *5)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-2316 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-595 *4)) (-4 *4 (-827)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-595 *4)) (-4 *4 (-827)))))
-(-13 (-131) (-860 |#1|) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -3380 ((-113) $)) (-15 -2318 ((-622 |#1|) $)) (-15 -2933 ((-751) $)) (-15 -2317 ($ (-113) (-622 |#1|) (-751))) (-15 -2317 ($ (-1149))) (-15 -2316 ((-3 (-1149) "failed") $)) (-15 -2964 ((-112) $ (-113))) (-15 -2964 ((-112) $ (-1149))) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|)))
-((-2319 (((-595 |#2|) |#1|) 15)) (-2320 (((-3 |#1| "failed") (-595 |#2|)) 19)))
-(((-596 |#1| |#2|) (-10 -7 (-15 -2319 ((-595 |#2|) |#1|)) (-15 -2320 ((-3 |#1| "failed") (-595 |#2|)))) (-827) (-827)) (T -596))
-((-2320 (*1 *2 *3) (|partial| -12 (-5 *3 (-595 *4)) (-4 *4 (-827)) (-4 *2 (-827)) (-5 *1 (-596 *2 *4)))) (-2319 (*1 *2 *3) (-12 (-5 *2 (-595 *4)) (-5 *1 (-596 *3 *4)) (-4 *3 (-827)) (-4 *4 (-827)))))
-(-10 -7 (-15 -2319 ((-595 |#2|) |#1|)) (-15 -2320 ((-3 |#1| "failed") (-595 |#2|))))
-((-4317 ((|#1| $) 6)))
-(((-597 |#1|) (-138) (-1185)) (T -597))
-((-4317 (*1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1185)))))
-(-13 (-10 -8 (-15 -4317 (|t#1| $))))
-((-4330 ((|#1| $) 6)))
-(((-598 |#1|) (-138) (-1185)) (T -598))
-((-4330 (*1 *2 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1185)))))
-(-13 (-10 -8 (-15 -4330 (|t#1| $))))
-((-2321 (((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-400 |#2|) |#2|)) 15) (((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 16)))
-(((-599 |#1| |#2|) (-10 -7 (-15 -2321 ((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -2321 ((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-400 |#2|) |#2|)))) (-13 (-145) (-27) (-1014 (-538)) (-1014 (-402 (-538)))) (-1207 |#1|)) (T -599))
-((-2321 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-145) (-27) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-1143 (-402 *6))) (-5 *1 (-599 *5 *6)) (-5 *3 (-402 *6)))) (-2321 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-1143 (-402 *5))) (-5 *1 (-599 *4 *5)) (-5 *3 (-402 *5)))))
-(-10 -7 (-15 -2321 ((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -2321 ((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-400 |#2|) |#2|))))
-((-2898 (((-112) $ $) NIL)) (-2323 (($) 11 T CONST)) (-2322 (($) 12 T CONST)) (-3190 (($ $ $) 24)) (-3676 (($ $) 22)) (-3593 (((-1131) $) NIL)) (-3189 (($ $ $) 25)) (-3594 (((-1093) $) NIL)) (-2324 (($) 10 T CONST)) (-3188 (($ $ $) 26)) (-4317 (((-840) $) 30)) (-3929 (((-112) $ (|[\|\|]| -2324)) 19) (((-112) $ (|[\|\|]| -2323)) 21) (((-112) $ (|[\|\|]| -2322)) 17)) (-3191 (($ $ $) 23)) (-3387 (((-112) $ $) 15)))
-(((-600) (-13 (-943) (-10 -8 (-15 -2324 ($) -4311) (-15 -2323 ($) -4311) (-15 -2322 ($) -4311) (-15 -3929 ((-112) $ (|[\|\|]| -2324))) (-15 -3929 ((-112) $ (|[\|\|]| -2323))) (-15 -3929 ((-112) $ (|[\|\|]| -2322)))))) (T -600))
-((-2324 (*1 *1) (-5 *1 (-600))) (-2323 (*1 *1) (-5 *1 (-600))) (-2322 (*1 *1) (-5 *1 (-600))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2324)) (-5 *2 (-112)) (-5 *1 (-600)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2323)) (-5 *2 (-112)) (-5 *1 (-600)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2322)) (-5 *2 (-112)) (-5 *1 (-600)))))
-(-13 (-943) (-10 -8 (-15 -2324 ($) -4311) (-15 -2323 ($) -4311) (-15 -2322 ($) -4311) (-15 -3929 ((-112) $ (|[\|\|]| -2324))) (-15 -3929 ((-112) $ (|[\|\|]| -2323))) (-15 -3929 ((-112) $ (|[\|\|]| -2322)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3986 (((-538) $) NIL (|has| |#1| (-825)))) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-3537 (((-112) $) NIL (|has| |#1| (-825)))) (-2502 (((-112) $) NIL)) (-3331 ((|#1| $) 13)) (-3538 (((-112) $) NIL (|has| |#1| (-825)))) (-3677 (($ $ $) NIL (|has| |#1| (-825)))) (-3678 (($ $ $) NIL (|has| |#1| (-825)))) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3330 ((|#3| $) 15)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL)) (-3461 (((-751)) 20)) (-3742 (($ $) NIL (|has| |#1| (-825)))) (-2991 (($) NIL T CONST)) (-2997 (($) 12 T CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4308 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-601 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (-15 -4308 ($ $ |#3|)) (-15 -4308 ($ |#1| |#3|)) (-15 -3331 (|#1| $)) (-15 -3330 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-707) |#2|)) (T -601))
-((-4308 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-707) *4)))) (-4308 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-601 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-707) *4)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-601 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-707) *3)))) (-3330 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (-15 -4308 ($ $ |#3|)) (-15 -4308 ($ |#1| |#3|)) (-15 -3331 (|#1| $)) (-15 -3330 (|#3| $))))
-((-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) 10)))
-(((-602 |#1| |#2|) (-10 -8 (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-603 |#2|) (-1025)) (T -602))
-NIL
-(-10 -8 (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 34)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ |#1| $) 35)))
-(((-603 |#1|) (-138) (-1025)) (T -603))
-((-4317 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1025)))))
-(-13 (-1025) (-628 |t#1|) (-10 -8 (-15 -4317 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2325 ((|#2| |#2| (-1149) (-1149)) 18)))
-(((-604 |#1| |#2|) (-10 -7 (-15 -2325 (|#2| |#2| (-1149) (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-936) (-29 |#1|))) (T -604))
-((-2325 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-604 *4 *2)) (-4 *2 (-13 (-1171) (-936) (-29 *4))))))
-(-10 -7 (-15 -2325 (|#2| |#2| (-1149) (-1149))))
-((-2898 (((-112) $ $) 56)) (-3539 (((-112) $) 52)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-2326 ((|#1| $) 49)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-4111 (((-2 (|:| -1884 $) (|:| -1883 (-402 |#2|))) (-402 |#2|)) 97 (|has| |#1| (-358)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) 24)) (-3821 (((-3 $ "failed") $) 75)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4131 (((-538) $) 19)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) 36)) (-3226 (($ |#1| (-538)) 21)) (-3525 ((|#1| $) 51)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) 87 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 100 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ $) 79)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-1704 (((-751) $) 99 (|has| |#1| (-358)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 98 (|has| |#1| (-358)))) (-4170 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-4307 (((-538) $) 34)) (-4330 (((-402 |#2|) $) 42)) (-4317 (((-840) $) 62) (($ (-538)) 32) (($ $) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) 31) (($ |#2|) 22)) (-4040 ((|#1| $ (-538)) 63)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) 29)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 9 T CONST)) (-2997 (($) 12 T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3387 (((-112) $ $) 17)) (-4197 (($ $) 46) (($ $ $) NIL)) (-4199 (($ $ $) 76)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 26) (($ $ $) 44)))
-(((-605 |#1| |#2|) (-13 (-227 |#2|) (-545) (-598 (-402 |#2|)) (-407 |#1|) (-1014 |#2|) (-10 -8 (-15 -4297 ((-112) $)) (-15 -4307 ((-538) $)) (-15 -4131 ((-538) $)) (-15 -4319 ($ $)) (-15 -3525 (|#1| $)) (-15 -2326 (|#1| $)) (-15 -4040 (|#1| $ (-538))) (-15 -3226 ($ |#1| (-538))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -4111 ((-2 (|:| -1884 $) (|:| -1883 (-402 |#2|))) (-402 |#2|)))) |%noBranch|))) (-545) (-1207 |#1|)) (T -605))
-((-4297 (*1 *2 *1) (-12 (-4 *3 (-545)) (-5 *2 (-112)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3)))) (-4307 (*1 *2 *1) (-12 (-4 *3 (-545)) (-5 *2 (-538)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3)))) (-4131 (*1 *2 *1) (-12 (-4 *3 (-545)) (-5 *2 (-538)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3)))) (-4319 (*1 *1 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2)))) (-3525 (*1 *2 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2)))) (-2326 (*1 *2 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *2 (-545)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1207 *2)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-4 *2 (-545)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1207 *2)))) (-4111 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-545)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| -1884 (-605 *4 *5)) (|:| -1883 (-402 *5)))) (-5 *1 (-605 *4 *5)) (-5 *3 (-402 *5)))))
-(-13 (-227 |#2|) (-545) (-598 (-402 |#2|)) (-407 |#1|) (-1014 |#2|) (-10 -8 (-15 -4297 ((-112) $)) (-15 -4307 ((-538) $)) (-15 -4131 ((-538) $)) (-15 -4319 ($ $)) (-15 -3525 (|#1| $)) (-15 -2326 (|#1| $)) (-15 -4040 (|#1| $ (-538))) (-15 -3226 ($ |#1| (-538))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -4111 ((-2 (|:| -1884 $) (|:| -1883 (-402 |#2|))) (-402 |#2|)))) |%noBranch|)))
-((-4045 (((-622 |#6|) (-622 |#4|) (-112)) 47)) (-2327 ((|#6| |#6|) 40)))
-(((-606 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2327 (|#6| |#6|)) (-15 -4045 ((-622 |#6|) (-622 |#4|) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|) (-1082 |#1| |#2| |#3| |#4|)) (T -606))
-((-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 *10)) (-5 *1 (-606 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *10 (-1082 *5 *6 *7 *8)))) (-2327 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-606 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *2 (-1082 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2327 (|#6| |#6|)) (-15 -4045 ((-622 |#6|) (-622 |#4|) (-112))))
-((-2328 (((-112) |#3| (-751) (-622 |#3|)) 23)) (-2329 (((-3 (-2 (|:| |polfac| (-622 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-622 (-1143 |#3|)))) "failed") |#3| (-622 (-1143 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2767 (-622 (-2 (|:| |irr| |#4|) (|:| -2487 (-538)))))) (-622 |#3|) (-622 |#1|) (-622 |#3|)) 55)))
-(((-607 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2328 ((-112) |#3| (-751) (-622 |#3|))) (-15 -2329 ((-3 (-2 (|:| |polfac| (-622 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-622 (-1143 |#3|)))) "failed") |#3| (-622 (-1143 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2767 (-622 (-2 (|:| |irr| |#4|) (|:| -2487 (-538)))))) (-622 |#3|) (-622 |#1|) (-622 |#3|)))) (-827) (-773) (-302) (-926 |#3| |#2| |#1|)) (T -607))
-((-2329 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2767 (-622 (-2 (|:| |irr| *10) (|:| -2487 (-538))))))) (-5 *6 (-622 *3)) (-5 *7 (-622 *8)) (-4 *8 (-827)) (-4 *3 (-302)) (-4 *10 (-926 *3 *9 *8)) (-4 *9 (-773)) (-5 *2 (-2 (|:| |polfac| (-622 *10)) (|:| |correct| *3) (|:| |corrfact| (-622 (-1143 *3))))) (-5 *1 (-607 *8 *9 *3 *10)) (-5 *4 (-622 (-1143 *3))))) (-2328 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-751)) (-5 *5 (-622 *3)) (-4 *3 (-302)) (-4 *6 (-827)) (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-607 *6 *7 *3 *8)) (-4 *8 (-926 *3 *7 *6)))))
-(-10 -7 (-15 -2328 ((-112) |#3| (-751) (-622 |#3|))) (-15 -2329 ((-3 (-2 (|:| |polfac| (-622 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-622 (-1143 |#3|)))) "failed") |#3| (-622 (-1143 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2767 (-622 (-2 (|:| |irr| |#4|) (|:| -2487 (-538)))))) (-622 |#3|) (-622 |#1|) (-622 |#3|))))
-((-2898 (((-112) $ $) NIL)) (-3882 (((-1108) $) 11)) (-3883 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-608) (-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))) (T -608))
-((-3883 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608)))))
-(-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))
-((-2898 (((-112) $ $) NIL)) (-4294 (((-622 |#1|) $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-4296 (($ $) 67)) (-4302 (((-644 |#1| |#2|) $) 52)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 70)) (-2330 (((-622 (-288 |#2|)) $ $) 33)) (-3594 (((-1093) $) NIL)) (-4303 (($ (-644 |#1| |#2|)) 48)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) 58) (((-1247 |#1| |#2|) $) NIL) (((-1252 |#1| |#2|) $) 66)) (-2997 (($) 53 T CONST)) (-2331 (((-622 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $) 31)) (-2332 (((-622 (-644 |#1| |#2|)) (-622 |#1|)) 65)) (-2996 (((-622 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $) 37)) (-3387 (((-112) $ $) 54)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ $ $) 44)))
-(((-609 |#1| |#2| |#3|) (-13 (-467) (-10 -8 (-15 -4303 ($ (-644 |#1| |#2|))) (-15 -4302 ((-644 |#1| |#2|) $)) (-15 -2996 ((-622 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $)) (-15 -4317 ((-1247 |#1| |#2|) $)) (-15 -4317 ((-1252 |#1| |#2|) $)) (-15 -4296 ($ $)) (-15 -4294 ((-622 |#1|) $)) (-15 -2332 ((-622 (-644 |#1| |#2|)) (-622 |#1|))) (-15 -2331 ((-622 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $)) (-15 -2330 ((-622 (-288 |#2|)) $ $)))) (-827) (-13 (-170) (-698 (-402 (-538)))) (-895)) (T -609))
-((-4303 (*1 *1 *2) (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-5 *1 (-609 *3 *4 *5)) (-14 *5 (-895)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-644 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |k| (-869 *3)) (|:| |c| *4)))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-4296 (*1 *1 *1) (-12 (-5 *1 (-609 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-13 (-170) (-698 (-402 (-538))))) (-14 *4 (-895)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-827)) (-5 *2 (-622 (-644 *4 *5))) (-5 *1 (-609 *4 *5 *6)) (-4 *5 (-13 (-170) (-698 (-402 (-538))))) (-14 *6 (-895)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |k| (-652 *3)) (|:| |c| *4)))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-2330 (*1 *2 *1 *1) (-12 (-5 *2 (-622 (-288 *4))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))))
-(-13 (-467) (-10 -8 (-15 -4303 ($ (-644 |#1| |#2|))) (-15 -4302 ((-644 |#1| |#2|) $)) (-15 -2996 ((-622 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $)) (-15 -4317 ((-1247 |#1| |#2|) $)) (-15 -4317 ((-1252 |#1| |#2|) $)) (-15 -4296 ($ $)) (-15 -4294 ((-622 |#1|) $)) (-15 -2332 ((-622 (-644 |#1| |#2|)) (-622 |#1|))) (-15 -2331 ((-622 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $)) (-15 -2330 ((-622 (-288 |#2|)) $ $))))
-((-4045 (((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112)) 72) (((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112)) 58)) (-2333 (((-112) (-622 (-760 |#1| (-841 |#2|)))) 23)) (-2337 (((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112)) 71)) (-2336 (((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112)) 57)) (-2335 (((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|)))) 27)) (-2334 (((-3 (-622 (-760 |#1| (-841 |#2|))) "failed") (-622 (-760 |#1| (-841 |#2|)))) 26)))
-(((-610 |#1| |#2|) (-10 -7 (-15 -2333 ((-112) (-622 (-760 |#1| (-841 |#2|))))) (-15 -2334 ((-3 (-622 (-760 |#1| (-841 |#2|))) "failed") (-622 (-760 |#1| (-841 |#2|))))) (-15 -2335 ((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|))))) (-15 -2336 ((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -2337 ((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -4045 ((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -4045 ((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112)))) (-446) (-622 (-1149))) (T -610))
-((-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) (-5 *1 (-610 *5 *6)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-610 *5 *6)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) (-5 *1 (-610 *5 *6)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-610 *5 *6)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-622 (-760 *3 (-841 *4)))) (-4 *3 (-446)) (-14 *4 (-622 (-1149))) (-5 *1 (-610 *3 *4)))) (-2334 (*1 *2 *2) (|partial| -12 (-5 *2 (-622 (-760 *3 (-841 *4)))) (-4 *3 (-446)) (-14 *4 (-622 (-1149))) (-5 *1 (-610 *3 *4)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-622 (-760 *4 (-841 *5)))) (-4 *4 (-446)) (-14 *5 (-622 (-1149))) (-5 *2 (-112)) (-5 *1 (-610 *4 *5)))))
-(-10 -7 (-15 -2333 ((-112) (-622 (-760 |#1| (-841 |#2|))))) (-15 -2334 ((-3 (-622 (-760 |#1| (-841 |#2|))) "failed") (-622 (-760 |#1| (-841 |#2|))))) (-15 -2335 ((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|))))) (-15 -2336 ((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -2337 ((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -4045 ((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -4045 ((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112))))
-((-3380 (((-113) (-113)) 83)) (-2341 ((|#2| |#2|) 30)) (-3165 ((|#2| |#2| (-1065 |#2|)) 79) ((|#2| |#2| (-1149)) 52)) (-2339 ((|#2| |#2|) 29)) (-2340 ((|#2| |#2|) 31)) (-2338 (((-112) (-113)) 34)) (-2343 ((|#2| |#2|) 26)) (-2344 ((|#2| |#2|) 28)) (-2342 ((|#2| |#2|) 27)))
-(((-611 |#1| |#2|) (-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -2344 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2342 (|#2| |#2|)) (-15 -2341 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -3165 (|#2| |#2| (-1149))) (-15 -3165 (|#2| |#2| (-1065 |#2|)))) (-13 (-827) (-545)) (-13 (-416 |#1|) (-978) (-1171))) (T -611))
-((-3165 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-416 *4) (-978) (-1171))) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-611 *4 *2)))) (-3165 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-611 *4 *2)) (-4 *2 (-13 (-416 *4) (-978) (-1171))))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-2341 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-2342 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-2344 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *4)) (-4 *4 (-13 (-416 *3) (-978) (-1171))))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-611 *4 *5)) (-4 *5 (-13 (-416 *4) (-978) (-1171))))))
-(-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -2344 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2342 (|#2| |#2|)) (-15 -2341 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -3165 (|#2| |#2| (-1149))) (-15 -3165 (|#2| |#2| (-1065 |#2|))))
-((-3846 (($ $) 38)) (-4002 (($ $) 21)) (-3844 (($ $) 37)) (-4001 (($ $) 22)) (-3848 (($ $) 36)) (-4000 (($ $) 23)) (-3990 (($) 48)) (-4302 (($ $) 45)) (-2341 (($ $) 17)) (-3165 (($ $ (-1065 $)) 7) (($ $ (-1149)) 6)) (-4303 (($ $) 46)) (-2339 (($ $) 15)) (-2340 (($ $) 16)) (-3849 (($ $) 35)) (-3999 (($ $) 24)) (-3847 (($ $) 34)) (-3998 (($ $) 25)) (-3845 (($ $) 33)) (-3997 (($ $) 26)) (-3852 (($ $) 44)) (-3840 (($ $) 32)) (-3850 (($ $) 43)) (-3838 (($ $) 31)) (-3854 (($ $) 42)) (-3842 (($ $) 30)) (-3855 (($ $) 41)) (-3843 (($ $) 29)) (-3853 (($ $) 40)) (-3841 (($ $) 28)) (-3851 (($ $) 39)) (-3839 (($ $) 27)) (-2343 (($ $) 19)) (-2344 (($ $) 20)) (-2342 (($ $) 18)) (** (($ $ $) 47)))
-(((-612) (-138)) (T -612))
-((-2344 (*1 *1 *1) (-4 *1 (-612))) (-2343 (*1 *1 *1) (-4 *1 (-612))) (-2342 (*1 *1 *1) (-4 *1 (-612))) (-2341 (*1 *1 *1) (-4 *1 (-612))) (-2340 (*1 *1 *1) (-4 *1 (-612))) (-2339 (*1 *1 *1) (-4 *1 (-612))))
-(-13 (-936) (-1171) (-10 -8 (-15 -2344 ($ $)) (-15 -2343 ($ $)) (-15 -2342 ($ $)) (-15 -2341 ($ $)) (-15 -2340 ($ $)) (-15 -2339 ($ $))))
-(((-35) . T) ((-94) . T) ((-279) . T) ((-486) . T) ((-936) . T) ((-1171) . T) ((-1174) . T))
-((-2354 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 53)) (-2347 (((-622 (-243 |#1| |#2|)) (-622 (-475 |#1| |#2|))) 68)) (-2348 (((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-841 |#1|)) 70) (((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)) (-841 |#1|)) 69)) (-2345 (((-2 (|:| |gblist| (-622 (-243 |#1| |#2|))) (|:| |gvlist| (-622 (-538)))) (-622 (-475 |#1| |#2|))) 108)) (-2352 (((-622 (-475 |#1| |#2|)) (-841 |#1|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|))) 83)) (-2346 (((-2 (|:| |glbase| (-622 (-243 |#1| |#2|))) (|:| |glval| (-622 (-538)))) (-622 (-243 |#1| |#2|))) 118)) (-2350 (((-1231 |#2|) (-475 |#1| |#2|) (-622 (-475 |#1| |#2|))) 58)) (-2349 (((-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|))) 41)) (-2353 (((-243 |#1| |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|))) 50)) (-2351 (((-243 |#1| |#2|) (-622 |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|))) 91)))
-(((-613 |#1| |#2|) (-10 -7 (-15 -2345 ((-2 (|:| |gblist| (-622 (-243 |#1| |#2|))) (|:| |gvlist| (-622 (-538)))) (-622 (-475 |#1| |#2|)))) (-15 -2346 ((-2 (|:| |glbase| (-622 (-243 |#1| |#2|))) (|:| |glval| (-622 (-538)))) (-622 (-243 |#1| |#2|)))) (-15 -2347 ((-622 (-243 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2348 ((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -2348 ((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -2349 ((-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2350 ((-1231 |#2|) (-475 |#1| |#2|) (-622 (-475 |#1| |#2|)))) (-15 -2351 ((-243 |#1| |#2|) (-622 |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|)))) (-15 -2352 ((-622 (-475 |#1| |#2|)) (-841 |#1|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2353 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|)))) (-15 -2354 ((-475 |#1| |#2|) (-243 |#1| |#2|)))) (-622 (-1149)) (-446)) (T -613))
-((-2354 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *2 (-475 *4 *5)) (-5 *1 (-613 *4 *5)))) (-2353 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-243 *4 *5))) (-5 *2 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))) (-2352 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-622 (-475 *4 *5))) (-5 *3 (-841 *4)) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))) (-2351 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-243 *5 *6))) (-4 *6 (-446)) (-5 *2 (-243 *5 *6)) (-14 *5 (-622 (-1149))) (-5 *1 (-613 *5 *6)))) (-2350 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-475 *5 *6))) (-5 *3 (-475 *5 *6)) (-14 *5 (-622 (-1149))) (-4 *6 (-446)) (-5 *2 (-1231 *6)) (-5 *1 (-613 *5 *6)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-622 (-475 *3 *4))) (-14 *3 (-622 (-1149))) (-4 *4 (-446)) (-5 *1 (-613 *3 *4)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-622 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446)))) (-2348 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-622 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-622 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446)))) (-2347 (*1 *2 *3) (-12 (-5 *3 (-622 (-475 *4 *5))) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *2 (-622 (-243 *4 *5))) (-5 *1 (-613 *4 *5)))) (-2346 (*1 *2 *3) (-12 (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |glbase| (-622 (-243 *4 *5))) (|:| |glval| (-622 (-538))))) (-5 *1 (-613 *4 *5)) (-5 *3 (-622 (-243 *4 *5))))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-622 (-475 *4 *5))) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |gblist| (-622 (-243 *4 *5))) (|:| |gvlist| (-622 (-538))))) (-5 *1 (-613 *4 *5)))))
-(-10 -7 (-15 -2345 ((-2 (|:| |gblist| (-622 (-243 |#1| |#2|))) (|:| |gvlist| (-622 (-538)))) (-622 (-475 |#1| |#2|)))) (-15 -2346 ((-2 (|:| |glbase| (-622 (-243 |#1| |#2|))) (|:| |glval| (-622 (-538)))) (-622 (-243 |#1| |#2|)))) (-15 -2347 ((-622 (-243 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2348 ((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -2348 ((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -2349 ((-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2350 ((-1231 |#2|) (-475 |#1| |#2|) (-622 (-475 |#1| |#2|)))) (-15 -2351 ((-243 |#1| |#2|) (-622 |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|)))) (-15 -2352 ((-622 (-475 |#1| |#2|)) (-841 |#1|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2353 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|)))) (-15 -2354 ((-475 |#1| |#2|) (-243 |#1| |#2|))))
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL)) (-2305 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-51) $ (-1131) (-51)) 16) (((-51) $ (-1149) (-51)) 17)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 (-51) #1="failed") (-1131) $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074))))) (-3764 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-51) #1#) (-1131) $) NIL)) (-3765 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (((-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-1637 (((-51) $ (-1131) (-51)) NIL (|has| $ (-6 -4354)))) (-3448 (((-51) $ (-1131)) NIL)) (-2068 (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-2355 (($ $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2511 (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2308 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2356 (($ (-383)) 9)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074))))) (-2744 (((-622 (-1131)) $) NIL)) (-2315 (((-112) (-1131) $) NIL)) (-1333 (((-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL)) (-3970 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL)) (-2310 (((-622 (-1131)) $) NIL)) (-2311 (((-112) (-1131) $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074))))) (-4160 (((-51) $) NIL (|has| (-1131) (-827)))) (-1399 (((-3 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) "failed") (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL)) (-2306 (($ $ (-51)) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (($ $ (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (($ $ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-51)) (-622 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-288 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-622 (-288 (-51)))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2312 (((-622 (-51)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (((-51) $ (-1131)) 14) (((-51) $ (-1131) (-51)) NIL) (((-51) $ (-1149)) 15)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (((-751) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074)))) (((-751) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-597 (-840))) (|has| (-51) (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-614) (-13 (-1162 (-1131) (-51)) (-10 -8 (-15 -2356 ($ (-383))) (-15 -2355 ($ $)) (-15 -4159 ((-51) $ (-1149))) (-15 -4147 ((-51) $ (-1149) (-51)))))) (T -614))
-((-2356 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-614)))) (-2355 (*1 *1 *1) (-5 *1 (-614))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-51)) (-5 *1 (-614)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1149)) (-5 *1 (-614)))))
-(-13 (-1162 (-1131) (-51)) (-10 -8 (-15 -2356 ($ (-383))) (-15 -2355 ($ $)) (-15 -4159 ((-51) $ (-1149))) (-15 -4147 ((-51) $ (-1149) (-51)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1892 (((-3 $ #1="failed")) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3574 (((-1231 (-669 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-1231 (-669 |#1|)) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1845 (((-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-3896 (($) NIL T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1819 (((-3 $ #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1907 (((-669 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1843 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1905 (((-669 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2496 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2022 (((-1143 (-922 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-358))))) (-2499 (($ $ (-895)) NIL)) (-1841 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1821 (((-1143 |#1|) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1909 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1839 (((-1143 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1833 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1911 (($ (-1231 |#1|)) NIL (|has| |#2| (-413 |#1|))) (($ (-1231 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-3821 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-3444 (((-895)) NIL (|has| |#2| (-362 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2524 (($ $ (-895)) NIL)) (-1826 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1820 (((-3 $ #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1908 (((-669 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1844 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1906 (((-669 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2497 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2026 (((-1143 (-922 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-358))))) (-2498 (($ $ (-895)) NIL)) (-1842 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1822 (((-1143 |#1|) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1910 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1840 (((-1143 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1834 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3593 (((-1131) $) NIL)) (-1825 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1827 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3594 (((-1093) $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4159 ((|#1| $ (-538)) NIL (|has| |#2| (-413 |#1|)))) (-3575 (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-413 |#1|))) (((-1231 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $) (-1231 $)) NIL (|has| |#2| (-362 |#1|))) (((-1231 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-4330 (($ (-1231 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-1231 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-2014 (((-622 (-922 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-622 (-922 |#1|)) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2686 (($ $ $) NIL)) (-1838 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4317 (((-840) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2128 (((-1231 $)) NIL (|has| |#2| (-413 |#1|)))) (-1823 (((-622 (-1231 |#1|))) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2687 (($ $ $ $) NIL)) (-1836 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2880 (($ (-669 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-2685 (($ $ $) NIL)) (-1837 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1835 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1831 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2991 (($) 15 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) 17)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-615 |#1| |#2|) (-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -4317 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-725 |#1|)) (T -615))
-((-4317 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-615 *3 *2)) (-4 *2 (-725 *3)))))
-(-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -4317 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|)))
-((-4308 (($ $ |#2|) 10)))
-(((-616 |#1| |#2|) (-10 -8 (-15 -4308 (|#1| |#1| |#2|))) (-617 |#2|) (-170)) (T -616))
-NIL
-(-10 -8 (-15 -4308 (|#1| |#1| |#2|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3884 (($ $ $) 29)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 28 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-617 |#1|) (-138) (-170)) (T -617))
-((-3884 (*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)) (-4 *2 (-358)))))
-(-13 (-698 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3884 ($ $ $)) (IF (|has| |t#1| (-358)) (-15 -4308 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-1031 |#1|) . T) ((-1074) . T))
-((-2358 (((-3 (-819 |#2|) #1="failed") |#2| (-288 |#2|) (-1131)) 82) (((-3 (-819 |#2|) (-2 (|:| |leftHandLimit| (-3 (-819 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-819 |#2|) #1#))) "failed") |#2| (-288 (-819 |#2|))) 104)) (-2357 (((-3 (-812 |#2|) "failed") |#2| (-288 (-812 |#2|))) 109)))
-(((-618 |#1| |#2|) (-10 -7 (-15 -2358 ((-3 (-819 |#2|) (-2 (|:| |leftHandLimit| (-3 (-819 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-819 |#2|) #1#))) "failed") |#2| (-288 (-819 |#2|)))) (-15 -2357 ((-3 (-812 |#2|) "failed") |#2| (-288 (-812 |#2|)))) (-15 -2358 ((-3 (-819 |#2|) #1#) |#2| (-288 |#2|) (-1131)))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -618))
-((-2358 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1131)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-819 *3)) (-5 *1 (-618 *6 *3)))) (-2357 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-288 (-812 *3))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-812 *3)) (-5 *1 (-618 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-2358 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-819 *3))) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (-819 *3) (-2 (|:| |leftHandLimit| (-3 (-819 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-819 *3) #1#))) "failed")) (-5 *1 (-618 *5 *3)))))
-(-10 -7 (-15 -2358 ((-3 (-819 |#2|) (-2 (|:| |leftHandLimit| (-3 (-819 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-819 |#2|) #1#))) "failed") |#2| (-288 (-819 |#2|)))) (-15 -2357 ((-3 (-812 |#2|) "failed") |#2| (-288 (-812 |#2|)))) (-15 -2358 ((-3 (-819 |#2|) #1#) |#2| (-288 |#2|) (-1131))))
-((-2358 (((-3 (-819 (-402 (-922 |#1|))) #1="failed") (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))) (-1131)) 80) (((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2="failed") (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|)))) 20) (((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2#) (-402 (-922 |#1|)) (-288 (-819 (-922 |#1|)))) 35)) (-2357 (((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|)))) 23) (((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-812 (-922 |#1|)))) 43)))
-(((-619 |#1|) (-10 -7 (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2="failed") (-402 (-922 |#1|)) (-288 (-819 (-922 |#1|))))) (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2#) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -2357 ((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-812 (-922 |#1|))))) (-15 -2357 ((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) #1#) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))) (-1131)))) (-446)) (T -619))
-((-2358 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 (-402 (-922 *6)))) (-5 *5 (-1131)) (-5 *3 (-402 (-922 *6))) (-4 *6 (-446)) (-5 *2 (-819 *3)) (-5 *1 (-619 *6)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-446)) (-5 *2 (-812 *3)) (-5 *1 (-619 *5)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-812 (-922 *5)))) (-4 *5 (-446)) (-5 *2 (-812 (-402 (-922 *5)))) (-5 *1 (-619 *5)) (-5 *3 (-402 (-922 *5))))) (-2358 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-446)) (-5 *2 (-3 (-819 *3) (-2 (|:| |leftHandLimit| (-3 (-819 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-819 *3) #1#))) #2="failed")) (-5 *1 (-619 *5)))) (-2358 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-819 (-922 *5)))) (-4 *5 (-446)) (-5 *2 (-3 (-819 (-402 (-922 *5))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 *5))) #1#)) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 *5))) #1#))) #2#)) (-5 *1 (-619 *5)) (-5 *3 (-402 (-922 *5))))))
-(-10 -7 (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2="failed") (-402 (-922 |#1|)) (-288 (-819 (-922 |#1|))))) (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2#) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -2357 ((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-812 (-922 |#1|))))) (-15 -2357 ((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) #1#) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))) (-1131))))
-((-2361 (((-3 (-1231 (-402 |#1|)) "failed") (-1231 |#2|) |#2|) 57 (-3676 (|has| |#1| (-358)))) (((-3 (-1231 |#1|) "failed") (-1231 |#2|) |#2|) 42 (|has| |#1| (-358)))) (-2359 (((-112) (-1231 |#2|)) 30)) (-2360 (((-3 (-1231 |#1|) "failed") (-1231 |#2|)) 33)))
-(((-620 |#1| |#2|) (-10 -7 (-15 -2359 ((-112) (-1231 |#2|))) (-15 -2360 ((-3 (-1231 |#1|) "failed") (-1231 |#2|))) (IF (|has| |#1| (-358)) (-15 -2361 ((-3 (-1231 |#1|) "failed") (-1231 |#2|) |#2|)) (-15 -2361 ((-3 (-1231 (-402 |#1|)) "failed") (-1231 |#2|) |#2|)))) (-545) (-621 |#1|)) (T -620))
-((-2361 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 *5)) (-3676 (-4 *5 (-358))) (-4 *5 (-545)) (-5 *2 (-1231 (-402 *5))) (-5 *1 (-620 *5 *4)))) (-2361 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 *5)) (-4 *5 (-358)) (-4 *5 (-545)) (-5 *2 (-1231 *5)) (-5 *1 (-620 *5 *4)))) (-2360 (*1 *2 *3) (|partial| -12 (-5 *3 (-1231 *5)) (-4 *5 (-621 *4)) (-4 *4 (-545)) (-5 *2 (-1231 *4)) (-5 *1 (-620 *4 *5)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-1231 *5)) (-4 *5 (-621 *4)) (-4 *4 (-545)) (-5 *2 (-112)) (-5 *1 (-620 *4 *5)))))
-(-10 -7 (-15 -2359 ((-112) (-1231 |#2|))) (-15 -2360 ((-3 (-1231 |#1|) "failed") (-1231 |#2|))) (IF (|has| |#1| (-358)) (-15 -2361 ((-3 (-1231 |#1|) "failed") (-1231 |#2|) |#2|)) (-15 -2361 ((-3 (-1231 (-402 |#1|)) "failed") (-1231 |#2|) |#2|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2362 (((-669 |#1|) (-669 $)) 34) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 33)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-2509 (((-1237) $ |#2| |#2|) 36)) (-2527 ((|#2| $) 23)) (-2537 ((|#2| $) 21)) (-3683 (($ (-1 |#3| |#3|) $) 32)) (-1996 (($ (-1 |#3| |#3|) $) 30)) (-2924 ((|#3| $) 26)) (-2518 (($ $ |#3|) 33)) (-2545 (((-112) |#3| $) 17)) (-1358 (((-625 |#3|) $) 15)) (-2154 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-587 |#1| |#2| |#3|) (-10 -8 (-15 -2509 ((-1237) |#1| |#2| |#2|)) (-15 -2518 (|#1| |#1| |#3|)) (-15 -2924 (|#3| |#1|)) (-15 -2527 (|#2| |#1|)) (-15 -2537 (|#2| |#1|)) (-15 -2545 ((-112) |#3| |#1|)) (-15 -1358 ((-625 |#3|) |#1|)) (-15 -2154 (|#3| |#1| |#2|)) (-15 -2154 (|#3| |#1| |#2| |#3|)) (-15 -3683 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1996 (|#1| (-1 |#3| |#3|) |#1|))) (-588 |#2| |#3|) (-1073) (-1186)) (T -587))
+NIL
+(-10 -8 (-15 -2509 ((-1237) |#1| |#2| |#2|)) (-15 -2518 (|#1| |#1| |#3|)) (-15 -2924 (|#3| |#1|)) (-15 -2527 (|#2| |#1|)) (-15 -2537 (|#2| |#1|)) (-15 -2545 ((-112) |#3| |#1|)) (-15 -1358 ((-625 |#3|) |#1|)) (-15 -2154 (|#3| |#1| |#2|)) (-15 -2154 (|#3| |#1| |#2| |#3|)) (-15 -3683 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1996 (|#1| (-1 |#3| |#3|) |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#2| (-1073)))) (-2509 (((-1237) $ |#1| |#1|) 40 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-3692 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) 51)) (-3799 (((-625 |#2|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-2527 ((|#1| $) 43 (|has| |#1| (-827)))) (-3730 (((-625 |#2|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-2537 ((|#1| $) 44 (|has| |#1| (-827)))) (-3683 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#2| (-1073)))) (-2554 (((-625 |#1|) $) 46)) (-2564 (((-112) |#1| $) 47)) (-2831 (((-1093) $) 21 (|has| |#2| (-1073)))) (-2924 ((|#2| $) 42 (|has| |#1| (-827)))) (-2518 (($ $ |#2|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2840 (((-751) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4353))) (((-751) |#2| $) 28 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#2| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#2| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-588 |#1| |#2|) (-138) (-1073) (-1186)) (T -588))
+((-1358 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) (-5 *2 (-625 *4)))) (-2564 (*1 *2 *3 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) (-5 *2 (-112)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) (-5 *2 (-625 *3)))) (-2545 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-588 *4 *3)) (-4 *4 (-1073)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-112)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1186)) (-4 *2 (-1073)) (-4 *2 (-827)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1186)) (-4 *2 (-1073)) (-4 *2 (-827)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1073)) (-4 *3 (-827)) (-4 *2 (-1186)))) (-2518 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) (-2509 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) (-5 *2 (-1237)))))
+(-13 (-483 |t#2|) (-283 |t#1| |t#2|) (-10 -8 (-15 -1358 ((-625 |t#2|) $)) (-15 -2564 ((-112) |t#1| $)) (-15 -2554 ((-625 |t#1|) $)) (IF (|has| |t#2| (-1073)) (IF (|has| $ (-6 -4353)) (-15 -2545 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-15 -2537 (|t#1| $)) (-15 -2527 (|t#1| $)) (-15 -2924 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -2518 ($ $ |t#2|)) (-15 -2509 ((-1237) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#2| (-1073)) ((-597 (-839)) -1523 (|has| |#2| (-1073)) (|has| |#2| (-597 (-839)))) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-483 |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-1073) |has| |#2| (-1073)) ((-1186) . T))
+((-1683 (((-839) $) 19) (((-129) $) 14) (($ (-129)) 13)))
+(((-589) (-13 (-597 (-839)) (-597 (-129)) (-10 -8 (-15 -1683 ($ (-129)))))) (T -589))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-589)))))
+(-13 (-597 (-839)) (-597 (-129)) (-10 -8 (-15 -1683 ($ (-129)))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1185) $) 14) (($ (-625 (-1185))) 13)) (-3666 (((-625 (-1185)) $) 10)) (-2281 (((-112) $ $) NIL)))
+(((-590) (-13 (-1056) (-597 (-1185)) (-10 -8 (-15 -1683 ($ (-625 (-1185)))) (-15 -3666 ((-625 (-1185)) $))))) (T -590))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-590)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-590)))))
+(-13 (-1056) (-597 (-1185)) (-10 -8 (-15 -1683 ($ (-625 (-1185)))) (-15 -3666 ((-625 (-1185)) $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3618 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2770 (((-1232 (-669 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-1232 (-669 |#1|)) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3208 (((-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3101 (($) NIL T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-4152 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2629 (((-669 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3192 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-2612 (((-669 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3598 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-1392 (((-1145 (-928 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-3629 (($ $ (-897)) NIL)) (-3174 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-4175 (((-1145 |#1|) $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2648 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3159 (((-1145 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-4303 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2670 (($ (-1232 |#1|)) NIL (|has| |#2| (-412 |#1|))) (($ (-1232 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-3442 (((-897)) NIL (|has| |#2| (-362 |#1|)))) (-4272 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2712 (($ $ (-897)) NIL)) (-4228 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4207 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4250 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-4164 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2640 (((-669 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3199 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-2619 (((-669 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3609 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-1433 (((-1145 (-928 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-3619 (($ $ (-897)) NIL)) (-3182 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-4187 (((-1145 |#1|) $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2658 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3166 (((-1145 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-4312 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2883 (((-1131) $) NIL)) (-4218 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4239 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4261 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2831 (((-1093) $) NIL)) (-4293 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2154 ((|#1| $ (-552)) NIL (|has| |#2| (-412 |#1|)))) (-2780 (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-412 |#1|))) (((-1232 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $) (-1232 $)) NIL (|has| |#2| (-362 |#1|))) (((-1232 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-2042 (($ (-1232 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-1232 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-2533 (((-625 (-928 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-625 (-928 |#1|)) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3828 (($ $ $) NIL)) (-3148 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1683 (((-839) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1270 (((-1232 $)) NIL (|has| |#2| (-412 |#1|)))) (-4197 (((-625 (-1232 |#1|))) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-3842 (($ $ $ $) NIL)) (-4333 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2872 (($ (-669 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-3818 (($ $ $) NIL)) (-3137 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4322 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4283 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2089 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) 24)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-591 |#1| |#2|) (-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -1683 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-725 |#1|)) (T -591))
+((-1683 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-591 *3 *2)) (-4 *2 (-725 *3)))))
+(-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -1683 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|)))
+((-1671 (((-112) $ $) NIL)) (-4086 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) 33)) (-2173 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL) (($) NIL)) (-2509 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-1131) |#1|) 43)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#1| "failed") (-1131) $) 46)) (-3101 (($) NIL T CONST)) (-4137 (($ $ (-1131)) 24)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-1938 (((-3 |#1| "failed") (-1131) $) 47) (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (|has| $ (-6 -4353)))) (-1416 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-2163 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-4099 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) 32)) (-3692 ((|#1| $ (-1131) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-1131)) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-1731 (($ $) 48)) (-2508 (($ (-383)) 22) (($ (-383) (-1131)) 21)) (-1288 (((-383) $) 34)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (((-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-2537 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3712 (((-625 (-1131)) $) 39)) (-1370 (((-112) (-1131) $) NIL)) (-4111 (((-1131) $) 35)) (-2953 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-2554 (((-625 (-1131)) $) NIL)) (-2564 (((-112) (-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 ((|#1| $) NIL (|has| (-1131) (-827)))) (-2380 (((-3 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) "failed") (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-625 (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 37)) (-2154 ((|#1| $ (-1131) |#1|) NIL) ((|#1| $ (-1131)) 42)) (-4255 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL) (($) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (((-751) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (((-751) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-1683 (((-839) $) 20)) (-4125 (($ $) 25)) (-2977 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 19)) (-1471 (((-751) $) 41 (|has| $ (-6 -4353)))))
+(((-592 |#1|) (-13 (-359 (-383) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) (-1162 (-1131) |#1|) (-10 -8 (-6 -4353) (-15 -1731 ($ $)))) (-1073)) (T -592))
+((-1731 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1073)))))
+(-13 (-359 (-383) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) (-1162 (-1131) |#1|) (-10 -8 (-6 -4353) (-15 -1731 ($ $))))
+((-2893 (((-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) 15)) (-3712 (((-625 |#2|) $) 19)) (-1370 (((-112) |#2| $) 12)))
+(((-593 |#1| |#2| |#3|) (-10 -8 (-15 -3712 ((-625 |#2|) |#1|)) (-15 -1370 ((-112) |#2| |#1|)) (-15 -2893 ((-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|))) (-594 |#2| |#3|) (-1073) (-1073)) (T -593))
+NIL
+(-10 -8 (-15 -3712 ((-625 |#2|) |#1|)) (-15 -1370 ((-112) |#2| |#1|)) (-15 -2893 ((-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)))
+((-1671 (((-112) $ $) 19 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 55 (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) 61)) (-3101 (($) 7 T CONST)) (-2959 (($ $) 58 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 62)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 54 (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 56 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-3712 (((-625 |#1|) $) 63)) (-1370 (((-112) |#1| $) 64)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 39)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 40)) (-2831 (((-1093) $) 21 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 51)) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 41)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) 26 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 25 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 24 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 23 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-4255 (($) 49) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 48)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 50)) (-1683 (((-839) $) 18 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 42)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-594 |#1| |#2|) (-138) (-1073) (-1073)) (T -594))
+((-1370 (*1 *2 *3 *1) (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-5 *2 (-112)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-5 *2 (-625 *3)))) (-1938 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))) (-3128 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))))
+(-13 (-225 (-2 (|:| -2971 |t#1|) (|:| -4120 |t#2|))) (-10 -8 (-15 -1370 ((-112) |t#1| $)) (-15 -3712 ((-625 |t#1|) $)) (-15 -1938 ((-3 |t#2| "failed") |t#1| $)) (-15 -3128 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-106 #0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((-101) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) ((-597 (-839)) -1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839)))) ((-149 #0#) . T) ((-598 (-528)) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))) ((-225 #0#) . T) ((-231 #0#) . T) ((-304 #0#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-483 #0#) . T) ((-507 #0# #0#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-1073) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) ((-1186) . T))
+((-1398 (((-596 |#2|) |#1|) 15)) (-1408 (((-3 |#1| "failed") (-596 |#2|)) 19)))
+(((-595 |#1| |#2|) (-10 -7 (-15 -1398 ((-596 |#2|) |#1|)) (-15 -1408 ((-3 |#1| "failed") (-596 |#2|)))) (-827) (-827)) (T -595))
+((-1408 (*1 *2 *3) (|partial| -12 (-5 *3 (-596 *4)) (-4 *4 (-827)) (-4 *2 (-827)) (-5 *1 (-595 *2 *4)))) (-1398 (*1 *2 *3) (-12 (-5 *2 (-596 *4)) (-5 *1 (-595 *3 *4)) (-4 *3 (-827)) (-4 *4 (-827)))))
+(-10 -7 (-15 -1398 ((-596 |#2|) |#1|)) (-15 -1408 ((-3 |#1| "failed") (-596 |#2|))))
+((-1671 (((-112) $ $) NIL)) (-1379 (((-3 (-1149) "failed") $) 37)) (-2087 (((-1237) $ (-751)) 26)) (-2483 (((-751) $) 25)) (-1563 (((-114) $) 12)) (-1288 (((-1149) $) 20)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-1425 (($ (-114) (-625 |#1|) (-751)) 30) (($ (-1149)) 31)) (-1721 (((-112) $ (-114)) 18) (((-112) $ (-1149)) 16)) (-2207 (((-751) $) 22)) (-2831 (((-1093) $) NIL)) (-2042 (((-868 (-552)) $) 77 (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) 84 (|has| |#1| (-598 (-868 (-374))))) (((-528) $) 69 (|has| |#1| (-598 (-528))))) (-1683 (((-839) $) 55)) (-1388 (((-625 |#1|) $) 24)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 41)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 42)))
+(((-596 |#1|) (-13 (-131) (-860 |#1|) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1563 ((-114) $)) (-15 -1388 ((-625 |#1|) $)) (-15 -2207 ((-751) $)) (-15 -1425 ($ (-114) (-625 |#1|) (-751))) (-15 -1425 ($ (-1149))) (-15 -1379 ((-3 (-1149) "failed") $)) (-15 -1721 ((-112) $ (-114))) (-15 -1721 ((-112) $ (-1149))) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|))) (-827)) (T -596))
+((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-1425 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-625 *5)) (-5 *4 (-751)) (-4 *5 (-827)) (-5 *1 (-596 *5)))) (-1425 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-1379 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-1721 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-596 *4)) (-4 *4 (-827)))) (-1721 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-596 *4)) (-4 *4 (-827)))))
+(-13 (-131) (-860 |#1|) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1563 ((-114) $)) (-15 -1388 ((-625 |#1|) $)) (-15 -2207 ((-751) $)) (-15 -1425 ($ (-114) (-625 |#1|) (-751))) (-15 -1425 ($ (-1149))) (-15 -1379 ((-3 (-1149) "failed") $)) (-15 -1721 ((-112) $ (-114))) (-15 -1721 ((-112) $ (-1149))) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|)))
+((-1683 ((|#1| $) 6)))
+(((-597 |#1|) (-138) (-1186)) (T -597))
+((-1683 (*1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1186)))))
+(-13 (-10 -8 (-15 -1683 (|t#1| $))))
+((-2042 ((|#1| $) 6)))
+(((-598 |#1|) (-138) (-1186)) (T -598))
+((-2042 (*1 *2 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1186)))))
+(-13 (-10 -8 (-15 -2042 (|t#1| $))))
+((-1418 (((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|)) 15) (((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 16)))
+(((-599 |#1| |#2|) (-10 -7 (-15 -1418 ((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -1418 ((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|)))) (-13 (-145) (-27) (-1014 (-552)) (-1014 (-402 (-552)))) (-1208 |#1|)) (T -599))
+((-1418 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-145) (-27) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-1145 (-402 *6))) (-5 *1 (-599 *5 *6)) (-5 *3 (-402 *6)))) (-1418 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-1145 (-402 *5))) (-5 *1 (-599 *4 *5)) (-5 *3 (-402 *5)))))
+(-10 -7 (-15 -1418 ((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -1418 ((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|))))
+((-1671 (((-112) $ $) NIL)) (-3494 (($) 11 T CONST)) (-3732 (($) 12 T CONST)) (-3152 (($ $ $) 24)) (-2960 (($ $) 22)) (-2883 (((-1131) $) NIL)) (-2221 (($ $ $) 25)) (-2831 (((-1093) $) NIL)) (-2643 (($) 10 T CONST)) (-3251 (($ $ $) 26)) (-1683 (((-839) $) 30)) (-2079 (((-112) $ (|[\|\|]| -2643)) 19) (((-112) $ (|[\|\|]| -3494)) 21) (((-112) $ (|[\|\|]| -3732)) 17)) (-3743 (($ $ $) 23)) (-2281 (((-112) $ $) 15)))
+(((-600) (-13 (-943) (-10 -8 (-15 -2643 ($) -1426) (-15 -3494 ($) -1426) (-15 -3732 ($) -1426) (-15 -2079 ((-112) $ (|[\|\|]| -2643))) (-15 -2079 ((-112) $ (|[\|\|]| -3494))) (-15 -2079 ((-112) $ (|[\|\|]| -3732)))))) (T -600))
+((-2643 (*1 *1) (-5 *1 (-600))) (-3494 (*1 *1) (-5 *1 (-600))) (-3732 (*1 *1) (-5 *1 (-600))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2643)) (-5 *2 (-112)) (-5 *1 (-600)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3494)) (-5 *2 (-112)) (-5 *1 (-600)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3732)) (-5 *2 (-112)) (-5 *1 (-600)))))
+(-13 (-943) (-10 -8 (-15 -2643 ($) -1426) (-15 -3494 ($) -1426) (-15 -3732 ($) -1426) (-15 -2079 ((-112) $ (|[\|\|]| -2643))) (-15 -2079 ((-112) $ (|[\|\|]| -3494))) (-15 -2079 ((-112) $ (|[\|\|]| -3732)))))
+((-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) 10)))
+(((-601 |#1| |#2|) (-10 -8 (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-602 |#2|) (-1025)) (T -601))
+NIL
+(-10 -8 (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 34)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#1| $) 35)))
+(((-602 |#1|) (-138) (-1025)) (T -602))
+((-1683 (*1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1025)))))
+(-13 (-1025) (-628 |t#1|) (-10 -8 (-15 -1683 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4127 (((-552) $) NIL (|has| |#1| (-825)))) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3620 (((-112) $) NIL (|has| |#1| (-825)))) (-3650 (((-112) $) NIL)) (-1356 ((|#1| $) 13)) (-3630 (((-112) $) NIL (|has| |#1| (-825)))) (-3658 (($ $ $) NIL (|has| |#1| (-825)))) (-3332 (($ $ $) NIL (|has| |#1| (-825)))) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1368 ((|#3| $) 15)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL)) (-4141 (((-751)) 20)) (-1727 (($ $) NIL (|has| |#1| (-825)))) (-2089 (($) NIL T CONST)) (-2100 (($) 12 T CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2404 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-603 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (-15 -2404 ($ $ |#3|)) (-15 -2404 ($ |#1| |#3|)) (-15 -1356 (|#1| $)) (-15 -1368 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-707) |#2|)) (T -603))
+((-2404 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-707) *4)))) (-2404 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-603 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-707) *4)))) (-1356 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-603 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-707) *3)))) (-1368 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (-15 -2404 ($ $ |#3|)) (-15 -2404 ($ |#1| |#3|)) (-15 -1356 (|#1| $)) (-15 -1368 (|#3| $))))
+((-1428 ((|#2| |#2| (-1149) (-1149)) 18)))
+(((-604 |#1| |#2|) (-10 -7 (-15 -1428 (|#2| |#2| (-1149) (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-935) (-29 |#1|))) (T -604))
+((-1428 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-604 *4 *2)) (-4 *2 (-13 (-1171) (-935) (-29 *4))))))
+(-10 -7 (-15 -1428 (|#2| |#2| (-1149) (-1149))))
+((-1671 (((-112) $ $) 56)) (-3641 (((-112) $) 52)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-1440 ((|#1| $) 49)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3165 (((-2 (|:| -3533 $) (|:| -3523 (-402 |#2|))) (-402 |#2|)) 97 (|has| |#1| (-358)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) 24)) (-4174 (((-3 $ "failed") $) 75)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2172 (((-552) $) 19)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) 36)) (-3957 (($ |#1| (-552)) 21)) (-4144 ((|#1| $) 51)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) 87 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ $) 79)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2397 (((-751) $) 99 (|has| |#1| (-358)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 98 (|has| |#1| (-358)))) (-3072 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-4276 (((-552) $) 34)) (-2042 (((-402 |#2|) $) 42)) (-1683 (((-839) $) 62) (($ (-552)) 32) (($ $) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) 31) (($ |#2|) 22)) (-3637 ((|#1| $ (-552)) 63)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) 29)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 9 T CONST)) (-2100 (($) 12 T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-2281 (((-112) $ $) 17)) (-2393 (($ $) 46) (($ $ $) NIL)) (-2382 (($ $ $) 76)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 26) (($ $ $) 44)))
+(((-605 |#1| |#2|) (-13 (-227 |#2|) (-544) (-598 (-402 |#2|)) (-406 |#1|) (-1014 |#2|) (-10 -8 (-15 -4201 ((-112) $)) (-15 -4276 ((-552) $)) (-15 -2172 ((-552) $)) (-15 -4169 ($ $)) (-15 -4144 (|#1| $)) (-15 -1440 (|#1| $)) (-15 -3637 (|#1| $ (-552))) (-15 -3957 ($ |#1| (-552))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -3165 ((-2 (|:| -3533 $) (|:| -3523 (-402 |#2|))) (-402 |#2|)))) |%noBranch|))) (-544) (-1208 |#1|)) (T -605))
+((-4201 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1208 *3)))) (-4276 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1208 *3)))) (-2172 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1208 *3)))) (-4169 (*1 *1 *1) (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2)))) (-4144 (*1 *2 *1) (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2)))) (-1440 (*1 *2 *1) (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2)))) (-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1208 *2)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1208 *2)))) (-3165 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-544)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| -3533 (-605 *4 *5)) (|:| -3523 (-402 *5)))) (-5 *1 (-605 *4 *5)) (-5 *3 (-402 *5)))))
+(-13 (-227 |#2|) (-544) (-598 (-402 |#2|)) (-406 |#1|) (-1014 |#2|) (-10 -8 (-15 -4201 ((-112) $)) (-15 -4276 ((-552) $)) (-15 -2172 ((-552) $)) (-15 -4169 ($ $)) (-15 -4144 (|#1| $)) (-15 -1440 (|#1| $)) (-15 -3637 (|#1| $ (-552))) (-15 -3957 ($ |#1| (-552))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -3165 ((-2 (|:| -3533 $) (|:| -3523 (-402 |#2|))) (-402 |#2|)))) |%noBranch|)))
+((-3690 (((-625 |#6|) (-625 |#4|) (-112)) 47)) (-1451 ((|#6| |#6|) 40)))
+(((-606 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1451 (|#6| |#6|)) (-15 -3690 ((-625 |#6|) (-625 |#4|) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|) (-1082 |#1| |#2| |#3| |#4|)) (T -606))
+((-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 *10)) (-5 *1 (-606 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *10 (-1082 *5 *6 *7 *8)))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-606 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *2 (-1082 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1451 (|#6| |#6|)) (-15 -3690 ((-625 |#6|) (-625 |#4|) (-112))))
+((-1462 (((-112) |#3| (-751) (-625 |#3|)) 23)) (-1474 (((-3 (-2 (|:| |polfac| (-625 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-625 (-1145 |#3|)))) "failed") |#3| (-625 (-1145 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3449 (-625 (-2 (|:| |irr| |#4|) (|:| -3515 (-552)))))) (-625 |#3|) (-625 |#1|) (-625 |#3|)) 55)))
+(((-607 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1462 ((-112) |#3| (-751) (-625 |#3|))) (-15 -1474 ((-3 (-2 (|:| |polfac| (-625 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-625 (-1145 |#3|)))) "failed") |#3| (-625 (-1145 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3449 (-625 (-2 (|:| |irr| |#4|) (|:| -3515 (-552)))))) (-625 |#3|) (-625 |#1|) (-625 |#3|)))) (-827) (-773) (-302) (-925 |#3| |#2| |#1|)) (T -607))
+((-1474 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3449 (-625 (-2 (|:| |irr| *10) (|:| -3515 (-552))))))) (-5 *6 (-625 *3)) (-5 *7 (-625 *8)) (-4 *8 (-827)) (-4 *3 (-302)) (-4 *10 (-925 *3 *9 *8)) (-4 *9 (-773)) (-5 *2 (-2 (|:| |polfac| (-625 *10)) (|:| |correct| *3) (|:| |corrfact| (-625 (-1145 *3))))) (-5 *1 (-607 *8 *9 *3 *10)) (-5 *4 (-625 (-1145 *3))))) (-1462 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-751)) (-5 *5 (-625 *3)) (-4 *3 (-302)) (-4 *6 (-827)) (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-607 *6 *7 *3 *8)) (-4 *8 (-925 *3 *7 *6)))))
+(-10 -7 (-15 -1462 ((-112) |#3| (-751) (-625 |#3|))) (-15 -1474 ((-3 (-2 (|:| |polfac| (-625 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-625 (-1145 |#3|)))) "failed") |#3| (-625 (-1145 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3449 (-625 (-2 (|:| |irr| |#4|) (|:| -3515 (-552)))))) (-625 |#3|) (-625 |#1|) (-625 |#3|))))
+((-1671 (((-112) $ $) NIL)) (-2662 (((-1108) $) 11)) (-2651 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-608) (-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))) (T -608))
+((-2651 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608)))))
+(-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))
+((-1671 (((-112) $ $) NIL)) (-3202 (((-625 |#1|) $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-4191 (($ $) 67)) (-2458 (((-644 |#1| |#2|) $) 52)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 70)) (-1484 (((-625 (-289 |#2|)) $ $) 33)) (-2831 (((-1093) $) NIL)) (-2863 (($ (-644 |#1| |#2|)) 48)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) 58) (((-1247 |#1| |#2|) $) NIL) (((-1252 |#1| |#2|) $) 66)) (-2100 (($) 53 T CONST)) (-1494 (((-625 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $) 31)) (-1505 (((-625 (-644 |#1| |#2|)) (-625 |#1|)) 65)) (-2032 (((-625 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $) 37)) (-2281 (((-112) $ $) 54)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 44)))
+(((-609 |#1| |#2| |#3|) (-13 (-467) (-10 -8 (-15 -2863 ($ (-644 |#1| |#2|))) (-15 -2458 ((-644 |#1| |#2|) $)) (-15 -2032 ((-625 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $)) (-15 -1683 ((-1247 |#1| |#2|) $)) (-15 -1683 ((-1252 |#1| |#2|) $)) (-15 -4191 ($ $)) (-15 -3202 ((-625 |#1|) $)) (-15 -1505 ((-625 (-644 |#1| |#2|)) (-625 |#1|))) (-15 -1494 ((-625 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $)) (-15 -1484 ((-625 (-289 |#2|)) $ $)))) (-827) (-13 (-170) (-698 (-402 (-552)))) (-897)) (T -609))
+((-2863 (*1 *1 *2) (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-5 *1 (-609 *3 *4 *5)) (-14 *5 (-897)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-644 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |k| (-869 *3)) (|:| |c| *4)))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-4191 (*1 *1 *1) (-12 (-5 *1 (-609 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-13 (-170) (-698 (-402 (-552))))) (-14 *4 (-897)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-827)) (-5 *2 (-625 (-644 *4 *5))) (-5 *1 (-609 *4 *5 *6)) (-4 *5 (-13 (-170) (-698 (-402 (-552))))) (-14 *6 (-897)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |k| (-652 *3)) (|:| |c| *4)))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-1484 (*1 *2 *1 *1) (-12 (-5 *2 (-625 (-289 *4))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))))
+(-13 (-467) (-10 -8 (-15 -2863 ($ (-644 |#1| |#2|))) (-15 -2458 ((-644 |#1| |#2|) $)) (-15 -2032 ((-625 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $)) (-15 -1683 ((-1247 |#1| |#2|) $)) (-15 -1683 ((-1252 |#1| |#2|) $)) (-15 -4191 ($ $)) (-15 -3202 ((-625 |#1|) $)) (-15 -1505 ((-625 (-644 |#1| |#2|)) (-625 |#1|))) (-15 -1494 ((-625 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $)) (-15 -1484 ((-625 (-289 |#2|)) $ $))))
+((-3690 (((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112)) 72) (((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112)) 58)) (-1518 (((-112) (-625 (-760 |#1| (-841 |#2|)))) 23)) (-1562 (((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112)) 71)) (-1551 (((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112)) 57)) (-1540 (((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|)))) 27)) (-1529 (((-3 (-625 (-760 |#1| (-841 |#2|))) "failed") (-625 (-760 |#1| (-841 |#2|)))) 26)))
+(((-610 |#1| |#2|) (-10 -7 (-15 -1518 ((-112) (-625 (-760 |#1| (-841 |#2|))))) (-15 -1529 ((-3 (-625 (-760 |#1| (-841 |#2|))) "failed") (-625 (-760 |#1| (-841 |#2|))))) (-15 -1540 ((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|))))) (-15 -1551 ((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -1562 ((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -3690 ((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -3690 ((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112)))) (-446) (-625 (-1149))) (T -610))
+((-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) (-5 *1 (-610 *5 *6)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-610 *5 *6)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) (-5 *1 (-610 *5 *6)))) (-1551 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-610 *5 *6)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-625 (-760 *3 (-841 *4)))) (-4 *3 (-446)) (-14 *4 (-625 (-1149))) (-5 *1 (-610 *3 *4)))) (-1529 (*1 *2 *2) (|partial| -12 (-5 *2 (-625 (-760 *3 (-841 *4)))) (-4 *3 (-446)) (-14 *4 (-625 (-1149))) (-5 *1 (-610 *3 *4)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-625 (-760 *4 (-841 *5)))) (-4 *4 (-446)) (-14 *5 (-625 (-1149))) (-5 *2 (-112)) (-5 *1 (-610 *4 *5)))))
+(-10 -7 (-15 -1518 ((-112) (-625 (-760 |#1| (-841 |#2|))))) (-15 -1529 ((-3 (-625 (-760 |#1| (-841 |#2|))) "failed") (-625 (-760 |#1| (-841 |#2|))))) (-15 -1540 ((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|))))) (-15 -1551 ((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -1562 ((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -3690 ((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -3690 ((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112))))
+((-3728 (($ $) 38)) (-3604 (($ $) 21)) (-3710 (($ $) 37)) (-3581 (($ $) 22)) (-3749 (($ $) 36)) (-3627 (($ $) 23)) (-1385 (($) 48)) (-2458 (($ $) 45)) (-3654 (($ $) 17)) (-4269 (($ $ (-1065 $)) 7) (($ $ (-1149)) 6)) (-2863 (($ $) 46)) (-2349 (($ $) 15)) (-3569 (($ $) 16)) (-3759 (($ $) 35)) (-3638 (($ $) 24)) (-3738 (($ $) 34)) (-3614 (($ $) 25)) (-3721 (($ $) 33)) (-3593 (($ $) 26)) (-3789 (($ $) 44)) (-3670 (($ $) 32)) (-3769 (($ $) 43)) (-3648 (($ $) 31)) (-3809 (($ $) 42)) (-3691 (($ $) 30)) (-3742 (($ $) 41)) (-3700 (($ $) 29)) (-3797 (($ $) 40)) (-3681 (($ $) 28)) (-3778 (($ $) 39)) (-3659 (($ $) 27)) (-1594 (($ $) 19)) (-1606 (($ $) 20)) (-1582 (($ $) 18)) (** (($ $ $) 47)))
+(((-611) (-138)) (T -611))
+((-1606 (*1 *1 *1) (-4 *1 (-611))) (-1594 (*1 *1 *1) (-4 *1 (-611))) (-1582 (*1 *1 *1) (-4 *1 (-611))) (-3654 (*1 *1 *1) (-4 *1 (-611))) (-3569 (*1 *1 *1) (-4 *1 (-611))) (-2349 (*1 *1 *1) (-4 *1 (-611))))
+(-13 (-935) (-1171) (-10 -8 (-15 -1606 ($ $)) (-15 -1594 ($ $)) (-15 -1582 ($ $)) (-15 -3654 ($ $)) (-15 -3569 ($ $)) (-15 -2349 ($ $))))
+(((-35) . T) ((-94) . T) ((-279) . T) ((-486) . T) ((-935) . T) ((-1171) . T) ((-1174) . T))
+((-1563 (((-114) (-114)) 83)) (-3654 ((|#2| |#2|) 30)) (-4269 ((|#2| |#2| (-1065 |#2|)) 79) ((|#2| |#2| (-1149)) 52)) (-2349 ((|#2| |#2|) 29)) (-3569 ((|#2| |#2|) 31)) (-1572 (((-112) (-114)) 34)) (-1594 ((|#2| |#2|) 26)) (-1606 ((|#2| |#2|) 28)) (-1582 ((|#2| |#2|) 27)))
+(((-612 |#1| |#2|) (-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1606 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -3569 (|#2| |#2|)) (-15 -4269 (|#2| |#2| (-1149))) (-15 -4269 (|#2| |#2| (-1065 |#2|)))) (-13 (-827) (-544)) (-13 (-425 |#1|) (-978) (-1171))) (T -612))
+((-4269 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-425 *4) (-978) (-1171))) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-612 *4 *2)))) (-4269 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-612 *4 *2)) (-4 *2 (-13 (-425 *4) (-978) (-1171))))) (-3569 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *4)) (-4 *4 (-13 (-425 *3) (-978) (-1171))))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-612 *4 *5)) (-4 *5 (-13 (-425 *4) (-978) (-1171))))))
+(-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1606 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -3569 (|#2| |#2|)) (-15 -4269 (|#2| |#2| (-1149))) (-15 -4269 (|#2| |#2| (-1065 |#2|))))
+((-1719 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 53)) (-1640 (((-625 (-243 |#1| |#2|)) (-625 (-475 |#1| |#2|))) 68)) (-1651 (((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-841 |#1|)) 70) (((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)) (-841 |#1|)) 69)) (-1616 (((-2 (|:| |gblist| (-625 (-243 |#1| |#2|))) (|:| |gvlist| (-625 (-552)))) (-625 (-475 |#1| |#2|))) 108)) (-1697 (((-625 (-475 |#1| |#2|)) (-841 |#1|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|))) 83)) (-1628 (((-2 (|:| |glbase| (-625 (-243 |#1| |#2|))) (|:| |glval| (-625 (-552)))) (-625 (-243 |#1| |#2|))) 118)) (-1673 (((-1232 |#2|) (-475 |#1| |#2|) (-625 (-475 |#1| |#2|))) 58)) (-1662 (((-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|))) 41)) (-1707 (((-243 |#1| |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|))) 50)) (-1685 (((-243 |#1| |#2|) (-625 |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|))) 91)))
+(((-613 |#1| |#2|) (-10 -7 (-15 -1616 ((-2 (|:| |gblist| (-625 (-243 |#1| |#2|))) (|:| |gvlist| (-625 (-552)))) (-625 (-475 |#1| |#2|)))) (-15 -1628 ((-2 (|:| |glbase| (-625 (-243 |#1| |#2|))) (|:| |glval| (-625 (-552)))) (-625 (-243 |#1| |#2|)))) (-15 -1640 ((-625 (-243 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1651 ((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -1651 ((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -1662 ((-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1673 ((-1232 |#2|) (-475 |#1| |#2|) (-625 (-475 |#1| |#2|)))) (-15 -1685 ((-243 |#1| |#2|) (-625 |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|)))) (-15 -1697 ((-625 (-475 |#1| |#2|)) (-841 |#1|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1707 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|)))) (-15 -1719 ((-475 |#1| |#2|) (-243 |#1| |#2|)))) (-625 (-1149)) (-446)) (T -613))
+((-1719 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *2 (-475 *4 *5)) (-5 *1 (-613 *4 *5)))) (-1707 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-243 *4 *5))) (-5 *2 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))) (-1697 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-625 (-475 *4 *5))) (-5 *3 (-841 *4)) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))) (-1685 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-243 *5 *6))) (-4 *6 (-446)) (-5 *2 (-243 *5 *6)) (-14 *5 (-625 (-1149))) (-5 *1 (-613 *5 *6)))) (-1673 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-475 *5 *6))) (-5 *3 (-475 *5 *6)) (-14 *5 (-625 (-1149))) (-4 *6 (-446)) (-5 *2 (-1232 *6)) (-5 *1 (-613 *5 *6)))) (-1662 (*1 *2 *2) (-12 (-5 *2 (-625 (-475 *3 *4))) (-14 *3 (-625 (-1149))) (-4 *4 (-446)) (-5 *1 (-613 *3 *4)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-625 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446)))) (-1651 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-625 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-625 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-625 (-475 *4 *5))) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *2 (-625 (-243 *4 *5))) (-5 *1 (-613 *4 *5)))) (-1628 (*1 *2 *3) (-12 (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |glbase| (-625 (-243 *4 *5))) (|:| |glval| (-625 (-552))))) (-5 *1 (-613 *4 *5)) (-5 *3 (-625 (-243 *4 *5))))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-625 (-475 *4 *5))) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |gblist| (-625 (-243 *4 *5))) (|:| |gvlist| (-625 (-552))))) (-5 *1 (-613 *4 *5)))))
+(-10 -7 (-15 -1616 ((-2 (|:| |gblist| (-625 (-243 |#1| |#2|))) (|:| |gvlist| (-625 (-552)))) (-625 (-475 |#1| |#2|)))) (-15 -1628 ((-2 (|:| |glbase| (-625 (-243 |#1| |#2|))) (|:| |glval| (-625 (-552)))) (-625 (-243 |#1| |#2|)))) (-15 -1640 ((-625 (-243 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1651 ((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -1651 ((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -1662 ((-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1673 ((-1232 |#2|) (-475 |#1| |#2|) (-625 (-475 |#1| |#2|)))) (-15 -1685 ((-243 |#1| |#2|) (-625 |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|)))) (-15 -1697 ((-625 (-475 |#1| |#2|)) (-841 |#1|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1707 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|)))) (-15 -1719 ((-475 |#1| |#2|) (-243 |#1| |#2|))))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL)) (-2509 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-52) $ (-1131) (-52)) 16) (((-52) $ (-1149) (-52)) 17)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 (-52) "failed") (-1131) $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073))))) (-1938 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-52) "failed") (-1131) $) NIL)) (-1416 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (((-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3692 (((-52) $ (-1131) (-52)) NIL (|has| $ (-6 -4354)))) (-3631 (((-52) $ (-1131)) NIL)) (-3799 (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-1731 (($ $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3730 (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-2537 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1473 (($ (-383)) 9)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073))))) (-3712 (((-625 (-1131)) $) NIL)) (-1370 (((-112) (-1131) $) NIL)) (-2953 (((-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL)) (-3966 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL)) (-2554 (((-625 (-1131)) $) NIL)) (-2564 (((-112) (-1131) $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073))))) (-2924 (((-52) $) NIL (|has| (-1131) (-827)))) (-2380 (((-3 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) "failed") (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL)) (-2518 (($ $ (-52)) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (($ $ (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (($ $ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-52)) (-625 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-625 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-1358 (((-625 (-52)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (((-52) $ (-1131)) 14) (((-52) $ (-1131) (-52)) NIL) (((-52) $ (-1149)) 15)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (((-751) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073)))) (((-751) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-52) (-597 (-839))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-614) (-13 (-1162 (-1131) (-52)) (-10 -8 (-15 -1473 ($ (-383))) (-15 -1731 ($ $)) (-15 -2154 ((-52) $ (-1149))) (-15 -1851 ((-52) $ (-1149) (-52)))))) (T -614))
+((-1473 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-614)))) (-1731 (*1 *1 *1) (-5 *1 (-614))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-52)) (-5 *1 (-614)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1149)) (-5 *1 (-614)))))
+(-13 (-1162 (-1131) (-52)) (-10 -8 (-15 -1473 ($ (-383))) (-15 -1731 ($ $)) (-15 -2154 ((-52) $ (-1149))) (-15 -1851 ((-52) $ (-1149) (-52)))))
+((-2404 (($ $ |#2|) 10)))
+(((-615 |#1| |#2|) (-10 -8 (-15 -2404 (|#1| |#1| |#2|))) (-616 |#2|) (-170)) (T -615))
+NIL
+(-10 -8 (-15 -2404 (|#1| |#1| |#2|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1695 (($ $ $) 29)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 28 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-616 |#1|) (-138) (-170)) (T -616))
+((-1695 (*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-170)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-170)) (-4 *2 (-358)))))
+(-13 (-698 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1695 ($ $ $)) (IF (|has| |t#1| (-358)) (-15 -2404 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-1031 |#1|) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3618 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2770 (((-1232 (-669 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-1232 (-669 |#1|)) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3208 (((-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3101 (($) NIL T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-4152 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2629 (((-669 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3192 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-2612 (((-669 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3598 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-1392 (((-1145 (-928 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-3629 (($ $ (-897)) NIL)) (-3174 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-4175 (((-1145 |#1|) $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2648 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3159 (((-1145 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-4303 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2670 (($ (-1232 |#1|)) NIL (|has| |#2| (-412 |#1|))) (($ (-1232 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-3442 (((-897)) NIL (|has| |#2| (-362 |#1|)))) (-4272 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2712 (($ $ (-897)) NIL)) (-4228 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4207 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4250 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-4164 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2640 (((-669 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3199 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-2619 (((-669 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3609 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-1433 (((-1145 (-928 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-3619 (($ $ (-897)) NIL)) (-3182 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-4187 (((-1145 |#1|) $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2658 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3166 (((-1145 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-4312 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2883 (((-1131) $) NIL)) (-4218 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4239 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4261 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2831 (((-1093) $) NIL)) (-4293 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2154 ((|#1| $ (-552)) NIL (|has| |#2| (-412 |#1|)))) (-2780 (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-412 |#1|))) (((-1232 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $) (-1232 $)) NIL (|has| |#2| (-362 |#1|))) (((-1232 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-2042 (($ (-1232 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-1232 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-2533 (((-625 (-928 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-625 (-928 |#1|)) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3828 (($ $ $) NIL)) (-3148 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1683 (((-839) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1270 (((-1232 $)) NIL (|has| |#2| (-412 |#1|)))) (-4197 (((-625 (-1232 |#1|))) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-3842 (($ $ $ $) NIL)) (-4333 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2872 (($ (-669 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-3818 (($ $ $) NIL)) (-3137 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4322 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4283 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2089 (($) 15 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) 17)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-617 |#1| |#2|) (-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -1683 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-725 |#1|)) (T -617))
+((-1683 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-617 *3 *2)) (-4 *2 (-725 *3)))))
+(-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -1683 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|)))
+((-1751 (((-3 (-820 |#2|) "failed") |#2| (-289 |#2|) (-1131)) 82) (((-3 (-820 |#2|) (-2 (|:| |leftHandLimit| (-3 (-820 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-820 |#2|) "failed"))) "failed") |#2| (-289 (-820 |#2|))) 104)) (-1741 (((-3 (-813 |#2|) "failed") |#2| (-289 (-813 |#2|))) 109)))
+(((-618 |#1| |#2|) (-10 -7 (-15 -1751 ((-3 (-820 |#2|) (-2 (|:| |leftHandLimit| (-3 (-820 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-820 |#2|) "failed"))) "failed") |#2| (-289 (-820 |#2|)))) (-15 -1741 ((-3 (-813 |#2|) "failed") |#2| (-289 (-813 |#2|)))) (-15 -1751 ((-3 (-820 |#2|) "failed") |#2| (-289 |#2|) (-1131)))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -618))
+((-1751 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-289 *3)) (-5 *5 (-1131)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-820 *3)) (-5 *1 (-618 *6 *3)))) (-1741 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-289 (-813 *3))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-813 *3)) (-5 *1 (-618 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-820 *3))) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (-820 *3) (-2 (|:| |leftHandLimit| (-3 (-820 *3) "failed")) (|:| |rightHandLimit| (-3 (-820 *3) "failed"))) "failed")) (-5 *1 (-618 *5 *3)))))
+(-10 -7 (-15 -1751 ((-3 (-820 |#2|) (-2 (|:| |leftHandLimit| (-3 (-820 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-820 |#2|) "failed"))) "failed") |#2| (-289 (-820 |#2|)))) (-15 -1741 ((-3 (-813 |#2|) "failed") |#2| (-289 (-813 |#2|)))) (-15 -1751 ((-3 (-820 |#2|) "failed") |#2| (-289 |#2|) (-1131))))
+((-1751 (((-3 (-820 (-402 (-928 |#1|))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))) (-1131)) 80) (((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|)))) 20) (((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-820 (-928 |#1|)))) 35)) (-1741 (((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|)))) 23) (((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-813 (-928 |#1|)))) 43)))
+(((-619 |#1|) (-10 -7 (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-820 (-928 |#1|))))) (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -1741 ((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-813 (-928 |#1|))))) (-15 -1741 ((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))) (-1131)))) (-446)) (T -619))
+((-1751 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-289 (-402 (-928 *6)))) (-5 *5 (-1131)) (-5 *3 (-402 (-928 *6))) (-4 *6 (-446)) (-5 *2 (-820 *3)) (-5 *1 (-619 *6)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5))) (-4 *5 (-446)) (-5 *2 (-813 *3)) (-5 *1 (-619 *5)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-813 (-928 *5)))) (-4 *5 (-446)) (-5 *2 (-813 (-402 (-928 *5)))) (-5 *1 (-619 *5)) (-5 *3 (-402 (-928 *5))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5))) (-4 *5 (-446)) (-5 *2 (-3 (-820 *3) (-2 (|:| |leftHandLimit| (-3 (-820 *3) "failed")) (|:| |rightHandLimit| (-3 (-820 *3) "failed"))) "failed")) (-5 *1 (-619 *5)))) (-1751 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-820 (-928 *5)))) (-4 *5 (-446)) (-5 *2 (-3 (-820 (-402 (-928 *5))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 *5))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 *5))) "failed"))) "failed")) (-5 *1 (-619 *5)) (-5 *3 (-402 (-928 *5))))))
+(-10 -7 (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-820 (-928 |#1|))))) (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -1741 ((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-813 (-928 |#1|))))) (-15 -1741 ((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))) (-1131))))
+((-1782 (((-3 (-1232 (-402 |#1|)) "failed") (-1232 |#2|) |#2|) 57 (-2960 (|has| |#1| (-358)))) (((-3 (-1232 |#1|) "failed") (-1232 |#2|) |#2|) 42 (|has| |#1| (-358)))) (-1761 (((-112) (-1232 |#2|)) 30)) (-1771 (((-3 (-1232 |#1|) "failed") (-1232 |#2|)) 33)))
+(((-620 |#1| |#2|) (-10 -7 (-15 -1761 ((-112) (-1232 |#2|))) (-15 -1771 ((-3 (-1232 |#1|) "failed") (-1232 |#2|))) (IF (|has| |#1| (-358)) (-15 -1782 ((-3 (-1232 |#1|) "failed") (-1232 |#2|) |#2|)) (-15 -1782 ((-3 (-1232 (-402 |#1|)) "failed") (-1232 |#2|) |#2|)))) (-544) (-621 |#1|)) (T -620))
+((-1782 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 *5)) (-2960 (-4 *5 (-358))) (-4 *5 (-544)) (-5 *2 (-1232 (-402 *5))) (-5 *1 (-620 *5 *4)))) (-1782 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 *5)) (-4 *5 (-358)) (-4 *5 (-544)) (-5 *2 (-1232 *5)) (-5 *1 (-620 *5 *4)))) (-1771 (*1 *2 *3) (|partial| -12 (-5 *3 (-1232 *5)) (-4 *5 (-621 *4)) (-4 *4 (-544)) (-5 *2 (-1232 *4)) (-5 *1 (-620 *4 *5)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1232 *5)) (-4 *5 (-621 *4)) (-4 *4 (-544)) (-5 *2 (-112)) (-5 *1 (-620 *4 *5)))))
+(-10 -7 (-15 -1761 ((-112) (-1232 |#2|))) (-15 -1771 ((-3 (-1232 |#1|) "failed") (-1232 |#2|))) (IF (|has| |#1| (-358)) (-15 -1782 ((-3 (-1232 |#1|) "failed") (-1232 |#2|) |#2|)) (-15 -1782 ((-3 (-1232 (-402 |#1|)) "failed") (-1232 |#2|) |#2|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1794 (((-669 |#1|) (-669 $)) 34) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 33)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-621 |#1|) (-138) (-1025)) (T -621))
-((-2362 (*1 *2 *3) (-12 (-5 *3 (-669 *1)) (-4 *1 (-621 *4)) (-4 *4 (-1025)) (-5 *2 (-669 *4)))) (-2362 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *1)) (-5 *4 (-1231 *1)) (-4 *1 (-621 *5)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -1700 (-669 *5)) (|:| |vec| (-1231 *5)))))))
-(-13 (-1025) (-10 -8 (-15 -2362 ((-669 |t#1|) (-669 $))) (-15 -2362 ((-2 (|:| -1700 (-669 |t#1|)) (|:| |vec| (-1231 |t#1|))) (-669 $) (-1231 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) NIL)) (-4154 ((|#1| $) NIL)) (-4156 (($ $) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1846 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-3242 (($ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4146 (($ $ $) NIL (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-2365 (($ $ $) 32 (|has| |#1| (-1074)))) (-2364 (($ $ $) 34 (|has| |#1| (-1074)))) (-2363 (($ $ $) 37 (|has| |#1| (-1074)))) (-1631 (($ (-1 (-112) |#1|) $) NIL)) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4155 ((|#1| $) NIL)) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-4158 (($ $) NIL) (($ $ (-751)) NIL)) (-2455 (($ $) NIL (|has| |#1| (-1074)))) (-1398 (($ $) 31 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) NIL (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) NIL)) (-3765 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3801 (((-112) $) NIL)) (-3778 (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074))) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) (-1 (-112) |#1|) $) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2367 (((-112) $) 9)) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2368 (($) 7)) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3192 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3872 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3897 (($ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-4157 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3970 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-3802 (((-112) $) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1198 (-538))) NIL) ((|#1| $ (-538)) 36) ((|#1| $ (-538) |#1|) NIL)) (-3362 (((-538) $ $) NIL)) (-1632 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-3996 (((-112) $) NIL)) (-4151 (($ $) NIL)) (-4149 (($ $) NIL (|has| $ (-6 -4354)))) (-4152 (((-751) $) NIL)) (-4153 (($ $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) 45 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-3815 (($ |#1| $) 10)) (-4150 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4161 (($ $ $) 30) (($ |#1| $) NIL) (($ (-622 $)) NIL) (($ $ |#1|) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2366 (($ $ $) 11)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2834 (((-1131) $) 26 (|has| |#1| (-801))) (((-1131) $ (-112)) 27 (|has| |#1| (-801))) (((-1237) (-803) $) 28 (|has| |#1| (-801))) (((-1237) (-803) $ (-112)) 29 (|has| |#1| (-801)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-622 |#1|) (-13 (-646 |#1|) (-10 -8 (-15 -2368 ($)) (-15 -2367 ((-112) $)) (-15 -3815 ($ |#1| $)) (-15 -2366 ($ $ $)) (IF (|has| |#1| (-1074)) (PROGN (-15 -2365 ($ $ $)) (-15 -2364 ($ $ $)) (-15 -2363 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|))) (-1185)) (T -622))
-((-2368 (*1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185)))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-622 *3)) (-4 *3 (-1185)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185)))) (-2366 (*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185)))) (-2365 (*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)))) (-2364 (*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)))) (-2363 (*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)))))
-(-13 (-646 |#1|) (-10 -8 (-15 -2368 ($)) (-15 -2367 ((-112) $)) (-15 -3815 ($ |#1| $)) (-15 -2366 ($ $ $)) (IF (|has| |#1| (-1074)) (PROGN (-15 -2365 ($ $ $)) (-15 -2364 ($ $ $)) (-15 -2363 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|)))
-((-4201 (((-622 |#2|) (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|) 16)) (-4202 ((|#2| (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|) 18)) (-4318 (((-622 |#2|) (-1 |#2| |#1|) (-622 |#1|)) 13)))
-(((-623 |#1| |#2|) (-10 -7 (-15 -4201 ((-622 |#2|) (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|)) (-15 -4318 ((-622 |#2|) (-1 |#2| |#1|) (-622 |#1|)))) (-1185) (-1185)) (T -623))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-622 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-622 *6)) (-5 *1 (-623 *5 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-622 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-623 *5 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-622 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-5 *2 (-622 *5)) (-5 *1 (-623 *6 *5)))))
-(-10 -7 (-15 -4201 ((-622 |#2|) (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|)) (-15 -4318 ((-622 |#2|) (-1 |#2| |#1|) (-622 |#1|))))
-((-3781 ((|#2| (-622 |#1|) (-622 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-622 |#1|) (-622 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) |#2|) 17) ((|#2| (-622 |#1|) (-622 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|)) 12)))
-(((-624 |#1| |#2|) (-10 -7 (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|))) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1|)) (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) |#2|)) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1| |#2|)) (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) (-1 |#2| |#1|))) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1| (-1 |#2| |#1|)))) (-1074) (-1185)) (T -624))
-((-3781 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1074)) (-4 *2 (-1185)) (-5 *1 (-624 *5 *2)))) (-3781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-622 *5)) (-5 *4 (-622 *6)) (-4 *5 (-1074)) (-4 *6 (-1185)) (-5 *1 (-624 *5 *6)))) (-3781 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-4 *5 (-1074)) (-4 *2 (-1185)) (-5 *1 (-624 *5 *2)))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 *5)) (-4 *6 (-1074)) (-4 *5 (-1185)) (-5 *2 (-1 *5 *6)) (-5 *1 (-624 *6 *5)))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-4 *5 (-1074)) (-4 *2 (-1185)) (-5 *1 (-624 *5 *2)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *6)) (-4 *5 (-1074)) (-4 *6 (-1185)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *6)))))
-(-10 -7 (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|))) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1|)) (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) |#2|)) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1| |#2|)) (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) (-1 |#2| |#1|))) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1| (-1 |#2| |#1|))))
-((-4318 (((-622 |#3|) (-1 |#3| |#1| |#2|) (-622 |#1|) (-622 |#2|)) 13)))
-(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-622 |#3|) (-1 |#3| |#1| |#2|) (-622 |#1|) (-622 |#2|)))) (-1185) (-1185) (-1185)) (T -625))
-((-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-622 *6)) (-5 *5 (-622 *7)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-622 *8)) (-5 *1 (-625 *6 *7 *8)))))
-(-10 -7 (-15 -4318 ((-622 |#3|) (-1 |#3| |#1| |#2|) (-622 |#1|) (-622 |#2|))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 11) (((-1154) $) NIL) (($ (-1154)) NIL) ((|#1| $) 8)) (-3387 (((-112) $ $) NIL)))
-(((-626 |#1|) (-13 (-1056) (-597 |#1|)) (-1074)) (T -626))
+((-1794 (*1 *2 *3) (-12 (-5 *3 (-669 *1)) (-4 *1 (-621 *4)) (-4 *4 (-1025)) (-5 *2 (-669 *4)))) (-1794 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *1)) (-5 *4 (-1232 *1)) (-4 *1 (-621 *5)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -2351 (-669 *5)) (|:| |vec| (-1232 *5)))))))
+(-13 (-1025) (-10 -8 (-15 -1794 ((-669 |t#1|) (-669 $))) (-15 -1794 ((-2 (|:| -2351 (-669 |t#1|)) (|:| |vec| (-1232 |t#1|))) (-669 $) (-1232 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-2344 ((|#2| (-625 |#1|) (-625 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-625 |#1|) (-625 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) |#2|) 17) ((|#2| (-625 |#1|) (-625 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|)) 12)))
+(((-622 |#1| |#2|) (-10 -7 (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|))) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1|)) (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) |#2|)) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1| |#2|)) (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) (-1 |#2| |#1|))) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1| (-1 |#2| |#1|)))) (-1073) (-1186)) (T -622))
+((-2344 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1073)) (-4 *2 (-1186)) (-5 *1 (-622 *5 *2)))) (-2344 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-625 *5)) (-5 *4 (-625 *6)) (-4 *5 (-1073)) (-4 *6 (-1186)) (-5 *1 (-622 *5 *6)))) (-2344 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-4 *5 (-1073)) (-4 *2 (-1186)) (-5 *1 (-622 *5 *2)))) (-2344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 *5)) (-4 *6 (-1073)) (-4 *5 (-1186)) (-5 *2 (-1 *5 *6)) (-5 *1 (-622 *6 *5)))) (-2344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-4 *5 (-1073)) (-4 *2 (-1186)) (-5 *1 (-622 *5 *2)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *6)) (-4 *5 (-1073)) (-4 *6 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *6)))))
+(-10 -7 (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|))) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1|)) (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) |#2|)) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1| |#2|)) (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) (-1 |#2| |#1|))) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1| (-1 |#2| |#1|))))
+((-1454 (((-625 |#2|) (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|) 16)) (-2163 ((|#2| (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|) 18)) (-1996 (((-625 |#2|) (-1 |#2| |#1|) (-625 |#1|)) 13)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -1454 ((-625 |#2|) (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|)) (-15 -1996 ((-625 |#2|) (-1 |#2| |#1|) (-625 |#1|)))) (-1186) (-1186)) (T -623))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-625 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-625 *6)) (-5 *1 (-623 *5 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-625 *5)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-623 *5 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-625 *6)) (-4 *6 (-1186)) (-4 *5 (-1186)) (-5 *2 (-625 *5)) (-5 *1 (-623 *6 *5)))))
+(-10 -7 (-15 -1454 ((-625 |#2|) (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|)) (-15 -1996 ((-625 |#2|) (-1 |#2| |#1|) (-625 |#1|))))
+((-1996 (((-625 |#3|) (-1 |#3| |#1| |#2|) (-625 |#1|) (-625 |#2|)) 13)))
+(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-625 |#3|) (-1 |#3| |#1| |#2|) (-625 |#1|) (-625 |#2|)))) (-1186) (-1186) (-1186)) (T -624))
+((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-625 *6)) (-5 *5 (-625 *7)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-625 *8)) (-5 *1 (-624 *6 *7 *8)))))
+(-10 -7 (-15 -1996 ((-625 |#3|) (-1 |#3| |#1| |#2|) (-625 |#1|) (-625 |#2|))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) NIL)) (-3897 ((|#1| $) NIL)) (-2101 (($ $) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3218 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1800 (($ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2301 (($ $ $) NIL (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "rest" $) NIL (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-2861 (($ $ $) 32 (|has| |#1| (-1073)))) (-2850 (($ $ $) 34 (|has| |#1| (-1073)))) (-2838 (($ $ $) 37 (|has| |#1| (-1073)))) (-2873 (($ (-1 (-112) |#1|) $) NIL)) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2673 ((|#1| $) NIL)) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2936 (($ $) NIL) (($ $ (-751)) NIL)) (-3238 (($ $) NIL (|has| |#1| (-1073)))) (-2959 (($ $) 31 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) NIL (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) NIL)) (-1416 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-4011 (((-112) $) NIL)) (-2483 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073))) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) (-1 (-112) |#1|) $) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2068 (((-112) $) 9)) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3526 (($) 7)) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3260 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3280 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2801 (($ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-1437 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3966 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-4022 (((-112) $) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1199 (-552))) NIL) ((|#1| $ (-552)) 36) ((|#1| $ (-552) |#1|) NIL)) (-1389 (((-552) $ $) NIL)) (-2884 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-2316 (((-112) $) NIL)) (-2356 (($ $) NIL)) (-2330 (($ $) NIL (|has| $ (-6 -4354)))) (-2368 (((-751) $) NIL)) (-2379 (($ $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) 45 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-1587 (($ |#1| $) 10)) (-2342 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3402 (($ $ $) 30) (($ |#1| $) NIL) (($ (-625 $)) NIL) (($ $ |#1|) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2622 (($ $ $) 11)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3010 (((-1131) $) 26 (|has| |#1| (-808))) (((-1131) $ (-112)) 27 (|has| |#1| (-808))) (((-1237) (-802) $) 28 (|has| |#1| (-808))) (((-1237) (-802) $ (-112)) 29 (|has| |#1| (-808)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-625 |#1|) (-13 (-646 |#1|) (-10 -8 (-15 -3526 ($)) (-15 -2068 ((-112) $)) (-15 -1587 ($ |#1| $)) (-15 -2622 ($ $ $)) (IF (|has| |#1| (-1073)) (PROGN (-15 -2861 ($ $ $)) (-15 -2850 ($ $ $)) (-15 -2838 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|))) (-1186)) (T -625))
+((-3526 (*1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1186)))) (-1587 (*1 *1 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186)))) (-2622 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186)))) (-2861 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)))) (-2850 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)))) (-2838 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)))))
+(-13 (-646 |#1|) (-10 -8 (-15 -3526 ($)) (-15 -2068 ((-112) $)) (-15 -1587 ($ |#1| $)) (-15 -2622 ($ $ $)) (IF (|has| |#1| (-1073)) (PROGN (-15 -2861 ($ $ $)) (-15 -2850 ($ $ $)) (-15 -2838 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|)))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 11) (((-1154) $) NIL) (($ (-1154)) NIL) ((|#1| $) 8)) (-2281 (((-112) $ $) NIL)))
+(((-626 |#1|) (-13 (-1056) (-597 |#1|)) (-1073)) (T -626))
NIL
(-13 (-1056) (-597 |#1|))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2369 (($ |#1| |#1| $) 43)) (-1271 (((-112) $ (-751)) NIL)) (-1631 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2455 (($ $) 45)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) 52 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 9 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 37)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) 46)) (-3970 (($ |#1| $) 26) (($ |#1| $ (-751)) 42)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1334 ((|#1| $) 48)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 21)) (-3928 (($) 25)) (-2370 (((-112) $) 50)) (-2454 (((-622 (-2 (|:| -2191 |#1|) (|:| -2069 (-751)))) $) 59)) (-1523 (($) 23) (($ (-622 |#1|)) 18)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) 56 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 19)) (-4330 (((-527) $) 34 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4317 (((-840) $) 14 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 22)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 61 (|has| |#1| (-1074)))) (-4316 (((-751) $) 16 (|has| $ (-6 -4353)))))
-(((-627 |#1|) (-13 (-675 |#1|) (-10 -8 (-6 -4353) (-15 -2370 ((-112) $)) (-15 -2369 ($ |#1| |#1| $)))) (-1074)) (T -627))
-((-2370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3)) (-4 *3 (-1074)))) (-2369 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1074)))))
-(-13 (-675 |#1|) (-10 -8 (-6 -4353) (-15 -2370 ((-112) $)) (-15 -2369 ($ |#1| |#1| $))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23)))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2946 (($ |#1| |#1| $) 43)) (-3495 (((-112) $ (-751)) NIL)) (-2873 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-3238 (($ $) 45)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) 52 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 9 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 37)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) 46)) (-3966 (($ |#1| $) 26) (($ |#1| $ (-751)) 42)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2966 ((|#1| $) 48)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 21)) (-3600 (($) 25)) (-1806 (((-112) $) 50)) (-3229 (((-625 (-2 (|:| -4120 |#1|) (|:| -2840 (-751)))) $) 59)) (-4255 (($) 23) (($ (-625 |#1|)) 18)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) 56 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 19)) (-2042 (((-528) $) 34 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-1683 (((-839) $) 14 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 22)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 61 (|has| |#1| (-1073)))) (-1471 (((-751) $) 16 (|has| $ (-6 -4353)))))
+(((-627 |#1|) (-13 (-675 |#1|) (-10 -8 (-6 -4353) (-15 -1806 ((-112) $)) (-15 -2946 ($ |#1| |#1| $)))) (-1073)) (T -627))
+((-1806 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3)) (-4 *3 (-1073)))) (-2946 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1073)))))
+(-13 (-675 |#1|) (-10 -8 (-6 -4353) (-15 -1806 ((-112) $)) (-15 -2946 ($ |#1| |#1| $))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23)))
(((-628 |#1|) (-138) (-1032)) (T -628))
((* (*1 *1 *2 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1032)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3471 (((-751) $) 15)) (-2375 (($ $ |#1|) 56)) (-2377 (($ $) 32)) (-2378 (($ $) 31)) (-3508 (((-3 |#1| "failed") $) 48)) (-3507 ((|#1| $) NIL)) (-2407 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3887 (((-840) $ (-1 (-840) (-840) (-840)) (-1 (-840) (-840) (-840)) (-538)) 46)) (-2768 ((|#1| $ (-538)) 30)) (-2769 ((|#2| $ (-538)) 29)) (-2371 (($ (-1 |#1| |#1|) $) 34)) (-2372 (($ (-1 |#2| |#2|) $) 38)) (-2376 (($) 10)) (-2380 (($ |#1| |#2|) 22)) (-2379 (($ (-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|)))) 23)) (-2381 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))) $) 13)) (-2374 (($ |#1| $) 57)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2373 (((-112) $ $) 60)) (-4317 (((-840) $) 19) (($ |#1|) 16)) (-3387 (((-112) $ $) 25)))
-(((-629 |#1| |#2| |#3|) (-13 (-1074) (-1014 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-1 (-840) (-840) (-840)) (-1 (-840) (-840) (-840)) (-538))) (-15 -2381 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))) $)) (-15 -2380 ($ |#1| |#2|)) (-15 -2379 ($ (-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))))) (-15 -2769 (|#2| $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2378 ($ $)) (-15 -2377 ($ $)) (-15 -3471 ((-751) $)) (-15 -2376 ($)) (-15 -2375 ($ $ |#1|)) (-15 -2374 ($ |#1| $)) (-15 -2407 ($ |#1| |#2| $)) (-15 -2407 ($ $ $)) (-15 -2373 ((-112) $ $)) (-15 -2372 ($ (-1 |#2| |#2|) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)))) (-1074) (-23) |#2|) (T -629))
-((-3887 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-840) (-840) (-840))) (-5 *4 (-538)) (-5 *2 (-840)) (-5 *1 (-629 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-23)) (-14 *7 *6))) (-2381 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4)))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4))) (-2380 (*1 *1 *2 *3) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2379 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4)))) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *2 (-23)) (-5 *1 (-629 *4 *2 *5)) (-4 *4 (-1074)) (-14 *5 *2))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *2 (-1074)) (-5 *1 (-629 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2378 (*1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2377 (*1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4))) (-2376 (*1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2375 (*1 *1 *1 *2) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2374 (*1 *1 *2 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2407 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2407 (*1 *1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2373 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4))) (-2372 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)))) (-2371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-629 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1074) (-1014 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-1 (-840) (-840) (-840)) (-1 (-840) (-840) (-840)) (-538))) (-15 -2381 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))) $)) (-15 -2380 ($ |#1| |#2|)) (-15 -2379 ($ (-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))))) (-15 -2769 (|#2| $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2378 ($ $)) (-15 -2377 ($ $)) (-15 -3471 ((-751) $)) (-15 -2376 ($)) (-15 -2375 ($ $ |#1|)) (-15 -2374 ($ |#1| $)) (-15 -2407 ($ |#1| |#2| $)) (-15 -2407 ($ $ $)) (-15 -2373 ((-112) $ $)) (-15 -2372 ($ (-1 |#2| |#2|) $)) (-15 -2371 ($ (-1 |#1| |#1|) $))))
-((-2308 (((-538) $) 24)) (-2382 (($ |#2| $ (-538)) 22) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) 12)) (-2311 (((-112) (-538) $) 15)) (-4161 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-622 $)) NIL)))
-(((-630 |#1| |#2|) (-10 -8 (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -2308 ((-538) |#1|)) (-15 -2310 ((-622 (-538)) |#1|)) (-15 -2311 ((-112) (-538) |#1|))) (-631 |#2|) (-1185)) (T -630))
-NIL
-(-10 -8 (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -2308 ((-538) |#1|)) (-15 -2310 ((-622 (-538)) |#1|)) (-15 -2311 ((-112) (-538) |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 70)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-631 |#1|) (-138) (-1185)) (T -631))
-((-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-4161 (*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185)))) (-4161 (*1 *1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185)))) (-4161 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-4318 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-2383 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-2383 (*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-2382 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-631 *2)) (-4 *2 (-1185)))) (-2382 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1198 (-538))) (|has| *1 (-6 -4354)) (-4 *1 (-631 *2)) (-4 *2 (-1185)))))
-(-13 (-588 (-538) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3977 ($ (-751) |t#1|)) (-15 -4161 ($ $ |t#1|)) (-15 -4161 ($ |t#1| $)) (-15 -4161 ($ $ $)) (-15 -4161 ($ (-622 $))) (-15 -4318 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4159 ($ $ (-1198 (-538)))) (-15 -2383 ($ $ (-538))) (-15 -2383 ($ $ (-1198 (-538)))) (-15 -2382 ($ |t#1| $ (-538))) (-15 -2382 ($ $ $ (-538))) (IF (|has| $ (-6 -4354)) (-15 -4147 (|t#1| $ (-1198 (-538)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 15)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3331 ((|#1| $) 21)) (-3677 (($ $ $) NIL (|has| |#1| (-771)))) (-3678 (($ $ $) NIL (|has| |#1| (-771)))) (-3593 (((-1131) $) 46)) (-3594 (((-1093) $) NIL)) (-3330 ((|#3| $) 22)) (-4317 (((-840) $) 42)) (-2991 (($) 10 T CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-771)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-771)))) (-3387 (((-112) $ $) 20)) (-3017 (((-112) $ $) NIL (|has| |#1| (-771)))) (-3018 (((-112) $ $) 24 (|has| |#1| (-771)))) (-4308 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4197 (($ $) 17) (($ $ $) NIL)) (-4199 (($ $ $) 27)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-632 |#1| |#2| |#3|) (-13 (-698 |#2|) (-10 -8 (IF (|has| |#1| (-771)) (-6 (-771)) |%noBranch|) (-15 -4308 ($ $ |#3|)) (-15 -4308 ($ |#1| |#3|)) (-15 -3331 (|#1| $)) (-15 -3330 (|#3| $)))) (-698 |#2|) (-170) (|SubsetCategory| (-707) |#2|)) (T -632))
-((-4308 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-698 *4)) (-4 *2 (|SubsetCategory| (-707) *4)))) (-4308 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-632 *2 *4 *3)) (-4 *2 (-698 *4)) (-4 *3 (|SubsetCategory| (-707) *4)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-698 *3)) (-5 *1 (-632 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-707) *3)))) (-3330 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-698 *4)))))
-(-13 (-698 |#2|) (-10 -8 (IF (|has| |#1| (-771)) (-6 (-771)) |%noBranch|) (-15 -4308 ($ $ |#3|)) (-15 -4308 ($ |#1| |#3|)) (-15 -3331 (|#1| $)) (-15 -3330 (|#3| $))))
-((-3936 (((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-622 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) "failed") |#3| |#2| (-1149)) 44)))
-(((-633 |#1| |#2| |#3|) (-10 -7 (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) "failed") |#3| |#2| (-1149))) (-15 -3936 ((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-622 |#2|)))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)) (-13 (-29 |#1|) (-1171) (-936)) (-638 |#2|)) (T -633))
-((-3936 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *1 (-633 *6 *2 *3)) (-4 *3 (-638 *2)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-4 *4 (-13 (-29 *6) (-1171) (-936))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2128 (-622 *4)))) (-5 *1 (-633 *6 *4 *3)) (-4 *3 (-638 *4)))))
-(-10 -7 (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) "failed") |#3| |#2| (-1149))) (-15 -3936 ((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-622 |#2|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-358)))) (-2386 (($ $ $) 28 (|has| |#1| (-358)))) (-2387 (($ $ (-751)) 31 (|has| |#1| (-358)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2871 (($ $ $) NIL (|has| |#1| (-358)))) (-2872 (($ $ $) NIL (|has| |#1| (-358)))) (-2873 (($ $ $) NIL (|has| |#1| (-358)))) (-2869 (($ $ $) NIL (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2870 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-2502 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) NIL)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-3153 (((-751) $) NIL)) (-2877 (($ $ $) NIL (|has| |#1| (-358)))) (-2878 (($ $ $) NIL (|has| |#1| (-358)))) (-2867 (($ $ $) NIL (|has| |#1| (-358)))) (-2875 (($ $ $) NIL (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2876 (((-3 $ #1#) $ $) NIL (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-545)))) (-4159 ((|#1| $ |#1|) 24)) (-2388 (($ $ $) 33 (|has| |#1| (-358)))) (-4307 (((-751) $) NIL)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) 20) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) NIL)) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2880 ((|#1| $ |#1| |#1|) 23)) (-2854 (($ $) NIL)) (-2991 (($) 21 T CONST)) (-2997 (($) 8 T CONST)) (-3002 (($) NIL)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-634 |#1| |#2|) (-638 |#1|) (-1025) (-1 |#1| |#1|)) (T -634))
-NIL
-(-638 |#1|)
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-358)))) (-2386 (($ $ $) NIL (|has| |#1| (-358)))) (-2387 (($ $ (-751)) NIL (|has| |#1| (-358)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2871 (($ $ $) NIL (|has| |#1| (-358)))) (-2872 (($ $ $) NIL (|has| |#1| (-358)))) (-2873 (($ $ $) NIL (|has| |#1| (-358)))) (-2869 (($ $ $) NIL (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2870 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-2502 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) NIL)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-3153 (((-751) $) NIL)) (-2877 (($ $ $) NIL (|has| |#1| (-358)))) (-2878 (($ $ $) NIL (|has| |#1| (-358)))) (-2867 (($ $ $) NIL (|has| |#1| (-358)))) (-2875 (($ $ $) NIL (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2876 (((-3 $ #1#) $ $) NIL (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-545)))) (-4159 ((|#1| $ |#1|) NIL)) (-2388 (($ $ $) NIL (|has| |#1| (-358)))) (-4307 (((-751) $) NIL)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) NIL)) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2880 ((|#1| $ |#1| |#1|) NIL)) (-2854 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($) NIL)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-635 |#1|) (-638 |#1|) (-229)) (T -635))
-NIL
-(-638 |#1|)
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-358)))) (-2386 (($ $ $) NIL (|has| |#1| (-358)))) (-2387 (($ $ (-751)) NIL (|has| |#1| (-358)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2871 (($ $ $) NIL (|has| |#1| (-358)))) (-2872 (($ $ $) NIL (|has| |#1| (-358)))) (-2873 (($ $ $) NIL (|has| |#1| (-358)))) (-2869 (($ $ $) NIL (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2870 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-2502 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) NIL)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-3153 (((-751) $) NIL)) (-2877 (($ $ $) NIL (|has| |#1| (-358)))) (-2878 (($ $ $) NIL (|has| |#1| (-358)))) (-2867 (($ $ $) NIL (|has| |#1| (-358)))) (-2875 (($ $ $) NIL (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2876 (((-3 $ #1#) $ $) NIL (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-545)))) (-4159 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2388 (($ $ $) NIL (|has| |#1| (-358)))) (-4307 (((-751) $) NIL)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) NIL)) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2880 ((|#1| $ |#1| |#1|) NIL)) (-2854 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($) NIL)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-636 |#1| |#2|) (-13 (-638 |#1|) (-281 |#2| |#2|)) (-229) (-13 (-628 |#1|) (-10 -8 (-15 -4170 ($ $))))) (T -636))
-NIL
-(-13 (-638 |#1|) (-281 |#2| |#2|))
-((-2384 (($ $) 26)) (-2854 (($ $) 24)) (-3002 (($) 12)))
-(((-637 |#1| |#2|) (-10 -8 (-15 -2384 (|#1| |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -3002 (|#1|))) (-638 |#2|) (-1025)) (T -637))
-NIL
-(-10 -8 (-15 -2384 (|#1| |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -3002 (|#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2384 (($ $) 80 (|has| |#1| (-358)))) (-2386 (($ $ $) 82 (|has| |#1| (-358)))) (-2387 (($ $ (-751)) 81 (|has| |#1| (-358)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2871 (($ $ $) 43 (|has| |#1| (-358)))) (-2872 (($ $ $) 44 (|has| |#1| (-358)))) (-2873 (($ $ $) 46 (|has| |#1| (-358)))) (-2869 (($ $ $) 41 (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 40 (|has| |#1| (-358)))) (-2870 (((-3 $ #1="failed") $ $) 42 (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 45 (|has| |#1| (-358)))) (-3508 (((-3 (-538) #2="failed") $) 72 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) 70 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) 67)) (-3507 (((-538) $) 73 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 71 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 66)) (-4319 (($ $) 62)) (-3821 (((-3 $ "failed") $) 32)) (-3857 (($ $) 53 (|has| |#1| (-446)))) (-2502 (((-112) $) 30)) (-3226 (($ |#1| (-751)) 60)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55 (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 56 (|has| |#1| (-545)))) (-3153 (((-751) $) 64)) (-2877 (($ $ $) 50 (|has| |#1| (-358)))) (-2878 (($ $ $) 51 (|has| |#1| (-358)))) (-2867 (($ $ $) 39 (|has| |#1| (-358)))) (-2875 (($ $ $) 48 (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 47 (|has| |#1| (-358)))) (-2876 (((-3 $ #1#) $ $) 49 (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 52 (|has| |#1| (-358)))) (-3525 ((|#1| $) 63)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ #1#) $ |#1|) 57 (|has| |#1| (-545)))) (-4159 ((|#1| $ |#1|) 85)) (-2388 (($ $ $) 79 (|has| |#1| (-358)))) (-4307 (((-751) $) 65)) (-3150 ((|#1| $) 54 (|has| |#1| (-446)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 69 (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) 68)) (-4177 (((-622 |#1|) $) 59)) (-4040 ((|#1| $ (-751)) 61)) (-3461 (((-751)) 28)) (-2880 ((|#1| $ |#1| |#1|) 58)) (-2854 (($ $) 83)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($) 84)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
-(((-638 |#1|) (-138) (-1025)) (T -638))
-((-3002 (*1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)))) (-2854 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)))) (-2386 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2387 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-638 *3)) (-4 *3 (-1025)) (-4 *3 (-358)))) (-2384 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2388 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(-13 (-829 |t#1|) (-281 |t#1| |t#1|) (-10 -8 (-15 -3002 ($)) (-15 -2854 ($ $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -2386 ($ $ $)) (-15 -2387 ($ $ (-751))) (-15 -2384 ($ $)) (-15 -2388 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-281 |#1| |#1|) . T) ((-407 |#1|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-829 |#1|) . T))
-((-2385 (((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|))) 74 (|has| |#1| (-27)))) (-4092 (((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|))) 73 (|has| |#1| (-27))) (((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|)) 17)))
-(((-639 |#1| |#2|) (-10 -7 (-15 -4092 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4092 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|)))) (-15 -2385 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|))))) |%noBranch|)) (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))) (-1207 |#1|)) (T -639))
-((-2385 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-635 (-402 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-402 *5))))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-635 (-402 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-402 *5))))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-635 (-402 *6)))) (-5 *1 (-639 *5 *6)) (-5 *3 (-635 (-402 *6))))))
-(-10 -7 (-15 -4092 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4092 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|)))) (-15 -2385 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|))))) |%noBranch|))
-((-2386 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2387 ((|#2| |#2| (-751) (-1 |#1| |#1|)) 40)) (-2388 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-640 |#1| |#2|) (-10 -7 (-15 -2386 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2387 (|#2| |#2| (-751) (-1 |#1| |#1|))) (-15 -2388 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-358) (-638 |#1|)) (T -640))
-((-2388 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-640 *4 *2)) (-4 *2 (-638 *4)))) (-2387 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-640 *5 *2)) (-4 *2 (-638 *5)))) (-2386 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-640 *4 *2)) (-4 *2 (-638 *4)))))
-(-10 -7 (-15 -2386 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2387 (|#2| |#2| (-751) (-1 |#1| |#1|))) (-15 -2388 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-3681 (($ $ $) 9)))
-(((-641 |#1|) (-10 -8 (-15 -3681 (|#1| |#1| |#1|))) (-642)) (T -641))
-NIL
-(-10 -8 (-15 -3681 (|#1| |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3679 (($ $) 10)) (-3681 (($ $ $) 8)) (-3387 (((-112) $ $) 6)) (-3680 (($ $ $) 9)))
-(((-642) (-138)) (T -642))
-((-3679 (*1 *1 *1) (-4 *1 (-642))) (-3680 (*1 *1 *1 *1) (-4 *1 (-642))) (-3681 (*1 *1 *1 *1) (-4 *1 (-642))))
-(-13 (-101) (-10 -8 (-15 -3679 ($ $)) (-15 -3680 ($ $ $)) (-15 -3681 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-2894 (((-751) $) 15)) (-1862 (($ $ |#1|) 56)) (-1883 (($ $) 32)) (-2306 (($ $) 31)) (-1893 (((-3 |#1| "failed") $) 48)) (-1895 ((|#1| $) NIL)) (-2157 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3375 (((-839) $ (-1 (-839) (-839) (-839)) (-1 (-839) (-839) (-839)) (-552)) 46)) (-3461 ((|#1| $ (-552)) 30)) (-3472 ((|#2| $ (-552)) 29)) (-1817 (($ (-1 |#1| |#1|) $) 34)) (-1827 (($ (-1 |#2| |#2|) $) 38)) (-1873 (($) 10)) (-1907 (($ |#1| |#2|) 22)) (-1892 (($ (-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|)))) 23)) (-1918 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))) $) 13)) (-1853 (($ |#1| $) 57)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1840 (((-112) $ $) 60)) (-1683 (((-839) $) 19) (($ |#1|) 16)) (-2281 (((-112) $ $) 25)))
+(((-629 |#1| |#2| |#3|) (-13 (-1073) (-1014 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-1 (-839) (-839) (-839)) (-1 (-839) (-839) (-839)) (-552))) (-15 -1918 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))) $)) (-15 -1907 ($ |#1| |#2|)) (-15 -1892 ($ (-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))))) (-15 -3472 (|#2| $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -2306 ($ $)) (-15 -1883 ($ $)) (-15 -2894 ((-751) $)) (-15 -1873 ($)) (-15 -1862 ($ $ |#1|)) (-15 -1853 ($ |#1| $)) (-15 -2157 ($ |#1| |#2| $)) (-15 -2157 ($ $ $)) (-15 -1840 ((-112) $ $)) (-15 -1827 ($ (-1 |#2| |#2|) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)))) (-1073) (-23) |#2|) (T -629))
+((-3375 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-839) (-839) (-839))) (-5 *4 (-552)) (-5 *2 (-839)) (-5 *1 (-629 *5 *6 *7)) (-4 *5 (-1073)) (-4 *6 (-23)) (-14 *7 *6))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4)))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4))) (-1907 (*1 *1 *2 *3) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4)))) (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)))) (-3472 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-23)) (-5 *1 (-629 *4 *2 *5)) (-4 *4 (-1073)) (-14 *5 *2))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-1073)) (-5 *1 (-629 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4))) (-1873 (*1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-1862 (*1 *1 *1 *2) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-1853 (*1 *1 *2 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-2157 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-2157 (*1 *1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-1840 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4))) (-1827 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-629 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1073) (-1014 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-1 (-839) (-839) (-839)) (-1 (-839) (-839) (-839)) (-552))) (-15 -1918 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))) $)) (-15 -1907 ($ |#1| |#2|)) (-15 -1892 ($ (-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))))) (-15 -3472 (|#2| $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -2306 ($ $)) (-15 -1883 ($ $)) (-15 -2894 ((-751) $)) (-15 -1873 ($)) (-15 -1862 ($ $ |#1|)) (-15 -1853 ($ |#1| $)) (-15 -2157 ($ |#1| |#2| $)) (-15 -2157 ($ $ $)) (-15 -1840 ((-112) $ $)) (-15 -1827 ($ (-1 |#2| |#2|) $)) (-15 -1817 ($ (-1 |#1| |#1|) $))))
+((-2537 (((-552) $) 24)) (-3994 (($ |#2| $ (-552)) 22) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) 12)) (-2564 (((-112) (-552) $) 15)) (-3402 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-625 $)) NIL)))
+(((-630 |#1| |#2|) (-10 -8 (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -2537 ((-552) |#1|)) (-15 -2554 ((-625 (-552)) |#1|)) (-15 -2564 ((-112) (-552) |#1|))) (-631 |#2|) (-1186)) (T -630))
+NIL
+(-10 -8 (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -2537 ((-552) |#1|)) (-15 -2554 ((-625 (-552)) |#1|)) (-15 -2564 ((-112) (-552) |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 70)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-631 |#1|) (-138) (-1186)) (T -631))
+((-2183 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-3402 (*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186)))) (-3402 (*1 *1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186)))) (-3402 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-1996 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-4001 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-4001 (*1 *1 *1 *2) (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-3994 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-631 *2)) (-4 *2 (-1186)))) (-3994 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1199 (-552))) (|has| *1 (-6 -4354)) (-4 *1 (-631 *2)) (-4 *2 (-1186)))))
+(-13 (-588 (-552) |t#1|) (-149 |t#1|) (-10 -8 (-15 -2183 ($ (-751) |t#1|)) (-15 -3402 ($ $ |t#1|)) (-15 -3402 ($ |t#1| $)) (-15 -3402 ($ $ $)) (-15 -3402 ($ (-625 $))) (-15 -1996 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2154 ($ $ (-1199 (-552)))) (-15 -4001 ($ $ (-552))) (-15 -4001 ($ $ (-1199 (-552)))) (-15 -3994 ($ |t#1| $ (-552))) (-15 -3994 ($ $ $ (-552))) (IF (|has| $ (-6 -4354)) (-15 -1851 (|t#1| $ (-1199 (-552)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-1728 (((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-625 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) "failed") |#3| |#2| (-1149)) 44)))
+(((-632 |#1| |#2| |#3|) (-10 -7 (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) "failed") |#3| |#2| (-1149))) (-15 -1728 ((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-625 |#2|)))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)) (-13 (-29 |#1|) (-1171) (-935)) (-636 |#2|)) (T -632))
+((-1728 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *1 (-632 *6 *2 *3)) (-4 *3 (-636 *2)))) (-1728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-4 *4 (-13 (-29 *6) (-1171) (-935))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1270 (-625 *4)))) (-5 *1 (-632 *6 *4 *3)) (-4 *3 (-636 *4)))))
+(-10 -7 (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) "failed") |#3| |#2| (-1149))) (-15 -1728 ((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-625 |#2|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1931 (($ $) NIL (|has| |#1| (-358)))) (-1953 (($ $ $) NIL (|has| |#1| (-358)))) (-1965 (($ $ (-751)) NIL (|has| |#1| (-358)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2146 (($ $ $) NIL (|has| |#1| (-358)))) (-2161 (($ $ $) NIL (|has| |#1| (-358)))) (-2171 (($ $ $) NIL (|has| |#1| (-358)))) (-2126 (($ $ $) NIL (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-3650 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) NIL)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-4134 (((-751) $) NIL)) (-2215 (($ $ $) NIL (|has| |#1| (-358)))) (-2225 (($ $ $) NIL (|has| |#1| (-358)))) (-2107 (($ $ $) NIL (|has| |#1| (-358)))) (-2193 (($ $ $) NIL (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-2154 ((|#1| $ |#1|) NIL)) (-3771 (($ $ $) NIL (|has| |#1| (-358)))) (-4276 (((-751) $) NIL)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) NIL)) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2872 ((|#1| $ |#1| |#1|) NIL)) (-3180 (($ $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($) NIL)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-633 |#1|) (-636 |#1|) (-229)) (T -633))
+NIL
+(-636 |#1|)
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1931 (($ $) NIL (|has| |#1| (-358)))) (-1953 (($ $ $) NIL (|has| |#1| (-358)))) (-1965 (($ $ (-751)) NIL (|has| |#1| (-358)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2146 (($ $ $) NIL (|has| |#1| (-358)))) (-2161 (($ $ $) NIL (|has| |#1| (-358)))) (-2171 (($ $ $) NIL (|has| |#1| (-358)))) (-2126 (($ $ $) NIL (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-3650 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) NIL)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-4134 (((-751) $) NIL)) (-2215 (($ $ $) NIL (|has| |#1| (-358)))) (-2225 (($ $ $) NIL (|has| |#1| (-358)))) (-2107 (($ $ $) NIL (|has| |#1| (-358)))) (-2193 (($ $ $) NIL (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-2154 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3771 (($ $ $) NIL (|has| |#1| (-358)))) (-4276 (((-751) $) NIL)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) NIL)) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2872 ((|#1| $ |#1| |#1|) NIL)) (-3180 (($ $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($) NIL)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-634 |#1| |#2|) (-13 (-636 |#1|) (-281 |#2| |#2|)) (-229) (-13 (-628 |#1|) (-10 -8 (-15 -3072 ($ $))))) (T -634))
+NIL
+(-13 (-636 |#1|) (-281 |#2| |#2|))
+((-1931 (($ $) 26)) (-3180 (($ $) 24)) (-3768 (($) 12)))
+(((-635 |#1| |#2|) (-10 -8 (-15 -1931 (|#1| |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -3768 (|#1|))) (-636 |#2|) (-1025)) (T -635))
+NIL
+(-10 -8 (-15 -1931 (|#1| |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -3768 (|#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-1931 (($ $) 80 (|has| |#1| (-358)))) (-1953 (($ $ $) 82 (|has| |#1| (-358)))) (-1965 (($ $ (-751)) 81 (|has| |#1| (-358)))) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2146 (($ $ $) 43 (|has| |#1| (-358)))) (-2161 (($ $ $) 44 (|has| |#1| (-358)))) (-2171 (($ $ $) 46 (|has| |#1| (-358)))) (-2126 (($ $ $) 41 (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 40 (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) 42 (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 45 (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) 72 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 70 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 67)) (-1895 (((-552) $) 73 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 71 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 66)) (-4169 (($ $) 62)) (-4174 (((-3 $ "failed") $) 32)) (-1294 (($ $) 53 (|has| |#1| (-446)))) (-3650 (((-112) $) 30)) (-3957 (($ |#1| (-751)) 60)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55 (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 56 (|has| |#1| (-544)))) (-4134 (((-751) $) 64)) (-2215 (($ $ $) 50 (|has| |#1| (-358)))) (-2225 (($ $ $) 51 (|has| |#1| (-358)))) (-2107 (($ $ $) 39 (|has| |#1| (-358)))) (-2193 (($ $ $) 48 (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 47 (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) 49 (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 52 (|has| |#1| (-358)))) (-4144 ((|#1| $) 63)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-544)))) (-2154 ((|#1| $ |#1|) 85)) (-3771 (($ $ $) 79 (|has| |#1| (-358)))) (-4276 (((-751) $) 65)) (-4108 ((|#1| $) 54 (|has| |#1| (-446)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 69 (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) 68)) (-2512 (((-625 |#1|) $) 59)) (-3637 ((|#1| $ (-751)) 61)) (-4141 (((-751)) 28)) (-2872 ((|#1| $ |#1| |#1|) 58)) (-3180 (($ $) 83)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($) 84)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
+(((-636 |#1|) (-138) (-1025)) (T -636))
+((-3768 (*1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)))) (-1953 (*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-1965 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-636 *3)) (-4 *3 (-1025)) (-4 *3 (-358)))) (-1931 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-3771 (*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+(-13 (-829 |t#1|) (-281 |t#1| |t#1|) (-10 -8 (-15 -3768 ($)) (-15 -3180 ($ $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -1953 ($ $ $)) (-15 -1965 ($ $ (-751))) (-15 -1931 ($ $)) (-15 -3771 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-281 |#1| |#1|) . T) ((-406 |#1|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-829 |#1|) . T))
+((-1941 (((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|))) 74 (|has| |#1| (-27)))) (-3824 (((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|))) 73 (|has| |#1| (-27))) (((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|)) 17)))
+(((-637 |#1| |#2|) (-10 -7 (-15 -3824 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3824 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|)))) (-15 -1941 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|))))) |%noBranch|)) (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))) (-1208 |#1|)) (T -637))
+((-1941 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-633 (-402 *5)))) (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-402 *5))))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-633 (-402 *5)))) (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-402 *5))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-633 (-402 *6)))) (-5 *1 (-637 *5 *6)) (-5 *3 (-633 (-402 *6))))))
+(-10 -7 (-15 -3824 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3824 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|)))) (-15 -1941 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|))))) |%noBranch|))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1931 (($ $) NIL (|has| |#1| (-358)))) (-1953 (($ $ $) 28 (|has| |#1| (-358)))) (-1965 (($ $ (-751)) 31 (|has| |#1| (-358)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2146 (($ $ $) NIL (|has| |#1| (-358)))) (-2161 (($ $ $) NIL (|has| |#1| (-358)))) (-2171 (($ $ $) NIL (|has| |#1| (-358)))) (-2126 (($ $ $) NIL (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-3650 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) NIL)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-4134 (((-751) $) NIL)) (-2215 (($ $ $) NIL (|has| |#1| (-358)))) (-2225 (($ $ $) NIL (|has| |#1| (-358)))) (-2107 (($ $ $) NIL (|has| |#1| (-358)))) (-2193 (($ $ $) NIL (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-2154 ((|#1| $ |#1|) 24)) (-3771 (($ $ $) 33 (|has| |#1| (-358)))) (-4276 (((-751) $) NIL)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) 20) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) NIL)) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2872 ((|#1| $ |#1| |#1|) 23)) (-3180 (($ $) NIL)) (-2089 (($) 21 T CONST)) (-2100 (($) 8 T CONST)) (-3768 (($) NIL)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-638 |#1| |#2|) (-636 |#1|) (-1025) (-1 |#1| |#1|)) (T -638))
+NIL
+(-636 |#1|)
+((-1953 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1965 ((|#2| |#2| (-751) (-1 |#1| |#1|)) 40)) (-3771 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -1953 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1965 (|#2| |#2| (-751) (-1 |#1| |#1|))) (-15 -3771 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-358) (-636 |#1|)) (T -639))
+((-3771 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-639 *4 *2)) (-4 *2 (-636 *4)))) (-1965 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-639 *5 *2)) (-4 *2 (-636 *5)))) (-1953 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-639 *4 *2)) (-4 *2 (-636 *4)))))
+(-10 -7 (-15 -1953 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1965 (|#2| |#2| (-751) (-1 |#1| |#1|))) (-15 -3771 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2827 (($ $ $) 9)))
+(((-640 |#1|) (-10 -8 (-15 -2827 (|#1| |#1| |#1|))) (-641)) (T -640))
+NIL
+(-10 -8 (-15 -2827 (|#1| |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-2488 (($ $) 10)) (-2827 (($ $ $) 8)) (-2281 (((-112) $ $) 6)) (-2814 (($ $ $) 9)))
+(((-641) (-138)) (T -641))
+((-2488 (*1 *1 *1) (-4 *1 (-641))) (-2814 (*1 *1 *1 *1) (-4 *1 (-641))) (-2827 (*1 *1 *1 *1) (-4 *1 (-641))))
+(-13 (-101) (-10 -8 (-15 -2488 ($ $)) (-15 -2814 ($ $ $)) (-15 -2827 ($ $ $))))
(((-101) . T))
-((-2389 (((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|)) 33)))
-(((-643 |#1|) (-10 -7 (-15 -2389 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|)))) (-886)) (T -643))
-((-2389 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 *4))) (-5 *3 (-1143 *4)) (-4 *4 (-886)) (-5 *1 (-643 *4)))))
-(-10 -7 (-15 -2389 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4294 (((-622 |#1|) $) 82)) (-4306 (($ $ (-751)) 90)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4299 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 48)) (-3508 (((-3 (-652 |#1|) "failed") $) NIL)) (-3507 (((-652 |#1|) $) NIL)) (-4319 (($ $) 89)) (-2510 (((-751) $) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ (-652 |#1|) |#2|) 68)) (-4296 (($ $) 86)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-4300 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 47)) (-1865 (((-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3227 (((-652 |#1|) $) NIL)) (-3525 ((|#2| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4127 (($ $ |#1| $) 30) (($ $ (-622 |#1|) (-622 $)) 32)) (-4307 (((-751) $) 88)) (-3884 (($ $ $) 20) (($ (-652 |#1|) (-652 |#1|)) 77) (($ (-652 |#1|) $) 75) (($ $ (-652 |#1|)) 76)) (-4317 (((-840) $) NIL) (($ |#1|) 74) (((-1247 |#1| |#2|) $) 58) (((-1256 |#1| |#2|) $) 41) (($ (-652 |#1|)) 25)) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-652 |#1|)) NIL)) (-4313 ((|#2| (-1256 |#1| |#2|) $) 43)) (-2991 (($) 23 T CONST)) (-2996 (((-622 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4305 (((-3 $ "failed") (-1247 |#1| |#2|)) 60)) (-1849 (($ (-652 |#1|)) 14)) (-3387 (((-112) $ $) 44)) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) 66) (($ $ $) NIL)) (-4199 (($ $ $) 29)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-652 |#1|)) NIL)))
-(((-644 |#1| |#2|) (-13 (-369 |#1| |#2|) (-379 |#2| (-652 |#1|)) (-10 -8 (-15 -4305 ((-3 $ "failed") (-1247 |#1| |#2|))) (-15 -3884 ($ (-652 |#1|) (-652 |#1|))) (-15 -3884 ($ (-652 |#1|) $)) (-15 -3884 ($ $ (-652 |#1|))))) (-827) (-170)) (T -644))
-((-4305 (*1 *1 *2) (|partial| -12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *1 (-644 *3 *4)))) (-3884 (*1 *1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) (-3884 (*1 *1 *2 *1) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))))
-(-13 (-369 |#1| |#2|) (-379 |#2| (-652 |#1|)) (-10 -8 (-15 -4305 ((-3 $ "failed") (-1247 |#1| |#2|))) (-15 -3884 ($ (-652 |#1|) (-652 |#1|))) (-15 -3884 ($ (-652 |#1|) $)) (-15 -3884 ($ $ (-652 |#1|)))))
-((-1848 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-1846 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1631 (($ (-1 (-112) |#2|) $) 28)) (-2377 (($ $) 56)) (-2455 (($ $) 64)) (-3764 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-4202 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3778 (((-538) |#2| $ (-538)) 61) (((-538) |#2| $) NIL) (((-538) (-1 (-112) |#2|) $) 47)) (-3977 (($ (-751) |#2|) 54)) (-3192 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3872 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4318 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3897 (($ |#2|) 15)) (-3970 (($ $ $ (-538)) 36) (($ |#2| $ (-538)) 34)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-1632 (($ $ (-1198 (-538))) 44) (($ $ (-538)) 38)) (-1847 (($ $ $ (-538)) 60)) (-3759 (($ $) 58)) (-3018 (((-112) $ $) 66)))
-(((-645 |#1| |#2|) (-10 -8 (-15 -3897 (|#1| |#2|)) (-15 -1632 (|#1| |#1| (-538))) (-15 -1632 (|#1| |#1| (-1198 (-538)))) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3970 (|#1| |#2| |#1| (-538))) (-15 -3970 (|#1| |#1| |#1| (-538))) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3192 (|#1| |#1| |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3872 (|#1| |#1| |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -1847 (|#1| |#1| |#1| (-538))) (-15 -2377 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3977 (|#1| (-751) |#2|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1|))) (-646 |#2|) (-1185)) (T -645))
-NIL
-(-10 -8 (-15 -3897 (|#1| |#2|)) (-15 -1632 (|#1| |#1| (-538))) (-15 -1632 (|#1| |#1| (-1198 (-538)))) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3970 (|#1| |#2| |#1| (-538))) (-15 -3970 (|#1| |#1| |#1| (-538))) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3192 (|#1| |#1| |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3872 (|#1| |#1| |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -1847 (|#1| |#1| |#1| (-538))) (-15 -2377 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3977 (|#1| (-751) |#2|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-4154 ((|#1| $) 65)) (-4156 (($ $) 67)) (-2305 (((-1237) $ (-538) (-538)) 97 (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 52 (|has| $ (-6 -4354)))) (-1848 (((-112) $) 142 (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-1846 (($ $) 146 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4354)))) (-3242 (($ $) 141 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-4146 (($ $ $) 56 (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) 86 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) 129)) (-4073 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4353)))) (-4155 ((|#1| $) 66)) (-3896 (($) 7 T CONST)) (-2377 (($ $) 144 (|has| $ (-6 -4354)))) (-2378 (($ $) 134)) (-4158 (($ $) 73) (($ $ (-751)) 71)) (-2455 (($ $) 131 (|has| |#1| (-1074)))) (-1398 (($ $) 99 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 130 (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) 125)) (-3765 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4353))) (($ |#1| $) 100 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1637 ((|#1| $ (-538) |#1|) 85 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 87)) (-3801 (((-112) $) 83)) (-3778 (((-538) |#1| $ (-538)) 139 (|has| |#1| (-1074))) (((-538) |#1| $) 138 (|has| |#1| (-1074))) (((-538) (-1 (-112) |#1|) $) 137)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) 108)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 95 (|has| (-538) (-827)))) (-3677 (($ $ $) 147 (|has| |#1| (-827)))) (-3192 (($ $ $) 132 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3872 (($ $ $) 140 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 94 (|has| (-538) (-827)))) (-3678 (($ $ $) 148 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3897 (($ |#1|) 122)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-4157 ((|#1| $) 70) (($ $ (-751)) 68)) (-3970 (($ $ $ (-538)) 127) (($ |#1| $ (-538)) 126)) (-2382 (($ $ $ (-538)) 116) (($ |#1| $ (-538)) 115)) (-2310 (((-622 (-538)) $) 92)) (-2311 (((-112) (-538) $) 91)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 76) (($ $ (-751)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2306 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-3802 (((-112) $) 84)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 90)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1198 (-538))) 112) ((|#1| $ (-538)) 89) ((|#1| $ (-538) |#1|) 88)) (-3362 (((-538) $ $) 44)) (-1632 (($ $ (-1198 (-538))) 124) (($ $ (-538)) 123)) (-2383 (($ $ (-1198 (-538))) 114) (($ $ (-538)) 113)) (-3996 (((-112) $) 46)) (-4151 (($ $) 62)) (-4149 (($ $) 59 (|has| $ (-6 -4354)))) (-4152 (((-751) $) 63)) (-4153 (($ $) 64)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 143 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 98 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 107)) (-4150 (($ $ $) 61) (($ $ |#1|) 60)) (-4161 (($ $ $) 78) (($ |#1| $) 77) (($ (-622 $)) 110) (($ $ |#1|) 109)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 150 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 151 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) 149 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 152 (|has| |#1| (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-646 |#1|) (-138) (-1185)) (T -646))
-((-3897 (*1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1185)))))
-(-13 (-1122 |t#1|) (-367 |t#1|) (-277 |t#1|) (-10 -8 (-15 -3897 ($ |t#1|))))
-(((-34) . T) ((-101) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-277 |#1|) . T) ((-367 |#1|) . T) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-986 |#1|) . T) ((-1074) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-1122 |#1|) . T) ((-1185) . T) ((-1220 |#1|) . T))
-((-3936 (((-622 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2128 (-622 |#3|)))) |#4| (-622 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2128 (-622 |#3|))) |#4| |#3|) 45)) (-3444 (((-751) |#4| |#3|) 17)) (-3699 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2390 (((-112) |#4| |#3|) 13)))
-(((-647 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3936 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2128 (-622 |#3|))) |#4| |#3|)) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2128 (-622 |#3|)))) |#4| (-622 |#3|))) (-15 -3699 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2390 ((-112) |#4| |#3|)) (-15 -3444 ((-751) |#4| |#3|))) (-358) (-13 (-367 |#1|) (-10 -7 (-6 -4354))) (-13 (-367 |#1|) (-10 -7 (-6 -4354))) (-666 |#1| |#2| |#3|)) (T -647))
-((-3444 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-751)) (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))) (-2390 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-112)) (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))) (-3699 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4354)))) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))) (-5 *1 (-647 *4 *5 *2 *3)) (-4 *3 (-666 *4 *5 *2)))) (-3936 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-622 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2128 (-622 *7))))) (-5 *1 (-647 *5 *6 *7 *3)) (-5 *4 (-622 *7)) (-4 *3 (-666 *5 *6 *7)))) (-3936 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2128 (-622 *4)))) (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))))
-(-10 -7 (-15 -3936 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2128 (-622 |#3|))) |#4| |#3|)) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2128 (-622 |#3|)))) |#4| (-622 |#3|))) (-15 -3699 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2390 ((-112) |#4| |#3|)) (-15 -3444 ((-751) |#4| |#3|)))
-((-3936 (((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1="failed")) (|:| -2128 (-622 (-1231 |#1|))))) (-622 (-622 |#1|)) (-622 (-1231 |#1|))) 22) (((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|))))) (-669 |#1|) (-622 (-1231 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|)))) (-622 (-622 |#1|)) (-1231 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|)) 14)) (-3444 (((-751) (-669 |#1|) (-1231 |#1|)) 30)) (-3699 (((-3 (-1231 |#1|) #1#) (-669 |#1|) (-1231 |#1|)) 24)) (-2390 (((-112) (-669 |#1|) (-1231 |#1|)) 27)))
-(((-648 |#1|) (-10 -7 (-15 -3936 ((-2 (|:| |particular| (-3 (-1231 |#1|) #1="failed")) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|))) (-15 -3936 ((-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|)))) (-622 (-622 |#1|)) (-1231 |#1|))) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|))))) (-669 |#1|) (-622 (-1231 |#1|)))) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|))))) (-622 (-622 |#1|)) (-622 (-1231 |#1|)))) (-15 -3699 ((-3 (-1231 |#1|) #1#) (-669 |#1|) (-1231 |#1|))) (-15 -2390 ((-112) (-669 |#1|) (-1231 |#1|))) (-15 -3444 ((-751) (-669 |#1|) (-1231 |#1|)))) (-358)) (T -648))
-((-3444 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-5 *2 (-751)) (-5 *1 (-648 *5)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-5 *2 (-112)) (-5 *1 (-648 *5)))) (-3699 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1231 *4)) (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *1 (-648 *4)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-622 *5))) (-4 *5 (-358)) (-5 *2 (-622 (-2 (|:| |particular| (-3 (-1231 *5) #1="failed")) (|:| -2128 (-622 (-1231 *5)))))) (-5 *1 (-648 *5)) (-5 *4 (-622 (-1231 *5))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-622 (-2 (|:| |particular| (-3 (-1231 *5) #1#)) (|:| -2128 (-622 (-1231 *5)))))) (-5 *1 (-648 *5)) (-5 *4 (-622 (-1231 *5))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-622 *5))) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1231 *5) #1#)) (|:| -2128 (-622 (-1231 *5))))) (-5 *1 (-648 *5)) (-5 *4 (-1231 *5)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1231 *5) #1#)) (|:| -2128 (-622 (-1231 *5))))) (-5 *1 (-648 *5)) (-5 *4 (-1231 *5)))))
-(-10 -7 (-15 -3936 ((-2 (|:| |particular| (-3 (-1231 |#1|) #1="failed")) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|))) (-15 -3936 ((-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|)))) (-622 (-622 |#1|)) (-1231 |#1|))) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|))))) (-669 |#1|) (-622 (-1231 |#1|)))) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|))))) (-622 (-622 |#1|)) (-622 (-1231 |#1|)))) (-15 -3699 ((-3 (-1231 |#1|) #1#) (-669 |#1|) (-1231 |#1|))) (-15 -2390 ((-112) (-669 |#1|) (-1231 |#1|))) (-15 -3444 ((-751) (-669 |#1|) (-1231 |#1|))))
-((-2391 (((-2 (|:| |particular| (-3 (-1231 (-402 |#4|)) "failed")) (|:| -2128 (-622 (-1231 (-402 |#4|))))) (-622 |#4|) (-622 |#3|)) 45)))
-(((-649 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2391 ((-2 (|:| |particular| (-3 (-1231 (-402 |#4|)) "failed")) (|:| -2128 (-622 (-1231 (-402 |#4|))))) (-622 |#4|) (-622 |#3|)))) (-545) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -649))
-((-2391 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *7)) (-4 *7 (-827)) (-4 *8 (-926 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-5 *2 (-2 (|:| |particular| (-3 (-1231 (-402 *8)) "failed")) (|:| -2128 (-622 (-1231 (-402 *8)))))) (-5 *1 (-649 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2391 ((-2 (|:| |particular| (-3 (-1231 (-402 |#4|)) "failed")) (|:| -2128 (-622 (-1231 (-402 |#4|))))) (-622 |#4|) (-622 |#3|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1892 (((-3 $ #1="failed")) NIL (|has| |#2| (-545)))) (-3689 ((|#2| $) NIL)) (-3456 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3574 (((-1231 (-669 |#2|))) NIL) (((-1231 (-669 |#2|)) (-1231 $)) NIL)) (-3458 (((-112) $) NIL)) (-1845 (((-1231 $)) 37)) (-1271 (((-112) $ (-751)) NIL)) (-3692 (($ |#2|) NIL)) (-3896 (($) NIL T CONST)) (-3445 (($ $) NIL (|has| |#2| (-302)))) (-3447 (((-235 |#1| |#2|) $ (-538)) NIL)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (|has| |#2| (-545)))) (-1819 (((-3 $ #1#)) NIL (|has| |#2| (-545)))) (-1907 (((-669 |#2|)) NIL) (((-669 |#2|) (-1231 $)) NIL)) (-1843 ((|#2| $) NIL)) (-1905 (((-669 |#2|) $) NIL) (((-669 |#2|) $ (-1231 $)) NIL)) (-2496 (((-3 $ #1#) $) NIL (|has| |#2| (-545)))) (-2022 (((-1143 (-922 |#2|))) NIL (|has| |#2| (-358)))) (-2499 (($ $ (-895)) NIL)) (-1841 ((|#2| $) NIL)) (-1821 (((-1143 |#2|) $) NIL (|has| |#2| (-545)))) (-1909 ((|#2|) NIL) ((|#2| (-1231 $)) NIL)) (-1839 (((-1143 |#2|) $) NIL)) (-1833 (((-112)) NIL)) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 |#2| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) ((|#2| $) NIL)) (-1911 (($ (-1231 |#2|)) NIL) (($ (-1231 |#2|) (-1231 $)) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3444 (((-751) $) NIL (|has| |#2| (-545))) (((-895)) 38)) (-3448 ((|#2| $ (-538) (-538)) NIL)) (-1830 (((-112)) NIL)) (-2524 (($ $ (-895)) NIL)) (-2068 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL)) (-3443 (((-751) $) NIL (|has| |#2| (-545)))) (-3442 (((-622 (-235 |#1| |#2|)) $) NIL (|has| |#2| (-545)))) (-3450 (((-751) $) NIL)) (-1826 (((-112)) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3686 ((|#2| $) NIL (|has| |#2| (-6 (-4355 #3="*"))))) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-3459 (($ (-622 (-622 |#2|))) NIL)) (-2072 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3956 (((-622 (-622 |#2|)) $) NIL)) (-1824 (((-112)) NIL)) (-1828 (((-112)) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (|has| |#2| (-545)))) (-1820 (((-3 $ #1#)) NIL (|has| |#2| (-545)))) (-1908 (((-669 |#2|)) NIL) (((-669 |#2|) (-1231 $)) NIL)) (-1844 ((|#2| $) NIL)) (-1906 (((-669 |#2|) $) NIL) (((-669 |#2|) $ (-1231 $)) NIL)) (-2497 (((-3 $ #1#) $) NIL (|has| |#2| (-545)))) (-2026 (((-1143 (-922 |#2|))) NIL (|has| |#2| (-358)))) (-2498 (($ $ (-895)) NIL)) (-1842 ((|#2| $) NIL)) (-1822 (((-1143 |#2|) $) NIL (|has| |#2| (-545)))) (-1910 ((|#2|) NIL) ((|#2| (-1231 $)) NIL)) (-1840 (((-1143 |#2|) $) NIL)) (-1834 (((-112)) NIL)) (-3593 (((-1131) $) NIL)) (-1825 (((-112)) NIL)) (-1827 (((-112)) NIL)) (-1829 (((-112)) NIL)) (-3952 (((-3 $ "failed") $) NIL (|has| |#2| (-358)))) (-3594 (((-1093) $) NIL)) (-1832 (((-112)) NIL)) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545)))) (-2070 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ (-538) (-538) |#2|) NIL) ((|#2| $ (-538) (-538)) 22) ((|#2| $ (-538)) NIL)) (-4170 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3688 ((|#2| $) NIL)) (-3691 (($ (-622 |#2|)) NIL)) (-3457 (((-112) $) NIL)) (-3690 (((-235 |#1| |#2|) $) NIL)) (-3687 ((|#2| $) NIL (|has| |#2| (-6 (-4355 #3#))))) (-2069 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3759 (($ $) NIL)) (-3575 (((-669 |#2|) (-1231 $)) NIL) (((-1231 |#2|) $) NIL) (((-669 |#2|) (-1231 $) (-1231 $)) NIL) (((-1231 |#2|) $ (-1231 $)) 25)) (-4330 (($ (-1231 |#2|)) NIL) (((-1231 |#2|) $) NIL)) (-2014 (((-622 (-922 |#2|))) NIL) (((-622 (-922 |#2|)) (-1231 $)) NIL)) (-2686 (($ $ $) NIL)) (-1838 (((-112)) NIL)) (-3446 (((-235 |#1| |#2|) $ (-538)) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#2| (-1014 (-402 (-538))))) (($ |#2|) NIL) (((-669 |#2|) $) NIL)) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) 36)) (-1823 (((-622 (-1231 |#2|))) NIL (|has| |#2| (-545)))) (-2687 (($ $ $ $) NIL)) (-1836 (((-112)) NIL)) (-2880 (($ (-669 |#2|) $) NIL)) (-2071 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-2685 (($ $ $) NIL)) (-1837 (((-112)) NIL)) (-1835 (((-112)) NIL)) (-1831 (((-112)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#2| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) NIL) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-650 |#1| |#2|) (-13 (-1096 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-597 (-669 |#2|)) (-413 |#2|)) (-895) (-170)) (T -650))
-NIL
-(-13 (-1096 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-597 (-669 |#2|)) (-413 |#2|))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3599 (((-622 (-1108)) $) 10)) (-4317 (((-840) $) 18) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-651) (-13 (-1056) (-10 -8 (-15 -3599 ((-622 (-1108)) $))))) (T -651))
-((-3599 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-651)))))
-(-13 (-1056) (-10 -8 (-15 -3599 ((-622 (-1108)) $))))
-((-2898 (((-112) $ $) NIL)) (-4294 (((-622 |#1|) $) NIL)) (-3472 (($ $) 52)) (-2995 (((-112) $) NIL)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-2394 (((-3 $ "failed") (-799 |#1|)) 23)) (-2396 (((-112) (-799 |#1|)) 15)) (-2395 (($ (-799 |#1|)) 24)) (-2773 (((-112) $ $) 30)) (-4193 (((-895) $) 37)) (-3473 (($ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4092 (((-622 $) (-799 |#1|)) 17)) (-4317 (((-840) $) 43) (($ |#1|) 34) (((-799 |#1|) $) 39) (((-657 |#1|) $) 44)) (-2393 (((-57 (-622 $)) (-622 |#1|) (-895)) 57)) (-2392 (((-622 $) (-622 |#1|) (-895)) 60)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 53)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 38)))
-(((-652 |#1|) (-13 (-827) (-1014 |#1|) (-10 -8 (-15 -2995 ((-112) $)) (-15 -3473 ($ $)) (-15 -3472 ($ $)) (-15 -4193 ((-895) $)) (-15 -2773 ((-112) $ $)) (-15 -4317 ((-799 |#1|) $)) (-15 -4317 ((-657 |#1|) $)) (-15 -4092 ((-622 $) (-799 |#1|))) (-15 -2396 ((-112) (-799 |#1|))) (-15 -2395 ($ (-799 |#1|))) (-15 -2394 ((-3 $ "failed") (-799 |#1|))) (-15 -4294 ((-622 |#1|) $)) (-15 -2393 ((-57 (-622 $)) (-622 |#1|) (-895))) (-15 -2392 ((-622 $) (-622 |#1|) (-895))))) (-827)) (T -652))
-((-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-3473 (*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) (-3472 (*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-2773 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-622 (-652 *4))) (-5 *1 (-652 *4)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-112)) (-5 *1 (-652 *4)))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))) (-2394 (*1 *1 *2) (|partial| -12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-895)) (-4 *5 (-827)) (-5 *2 (-57 (-622 (-652 *5)))) (-5 *1 (-652 *5)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-895)) (-4 *5 (-827)) (-5 *2 (-622 (-652 *5))) (-5 *1 (-652 *5)))))
-(-13 (-827) (-1014 |#1|) (-10 -8 (-15 -2995 ((-112) $)) (-15 -3473 ($ $)) (-15 -3472 ($ $)) (-15 -4193 ((-895) $)) (-15 -2773 ((-112) $ $)) (-15 -4317 ((-799 |#1|) $)) (-15 -4317 ((-657 |#1|) $)) (-15 -4092 ((-622 $) (-799 |#1|))) (-15 -2396 ((-112) (-799 |#1|))) (-15 -2395 ($ (-799 |#1|))) (-15 -2394 ((-3 $ "failed") (-799 |#1|))) (-15 -4294 ((-622 |#1|) $)) (-15 -2393 ((-57 (-622 $)) (-622 |#1|) (-895))) (-15 -2392 ((-622 $) (-622 |#1|) (-895)))))
-((-3761 ((|#2| $) 76)) (-4156 (($ $) 96)) (-1271 (((-112) $ (-751)) 26)) (-4158 (($ $) 85) (($ $ (-751)) 88)) (-3801 (((-112) $) 97)) (-3364 (((-622 $) $) 72)) (-3360 (((-112) $ $) 71)) (-4082 (((-112) $ (-751)) 24)) (-2307 (((-538) $) 46)) (-2308 (((-538) $) 45)) (-4079 (((-112) $ (-751)) 22)) (-3881 (((-112) $) 74)) (-4157 ((|#2| $) 89) (($ $ (-751)) 92)) (-2382 (($ $ $ (-538)) 62) (($ |#2| $ (-538)) 61)) (-2310 (((-622 (-538)) $) 44)) (-2311 (((-112) (-538) $) 42)) (-4160 ((|#2| $) NIL) (($ $ (-751)) 84)) (-4128 (($ $ (-538)) 100)) (-3802 (((-112) $) 99)) (-2070 (((-112) (-1 (-112) |#2|) $) 32)) (-2312 (((-622 |#2|) $) 33)) (-4159 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1198 (-538))) 58) ((|#2| $ (-538)) 40) ((|#2| $ (-538) |#2|) 41)) (-3362 (((-538) $ $) 70)) (-2383 (($ $ (-1198 (-538))) 57) (($ $ (-538)) 51)) (-3996 (((-112) $) 66)) (-4151 (($ $) 81)) (-4152 (((-751) $) 80)) (-4153 (($ $) 79)) (-3884 (($ (-622 |#2|)) 37)) (-3224 (($ $) 101)) (-3876 (((-622 $) $) 69)) (-3361 (((-112) $ $) 68)) (-2071 (((-112) (-1 (-112) |#2|) $) 31)) (-3387 (((-112) $ $) 18)) (-4316 (((-751) $) 29)))
-(((-653 |#1| |#2|) (-10 -8 (-15 -3224 (|#1| |#1|)) (-15 -4128 (|#1| |#1| (-538))) (-15 -3801 ((-112) |#1|)) (-15 -3802 ((-112) |#1|)) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -2312 ((-622 |#2|) |#1|)) (-15 -2311 ((-112) (-538) |#1|)) (-15 -2310 ((-622 (-538)) |#1|)) (-15 -2308 ((-538) |#1|)) (-15 -2307 ((-538) |#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -4151 (|#1| |#1|)) (-15 -4152 ((-751) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "last")) (-15 -4157 (|#2| |#1|)) (-15 -4158 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| "rest")) (-15 -4158 (|#1| |#1|)) (-15 -4160 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "first")) (-15 -4160 (|#2| |#1|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3361 ((-112) |#1| |#1|)) (-15 -3362 ((-538) |#1| |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| "value")) (-15 -3761 (|#2| |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751)))) (-654 |#2|) (-1185)) (T -653))
-NIL
-(-10 -8 (-15 -3224 (|#1| |#1|)) (-15 -4128 (|#1| |#1| (-538))) (-15 -3801 ((-112) |#1|)) (-15 -3802 ((-112) |#1|)) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -2312 ((-622 |#2|) |#1|)) (-15 -2311 ((-112) (-538) |#1|)) (-15 -2310 ((-622 (-538)) |#1|)) (-15 -2308 ((-538) |#1|)) (-15 -2307 ((-538) |#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -4151 (|#1| |#1|)) (-15 -4152 ((-751) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "last")) (-15 -4157 (|#2| |#1|)) (-15 -4158 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| "rest")) (-15 -4158 (|#1| |#1|)) (-15 -4160 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "first")) (-15 -4160 (|#2| |#1|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3361 ((-112) |#1| |#1|)) (-15 -3362 ((-538) |#1| |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| "value")) (-15 -3761 (|#2| |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751))))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-4154 ((|#1| $) 65)) (-4156 (($ $) 67)) (-2305 (((-1237) $ (-538) (-538)) 97 (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 52 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-4146 (($ $ $) 56 (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) 86 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 102)) (-4155 ((|#1| $) 66)) (-3896 (($) 7 T CONST)) (-2398 (($ $) 124)) (-4158 (($ $) 73) (($ $ (-751)) 71)) (-1398 (($ $) 99 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 100 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 103)) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1637 ((|#1| $ (-538) |#1|) 85 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 87)) (-3801 (((-112) $) 83)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2397 (((-751) $) 123)) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) 108)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 95 (|has| (-538) (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 94 (|has| (-538) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-2400 (($ $) 126)) (-2401 (((-112) $) 127)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-4157 ((|#1| $) 70) (($ $ (-751)) 68)) (-2382 (($ $ $ (-538)) 116) (($ |#1| $ (-538)) 115)) (-2310 (((-622 (-538)) $) 92)) (-2311 (((-112) (-538) $) 91)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2399 ((|#1| $) 125)) (-4160 ((|#1| $) 76) (($ $ (-751)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2306 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-4128 (($ $ (-538)) 122)) (-3802 (((-112) $) 84)) (-2402 (((-112) $) 128)) (-2403 (((-112) $) 129)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 90)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1198 (-538))) 112) ((|#1| $ (-538)) 89) ((|#1| $ (-538) |#1|) 88)) (-3362 (((-538) $ $) 44)) (-2383 (($ $ (-1198 (-538))) 114) (($ $ (-538)) 113)) (-3996 (((-112) $) 46)) (-4151 (($ $) 62)) (-4149 (($ $) 59 (|has| $ (-6 -4354)))) (-4152 (((-751) $) 63)) (-4153 (($ $) 64)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 98 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 107)) (-4150 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-4161 (($ $ $) 78) (($ |#1| $) 77) (($ (-622 $)) 110) (($ $ |#1|) 109)) (-3224 (($ $) 121)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-654 |#1|) (-138) (-1185)) (T -654))
-((-3765 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1185)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1185)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-2400 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))) (-2398 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-654 *3)) (-4 *3 (-1185)))) (-3224 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))))
-(-13 (-1122 |t#1|) (-10 -8 (-15 -3765 ($ (-1 (-112) |t#1|) $)) (-15 -4073 ($ (-1 (-112) |t#1|) $)) (-15 -2403 ((-112) $)) (-15 -2402 ((-112) $)) (-15 -2401 ((-112) $)) (-15 -2400 ($ $)) (-15 -2399 (|t#1| $)) (-15 -2398 ($ $)) (-15 -2397 ((-751) $)) (-15 -4128 ($ $ (-538))) (-15 -3224 ($ $))))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1122 |#1|) . T) ((-1185) . T) ((-1220 |#1|) . T))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2409 (($ (-751) (-751) (-751)) 33 (|has| |#1| (-1025)))) (-1271 (((-112) $ (-751)) NIL)) (-2406 ((|#1| $ (-751) (-751) (-751) |#1|) 27)) (-3896 (($) NIL T CONST)) (-2407 (($ $ $) 37 (|has| |#1| (-1025)))) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2404 (((-1231 (-751)) $) 9)) (-2405 (($ (-1149) $ $) 22)) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2408 (($ (-751)) 35 (|has| |#1| (-1025)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-751) (-751) (-751)) 25)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3884 (($ (-622 (-622 (-622 |#1|)))) 44)) (-4317 (($ (-934 (-934 (-934 |#1|)))) 15) (((-934 (-934 (-934 |#1|))) $) 12) (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-655 |#1|) (-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1025)) (PROGN (-15 -2409 ($ (-751) (-751) (-751))) (-15 -2408 ($ (-751))) (-15 -2407 ($ $ $))) |%noBranch|) (-15 -3884 ($ (-622 (-622 (-622 |#1|))))) (-15 -4159 (|#1| $ (-751) (-751) (-751))) (-15 -2406 (|#1| $ (-751) (-751) (-751) |#1|)) (-15 -4317 ($ (-934 (-934 (-934 |#1|))))) (-15 -4317 ((-934 (-934 (-934 |#1|))) $)) (-15 -2405 ($ (-1149) $ $)) (-15 -2404 ((-1231 (-751)) $)))) (-1074)) (T -655))
-((-2409 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1074)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1074)))) (-2407 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1025)) (-4 *2 (-1074)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-622 *3)))) (-4 *3 (-1074)) (-5 *1 (-655 *3)))) (-4159 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1074)))) (-2406 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1074)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-4 *3 (-1074)) (-5 *1 (-655 *3)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-5 *1 (-655 *3)) (-4 *3 (-1074)))) (-2405 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-655 *3)) (-4 *3 (-1074)))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-1231 (-751))) (-5 *1 (-655 *3)) (-4 *3 (-1074)))))
-(-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1025)) (PROGN (-15 -2409 ($ (-751) (-751) (-751))) (-15 -2408 ($ (-751))) (-15 -2407 ($ $ $))) |%noBranch|) (-15 -3884 ($ (-622 (-622 (-622 |#1|))))) (-15 -4159 (|#1| $ (-751) (-751) (-751))) (-15 -2406 (|#1| $ (-751) (-751) (-751) |#1|)) (-15 -4317 ($ (-934 (-934 (-934 |#1|))))) (-15 -4317 ((-934 (-934 (-934 |#1|))) $)) (-15 -2405 ($ (-1149) $ $)) (-15 -2404 ((-1231 (-751)) $))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3529 (((-477) $) 10)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 12)) (-3387 (((-112) $ $) NIL)))
-(((-656) (-13 (-1056) (-10 -8 (-15 -3529 ((-477) $)) (-15 -3584 ((-1108) $))))) (T -656))
-((-3529 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-656)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-656)))))
-(-13 (-1056) (-10 -8 (-15 -3529 ((-477) $)) (-15 -3584 ((-1108) $))))
-((-2898 (((-112) $ $) NIL)) (-4294 (((-622 |#1|) $) 14)) (-3472 (($ $) 18)) (-2995 (((-112) $) 19)) (-3508 (((-3 |#1| "failed") $) 22)) (-3507 ((|#1| $) 20)) (-4158 (($ $) 36)) (-4296 (($ $) 24)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-2773 (((-112) $ $) 42)) (-4193 (((-895) $) 38)) (-3473 (($ $) 17)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 ((|#1| $) 35)) (-4317 (((-840) $) 31) (($ |#1|) 23) (((-799 |#1|) $) 27)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 12)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 40)) (* (($ $ $) 34)))
-(((-657 |#1|) (-13 (-827) (-1014 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4317 ((-799 |#1|) $)) (-15 -4160 (|#1| $)) (-15 -3473 ($ $)) (-15 -4193 ((-895) $)) (-15 -2773 ((-112) $ $)) (-15 -4296 ($ $)) (-15 -4158 ($ $)) (-15 -2995 ((-112) $)) (-15 -3472 ($ $)) (-15 -4294 ((-622 |#1|) $)))) (-827)) (T -657))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-4160 (*1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-3473 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-2773 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-4296 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-4158 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-3472 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827)))))
-(-13 (-827) (-1014 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4317 ((-799 |#1|) $)) (-15 -4160 (|#1| $)) (-15 -3473 ($ $)) (-15 -4193 ((-895) $)) (-15 -2773 ((-112) $ $)) (-15 -4296 ($ $)) (-15 -4158 ($ $)) (-15 -2995 ((-112) $)) (-15 -3472 ($ $)) (-15 -4294 ((-622 |#1|) $))))
-((-2418 ((|#1| (-1 |#1| (-751) |#1|) (-751) |#1|) 11)) (-2410 ((|#1| (-1 |#1| |#1|) (-751) |#1|) 9)))
-(((-658 |#1|) (-10 -7 (-15 -2410 (|#1| (-1 |#1| |#1|) (-751) |#1|)) (-15 -2418 (|#1| (-1 |#1| (-751) |#1|) (-751) |#1|))) (-1074)) (T -658))
-((-2418 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-751) *2)) (-5 *4 (-751)) (-4 *2 (-1074)) (-5 *1 (-658 *2)))) (-2410 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-751)) (-4 *2 (-1074)) (-5 *1 (-658 *2)))))
-(-10 -7 (-15 -2410 (|#1| (-1 |#1| |#1|) (-751) |#1|)) (-15 -2418 (|#1| (-1 |#1| (-751) |#1|) (-751) |#1|)))
-((-2412 ((|#2| |#1| |#2|) 9)) (-2411 ((|#1| |#1| |#2|) 8)))
-(((-659 |#1| |#2|) (-10 -7 (-15 -2411 (|#1| |#1| |#2|)) (-15 -2412 (|#2| |#1| |#2|))) (-1074) (-1074)) (T -659))
-((-2412 (*1 *2 *3 *2) (-12 (-5 *1 (-659 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))) (-2411 (*1 *2 *2 *3) (-12 (-5 *1 (-659 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))))
-(-10 -7 (-15 -2411 (|#1| |#1| |#2|)) (-15 -2412 (|#2| |#1| |#2|)))
-((-2413 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -2413 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1074) (-1074) (-1074)) (T -660))
-((-2413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)) (-5 *1 (-660 *5 *6 *2)))))
-(-10 -7 (-15 -2413 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3669 (((-1186) $) 20)) (-3668 (((-622 (-1186)) $) 18)) (-2414 (($ (-622 (-1186)) (-1186)) 13)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 29) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1186) $) 21) (($ (-1088)) 10)) (-3387 (((-112) $ $) NIL)))
-(((-661) (-13 (-1056) (-597 (-1186)) (-10 -8 (-15 -4317 ($ (-1088))) (-15 -2414 ($ (-622 (-1186)) (-1186))) (-15 -3668 ((-622 (-1186)) $)) (-15 -3669 ((-1186) $))))) (T -661))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-661)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-622 (-1186))) (-5 *3 (-1186)) (-5 *1 (-661)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-661)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-661)))))
-(-13 (-1056) (-597 (-1186)) (-10 -8 (-15 -4317 ($ (-1088))) (-15 -2414 ($ (-622 (-1186)) (-1186))) (-15 -3668 ((-622 (-1186)) $)) (-15 -3669 ((-1186) $))))
-((-2418 (((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|)) 23)) (-2415 (((-1 |#1|) |#1|) 8)) (-2417 ((|#1| |#1|) 16)) (-2416 (((-622 |#1|) (-1 (-622 |#1|) (-622 |#1|)) (-538)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4317 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-751)) 20)))
-(((-662 |#1|) (-10 -7 (-15 -2415 ((-1 |#1|) |#1|)) (-15 -4317 ((-1 |#1|) |#1|)) (-15 -2416 (|#1| (-1 |#1| |#1|))) (-15 -2416 ((-622 |#1|) (-1 (-622 |#1|) (-622 |#1|)) (-538))) (-15 -2417 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-751))) (-15 -2418 ((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|)))) (-1074)) (T -662))
-((-2418 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-751) *3)) (-4 *3 (-1074)) (-5 *1 (-662 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *4 (-1074)) (-5 *1 (-662 *4)))) (-2417 (*1 *2 *2) (-12 (-5 *1 (-662 *2)) (-4 *2 (-1074)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-622 *5) (-622 *5))) (-5 *4 (-538)) (-5 *2 (-622 *5)) (-5 *1 (-662 *5)) (-4 *5 (-1074)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-662 *2)) (-4 *2 (-1074)))) (-4317 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1074)))) (-2415 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1074)))))
-(-10 -7 (-15 -2415 ((-1 |#1|) |#1|)) (-15 -4317 ((-1 |#1|) |#1|)) (-15 -2416 (|#1| (-1 |#1| |#1|))) (-15 -2416 ((-622 |#1|) (-1 (-622 |#1|) (-622 |#1|)) (-538))) (-15 -2417 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-751))) (-15 -2418 ((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|))))
-((-2421 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2420 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4311 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2419 (((-1 |#2| |#1|) |#2|) 11)))
-(((-663 |#1| |#2|) (-10 -7 (-15 -2419 ((-1 |#2| |#1|) |#2|)) (-15 -2420 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4311 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2421 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1074) (-1074)) (T -663))
-((-2421 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1074)) (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5)) (-4 *4 (-1074)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-5 *2 (-1 *5)) (-5 *1 (-663 *4 *5)))) (-2419 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-663 *4 *3)) (-4 *4 (-1074)) (-4 *3 (-1074)))))
-(-10 -7 (-15 -2419 ((-1 |#2| |#1|) |#2|)) (-15 -2420 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4311 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2421 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2426 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2422 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2423 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2424 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2425 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -2422 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2423 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2424 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2425 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2426 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1074) (-1074) (-1074)) (T -664))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-1 *7 *5)) (-5 *1 (-664 *5 *6 *7)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-664 *4 *5 *6)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *4 (-1074)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *5 (-1074)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1074)) (-4 *4 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *5 *4 *6)))))
-(-10 -7 (-15 -2422 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2423 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2424 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2425 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2426 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-4198 (($ (-751) (-751)) 33)) (-2431 (($ $ $) 56)) (-3773 (($ |#3|) 52) (($ $) 53)) (-3456 (((-112) $) 28)) (-2430 (($ $ (-538) (-538)) 58)) (-2429 (($ $ (-538) (-538)) 59)) (-2428 (($ $ (-538) (-538) (-538) (-538)) 63)) (-2433 (($ $) 54)) (-3458 (((-112) $) 14)) (-2427 (($ $ (-538) (-538) $) 64)) (-4147 ((|#2| $ (-538) (-538) |#2|) NIL) (($ $ (-622 (-538)) (-622 (-538)) $) 62)) (-3692 (($ (-751) |#2|) 39)) (-3459 (($ (-622 (-622 |#2|))) 37)) (-3956 (((-622 (-622 |#2|)) $) 57)) (-2432 (($ $ $) 55)) (-3820 (((-3 $ "failed") $ |#2|) 91)) (-4159 ((|#2| $ (-538) (-538)) NIL) ((|#2| $ (-538) (-538) |#2|) NIL) (($ $ (-622 (-538)) (-622 (-538))) 61)) (-3691 (($ (-622 |#2|)) 40) (($ (-622 $)) 42)) (-3457 (((-112) $) 24)) (-4317 (($ |#4|) 47) (((-840) $) NIL)) (-3455 (((-112) $) 30)) (-4308 (($ $ |#2|) 93)) (-4197 (($ $ $) 68) (($ $) 71)) (-4199 (($ $ $) 66)) (** (($ $ (-751)) 80) (($ $ (-538)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-538) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-665 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -4308 (|#1| |#1| |#2|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1| (-538) (-538) |#1|)) (-15 -2428 (|#1| |#1| (-538) (-538) (-538) (-538))) (-15 -2429 (|#1| |#1| (-538) (-538))) (-15 -2430 (|#1| |#1| (-538) (-538))) (-15 -4147 (|#1| |#1| (-622 (-538)) (-622 (-538)) |#1|)) (-15 -4159 (|#1| |#1| (-622 (-538)) (-622 (-538)))) (-15 -3956 ((-622 (-622 |#2|)) |#1|)) (-15 -2431 (|#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3773 (|#1| |#3|)) (-15 -4317 (|#1| |#4|)) (-15 -3691 (|#1| (-622 |#1|))) (-15 -3691 (|#1| (-622 |#2|))) (-15 -3692 (|#1| (-751) |#2|)) (-15 -3459 (|#1| (-622 (-622 |#2|)))) (-15 -4198 (|#1| (-751) (-751))) (-15 -3455 ((-112) |#1|)) (-15 -3456 ((-112) |#1|)) (-15 -3457 ((-112) |#1|)) (-15 -3458 ((-112) |#1|)) (-15 -4147 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538)))) (-666 |#2| |#3| |#4|) (-1025) (-367 |#2|) (-367 |#2|)) (T -665))
-NIL
-(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -4308 (|#1| |#1| |#2|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1| (-538) (-538) |#1|)) (-15 -2428 (|#1| |#1| (-538) (-538) (-538) (-538))) (-15 -2429 (|#1| |#1| (-538) (-538))) (-15 -2430 (|#1| |#1| (-538) (-538))) (-15 -4147 (|#1| |#1| (-622 (-538)) (-622 (-538)) |#1|)) (-15 -4159 (|#1| |#1| (-622 (-538)) (-622 (-538)))) (-15 -3956 ((-622 (-622 |#2|)) |#1|)) (-15 -2431 (|#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3773 (|#1| |#3|)) (-15 -4317 (|#1| |#4|)) (-15 -3691 (|#1| (-622 |#1|))) (-15 -3691 (|#1| (-622 |#2|))) (-15 -3692 (|#1| (-751) |#2|)) (-15 -3459 (|#1| (-622 (-622 |#2|)))) (-15 -4198 (|#1| (-751) (-751))) (-15 -3455 ((-112) |#1|)) (-15 -3456 ((-112) |#1|)) (-15 -3457 ((-112) |#1|)) (-15 -3458 ((-112) |#1|)) (-15 -4147 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538))))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-4198 (($ (-751) (-751)) 97)) (-2431 (($ $ $) 87)) (-3773 (($ |#2|) 91) (($ $) 90)) (-3456 (((-112) $) 99)) (-2430 (($ $ (-538) (-538)) 83)) (-2429 (($ $ (-538) (-538)) 82)) (-2428 (($ $ (-538) (-538) (-538) (-538)) 81)) (-2433 (($ $) 89)) (-3458 (((-112) $) 101)) (-1271 (((-112) $ (-751)) 8)) (-2427 (($ $ (-538) (-538) $) 80)) (-4147 ((|#1| $ (-538) (-538) |#1|) 44) (($ $ (-622 (-538)) (-622 (-538)) $) 84)) (-1309 (($ $ (-538) |#2|) 42)) (-1308 (($ $ (-538) |#3|) 41)) (-3692 (($ (-751) |#1|) 95)) (-3896 (($) 7 T CONST)) (-3445 (($ $) 67 (|has| |#1| (-302)))) (-3447 ((|#2| $ (-538)) 46)) (-3444 (((-751) $) 66 (|has| |#1| (-545)))) (-1637 ((|#1| $ (-538) (-538) |#1|) 43)) (-3448 ((|#1| $ (-538) (-538)) 48)) (-2068 (((-622 |#1|) $) 30)) (-3443 (((-751) $) 65 (|has| |#1| (-545)))) (-3442 (((-622 |#3|) $) 64 (|has| |#1| (-545)))) (-3450 (((-751) $) 51)) (-3977 (($ (-751) (-751) |#1|) 57)) (-3449 (((-751) $) 50)) (-4082 (((-112) $ (-751)) 9)) (-3686 ((|#1| $) 62 (|has| |#1| (-6 (-4355 #1="*"))))) (-3454 (((-538) $) 55)) (-3452 (((-538) $) 53)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3453 (((-538) $) 54)) (-3451 (((-538) $) 52)) (-3459 (($ (-622 (-622 |#1|))) 96)) (-2072 (($ (-1 |#1| |#1|) $) 34)) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3956 (((-622 (-622 |#1|)) $) 86)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3952 (((-3 $ "failed") $) 61 (|has| |#1| (-358)))) (-2432 (($ $ $) 88)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) 56)) (-3820 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-545)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) (-538)) 49) ((|#1| $ (-538) (-538) |#1|) 47) (($ $ (-622 (-538)) (-622 (-538))) 85)) (-3691 (($ (-622 |#1|)) 94) (($ (-622 $)) 93)) (-3457 (((-112) $) 100)) (-3687 ((|#1| $) 63 (|has| |#1| (-6 (-4355 #1#))))) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-3446 ((|#3| $ (-538)) 45)) (-4317 (($ |#3|) 92) (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3455 (((-112) $) 98)) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4308 (($ $ |#1|) 68 (|has| |#1| (-358)))) (-4197 (($ $ $) 78) (($ $) 77)) (-4199 (($ $ $) 79)) (** (($ $ (-751)) 70) (($ $ (-538)) 60 (|has| |#1| (-358)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-538) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-666 |#1| |#2| |#3|) (-138) (-1025) (-367 |t#1|) (-367 |t#1|)) (T -666))
-((-3458 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-112)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-112)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-112)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-112)))) (-4198 (*1 *1 *2 *2) (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3692 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *2)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (-3773 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-666 *3 *2 *4)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2433 (*1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2432 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2431 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-622 (-622 *3))))) (-4159 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-622 (-538))) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4147 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-622 (-538))) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2430 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2429 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2428 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2427 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-4197 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-666 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-666 *3 *2 *4)) (-4 *3 (-1025)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3820 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-545)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-358)))) (-3445 (*1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-302)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-751)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-751)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-622 *5)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4355 #1="*"))) (-4 *2 (-1025)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4355 #1#))) (-4 *2 (-1025)))) (-3952 (*1 *1 *1) (|partial| -12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-358)))))
-(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -3458 ((-112) $)) (-15 -3457 ((-112) $)) (-15 -3456 ((-112) $)) (-15 -3455 ((-112) $)) (-15 -4198 ($ (-751) (-751))) (-15 -3459 ($ (-622 (-622 |t#1|)))) (-15 -3692 ($ (-751) |t#1|)) (-15 -3691 ($ (-622 |t#1|))) (-15 -3691 ($ (-622 $))) (-15 -4317 ($ |t#3|)) (-15 -3773 ($ |t#2|)) (-15 -3773 ($ $)) (-15 -2433 ($ $)) (-15 -2432 ($ $ $)) (-15 -2431 ($ $ $)) (-15 -3956 ((-622 (-622 |t#1|)) $)) (-15 -4159 ($ $ (-622 (-538)) (-622 (-538)))) (-15 -4147 ($ $ (-622 (-538)) (-622 (-538)) $)) (-15 -2430 ($ $ (-538) (-538))) (-15 -2429 ($ $ (-538) (-538))) (-15 -2428 ($ $ (-538) (-538) (-538) (-538))) (-15 -2427 ($ $ (-538) (-538) $)) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -4197 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-538) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-751))) (IF (|has| |t#1| (-545)) (-15 -3820 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -4308 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-302)) (-15 -3445 ($ $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3444 ((-751) $)) (-15 -3443 ((-751) $)) (-15 -3442 ((-622 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4355 "*"))) (PROGN (-15 -3687 (|t#1| $)) (-15 -3686 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -3952 ((-3 $ "failed") $)) (-15 ** ($ $ (-538)))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-56 |#1| |#2| |#3|) . T) ((-1185) . T))
-((-4202 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4318 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4318 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4318 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4202 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1025) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|) (-1025) (-367 |#5|) (-367 |#5|) (-666 |#5| |#6| |#7|)) (T -667))
-((-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1025)) (-4 *2 (-1025)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) (-4 *9 (-367 *2)) (-5 *1 (-667 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-666 *5 *6 *7)) (-4 *10 (-666 *2 *8 *9)))) (-4318 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-666 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-666 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-666 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-666 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))))
-(-10 -7 (-15 -4318 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4318 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4202 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3445 ((|#4| |#4|) 72 (|has| |#1| (-302)))) (-3444 (((-751) |#4|) 99 (|has| |#1| (-545)))) (-3443 (((-751) |#4|) 76 (|has| |#1| (-545)))) (-3442 (((-622 |#3|) |#4|) 83 (|has| |#1| (-545)))) (-2471 (((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|) 111 (|has| |#1| (-302)))) (-3686 ((|#1| |#4|) 35)) (-2438 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-545)))) (-3952 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-358)))) (-2437 ((|#4| |#4|) 68 (|has| |#1| (-545)))) (-2435 ((|#4| |#4| |#1| (-538) (-538)) 43)) (-2434 ((|#4| |#4| (-538) (-538)) 38)) (-2436 ((|#4| |#4| |#1| (-538) (-538)) 48)) (-3687 ((|#1| |#4|) 78)) (-2854 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-545)))))
-(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3687 (|#1| |#4|)) (-15 -3686 (|#1| |#4|)) (-15 -2434 (|#4| |#4| (-538) (-538))) (-15 -2435 (|#4| |#4| |#1| (-538) (-538))) (-15 -2436 (|#4| |#4| |#1| (-538) (-538))) (IF (|has| |#1| (-545)) (PROGN (-15 -3444 ((-751) |#4|)) (-15 -3443 ((-751) |#4|)) (-15 -3442 ((-622 |#3|) |#4|)) (-15 -2437 (|#4| |#4|)) (-15 -2438 ((-3 |#4| "failed") |#4|)) (-15 -2854 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -3445 (|#4| |#4|)) (-15 -2471 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3952 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|)) (T -668))
-((-3952 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-2471 (*1 *2 *3 *3) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-668 *3 *4 *5 *6)) (-4 *6 (-666 *3 *4 *5)))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-2854 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-2438 (*1 *2 *2) (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-2437 (*1 *2 *2) (-12 (-4 *3 (-545)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-622 *6)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3443 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-2436 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-538)) (-4 *3 (-170)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-666 *3 *5 *6)))) (-2435 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-538)) (-4 *3 (-170)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-666 *3 *5 *6)))) (-2434 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-538)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *1 (-668 *4 *5 *6 *2)) (-4 *2 (-666 *4 *5 *6)))) (-3686 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-170)) (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5)))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-170)) (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5)))))
-(-10 -7 (-15 -3687 (|#1| |#4|)) (-15 -3686 (|#1| |#4|)) (-15 -2434 (|#4| |#4| (-538) (-538))) (-15 -2435 (|#4| |#4| |#1| (-538) (-538))) (-15 -2436 (|#4| |#4| |#1| (-538) (-538))) (IF (|has| |#1| (-545)) (PROGN (-15 -3444 ((-751) |#4|)) (-15 -3443 ((-751) |#4|)) (-15 -3442 ((-622 |#3|) |#4|)) (-15 -2437 (|#4| |#4|)) (-15 -2438 ((-3 |#4| "failed") |#4|)) (-15 -2854 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -3445 (|#4| |#4|)) (-15 -2471 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3952 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751) (-751)) 47)) (-2431 (($ $ $) NIL)) (-3773 (($ (-1231 |#1|)) NIL) (($ $) NIL)) (-3456 (((-112) $) NIL)) (-2430 (($ $ (-538) (-538)) 12)) (-2429 (($ $ (-538) (-538)) NIL)) (-2428 (($ $ (-538) (-538) (-538) (-538)) NIL)) (-2433 (($ $) NIL)) (-3458 (((-112) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-2427 (($ $ (-538) (-538) $) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538)) $) NIL)) (-1309 (($ $ (-538) (-1231 |#1|)) NIL)) (-1308 (($ $ (-538) (-1231 |#1|)) NIL)) (-3692 (($ (-751) |#1|) 22)) (-3896 (($) NIL T CONST)) (-3445 (($ $) 31 (|has| |#1| (-302)))) (-3447 (((-1231 |#1|) $ (-538)) NIL)) (-3444 (((-751) $) 33 (|has| |#1| (-545)))) (-1637 ((|#1| $ (-538) (-538) |#1|) 51)) (-3448 ((|#1| $ (-538) (-538)) NIL)) (-2068 (((-622 |#1|) $) NIL)) (-3443 (((-751) $) 35 (|has| |#1| (-545)))) (-3442 (((-622 (-1231 |#1|)) $) 38 (|has| |#1| (-545)))) (-3450 (((-751) $) 20)) (-3977 (($ (-751) (-751) |#1|) 16)) (-3449 (((-751) $) 21)) (-4082 (((-112) $ (-751)) NIL)) (-3686 ((|#1| $) 29 (|has| |#1| (-6 (-4355 #1="*"))))) (-3454 (((-538) $) 9)) (-3452 (((-538) $) 10)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) 11)) (-3451 (((-538) $) 48)) (-3459 (($ (-622 (-622 |#1|))) NIL)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3956 (((-622 (-622 |#1|)) $) 60)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3952 (((-3 $ #2="failed") $) 45 (|has| |#1| (-358)))) (-2432 (($ $ $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-3820 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-545)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) (-538)) NIL) ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538))) NIL)) (-3691 (($ (-622 |#1|)) NIL) (($ (-622 $)) NIL) (($ (-1231 |#1|)) 52)) (-3457 (((-112) $) NIL)) (-3687 ((|#1| $) 27 (|has| |#1| (-6 (-4355 #1#))))) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4330 (((-527) $) 64 (|has| |#1| (-598 (-527))))) (-3446 (((-1231 |#1|) $ (-538)) NIL)) (-4317 (($ (-1231 |#1|)) NIL) (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) 23) (($ $ (-538)) 46 (|has| |#1| (-358)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-538) $) NIL) (((-1231 |#1|) $ (-1231 |#1|)) NIL) (((-1231 |#1|) (-1231 |#1|) $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-669 |#1|) (-13 (-666 |#1| (-1231 |#1|) (-1231 |#1|)) (-10 -8 (-15 -3691 ($ (-1231 |#1|))) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3952 ((-3 $ "failed") $)) |%noBranch|))) (-1025)) (T -669))
-((-3952 (*1 *1 *1) (|partial| -12 (-5 *1 (-669 *2)) (-4 *2 (-358)) (-4 *2 (-1025)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1025)) (-5 *1 (-669 *3)))))
-(-13 (-666 |#1| (-1231 |#1|) (-1231 |#1|)) (-10 -8 (-15 -3691 ($ (-1231 |#1|))) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3952 ((-3 $ "failed") $)) |%noBranch|)))
-((-2444 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 25)) (-2443 (((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|) 21)) (-2445 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751)) 26)) (-2440 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 14)) (-2441 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 18) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 16)) (-2442 (((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|)) 20)) (-2439 (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 12)) (** (((-669 |#1|) (-669 |#1|) (-751)) 30)))
-(((-670 |#1|) (-10 -7 (-15 -2439 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2440 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2441 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2441 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2442 ((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|))) (-15 -2443 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -2444 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2445 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751))) (-15 ** ((-669 |#1|) (-669 |#1|) (-751)))) (-1025)) (T -670))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4)))) (-2445 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4)))) (-2444 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2443 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2442 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2441 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2441 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2440 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2439 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
-(-10 -7 (-15 -2439 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2440 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2441 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2441 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2442 ((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|))) (-15 -2443 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -2444 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2445 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751))) (-15 ** ((-669 |#1|) (-669 |#1|) (-751))))
-((-2446 (($) 8 T CONST)) (-4317 (((-840) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3929 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2446)) 16)) (-3935 ((|#1| $) 11)))
-(((-671 |#1|) (-13 (-1227) (-597 (-840)) (-10 -8 (-15 -3929 ((-112) $ (|[\|\|]| |#1|))) (-15 -3929 ((-112) $ (|[\|\|]| -2446))) (-15 -4317 ($ |#1|)) (-15 -4317 (|#1| $)) (-15 -3935 (|#1| $)) (-15 -2446 ($) -4311))) (-597 (-840))) (T -671))
-((-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-597 (-840))) (-5 *2 (-112)) (-5 *1 (-671 *4)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2446)) (-5 *2 (-112)) (-5 *1 (-671 *4)) (-4 *4 (-597 (-840))))) (-4317 (*1 *1 *2) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))) (-4317 (*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))) (-3935 (*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))) (-2446 (*1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))))
-(-13 (-1227) (-597 (-840)) (-10 -8 (-15 -3929 ((-112) $ (|[\|\|]| |#1|))) (-15 -3929 ((-112) $ (|[\|\|]| -2446))) (-15 -4317 ($ |#1|)) (-15 -4317 (|#1| $)) (-15 -3935 (|#1| $)) (-15 -2446 ($) -4311)))
-((-2449 ((|#2| |#2| |#4|) 25)) (-2452 (((-669 |#2|) |#3| |#4|) 31)) (-2450 (((-669 |#2|) |#2| |#4|) 30)) (-2447 (((-1231 |#2|) |#2| |#4|) 16)) (-2448 ((|#2| |#3| |#4|) 24)) (-2453 (((-669 |#2|) |#3| |#4| (-751) (-751)) 38)) (-2451 (((-669 |#2|) |#2| |#4| (-751)) 37)))
-(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2447 ((-1231 |#2|) |#2| |#4|)) (-15 -2448 (|#2| |#3| |#4|)) (-15 -2449 (|#2| |#2| |#4|)) (-15 -2450 ((-669 |#2|) |#2| |#4|)) (-15 -2451 ((-669 |#2|) |#2| |#4| (-751))) (-15 -2452 ((-669 |#2|) |#3| |#4|)) (-15 -2453 ((-669 |#2|) |#3| |#4| (-751) (-751)))) (-1074) (-876 |#1|) (-367 |#2|) (-13 (-367 |#1|) (-10 -7 (-6 -4353)))) (T -672))
-((-2453 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-751)) (-4 *6 (-1074)) (-4 *7 (-876 *6)) (-5 *2 (-669 *7)) (-5 *1 (-672 *6 *7 *3 *4)) (-4 *3 (-367 *7)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4353)))))) (-2452 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-4 *6 (-876 *5)) (-5 *2 (-669 *6)) (-5 *1 (-672 *5 *6 *3 *4)) (-4 *3 (-367 *6)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))) (-2451 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-1074)) (-4 *3 (-876 *6)) (-5 *2 (-669 *3)) (-5 *1 (-672 *6 *3 *7 *4)) (-4 *7 (-367 *3)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4353)))))) (-2450 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-4 *3 (-876 *5)) (-5 *2 (-669 *3)) (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))) (-2449 (*1 *2 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-876 *4)) (-5 *1 (-672 *4 *2 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4353)))))) (-2448 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-4 *2 (-876 *5)) (-5 *1 (-672 *5 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))) (-2447 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-4 *3 (-876 *5)) (-5 *2 (-1231 *3)) (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))))
-(-10 -7 (-15 -2447 ((-1231 |#2|) |#2| |#4|)) (-15 -2448 (|#2| |#3| |#4|)) (-15 -2449 (|#2| |#2| |#4|)) (-15 -2450 ((-669 |#2|) |#2| |#4|)) (-15 -2451 ((-669 |#2|) |#2| |#4| (-751))) (-15 -2452 ((-669 |#2|) |#3| |#4|)) (-15 -2453 ((-669 |#2|) |#3| |#4| (-751) (-751))))
-((-4101 (((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|)) 20)) (-4099 ((|#1| (-669 |#2|)) 9)) (-4100 (((-669 |#1|) (-669 |#2|)) 18)))
-(((-673 |#1| |#2|) (-10 -7 (-15 -4099 (|#1| (-669 |#2|))) (-15 -4100 ((-669 |#1|) (-669 |#2|))) (-15 -4101 ((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|)))) (-545) (-967 |#1|)) (T -673))
-((-4101 (*1 *2 *3) (-12 (-5 *3 (-669 *5)) (-4 *5 (-967 *4)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |num| (-669 *4)) (|:| |den| *4))) (-5 *1 (-673 *4 *5)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-669 *5)) (-4 *5 (-967 *4)) (-4 *4 (-545)) (-5 *2 (-669 *4)) (-5 *1 (-673 *4 *5)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-669 *4)) (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-673 *2 *4)))))
-(-10 -7 (-15 -4099 (|#1| (-669 |#2|))) (-15 -4100 ((-669 |#1|) (-669 |#2|))) (-15 -4101 ((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1901 (((-669 (-679))) NIL) (((-669 (-679)) (-1231 $)) NIL)) (-3689 (((-679) $) NIL)) (-3846 (($ $) NIL (|has| (-679) (-1171)))) (-4002 (($ $) NIL (|has| (-679) (-1171)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-679) (-345)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-886))))) (-4134 (($ $) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| (-679) (-886))) (|has| (-679) (-358))))) (-4329 (((-400 $) $) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| (-679) (-886))) (|has| (-679) (-358))))) (-3370 (($ $) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-886))))) (-1705 (((-112) $ $) NIL (|has| (-679) (-302)))) (-3471 (((-751)) NIL (|has| (-679) (-363)))) (-3844 (($ $) NIL (|has| (-679) (-1171)))) (-4001 (($ $) NIL (|has| (-679) (-1171)))) (-3848 (($ $) NIL (|has| (-679) (-1171)))) (-4000 (($ $) NIL (|has| (-679) (-1171)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) NIL) (((-3 (-679) #2#) $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-679) (-1014 (-402 (-538)))))) (-3507 (((-538) $) NIL) (((-679) $) NIL) (((-402 (-538)) $) NIL (|has| (-679) (-1014 (-402 (-538)))))) (-1911 (($ (-1231 (-679))) NIL) (($ (-1231 (-679)) (-1231 $)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-679) (-345)))) (-2894 (($ $ $) NIL (|has| (-679) (-302)))) (-1900 (((-669 (-679)) $) NIL) (((-669 (-679)) $ (-1231 $)) NIL)) (-2362 (((-669 (-679)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-679))) (|:| |vec| (-1231 (-679)))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-679) (-621 (-538)))) (((-669 (-538)) (-669 $)) NIL (|has| (-679) (-621 (-538))))) (-4202 (((-3 $ "failed") (-402 (-1143 (-679)))) NIL (|has| (-679) (-358))) (($ (-1143 (-679))) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4006 (((-679) $) 29)) (-3357 (((-3 (-402 (-538)) #3="failed") $) NIL (|has| (-679) (-537)))) (-3356 (((-112) $) NIL (|has| (-679) (-537)))) (-3355 (((-402 (-538)) $) NIL (|has| (-679) (-537)))) (-3444 (((-895)) NIL)) (-3327 (($) NIL (|has| (-679) (-363)))) (-2893 (($ $ $) NIL (|has| (-679) (-302)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| (-679) (-302)))) (-3166 (($) NIL (|has| (-679) (-345)))) (-1796 (((-112) $) NIL (|has| (-679) (-345)))) (-1886 (($ $) NIL (|has| (-679) (-345))) (($ $ (-751)) NIL (|has| (-679) (-345)))) (-4086 (((-112) $) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| (-679) (-886))) (|has| (-679) (-358))))) (-1420 (((-2 (|:| |r| (-679)) (|:| |phi| (-679))) $) NIL (-12 (|has| (-679) (-1034)) (|has| (-679) (-1171))))) (-3990 (($) NIL (|has| (-679) (-1171)))) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-679) (-862 (-373)))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-679) (-862 (-538))))) (-4131 (((-812 (-895)) $) NIL (|has| (-679) (-345))) (((-895) $) NIL (|has| (-679) (-345)))) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171))))) (-3467 (((-679) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-679) (-345)))) (-1702 (((-3 (-622 $) #4="failed") (-622 $) $) NIL (|has| (-679) (-302)))) (-2130 (((-1143 (-679)) $) NIL (|has| (-679) (-358)))) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 (-679) (-679)) $) NIL)) (-2126 (((-895) $) NIL (|has| (-679) (-363)))) (-4302 (($ $) NIL (|has| (-679) (-1171)))) (-3413 (((-1143 (-679)) $) NIL)) (-2013 (($ (-622 $)) NIL (|has| (-679) (-302))) (($ $ $) NIL (|has| (-679) (-302)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| (-679) (-358)))) (-3804 (($) NIL (|has| (-679) (-345)) CONST)) (-2492 (($ (-895)) NIL (|has| (-679) (-363)))) (-1422 (($) NIL)) (-4007 (((-679) $) 31)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| (-679) (-302)))) (-3495 (($ (-622 $)) NIL (|has| (-679) (-302))) (($ $ $) NIL (|has| (-679) (-302)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-679) (-345)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-886))))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-886))))) (-4092 (((-400 $) $) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| (-679) (-886))) (|has| (-679) (-358))))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-679) (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| (-679) (-302)))) (-3820 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-679)) NIL (|has| (-679) (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| (-679) (-302)))) (-4303 (($ $) NIL (|has| (-679) (-1171)))) (-4127 (($ $ (-1149) (-679)) NIL (|has| (-679) (-507 (-1149) (-679)))) (($ $ (-622 (-1149)) (-622 (-679))) NIL (|has| (-679) (-507 (-1149) (-679)))) (($ $ (-622 (-288 (-679)))) NIL (|has| (-679) (-304 (-679)))) (($ $ (-288 (-679))) NIL (|has| (-679) (-304 (-679)))) (($ $ (-679) (-679)) NIL (|has| (-679) (-304 (-679)))) (($ $ (-622 (-679)) (-622 (-679))) NIL (|has| (-679) (-304 (-679))))) (-1704 (((-751) $) NIL (|has| (-679) (-302)))) (-4159 (($ $ (-679)) NIL (|has| (-679) (-281 (-679) (-679))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| (-679) (-302)))) (-4117 (((-679)) NIL) (((-679) (-1231 $)) NIL)) (-1887 (((-3 (-751) "failed") $ $) NIL (|has| (-679) (-345))) (((-751) $) NIL (|has| (-679) (-345)))) (-4170 (($ $ (-1 (-679) (-679))) NIL) (($ $ (-1 (-679) (-679)) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-751)) NIL (|has| (-679) (-229))) (($ $) NIL (|has| (-679) (-229)))) (-2500 (((-669 (-679)) (-1231 $) (-1 (-679) (-679))) NIL (|has| (-679) (-358)))) (-3536 (((-1143 (-679))) NIL)) (-3849 (($ $) NIL (|has| (-679) (-1171)))) (-3999 (($ $) NIL (|has| (-679) (-1171)))) (-1790 (($) NIL (|has| (-679) (-345)))) (-3847 (($ $) NIL (|has| (-679) (-1171)))) (-3998 (($ $) NIL (|has| (-679) (-1171)))) (-3845 (($ $) NIL (|has| (-679) (-1171)))) (-3997 (($ $) NIL (|has| (-679) (-1171)))) (-3575 (((-669 (-679)) (-1231 $)) NIL) (((-1231 (-679)) $) NIL) (((-669 (-679)) (-1231 $) (-1231 $)) NIL) (((-1231 (-679)) $ (-1231 $)) NIL)) (-4330 (((-527) $) NIL (|has| (-679) (-598 (-527)))) (((-166 (-221)) $) NIL (|has| (-679) (-996))) (((-166 (-373)) $) NIL (|has| (-679) (-996))) (((-866 (-373)) $) NIL (|has| (-679) (-598 (-866 (-373))))) (((-866 (-538)) $) NIL (|has| (-679) (-598 (-866 (-538))))) (($ (-1143 (-679))) NIL) (((-1143 (-679)) $) NIL) (($ (-1231 (-679))) NIL) (((-1231 (-679)) $) NIL)) (-3342 (($ $) NIL)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| $ (-143)) (|has| (-679) (-886))) (|has| (-679) (-345))))) (-1421 (($ (-679) (-679)) 12)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-538)) NIL) (($ (-679)) NIL) (($ (-166 (-373))) 13) (($ (-166 (-538))) 19) (($ (-166 (-679))) 28) (($ (-166 (-681))) 25) (((-166 (-373)) $) 33) (($ (-402 (-538))) NIL (-3891 (|has| (-679) (-358)) (|has| (-679) (-1014 (-402 (-538))))))) (-3035 (($ $) NIL (|has| (-679) (-345))) (((-3 $ #1#) $) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| $ (-143)) (|has| (-679) (-886))) (|has| (-679) (-143))))) (-2698 (((-1143 (-679)) $) NIL)) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL)) (-3852 (($ $) NIL (|has| (-679) (-1171)))) (-3840 (($ $) NIL (|has| (-679) (-1171)))) (-2177 (((-112) $ $) NIL)) (-3850 (($ $) NIL (|has| (-679) (-1171)))) (-3838 (($ $) NIL (|has| (-679) (-1171)))) (-3854 (($ $) NIL (|has| (-679) (-1171)))) (-3842 (($ $) NIL (|has| (-679) (-1171)))) (-2318 (((-679) $) NIL (|has| (-679) (-1171)))) (-3855 (($ $) NIL (|has| (-679) (-1171)))) (-3843 (($ $) NIL (|has| (-679) (-1171)))) (-3853 (($ $) NIL (|has| (-679) (-1171)))) (-3841 (($ $) NIL (|has| (-679) (-1171)))) (-3851 (($ $) NIL (|has| (-679) (-1171)))) (-3839 (($ $) NIL (|has| (-679) (-1171)))) (-3742 (($ $) NIL (|has| (-679) (-1034)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1 (-679) (-679))) NIL) (($ $ (-1 (-679) (-679)) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-751)) NIL (|has| (-679) (-229))) (($ $) NIL (|has| (-679) (-229)))) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL (|has| (-679) (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ $) NIL (|has| (-679) (-1171))) (($ $ (-402 (-538))) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171)))) (($ $ (-538)) NIL (|has| (-679) (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ (-679) $) NIL) (($ $ (-679)) NIL) (($ (-402 (-538)) $) NIL (|has| (-679) (-358))) (($ $ (-402 (-538))) NIL (|has| (-679) (-358)))))
-(((-674) (-13 (-382) (-164 (-679)) (-10 -8 (-15 -4317 ($ (-166 (-373)))) (-15 -4317 ($ (-166 (-538)))) (-15 -4317 ($ (-166 (-679)))) (-15 -4317 ($ (-166 (-681)))) (-15 -4317 ((-166 (-373)) $))))) (T -674))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-674)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-166 (-538))) (-5 *1 (-674)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-166 (-679))) (-5 *1 (-674)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-166 (-681))) (-5 *1 (-674)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-674)))))
-(-13 (-382) (-164 (-679)) (-10 -8 (-15 -4317 ($ (-166 (-373)))) (-15 -4317 ($ (-166 (-538)))) (-15 -4317 ($ (-166 (-679)))) (-15 -4317 ($ (-166 (-681)))) (-15 -4317 ((-166 (-373)) $))))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2455 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2454 (((-622 (-2 (|:| -2191 |#1|) (|:| -2069 (-751)))) $) 61)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-675 |#1|) (-138) (-1074)) (T -675))
-((-3970 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-675 *2)) (-4 *2 (-1074)))) (-2455 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1074)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1074)) (-5 *2 (-622 (-2 (|:| -2191 *3) (|:| -2069 (-751))))))))
-(-13 (-231 |t#1|) (-10 -8 (-15 -3970 ($ |t#1| $ (-751))) (-15 -2455 ($ $)) (-15 -2454 ((-622 (-2 (|:| -2191 |t#1|) (|:| -2069 (-751)))) $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-2458 (((-622 |#1|) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) (-538)) 47)) (-2456 ((|#1| |#1| (-538)) 46)) (-3495 ((|#1| |#1| |#1| (-538)) 36)) (-4092 (((-622 |#1|) |#1| (-538)) 39)) (-2459 ((|#1| |#1| (-538) |#1| (-538)) 32)) (-2457 (((-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) |#1| (-538)) 45)))
-(((-676 |#1|) (-10 -7 (-15 -3495 (|#1| |#1| |#1| (-538))) (-15 -2456 (|#1| |#1| (-538))) (-15 -4092 ((-622 |#1|) |#1| (-538))) (-15 -2457 ((-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) |#1| (-538))) (-15 -2458 ((-622 |#1|) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) (-538))) (-15 -2459 (|#1| |#1| (-538) |#1| (-538)))) (-1207 (-538))) (T -676))
-((-2459 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-2 (|:| -4092 *5) (|:| -4307 (-538))))) (-5 *4 (-538)) (-4 *5 (-1207 *4)) (-5 *2 (-622 *5)) (-5 *1 (-676 *5)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-5 *2 (-622 (-2 (|:| -4092 *3) (|:| -4307 *4)))) (-5 *1 (-676 *3)) (-4 *3 (-1207 *4)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-5 *2 (-622 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1207 *4)))) (-2456 (*1 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3)))) (-3495 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3)))))
-(-10 -7 (-15 -3495 (|#1| |#1| |#1| (-538))) (-15 -2456 (|#1| |#1| (-538))) (-15 -4092 ((-622 |#1|) |#1| (-538))) (-15 -2457 ((-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) |#1| (-538))) (-15 -2458 ((-622 |#1|) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) (-538))) (-15 -2459 (|#1| |#1| (-538) |#1| (-538))))
-((-2463 (((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 17)) (-2460 (((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256))) 40) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256))) 42) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1="undefined") (-1062 (-221)) (-1062 (-221)) (-622 (-256))) 44)) (-2462 (((-1106 (-221)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-622 (-256))) NIL)) (-2461 (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1#) (-1062 (-221)) (-1062 (-221)) (-622 (-256))) 45)))
-(((-677) (-10 -7 (-15 -2460 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1="undefined") (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2460 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2460 ((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2461 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1#) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2462 ((-1106 (-221)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2463 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -677))
-((-2463 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1 (-221) (-221) (-221) (-221))) (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *1 (-677)))) (-2462 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-2461 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) #1="undefined")) (-5 *5 (-1062 (-221))) (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-2460 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-221))) (-5 *5 (-622 (-256))) (-5 *1 (-677)))) (-2460 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-221))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-2460 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) #1#)) (-5 *5 (-1062 (-221))) (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))))
-(-10 -7 (-15 -2460 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1="undefined") (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2460 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2460 ((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2461 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1#) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2462 ((-1106 (-221)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2463 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))
-((-4092 (((-400 (-1143 |#4|)) (-1143 |#4|)) 73) (((-400 |#4|) |#4|) 221)))
-(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4|)) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|)))) (-827) (-773) (-345) (-926 |#3| |#2| |#1|)) (T -678))
-((-4092 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-345)) (-4 *7 (-926 *6 *5 *4)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-345)) (-5 *2 (-400 *3)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4)))))
-(-10 -7 (-15 -4092 ((-400 |#4|) |#4|)) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 84)) (-3464 (((-538) $) 30)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4130 (($ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL)) (-3896 (($) NIL T CONST)) (-3462 (($ $) NIL)) (-3508 (((-3 (-538) #1="failed") $) 73) (((-3 (-402 (-538)) #1#) $) 26) (((-3 (-373) #1#) $) 70)) (-3507 (((-538) $) 75) (((-402 (-538)) $) 67) (((-373) $) 68)) (-2894 (($ $ $) 96)) (-3821 (((-3 $ "failed") $) 87)) (-2893 (($ $ $) 95)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2466 (((-895)) 77) (((-895) (-895)) 76)) (-3537 (((-112) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL)) (-4131 (((-538) $) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL)) (-3467 (($ $) NIL)) (-3538 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-2464 (((-538) (-538)) 81) (((-538)) 82)) (-3677 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-2465 (((-538) (-538)) 79) (((-538)) 80)) (-3678 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-2467 (((-538) $) 16)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 91)) (-1889 (((-895) (-538)) NIL (|has| $ (-6 -4344)))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL)) (-3465 (($ $) NIL)) (-3605 (($ (-538) (-538)) NIL) (($ (-538) (-538) (-895)) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) 92)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-2493 (((-538) $) 22)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 94)) (-2944 (((-895)) NIL) (((-895) (-895)) NIL (|has| $ (-6 -4344)))) (-1888 (((-895) (-538)) NIL (|has| $ (-6 -4344)))) (-4330 (((-373) $) NIL) (((-221) $) NIL) (((-866 (-373)) $) NIL)) (-4317 (((-840) $) 52) (($ (-538)) 63) (($ $) NIL) (($ (-402 (-538))) 66) (($ (-538)) 63) (($ (-402 (-538))) 66) (($ (-373)) 60) (((-373) $) 50) (($ (-681)) 55)) (-3461 (((-751)) 103)) (-3280 (($ (-538) (-538) (-895)) 44)) (-3466 (($ $) NIL)) (-1890 (((-895)) NIL) (((-895) (-895)) NIL (|has| $ (-6 -4344)))) (-3027 (((-895)) 35) (((-895) (-895)) 78)) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL)) (-2991 (($) 32 T CONST)) (-2997 (($) 17 T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 83)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 101)) (-4308 (($ $ $) 65)) (-4197 (($ $) 99) (($ $ $) 100)) (-4199 (($ $ $) 98)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL) (($ $ (-402 (-538))) 90)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 97) (($ $ $) 88) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL)))
-(((-679) (-13 (-399) (-382) (-358) (-1014 (-373)) (-1014 (-402 (-538))) (-145) (-10 -8 (-15 -2466 ((-895) (-895))) (-15 -2466 ((-895))) (-15 -3027 ((-895) (-895))) (-15 -2465 ((-538) (-538))) (-15 -2465 ((-538))) (-15 -2464 ((-538) (-538))) (-15 -2464 ((-538))) (-15 -4317 ((-373) $)) (-15 -4317 ($ (-681))) (-15 -2467 ((-538) $)) (-15 -2493 ((-538) $)) (-15 -3280 ($ (-538) (-538) (-895)))))) (T -679))
-((-2493 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-2466 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) (-3027 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-2465 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-2464 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-679)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-681)) (-5 *1 (-679)))) (-3280 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-895)) (-5 *1 (-679)))))
-(-13 (-399) (-382) (-358) (-1014 (-373)) (-1014 (-402 (-538))) (-145) (-10 -8 (-15 -2466 ((-895) (-895))) (-15 -2466 ((-895))) (-15 -3027 ((-895) (-895))) (-15 -2465 ((-538) (-538))) (-15 -2465 ((-538))) (-15 -2464 ((-538) (-538))) (-15 -2464 ((-538))) (-15 -4317 ((-373) $)) (-15 -4317 ($ (-681))) (-15 -2467 ((-538) $)) (-15 -2493 ((-538) $)) (-15 -3280 ($ (-538) (-538) (-895)))))
-((-2470 (((-669 |#1|) (-669 |#1|) |#1| |#1|) 65)) (-3445 (((-669 |#1|) (-669 |#1|) |#1|) 48)) (-2469 (((-669 |#1|) (-669 |#1|) |#1|) 66)) (-2468 (((-669 |#1|) (-669 |#1|)) 49)) (-2471 (((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|) 64)))
-(((-680 |#1|) (-10 -7 (-15 -2468 ((-669 |#1|) (-669 |#1|))) (-15 -3445 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -2469 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -2470 ((-669 |#1|) (-669 |#1|) |#1| |#1|)) (-15 -2471 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|))) (-302)) (T -680))
-((-2471 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-680 *3)) (-4 *3 (-302)))) (-2470 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-2469 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-3445 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))))
-(-10 -7 (-15 -2468 ((-669 |#1|) (-669 |#1|))) (-15 -3445 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -2469 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -2470 ((-669 |#1|) (-669 |#1|) |#1| |#1|)) (-15 -2471 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-2162 (($ $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2157 (($ $ $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL)) (-2690 (($ $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) "failed") $) 27)) (-3507 (((-538) $) 25)) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL)) (-3356 (((-112) $) NIL)) (-3355 (((-402 (-538)) $) NIL)) (-3327 (($ $) NIL) (($) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2155 (($ $ $ $) NIL)) (-2163 (($ $ $) NIL)) (-3537 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL)) (-2502 (((-112) $) NIL)) (-3006 (((-112) $) NIL)) (-3803 (((-3 $ "failed") $) NIL)) (-3538 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2156 (($ $ $ $) NIL)) (-3677 (($ $ $) NIL)) (-2472 (((-895) (-895)) 10) (((-895)) 9)) (-3678 (($ $ $) NIL)) (-2159 (($ $) NIL)) (-4193 (($ $) NIL)) (-2013 (($ (-622 $)) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2154 (($ $ $) NIL)) (-3804 (($) NIL T CONST)) (-2161 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ (-622 $)) NIL) (($ $ $) NIL)) (-1412 (($ $) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL) (($ $ (-751)) NIL)) (-2160 (($ $) NIL)) (-3759 (($ $) NIL)) (-4330 (((-221) $) NIL) (((-373) $) NIL) (((-866 (-538)) $) NIL) (((-527) $) NIL) (((-538) $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) 24) (($ $) NIL) (($ (-538)) 24) (((-309 $) (-309 (-538))) 18)) (-3461 (((-751)) NIL)) (-2164 (((-112) $ $) NIL)) (-3437 (($ $ $) NIL)) (-3027 (($) NIL)) (-2177 (((-112) $ $) NIL)) (-2158 (($ $ $ $) NIL)) (-3742 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL) (($ $ (-751)) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL)))
-(((-681) (-13 (-382) (-537) (-10 -8 (-15 -2472 ((-895) (-895))) (-15 -2472 ((-895))) (-15 -4317 ((-309 $) (-309 (-538))))))) (T -681))
-((-2472 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-681)))) (-2472 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-681)))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-309 (-538))) (-5 *2 (-309 (-681))) (-5 *1 (-681)))))
-(-13 (-382) (-537) (-10 -8 (-15 -2472 ((-895) (-895))) (-15 -2472 ((-895))) (-15 -4317 ((-309 $) (-309 (-538))))))
-((-2478 (((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149)) 19)) (-2473 (((-1 |#4| |#2| |#3|) (-1149)) 12)))
-(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-1 |#4| |#2| |#3|) (-1149))) (-15 -2478 ((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149)))) (-598 (-527)) (-1185) (-1185) (-1185)) (T -682))
-((-2478 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *3 *5 *6 *7)) (-4 *3 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *7 (-1185)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *4 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *7 (-1185)))))
-(-10 -7 (-15 -2473 ((-1 |#4| |#2| |#3|) (-1149))) (-15 -2478 ((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149))))
-((-2898 (((-112) $ $) NIL)) (-1369 (((-1237) $ (-751)) 14)) (-3778 (((-751) $) 12)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 25)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 24)))
-(((-683 |#1|) (-13 (-131) (-597 |#1|) (-10 -8 (-15 -4317 ($ |#1|)))) (-1074)) (T -683))
-((-4317 (*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1074)))))
-(-13 (-131) (-597 |#1|) (-10 -8 (-15 -4317 ($ |#1|))))
-((-2474 (((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149)) 34) (((-1 (-221) (-221)) |#1| (-1149)) 39)))
-(((-684 |#1|) (-10 -7 (-15 -2474 ((-1 (-221) (-221)) |#1| (-1149))) (-15 -2474 ((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149)))) (-598 (-527))) (T -684))
-((-2474 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-684 *3)) (-4 *3 (-598 (-527))))) (-2474 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-684 *3)) (-4 *3 (-598 (-527))))))
-(-10 -7 (-15 -2474 ((-1 (-221) (-221)) |#1| (-1149))) (-15 -2474 ((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149))))
-((-2475 (((-1149) |#1| (-1149) (-622 (-1149))) 9) (((-1149) |#1| (-1149) (-1149) (-1149)) 12) (((-1149) |#1| (-1149) (-1149)) 11) (((-1149) |#1| (-1149)) 10)))
-(((-685 |#1|) (-10 -7 (-15 -2475 ((-1149) |#1| (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-1149) (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-622 (-1149))))) (-598 (-527))) (T -685))
-((-2475 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-622 (-1149))) (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527))))) (-2475 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527))))) (-2475 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527))))) (-2475 (*1 *2 *3 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527))))))
-(-10 -7 (-15 -2475 ((-1149) |#1| (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-1149) (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-622 (-1149)))))
-((-2476 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-686 |#1| |#2|) (-10 -7 (-15 -2476 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1185) (-1185)) (T -686))
-((-2476 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-686 *3 *4)) (-4 *3 (-1185)) (-4 *4 (-1185)))))
-(-10 -7 (-15 -2476 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2477 (((-1 |#3| |#2|) (-1149)) 11)) (-2478 (((-1 |#3| |#2|) |#1| (-1149)) 21)))
-(((-687 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-1 |#3| |#2|) (-1149))) (-15 -2478 ((-1 |#3| |#2|) |#1| (-1149)))) (-598 (-527)) (-1185) (-1185)) (T -687))
-((-2478 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *3 *5 *6)) (-4 *3 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *4 *5 *6)) (-4 *4 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)))))
-(-10 -7 (-15 -2477 ((-1 |#3| |#2|) (-1149))) (-15 -2478 ((-1 |#3| |#2|) |#1| (-1149))))
-((-2481 (((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#4|)) (-622 |#3|) (-622 |#4|) (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#4|)))) (-622 (-751)) (-1231 (-622 (-1143 |#3|))) |#3|) 62)) (-2480 (((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#3|)) (-622 |#3|) (-622 |#4|) (-622 (-751)) |#3|) 75)) (-2479 (((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 |#3|) (-622 (-751)) (-622 (-1143 |#4|)) (-1231 (-622 (-1143 |#3|))) |#3|) 34)))
-(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2479 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 |#3|) (-622 (-751)) (-622 (-1143 |#4|)) (-1231 (-622 (-1143 |#3|))) |#3|)) (-15 -2480 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#3|)) (-622 |#3|) (-622 |#4|) (-622 (-751)) |#3|)) (-15 -2481 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#4|)) (-622 |#3|) (-622 |#4|) (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#4|)))) (-622 (-751)) (-1231 (-622 (-1143 |#3|))) |#3|))) (-773) (-827) (-302) (-926 |#3| |#1| |#2|)) (T -688))
-((-2481 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-622 (-1143 *13))) (-5 *3 (-1143 *13)) (-5 *4 (-622 *12)) (-5 *5 (-622 *10)) (-5 *6 (-622 *13)) (-5 *7 (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| *13))))) (-5 *8 (-622 (-751))) (-5 *9 (-1231 (-622 (-1143 *10)))) (-4 *12 (-827)) (-4 *10 (-302)) (-4 *13 (-926 *10 *11 *12)) (-4 *11 (-773)) (-5 *1 (-688 *11 *12 *10 *13)))) (-2480 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-622 *11)) (-5 *5 (-622 (-1143 *9))) (-5 *6 (-622 *9)) (-5 *7 (-622 *12)) (-5 *8 (-622 (-751))) (-4 *11 (-827)) (-4 *9 (-302)) (-4 *12 (-926 *9 *10 *11)) (-4 *10 (-773)) (-5 *2 (-622 (-1143 *12))) (-5 *1 (-688 *10 *11 *9 *12)) (-5 *3 (-1143 *12)))) (-2479 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-622 (-1143 *11))) (-5 *3 (-1143 *11)) (-5 *4 (-622 *10)) (-5 *5 (-622 *8)) (-5 *6 (-622 (-751))) (-5 *7 (-1231 (-622 (-1143 *8)))) (-4 *10 (-827)) (-4 *8 (-302)) (-4 *11 (-926 *8 *9 *10)) (-4 *9 (-773)) (-5 *1 (-688 *9 *10 *8 *11)))))
-(-10 -7 (-15 -2479 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 |#3|) (-622 (-751)) (-622 (-1143 |#4|)) (-1231 (-622 (-1143 |#3|))) |#3|)) (-15 -2480 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#3|)) (-622 |#3|) (-622 |#4|) (-622 (-751)) |#3|)) (-15 -2481 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#4|)) (-622 |#3|) (-622 |#4|) (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#4|)))) (-622 (-751)) (-1231 (-622 (-1143 |#3|))) |#3|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4319 (($ $) 39)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3226 (($ |#1| (-751)) 37)) (-3153 (((-751) $) 41)) (-3525 ((|#1| $) 40)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4307 (((-751) $) 42)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-4040 ((|#1| $ (-751)) 38)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 15)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1356 ((|#1| $) 21)) (-3658 (($ $ $) NIL (|has| |#1| (-771)))) (-3332 (($ $ $) NIL (|has| |#1| (-771)))) (-2883 (((-1131) $) 46)) (-2831 (((-1093) $) NIL)) (-1368 ((|#3| $) 22)) (-1683 (((-839) $) 42)) (-2089 (($) 10 T CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-771)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-771)))) (-2281 (((-112) $ $) 20)) (-2334 (((-112) $ $) NIL (|has| |#1| (-771)))) (-2307 (((-112) $ $) 24 (|has| |#1| (-771)))) (-2404 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2393 (($ $) 17) (($ $ $) NIL)) (-2382 (($ $ $) 27)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-642 |#1| |#2| |#3|) (-13 (-698 |#2|) (-10 -8 (IF (|has| |#1| (-771)) (-6 (-771)) |%noBranch|) (-15 -2404 ($ $ |#3|)) (-15 -2404 ($ |#1| |#3|)) (-15 -1356 (|#1| $)) (-15 -1368 (|#3| $)))) (-698 |#2|) (-170) (|SubsetCategory| (-707) |#2|)) (T -642))
+((-2404 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-642 *3 *4 *2)) (-4 *3 (-698 *4)) (-4 *2 (|SubsetCategory| (-707) *4)))) (-2404 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-642 *2 *4 *3)) (-4 *2 (-698 *4)) (-4 *3 (|SubsetCategory| (-707) *4)))) (-1356 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-698 *3)) (-5 *1 (-642 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-707) *3)))) (-1368 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) (-5 *1 (-642 *3 *4 *2)) (-4 *3 (-698 *4)))))
+(-13 (-698 |#2|) (-10 -8 (IF (|has| |#1| (-771)) (-6 (-771)) |%noBranch|) (-15 -2404 ($ $ |#3|)) (-15 -2404 ($ |#1| |#3|)) (-15 -1356 (|#1| $)) (-15 -1368 (|#3| $))))
+((-3781 (((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|)) 33)))
+(((-643 |#1|) (-10 -7 (-15 -3781 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|)))) (-885)) (T -643))
+((-3781 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 *4))) (-5 *3 (-1145 *4)) (-4 *4 (-885)) (-5 *1 (-643 *4)))))
+(-10 -7 (-15 -3781 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3202 (((-625 |#1|) $) 82)) (-4266 (($ $ (-751)) 90)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4211 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 48)) (-1893 (((-3 (-652 |#1|) "failed") $) NIL)) (-1895 (((-652 |#1|) $) NIL)) (-4169 (($ $) 89)) (-3723 (((-751) $) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ (-652 |#1|) |#2|) 68)) (-4191 (($ $) 86)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-4222 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 47)) (-3388 (((-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4131 (((-652 |#1|) $) NIL)) (-4144 ((|#2| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4073 (($ $ |#1| $) 30) (($ $ (-625 |#1|) (-625 $)) 32)) (-4276 (((-751) $) 88)) (-1695 (($ $ $) 20) (($ (-652 |#1|) (-652 |#1|)) 77) (($ (-652 |#1|) $) 75) (($ $ (-652 |#1|)) 76)) (-1683 (((-839) $) NIL) (($ |#1|) 74) (((-1247 |#1| |#2|) $) 58) (((-1256 |#1| |#2|) $) 41) (($ (-652 |#1|)) 25)) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-652 |#1|)) NIL)) (-3340 ((|#2| (-1256 |#1| |#2|) $) 43)) (-2089 (($) 23 T CONST)) (-2032 (((-625 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4254 (((-3 $ "failed") (-1247 |#1| |#2|)) 60)) (-3246 (($ (-652 |#1|)) 14)) (-2281 (((-112) $ $) 44)) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) 66) (($ $ $) NIL)) (-2382 (($ $ $) 29)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-652 |#1|)) NIL)))
+(((-644 |#1| |#2|) (-13 (-369 |#1| |#2|) (-377 |#2| (-652 |#1|)) (-10 -8 (-15 -4254 ((-3 $ "failed") (-1247 |#1| |#2|))) (-15 -1695 ($ (-652 |#1|) (-652 |#1|))) (-15 -1695 ($ (-652 |#1|) $)) (-15 -1695 ($ $ (-652 |#1|))))) (-827) (-170)) (T -644))
+((-4254 (*1 *1 *2) (|partial| -12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *1 (-644 *3 *4)))) (-1695 (*1 *1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) (-1695 (*1 *1 *2 *1) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) (-1695 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))))
+(-13 (-369 |#1| |#2|) (-377 |#2| (-652 |#1|)) (-10 -8 (-15 -4254 ((-3 $ "failed") (-1247 |#1| |#2|))) (-15 -1695 ($ (-652 |#1|) (-652 |#1|))) (-15 -1695 ($ (-652 |#1|) $)) (-15 -1695 ($ $ (-652 |#1|)))))
+((-3237 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-3218 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2873 (($ (-1 (-112) |#2|) $) 28)) (-1883 (($ $) 56)) (-3238 (($ $) 64)) (-1938 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-2163 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2483 (((-552) |#2| $ (-552)) 61) (((-552) |#2| $) NIL) (((-552) (-1 (-112) |#2|) $) 47)) (-2183 (($ (-751) |#2|) 54)) (-3260 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3280 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1996 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2801 (($ |#2|) 15)) (-3966 (($ $ $ (-552)) 36) (($ |#2| $ (-552)) 34)) (-2380 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-2884 (($ $ (-1199 (-552))) 44) (($ $ (-552)) 38)) (-3228 (($ $ $ (-552)) 60)) (-1871 (($ $) 58)) (-2307 (((-112) $ $) 66)))
+(((-645 |#1| |#2|) (-10 -8 (-15 -2801 (|#1| |#2|)) (-15 -2884 (|#1| |#1| (-552))) (-15 -2884 (|#1| |#1| (-1199 (-552)))) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3966 (|#1| |#2| |#1| (-552))) (-15 -3966 (|#1| |#1| |#1| (-552))) (-15 -3260 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2873 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -3280 (|#1| |#1| |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -3228 (|#1| |#1| |#1| (-552))) (-15 -1883 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2183 (|#1| (-751) |#2|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1871 (|#1| |#1|))) (-646 |#2|) (-1186)) (T -645))
+NIL
+(-10 -8 (-15 -2801 (|#1| |#2|)) (-15 -2884 (|#1| |#1| (-552))) (-15 -2884 (|#1| |#1| (-1199 (-552)))) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3966 (|#1| |#2| |#1| (-552))) (-15 -3966 (|#1| |#1| |#1| (-552))) (-15 -3260 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2873 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -3280 (|#1| |#1| |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -3228 (|#1| |#1| |#1| (-552))) (-15 -1883 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2183 (|#1| (-751) |#2|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1871 (|#1| |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3897 ((|#1| $) 65)) (-2101 (($ $) 67)) (-2509 (((-1237) $ (-552) (-552)) 97 (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 52 (|has| $ (-6 -4354)))) (-3237 (((-112) $) 142 (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-3218 (($ $) 146 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4354)))) (-1800 (($ $) 141 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-2301 (($ $ $) 56 (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ "rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) 129)) (-3488 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4353)))) (-2673 ((|#1| $) 66)) (-3101 (($) 7 T CONST)) (-1883 (($ $) 144 (|has| $ (-6 -4354)))) (-2306 (($ $) 134)) (-2936 (($ $) 73) (($ $ (-751)) 71)) (-3238 (($ $) 131 (|has| |#1| (-1073)))) (-2959 (($ $) 99 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 130 (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) 125)) (-1416 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4353))) (($ |#1| $) 100 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3692 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 87)) (-4011 (((-112) $) 83)) (-2483 (((-552) |#1| $ (-552)) 139 (|has| |#1| (-1073))) (((-552) |#1| $) 138 (|has| |#1| (-1073))) (((-552) (-1 (-112) |#1|) $) 137)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) 108)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 95 (|has| (-552) (-827)))) (-3658 (($ $ $) 147 (|has| |#1| (-827)))) (-3260 (($ $ $) 132 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3280 (($ $ $) 140 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 94 (|has| (-552) (-827)))) (-3332 (($ $ $) 148 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2801 (($ |#1|) 122)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-1437 ((|#1| $) 70) (($ $ (-751)) 68)) (-3966 (($ $ $ (-552)) 127) (($ |#1| $ (-552)) 126)) (-3994 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-2554 (((-625 (-552)) $) 92)) (-2564 (((-112) (-552) $) 91)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 76) (($ $ (-751)) 74)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2518 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-4022 (((-112) $) 84)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 90)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1199 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1389 (((-552) $ $) 44)) (-2884 (($ $ (-1199 (-552))) 124) (($ $ (-552)) 123)) (-4001 (($ $ (-1199 (-552))) 114) (($ $ (-552)) 113)) (-2316 (((-112) $) 46)) (-2356 (($ $) 62)) (-2330 (($ $) 59 (|has| $ (-6 -4354)))) (-2368 (((-751) $) 63)) (-2379 (($ $) 64)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 143 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 98 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 107)) (-2342 (($ $ $) 61) (($ $ |#1|) 60)) (-3402 (($ $ $) 78) (($ |#1| $) 77) (($ (-625 $)) 110) (($ $ |#1|) 109)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 150 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 151 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) 149 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 152 (|has| |#1| (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-646 |#1|) (-138) (-1186)) (T -646))
+((-2801 (*1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1186)))))
+(-13 (-1122 |t#1|) (-368 |t#1|) (-277 |t#1|) (-10 -8 (-15 -2801 ($ |t#1|))))
+(((-34) . T) ((-101) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-277 |#1|) . T) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-986 |#1|) . T) ((-1073) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-1122 |#1|) . T) ((-1186) . T) ((-1220 |#1|) . T))
+((-1728 (((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-625 (-625 |#1|)) (-625 (-1232 |#1|))) 22) (((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-669 |#1|) (-625 (-1232 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-625 (-625 |#1|)) (-1232 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|)) 14)) (-3442 (((-751) (-669 |#1|) (-1232 |#1|)) 30)) (-2535 (((-3 (-1232 |#1|) "failed") (-669 |#1|) (-1232 |#1|)) 24)) (-3791 (((-112) (-669 |#1|) (-1232 |#1|)) 27)))
+(((-647 |#1|) (-10 -7 (-15 -1728 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|))) (-15 -1728 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-625 (-625 |#1|)) (-1232 |#1|))) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-669 |#1|) (-625 (-1232 |#1|)))) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-625 (-625 |#1|)) (-625 (-1232 |#1|)))) (-15 -2535 ((-3 (-1232 |#1|) "failed") (-669 |#1|) (-1232 |#1|))) (-15 -3791 ((-112) (-669 |#1|) (-1232 |#1|))) (-15 -3442 ((-751) (-669 |#1|) (-1232 |#1|)))) (-358)) (T -647))
+((-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-358)) (-5 *2 (-751)) (-5 *1 (-647 *5)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-358)) (-5 *2 (-112)) (-5 *1 (-647 *5)))) (-2535 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1232 *4)) (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *1 (-647 *4)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-625 *5))) (-4 *5 (-358)) (-5 *2 (-625 (-2 (|:| |particular| (-3 (-1232 *5) "failed")) (|:| -1270 (-625 (-1232 *5)))))) (-5 *1 (-647 *5)) (-5 *4 (-625 (-1232 *5))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-625 (-2 (|:| |particular| (-3 (-1232 *5) "failed")) (|:| -1270 (-625 (-1232 *5)))))) (-5 *1 (-647 *5)) (-5 *4 (-625 (-1232 *5))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-625 *5))) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1232 *5) "failed")) (|:| -1270 (-625 (-1232 *5))))) (-5 *1 (-647 *5)) (-5 *4 (-1232 *5)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1232 *5) "failed")) (|:| -1270 (-625 (-1232 *5))))) (-5 *1 (-647 *5)) (-5 *4 (-1232 *5)))))
+(-10 -7 (-15 -1728 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|))) (-15 -1728 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-625 (-625 |#1|)) (-1232 |#1|))) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-669 |#1|) (-625 (-1232 |#1|)))) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-625 (-625 |#1|)) (-625 (-1232 |#1|)))) (-15 -2535 ((-3 (-1232 |#1|) "failed") (-669 |#1|) (-1232 |#1|))) (-15 -3791 ((-112) (-669 |#1|) (-1232 |#1|))) (-15 -3442 ((-751) (-669 |#1|) (-1232 |#1|))))
+((-1728 (((-625 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|)))) |#4| (-625 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|) 45)) (-3442 (((-751) |#4| |#3|) 17)) (-2535 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3791 (((-112) |#4| |#3|) 13)))
+(((-648 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1728 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|)) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|)))) |#4| (-625 |#3|))) (-15 -2535 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3791 ((-112) |#4| |#3|)) (-15 -3442 ((-751) |#4| |#3|))) (-358) (-13 (-368 |#1|) (-10 -7 (-6 -4354))) (-13 (-368 |#1|) (-10 -7 (-6 -4354))) (-667 |#1| |#2| |#3|)) (T -648))
+((-3442 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-751)) (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))) (-3791 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-112)) (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))) (-2535 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-13 (-368 *4) (-10 -7 (-6 -4354)))) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))) (-5 *1 (-648 *4 *5 *2 *3)) (-4 *3 (-667 *4 *5 *2)))) (-1728 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-4 *7 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-625 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1270 (-625 *7))))) (-5 *1 (-648 *5 *6 *7 *3)) (-5 *4 (-625 *7)) (-4 *3 (-667 *5 *6 *7)))) (-1728 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))))
+(-10 -7 (-15 -1728 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|)) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|)))) |#4| (-625 |#3|))) (-15 -2535 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3791 ((-112) |#4| |#3|)) (-15 -3442 ((-751) |#4| |#3|)))
+((-3801 (((-2 (|:| |particular| (-3 (-1232 (-402 |#4|)) "failed")) (|:| -1270 (-625 (-1232 (-402 |#4|))))) (-625 |#4|) (-625 |#3|)) 45)))
+(((-649 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3801 ((-2 (|:| |particular| (-3 (-1232 (-402 |#4|)) "failed")) (|:| -1270 (-625 (-1232 (-402 |#4|))))) (-625 |#4|) (-625 |#3|)))) (-544) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -649))
+((-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *7)) (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-5 *2 (-2 (|:| |particular| (-3 (-1232 (-402 *8)) "failed")) (|:| -1270 (-625 (-1232 (-402 *8)))))) (-5 *1 (-649 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3801 ((-2 (|:| |particular| (-3 (-1232 (-402 |#4|)) "failed")) (|:| -1270 (-625 (-1232 (-402 |#4|))))) (-625 |#4|) (-625 |#3|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3618 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-1650 ((|#2| $) NIL)) (-4089 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2770 (((-1232 (-669 |#2|))) NIL) (((-1232 (-669 |#2|)) (-1232 $)) NIL)) (-4114 (((-112) $) NIL)) (-3208 (((-1232 $)) 37)) (-3495 (((-112) $ (-751)) NIL)) (-2467 (($ |#2|) NIL)) (-3101 (($) NIL T CONST)) (-3991 (($ $) NIL (|has| |#2| (-302)))) (-4015 (((-236 |#1| |#2|) $ (-552)) NIL)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (|has| |#2| (-544)))) (-4152 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-2629 (((-669 |#2|)) NIL) (((-669 |#2|) (-1232 $)) NIL)) (-3192 ((|#2| $) NIL)) (-2612 (((-669 |#2|) $) NIL) (((-669 |#2|) $ (-1232 $)) NIL)) (-3598 (((-3 $ "failed") $) NIL (|has| |#2| (-544)))) (-1392 (((-1145 (-928 |#2|))) NIL (|has| |#2| (-358)))) (-3629 (($ $ (-897)) NIL)) (-3174 ((|#2| $) NIL)) (-4175 (((-1145 |#2|) $) NIL (|has| |#2| (-544)))) (-2648 ((|#2|) NIL) ((|#2| (-1232 $)) NIL)) (-3159 (((-1145 |#2|) $) NIL)) (-4303 (((-112)) NIL)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) ((|#2| $) NIL)) (-2670 (($ (-1232 |#2|)) NIL) (($ (-1232 |#2|) (-1232 $)) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3442 (((-751) $) NIL (|has| |#2| (-544))) (((-897)) 38)) (-3631 ((|#2| $ (-552) (-552)) NIL)) (-4272 (((-112)) NIL)) (-2712 (($ $ (-897)) NIL)) (-3799 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL)) (-3979 (((-751) $) NIL (|has| |#2| (-544)))) (-3967 (((-625 (-236 |#1| |#2|)) $) NIL (|has| |#2| (-544)))) (-1773 (((-751) $) NIL)) (-4228 (((-112)) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2416 ((|#2| $) NIL (|has| |#2| (-6 (-4355 "*"))))) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3907 (($ (-625 (-625 |#2|))) NIL)) (-3683 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3803 (((-625 (-625 |#2|)) $) NIL)) (-4207 (((-112)) NIL)) (-4250 (((-112)) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (|has| |#2| (-544)))) (-4164 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-2640 (((-669 |#2|)) NIL) (((-669 |#2|) (-1232 $)) NIL)) (-3199 ((|#2| $) NIL)) (-2619 (((-669 |#2|) $) NIL) (((-669 |#2|) $ (-1232 $)) NIL)) (-3609 (((-3 $ "failed") $) NIL (|has| |#2| (-544)))) (-1433 (((-1145 (-928 |#2|))) NIL (|has| |#2| (-358)))) (-3619 (($ $ (-897)) NIL)) (-3182 ((|#2| $) NIL)) (-4187 (((-1145 |#2|) $) NIL (|has| |#2| (-544)))) (-2658 ((|#2|) NIL) ((|#2| (-1232 $)) NIL)) (-3166 (((-1145 |#2|) $) NIL)) (-4312 (((-112)) NIL)) (-2883 (((-1131) $) NIL)) (-4218 (((-112)) NIL)) (-4239 (((-112)) NIL)) (-4261 (((-112)) NIL)) (-3150 (((-3 $ "failed") $) NIL (|has| |#2| (-358)))) (-2831 (((-1093) $) NIL)) (-4293 (((-112)) NIL)) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-1888 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ (-552) (-552) |#2|) NIL) ((|#2| $ (-552) (-552)) 22) ((|#2| $ (-552)) NIL)) (-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-2435 ((|#2| $) NIL)) (-2457 (($ (-625 |#2|)) NIL)) (-4102 (((-112) $) NIL)) (-2446 (((-236 |#1| |#2|) $) NIL)) (-2426 ((|#2| $) NIL (|has| |#2| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1871 (($ $) NIL)) (-2780 (((-669 |#2|) (-1232 $)) NIL) (((-1232 |#2|) $) NIL) (((-669 |#2|) (-1232 $) (-1232 $)) NIL) (((-1232 |#2|) $ (-1232 $)) 25)) (-2042 (($ (-1232 |#2|)) NIL) (((-1232 |#2|) $) NIL)) (-2533 (((-625 (-928 |#2|))) NIL) (((-625 (-928 |#2|)) (-1232 $)) NIL)) (-3828 (($ $ $) NIL)) (-3148 (((-112)) NIL)) (-4004 (((-236 |#1| |#2|) $ (-552)) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#2| (-1014 (-402 (-552))))) (($ |#2|) NIL) (((-669 |#2|) $) NIL)) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) 36)) (-4197 (((-625 (-1232 |#2|))) NIL (|has| |#2| (-544)))) (-3842 (($ $ $ $) NIL)) (-4333 (((-112)) NIL)) (-2872 (($ (-669 |#2|) $) NIL)) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-3818 (($ $ $) NIL)) (-3137 (((-112)) NIL)) (-4322 (((-112)) NIL)) (-4283 (((-112)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#2| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-236 |#1| |#2|) $ (-236 |#1| |#2|)) NIL) (((-236 |#1| |#2|) (-236 |#1| |#2|) $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-650 |#1| |#2|) (-13 (-1096 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-597 (-669 |#2|)) (-412 |#2|)) (-897) (-170)) (T -650))
+NIL
+(-13 (-1096 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-597 (-669 |#2|)) (-412 |#2|))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2923 (((-625 (-1108)) $) 10)) (-1683 (((-839) $) 18) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-651) (-13 (-1056) (-10 -8 (-15 -2923 ((-625 (-1108)) $))))) (T -651))
+((-2923 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-651)))))
+(-13 (-1056) (-10 -8 (-15 -2923 ((-625 (-1108)) $))))
+((-1671 (((-112) $ $) NIL)) (-3202 (((-625 |#1|) $) NIL)) (-2303 (($ $) 52)) (-2023 (((-112) $) NIL)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-3833 (((-3 $ "failed") (-799 |#1|)) 23)) (-3860 (((-112) (-799 |#1|)) 15)) (-3846 (($ (-799 |#1|)) 24)) (-3511 (((-112) $ $) 30)) (-3456 (((-897) $) 37)) (-2290 (($ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3824 (((-625 $) (-799 |#1|)) 17)) (-1683 (((-839) $) 43) (($ |#1|) 34) (((-799 |#1|) $) 39) (((-657 |#1|) $) 44)) (-3821 (((-58 (-625 $)) (-625 |#1|) (-897)) 57)) (-3812 (((-625 $) (-625 |#1|) (-897)) 60)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 53)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 38)))
+(((-652 |#1|) (-13 (-827) (-1014 |#1|) (-10 -8 (-15 -2023 ((-112) $)) (-15 -2290 ($ $)) (-15 -2303 ($ $)) (-15 -3456 ((-897) $)) (-15 -3511 ((-112) $ $)) (-15 -1683 ((-799 |#1|) $)) (-15 -1683 ((-657 |#1|) $)) (-15 -3824 ((-625 $) (-799 |#1|))) (-15 -3860 ((-112) (-799 |#1|))) (-15 -3846 ($ (-799 |#1|))) (-15 -3833 ((-3 $ "failed") (-799 |#1|))) (-15 -3202 ((-625 |#1|) $)) (-15 -3821 ((-58 (-625 $)) (-625 |#1|) (-897))) (-15 -3812 ((-625 $) (-625 |#1|) (-897))))) (-827)) (T -652))
+((-2023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) (-2303 (*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-3511 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-625 (-652 *4))) (-5 *1 (-652 *4)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-112)) (-5 *1 (-652 *4)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))) (-3833 (*1 *1 *2) (|partial| -12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-897)) (-4 *5 (-827)) (-5 *2 (-58 (-625 (-652 *5)))) (-5 *1 (-652 *5)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-897)) (-4 *5 (-827)) (-5 *2 (-625 (-652 *5))) (-5 *1 (-652 *5)))))
+(-13 (-827) (-1014 |#1|) (-10 -8 (-15 -2023 ((-112) $)) (-15 -2290 ($ $)) (-15 -2303 ($ $)) (-15 -3456 ((-897) $)) (-15 -3511 ((-112) $ $)) (-15 -1683 ((-799 |#1|) $)) (-15 -1683 ((-657 |#1|) $)) (-15 -3824 ((-625 $) (-799 |#1|))) (-15 -3860 ((-112) (-799 |#1|))) (-15 -3846 ($ (-799 |#1|))) (-15 -3833 ((-3 $ "failed") (-799 |#1|))) (-15 -3202 ((-625 |#1|) $)) (-15 -3821 ((-58 (-625 $)) (-625 |#1|) (-897))) (-15 -3812 ((-625 $) (-625 |#1|) (-897)))))
+((-3800 ((|#2| $) 76)) (-2101 (($ $) 96)) (-3495 (((-112) $ (-751)) 26)) (-2936 (($ $) 85) (($ $ (-751)) 88)) (-4011 (((-112) $) 97)) (-1399 (((-625 $) $) 72)) (-1371 (((-112) $ $) 71)) (-2909 (((-112) $ (-751)) 24)) (-2527 (((-552) $) 46)) (-2537 (((-552) $) 45)) (-2878 (((-112) $ (-751)) 22)) (-3367 (((-112) $) 74)) (-1437 ((|#2| $) 89) (($ $ (-751)) 92)) (-3994 (($ $ $ (-552)) 62) (($ |#2| $ (-552)) 61)) (-2554 (((-625 (-552)) $) 44)) (-2564 (((-112) (-552) $) 42)) (-2924 ((|#2| $) NIL) (($ $ (-751)) 84)) (-2147 (($ $ (-552)) 100)) (-4022 (((-112) $) 99)) (-1888 (((-112) (-1 (-112) |#2|) $) 32)) (-1358 (((-625 |#2|) $) 33)) (-2154 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1199 (-552))) 58) ((|#2| $ (-552)) 40) ((|#2| $ (-552) |#2|) 41)) (-1389 (((-552) $ $) 70)) (-4001 (($ $ (-1199 (-552))) 57) (($ $ (-552)) 51)) (-2316 (((-112) $) 66)) (-2356 (($ $) 81)) (-2368 (((-751) $) 80)) (-2379 (($ $) 79)) (-1695 (($ (-625 |#2|)) 37)) (-3580 (($ $) 101)) (-3320 (((-625 $) $) 69)) (-1380 (((-112) $ $) 68)) (-1900 (((-112) (-1 (-112) |#2|) $) 31)) (-2281 (((-112) $ $) 18)) (-1471 (((-751) $) 29)))
+(((-653 |#1| |#2|) (-10 -8 (-15 -3580 (|#1| |#1|)) (-15 -2147 (|#1| |#1| (-552))) (-15 -4011 ((-112) |#1|)) (-15 -4022 ((-112) |#1|)) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -1358 ((-625 |#2|) |#1|)) (-15 -2564 ((-112) (-552) |#1|)) (-15 -2554 ((-625 (-552)) |#1|)) (-15 -2537 ((-552) |#1|)) (-15 -2527 ((-552) |#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -2356 (|#1| |#1|)) (-15 -2368 ((-751) |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -1437 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "last")) (-15 -1437 (|#2| |#1|)) (-15 -2936 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| "rest")) (-15 -2936 (|#1| |#1|)) (-15 -2924 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -1371 ((-112) |#1| |#1|)) (-15 -1380 ((-112) |#1| |#1|)) (-15 -1389 ((-552) |#1| |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3800 (|#2| |#1|)) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751)))) (-654 |#2|) (-1186)) (T -653))
+NIL
+(-10 -8 (-15 -3580 (|#1| |#1|)) (-15 -2147 (|#1| |#1| (-552))) (-15 -4011 ((-112) |#1|)) (-15 -4022 ((-112) |#1|)) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -1358 ((-625 |#2|) |#1|)) (-15 -2564 ((-112) (-552) |#1|)) (-15 -2554 ((-625 (-552)) |#1|)) (-15 -2537 ((-552) |#1|)) (-15 -2527 ((-552) |#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -2356 (|#1| |#1|)) (-15 -2368 ((-751) |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -1437 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "last")) (-15 -1437 (|#2| |#1|)) (-15 -2936 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| "rest")) (-15 -2936 (|#1| |#1|)) (-15 -2924 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -1371 ((-112) |#1| |#1|)) (-15 -1380 ((-112) |#1| |#1|)) (-15 -1389 ((-552) |#1| |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3800 (|#2| |#1|)) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751))))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3897 ((|#1| $) 65)) (-2101 (($ $) 67)) (-2509 (((-1237) $ (-552) (-552)) 97 (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 52 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-2301 (($ $ $) 56 (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ "rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 102)) (-2673 ((|#1| $) 66)) (-3101 (($) 7 T CONST)) (-3887 (($ $) 124)) (-2936 (($ $) 73) (($ $ (-751)) 71)) (-2959 (($ $) 99 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 100 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 103)) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3692 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 87)) (-4011 (((-112) $) 83)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3873 (((-751) $) 123)) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) 108)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 95 (|has| (-552) (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 94 (|has| (-552) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-3913 (($ $) 126)) (-3927 (((-112) $) 127)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-1437 ((|#1| $) 70) (($ $ (-751)) 68)) (-3994 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-2554 (((-625 (-552)) $) 92)) (-2564 (((-112) (-552) $) 91)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-3900 ((|#1| $) 125)) (-2924 ((|#1| $) 76) (($ $ (-751)) 74)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2518 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-2147 (($ $ (-552)) 122)) (-4022 (((-112) $) 84)) (-3940 (((-112) $) 128)) (-3952 (((-112) $) 129)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 90)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1199 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1389 (((-552) $ $) 44)) (-4001 (($ $ (-1199 (-552))) 114) (($ $ (-552)) 113)) (-2316 (((-112) $) 46)) (-2356 (($ $) 62)) (-2330 (($ $) 59 (|has| $ (-6 -4354)))) (-2368 (((-751) $) 63)) (-2379 (($ $) 64)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 98 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 107)) (-2342 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-3402 (($ $ $) 78) (($ |#1| $) 77) (($ (-625 $)) 110) (($ $ |#1|) 109)) (-3580 (($ $) 121)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-654 |#1|) (-138) (-1186)) (T -654))
+((-1416 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1186)))) (-3488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1186)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-3913 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))) (-3887 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))) (-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-654 *3)) (-4 *3 (-1186)))) (-3580 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))))
+(-13 (-1122 |t#1|) (-10 -8 (-15 -1416 ($ (-1 (-112) |t#1|) $)) (-15 -3488 ($ (-1 (-112) |t#1|) $)) (-15 -3952 ((-112) $)) (-15 -3940 ((-112) $)) (-15 -3927 ((-112) $)) (-15 -3913 ($ $)) (-15 -3900 (|t#1| $)) (-15 -3887 ($ $)) (-15 -3873 ((-751) $)) (-15 -2147 ($ $ (-552))) (-15 -3580 ($ $))))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1122 |#1|) . T) ((-1186) . T) ((-1220 |#1|) . T))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-4013 (($ (-751) (-751) (-751)) 33 (|has| |#1| (-1025)))) (-3495 (((-112) $ (-751)) NIL)) (-3989 ((|#1| $ (-751) (-751) (-751) |#1|) 27)) (-3101 (($) NIL T CONST)) (-2157 (($ $ $) 37 (|has| |#1| (-1025)))) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3965 (((-1232 (-751)) $) 9)) (-3977 (($ (-1149) $ $) 22)) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-4002 (($ (-751)) 35 (|has| |#1| (-1025)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-751) (-751) (-751)) 25)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1695 (($ (-625 (-625 (-625 |#1|)))) 44)) (-1683 (($ (-934 (-934 (-934 |#1|)))) 15) (((-934 (-934 (-934 |#1|))) $) 12) (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-655 |#1|) (-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1025)) (PROGN (-15 -4013 ($ (-751) (-751) (-751))) (-15 -4002 ($ (-751))) (-15 -2157 ($ $ $))) |%noBranch|) (-15 -1695 ($ (-625 (-625 (-625 |#1|))))) (-15 -2154 (|#1| $ (-751) (-751) (-751))) (-15 -3989 (|#1| $ (-751) (-751) (-751) |#1|)) (-15 -1683 ($ (-934 (-934 (-934 |#1|))))) (-15 -1683 ((-934 (-934 (-934 |#1|))) $)) (-15 -3977 ($ (-1149) $ $)) (-15 -3965 ((-1232 (-751)) $)))) (-1073)) (T -655))
+((-4013 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1073)))) (-4002 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1073)))) (-2157 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1025)) (-4 *2 (-1073)))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-625 *3)))) (-4 *3 (-1073)) (-5 *1 (-655 *3)))) (-2154 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1073)))) (-3989 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1073)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-4 *3 (-1073)) (-5 *1 (-655 *3)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-5 *1 (-655 *3)) (-4 *3 (-1073)))) (-3977 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-655 *3)) (-4 *3 (-1073)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-1232 (-751))) (-5 *1 (-655 *3)) (-4 *3 (-1073)))))
+(-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1025)) (PROGN (-15 -4013 ($ (-751) (-751) (-751))) (-15 -4002 ($ (-751))) (-15 -2157 ($ $ $))) |%noBranch|) (-15 -1695 ($ (-625 (-625 (-625 |#1|))))) (-15 -2154 (|#1| $ (-751) (-751) (-751))) (-15 -3989 (|#1| $ (-751) (-751) (-751) |#1|)) (-15 -1683 ($ (-934 (-934 (-934 |#1|))))) (-15 -1683 ((-934 (-934 (-934 |#1|))) $)) (-15 -3977 ($ (-1149) $ $)) (-15 -3965 ((-1232 (-751)) $))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3545 (((-477) $) 10)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 12)) (-2281 (((-112) $ $) NIL)))
+(((-656) (-13 (-1056) (-10 -8 (-15 -3545 ((-477) $)) (-15 -1300 ((-1108) $))))) (T -656))
+((-3545 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-656)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-656)))))
+(-13 (-1056) (-10 -8 (-15 -3545 ((-477) $)) (-15 -1300 ((-1108) $))))
+((-1671 (((-112) $ $) NIL)) (-3202 (((-625 |#1|) $) 14)) (-2303 (($ $) 18)) (-2023 (((-112) $) 19)) (-1893 (((-3 |#1| "failed") $) 22)) (-1895 ((|#1| $) 20)) (-2936 (($ $) 36)) (-4191 (($ $) 24)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-3511 (((-112) $ $) 42)) (-3456 (((-897) $) 38)) (-2290 (($ $) 17)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 ((|#1| $) 35)) (-1683 (((-839) $) 31) (($ |#1|) 23) (((-799 |#1|) $) 27)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 12)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 40)) (* (($ $ $) 34)))
+(((-657 |#1|) (-13 (-827) (-1014 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1683 ((-799 |#1|) $)) (-15 -2924 (|#1| $)) (-15 -2290 ($ $)) (-15 -3456 ((-897) $)) (-15 -3511 ((-112) $ $)) (-15 -4191 ($ $)) (-15 -2936 ($ $)) (-15 -2023 ((-112) $)) (-15 -2303 ($ $)) (-15 -3202 ((-625 |#1|) $)))) (-827)) (T -657))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-2924 (*1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-3511 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-4191 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-2936 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-2303 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827)))))
+(-13 (-827) (-1014 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1683 ((-799 |#1|) $)) (-15 -2924 (|#1| $)) (-15 -2290 ($ $)) (-15 -3456 ((-897) $)) (-15 -3511 ((-112) $ $)) (-15 -4191 ($ $)) (-15 -2936 ($ $)) (-15 -2023 ((-112) $)) (-15 -2303 ($ $)) (-15 -3202 ((-625 |#1|) $))))
+((-4061 ((|#1| (-1 |#1| (-751) |#1|) (-751) |#1|) 11)) (-2783 ((|#1| (-1 |#1| |#1|) (-751) |#1|) 9)))
+(((-658 |#1|) (-10 -7 (-15 -2783 (|#1| (-1 |#1| |#1|) (-751) |#1|)) (-15 -4061 (|#1| (-1 |#1| (-751) |#1|) (-751) |#1|))) (-1073)) (T -658))
+((-4061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-751) *2)) (-5 *4 (-751)) (-4 *2 (-1073)) (-5 *1 (-658 *2)))) (-2783 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-751)) (-4 *2 (-1073)) (-5 *1 (-658 *2)))))
+(-10 -7 (-15 -2783 (|#1| (-1 |#1| |#1|) (-751) |#1|)) (-15 -4061 (|#1| (-1 |#1| (-751) |#1|) (-751) |#1|)))
+((-2305 ((|#2| |#1| |#2|) 9)) (-2292 ((|#1| |#1| |#2|) 8)))
+(((-659 |#1| |#2|) (-10 -7 (-15 -2292 (|#1| |#1| |#2|)) (-15 -2305 (|#2| |#1| |#2|))) (-1073) (-1073)) (T -659))
+((-2305 (*1 *2 *3 *2) (-12 (-5 *1 (-659 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))) (-2292 (*1 *2 *2 *3) (-12 (-5 *1 (-659 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))))
+(-10 -7 (-15 -2292 (|#1| |#1| |#2|)) (-15 -2305 (|#2| |#1| |#2|)))
+((-4240 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -4240 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1073) (-1073) (-1073)) (T -660))
+((-4240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)) (-5 *1 (-660 *5 *6 *2)))))
+(-10 -7 (-15 -4240 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-1711 (((-1185) $) 20)) (-1655 (((-625 (-1185)) $) 18)) (-4025 (($ (-625 (-1185)) (-1185)) 13)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 29) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1185) $) 21) (($ (-1091)) 10)) (-2281 (((-112) $ $) NIL)))
+(((-661) (-13 (-1056) (-597 (-1185)) (-10 -8 (-15 -1683 ($ (-1091))) (-15 -4025 ($ (-625 (-1185)) (-1185))) (-15 -1655 ((-625 (-1185)) $)) (-15 -1711 ((-1185) $))))) (T -661))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-661)))) (-4025 (*1 *1 *2 *3) (-12 (-5 *2 (-625 (-1185))) (-5 *3 (-1185)) (-5 *1 (-661)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-661)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-661)))))
+(-13 (-1056) (-597 (-1185)) (-10 -8 (-15 -1683 ($ (-1091))) (-15 -4025 ($ (-625 (-1185)) (-1185))) (-15 -1655 ((-625 (-1185)) $)) (-15 -1711 ((-1185) $))))
+((-4061 (((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|)) 23)) (-4036 (((-1 |#1|) |#1|) 8)) (-2150 ((|#1| |#1|) 16)) (-4048 (((-625 |#1|) (-1 (-625 |#1|) (-625 |#1|)) (-552)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1683 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-751)) 20)))
+(((-662 |#1|) (-10 -7 (-15 -4036 ((-1 |#1|) |#1|)) (-15 -1683 ((-1 |#1|) |#1|)) (-15 -4048 (|#1| (-1 |#1| |#1|))) (-15 -4048 ((-625 |#1|) (-1 (-625 |#1|) (-625 |#1|)) (-552))) (-15 -2150 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-751))) (-15 -4061 ((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|)))) (-1073)) (T -662))
+((-4061 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-751) *3)) (-4 *3 (-1073)) (-5 *1 (-662 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *4 (-1073)) (-5 *1 (-662 *4)))) (-2150 (*1 *2 *2) (-12 (-5 *1 (-662 *2)) (-4 *2 (-1073)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-625 *5) (-625 *5))) (-5 *4 (-552)) (-5 *2 (-625 *5)) (-5 *1 (-662 *5)) (-4 *5 (-1073)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-662 *2)) (-4 *2 (-1073)))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1073)))) (-4036 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1073)))))
+(-10 -7 (-15 -4036 ((-1 |#1|) |#1|)) (-15 -1683 ((-1 |#1|) |#1|)) (-15 -4048 (|#1| (-1 |#1| |#1|))) (-15 -4048 ((-625 |#1|) (-1 (-625 |#1|) (-625 |#1|)) (-552))) (-15 -2150 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-751))) (-15 -4061 ((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|))))
+((-4100 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4087 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1426 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-4075 (((-1 |#2| |#1|) |#2|) 11)))
+(((-663 |#1| |#2|) (-10 -7 (-15 -4075 ((-1 |#2| |#1|) |#2|)) (-15 -4087 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1426 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4100 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1073) (-1073)) (T -663))
+((-4100 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1073)) (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5)) (-4 *4 (-1073)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-5 *2 (-1 *5)) (-5 *1 (-663 *4 *5)))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-663 *4 *3)) (-4 *4 (-1073)) (-4 *3 (-1073)))))
+(-10 -7 (-15 -4075 ((-1 |#2| |#1|) |#2|)) (-15 -4087 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1426 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4100 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-4165 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-4112 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4126 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4139 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4153 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -4112 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4126 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4139 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4153 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4165 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1073) (-1073) (-1073)) (T -664))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-1 *7 *5)) (-5 *1 (-664 *5 *6 *7)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-664 *4 *5 *6)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *4 (-1073)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1073)) (-4 *6 (-1073)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *5 (-1073)))) (-4126 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1073)) (-4 *4 (-1073)) (-4 *6 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *5 *4 *6)))))
+(-10 -7 (-15 -4112 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4126 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4139 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4153 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4165 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-2163 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1996 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-665 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1996 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1996 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2163 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1025) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|) (-1025) (-368 |#5|) (-368 |#5|) (-667 |#5| |#6| |#7|)) (T -665))
+((-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1025)) (-4 *2 (-1025)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *8 (-368 *2)) (-4 *9 (-368 *2)) (-5 *1 (-665 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-667 *5 *6 *7)) (-4 *10 (-667 *2 *8 *9)))) (-1996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-667 *8 *9 *10)) (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-667 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-667 *8 *9 *10)) (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-667 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8)))))
+(-10 -7 (-15 -1996 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1996 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2163 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-2983 (($ (-751) (-751)) 33)) (-4219 (($ $ $) 56)) (-2003 (($ |#3|) 52) (($ $) 53)) (-4089 (((-112) $) 28)) (-4208 (($ $ (-552) (-552)) 58)) (-4198 (($ $ (-552) (-552)) 59)) (-4188 (($ $ (-552) (-552) (-552) (-552)) 63)) (-4241 (($ $) 54)) (-4114 (((-112) $) 14)) (-4176 (($ $ (-552) (-552) $) 64)) (-1851 ((|#2| $ (-552) (-552) |#2|) NIL) (($ $ (-625 (-552)) (-625 (-552)) $) 62)) (-2467 (($ (-751) |#2|) 39)) (-3907 (($ (-625 (-625 |#2|))) 37)) (-3803 (((-625 (-625 |#2|)) $) 57)) (-4229 (($ $ $) 55)) (-2802 (((-3 $ "failed") $ |#2|) 91)) (-2154 ((|#2| $ (-552) (-552)) NIL) ((|#2| $ (-552) (-552) |#2|) NIL) (($ $ (-625 (-552)) (-625 (-552))) 61)) (-2457 (($ (-625 |#2|)) 40) (($ (-625 $)) 42)) (-4102 (((-112) $) 24)) (-1683 (($ |#4|) 47) (((-839) $) NIL)) (-4077 (((-112) $) 30)) (-2404 (($ $ |#2|) 93)) (-2393 (($ $ $) 68) (($ $) 71)) (-2382 (($ $ $) 66)) (** (($ $ (-751)) 80) (($ $ (-552)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-552) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-666 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2404 (|#1| |#1| |#2|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -4176 (|#1| |#1| (-552) (-552) |#1|)) (-15 -4188 (|#1| |#1| (-552) (-552) (-552) (-552))) (-15 -4198 (|#1| |#1| (-552) (-552))) (-15 -4208 (|#1| |#1| (-552) (-552))) (-15 -1851 (|#1| |#1| (-625 (-552)) (-625 (-552)) |#1|)) (-15 -2154 (|#1| |#1| (-625 (-552)) (-625 (-552)))) (-15 -3803 ((-625 (-625 |#2|)) |#1|)) (-15 -4219 (|#1| |#1| |#1|)) (-15 -4229 (|#1| |#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -2003 (|#1| |#1|)) (-15 -2003 (|#1| |#3|)) (-15 -1683 (|#1| |#4|)) (-15 -2457 (|#1| (-625 |#1|))) (-15 -2457 (|#1| (-625 |#2|))) (-15 -2467 (|#1| (-751) |#2|)) (-15 -3907 (|#1| (-625 (-625 |#2|)))) (-15 -2983 (|#1| (-751) (-751))) (-15 -4077 ((-112) |#1|)) (-15 -4089 ((-112) |#1|)) (-15 -4102 ((-112) |#1|)) (-15 -4114 ((-112) |#1|)) (-15 -1851 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552)))) (-667 |#2| |#3| |#4|) (-1025) (-368 |#2|) (-368 |#2|)) (T -666))
+NIL
+(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2404 (|#1| |#1| |#2|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -4176 (|#1| |#1| (-552) (-552) |#1|)) (-15 -4188 (|#1| |#1| (-552) (-552) (-552) (-552))) (-15 -4198 (|#1| |#1| (-552) (-552))) (-15 -4208 (|#1| |#1| (-552) (-552))) (-15 -1851 (|#1| |#1| (-625 (-552)) (-625 (-552)) |#1|)) (-15 -2154 (|#1| |#1| (-625 (-552)) (-625 (-552)))) (-15 -3803 ((-625 (-625 |#2|)) |#1|)) (-15 -4219 (|#1| |#1| |#1|)) (-15 -4229 (|#1| |#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -2003 (|#1| |#1|)) (-15 -2003 (|#1| |#3|)) (-15 -1683 (|#1| |#4|)) (-15 -2457 (|#1| (-625 |#1|))) (-15 -2457 (|#1| (-625 |#2|))) (-15 -2467 (|#1| (-751) |#2|)) (-15 -3907 (|#1| (-625 (-625 |#2|)))) (-15 -2983 (|#1| (-751) (-751))) (-15 -4077 ((-112) |#1|)) (-15 -4089 ((-112) |#1|)) (-15 -4102 ((-112) |#1|)) (-15 -4114 ((-112) |#1|)) (-15 -1851 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552))))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2983 (($ (-751) (-751)) 97)) (-4219 (($ $ $) 87)) (-2003 (($ |#2|) 91) (($ $) 90)) (-4089 (((-112) $) 99)) (-4208 (($ $ (-552) (-552)) 83)) (-4198 (($ $ (-552) (-552)) 82)) (-4188 (($ $ (-552) (-552) (-552) (-552)) 81)) (-4241 (($ $) 89)) (-4114 (((-112) $) 101)) (-3495 (((-112) $ (-751)) 8)) (-4176 (($ $ (-552) (-552) $) 80)) (-1851 ((|#1| $ (-552) (-552) |#1|) 44) (($ $ (-625 (-552)) (-625 (-552)) $) 84)) (-2701 (($ $ (-552) |#2|) 42)) (-2691 (($ $ (-552) |#3|) 41)) (-2467 (($ (-751) |#1|) 95)) (-3101 (($) 7 T CONST)) (-3991 (($ $) 67 (|has| |#1| (-302)))) (-4015 ((|#2| $ (-552)) 46)) (-3442 (((-751) $) 66 (|has| |#1| (-544)))) (-3692 ((|#1| $ (-552) (-552) |#1|) 43)) (-3631 ((|#1| $ (-552) (-552)) 48)) (-3799 (((-625 |#1|) $) 30)) (-3979 (((-751) $) 65 (|has| |#1| (-544)))) (-3967 (((-625 |#3|) $) 64 (|has| |#1| (-544)))) (-1773 (((-751) $) 51)) (-2183 (($ (-751) (-751) |#1|) 57)) (-1784 (((-751) $) 50)) (-2909 (((-112) $ (-751)) 9)) (-2416 ((|#1| $) 62 (|has| |#1| (-6 (-4355 "*"))))) (-4063 (((-552) $) 55)) (-4038 (((-552) $) 53)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-4050 (((-552) $) 54)) (-4027 (((-552) $) 52)) (-3907 (($ (-625 (-625 |#1|))) 96)) (-3683 (($ (-1 |#1| |#1|) $) 34)) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3803 (((-625 (-625 |#1|)) $) 86)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3150 (((-3 $ "failed") $) 61 (|has| |#1| (-358)))) (-4229 (($ $ $) 88)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) 56)) (-2802 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-544)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) (-552)) 49) ((|#1| $ (-552) (-552) |#1|) 47) (($ $ (-625 (-552)) (-625 (-552))) 85)) (-2457 (($ (-625 |#1|)) 94) (($ (-625 $)) 93)) (-4102 (((-112) $) 100)) (-2426 ((|#1| $) 63 (|has| |#1| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-4004 ((|#3| $ (-552)) 45)) (-1683 (($ |#3|) 92) (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-4077 (((-112) $) 98)) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2404 (($ $ |#1|) 68 (|has| |#1| (-358)))) (-2393 (($ $ $) 78) (($ $) 77)) (-2382 (($ $ $) 79)) (** (($ $ (-751)) 70) (($ $ (-552)) 60 (|has| |#1| (-358)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-552) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-667 |#1| |#2| |#3|) (-138) (-1025) (-368 |t#1|) (-368 |t#1|)) (T -667))
+((-4114 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-2983 (*1 *1 *2 *2) (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2467 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *2)) (-4 *4 (-368 *3)) (-4 *2 (-368 *3)))) (-2003 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-667 *3 *2 *4)) (-4 *2 (-368 *3)) (-4 *4 (-368 *3)))) (-2003 (*1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-4241 (*1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-4229 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-4219 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-625 (-625 *3))))) (-2154 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-625 (-552))) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1851 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-625 (-552))) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-4208 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-4198 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-4188 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-4176 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2382 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-2393 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-667 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *2 (-368 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-667 *3 *2 *4)) (-4 *3 (-1025)) (-4 *2 (-368 *3)) (-4 *4 (-368 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2802 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-544)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358)))) (-3991 (*1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-302)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-751)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-751)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-625 *5)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) (-3150 (*1 *1 *1) (|partial| -12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-358)))))
+(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -4114 ((-112) $)) (-15 -4102 ((-112) $)) (-15 -4089 ((-112) $)) (-15 -4077 ((-112) $)) (-15 -2983 ($ (-751) (-751))) (-15 -3907 ($ (-625 (-625 |t#1|)))) (-15 -2467 ($ (-751) |t#1|)) (-15 -2457 ($ (-625 |t#1|))) (-15 -2457 ($ (-625 $))) (-15 -1683 ($ |t#3|)) (-15 -2003 ($ |t#2|)) (-15 -2003 ($ $)) (-15 -4241 ($ $)) (-15 -4229 ($ $ $)) (-15 -4219 ($ $ $)) (-15 -3803 ((-625 (-625 |t#1|)) $)) (-15 -2154 ($ $ (-625 (-552)) (-625 (-552)))) (-15 -1851 ($ $ (-625 (-552)) (-625 (-552)) $)) (-15 -4208 ($ $ (-552) (-552))) (-15 -4198 ($ $ (-552) (-552))) (-15 -4188 ($ $ (-552) (-552) (-552) (-552))) (-15 -4176 ($ $ (-552) (-552) $)) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)) (-15 -2393 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-552) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-751))) (IF (|has| |t#1| (-544)) (-15 -2802 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -2404 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-302)) (-15 -3991 ($ $)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3442 ((-751) $)) (-15 -3979 ((-751) $)) (-15 -3967 ((-625 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4355 "*"))) (PROGN (-15 -2426 (|t#1| $)) (-15 -2416 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -3150 ((-3 $ "failed") $)) (-15 ** ($ $ (-552)))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-56 |#1| |#2| |#3|) . T) ((-1186) . T))
+((-3991 ((|#4| |#4|) 72 (|has| |#1| (-302)))) (-3442 (((-751) |#4|) 99 (|has| |#1| (-544)))) (-3979 (((-751) |#4|) 76 (|has| |#1| (-544)))) (-3967 (((-625 |#3|) |#4|) 83 (|has| |#1| (-544)))) (-3369 (((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|) 111 (|has| |#1| (-302)))) (-2416 ((|#1| |#4|) 35)) (-4294 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-544)))) (-3150 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-358)))) (-4284 ((|#4| |#4|) 68 (|has| |#1| (-544)))) (-4262 ((|#4| |#4| |#1| (-552) (-552)) 43)) (-4251 ((|#4| |#4| (-552) (-552)) 38)) (-4273 ((|#4| |#4| |#1| (-552) (-552)) 48)) (-2426 ((|#1| |#4|) 78)) (-3180 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-544)))))
+(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2426 (|#1| |#4|)) (-15 -2416 (|#1| |#4|)) (-15 -4251 (|#4| |#4| (-552) (-552))) (-15 -4262 (|#4| |#4| |#1| (-552) (-552))) (-15 -4273 (|#4| |#4| |#1| (-552) (-552))) (IF (|has| |#1| (-544)) (PROGN (-15 -3442 ((-751) |#4|)) (-15 -3979 ((-751) |#4|)) (-15 -3967 ((-625 |#3|) |#4|)) (-15 -4284 (|#4| |#4|)) (-15 -4294 ((-3 |#4| "failed") |#4|)) (-15 -3180 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -3991 (|#4| |#4|)) (-15 -3369 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3150 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|)) (T -668))
+((-3150 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-3369 (*1 *2 *3 *3) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-668 *3 *4 *5 *6)) (-4 *6 (-667 *3 *4 *5)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-3180 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-4294 (*1 *2 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-4284 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-625 *6)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-4273 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-552)) (-4 *3 (-170)) (-4 *5 (-368 *3)) (-4 *6 (-368 *3)) (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-667 *3 *5 *6)))) (-4262 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-552)) (-4 *3 (-170)) (-4 *5 (-368 *3)) (-4 *6 (-368 *3)) (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-667 *3 *5 *6)))) (-4251 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *1 (-668 *4 *5 *6 *2)) (-4 *2 (-667 *4 *5 *6)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5)))))
+(-10 -7 (-15 -2426 (|#1| |#4|)) (-15 -2416 (|#1| |#4|)) (-15 -4251 (|#4| |#4| (-552) (-552))) (-15 -4262 (|#4| |#4| |#1| (-552) (-552))) (-15 -4273 (|#4| |#4| |#1| (-552) (-552))) (IF (|has| |#1| (-544)) (PROGN (-15 -3442 ((-751) |#4|)) (-15 -3979 ((-751) |#4|)) (-15 -3967 ((-625 |#3|) |#4|)) (-15 -4284 (|#4| |#4|)) (-15 -4294 ((-3 |#4| "failed") |#4|)) (-15 -3180 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -3991 (|#4| |#4|)) (-15 -3369 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3150 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751) (-751)) 47)) (-4219 (($ $ $) NIL)) (-2003 (($ (-1232 |#1|)) NIL) (($ $) NIL)) (-4089 (((-112) $) NIL)) (-4208 (($ $ (-552) (-552)) 12)) (-4198 (($ $ (-552) (-552)) NIL)) (-4188 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-4241 (($ $) NIL)) (-4114 (((-112) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-4176 (($ $ (-552) (-552) $) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552)) $) NIL)) (-2701 (($ $ (-552) (-1232 |#1|)) NIL)) (-2691 (($ $ (-552) (-1232 |#1|)) NIL)) (-2467 (($ (-751) |#1|) 22)) (-3101 (($) NIL T CONST)) (-3991 (($ $) 31 (|has| |#1| (-302)))) (-4015 (((-1232 |#1|) $ (-552)) NIL)) (-3442 (((-751) $) 33 (|has| |#1| (-544)))) (-3692 ((|#1| $ (-552) (-552) |#1|) 51)) (-3631 ((|#1| $ (-552) (-552)) NIL)) (-3799 (((-625 |#1|) $) NIL)) (-3979 (((-751) $) 35 (|has| |#1| (-544)))) (-3967 (((-625 (-1232 |#1|)) $) 38 (|has| |#1| (-544)))) (-1773 (((-751) $) 20)) (-2183 (($ (-751) (-751) |#1|) 16)) (-1784 (((-751) $) 21)) (-2909 (((-112) $ (-751)) NIL)) (-2416 ((|#1| $) 29 (|has| |#1| (-6 (-4355 "*"))))) (-4063 (((-552) $) 9)) (-4038 (((-552) $) 10)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) 11)) (-4027 (((-552) $) 48)) (-3907 (($ (-625 (-625 |#1|))) NIL)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3803 (((-625 (-625 |#1|)) $) 60)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3150 (((-3 $ "failed") $) 45 (|has| |#1| (-358)))) (-4229 (($ $ $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552))) NIL)) (-2457 (($ (-625 |#1|)) NIL) (($ (-625 $)) NIL) (($ (-1232 |#1|)) 52)) (-4102 (((-112) $) NIL)) (-2426 ((|#1| $) 27 (|has| |#1| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-2042 (((-528) $) 64 (|has| |#1| (-598 (-528))))) (-4004 (((-1232 |#1|) $ (-552)) NIL)) (-1683 (($ (-1232 |#1|)) NIL) (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) 23) (($ $ (-552)) 46 (|has| |#1| (-358)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-1232 |#1|) $ (-1232 |#1|)) NIL) (((-1232 |#1|) (-1232 |#1|) $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-669 |#1|) (-13 (-667 |#1| (-1232 |#1|) (-1232 |#1|)) (-10 -8 (-15 -2457 ($ (-1232 |#1|))) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3150 ((-3 $ "failed") $)) |%noBranch|))) (-1025)) (T -669))
+((-3150 (*1 *1 *1) (|partial| -12 (-5 *1 (-669 *2)) (-4 *2 (-358)) (-4 *2 (-1025)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1025)) (-5 *1 (-669 *3)))))
+(-13 (-667 |#1| (-1232 |#1|) (-1232 |#1|)) (-10 -8 (-15 -2457 ($ (-1232 |#1|))) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3150 ((-3 $ "failed") $)) |%noBranch|)))
+((-1285 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 25)) (-1275 (((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|) 21)) (-1297 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751)) 26)) (-4313 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 14)) (-4323 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 18) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 16)) (-1265 (((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|)) 20)) (-4304 (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 12)) (** (((-669 |#1|) (-669 |#1|) (-751)) 30)))
+(((-670 |#1|) (-10 -7 (-15 -4304 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4313 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4323 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4323 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1265 ((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|))) (-15 -1275 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -1285 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1297 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751))) (-15 ** ((-669 |#1|) (-669 |#1|) (-751)))) (-1025)) (T -670))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4)))) (-1297 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4)))) (-1285 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-1275 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-1265 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-4323 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-4323 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-4313 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-4304 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
+(-10 -7 (-15 -4304 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4313 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4323 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4323 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1265 ((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|))) (-15 -1275 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -1285 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1297 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751))) (-15 ** ((-669 |#1|) (-669 |#1|) (-751))))
+((-3163 (($) 8 T CONST)) (-1683 (((-839) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-2079 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3163)) 16)) (-1905 ((|#1| $) 11)))
+(((-671 |#1|) (-13 (-1227) (-597 (-839)) (-10 -8 (-15 -2079 ((-112) $ (|[\|\|]| |#1|))) (-15 -2079 ((-112) $ (|[\|\|]| -3163))) (-15 -1683 ($ |#1|)) (-15 -1683 (|#1| $)) (-15 -1905 (|#1| $)) (-15 -3163 ($) -1426))) (-597 (-839))) (T -671))
+((-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-597 (-839))) (-5 *2 (-112)) (-5 *1 (-671 *4)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3163)) (-5 *2 (-112)) (-5 *1 (-671 *4)) (-4 *4 (-597 (-839))))) (-1683 (*1 *1 *2) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))) (-1683 (*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))) (-1905 (*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))) (-3163 (*1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))))
+(-13 (-1227) (-597 (-839)) (-10 -8 (-15 -2079 ((-112) $ (|[\|\|]| |#1|))) (-15 -2079 ((-112) $ (|[\|\|]| -3163))) (-15 -1683 ($ |#1|)) (-15 -1683 (|#1| $)) (-15 -1905 (|#1| $)) (-15 -3163 ($) -1426)))
+((-1327 ((|#2| |#2| |#4|) 25)) (-3210 (((-669 |#2|) |#3| |#4|) 31)) (-1337 (((-669 |#2|) |#2| |#4|) 30)) (-1308 (((-1232 |#2|) |#2| |#4|) 16)) (-1316 ((|#2| |#3| |#4|) 24)) (-3220 (((-669 |#2|) |#3| |#4| (-751) (-751)) 38)) (-3200 (((-669 |#2|) |#2| |#4| (-751)) 37)))
+(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1308 ((-1232 |#2|) |#2| |#4|)) (-15 -1316 (|#2| |#3| |#4|)) (-15 -1327 (|#2| |#2| |#4|)) (-15 -1337 ((-669 |#2|) |#2| |#4|)) (-15 -3200 ((-669 |#2|) |#2| |#4| (-751))) (-15 -3210 ((-669 |#2|) |#3| |#4|)) (-15 -3220 ((-669 |#2|) |#3| |#4| (-751) (-751)))) (-1073) (-876 |#1|) (-368 |#2|) (-13 (-368 |#1|) (-10 -7 (-6 -4353)))) (T -672))
+((-3220 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-751)) (-4 *6 (-1073)) (-4 *7 (-876 *6)) (-5 *2 (-669 *7)) (-5 *1 (-672 *6 *7 *3 *4)) (-4 *3 (-368 *7)) (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4353)))))) (-3210 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-4 *6 (-876 *5)) (-5 *2 (-669 *6)) (-5 *1 (-672 *5 *6 *3 *4)) (-4 *3 (-368 *6)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))) (-3200 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-1073)) (-4 *3 (-876 *6)) (-5 *2 (-669 *3)) (-5 *1 (-672 *6 *3 *7 *4)) (-4 *7 (-368 *3)) (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4353)))))) (-1337 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-4 *3 (-876 *5)) (-5 *2 (-669 *3)) (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-368 *3)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))) (-1327 (*1 *2 *2 *3) (-12 (-4 *4 (-1073)) (-4 *2 (-876 *4)) (-5 *1 (-672 *4 *2 *5 *3)) (-4 *5 (-368 *2)) (-4 *3 (-13 (-368 *4) (-10 -7 (-6 -4353)))))) (-1316 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-4 *2 (-876 *5)) (-5 *1 (-672 *5 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))) (-1308 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-4 *3 (-876 *5)) (-5 *2 (-1232 *3)) (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-368 *3)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))))
+(-10 -7 (-15 -1308 ((-1232 |#2|) |#2| |#4|)) (-15 -1316 (|#2| |#3| |#4|)) (-15 -1327 (|#2| |#2| |#4|)) (-15 -1337 ((-669 |#2|) |#2| |#4|)) (-15 -3200 ((-669 |#2|) |#2| |#4| (-751))) (-15 -3210 ((-669 |#2|) |#3| |#4|)) (-15 -3220 ((-669 |#2|) |#3| |#4| (-751) (-751))))
+((-3076 (((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|)) 20)) (-3055 ((|#1| (-669 |#2|)) 9)) (-3066 (((-669 |#1|) (-669 |#2|)) 18)))
+(((-673 |#1| |#2|) (-10 -7 (-15 -3055 (|#1| (-669 |#2|))) (-15 -3066 ((-669 |#1|) (-669 |#2|))) (-15 -3076 ((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|)))) (-544) (-968 |#1|)) (T -673))
+((-3076 (*1 *2 *3) (-12 (-5 *3 (-669 *5)) (-4 *5 (-968 *4)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |num| (-669 *4)) (|:| |den| *4))) (-5 *1 (-673 *4 *5)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-669 *5)) (-4 *5 (-968 *4)) (-4 *4 (-544)) (-5 *2 (-669 *4)) (-5 *1 (-673 *4 *5)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-669 *4)) (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-673 *2 *4)))))
+(-10 -7 (-15 -3055 (|#1| (-669 |#2|))) (-15 -3066 ((-669 |#1|) (-669 |#2|))) (-15 -3076 ((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2570 (((-669 (-679))) NIL) (((-669 (-679)) (-1232 $)) NIL)) (-1650 (((-679) $) NIL)) (-3728 (($ $) NIL (|has| (-679) (-1171)))) (-3604 (($ $) NIL (|has| (-679) (-1171)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-679) (-344)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-885))))) (-2194 (($ $) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| (-679) (-885))) (|has| (-679) (-358))))) (-1330 (((-413 $) $) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| (-679) (-885))) (|has| (-679) (-358))))) (-3837 (($ $) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-885))))) (-2408 (((-112) $ $) NIL (|has| (-679) (-302)))) (-2894 (((-751)) NIL (|has| (-679) (-363)))) (-3710 (($ $) NIL (|has| (-679) (-1171)))) (-3581 (($ $) NIL (|has| (-679) (-1171)))) (-3749 (($ $) NIL (|has| (-679) (-1171)))) (-3627 (($ $) NIL (|has| (-679) (-1171)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-679) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-679) (-1014 (-402 (-552)))))) (-1895 (((-552) $) NIL) (((-679) $) NIL) (((-402 (-552)) $) NIL (|has| (-679) (-1014 (-402 (-552)))))) (-2670 (($ (-1232 (-679))) NIL) (($ (-1232 (-679)) (-1232 $)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-679) (-344)))) (-2851 (($ $ $) NIL (|has| (-679) (-302)))) (-2559 (((-669 (-679)) $) NIL) (((-669 (-679)) $ (-1232 $)) NIL)) (-1794 (((-669 (-679)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-679))) (|:| |vec| (-1232 (-679)))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-679) (-621 (-552)))) (((-669 (-552)) (-669 $)) NIL (|has| (-679) (-621 (-552))))) (-2163 (((-3 $ "failed") (-402 (-1145 (-679)))) NIL (|has| (-679) (-358))) (($ (-1145 (-679))) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3852 (((-679) $) 29)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL (|has| (-679) (-537)))) (-2546 (((-112) $) NIL (|has| (-679) (-537)))) (-2538 (((-402 (-552)) $) NIL (|has| (-679) (-537)))) (-3442 (((-897)) NIL)) (-3702 (($) NIL (|has| (-679) (-363)))) (-2826 (($ $ $) NIL (|has| (-679) (-302)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| (-679) (-302)))) (-4279 (($) NIL (|has| (-679) (-344)))) (-3872 (((-112) $) NIL (|has| (-679) (-344)))) (-3554 (($ $) NIL (|has| (-679) (-344))) (($ $ (-751)) NIL (|has| (-679) (-344)))) (-2951 (((-112) $) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| (-679) (-885))) (|has| (-679) (-358))))) (-1362 (((-2 (|:| |r| (-679)) (|:| |phi| (-679))) $) NIL (-12 (|has| (-679) (-1034)) (|has| (-679) (-1171))))) (-1385 (($) NIL (|has| (-679) (-1171)))) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-679) (-862 (-374)))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-679) (-862 (-552))))) (-2172 (((-813 (-897)) $) NIL (|has| (-679) (-344))) (((-897) $) NIL (|has| (-679) (-344)))) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171))))) (-4209 (((-679) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-679) (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-679) (-302)))) (-1291 (((-1145 (-679)) $) NIL (|has| (-679) (-358)))) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 (-679) (-679)) $) NIL)) (-4318 (((-897) $) NIL (|has| (-679) (-363)))) (-2458 (($ $) NIL (|has| (-679) (-1171)))) (-2148 (((-1145 (-679)) $) NIL)) (-2605 (($ (-625 $)) NIL (|has| (-679) (-302))) (($ $ $) NIL (|has| (-679) (-302)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| (-679) (-358)))) (-2071 (($) NIL (|has| (-679) (-344)) CONST)) (-3123 (($ (-897)) NIL (|has| (-679) (-363)))) (-1373 (($) NIL)) (-3865 (((-679) $) 31)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| (-679) (-302)))) (-2633 (($ (-625 $)) NIL (|has| (-679) (-302))) (($ $ $) NIL (|has| (-679) (-302)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-679) (-344)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-885))))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-885))))) (-3824 (((-413 $) $) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| (-679) (-885))) (|has| (-679) (-358))))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-679) (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| (-679) (-302)))) (-2802 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-679)) NIL (|has| (-679) (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-679) (-302)))) (-2863 (($ $) NIL (|has| (-679) (-1171)))) (-4073 (($ $ (-1149) (-679)) NIL (|has| (-679) (-507 (-1149) (-679)))) (($ $ (-625 (-1149)) (-625 (-679))) NIL (|has| (-679) (-507 (-1149) (-679)))) (($ $ (-625 (-289 (-679)))) NIL (|has| (-679) (-304 (-679)))) (($ $ (-289 (-679))) NIL (|has| (-679) (-304 (-679)))) (($ $ (-679) (-679)) NIL (|has| (-679) (-304 (-679)))) (($ $ (-625 (-679)) (-625 (-679))) NIL (|has| (-679) (-304 (-679))))) (-2397 (((-751) $) NIL (|has| (-679) (-302)))) (-2154 (($ $ (-679)) NIL (|has| (-679) (-281 (-679) (-679))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| (-679) (-302)))) (-3217 (((-679)) NIL) (((-679) (-1232 $)) NIL)) (-3563 (((-3 (-751) "failed") $ $) NIL (|has| (-679) (-344))) (((-751) $) NIL (|has| (-679) (-344)))) (-3072 (($ $ (-1 (-679) (-679))) NIL) (($ $ (-1 (-679) (-679)) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-751)) NIL (|has| (-679) (-229))) (($ $) NIL (|has| (-679) (-229)))) (-3640 (((-669 (-679)) (-1232 $) (-1 (-679) (-679))) NIL (|has| (-679) (-358)))) (-3610 (((-1145 (-679))) NIL)) (-3759 (($ $) NIL (|has| (-679) (-1171)))) (-3638 (($ $) NIL (|has| (-679) (-1171)))) (-3798 (($) NIL (|has| (-679) (-344)))) (-3738 (($ $) NIL (|has| (-679) (-1171)))) (-3614 (($ $) NIL (|has| (-679) (-1171)))) (-3721 (($ $) NIL (|has| (-679) (-1171)))) (-3593 (($ $) NIL (|has| (-679) (-1171)))) (-2780 (((-669 (-679)) (-1232 $)) NIL) (((-1232 (-679)) $) NIL) (((-669 (-679)) (-1232 $) (-1232 $)) NIL) (((-1232 (-679)) $ (-1232 $)) NIL)) (-2042 (((-528) $) NIL (|has| (-679) (-598 (-528)))) (((-167 (-221)) $) NIL (|has| (-679) (-998))) (((-167 (-374)) $) NIL (|has| (-679) (-998))) (((-868 (-374)) $) NIL (|has| (-679) (-598 (-868 (-374))))) (((-868 (-552)) $) NIL (|has| (-679) (-598 (-868 (-552))))) (($ (-1145 (-679))) NIL) (((-1145 (-679)) $) NIL) (($ (-1232 (-679))) NIL) (((-1232 (-679)) $) NIL)) (-2410 (($ $) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| $ (-143)) (|has| (-679) (-885))) (|has| (-679) (-344))))) (-3858 (($ (-679) (-679)) 12)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-679)) NIL) (($ (-167 (-374))) 13) (($ (-167 (-552))) 19) (($ (-167 (-679))) 28) (($ (-167 (-681))) 25) (((-167 (-374)) $) 33) (($ (-402 (-552))) NIL (-1523 (|has| (-679) (-1014 (-402 (-552)))) (|has| (-679) (-358))))) (-4243 (($ $) NIL (|has| (-679) (-344))) (((-3 $ "failed") $) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| $ (-143)) (|has| (-679) (-885))) (|has| (-679) (-143))))) (-3974 (((-1145 (-679)) $) NIL)) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL)) (-3789 (($ $) NIL (|has| (-679) (-1171)))) (-3670 (($ $) NIL (|has| (-679) (-1171)))) (-3518 (((-112) $ $) NIL)) (-3769 (($ $) NIL (|has| (-679) (-1171)))) (-3648 (($ $) NIL (|has| (-679) (-1171)))) (-3809 (($ $) NIL (|has| (-679) (-1171)))) (-3691 (($ $) NIL (|has| (-679) (-1171)))) (-1388 (((-679) $) NIL (|has| (-679) (-1171)))) (-3742 (($ $) NIL (|has| (-679) (-1171)))) (-3700 (($ $) NIL (|has| (-679) (-1171)))) (-3797 (($ $) NIL (|has| (-679) (-1171)))) (-3681 (($ $) NIL (|has| (-679) (-1171)))) (-3778 (($ $) NIL (|has| (-679) (-1171)))) (-3659 (($ $) NIL (|has| (-679) (-1171)))) (-1727 (($ $) NIL (|has| (-679) (-1034)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1 (-679) (-679))) NIL) (($ $ (-1 (-679) (-679)) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-751)) NIL (|has| (-679) (-229))) (($ $) NIL (|has| (-679) (-229)))) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL (|has| (-679) (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ $) NIL (|has| (-679) (-1171))) (($ $ (-402 (-552))) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171)))) (($ $ (-552)) NIL (|has| (-679) (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ (-679) $) NIL) (($ $ (-679)) NIL) (($ (-402 (-552)) $) NIL (|has| (-679) (-358))) (($ $ (-402 (-552))) NIL (|has| (-679) (-358)))))
+(((-674) (-13 (-382) (-164 (-679)) (-10 -8 (-15 -1683 ($ (-167 (-374)))) (-15 -1683 ($ (-167 (-552)))) (-15 -1683 ($ (-167 (-679)))) (-15 -1683 ($ (-167 (-681)))) (-15 -1683 ((-167 (-374)) $))))) (T -674))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-674)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-167 (-552))) (-5 *1 (-674)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-167 (-679))) (-5 *1 (-674)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-167 (-681))) (-5 *1 (-674)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-674)))))
+(-13 (-382) (-164 (-679)) (-10 -8 (-15 -1683 ($ (-167 (-374)))) (-15 -1683 ($ (-167 (-552)))) (-15 -1683 ($ (-167 (-679)))) (-15 -1683 ($ (-167 (-681)))) (-15 -1683 ((-167 (-374)) $))))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3238 (($ $) 62)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-3229 (((-625 (-2 (|:| -4120 |#1|) (|:| -2840 (-751)))) $) 61)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-675 |#1|) (-138) (-1073)) (T -675))
+((-3966 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-675 *2)) (-4 *2 (-1073)))) (-3238 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1073)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1073)) (-5 *2 (-625 (-2 (|:| -4120 *3) (|:| -2840 (-751))))))))
+(-13 (-231 |t#1|) (-10 -8 (-15 -3966 ($ |t#1| $ (-751))) (-15 -3238 ($ $)) (-15 -3229 ((-625 (-2 (|:| -4120 |t#1|) (|:| -2840 (-751)))) $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-3265 (((-625 |#1|) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) (-552)) 47)) (-3247 ((|#1| |#1| (-552)) 46)) (-2633 ((|#1| |#1| |#1| (-552)) 36)) (-3824 (((-625 |#1|) |#1| (-552)) 39)) (-3274 ((|#1| |#1| (-552) |#1| (-552)) 32)) (-3256 (((-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) |#1| (-552)) 45)))
+(((-676 |#1|) (-10 -7 (-15 -2633 (|#1| |#1| |#1| (-552))) (-15 -3247 (|#1| |#1| (-552))) (-15 -3824 ((-625 |#1|) |#1| (-552))) (-15 -3256 ((-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) |#1| (-552))) (-15 -3265 ((-625 |#1|) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) (-552))) (-15 -3274 (|#1| |#1| (-552) |#1| (-552)))) (-1208 (-552))) (T -676))
+((-3274 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-2 (|:| -3824 *5) (|:| -4276 (-552))))) (-5 *4 (-552)) (-4 *5 (-1208 *4)) (-5 *2 (-625 *5)) (-5 *1 (-676 *5)))) (-3256 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-625 (-2 (|:| -3824 *3) (|:| -4276 *4)))) (-5 *1 (-676 *3)) (-4 *3 (-1208 *4)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-625 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1208 *4)))) (-3247 (*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3)))) (-2633 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3)))))
+(-10 -7 (-15 -2633 (|#1| |#1| |#1| (-552))) (-15 -3247 (|#1| |#1| (-552))) (-15 -3824 ((-625 |#1|) |#1| (-552))) (-15 -3256 ((-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) |#1| (-552))) (-15 -3265 ((-625 |#1|) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) (-552))) (-15 -3274 (|#1| |#1| (-552) |#1| (-552))))
+((-3313 (((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 17)) (-3284 (((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258))) 40) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258))) 42) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258))) 44)) (-3303 (((-1106 (-221)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-625 (-258))) NIL)) (-3293 (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258))) 45)))
+(((-677) (-10 -7 (-15 -3284 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3284 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3284 ((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3293 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3303 ((-1106 (-221)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3313 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -677))
+((-3313 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1 (-221) (-221) (-221) (-221))) (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *1 (-677)))) (-3303 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-3293 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-3284 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-221))) (-5 *5 (-625 (-258))) (-5 *1 (-677)))) (-3284 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-221))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-3284 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))))
+(-10 -7 (-15 -3284 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3284 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3284 ((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3293 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3303 ((-1106 (-221)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3313 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))
+((-3824 (((-413 (-1145 |#4|)) (-1145 |#4|)) 73) (((-413 |#4|) |#4|) 221)))
+(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4|)) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|)))) (-827) (-773) (-344) (-925 |#3| |#2| |#1|)) (T -678))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-344)) (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-925 *6 *5 *4)))))
+(-10 -7 (-15 -3824 ((-413 |#4|) |#4|)) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 84)) (-4177 (((-552) $) 30)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2162 (($ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL)) (-3101 (($) NIL T CONST)) (-4154 (($ $) NIL)) (-1893 (((-3 (-552) "failed") $) 73) (((-3 (-402 (-552)) "failed") $) 26) (((-3 (-374) "failed") $) 70)) (-1895 (((-552) $) 75) (((-402 (-552)) $) 67) (((-374) $) 68)) (-2851 (($ $ $) 96)) (-4174 (((-3 $ "failed") $) 87)) (-2826 (($ $ $) 95)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1923 (((-897)) 77) (((-897) (-897)) 76)) (-3620 (((-112) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL)) (-2172 (((-552) $) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL)) (-4209 (($ $) NIL)) (-3630 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3324 (((-552) (-552)) 81) (((-552)) 82)) (-3658 (($ $ $) NIL) (($) NIL (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-3333 (((-552) (-552)) 79) (((-552)) 80)) (-3332 (($ $ $) NIL) (($) NIL (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-2594 (((-552) $) 16)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 91)) (-3586 (((-897) (-552)) NIL (|has| $ (-6 -4344)))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL)) (-4189 (($ $) NIL)) (-2189 (($ (-552) (-552)) NIL) (($ (-552) (-552) (-897)) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) 92)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3564 (((-552) $) 22)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 94)) (-1542 (((-897)) NIL) (((-897) (-897)) NIL (|has| $ (-6 -4344)))) (-3574 (((-897) (-552)) NIL (|has| $ (-6 -4344)))) (-2042 (((-374) $) NIL) (((-221) $) NIL) (((-868 (-374)) $) NIL)) (-1683 (((-839) $) 52) (($ (-552)) 63) (($ $) NIL) (($ (-402 (-552))) 66) (($ (-552)) 63) (($ (-402 (-552))) 66) (($ (-374)) 60) (((-374) $) 50) (($ (-681)) 55)) (-4141 (((-751)) 103)) (-2963 (($ (-552) (-552) (-897)) 44)) (-4199 (($ $) NIL)) (-3597 (((-897)) NIL) (((-897) (-897)) NIL (|has| $ (-6 -4344)))) (-3929 (((-897)) 35) (((-897) (-897)) 78)) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL)) (-2089 (($) 32 T CONST)) (-2100 (($) 17 T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 83)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 101)) (-2404 (($ $ $) 65)) (-2393 (($ $) 99) (($ $ $) 100)) (-2382 (($ $ $) 98)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL) (($ $ (-402 (-552))) 90)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 97) (($ $ $) 88) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL)))
+(((-679) (-13 (-399) (-382) (-358) (-1014 (-374)) (-1014 (-402 (-552))) (-145) (-10 -8 (-15 -1923 ((-897) (-897))) (-15 -1923 ((-897))) (-15 -3929 ((-897) (-897))) (-15 -3333 ((-552) (-552))) (-15 -3333 ((-552))) (-15 -3324 ((-552) (-552))) (-15 -3324 ((-552))) (-15 -1683 ((-374) $)) (-15 -1683 ($ (-681))) (-15 -2594 ((-552) $)) (-15 -3564 ((-552) $)) (-15 -2963 ($ (-552) (-552) (-897)))))) (T -679))
+((-3564 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-1923 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-3333 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-3324 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-3324 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-374)) (-5 *1 (-679)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-681)) (-5 *1 (-679)))) (-2963 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-897)) (-5 *1 (-679)))))
+(-13 (-399) (-382) (-358) (-1014 (-374)) (-1014 (-402 (-552))) (-145) (-10 -8 (-15 -1923 ((-897) (-897))) (-15 -1923 ((-897))) (-15 -3929 ((-897) (-897))) (-15 -3333 ((-552) (-552))) (-15 -3333 ((-552))) (-15 -3324 ((-552) (-552))) (-15 -3324 ((-552))) (-15 -1683 ((-374) $)) (-15 -1683 ($ (-681))) (-15 -2594 ((-552) $)) (-15 -3564 ((-552) $)) (-15 -2963 ($ (-552) (-552) (-897)))))
+((-3360 (((-669 |#1|) (-669 |#1|) |#1| |#1|) 65)) (-3991 (((-669 |#1|) (-669 |#1|) |#1|) 48)) (-3351 (((-669 |#1|) (-669 |#1|) |#1|) 66)) (-3342 (((-669 |#1|) (-669 |#1|)) 49)) (-3369 (((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|) 64)))
+(((-680 |#1|) (-10 -7 (-15 -3342 ((-669 |#1|) (-669 |#1|))) (-15 -3991 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -3351 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -3360 ((-669 |#1|) (-669 |#1|) |#1| |#1|)) (-15 -3369 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|))) (-302)) (T -680))
+((-3369 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-680 *3)) (-4 *3 (-302)))) (-3360 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-3351 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-3991 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-3342 (*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))))
+(-10 -7 (-15 -3342 ((-669 |#1|) (-669 |#1|))) (-15 -3991 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -3351 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -3360 ((-669 |#1|) (-669 |#1|) |#1| |#1|)) (-15 -3369 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-3364 (($ $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3346 (($ $ $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL)) (-3420 (($ $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) 27)) (-1895 (((-552) $) 25)) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL)) (-2546 (((-112) $) NIL)) (-2538 (((-402 (-552)) $) NIL)) (-3702 (($ $) NIL) (($) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3327 (($ $ $ $) NIL)) (-3372 (($ $ $) NIL)) (-3620 (((-112) $) NIL)) (-1302 (($ $ $) NIL)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL)) (-3650 (((-112) $) NIL)) (-3932 (((-112) $) NIL)) (-4034 (((-3 $ "failed") $) NIL)) (-3630 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3336 (($ $ $ $) NIL)) (-3658 (($ $ $) NIL)) (-3379 (((-897) (-897)) 10) (((-897)) 9)) (-3332 (($ $ $) NIL)) (-2059 (($ $) NIL)) (-3456 (($ $) NIL)) (-2605 (($ (-625 $)) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3317 (($ $ $) NIL)) (-2071 (($) NIL T CONST)) (-1971 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ (-625 $)) NIL) (($ $ $) NIL)) (-1279 (($ $) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL) (($ $ (-751)) NIL)) (-2715 (($ $) NIL)) (-1871 (($ $) NIL)) (-2042 (((-221) $) NIL) (((-374) $) NIL) (((-868 (-552)) $) NIL) (((-528) $) NIL) (((-552) $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) 24) (($ $) NIL) (($ (-552)) 24) (((-311 $) (-311 (-552))) 18)) (-4141 (((-751)) NIL)) (-3383 (((-112) $ $) NIL)) (-3901 (($ $ $) NIL)) (-3929 (($) NIL)) (-3518 (((-112) $ $) NIL)) (-3355 (($ $ $ $) NIL)) (-1727 (($ $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL) (($ $ (-751)) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL)))
+(((-681) (-13 (-382) (-537) (-10 -8 (-15 -3379 ((-897) (-897))) (-15 -3379 ((-897))) (-15 -1683 ((-311 $) (-311 (-552))))))) (T -681))
+((-3379 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-681)))) (-3379 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-681)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-311 (-552))) (-5 *2 (-311 (-681))) (-5 *1 (-681)))))
+(-13 (-382) (-537) (-10 -8 (-15 -3379 ((-897) (-897))) (-15 -3379 ((-897))) (-15 -1683 ((-311 $) (-311 (-552))))))
+((-3417 (((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149)) 19)) (-3389 (((-1 |#4| |#2| |#3|) (-1149)) 12)))
+(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3389 ((-1 |#4| |#2| |#3|) (-1149))) (-15 -3417 ((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149)))) (-598 (-528)) (-1186) (-1186) (-1186)) (T -682))
+((-3417 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *3 *5 *6 *7)) (-4 *3 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)) (-4 *7 (-1186)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *4 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)) (-4 *7 (-1186)))))
+(-10 -7 (-15 -3389 ((-1 |#4| |#2| |#3|) (-1149))) (-15 -3417 ((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149))))
+((-1671 (((-112) $ $) NIL)) (-2087 (((-1237) $ (-751)) 14)) (-2483 (((-751) $) 12)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 25)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 24)))
+(((-683 |#1|) (-13 (-131) (-597 |#1|) (-10 -8 (-15 -1683 ($ |#1|)))) (-1073)) (T -683))
+((-1683 (*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1073)))))
+(-13 (-131) (-597 |#1|) (-10 -8 (-15 -1683 ($ |#1|))))
+((-3400 (((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149)) 34) (((-1 (-221) (-221)) |#1| (-1149)) 39)))
+(((-684 |#1|) (-10 -7 (-15 -3400 ((-1 (-221) (-221)) |#1| (-1149))) (-15 -3400 ((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149)))) (-598 (-528))) (T -684))
+((-3400 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-684 *3)) (-4 *3 (-598 (-528))))) (-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-684 *3)) (-4 *3 (-598 (-528))))))
+(-10 -7 (-15 -3400 ((-1 (-221) (-221)) |#1| (-1149))) (-15 -3400 ((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149))))
+((-2487 (((-1149) |#1| (-1149) (-625 (-1149))) 9) (((-1149) |#1| (-1149) (-1149) (-1149)) 12) (((-1149) |#1| (-1149) (-1149)) 11) (((-1149) |#1| (-1149)) 10)))
+(((-685 |#1|) (-10 -7 (-15 -2487 ((-1149) |#1| (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-1149) (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-625 (-1149))))) (-598 (-528))) (T -685))
+((-2487 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-625 (-1149))) (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528))))) (-2487 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528))))) (-2487 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528))))) (-2487 (*1 *2 *3 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528))))))
+(-10 -7 (-15 -2487 ((-1149) |#1| (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-1149) (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-625 (-1149)))))
+((-3546 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-686 |#1| |#2|) (-10 -7 (-15 -3546 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1186) (-1186)) (T -686))
+((-3546 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-686 *3 *4)) (-4 *3 (-1186)) (-4 *4 (-1186)))))
+(-10 -7 (-15 -3546 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-3409 (((-1 |#3| |#2|) (-1149)) 11)) (-3417 (((-1 |#3| |#2|) |#1| (-1149)) 21)))
+(((-687 |#1| |#2| |#3|) (-10 -7 (-15 -3409 ((-1 |#3| |#2|) (-1149))) (-15 -3417 ((-1 |#3| |#2|) |#1| (-1149)))) (-598 (-528)) (-1186) (-1186)) (T -687))
+((-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *3 *5 *6)) (-4 *3 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *4 *5 *6)) (-4 *4 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)))))
+(-10 -7 (-15 -3409 ((-1 |#3| |#2|) (-1149))) (-15 -3417 ((-1 |#3| |#2|) |#1| (-1149))))
+((-3453 (((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#4|)) (-625 |#3|) (-625 |#4|) (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#4|)))) (-625 (-751)) (-1232 (-625 (-1145 |#3|))) |#3|) 62)) (-3440 (((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#3|)) (-625 |#3|) (-625 |#4|) (-625 (-751)) |#3|) 75)) (-3430 (((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 |#3|) (-625 (-751)) (-625 (-1145 |#4|)) (-1232 (-625 (-1145 |#3|))) |#3|) 34)))
+(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3430 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 |#3|) (-625 (-751)) (-625 (-1145 |#4|)) (-1232 (-625 (-1145 |#3|))) |#3|)) (-15 -3440 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#3|)) (-625 |#3|) (-625 |#4|) (-625 (-751)) |#3|)) (-15 -3453 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#4|)) (-625 |#3|) (-625 |#4|) (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#4|)))) (-625 (-751)) (-1232 (-625 (-1145 |#3|))) |#3|))) (-773) (-827) (-302) (-925 |#3| |#1| |#2|)) (T -688))
+((-3453 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-625 (-1145 *13))) (-5 *3 (-1145 *13)) (-5 *4 (-625 *12)) (-5 *5 (-625 *10)) (-5 *6 (-625 *13)) (-5 *7 (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| *13))))) (-5 *8 (-625 (-751))) (-5 *9 (-1232 (-625 (-1145 *10)))) (-4 *12 (-827)) (-4 *10 (-302)) (-4 *13 (-925 *10 *11 *12)) (-4 *11 (-773)) (-5 *1 (-688 *11 *12 *10 *13)))) (-3440 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-625 *11)) (-5 *5 (-625 (-1145 *9))) (-5 *6 (-625 *9)) (-5 *7 (-625 *12)) (-5 *8 (-625 (-751))) (-4 *11 (-827)) (-4 *9 (-302)) (-4 *12 (-925 *9 *10 *11)) (-4 *10 (-773)) (-5 *2 (-625 (-1145 *12))) (-5 *1 (-688 *10 *11 *9 *12)) (-5 *3 (-1145 *12)))) (-3430 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-625 (-1145 *11))) (-5 *3 (-1145 *11)) (-5 *4 (-625 *10)) (-5 *5 (-625 *8)) (-5 *6 (-625 (-751))) (-5 *7 (-1232 (-625 (-1145 *8)))) (-4 *10 (-827)) (-4 *8 (-302)) (-4 *11 (-925 *8 *9 *10)) (-4 *9 (-773)) (-5 *1 (-688 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3430 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 |#3|) (-625 (-751)) (-625 (-1145 |#4|)) (-1232 (-625 (-1145 |#3|))) |#3|)) (-15 -3440 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#3|)) (-625 |#3|) (-625 |#4|) (-625 (-751)) |#3|)) (-15 -3453 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#4|)) (-625 |#3|) (-625 |#4|) (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#4|)))) (-625 (-751)) (-1232 (-625 (-1145 |#3|))) |#3|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4169 (($ $) 39)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-3957 (($ |#1| (-751)) 37)) (-4134 (((-751) $) 41)) (-4144 ((|#1| $) 40)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4276 (((-751) $) 42)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-3637 ((|#1| $ (-751)) 38)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43)))
(((-689 |#1|) (-138) (-1025)) (T -689))
-((-4307 (*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-4319 (*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025)))))
-(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4307 ((-751) $)) (-15 -3153 ((-751) $)) (-15 -3525 (|t#1| $)) (-15 -4319 ($ $)) (-15 -4040 (|t#1| $ (-751))) (-15 -3226 ($ |t#1| (-751)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-4318 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-690 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4318 (|#6| (-1 |#4| |#1|) |#3|))) (-545) (-1207 |#1|) (-1207 (-402 |#2|)) (-545) (-1207 |#4|) (-1207 (-402 |#5|))) (T -690))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-545)) (-4 *7 (-545)) (-4 *6 (-1207 *5)) (-4 *2 (-1207 (-402 *8))) (-5 *1 (-690 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1207 (-402 *6))) (-4 *8 (-1207 *7)))))
-(-10 -7 (-15 -4318 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2482 (((-1131) (-840)) 31)) (-3980 (((-1237) (-1131)) 28)) (-2484 (((-1131) (-840)) 24)) (-2483 (((-1131) (-840)) 25)) (-4317 (((-840) $) NIL) (((-1131) (-840)) 23)) (-3387 (((-112) $ $) NIL)))
-(((-691) (-13 (-1074) (-10 -7 (-15 -4317 ((-1131) (-840))) (-15 -2484 ((-1131) (-840))) (-15 -2483 ((-1131) (-840))) (-15 -2482 ((-1131) (-840))) (-15 -3980 ((-1237) (-1131)))))) (T -691))
-((-4317 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-691)))))
-(-13 (-1074) (-10 -7 (-15 -4317 ((-1131) (-840))) (-15 -2484 ((-1131) (-840))) (-15 -2483 ((-1131) (-840))) (-15 -2482 ((-1131) (-840))) (-15 -3980 ((-1237) (-1131)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL)) (-4202 (($ |#1| |#2|) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2943 ((|#2| $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-2494 (((-3 $ "failed") $ $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) ((|#1| $) NIL)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL)))
-(((-692 |#1| |#2| |#3| |#4| |#5|) (-13 (-358) (-10 -8 (-15 -2943 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -4202 ($ |#1| |#2|)) (-15 -2494 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -692))
-((-2943 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4202 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2494 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
-(-13 (-358) (-10 -8 (-15 -2943 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -4202 ($ |#1| |#2|)) (-15 -2494 ((-3 $ "failed") $ $))))
-((-2898 (((-112) $ $) 78)) (-3539 (((-112) $) 30)) (-4126 (((-1231 |#1|) $ (-751)) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4124 (($ (-1143 |#1|)) NIL)) (-3419 (((-1143 $) $ (-1055)) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1055))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4115 (($ $ $) NIL (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3471 (((-751)) 47 (|has| |#1| (-363)))) (-4120 (($ $ (-751)) NIL)) (-4119 (($ $ (-751)) NIL)) (-2491 ((|#2| |#2|) 44)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-1055) #2#) $) NIL)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-1055) $) NIL)) (-4116 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) 34)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4202 (($ |#2|) 42)) (-3821 (((-3 $ "failed") $) 86)) (-3327 (($) 51 (|has| |#1| (-363)))) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4118 (($ $ $) NIL)) (-4113 (($ $ $) NIL (|has| |#1| (-545)))) (-4112 (((-2 (|:| -4313 |#1|) (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-2487 (((-934 $)) 80)) (-1721 (($ $ |#1| (-751) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1055) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1055) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ $) NIL (|has| |#1| (-545)))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3420 (($ (-1143 |#1|) (-1055)) NIL) (($ (-1143 $) (-1055)) NIL)) (-4136 (($ $ (-751)) NIL)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) 77) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1055)) NIL) (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-2943 ((|#2|) 45)) (-3153 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-751) (-751)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4125 (((-1143 |#1|) $) NIL)) (-3418 (((-3 (-1055) #4="failed") $) NIL)) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-3413 ((|#2| $) 41)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) 28)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) NIL)) (-3156 (((-3 (-622 $) #4#) $) NIL)) (-3155 (((-3 (-622 $) #4#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1055)) (|:| -2493 (-751))) #4#) $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) NIL (|has| |#1| (-1124)) CONST)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2485 (($ $) 79 (|has| |#1| (-345)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-622 (-1055)) (-622 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-622 (-1055)) (-622 $)) NIL)) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-545))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-545)))) (-4123 (((-3 $ #5="failed") $ (-751)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 87 (|has| |#1| (-358)))) (-4117 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4170 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4307 (((-751) $) 32) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1055) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-2486 (((-934 $)) 36)) (-4114 (((-3 $ #5#) $ $) NIL (|has| |#1| (-545))) (((-3 (-402 $) #5#) (-402 $) $) NIL (|has| |#1| (-545)))) (-4317 (((-840) $) 61) (($ (-538)) NIL) (($ |#1|) 58) (($ (-1055)) NIL) (($ |#2|) 68) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) 63) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 20 T CONST)) (-2490 (((-1231 |#1|) $) 75)) (-2489 (($ (-1231 |#1|)) 50)) (-2997 (($) 8 T CONST)) (-3002 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2488 (((-1231 |#1|) $) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 69)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) 72) (($ $ $) NIL)) (-4199 (($ $ $) 33)) (** (($ $ (-895)) NIL) (($ $ (-751)) 81)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 57) (($ $ $) 74) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-693 |#1| |#2|) (-13 (-1207 |#1|) (-10 -8 (-15 -2491 (|#2| |#2|)) (-15 -2943 (|#2|)) (-15 -4202 ($ |#2|)) (-15 -3413 (|#2| $)) (-15 -4317 ($ |#2|)) (-15 -2490 ((-1231 |#1|) $)) (-15 -2489 ($ (-1231 |#1|))) (-15 -2488 ((-1231 |#1|) $)) (-15 -2487 ((-934 $))) (-15 -2486 ((-934 $))) (IF (|has| |#1| (-345)) (-15 -2485 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|))) (-1025) (-1207 |#1|)) (T -693))
-((-2491 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3)))) (-2943 (*1 *2) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) (-4202 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3)))) (-3413 (*1 *2 *1) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3)))) (-2490 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-1231 *3)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1207 *3)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1025)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1207 *3)))) (-2488 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-1231 *3)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1207 *3)))) (-2487 (*1 *2) (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *4 (-1207 *3)))) (-2486 (*1 *2) (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *4 (-1207 *3)))) (-2485 (*1 *1 *1) (-12 (-4 *2 (-345)) (-4 *2 (-1025)) (-5 *1 (-693 *2 *3)) (-4 *3 (-1207 *2)))))
-(-13 (-1207 |#1|) (-10 -8 (-15 -2491 (|#2| |#2|)) (-15 -2943 (|#2|)) (-15 -4202 ($ |#2|)) (-15 -3413 (|#2| $)) (-15 -4317 ($ |#2|)) (-15 -2490 ((-1231 |#1|) $)) (-15 -2489 ($ (-1231 |#1|))) (-15 -2488 ((-1231 |#1|) $)) (-15 -2487 ((-934 $))) (-15 -2486 ((-934 $))) (IF (|has| |#1| (-345)) (-15 -2485 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|)))
-((-2898 (((-112) $ $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2492 ((|#1| $) 13)) (-3594 (((-1093) $) NIL)) (-2493 ((|#2| $) 12)) (-3884 (($ |#1| |#2|) 16)) (-4317 (((-840) $) NIL) (($ (-2 (|:| -2492 |#1|) (|:| -2493 |#2|))) 15) (((-2 (|:| -2492 |#1|) (|:| -2493 |#2|)) $) 14)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 11)))
-(((-694 |#1| |#2| |#3|) (-13 (-827) (-10 -8 (-15 -2493 (|#2| $)) (-15 -2492 (|#1| $)) (-15 -4317 ($ (-2 (|:| -2492 |#1|) (|:| -2493 |#2|)))) (-15 -4317 ((-2 (|:| -2492 |#1|) (|:| -2493 |#2|)) $)) (-15 -3884 ($ |#1| |#2|)))) (-827) (-1074) (-1 (-112) (-2 (|:| -2492 |#1|) (|:| -2493 |#2|)) (-2 (|:| -2492 |#1|) (|:| -2493 |#2|)))) (T -694))
-((-2493 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-694 *3 *2 *4)) (-4 *3 (-827)) (-14 *4 (-1 (-112) (-2 (|:| -2492 *3) (|:| -2493 *2)) (-2 (|:| -2492 *3) (|:| -2493 *2)))))) (-2492 (*1 *2 *1) (-12 (-4 *2 (-827)) (-5 *1 (-694 *2 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *3)) (-2 (|:| -2492 *2) (|:| -2493 *3)))))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2492 *3) (|:| -2493 *4))) (-4 *3 (-827)) (-4 *4 (-1074)) (-5 *1 (-694 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2492 *3) (|:| -2493 *4))) (-5 *1 (-694 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-1074)) (-14 *5 (-1 (-112) *2 *2)))) (-3884 (*1 *1 *2 *3) (-12 (-5 *1 (-694 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-1074)) (-14 *4 (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *3)) (-2 (|:| -2492 *2) (|:| -2493 *3)))))))
-(-13 (-827) (-10 -8 (-15 -2493 (|#2| $)) (-15 -2492 (|#1| $)) (-15 -4317 ($ (-2 (|:| -2492 |#1|) (|:| -2493 |#2|)))) (-15 -4317 ((-2 (|:| -2492 |#1|) (|:| -2493 |#2|)) $)) (-15 -3884 ($ |#1| |#2|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 59)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #1="failed") $) 89) (((-3 (-113) #1#) $) 95)) (-3507 ((|#1| $) NIL) (((-113) $) 39)) (-3821 (((-3 $ "failed") $) 90)) (-2850 ((|#2| (-113) |#2|) 82)) (-2502 (((-112) $) NIL)) (-2849 (($ |#1| (-356 (-113))) 14)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2851 (($ $ (-1 |#2| |#2|)) 58)) (-2852 (($ $ (-1 |#2| |#2|)) 44)) (-4159 ((|#2| $ |#2|) 33)) (-2853 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-4317 (((-840) $) 66) (($ (-538)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) 37)) (-2854 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2991 (($) 21 T CONST)) (-2997 (($) 9 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) 48) (($ $ $) NIL)) (-4199 (($ $ $) 73)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ (-113) (-538)) NIL) (($ $ (-538)) 57)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170)))))
-(((-695 |#1| |#2|) (-13 (-1025) (-1014 |#1|) (-1014 (-113)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2854 ($ $)) (-15 -2854 ($ $ $)) (-15 -2853 (|#1| |#1|))) |%noBranch|) (-15 -2852 ($ $ (-1 |#2| |#2|))) (-15 -2851 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-538))) (-15 ** ($ $ (-538))) (-15 -2850 (|#2| (-113) |#2|)) (-15 -2849 ($ |#1| (-356 (-113)))))) (-1025) (-628 |#1|)) (T -695))
-((-2854 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-2854 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-2853 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-2852 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)))) (-2851 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *5)) (-4 *5 (-628 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)) (-4 *4 (-628 *3)))) (-2850 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *2)) (-4 *2 (-628 *4)))) (-2849 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-113))) (-4 *2 (-1025)) (-5 *1 (-695 *2 *4)) (-4 *4 (-628 *2)))))
-(-13 (-1025) (-1014 |#1|) (-1014 (-113)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2854 ($ $)) (-15 -2854 ($ $ $)) (-15 -2853 (|#1| |#1|))) |%noBranch|) (-15 -2852 ($ $ (-1 |#2| |#2|))) (-15 -2851 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-538))) (-15 ** ($ $ (-538))) (-15 -2850 (|#2| (-113) |#2|)) (-15 -2849 ($ |#1| (-356 (-113))))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 33)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4202 (($ |#1| |#2|) 25)) (-3821 (((-3 $ "failed") $) 48)) (-2502 (((-112) $) 35)) (-2943 ((|#2| $) 12)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 49)) (-3594 (((-1093) $) NIL)) (-2494 (((-3 $ "failed") $ $) 47)) (-4317 (((-840) $) 24) (($ (-538)) 19) ((|#1| $) 13)) (-3461 (((-751)) 28)) (-2991 (($) 16 T CONST)) (-2997 (($) 30 T CONST)) (-3387 (((-112) $ $) 38)) (-4197 (($ $) 43) (($ $ $) 37)) (-4199 (($ $ $) 40)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 21) (($ $ $) 20)))
-(((-696 |#1| |#2| |#3| |#4| |#5|) (-13 (-1025) (-10 -8 (-15 -2943 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -4202 ($ |#1| |#2|)) (-15 -2494 ((-3 $ "failed") $ $)) (-15 -3821 ((-3 $ "failed") $)) (-15 -2734 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -696))
-((-3821 (*1 *1 *1) (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2943 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-696 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4202 (*1 *1 *2 *3) (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2494 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2734 (*1 *1 *1) (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
-(-13 (-1025) (-10 -8 (-15 -2943 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -4202 ($ |#1| |#2|)) (-15 -2494 ((-3 $ "failed") $ $)) (-15 -3821 ((-3 $ "failed") $)) (-15 -2734 ($ $))))
-((* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-697 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) (-698 |#2|) (-170)) (T -697))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-4276 (*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-4169 (*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025)))))
+(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4276 ((-751) $)) (-15 -4134 ((-751) $)) (-15 -4144 (|t#1| $)) (-15 -4169 ($ $)) (-15 -3637 (|t#1| $ (-751))) (-15 -3957 ($ |t#1| (-751)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1996 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-690 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1996 (|#6| (-1 |#4| |#1|) |#3|))) (-544) (-1208 |#1|) (-1208 (-402 |#2|)) (-544) (-1208 |#4|) (-1208 (-402 |#5|))) (T -690))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-544)) (-4 *7 (-544)) (-4 *6 (-1208 *5)) (-4 *2 (-1208 (-402 *8))) (-5 *1 (-690 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1208 (-402 *6))) (-4 *8 (-1208 *7)))))
+(-10 -7 (-15 -1996 (|#6| (-1 |#4| |#1|) |#3|)))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3465 (((-1131) (-839)) 31)) (-1407 (((-1237) (-1131)) 28)) (-3486 (((-1131) (-839)) 24)) (-3476 (((-1131) (-839)) 25)) (-1683 (((-839) $) NIL) (((-1131) (-839)) 23)) (-2281 (((-112) $ $) NIL)))
+(((-691) (-13 (-1073) (-10 -7 (-15 -1683 ((-1131) (-839))) (-15 -3486 ((-1131) (-839))) (-15 -3476 ((-1131) (-839))) (-15 -3465 ((-1131) (-839))) (-15 -1407 ((-1237) (-1131)))))) (T -691))
+((-1683 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-691)))))
+(-13 (-1073) (-10 -7 (-15 -1683 ((-1131) (-839))) (-15 -3486 ((-1131) (-839))) (-15 -3476 ((-1131) (-839))) (-15 -3465 ((-1131) (-839))) (-15 -1407 ((-1237) (-1131)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL)) (-2163 (($ |#1| |#2|) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1531 ((|#2| $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3575 (((-3 $ "failed") $ $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) ((|#1| $) NIL)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL)))
+(((-692 |#1| |#2| |#3| |#4| |#5|) (-13 (-358) (-10 -8 (-15 -1531 (|#2| $)) (-15 -1683 (|#1| $)) (-15 -2163 ($ |#1| |#2|)) (-15 -3575 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -692))
+((-1531 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1683 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2163 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3575 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-358) (-10 -8 (-15 -1531 (|#2| $)) (-15 -1683 (|#1| $)) (-15 -2163 ($ |#1| |#2|)) (-15 -3575 ((-3 $ "failed") $ $))))
+((-1671 (((-112) $ $) 78)) (-3641 (((-112) $) 30)) (-2138 (((-1232 |#1|) $ (-751)) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2117 (($ (-1145 |#1|)) NIL)) (-3793 (((-1145 $) $ (-1055)) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1055))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3197 (($ $ $) NIL (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2894 (((-751)) 47 (|has| |#1| (-363)))) (-2076 (($ $ (-751)) NIL)) (-2065 (($ $ (-751)) NIL)) (-3555 ((|#2| |#2|) 44)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-1055) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-1055) $) NIL)) (-3207 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) 34)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-2163 (($ |#2|) 42)) (-4174 (((-3 $ "failed") $) 86)) (-3702 (($) 51 (|has| |#1| (-363)))) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-2052 (($ $ $) NIL)) (-3181 (($ $ $) NIL (|has| |#1| (-544)))) (-3173 (((-2 (|:| -3340 |#1|) (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-3515 (((-934 $)) 80)) (-1347 (($ $ |#1| (-751) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1055) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1055) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ $) NIL (|has| |#1| (-544)))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3970 (($ (-1145 |#1|) (-1055)) NIL) (($ (-1145 $) (-1055)) NIL)) (-2216 (($ $ (-751)) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) 77) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1055)) NIL) (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1531 ((|#2|) 45)) (-4134 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-751) (-751)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2127 (((-1145 |#1|) $) NIL)) (-1942 (((-3 (-1055) "failed") $) NIL)) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-2148 ((|#2| $) 41)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) 28)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1055)) (|:| -3564 (-751))) "failed") $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) NIL (|has| |#1| (-1124)) CONST)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3497 (($ $) 79 (|has| |#1| (-344)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-625 (-1055)) (-625 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-625 (-1055)) (-625 $)) NIL)) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-544))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-544)))) (-2108 (((-3 $ "failed") $ (-751)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 87 (|has| |#1| (-358)))) (-3217 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-3072 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4276 (((-751) $) 32) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1055) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-3506 (((-934 $)) 36)) (-3190 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-544)))) (-1683 (((-839) $) 61) (($ (-552)) NIL) (($ |#1|) 58) (($ (-1055)) NIL) (($ |#2|) 68) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) 63) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 20 T CONST)) (-3544 (((-1232 |#1|) $) 75)) (-3534 (($ (-1232 |#1|)) 50)) (-2100 (($) 8 T CONST)) (-3768 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3524 (((-1232 |#1|) $) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 69)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) 72) (($ $ $) NIL)) (-2382 (($ $ $) 33)) (** (($ $ (-897)) NIL) (($ $ (-751)) 81)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 57) (($ $ $) 74) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-693 |#1| |#2|) (-13 (-1208 |#1|) (-10 -8 (-15 -3555 (|#2| |#2|)) (-15 -1531 (|#2|)) (-15 -2163 ($ |#2|)) (-15 -2148 (|#2| $)) (-15 -1683 ($ |#2|)) (-15 -3544 ((-1232 |#1|) $)) (-15 -3534 ($ (-1232 |#1|))) (-15 -3524 ((-1232 |#1|) $)) (-15 -3515 ((-934 $))) (-15 -3506 ((-934 $))) (IF (|has| |#1| (-344)) (-15 -3497 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|))) (-1025) (-1208 |#1|)) (T -693))
+((-3555 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3)))) (-1531 (*1 *2) (-12 (-4 *2 (-1208 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) (-2163 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3)))) (-2148 (*1 *2 *1) (-12 (-4 *2 (-1208 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3)))) (-3544 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-1232 *3)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1208 *3)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1025)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1208 *3)))) (-3524 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-1232 *3)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1208 *3)))) (-3515 (*1 *2) (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *4 (-1208 *3)))) (-3506 (*1 *2) (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *4 (-1208 *3)))) (-3497 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *2 (-1025)) (-5 *1 (-693 *2 *3)) (-4 *3 (-1208 *2)))))
+(-13 (-1208 |#1|) (-10 -8 (-15 -3555 (|#2| |#2|)) (-15 -1531 (|#2|)) (-15 -2163 ($ |#2|)) (-15 -2148 (|#2| $)) (-15 -1683 ($ |#2|)) (-15 -3544 ((-1232 |#1|) $)) (-15 -3534 ($ (-1232 |#1|))) (-15 -3524 ((-1232 |#1|) $)) (-15 -3515 ((-934 $))) (-15 -3506 ((-934 $))) (IF (|has| |#1| (-344)) (-15 -3497 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|)))
+((-1671 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3123 ((|#1| $) 13)) (-2831 (((-1093) $) NIL)) (-3564 ((|#2| $) 12)) (-1695 (($ |#1| |#2|) 16)) (-1683 (((-839) $) NIL) (($ (-2 (|:| -3123 |#1|) (|:| -3564 |#2|))) 15) (((-2 (|:| -3123 |#1|) (|:| -3564 |#2|)) $) 14)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 11)))
+(((-694 |#1| |#2| |#3|) (-13 (-827) (-10 -8 (-15 -3564 (|#2| $)) (-15 -3123 (|#1| $)) (-15 -1683 ($ (-2 (|:| -3123 |#1|) (|:| -3564 |#2|)))) (-15 -1683 ((-2 (|:| -3123 |#1|) (|:| -3564 |#2|)) $)) (-15 -1695 ($ |#1| |#2|)))) (-827) (-1073) (-1 (-112) (-2 (|:| -3123 |#1|) (|:| -3564 |#2|)) (-2 (|:| -3123 |#1|) (|:| -3564 |#2|)))) (T -694))
+((-3564 (*1 *2 *1) (-12 (-4 *2 (-1073)) (-5 *1 (-694 *3 *2 *4)) (-4 *3 (-827)) (-14 *4 (-1 (-112) (-2 (|:| -3123 *3) (|:| -3564 *2)) (-2 (|:| -3123 *3) (|:| -3564 *2)))))) (-3123 (*1 *2 *1) (-12 (-4 *2 (-827)) (-5 *1 (-694 *2 *3 *4)) (-4 *3 (-1073)) (-14 *4 (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *3)) (-2 (|:| -3123 *2) (|:| -3564 *3)))))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3123 *3) (|:| -3564 *4))) (-4 *3 (-827)) (-4 *4 (-1073)) (-5 *1 (-694 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3123 *3) (|:| -3564 *4))) (-5 *1 (-694 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-1073)) (-14 *5 (-1 (-112) *2 *2)))) (-1695 (*1 *1 *2 *3) (-12 (-5 *1 (-694 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-1073)) (-14 *4 (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *3)) (-2 (|:| -3123 *2) (|:| -3564 *3)))))))
+(-13 (-827) (-10 -8 (-15 -3564 (|#2| $)) (-15 -3123 (|#1| $)) (-15 -1683 ($ (-2 (|:| -3123 |#1|) (|:| -3564 |#2|)))) (-15 -1683 ((-2 (|:| -3123 |#1|) (|:| -3564 |#2|)) $)) (-15 -1695 ($ |#1| |#2|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 59)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-1895 ((|#1| $) NIL) (((-114) $) 39)) (-4174 (((-3 $ "failed") $) 90)) (-3145 ((|#2| (-114) |#2|) 82)) (-3650 (((-112) $) NIL)) (-3134 (($ |#1| (-356 (-114))) 14)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3157 (($ $ (-1 |#2| |#2|)) 58)) (-3164 (($ $ (-1 |#2| |#2|)) 44)) (-2154 ((|#2| $ |#2|) 33)) (-3172 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-1683 (((-839) $) 66) (($ (-552)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) 37)) (-3180 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2089 (($) 21 T CONST)) (-2100 (($) 9 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) 48) (($ $ $) NIL)) (-2382 (($ $ $) 73)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ (-114) (-552)) NIL) (($ $ (-552)) 57)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170)))))
+(((-695 |#1| |#2|) (-13 (-1025) (-1014 |#1|) (-1014 (-114)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3180 ($ $)) (-15 -3180 ($ $ $)) (-15 -3172 (|#1| |#1|))) |%noBranch|) (-15 -3164 ($ $ (-1 |#2| |#2|))) (-15 -3157 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-552))) (-15 ** ($ $ (-552))) (-15 -3145 (|#2| (-114) |#2|)) (-15 -3134 ($ |#1| (-356 (-114)))))) (-1025) (-628 |#1|)) (T -695))
+((-3180 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-3180 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-3172 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-3164 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-552)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *5)) (-4 *5 (-628 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)) (-4 *4 (-628 *3)))) (-3145 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *2)) (-4 *2 (-628 *4)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-114))) (-4 *2 (-1025)) (-5 *1 (-695 *2 *4)) (-4 *4 (-628 *2)))))
+(-13 (-1025) (-1014 |#1|) (-1014 (-114)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3180 ($ $)) (-15 -3180 ($ $ $)) (-15 -3172 (|#1| |#1|))) |%noBranch|) (-15 -3164 ($ $ (-1 |#2| |#2|))) (-15 -3157 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-552))) (-15 ** ($ $ (-552))) (-15 -3145 (|#2| (-114) |#2|)) (-15 -3134 ($ |#1| (-356 (-114))))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 33)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2163 (($ |#1| |#2|) 25)) (-4174 (((-3 $ "failed") $) 48)) (-3650 (((-112) $) 35)) (-1531 ((|#2| $) 12)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 49)) (-2831 (((-1093) $) NIL)) (-3575 (((-3 $ "failed") $ $) 47)) (-1683 (((-839) $) 24) (($ (-552)) 19) ((|#1| $) 13)) (-4141 (((-751)) 28)) (-2089 (($) 16 T CONST)) (-2100 (($) 30 T CONST)) (-2281 (((-112) $ $) 38)) (-2393 (($ $) 43) (($ $ $) 37)) (-2382 (($ $ $) 40)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 21) (($ $ $) 20)))
+(((-696 |#1| |#2| |#3| |#4| |#5|) (-13 (-1025) (-10 -8 (-15 -1531 (|#2| $)) (-15 -1683 (|#1| $)) (-15 -2163 ($ |#1| |#2|)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -4174 ((-3 $ "failed") $)) (-15 -4092 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -696))
+((-4174 (*1 *1 *1) (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1531 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-696 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1683 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2163 (*1 *1 *2 *3) (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3575 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4092 (*1 *1 *1) (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1025) (-10 -8 (-15 -1531 (|#2| $)) (-15 -1683 (|#1| $)) (-15 -2163 ($ |#1| |#2|)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -4174 ((-3 $ "failed") $)) (-15 -4092 ($ $))))
+((* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-697 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) (-698 |#2|) (-170)) (T -697))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-698 |#1|) (-138) (-170)) (T -698))
NIL
(-13 (-111 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-1031 |#1|) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-2690 (($ |#1|) 17) (($ $ |#1|) 20)) (-4207 (($ |#1|) 18) (($ $ |#1|) 21)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2502 (((-112) $) NIL)) (-2495 (($ |#1| |#1| |#1| |#1|) 8)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 16)) (-3594 (((-1093) $) NIL)) (-4127 ((|#1| $ |#1|) 24) (((-812 |#1|) $ (-812 |#1|)) 32)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) 39)) (-2997 (($) 9 T CONST)) (-3387 (((-112) $ $) 44)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ $ $) 14)))
-(((-699 |#1|) (-13 (-467) (-10 -8 (-15 -2495 ($ |#1| |#1| |#1| |#1|)) (-15 -2690 ($ |#1|)) (-15 -4207 ($ |#1|)) (-15 -3821 ($)) (-15 -2690 ($ $ |#1|)) (-15 -4207 ($ $ |#1|)) (-15 -3821 ($ $)) (-15 -4127 (|#1| $ |#1|)) (-15 -4127 ((-812 |#1|) $ (-812 |#1|))))) (-358)) (T -699))
-((-2495 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-2690 (*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4207 (*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-3821 (*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-2690 (*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-3821 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4127 (*1 *2 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4127 (*1 *2 *1 *2) (-12 (-5 *2 (-812 *3)) (-4 *3 (-358)) (-5 *1 (-699 *3)))))
-(-13 (-467) (-10 -8 (-15 -2495 ($ |#1| |#1| |#1| |#1|)) (-15 -2690 ($ |#1|)) (-15 -4207 ($ |#1|)) (-15 -3821 ($)) (-15 -2690 ($ $ |#1|)) (-15 -4207 ($ $ |#1|)) (-15 -3821 ($ $)) (-15 -4127 (|#1| $ |#1|)) (-15 -4127 ((-812 |#1|) $ (-812 |#1|)))))
-((-2499 (($ $ (-895)) 12)) (-2498 (($ $ (-895)) 13)) (** (($ $ (-895)) 10)))
-(((-700 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-895))) (-15 -2498 (|#1| |#1| (-895))) (-15 -2499 (|#1| |#1| (-895)))) (-701)) (T -700))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-895))) (-15 -2498 (|#1| |#1| (-895))) (-15 -2499 (|#1| |#1| (-895))))
-((-2898 (((-112) $ $) 7)) (-2499 (($ $ (-895)) 15)) (-2498 (($ $ (-895)) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)) (** (($ $ (-895)) 13)) (* (($ $ $) 16)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-1031 |#1|) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3420 (($ |#1|) 17) (($ $ |#1|) 20)) (-1487 (($ |#1|) 18) (($ $ |#1|) 21)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3650 (((-112) $) NIL)) (-3587 (($ |#1| |#1| |#1| |#1|) 8)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 16)) (-2831 (((-1093) $) NIL)) (-4073 ((|#1| $ |#1|) 24) (((-813 |#1|) $ (-813 |#1|)) 32)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) 39)) (-2100 (($) 9 T CONST)) (-2281 (((-112) $ $) 44)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 14)))
+(((-699 |#1|) (-13 (-467) (-10 -8 (-15 -3587 ($ |#1| |#1| |#1| |#1|)) (-15 -3420 ($ |#1|)) (-15 -1487 ($ |#1|)) (-15 -4174 ($)) (-15 -3420 ($ $ |#1|)) (-15 -1487 ($ $ |#1|)) (-15 -4174 ($ $)) (-15 -4073 (|#1| $ |#1|)) (-15 -4073 ((-813 |#1|) $ (-813 |#1|))))) (-358)) (T -699))
+((-3587 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-3420 (*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-1487 (*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4174 (*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-3420 (*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-1487 (*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4174 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4073 (*1 *2 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4073 (*1 *2 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *3 (-358)) (-5 *1 (-699 *3)))))
+(-13 (-467) (-10 -8 (-15 -3587 ($ |#1| |#1| |#1| |#1|)) (-15 -3420 ($ |#1|)) (-15 -1487 ($ |#1|)) (-15 -4174 ($)) (-15 -3420 ($ $ |#1|)) (-15 -1487 ($ $ |#1|)) (-15 -4174 ($ $)) (-15 -4073 (|#1| $ |#1|)) (-15 -4073 ((-813 |#1|) $ (-813 |#1|)))))
+((-3629 (($ $ (-897)) 12)) (-3619 (($ $ (-897)) 13)) (** (($ $ (-897)) 10)))
+(((-700 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-897))) (-15 -3619 (|#1| |#1| (-897))) (-15 -3629 (|#1| |#1| (-897)))) (-701)) (T -700))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-897))) (-15 -3619 (|#1| |#1| (-897))) (-15 -3629 (|#1| |#1| (-897))))
+((-1671 (((-112) $ $) 7)) (-3629 (($ $ (-897)) 15)) (-3619 (($ $ (-897)) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)) (** (($ $ (-897)) 13)) (* (($ $ $) 16)))
(((-701) (-138)) (T -701))
-((* (*1 *1 *1 *1) (-4 *1 (-701))) (-2499 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895)))) (-2498 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895)))))
-(-13 (-1074) (-10 -8 (-15 * ($ $ $)) (-15 -2499 ($ $ (-895))) (-15 -2498 ($ $ (-895))) (-15 ** ($ $ (-895)))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2499 (($ $ (-895)) NIL) (($ $ (-751)) 17)) (-2502 (((-112) $) 10)) (-2498 (($ $ (-895)) NIL) (($ $ (-751)) 18)) (** (($ $ (-895)) NIL) (($ $ (-751)) 15)))
-(((-702 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-751))) (-15 -2498 (|#1| |#1| (-751))) (-15 -2499 (|#1| |#1| (-751))) (-15 -2502 ((-112) |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 -2498 (|#1| |#1| (-895))) (-15 -2499 (|#1| |#1| (-895)))) (-703)) (T -702))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-751))) (-15 -2498 (|#1| |#1| (-751))) (-15 -2499 (|#1| |#1| (-751))) (-15 -2502 ((-112) |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 -2498 (|#1| |#1| (-895))) (-15 -2499 (|#1| |#1| (-895))))
-((-2898 (((-112) $ $) 7)) (-2496 (((-3 $ "failed") $) 17)) (-2499 (($ $ (-895)) 15) (($ $ (-751)) 22)) (-3821 (((-3 $ "failed") $) 19)) (-2502 (((-112) $) 23)) (-2497 (((-3 $ "failed") $) 18)) (-2498 (($ $ (-895)) 14) (($ $ (-751)) 21)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2997 (($) 24 T CONST)) (-3387 (((-112) $ $) 6)) (** (($ $ (-895)) 13) (($ $ (-751)) 20)) (* (($ $ $) 16)))
+((* (*1 *1 *1 *1) (-4 *1 (-701))) (-3629 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897)))) (-3619 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897)))))
+(-13 (-1073) (-10 -8 (-15 * ($ $ $)) (-15 -3629 ($ $ (-897))) (-15 -3619 ($ $ (-897))) (-15 ** ($ $ (-897)))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-3629 (($ $ (-897)) NIL) (($ $ (-751)) 17)) (-3650 (((-112) $) 10)) (-3619 (($ $ (-897)) NIL) (($ $ (-751)) 18)) (** (($ $ (-897)) NIL) (($ $ (-751)) 15)))
+(((-702 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-751))) (-15 -3619 (|#1| |#1| (-751))) (-15 -3629 (|#1| |#1| (-751))) (-15 -3650 ((-112) |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 -3619 (|#1| |#1| (-897))) (-15 -3629 (|#1| |#1| (-897)))) (-703)) (T -702))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-751))) (-15 -3619 (|#1| |#1| (-751))) (-15 -3629 (|#1| |#1| (-751))) (-15 -3650 ((-112) |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 -3619 (|#1| |#1| (-897))) (-15 -3629 (|#1| |#1| (-897))))
+((-1671 (((-112) $ $) 7)) (-3598 (((-3 $ "failed") $) 17)) (-3629 (($ $ (-897)) 15) (($ $ (-751)) 22)) (-4174 (((-3 $ "failed") $) 19)) (-3650 (((-112) $) 23)) (-3609 (((-3 $ "failed") $) 18)) (-3619 (($ $ (-897)) 14) (($ $ (-751)) 21)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2100 (($) 24 T CONST)) (-2281 (((-112) $ $) 6)) (** (($ $ (-897)) 13) (($ $ (-751)) 20)) (* (($ $ $) 16)))
(((-703) (-138)) (T -703))
-((-2997 (*1 *1) (-4 *1 (-703))) (-2502 (*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))) (-2499 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (-2498 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (-3821 (*1 *1 *1) (|partial| -4 *1 (-703))) (-2497 (*1 *1 *1) (|partial| -4 *1 (-703))) (-2496 (*1 *1 *1) (|partial| -4 *1 (-703))))
-(-13 (-701) (-10 -8 (-15 (-2997) ($) -4311) (-15 -2502 ((-112) $)) (-15 -2499 ($ $ (-751))) (-15 -2498 ($ $ (-751))) (-15 ** ($ $ (-751))) (-15 -3821 ((-3 $ "failed") $)) (-15 -2497 ((-3 $ "failed") $)) (-15 -2496 ((-3 $ "failed") $))))
-(((-101) . T) ((-597 (-840)) . T) ((-701) . T) ((-1074) . T))
-((-3471 (((-751)) 34)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL) ((|#2| $) 22)) (-4202 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) 44)) (-3821 (((-3 $ "failed") $) 64)) (-3327 (($) 38)) (-3467 ((|#2| $) 20)) (-2501 (($) 17)) (-4170 (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-2500 (((-669 |#2|) (-1231 $) (-1 |#2| |#2|)) 59)) (-4330 (((-1231 |#2|) $) NIL) (($ (-1231 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2698 ((|#3| $) 32)) (-2128 (((-1231 $)) 29)))
-(((-704 |#1| |#2| |#3|) (-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3327 (|#1|)) (-15 -3471 ((-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -2500 ((-669 |#2|) (-1231 |#1|) (-1 |#2| |#2|))) (-15 -4202 ((-3 |#1| "failed") (-402 |#3|))) (-15 -4330 (|#1| |#3|)) (-15 -4202 (|#1| |#3|)) (-15 -2501 (|#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 (|#3| |#1|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -2128 ((-1231 |#1|))) (-15 -2698 (|#3| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|))) (-705 |#2| |#3|) (-170) (-1207 |#2|)) (T -704))
-((-3471 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-751)) (-5 *1 (-704 *3 *4 *5)) (-4 *3 (-705 *4 *5)))))
-(-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3327 (|#1|)) (-15 -3471 ((-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -2500 ((-669 |#2|) (-1231 |#1|) (-1 |#2| |#2|))) (-15 -4202 ((-3 |#1| "failed") (-402 |#3|))) (-15 -4330 (|#1| |#3|)) (-15 -4202 (|#1| |#3|)) (-15 -2501 (|#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 (|#3| |#1|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -2128 ((-1231 |#1|))) (-15 -2698 (|#3| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (|has| |#1| (-358)))) (-2178 (($ $) 92 (|has| |#1| (-358)))) (-2176 (((-112) $) 94 (|has| |#1| (-358)))) (-1901 (((-669 |#1|) (-1231 $)) 44) (((-669 |#1|)) 59)) (-3689 ((|#1| $) 50)) (-1791 (((-1158 (-895) (-751)) (-538)) 144 (|has| |#1| (-345)))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 111 (|has| |#1| (-358)))) (-4329 (((-400 $) $) 112 (|has| |#1| (-358)))) (-1705 (((-112) $ $) 102 (|has| |#1| (-358)))) (-3471 (((-751)) 85 (|has| |#1| (-363)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 166 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 164 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 163)) (-3507 (((-538) $) 167 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 165 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 162)) (-1911 (($ (-1231 |#1|) (-1231 $)) 46) (($ (-1231 |#1|)) 62)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-345)))) (-2894 (($ $ $) 106 (|has| |#1| (-358)))) (-1900 (((-669 |#1|) $ (-1231 $)) 51) (((-669 |#1|) $) 57)) (-2362 (((-669 (-538)) (-669 $)) 161 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 160 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 159) (((-669 |#1|) (-669 $)) 158)) (-4202 (($ |#2|) 155) (((-3 $ "failed") (-402 |#2|)) 152 (|has| |#1| (-358)))) (-3821 (((-3 $ "failed") $) 32)) (-3444 (((-895)) 52)) (-3327 (($) 88 (|has| |#1| (-363)))) (-2893 (($ $ $) 105 (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 100 (|has| |#1| (-358)))) (-3166 (($) 146 (|has| |#1| (-345)))) (-1796 (((-112) $) 147 (|has| |#1| (-345)))) (-1886 (($ $ (-751)) 138 (|has| |#1| (-345))) (($ $) 137 (|has| |#1| (-345)))) (-4086 (((-112) $) 113 (|has| |#1| (-358)))) (-4131 (((-895) $) 149 (|has| |#1| (-345))) (((-812 (-895)) $) 135 (|has| |#1| (-345)))) (-2502 (((-112) $) 30)) (-3467 ((|#1| $) 49)) (-3803 (((-3 $ "failed") $) 139 (|has| |#1| (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 109 (|has| |#1| (-358)))) (-2130 ((|#2| $) 42 (|has| |#1| (-358)))) (-2126 (((-895) $) 87 (|has| |#1| (-363)))) (-3413 ((|#2| $) 153)) (-2013 (($ (-622 $)) 98 (|has| |#1| (-358))) (($ $ $) 97 (|has| |#1| (-358)))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 114 (|has| |#1| (-358)))) (-3804 (($) 140 (|has| |#1| (-345)) CONST)) (-2492 (($ (-895)) 86 (|has| |#1| (-363)))) (-3594 (((-1093) $) 10)) (-2501 (($) 157)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 99 (|has| |#1| (-358)))) (-3495 (($ (-622 $)) 96 (|has| |#1| (-358))) (($ $ $) 95 (|has| |#1| (-358)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 143 (|has| |#1| (-345)))) (-4092 (((-400 $) $) 110 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 107 (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ $) 90 (|has| |#1| (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 101 (|has| |#1| (-358)))) (-1704 (((-751) $) 103 (|has| |#1| (-358)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 104 (|has| |#1| (-358)))) (-4117 ((|#1| (-1231 $)) 45) ((|#1|) 58)) (-1887 (((-751) $) 148 (|has| |#1| (-345))) (((-3 (-751) "failed") $ $) 136 (|has| |#1| (-345)))) (-4170 (($ $) 134 (-3891 (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-751)) 132 (-3891 (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-1149)) 130 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-622 (-1149))) 129 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1149) (-751)) 128 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-622 (-1149)) (-622 (-751))) 127 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-751)) 120 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-358)))) (-2500 (((-669 |#1|) (-1231 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-358)))) (-3536 ((|#2|) 156)) (-1790 (($) 145 (|has| |#1| (-345)))) (-3575 (((-1231 |#1|) $ (-1231 $)) 48) (((-669 |#1|) (-1231 $) (-1231 $)) 47) (((-1231 |#1|) $) 64) (((-669 |#1|) (-1231 $)) 63)) (-4330 (((-1231 |#1|) $) 61) (($ (-1231 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 142 (|has| |#1| (-345)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-358))) (($ (-402 (-538))) 84 (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538))))))) (-3035 (($ $) 141 (|has| |#1| (-345))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2698 ((|#2| $) 43)) (-3461 (((-751)) 28)) (-2128 (((-1231 $)) 65)) (-2177 (((-112) $ $) 93 (|has| |#1| (-358)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $) 133 (-3891 (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-751)) 131 (-3891 (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-1149)) 126 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-622 (-1149))) 125 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1149) (-751)) 124 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-622 (-1149)) (-622 (-751))) 123 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-751)) 122 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-358)))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 118 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 115 (|has| |#1| (-358)))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-402 (-538)) $) 117 (|has| |#1| (-358))) (($ $ (-402 (-538))) 116 (|has| |#1| (-358)))))
-(((-705 |#1| |#2|) (-138) (-170) (-1207 |t#1|)) (T -705))
-((-2501 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-705 *2 *3)) (-4 *3 (-1207 *2)))) (-3536 (*1 *2) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3)))) (-4202 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1207 *3)))) (-4330 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1207 *3)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3)))) (-4202 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-358)) (-4 *3 (-170)) (-4 *1 (-705 *3 *4)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-1231 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-4 *1 (-705 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1207 *5)) (-5 *2 (-669 *5)))))
-(-13 (-405 |t#1| |t#2|) (-170) (-598 |t#2|) (-407 |t#1|) (-372 |t#1|) (-10 -8 (-15 -2501 ($)) (-15 -3536 (|t#2|)) (-15 -4202 ($ |t#2|)) (-15 -4330 ($ |t#2|)) (-15 -3413 (|t#2| $)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-358)) (-6 (-227 |t#1|)) (-15 -4202 ((-3 $ "failed") (-402 |t#2|))) (-15 -2500 ((-669 |t#1|) (-1231 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-345)) (-6 (-345)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-101) . T) ((-111 #1# #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3891 (|has| |#1| (-345)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-598 |#2|) . T) ((-227 |#1|) |has| |#1| (-358)) ((-229) -3891 (|has| |#1| (-345)) (-12 (|has| |#1| (-229)) (|has| |#1| (-358)))) ((-239) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-285) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-302) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-358) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-397) |has| |#1| (-345)) ((-363) -3891 (|has| |#1| (-345)) (|has| |#1| (-363))) ((-345) |has| |#1| (-345)) ((-365 |#1| |#2|) . T) ((-405 |#1| |#2|) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-545) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-628 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-698 |#1|) . T) ((-698 $) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149)))) ((-897) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| |#1| (-345)) ((-1190) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))))
-((-3896 (($) 11)) (-3821 (((-3 $ "failed") $) 13)) (-2502 (((-112) $) 10)) (** (($ $ (-895)) NIL) (($ $ (-751)) 18)))
-(((-706 |#1|) (-10 -8 (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 -2502 ((-112) |#1|)) (-15 -3896 (|#1|)) (-15 ** (|#1| |#1| (-895)))) (-707)) (T -706))
-NIL
-(-10 -8 (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 -2502 ((-112) |#1|)) (-15 -3896 (|#1|)) (-15 ** (|#1| |#1| (-895))))
-((-2898 (((-112) $ $) 7)) (-3896 (($) 18 T CONST)) (-3821 (((-3 $ "failed") $) 15)) (-2502 (((-112) $) 17)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2997 (($) 19 T CONST)) (-3387 (((-112) $ $) 6)) (** (($ $ (-895)) 13) (($ $ (-751)) 16)) (* (($ $ $) 14)))
+((-2100 (*1 *1) (-4 *1 (-703))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))) (-3629 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (-3619 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (-4174 (*1 *1 *1) (|partial| -4 *1 (-703))) (-3609 (*1 *1 *1) (|partial| -4 *1 (-703))) (-3598 (*1 *1 *1) (|partial| -4 *1 (-703))))
+(-13 (-701) (-10 -8 (-15 (-2100) ($) -1426) (-15 -3650 ((-112) $)) (-15 -3629 ($ $ (-751))) (-15 -3619 ($ $ (-751))) (-15 ** ($ $ (-751))) (-15 -4174 ((-3 $ "failed") $)) (-15 -3609 ((-3 $ "failed") $)) (-15 -3598 ((-3 $ "failed") $))))
+(((-101) . T) ((-597 (-839)) . T) ((-701) . T) ((-1073) . T))
+((-2894 (((-751)) 34)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL) ((|#2| $) 22)) (-2163 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) 44)) (-4174 (((-3 $ "failed") $) 64)) (-3702 (($) 38)) (-4209 ((|#2| $) 20)) (-3212 (($) 17)) (-3072 (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-3640 (((-669 |#2|) (-1232 $) (-1 |#2| |#2|)) 59)) (-2042 (((-1232 |#2|) $) NIL) (($ (-1232 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3974 ((|#3| $) 32)) (-1270 (((-1232 $)) 29)))
+(((-704 |#1| |#2| |#3|) (-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3702 (|#1|)) (-15 -2894 ((-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3640 ((-669 |#2|) (-1232 |#1|) (-1 |#2| |#2|))) (-15 -2163 ((-3 |#1| "failed") (-402 |#3|))) (-15 -2042 (|#1| |#3|)) (-15 -2163 (|#1| |#3|)) (-15 -3212 (|#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 (|#3| |#1|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -1270 ((-1232 |#1|))) (-15 -3974 (|#3| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|))) (-705 |#2| |#3|) (-170) (-1208 |#2|)) (T -704))
+((-2894 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-751)) (-5 *1 (-704 *3 *4 *5)) (-4 *3 (-705 *4 *5)))))
+(-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3702 (|#1|)) (-15 -2894 ((-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3640 ((-669 |#2|) (-1232 |#1|) (-1 |#2| |#2|))) (-15 -2163 ((-3 |#1| "failed") (-402 |#3|))) (-15 -2042 (|#1| |#3|)) (-15 -2163 (|#1| |#3|)) (-15 -3212 (|#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 (|#3| |#1|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -1270 ((-1232 |#1|))) (-15 -3974 (|#3| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (|has| |#1| (-358)))) (-3528 (($ $) 92 (|has| |#1| (-358)))) (-3509 (((-112) $) 94 (|has| |#1| (-358)))) (-2570 (((-669 |#1|) (-1232 $)) 44) (((-669 |#1|)) 59)) (-1650 ((|#1| $) 50)) (-3811 (((-1159 (-897) (-751)) (-552)) 144 (|has| |#1| (-344)))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 111 (|has| |#1| (-358)))) (-1330 (((-413 $) $) 112 (|has| |#1| (-358)))) (-2408 (((-112) $ $) 102 (|has| |#1| (-358)))) (-2894 (((-751)) 85 (|has| |#1| (-363)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 166 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 164 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 163)) (-1895 (((-552) $) 167 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 165 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 162)) (-2670 (($ (-1232 |#1|) (-1232 $)) 46) (($ (-1232 |#1|)) 62)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-344)))) (-2851 (($ $ $) 106 (|has| |#1| (-358)))) (-2559 (((-669 |#1|) $ (-1232 $)) 51) (((-669 |#1|) $) 57)) (-1794 (((-669 (-552)) (-669 $)) 161 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 160 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 159) (((-669 |#1|) (-669 $)) 158)) (-2163 (($ |#2|) 155) (((-3 $ "failed") (-402 |#2|)) 152 (|has| |#1| (-358)))) (-4174 (((-3 $ "failed") $) 32)) (-3442 (((-897)) 52)) (-3702 (($) 88 (|has| |#1| (-363)))) (-2826 (($ $ $) 105 (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 100 (|has| |#1| (-358)))) (-4279 (($) 146 (|has| |#1| (-344)))) (-3872 (((-112) $) 147 (|has| |#1| (-344)))) (-3554 (($ $ (-751)) 138 (|has| |#1| (-344))) (($ $) 137 (|has| |#1| (-344)))) (-2951 (((-112) $) 113 (|has| |#1| (-358)))) (-2172 (((-897) $) 149 (|has| |#1| (-344))) (((-813 (-897)) $) 135 (|has| |#1| (-344)))) (-3650 (((-112) $) 30)) (-4209 ((|#1| $) 49)) (-4034 (((-3 $ "failed") $) 139 (|has| |#1| (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 109 (|has| |#1| (-358)))) (-1291 ((|#2| $) 42 (|has| |#1| (-358)))) (-4318 (((-897) $) 87 (|has| |#1| (-363)))) (-2148 ((|#2| $) 153)) (-2605 (($ (-625 $)) 98 (|has| |#1| (-358))) (($ $ $) 97 (|has| |#1| (-358)))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 114 (|has| |#1| (-358)))) (-2071 (($) 140 (|has| |#1| (-344)) CONST)) (-3123 (($ (-897)) 86 (|has| |#1| (-363)))) (-2831 (((-1093) $) 10)) (-3212 (($) 157)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 99 (|has| |#1| (-358)))) (-2633 (($ (-625 $)) 96 (|has| |#1| (-358))) (($ $ $) 95 (|has| |#1| (-358)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 143 (|has| |#1| (-344)))) (-3824 (((-413 $) $) 110 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 107 (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ $) 90 (|has| |#1| (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 101 (|has| |#1| (-358)))) (-2397 (((-751) $) 103 (|has| |#1| (-358)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 104 (|has| |#1| (-358)))) (-3217 ((|#1| (-1232 $)) 45) ((|#1|) 58)) (-3563 (((-751) $) 148 (|has| |#1| (-344))) (((-3 (-751) "failed") $ $) 136 (|has| |#1| (-344)))) (-3072 (($ $) 134 (-1523 (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-751)) 132 (-1523 (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1149)) 130 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-625 (-1149))) 129 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1149) (-751)) 128 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 (-751))) 127 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-751)) 120 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-358)))) (-3640 (((-669 |#1|) (-1232 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-358)))) (-3610 ((|#2|) 156)) (-3798 (($) 145 (|has| |#1| (-344)))) (-2780 (((-1232 |#1|) $ (-1232 $)) 48) (((-669 |#1|) (-1232 $) (-1232 $)) 47) (((-1232 |#1|) $) 64) (((-669 |#1|) (-1232 $)) 63)) (-2042 (((-1232 |#1|) $) 61) (($ (-1232 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 142 (|has| |#1| (-344)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-358))) (($ (-402 (-552))) 84 (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552))))))) (-4243 (($ $) 141 (|has| |#1| (-344))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3974 ((|#2| $) 43)) (-4141 (((-751)) 28)) (-1270 (((-1232 $)) 65)) (-3518 (((-112) $ $) 93 (|has| |#1| (-358)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $) 133 (-1523 (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-751)) 131 (-1523 (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1149)) 126 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-625 (-1149))) 125 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1149) (-751)) 124 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 (-751))) 123 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-751)) 122 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-358)))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 118 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 115 (|has| |#1| (-358)))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-402 (-552)) $) 117 (|has| |#1| (-358))) (($ $ (-402 (-552))) 116 (|has| |#1| (-358)))))
+(((-705 |#1| |#2|) (-138) (-170) (-1208 |t#1|)) (T -705))
+((-3212 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-705 *2 *3)) (-4 *3 (-1208 *2)))) (-3610 (*1 *2) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3)))) (-2163 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1208 *3)))) (-2042 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1208 *3)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3)))) (-2163 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-358)) (-4 *3 (-170)) (-4 *1 (-705 *3 *4)))) (-3640 (*1 *2 *3 *4) (-12 (-5 *3 (-1232 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-4 *1 (-705 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1208 *5)) (-5 *2 (-669 *5)))))
+(-13 (-404 |t#1| |t#2|) (-170) (-598 |t#2|) (-406 |t#1|) (-372 |t#1|) (-10 -8 (-15 -3212 ($)) (-15 -3610 (|t#2|)) (-15 -2163 ($ |t#2|)) (-15 -2042 ($ |t#2|)) (-15 -2148 (|t#2| $)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-358)) (-6 (-227 |t#1|)) (-15 -2163 ((-3 $ "failed") (-402 |t#2|))) (-15 -3640 ((-669 |t#1|) (-1232 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-101) . T) ((-111 #0# #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1523 (|has| |#1| (-344)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-598 |#2|) . T) ((-227 |#1|) |has| |#1| (-358)) ((-229) -1523 (|has| |#1| (-344)) (-12 (|has| |#1| (-229)) (|has| |#1| (-358)))) ((-239) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-285) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-302) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-358) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-397) |has| |#1| (-344)) ((-363) -1523 (|has| |#1| (-363)) (|has| |#1| (-344))) ((-344) |has| |#1| (-344)) ((-365 |#1| |#2|) . T) ((-404 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-544) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-628 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-698 |#1|) . T) ((-698 $) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149)))) ((-896) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| |#1| (-344)) ((-1190) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))))
+((-3101 (($) 11)) (-4174 (((-3 $ "failed") $) 13)) (-3650 (((-112) $) 10)) (** (($ $ (-897)) NIL) (($ $ (-751)) 18)))
+(((-706 |#1|) (-10 -8 (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 -3650 ((-112) |#1|)) (-15 -3101 (|#1|)) (-15 ** (|#1| |#1| (-897)))) (-707)) (T -706))
+NIL
+(-10 -8 (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 -3650 ((-112) |#1|)) (-15 -3101 (|#1|)) (-15 ** (|#1| |#1| (-897))))
+((-1671 (((-112) $ $) 7)) (-3101 (($) 18 T CONST)) (-4174 (((-3 $ "failed") $) 15)) (-3650 (((-112) $) 17)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2100 (($) 19 T CONST)) (-2281 (((-112) $ $) 6)) (** (($ $ (-897)) 13) (($ $ (-751)) 16)) (* (($ $ $) 14)))
(((-707) (-138)) (T -707))
-((-2997 (*1 *1) (-4 *1 (-707))) (-3896 (*1 *1) (-4 *1 (-707))) (-2502 (*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-751)))) (-3821 (*1 *1 *1) (|partial| -4 *1 (-707))))
-(-13 (-1085) (-10 -8 (-15 (-2997) ($) -4311) (-15 -3896 ($) -4311) (-15 -2502 ((-112) $)) (-15 ** ($ $ (-751))) (-15 -3821 ((-3 $ "failed") $))))
-(((-101) . T) ((-597 (-840)) . T) ((-1085) . T) ((-1074) . T))
-((-2503 (((-2 (|:| -3425 (-400 |#2|)) (|:| |special| (-400 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3777 (((-2 (|:| -3425 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2504 ((|#2| (-402 |#2|) (-1 |#2| |#2|)) 13)) (-3794 (((-2 (|:| |poly| |#2|) (|:| -3425 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)) 47)))
-(((-708 |#1| |#2|) (-10 -7 (-15 -3777 ((-2 (|:| -3425 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2503 ((-2 (|:| -3425 (-400 |#2|)) (|:| |special| (-400 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2504 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3794 ((-2 (|:| |poly| |#2|) (|:| -3425 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1207 |#1|)) (T -708))
-((-3794 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3425 (-402 *6)) (|:| |special| (-402 *6)))) (-5 *1 (-708 *5 *6)) (-5 *3 (-402 *6)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1207 *5)) (-5 *1 (-708 *5 *2)) (-4 *5 (-358)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3425 (-400 *3)) (|:| |special| (-400 *3)))) (-5 *1 (-708 *5 *3)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3425 *3) (|:| |special| *3))) (-5 *1 (-708 *5 *3)))))
-(-10 -7 (-15 -3777 ((-2 (|:| -3425 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2503 ((-2 (|:| -3425 (-400 |#2|)) (|:| |special| (-400 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2504 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3794 ((-2 (|:| |poly| |#2|) (|:| -3425 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|))))
-((-2505 ((|#7| (-622 |#5|) |#6|) NIL)) (-4318 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-709 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4318 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2505 (|#7| (-622 |#5|) |#6|))) (-827) (-773) (-773) (-1025) (-1025) (-926 |#4| |#2| |#1|) (-926 |#5| |#3| |#1|)) (T -709))
-((-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *9)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *8 (-1025)) (-4 *2 (-926 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773)) (-4 *4 (-926 *8 *6 *5)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1025)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *2 (-926 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773)) (-4 *4 (-926 *8 *6 *5)))))
-(-10 -7 (-15 -4318 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2505 (|#7| (-622 |#5|) |#6|)))
-((-4318 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-710 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4318 (|#7| (-1 |#2| |#1|) |#6|))) (-827) (-827) (-773) (-773) (-1025) (-926 |#5| |#3| |#1|) (-926 |#5| |#4| |#2|)) (T -710))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-4 *7 (-773)) (-4 *9 (-1025)) (-4 *2 (-926 *9 *8 *6)) (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-773)) (-4 *4 (-926 *9 *7 *5)))))
-(-10 -7 (-15 -4318 (|#7| (-1 |#2| |#1|) |#6|)))
-((-4092 (((-400 |#4|) |#4|) 41)))
-(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4|))) (-773) (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149))))) (-302) (-926 (-922 |#3|) |#1| |#2|)) (T -711))
-((-4092 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149)))))) (-4 *6 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-926 (-922 *6) *4 *5)))))
-(-10 -7 (-15 -4092 ((-400 |#4|) |#4|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-841 |#1|)) $) NIL)) (-3419 (((-1143 $) $ (-841 |#1|)) NIL) (((-1143 |#2|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-2178 (($ $) NIL (|has| |#2| (-545)))) (-2176 (((-112) $) NIL (|has| |#2| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-841 |#1|))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL (|has| |#2| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-841 |#1|) #2#) $) NIL)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-841 |#1|) $) NIL)) (-4116 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#2| (-886)))) (-1721 (($ $ |#2| (-524 (-841 |#1|)) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#2|) (-841 |#1|)) NIL) (($ (-1143 $) (-841 |#1|)) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#2| (-524 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-841 |#1|)) NIL)) (-3153 (((-524 (-841 |#1|)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-1722 (($ (-1 (-524 (-841 |#1|)) (-524 (-841 |#1|))) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-3418 (((-3 (-841 |#1|) #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#2| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -2493 (-751))) #3#) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#2| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-886)))) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-622 (-841 |#1|)) (-622 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-622 (-841 |#1|)) (-622 $)) NIL)) (-4117 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4170 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4307 (((-524 (-841 |#1|)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-841 |#1|) (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ $) NIL (|has| |#2| (-545))) (($ (-402 (-538))) NIL (-3891 (|has| |#2| (-38 (-402 (-538)))) (|has| |#2| (-1014 (-402 (-538))))))) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-524 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-3035 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#2| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#2| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#2| (-38 (-402 (-538))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-712 |#1| |#2|) (-926 |#2| (-524 (-841 |#1|)) (-841 |#1|)) (-622 (-1149)) (-1025)) (T -712))
-NIL
-(-926 |#2| (-524 (-841 |#1|)) (-841 |#1|))
-((-2506 (((-2 (|:| -2733 (-922 |#3|)) (|:| -2173 (-922 |#3|))) |#4|) 14)) (-3319 ((|#4| |#4| |#2|) 33)) (-2509 ((|#4| (-402 (-922 |#3|)) |#2|) 64)) (-2508 ((|#4| (-1143 (-922 |#3|)) |#2|) 77)) (-2507 ((|#4| (-1143 |#4|) |#2|) 51)) (-3318 ((|#4| |#4| |#2|) 54)) (-4092 (((-400 |#4|) |#4|) 40)))
-(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2506 ((-2 (|:| -2733 (-922 |#3|)) (|:| -2173 (-922 |#3|))) |#4|)) (-15 -3318 (|#4| |#4| |#2|)) (-15 -2507 (|#4| (-1143 |#4|) |#2|)) (-15 -3319 (|#4| |#4| |#2|)) (-15 -2508 (|#4| (-1143 (-922 |#3|)) |#2|)) (-15 -2509 (|#4| (-402 (-922 |#3|)) |#2|)) (-15 -4092 ((-400 |#4|) |#4|))) (-773) (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)))) (-545) (-926 (-402 (-922 |#3|)) |#1| |#2|)) (T -713))
-((-4092 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *6 (-545)) (-5 *2 (-400 *3)) (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-926 (-402 (-922 *6)) *4 *5)))) (-2509 (*1 *2 *3 *4) (-12 (-4 *6 (-545)) (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-5 *3 (-402 (-922 *6))) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 (-922 *6))) (-4 *6 (-545)) (-4 *2 (-926 (-402 (-922 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))))) (-3319 (*1 *2 *2 *3) (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *5 (-545)) (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-926 (-402 (-922 *5)) *4 *3)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-926 (-402 (-922 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *6 (-545)))) (-3318 (*1 *2 *2 *3) (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *5 (-545)) (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-926 (-402 (-922 *5)) *4 *3)))) (-2506 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *6 (-545)) (-5 *2 (-2 (|:| -2733 (-922 *6)) (|:| -2173 (-922 *6)))) (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-926 (-402 (-922 *6)) *4 *5)))))
-(-10 -7 (-15 -2506 ((-2 (|:| -2733 (-922 |#3|)) (|:| -2173 (-922 |#3|))) |#4|)) (-15 -3318 (|#4| |#4| |#2|)) (-15 -2507 (|#4| (-1143 |#4|) |#2|)) (-15 -3319 (|#4| |#4| |#2|)) (-15 -2508 (|#4| (-1143 (-922 |#3|)) |#2|)) (-15 -2509 (|#4| (-402 (-922 |#3|)) |#2|)) (-15 -4092 ((-400 |#4|) |#4|)))
-((-4092 (((-400 |#4|) |#4|) 52)))
-(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4|))) (-773) (-827) (-13 (-302) (-145)) (-926 (-402 |#3|) |#1| |#2|)) (T -714))
-((-4092 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-400 *3)) (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-926 (-402 *6) *4 *5)))))
-(-10 -7 (-15 -4092 ((-400 |#4|) |#4|)))
-((-4318 (((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|)) 18)))
-(((-715 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|)))) (-1025) (-1025) (-707)) (T -715))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-716 *5 *7)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *7 (-707)) (-5 *2 (-716 *6 *7)) (-5 *1 (-715 *5 *6 *7)))))
-(-10 -7 (-15 -4318 ((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 28)) (-4133 (((-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|))) $) 29)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751)) 20 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3507 ((|#2| $) NIL) ((|#1| $) NIL)) (-4319 (($ $) 79 (|has| |#2| (-827)))) (-3821 (((-3 $ "failed") $) 65)) (-3327 (($) 35 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) 55)) (-3154 (((-622 $) $) 39)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| |#2|) 16)) (-4318 (($ (-1 |#1| |#1|) $) 54)) (-2126 (((-895) $) 32 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3227 ((|#2| $) 78 (|has| |#2| (-827)))) (-3525 ((|#1| $) 77 (|has| |#2| (-827)))) (-3593 (((-1131) $) NIL)) (-2492 (($ (-895)) 27 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 76) (($ (-538)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|)))) 11)) (-4177 (((-622 |#1|) $) 41)) (-4040 ((|#1| $ |#2|) 88)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-2991 (($) 12 T CONST)) (-2997 (($) 33 T CONST)) (-3387 (((-112) $ $) 80)) (-4197 (($ $) 47) (($ $ $) NIL)) (-4199 (($ $ $) 26)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-716 |#1| |#2|) (-13 (-1025) (-1014 |#2|) (-1014 |#1|) (-10 -8 (-15 -3226 ($ |#1| |#2|)) (-15 -4040 (|#1| $ |#2|)) (-15 -4317 ($ (-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|))))) (-15 -4133 ((-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|))) $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (-15 -4297 ((-112) $)) (-15 -4177 ((-622 |#1|) $)) (-15 -3154 ((-622 $) $)) (-15 -2510 ((-751) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-827)) (PROGN (-15 -3227 (|#2| $)) (-15 -3525 (|#1| $)) (-15 -4319 ($ $))) |%noBranch|))) (-1025) (-707)) (T -716))
-((-3226 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-707)))) (-4040 (*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-707)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4313 *3) (|:| -4298 *4)))) (-4 *3 (-1025)) (-4 *4 (-707)) (-5 *1 (-716 *3 *4)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| -4313 *3) (|:| -4298 *4)))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-716 *3 *4)) (-4 *4 (-707)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-622 (-716 *3 *4))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-3227 (*1 *2 *1) (-12 (-4 *2 (-707)) (-4 *2 (-827)) (-5 *1 (-716 *3 *2)) (-4 *3 (-1025)))) (-3525 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *3 (-707)))) (-4319 (*1 *1 *1) (-12 (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1025)) (-4 *3 (-707)))))
-(-13 (-1025) (-1014 |#2|) (-1014 |#1|) (-10 -8 (-15 -3226 ($ |#1| |#2|)) (-15 -4040 (|#1| $ |#2|)) (-15 -4317 ($ (-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|))))) (-15 -4133 ((-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|))) $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (-15 -4297 ((-112) $)) (-15 -4177 ((-622 |#1|) $)) (-15 -3154 ((-622 $) $)) (-15 -2510 ((-751) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-827)) (PROGN (-15 -3227 (|#2| $)) (-15 -3525 (|#1| $)) (-15 -4319 ($ $))) |%noBranch|)))
-((-2898 (((-112) $ $) NIL)) (-3585 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3587 (($ $ $) 79)) (-3586 (((-112) $ $) 83)) (-1271 (((-112) $ (-751)) NIL)) (-3590 (($ (-622 |#1|)) 24) (($) 16)) (-1631 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2455 (($ $) 71)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) 61 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4353))) (($ |#1| $ (-538)) 62) (($ (-1 (-112) |#1|) $ (-538)) 65)) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $ (-538)) 67) (($ (-1 (-112) |#1|) $ (-538)) 68)) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 32 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) 82)) (-2512 (($) 14) (($ |#1|) 26) (($ (-622 |#1|)) 21)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) 38)) (-3596 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 75)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3589 (($ $ $) 77)) (-1333 ((|#1| $) 55)) (-3970 (($ |#1| $) 56) (($ |#1| $ (-751)) 72)) (-3594 (((-1093) $) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1334 ((|#1| $) 54)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 50)) (-3928 (($) 13)) (-2454 (((-622 (-2 (|:| -2191 |#1|) (|:| -2069 (-751)))) $) 48)) (-3588 (($ $ |#1|) NIL) (($ $ $) 78)) (-1523 (($) 15) (($ (-622 |#1|)) 23)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) 60 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 66)) (-4330 (((-527) $) 36 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 20)) (-4317 (((-840) $) 44)) (-3591 (($ (-622 |#1|)) 25) (($) 17)) (-1335 (($ (-622 |#1|)) 22)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 81)) (-4316 (((-751) $) 59 (|has| $ (-6 -4353)))))
-(((-717 |#1|) (-13 (-718 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2512 ($)) (-15 -2512 ($ |#1|)) (-15 -2512 ($ (-622 |#1|))) (-15 -2511 ((-622 |#1|) $)) (-15 -3765 ($ |#1| $ (-538))) (-15 -3765 ($ (-1 (-112) |#1|) $ (-538))) (-15 -3764 ($ |#1| $ (-538))) (-15 -3764 ($ (-1 (-112) |#1|) $ (-538))))) (-1074)) (T -717))
-((-2512 (*1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-1074)))) (-2512 (*1 *1 *2) (-12 (-5 *1 (-717 *2)) (-4 *2 (-1074)))) (-2512 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-717 *3)))) (-2511 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-717 *3)) (-4 *3 (-1074)))) (-3765 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-717 *2)) (-4 *2 (-1074)))) (-3765 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-538)) (-4 *4 (-1074)) (-5 *1 (-717 *4)))) (-3764 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-717 *2)) (-4 *2 (-1074)))) (-3764 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-538)) (-4 *4 (-1074)) (-5 *1 (-717 *4)))))
-(-13 (-718 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2512 ($)) (-15 -2512 ($ |#1|)) (-15 -2512 ($ (-622 |#1|))) (-15 -2511 ((-622 |#1|) $)) (-15 -3765 ($ |#1| $ (-538))) (-15 -3765 ($ (-1 (-112) |#1|) $ (-538))) (-15 -3764 ($ |#1| $ (-538))) (-15 -3764 ($ (-1 (-112) |#1|) $ (-538)))))
-((-2898 (((-112) $ $) 19)) (-3585 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3587 (($ $ $) 72)) (-3586 (((-112) $ $) 73)) (-1271 (((-112) $ (-751)) 8)) (-3590 (($ (-622 |#1|)) 68) (($) 67)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2455 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) 64)) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22)) (-3589 (($ $ $) 69)) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-3594 (((-1093) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2454 (((-622 (-2 (|:| -2191 |#1|) (|:| -2069 (-751)))) $) 61)) (-3588 (($ $ |#1|) 71) (($ $ $) 70)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-4317 (((-840) $) 18)) (-3591 (($ (-622 |#1|)) 66) (($) 65)) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20)) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-718 |#1|) (-138) (-1074)) (T -718))
-NIL
-(-13 (-675 |t#1|) (-1072 |t#1|))
-(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-675 |#1|) . T) ((-1072 |#1|) . T) ((-1074) . T) ((-1185) . T))
-((-2513 (((-1237) (-1131)) 8)))
-(((-719) (-10 -7 (-15 -2513 ((-1237) (-1131))))) (T -719))
-((-2513 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-719)))))
-(-10 -7 (-15 -2513 ((-1237) (-1131))))
-((-2514 (((-622 |#1|) (-622 |#1|) (-622 |#1|)) 10)))
-(((-720 |#1|) (-10 -7 (-15 -2514 ((-622 |#1|) (-622 |#1|) (-622 |#1|)))) (-827)) (T -720))
-((-2514 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-720 *3)))))
-(-10 -7 (-15 -2514 ((-622 |#1|) (-622 |#1|) (-622 |#1|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 |#2|) $) 134)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 127 (|has| |#1| (-545)))) (-2178 (($ $) 126 (|has| |#1| (-545)))) (-2176 (((-112) $) 124 (|has| |#1| (-545)))) (-3846 (($ $) 83 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 66 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-3370 (($ $) 65 (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) 82 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 67 (|has| |#1| (-38 (-402 (-538)))))) (-3848 (($ $) 81 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 68 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-4319 (($ $) 118)) (-3821 (((-3 $ "failed") $) 32)) (-4174 (((-922 |#1|) $ (-751)) 96) (((-922 |#1|) $ (-751) (-751)) 95)) (-3225 (((-112) $) 135)) (-3990 (($) 93 (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $ |#2|) 98) (((-751) $ |#2| (-751)) 97)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 64 (|has| |#1| (-38 (-402 (-538)))))) (-4297 (((-112) $) 116)) (-3226 (($ $ (-622 |#2|) (-622 (-524 |#2|))) 133) (($ $ |#2| (-524 |#2|)) 132) (($ |#1| (-524 |#2|)) 117) (($ $ |#2| (-751)) 100) (($ $ (-622 |#2|) (-622 (-751))) 99)) (-4318 (($ (-1 |#1| |#1|) $) 115)) (-4302 (($ $) 90 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 113)) (-3525 ((|#1| $) 112)) (-3593 (((-1131) $) 9)) (-4172 (($ $ |#2|) 94 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) 10)) (-4128 (($ $ (-751)) 101)) (-3820 (((-3 $ "failed") $ $) 128 (|has| |#1| (-545)))) (-4303 (($ $) 91 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (($ $ |#2| $) 109) (($ $ (-622 |#2|) (-622 $)) 108) (($ $ (-622 (-288 $))) 107) (($ $ (-288 $)) 106) (($ $ $ $) 105) (($ $ (-622 $) (-622 $)) 104)) (-4170 (($ $ |#2|) 40) (($ $ (-622 |#2|)) 39) (($ $ |#2| (-751)) 38) (($ $ (-622 |#2|) (-622 (-751))) 37)) (-4307 (((-524 |#2|) $) 114)) (-3849 (($ $) 80 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 69 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 79 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 70 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 78 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 71 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 136)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-545))) (($ (-402 (-538))) 121 (|has| |#1| (-38 (-402 (-538)))))) (-4040 ((|#1| $ (-524 |#2|)) 119) (($ $ |#2| (-751)) 103) (($ $ (-622 |#2|) (-622 (-751))) 102)) (-3035 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-3852 (($ $) 89 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 77 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 125 (|has| |#1| (-545)))) (-3850 (($ $) 88 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 76 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 87 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 75 (|has| |#1| (-38 (-402 (-538)))))) (-3855 (($ $) 86 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 74 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 85 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 73 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 84 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 72 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ |#2|) 36) (($ $ (-622 |#2|)) 35) (($ $ |#2| (-751)) 34) (($ $ (-622 |#2|) (-622 (-751))) 33)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 120 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ $) 92 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 63 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 123 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 122 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 111) (($ $ |#1|) 110)))
+((-2100 (*1 *1) (-4 *1 (-707))) (-3101 (*1 *1) (-4 *1 (-707))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-751)))) (-4174 (*1 *1 *1) (|partial| -4 *1 (-707))))
+(-13 (-1085) (-10 -8 (-15 (-2100) ($) -1426) (-15 -3101 ($) -1426) (-15 -3650 ((-112) $)) (-15 ** ($ $ (-751))) (-15 -4174 ((-3 $ "failed") $))))
+(((-101) . T) ((-597 (-839)) . T) ((-1085) . T) ((-1073) . T))
+((-3661 (((-2 (|:| -2992 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3819 (((-2 (|:| -2992 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3673 ((|#2| (-402 |#2|) (-1 |#2| |#2|)) 13)) (-3950 (((-2 (|:| |poly| |#2|) (|:| -2992 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)) 47)))
+(((-708 |#1| |#2|) (-10 -7 (-15 -3819 ((-2 (|:| -2992 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3661 ((-2 (|:| -2992 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3673 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3950 ((-2 (|:| |poly| |#2|) (|:| -2992 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1208 |#1|)) (T -708))
+((-3950 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2992 (-402 *6)) (|:| |special| (-402 *6)))) (-5 *1 (-708 *5 *6)) (-5 *3 (-402 *6)))) (-3673 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1208 *5)) (-5 *1 (-708 *5 *2)) (-4 *5 (-358)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -2992 (-413 *3)) (|:| |special| (-413 *3)))) (-5 *1 (-708 *5 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -2992 *3) (|:| |special| *3))) (-5 *1 (-708 *5 *3)))))
+(-10 -7 (-15 -3819 ((-2 (|:| -2992 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3661 ((-2 (|:| -2992 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3673 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3950 ((-2 (|:| |poly| |#2|) (|:| -2992 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|))))
+((-2370 ((|#7| (-625 |#5|) |#6|) NIL)) (-1996 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-709 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1996 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2370 (|#7| (-625 |#5|) |#6|))) (-827) (-773) (-773) (-1025) (-1025) (-925 |#4| |#2| |#1|) (-925 |#5| |#3| |#1|)) (T -709))
+((-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *9)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *8 (-1025)) (-4 *2 (-925 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773)) (-4 *4 (-925 *8 *6 *5)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1025)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *2 (-925 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773)) (-4 *4 (-925 *8 *6 *5)))))
+(-10 -7 (-15 -1996 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2370 (|#7| (-625 |#5|) |#6|)))
+((-1996 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-710 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1996 (|#7| (-1 |#2| |#1|) |#6|))) (-827) (-827) (-773) (-773) (-1025) (-925 |#5| |#3| |#1|) (-925 |#5| |#4| |#2|)) (T -710))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-4 *7 (-773)) (-4 *9 (-1025)) (-4 *2 (-925 *9 *8 *6)) (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-773)) (-4 *4 (-925 *9 *7 *5)))))
+(-10 -7 (-15 -1996 (|#7| (-1 |#2| |#1|) |#6|)))
+((-3824 (((-413 |#4|) |#4|) 41)))
+(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4|))) (-773) (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149))))) (-302) (-925 (-928 |#3|) |#1| |#2|)) (T -711))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-925 (-928 *6) *4 *5)))))
+(-10 -7 (-15 -3824 ((-413 |#4|) |#4|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-841 |#1|)) $) NIL)) (-3793 (((-1145 $) $ (-841 |#1|)) NIL) (((-1145 |#2|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3528 (($ $) NIL (|has| |#2| (-544)))) (-3509 (((-112) $) NIL (|has| |#2| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-841 |#1|))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL (|has| |#2| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-841 |#1|) "failed") $) NIL)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-841 |#1|) $) NIL)) (-3207 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#2| (-885)))) (-1347 (($ $ |#2| (-524 (-841 |#1|)) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#2|) (-841 |#1|)) NIL) (($ (-1145 $) (-841 |#1|)) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#2| (-524 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-841 |#1|)) NIL)) (-4134 (((-524 (-841 |#1|)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1357 (($ (-1 (-524 (-841 |#1|)) (-524 (-841 |#1|))) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-1942 (((-3 (-841 |#1|) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#2| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -3564 (-751))) "failed") $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#2| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-885)))) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-625 (-841 |#1|)) (-625 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-625 (-841 |#1|)) (-625 $)) NIL)) (-3217 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-3072 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4276 (((-524 (-841 |#1|)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-841 |#1|) (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ $) NIL (|has| |#2| (-544))) (($ (-402 (-552))) NIL (-1523 (|has| |#2| (-38 (-402 (-552)))) (|has| |#2| (-1014 (-402 (-552))))))) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-524 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#2| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#2| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#2| (-38 (-402 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-712 |#1| |#2|) (-925 |#2| (-524 (-841 |#1|)) (-841 |#1|)) (-625 (-1149)) (-1025)) (T -712))
+NIL
+(-925 |#2| (-524 (-841 |#1|)) (-841 |#1|))
+((-3684 (((-2 (|:| -1282 (-928 |#3|)) (|:| -3480 (-928 |#3|))) |#4|) 14)) (-2180 ((|#4| |#4| |#2|) 33)) (-3713 ((|#4| (-402 (-928 |#3|)) |#2|) 64)) (-3703 ((|#4| (-1145 (-928 |#3|)) |#2|) 77)) (-3693 ((|#4| (-1145 |#4|) |#2|) 51)) (-2170 ((|#4| |#4| |#2|) 54)) (-3824 (((-413 |#4|) |#4|) 40)))
+(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3684 ((-2 (|:| -1282 (-928 |#3|)) (|:| -3480 (-928 |#3|))) |#4|)) (-15 -2170 (|#4| |#4| |#2|)) (-15 -3693 (|#4| (-1145 |#4|) |#2|)) (-15 -2180 (|#4| |#4| |#2|)) (-15 -3703 (|#4| (-1145 (-928 |#3|)) |#2|)) (-15 -3713 (|#4| (-402 (-928 |#3|)) |#2|)) (-15 -3824 ((-413 |#4|) |#4|))) (-773) (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)))) (-544) (-925 (-402 (-928 |#3|)) |#1| |#2|)) (T -713))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *6 (-544)) (-5 *2 (-413 *3)) (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-925 (-402 (-928 *6)) *4 *5)))) (-3713 (*1 *2 *3 *4) (-12 (-4 *6 (-544)) (-4 *2 (-925 *3 *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-5 *3 (-402 (-928 *6))) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 (-928 *6))) (-4 *6 (-544)) (-4 *2 (-925 (-402 (-928 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))))) (-2180 (*1 *2 *2 *3) (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *5 (-544)) (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-925 (-402 (-928 *5)) *4 *3)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *2)) (-4 *2 (-925 (-402 (-928 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *6 (-544)))) (-2170 (*1 *2 *2 *3) (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *5 (-544)) (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-925 (-402 (-928 *5)) *4 *3)))) (-3684 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *6 (-544)) (-5 *2 (-2 (|:| -1282 (-928 *6)) (|:| -3480 (-928 *6)))) (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-925 (-402 (-928 *6)) *4 *5)))))
+(-10 -7 (-15 -3684 ((-2 (|:| -1282 (-928 |#3|)) (|:| -3480 (-928 |#3|))) |#4|)) (-15 -2170 (|#4| |#4| |#2|)) (-15 -3693 (|#4| (-1145 |#4|) |#2|)) (-15 -2180 (|#4| |#4| |#2|)) (-15 -3703 (|#4| (-1145 (-928 |#3|)) |#2|)) (-15 -3713 (|#4| (-402 (-928 |#3|)) |#2|)) (-15 -3824 ((-413 |#4|) |#4|)))
+((-3824 (((-413 |#4|) |#4|) 52)))
+(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4|))) (-773) (-827) (-13 (-302) (-145)) (-925 (-402 |#3|) |#1| |#2|)) (T -714))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-925 (-402 *6) *4 *5)))))
+(-10 -7 (-15 -3824 ((-413 |#4|) |#4|)))
+((-1996 (((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|)) 18)))
+(((-715 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|)))) (-1025) (-1025) (-707)) (T -715))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-716 *5 *7)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *7 (-707)) (-5 *2 (-716 *6 *7)) (-5 *1 (-715 *5 *6 *7)))))
+(-10 -7 (-15 -1996 ((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 28)) (-2182 (((-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|))) $) 29)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751)) 20 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-1895 ((|#2| $) NIL) ((|#1| $) NIL)) (-4169 (($ $) 79 (|has| |#2| (-827)))) (-4174 (((-3 $ "failed") $) 65)) (-3702 (($) 35 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) 55)) (-4148 (((-625 $) $) 39)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| |#2|) 16)) (-1996 (($ (-1 |#1| |#1|) $) 54)) (-4318 (((-897) $) 32 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-4131 ((|#2| $) 78 (|has| |#2| (-827)))) (-4144 ((|#1| $) 77 (|has| |#2| (-827)))) (-2883 (((-1131) $) NIL)) (-3123 (($ (-897)) 27 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 76) (($ (-552)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|)))) 11)) (-2512 (((-625 |#1|) $) 41)) (-3637 ((|#1| $ |#2|) 88)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2089 (($) 12 T CONST)) (-2100 (($) 33 T CONST)) (-2281 (((-112) $ $) 80)) (-2393 (($ $) 47) (($ $ $) NIL)) (-2382 (($ $ $) 26)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-716 |#1| |#2|) (-13 (-1025) (-1014 |#2|) (-1014 |#1|) (-10 -8 (-15 -3957 ($ |#1| |#2|)) (-15 -3637 (|#1| $ |#2|)) (-15 -1683 ($ (-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|))))) (-15 -2182 ((-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|))) $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (-15 -4201 ((-112) $)) (-15 -2512 ((-625 |#1|) $)) (-15 -4148 ((-625 $) $)) (-15 -3723 ((-751) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-827)) (PROGN (-15 -4131 (|#2| $)) (-15 -4144 (|#1| $)) (-15 -4169 ($ $))) |%noBranch|))) (-1025) (-707)) (T -716))
+((-3957 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-707)))) (-3637 (*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-707)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -3340 *3) (|:| -2243 *4)))) (-4 *3 (-1025)) (-4 *4 (-707)) (-5 *1 (-716 *3 *4)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| -3340 *3) (|:| -2243 *4)))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-716 *3 *4)) (-4 *4 (-707)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-625 (-716 *3 *4))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-3723 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-4131 (*1 *2 *1) (-12 (-4 *2 (-707)) (-4 *2 (-827)) (-5 *1 (-716 *3 *2)) (-4 *3 (-1025)))) (-4144 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *3 (-707)))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1025)) (-4 *3 (-707)))))
+(-13 (-1025) (-1014 |#2|) (-1014 |#1|) (-10 -8 (-15 -3957 ($ |#1| |#2|)) (-15 -3637 (|#1| $ |#2|)) (-15 -1683 ($ (-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|))))) (-15 -2182 ((-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|))) $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (-15 -4201 ((-112) $)) (-15 -2512 ((-625 |#1|) $)) (-15 -4148 ((-625 $) $)) (-15 -3723 ((-751) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-827)) (PROGN (-15 -4131 (|#2| $)) (-15 -4144 (|#1| $)) (-15 -4169 ($ $))) |%noBranch|)))
+((-1671 (((-112) $ $) 19)) (-3419 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2837 (($ $ $) 72)) (-2823 (((-112) $ $) 73)) (-3495 (((-112) $ (-751)) 8)) (-1517 (($ (-625 |#1|)) 68) (($) 67)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3238 (($ $) 62)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) 64)) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22)) (-2860 (($ $ $) 69)) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-2831 (((-1093) $) 21)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-3229 (((-625 (-2 (|:| -4120 |#1|) (|:| -2840 (-751)))) $) 61)) (-2849 (($ $ |#1|) 71) (($ $ $) 70)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-1683 (((-839) $) 18)) (-3761 (($ (-625 |#1|)) 66) (($) 65)) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20)) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-717 |#1|) (-138) (-1073)) (T -717))
+NIL
+(-13 (-675 |t#1|) (-1071 |t#1|))
+(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-675 |#1|) . T) ((-1071 |#1|) . T) ((-1073) . T) ((-1186) . T))
+((-1671 (((-112) $ $) NIL)) (-3419 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2837 (($ $ $) 79)) (-2823 (((-112) $ $) 83)) (-3495 (((-112) $ (-751)) NIL)) (-1517 (($ (-625 |#1|)) 24) (($) 16)) (-2873 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-3238 (($ $) 71)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) 61 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4353))) (($ |#1| $ (-552)) 62) (($ (-1 (-112) |#1|) $ (-552)) 65)) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $ (-552)) 67) (($ (-1 (-112) |#1|) $ (-552)) 68)) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 32 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) 82)) (-3740 (($) 14) (($ |#1|) 26) (($ (-625 |#1|)) 21)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) 38)) (-2893 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 75)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2860 (($ $ $) 77)) (-2953 ((|#1| $) 55)) (-3966 (($ |#1| $) 56) (($ |#1| $ (-751)) 72)) (-2831 (((-1093) $) NIL)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2966 ((|#1| $) 54)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 50)) (-3600 (($) 13)) (-3229 (((-625 (-2 (|:| -4120 |#1|) (|:| -2840 (-751)))) $) 48)) (-2849 (($ $ |#1|) NIL) (($ $ $) 78)) (-4255 (($) 15) (($ (-625 |#1|)) 23)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) 60 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 66)) (-2042 (((-528) $) 36 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 20)) (-1683 (((-839) $) 44)) (-3761 (($ (-625 |#1|)) 25) (($) 17)) (-2977 (($ (-625 |#1|)) 22)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 81)) (-1471 (((-751) $) 59 (|has| $ (-6 -4353)))))
+(((-718 |#1|) (-13 (-717 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -3740 ($)) (-15 -3740 ($ |#1|)) (-15 -3740 ($ (-625 |#1|))) (-15 -3730 ((-625 |#1|) $)) (-15 -1416 ($ |#1| $ (-552))) (-15 -1416 ($ (-1 (-112) |#1|) $ (-552))) (-15 -1938 ($ |#1| $ (-552))) (-15 -1938 ($ (-1 (-112) |#1|) $ (-552))))) (-1073)) (T -718))
+((-3740 (*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-1073)))) (-3740 (*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-1073)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-718 *3)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-718 *3)) (-4 *3 (-1073)))) (-1416 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-718 *2)) (-4 *2 (-1073)))) (-1416 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-552)) (-4 *4 (-1073)) (-5 *1 (-718 *4)))) (-1938 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-718 *2)) (-4 *2 (-1073)))) (-1938 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-552)) (-4 *4 (-1073)) (-5 *1 (-718 *4)))))
+(-13 (-717 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -3740 ($)) (-15 -3740 ($ |#1|)) (-15 -3740 ($ (-625 |#1|))) (-15 -3730 ((-625 |#1|) $)) (-15 -1416 ($ |#1| $ (-552))) (-15 -1416 ($ (-1 (-112) |#1|) $ (-552))) (-15 -1938 ($ |#1| $ (-552))) (-15 -1938 ($ (-1 (-112) |#1|) $ (-552)))))
+((-2955 (((-1237) (-1131)) 8)))
+(((-719) (-10 -7 (-15 -2955 ((-1237) (-1131))))) (T -719))
+((-2955 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-719)))))
+(-10 -7 (-15 -2955 ((-1237) (-1131))))
+((-3751 (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 10)))
+(((-720 |#1|) (-10 -7 (-15 -3751 ((-625 |#1|) (-625 |#1|) (-625 |#1|)))) (-827)) (T -720))
+((-3751 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-720 *3)))))
+(-10 -7 (-15 -3751 ((-625 |#1|) (-625 |#1|) (-625 |#1|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 |#2|) $) 134)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 127 (|has| |#1| (-544)))) (-3528 (($ $) 126 (|has| |#1| (-544)))) (-3509 (((-112) $) 124 (|has| |#1| (-544)))) (-3728 (($ $) 83 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 66 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-3837 (($ $) 65 (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) 82 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 67 (|has| |#1| (-38 (-402 (-552)))))) (-3749 (($ $) 81 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 68 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-4169 (($ $) 118)) (-4174 (((-3 $ "failed") $) 32)) (-4098 (((-928 |#1|) $ (-751)) 96) (((-928 |#1|) $ (-751) (-751)) 95)) (-3592 (((-112) $) 135)) (-1385 (($) 93 (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $ |#2|) 98) (((-751) $ |#2| (-751)) 97)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 64 (|has| |#1| (-38 (-402 (-552)))))) (-4201 (((-112) $) 116)) (-3957 (($ $ (-625 |#2|) (-625 (-524 |#2|))) 133) (($ $ |#2| (-524 |#2|)) 132) (($ |#1| (-524 |#2|)) 117) (($ $ |#2| (-751)) 100) (($ $ (-625 |#2|) (-625 (-751))) 99)) (-1996 (($ (-1 |#1| |#1|) $) 115)) (-2458 (($ $) 90 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 113)) (-4144 ((|#1| $) 112)) (-2883 (((-1131) $) 9)) (-2481 (($ $ |#2|) 94 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) 10)) (-2147 (($ $ (-751)) 101)) (-2802 (((-3 $ "failed") $ $) 128 (|has| |#1| (-544)))) (-2863 (($ $) 91 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (($ $ |#2| $) 109) (($ $ (-625 |#2|) (-625 $)) 108) (($ $ (-625 (-289 $))) 107) (($ $ (-289 $)) 106) (($ $ $ $) 105) (($ $ (-625 $) (-625 $)) 104)) (-3072 (($ $ |#2|) 40) (($ $ (-625 |#2|)) 39) (($ $ |#2| (-751)) 38) (($ $ (-625 |#2|) (-625 (-751))) 37)) (-4276 (((-524 |#2|) $) 114)) (-3759 (($ $) 80 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 69 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 79 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 70 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 78 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 71 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 136)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-544))) (($ (-402 (-552))) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3637 ((|#1| $ (-524 |#2|)) 119) (($ $ |#2| (-751)) 103) (($ $ (-625 |#2|) (-625 (-751))) 102)) (-4243 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-3789 (($ $) 89 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 77 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 125 (|has| |#1| (-544)))) (-3769 (($ $) 88 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 76 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 87 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 75 (|has| |#1| (-38 (-402 (-552)))))) (-3742 (($ $) 86 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 74 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 85 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 73 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 84 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 72 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ |#2|) 36) (($ $ (-625 |#2|)) 35) (($ $ |#2| (-751)) 34) (($ $ (-625 |#2|) (-625 (-751))) 33)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 120 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ $) 92 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 63 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 123 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 122 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 111) (($ $ |#1|) 110)))
(((-721 |#1| |#2|) (-138) (-1025) (-827)) (T -721))
-((-4040 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827)))) (-4040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *5)) (-5 *3 (-622 (-751))) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-721 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-827)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *5)) (-5 *3 (-622 (-751))) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-4131 (*1 *2 *1 *3) (-12 (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4131 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-751)) (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)))) (-4174 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)) (-5 *2 (-922 *4)))) (-4174 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)) (-5 *2 (-922 *4)))) (-4172 (*1 *1 *1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827)) (-4 *3 (-38 (-402 (-538)))))))
-(-13 (-876 |t#2|) (-949 |t#1| (-524 |t#2|) |t#2|) (-507 |t#2| $) (-304 $) (-10 -8 (-15 -4040 ($ $ |t#2| (-751))) (-15 -4040 ($ $ (-622 |t#2|) (-622 (-751)))) (-15 -4128 ($ $ (-751))) (-15 -3226 ($ $ |t#2| (-751))) (-15 -3226 ($ $ (-622 |t#2|) (-622 (-751)))) (-15 -4131 ((-751) $ |t#2|)) (-15 -4131 ((-751) $ |t#2| (-751))) (-15 -4174 ((-922 |t#1|) $ (-751))) (-15 -4174 ((-922 |t#1|) $ (-751) (-751))) (IF (|has| |t#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $ |t#2|)) (-6 (-978)) (-6 (-1171))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-524 |#2|)) . T) ((-25) . T) ((-38 #2=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-285) |has| |#1| (-545)) ((-304 $) . T) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-507 |#2| $) . T) ((-507 $ $) . T) ((-545) |has| |#1| (-545)) ((-628 #2#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #2#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-876 |#2|) . T) ((-949 |#1| #1# |#2|) . T) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-1031 #2#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))))
-((-4092 (((-400 (-1143 |#4|)) (-1143 |#4|)) 30) (((-400 |#4|) |#4|) 26)))
-(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4|)) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|)))) (-827) (-773) (-13 (-302) (-145)) (-926 |#3| |#2| |#1|)) (T -722))
-((-4092 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-926 *6 *5 *4)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-722 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-400 *3)) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4)))))
-(-10 -7 (-15 -4092 ((-400 |#4|) |#4|)) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|))))
-((-2517 (((-400 |#4|) |#4| |#2|) 120)) (-2515 (((-400 |#4|) |#4|) NIL)) (-4329 (((-400 (-1143 |#4|)) (-1143 |#4|)) 111) (((-400 |#4|) |#4|) 41)) (-2519 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-622 (-2 (|:| -4092 (-1143 |#4|)) (|:| -2493 (-538)))))) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|))) 69)) (-2523 (((-1143 |#3|) (-1143 |#3|) (-538)) 139)) (-2522 (((-622 (-751)) (-1143 |#4|) (-622 |#2|) (-751)) 61)) (-3413 (((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-1143 |#3|) (-1143 |#3|) |#4| (-622 |#2|) (-622 (-751)) (-622 |#3|)) 65)) (-2520 (((-2 (|:| |upol| (-1143 |#3|)) (|:| |Lval| (-622 |#3|)) (|:| |Lfact| (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538))))) (|:| |ctpol| |#3|)) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|))) 26)) (-2518 (((-2 (|:| -2120 (-1143 |#4|)) (|:| |polval| (-1143 |#3|))) (-1143 |#4|) (-1143 |#3|) (-538)) 57)) (-2516 (((-538) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538))))) 136)) (-2521 ((|#4| (-538) (-400 |#4|)) 58)) (-3716 (((-112) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538))))) NIL)))
-(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4329 ((-400 |#4|) |#4|)) (-15 -4329 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -2515 ((-400 |#4|) |#4|)) (-15 -2516 ((-538) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))))) (-15 -2517 ((-400 |#4|) |#4| |#2|)) (-15 -2518 ((-2 (|:| -2120 (-1143 |#4|)) (|:| |polval| (-1143 |#3|))) (-1143 |#4|) (-1143 |#3|) (-538))) (-15 -2519 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-622 (-2 (|:| -4092 (-1143 |#4|)) (|:| -2493 (-538)))))) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|)))) (-15 -2520 ((-2 (|:| |upol| (-1143 |#3|)) (|:| |Lval| (-622 |#3|)) (|:| |Lfact| (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538))))) (|:| |ctpol| |#3|)) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|)))) (-15 -2521 (|#4| (-538) (-400 |#4|))) (-15 -3716 ((-112) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))))) (-15 -3413 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-1143 |#3|) (-1143 |#3|) |#4| (-622 |#2|) (-622 (-751)) (-622 |#3|))) (-15 -2522 ((-622 (-751)) (-1143 |#4|) (-622 |#2|) (-751))) (-15 -2523 ((-1143 |#3|) (-1143 |#3|) (-538)))) (-773) (-827) (-302) (-926 |#3| |#1| |#2|)) (T -723))
-((-2523 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *6)) (-5 *3 (-538)) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) (-2522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-4 *7 (-827)) (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-4 *8 (-302)) (-5 *2 (-622 (-751))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *5 (-751)))) (-3413 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1143 *11)) (-5 *6 (-622 *10)) (-5 *7 (-622 (-751))) (-5 *8 (-622 *11)) (-4 *10 (-827)) (-4 *11 (-302)) (-4 *9 (-773)) (-4 *5 (-926 *11 *9 *10)) (-5 *2 (-622 (-1143 *5))) (-5 *1 (-723 *9 *10 *11 *5)) (-5 *3 (-1143 *5)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-2 (|:| -4092 (-1143 *6)) (|:| -2493 (-538))))) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) (-2521 (*1 *2 *3 *4) (-12 (-5 *3 (-538)) (-5 *4 (-400 *2)) (-4 *2 (-926 *7 *5 *6)) (-5 *1 (-723 *5 *6 *7 *2)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-302)))) (-2520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-5 *5 (-622 (-622 *8))) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 (-2 (|:| |upol| (-1143 *8)) (|:| |Lval| (-622 *8)) (|:| |Lfact| (-622 (-2 (|:| -4092 (-1143 *8)) (|:| -2493 (-538))))) (|:| |ctpol| *8))) (-5 *1 (-723 *6 *7 *8 *9)))) (-2519 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-622 *7)) (-5 *5 (-622 (-622 *8))) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *6 (-773)) (-4 *9 (-926 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-622 (-2 (|:| -4092 (-1143 *9)) (|:| -2493 (-538))))))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1143 *9)))) (-2518 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-538)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-926 *8 *6 *7)) (-5 *2 (-2 (|:| -2120 (-1143 *9)) (|:| |polval| (-1143 *8)))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1143 *9)) (-5 *4 (-1143 *8)))) (-2517 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-723 *5 *4 *6 *3)) (-4 *3 (-926 *6 *5 *4)))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -4092 (-1143 *6)) (|:| -2493 (-538))))) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-538)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) (-2515 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-926 *6 *4 *5)))) (-4329 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-723 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-4329 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-926 *6 *4 *5)))))
-(-10 -7 (-15 -4329 ((-400 |#4|) |#4|)) (-15 -4329 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -2515 ((-400 |#4|) |#4|)) (-15 -2516 ((-538) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))))) (-15 -2517 ((-400 |#4|) |#4| |#2|)) (-15 -2518 ((-2 (|:| -2120 (-1143 |#4|)) (|:| |polval| (-1143 |#3|))) (-1143 |#4|) (-1143 |#3|) (-538))) (-15 -2519 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-622 (-2 (|:| -4092 (-1143 |#4|)) (|:| -2493 (-538)))))) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|)))) (-15 -2520 ((-2 (|:| |upol| (-1143 |#3|)) (|:| |Lval| (-622 |#3|)) (|:| |Lfact| (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538))))) (|:| |ctpol| |#3|)) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|)))) (-15 -2521 (|#4| (-538) (-400 |#4|))) (-15 -3716 ((-112) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))))) (-15 -3413 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-1143 |#3|) (-1143 |#3|) |#4| (-622 |#2|) (-622 (-751)) (-622 |#3|))) (-15 -2522 ((-622 (-751)) (-1143 |#4|) (-622 |#2|) (-751))) (-15 -2523 ((-1143 |#3|) (-1143 |#3|) (-538))))
-((-2524 (($ $ (-895)) 12)))
-(((-724 |#1| |#2|) (-10 -8 (-15 -2524 (|#1| |#1| (-895)))) (-725 |#2|) (-170)) (T -724))
-NIL
-(-10 -8 (-15 -2524 (|#1| |#1| (-895))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2499 (($ $ (-895)) 28)) (-2524 (($ $ (-895)) 33)) (-2498 (($ $ (-895)) 29)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-2686 (($ $ $) 25)) (-4317 (((-840) $) 11)) (-2687 (($ $ $ $) 26)) (-2685 (($ $ $) 24)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-3637 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827)))) (-3637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *5)) (-5 *3 (-625 (-751))) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-721 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-827)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *5)) (-5 *3 (-625 (-751))) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-2172 (*1 *2 *1 *3) (-12 (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *2 (-751)))) (-2172 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-751)) (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)) (-5 *2 (-928 *4)))) (-4098 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)) (-5 *2 (-928 *4)))) (-2481 (*1 *1 *1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827)) (-4 *3 (-38 (-402 (-552)))))))
+(-13 (-876 |t#2|) (-949 |t#1| (-524 |t#2|) |t#2|) (-507 |t#2| $) (-304 $) (-10 -8 (-15 -3637 ($ $ |t#2| (-751))) (-15 -3637 ($ $ (-625 |t#2|) (-625 (-751)))) (-15 -2147 ($ $ (-751))) (-15 -3957 ($ $ |t#2| (-751))) (-15 -3957 ($ $ (-625 |t#2|) (-625 (-751)))) (-15 -2172 ((-751) $ |t#2|)) (-15 -2172 ((-751) $ |t#2| (-751))) (-15 -4098 ((-928 |t#1|) $ (-751))) (-15 -4098 ((-928 |t#1|) $ (-751) (-751))) (IF (|has| |t#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $ |t#2|)) (-6 (-978)) (-6 (-1171))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-524 |#2|)) . T) ((-25) . T) ((-38 #1=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-285) |has| |#1| (-544)) ((-304 $) . T) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-507 |#2| $) . T) ((-507 $ $) . T) ((-544) |has| |#1| (-544)) ((-628 #1#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-876 |#2|) . T) ((-949 |#1| #0# |#2|) . T) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-1031 #1#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))))
+((-3824 (((-413 (-1145 |#4|)) (-1145 |#4|)) 30) (((-413 |#4|) |#4|) 26)))
+(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4|)) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|)))) (-827) (-773) (-13 (-302) (-145)) (-925 |#3| |#2| |#1|)) (T -722))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-722 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *3 (-925 *6 *5 *4)))))
+(-10 -7 (-15 -3824 ((-413 |#4|) |#4|)) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|))))
+((-2641 (((-413 |#4|) |#4| |#2|) 120)) (-2620 (((-413 |#4|) |#4|) NIL)) (-1330 (((-413 (-1145 |#4|)) (-1145 |#4|)) 111) (((-413 |#4|) |#4|) 41)) (-2659 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-625 (-2 (|:| -3824 (-1145 |#4|)) (|:| -3564 (-552)))))) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|))) 69)) (-2703 (((-1145 |#3|) (-1145 |#3|) (-552)) 139)) (-2693 (((-625 (-751)) (-1145 |#4|) (-625 |#2|) (-751)) 61)) (-2148 (((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-1145 |#3|) (-1145 |#3|) |#4| (-625 |#2|) (-625 (-751)) (-625 |#3|)) 65)) (-2671 (((-2 (|:| |upol| (-1145 |#3|)) (|:| |Lval| (-625 |#3|)) (|:| |Lfact| (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552))))) (|:| |ctpol| |#3|)) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|))) 26)) (-2649 (((-2 (|:| -4256 (-1145 |#4|)) (|:| |polval| (-1145 |#3|))) (-1145 |#4|) (-1145 |#3|) (-552)) 57)) (-2630 (((-552) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552))))) 136)) (-2683 ((|#4| (-552) (-413 |#4|)) 58)) (-1482 (((-112) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552))))) NIL)))
+(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1330 ((-413 |#4|) |#4|)) (-15 -1330 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -2620 ((-413 |#4|) |#4|)) (-15 -2630 ((-552) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))))) (-15 -2641 ((-413 |#4|) |#4| |#2|)) (-15 -2649 ((-2 (|:| -4256 (-1145 |#4|)) (|:| |polval| (-1145 |#3|))) (-1145 |#4|) (-1145 |#3|) (-552))) (-15 -2659 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-625 (-2 (|:| -3824 (-1145 |#4|)) (|:| -3564 (-552)))))) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|)))) (-15 -2671 ((-2 (|:| |upol| (-1145 |#3|)) (|:| |Lval| (-625 |#3|)) (|:| |Lfact| (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552))))) (|:| |ctpol| |#3|)) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|)))) (-15 -2683 (|#4| (-552) (-413 |#4|))) (-15 -1482 ((-112) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))))) (-15 -2148 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-1145 |#3|) (-1145 |#3|) |#4| (-625 |#2|) (-625 (-751)) (-625 |#3|))) (-15 -2693 ((-625 (-751)) (-1145 |#4|) (-625 |#2|) (-751))) (-15 -2703 ((-1145 |#3|) (-1145 |#3|) (-552)))) (-773) (-827) (-302) (-925 |#3| |#1| |#2|)) (T -723))
+((-2703 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 *6)) (-5 *3 (-552)) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) (-2693 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-4 *7 (-827)) (-4 *9 (-925 *8 *6 *7)) (-4 *6 (-773)) (-4 *8 (-302)) (-5 *2 (-625 (-751))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *5 (-751)))) (-2148 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1145 *11)) (-5 *6 (-625 *10)) (-5 *7 (-625 (-751))) (-5 *8 (-625 *11)) (-4 *10 (-827)) (-4 *11 (-302)) (-4 *9 (-773)) (-4 *5 (-925 *11 *9 *10)) (-5 *2 (-625 (-1145 *5))) (-5 *1 (-723 *9 *10 *11 *5)) (-5 *3 (-1145 *5)))) (-1482 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-2 (|:| -3824 (-1145 *6)) (|:| -3564 (-552))))) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-413 *2)) (-4 *2 (-925 *7 *5 *6)) (-5 *1 (-723 *5 *6 *7 *2)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-302)))) (-2671 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-5 *5 (-625 (-625 *8))) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-925 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 (-2 (|:| |upol| (-1145 *8)) (|:| |Lval| (-625 *8)) (|:| |Lfact| (-625 (-2 (|:| -3824 (-1145 *8)) (|:| -3564 (-552))))) (|:| |ctpol| *8))) (-5 *1 (-723 *6 *7 *8 *9)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-625 *7)) (-5 *5 (-625 (-625 *8))) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *6 (-773)) (-4 *9 (-925 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-625 (-2 (|:| -3824 (-1145 *9)) (|:| -3564 (-552))))))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1145 *9)))) (-2649 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-552)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-925 *8 *6 *7)) (-5 *2 (-2 (|:| -4256 (-1145 *9)) (|:| |polval| (-1145 *8)))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1145 *9)) (-5 *4 (-1145 *8)))) (-2641 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-723 *5 *4 *6 *3)) (-4 *3 (-925 *6 *5 *4)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3824 (-1145 *6)) (|:| -3564 (-552))))) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-552)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) (-2620 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-925 *6 *4 *5)))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-723 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-925 *6 *4 *5)))))
+(-10 -7 (-15 -1330 ((-413 |#4|) |#4|)) (-15 -1330 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -2620 ((-413 |#4|) |#4|)) (-15 -2630 ((-552) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))))) (-15 -2641 ((-413 |#4|) |#4| |#2|)) (-15 -2649 ((-2 (|:| -4256 (-1145 |#4|)) (|:| |polval| (-1145 |#3|))) (-1145 |#4|) (-1145 |#3|) (-552))) (-15 -2659 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-625 (-2 (|:| -3824 (-1145 |#4|)) (|:| -3564 (-552)))))) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|)))) (-15 -2671 ((-2 (|:| |upol| (-1145 |#3|)) (|:| |Lval| (-625 |#3|)) (|:| |Lfact| (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552))))) (|:| |ctpol| |#3|)) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|)))) (-15 -2683 (|#4| (-552) (-413 |#4|))) (-15 -1482 ((-112) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))))) (-15 -2148 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-1145 |#3|) (-1145 |#3|) |#4| (-625 |#2|) (-625 (-751)) (-625 |#3|))) (-15 -2693 ((-625 (-751)) (-1145 |#4|) (-625 |#2|) (-751))) (-15 -2703 ((-1145 |#3|) (-1145 |#3|) (-552))))
+((-2712 (($ $ (-897)) 12)))
+(((-724 |#1| |#2|) (-10 -8 (-15 -2712 (|#1| |#1| (-897)))) (-725 |#2|) (-170)) (T -724))
+NIL
+(-10 -8 (-15 -2712 (|#1| |#1| (-897))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-3629 (($ $ (-897)) 28)) (-2712 (($ $ (-897)) 33)) (-3619 (($ $ (-897)) 29)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3828 (($ $ $) 25)) (-1683 (((-839) $) 11)) (-3842 (($ $ $ $) 26)) (-3818 (($ $ $) 24)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 30)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-725 |#1|) (-138) (-170)) (T -725))
-((-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-725 *3)) (-4 *3 (-170)))))
-(-13 (-742) (-698 |t#1|) (-10 -8 (-15 -2524 ($ $ (-895)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1074) . T))
-((-2526 (((-1011) (-669 (-221)) (-538) (-112) (-538)) 25)) (-2525 (((-1011) (-669 (-221)) (-538) (-112) (-538)) 24)))
-(((-726) (-10 -7 (-15 -2525 ((-1011) (-669 (-221)) (-538) (-112) (-538))) (-15 -2526 ((-1011) (-669 (-221)) (-538) (-112) (-538))))) (T -726))
-((-2526 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-726)))) (-2525 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-726)))))
-(-10 -7 (-15 -2525 ((-1011) (-669 (-221)) (-538) (-112) (-538))) (-15 -2526 ((-1011) (-669 (-221)) (-538) (-112) (-538))))
-((-2529 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) 43)) (-2528 (((-1011) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) 39)) (-2527 (((-1011) (-221) (-221) (-221) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) 32)))
-(((-727) (-10 -7 (-15 -2527 ((-1011) (-221) (-221) (-221) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2528 ((-1011) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN))))) (-15 -2529 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN))))))) (T -727))
-((-2529 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1011)) (-5 *1 (-727)))) (-2528 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1011)) (-5 *1 (-727)))) (-2527 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) (-5 *1 (-727)))))
-(-10 -7 (-15 -2527 ((-1011) (-221) (-221) (-221) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2528 ((-1011) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN))))) (-15 -2529 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN))))))
-((-2541 (((-1011) (-538) (-538) (-669 (-221)) (-538)) 34)) (-2540 (((-1011) (-538) (-538) (-669 (-221)) (-538)) 33)) (-2539 (((-1011) (-538) (-669 (-221)) (-538)) 32)) (-2538 (((-1011) (-538) (-669 (-221)) (-538)) 31)) (-2537 (((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 30)) (-2536 (((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 29)) (-2535 (((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538)) 28)) (-2534 (((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538)) 27)) (-2533 (((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 24)) (-2532 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538)) 23)) (-2531 (((-1011) (-538) (-669 (-221)) (-538)) 22)) (-2530 (((-1011) (-538) (-669 (-221)) (-538)) 21)))
-(((-728) (-10 -7 (-15 -2530 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2531 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2532 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2533 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2534 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2535 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2536 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2537 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2538 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2539 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2540 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2541 ((-1011) (-538) (-538) (-669 (-221)) (-538))))) (T -728))
-((-2541 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2540 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2539 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2538 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2537 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2536 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2535 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2534 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2533 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2532 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2531 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2530 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))))
-(-10 -7 (-15 -2530 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2531 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2532 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2533 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2534 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2535 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2536 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2537 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2538 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2539 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2540 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2541 ((-1011) (-538) (-538) (-669 (-221)) (-538))))
-((-2553 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) 52)) (-2552 (((-1011) (-669 (-221)) (-669 (-221)) (-538) (-538)) 51)) (-2551 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) 50)) (-2550 (((-1011) (-221) (-221) (-538) (-538) (-538) (-538)) 46)) (-2549 (((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) 45)) (-2548 (((-1011) (-221) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) 44)) (-2547 (((-1011) (-221) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) 43)) (-2546 (((-1011) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) 42)) (-2545 (((-1011) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) 38)) (-2544 (((-1011) (-221) (-221) (-538) (-669 (-221)) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) 37)) (-2543 (((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) 33)) (-2542 (((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) 32)))
-(((-729) (-10 -7 (-15 -2542 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2543 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2544 ((-1011) (-221) (-221) (-538) (-669 (-221)) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2545 ((-1011) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2546 ((-1011) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2547 ((-1011) (-221) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2548 ((-1011) (-221) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2549 ((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2550 ((-1011) (-221) (-221) (-538) (-538) (-538) (-538))) (-15 -2551 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN))))) (-15 -2552 ((-1011) (-669 (-221)) (-669 (-221)) (-538) (-538))) (-15 -2553 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN))))))) (T -729))
-((-2553 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2552 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2551 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2550 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2549 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2548 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2547 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2546 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2545 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2544 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2543 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2542 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) (-5 *1 (-729)))))
-(-10 -7 (-15 -2542 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2543 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2544 ((-1011) (-221) (-221) (-538) (-669 (-221)) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2545 ((-1011) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2546 ((-1011) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2547 ((-1011) (-221) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2548 ((-1011) (-221) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2549 ((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2550 ((-1011) (-221) (-221) (-538) (-538) (-538) (-538))) (-15 -2551 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN))))) (-15 -2552 ((-1011) (-669 (-221)) (-669 (-221)) (-538) (-538))) (-15 -2553 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN))))))
-((-2561 (((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2560 (((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383)) 69) (((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2559 (((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) 57)) (-2558 (((-1011) (-669 (-221)) (-669 (-221)) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) 50)) (-2557 (((-1011) (-221) (-538) (-538) (-1131) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2556 (((-1011) (-221) (-538) (-538) (-221) (-1131) (-221) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2555 (((-1011) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) 42)) (-2554 (((-1011) (-221) (-538) (-538) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-730) (-10 -7 (-15 -2554 ((-1011) (-221) (-538) (-538) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2555 ((-1011) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -2556 ((-1011) (-221) (-538) (-538) (-221) (-1131) (-221) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2557 ((-1011) (-221) (-538) (-538) (-1131) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2558 ((-1011) (-669 (-221)) (-669 (-221)) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -2559 ((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG))))) (-15 -2560 ((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))))) (-15 -2560 ((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383))) (-15 -2561 ((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -730))
-((-2561 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2560 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-383)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2560 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2559 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2558 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2557 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-538)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2556 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-538)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2555 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2554 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))))
-(-10 -7 (-15 -2554 ((-1011) (-221) (-538) (-538) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2555 ((-1011) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -2556 ((-1011) (-221) (-538) (-538) (-221) (-1131) (-221) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2557 ((-1011) (-221) (-538) (-538) (-1131) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2558 ((-1011) (-669 (-221)) (-669 (-221)) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -2559 ((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG))))) (-15 -2560 ((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))))) (-15 -2560 ((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383))) (-15 -2561 ((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-2564 (((-1011) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-655 (-221)) (-538)) 45)) (-2563 (((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-1131) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) 41)) (-2562 (((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 23)))
-(((-731) (-10 -7 (-15 -2562 ((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2563 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-1131) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY))))) (-15 -2564 ((-1011) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-655 (-221)) (-538))))) (T -731))
-((-2564 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-655 (-221))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-731)))) (-2563 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-1131)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1011)) (-5 *1 (-731)))) (-2562 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-731)))))
-(-10 -7 (-15 -2562 ((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2563 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-1131) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY))))) (-15 -2564 ((-1011) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-655 (-221)) (-538))))
-((-2574 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-538)) 35)) (-2573 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-221) (-221) (-538)) 34)) (-2572 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-669 (-221)) (-221) (-221) (-538)) 33)) (-2571 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 29)) (-2570 (((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 28)) (-2569 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538)) 27)) (-2568 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538)) 24)) (-2567 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538)) 23)) (-2566 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538)) 22)) (-2565 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538)) 21)))
-(((-732) (-10 -7 (-15 -2565 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))) (-15 -2566 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2567 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2568 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2569 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538))) (-15 -2570 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2571 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2572 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-669 (-221)) (-221) (-221) (-538))) (-15 -2573 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-221) (-221) (-538))) (-15 -2574 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-538))))) (T -732))
-((-2574 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2573 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2572 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *6 (-221)) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2571 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2570 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2569 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2568 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2567 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2566 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2565 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))))
-(-10 -7 (-15 -2565 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))) (-15 -2566 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2567 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2568 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2569 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538))) (-15 -2570 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2571 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2572 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-669 (-221)) (-221) (-221) (-538))) (-15 -2573 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-221) (-221) (-538))) (-15 -2574 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-538))))
-((-2592 (((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538)) 45)) (-2591 (((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-538)) 44)) (-2590 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538)) 43)) (-2589 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 42)) (-2588 (((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538)) 41)) (-2587 (((-1011) (-1131) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538)) 40)) (-2586 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538) (-538) (-538) (-221) (-669 (-221)) (-538)) 39)) (-2585 (((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538))) 38)) (-2584 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538)) 35)) (-2583 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538)) 34)) (-2582 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538)) 33)) (-2581 (((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 32)) (-2580 (((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538)) 31)) (-2579 (((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-538)) 30)) (-2578 (((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-538) (-538) (-538)) 29)) (-2577 (((-1011) (-538) (-538) (-538) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-538)) (-538) (-538) (-538)) 28)) (-2576 (((-1011) (-538) (-669 (-221)) (-221) (-538)) 24)) (-2575 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 21)))
-(((-733) (-10 -7 (-15 -2575 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2576 ((-1011) (-538) (-669 (-221)) (-221) (-538))) (-15 -2577 ((-1011) (-538) (-538) (-538) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-538)) (-538) (-538) (-538))) (-15 -2578 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-538) (-538) (-538))) (-15 -2579 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-538))) (-15 -2580 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538))) (-15 -2581 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2582 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538))) (-15 -2583 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538))) (-15 -2584 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2585 ((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538)))) (-15 -2586 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538) (-538) (-538) (-221) (-669 (-221)) (-538))) (-15 -2587 ((-1011) (-1131) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538))) (-15 -2588 ((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2589 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2590 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))) (-15 -2591 ((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2592 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))))) (T -733))
-((-2592 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2591 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2590 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2589 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2588 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2587 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *7 (-669 (-538))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2586 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *6 (-221)) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2585 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *7 (-669 (-538))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2584 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2583 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2582 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2581 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2580 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2579 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2578 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2577 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538))) (-5 *3 (-538)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2576 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2575 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(-10 -7 (-15 -2575 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2576 ((-1011) (-538) (-669 (-221)) (-221) (-538))) (-15 -2577 ((-1011) (-538) (-538) (-538) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-538)) (-538) (-538) (-538))) (-15 -2578 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-538) (-538) (-538))) (-15 -2579 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-538))) (-15 -2580 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538))) (-15 -2581 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2582 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538))) (-15 -2583 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538))) (-15 -2584 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2585 ((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538)))) (-15 -2586 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538) (-538) (-538) (-221) (-669 (-221)) (-538))) (-15 -2587 ((-1011) (-1131) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538))) (-15 -2588 ((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2589 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2590 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))) (-15 -2591 ((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2592 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))))
-((-2600 (((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-538) (-669 (-221)) (-538)) 63)) (-2599 (((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-112) (-221) (-538) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-538) (-538) (-538) (-538) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2598 (((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-538) (-538) (-669 (-221)) (-669 (-538)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) 58)) (-2597 (((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-538) (-538) (-669 (-221)) (-538)) 51)) (-2596 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2595 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2594 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2593 (((-1011) (-538) (-221) (-221) (-538) (-221) (-112) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-734) (-10 -7 (-15 -2593 ((-1011) (-538) (-221) (-221) (-538) (-221) (-112) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2594 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1))))) (-15 -2595 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2))))) (-15 -2596 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1))))) (-15 -2597 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-538) (-538) (-669 (-221)) (-538))) (-15 -2598 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-538) (-538) (-669 (-221)) (-669 (-538)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS))))) (-15 -2599 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-112) (-221) (-538) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-538) (-538) (-538) (-538) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2600 ((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-538) (-669 (-221)) (-538))))) (T -734))
-((-2600 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2599 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-669 (-538))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2598 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-669 (-221))) (-5 *6 (-112)) (-5 *7 (-669 (-538))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-538)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2597 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2596 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2595 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2594 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2593 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-538)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))))
-(-10 -7 (-15 -2593 ((-1011) (-538) (-221) (-221) (-538) (-221) (-112) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2594 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1))))) (-15 -2595 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2))))) (-15 -2596 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1))))) (-15 -2597 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-538) (-538) (-669 (-221)) (-538))) (-15 -2598 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-538) (-538) (-669 (-221)) (-669 (-538)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS))))) (-15 -2599 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-112) (-221) (-538) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-538) (-538) (-538) (-538) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2600 ((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-538) (-669 (-221)) (-538))))
-((-2610 (((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538)) 47)) (-2609 (((-1011) (-1131) (-1131) (-538) (-538) (-669 (-166 (-221))) (-538) (-669 (-166 (-221))) (-538) (-538) (-669 (-166 (-221))) (-538)) 46)) (-2608 (((-1011) (-538) (-538) (-538) (-669 (-166 (-221))) (-538)) 45)) (-2607 (((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 40)) (-2606 (((-1011) (-1131) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-669 (-221)) (-538)) 39)) (-2605 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-538)) 36)) (-2604 (((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538)) 35)) (-2603 (((-1011) (-538) (-538) (-538) (-538) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-221) (-221) (-538)) 34)) (-2602 (((-1011) (-538) (-538) (-538) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-112) (-221) (-112) (-669 (-538)) (-669 (-221)) (-538)) 33)) (-2601 (((-1011) (-538) (-538) (-538) (-538) (-221) (-112) (-112) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-538)) 32)))
-(((-735) (-10 -7 (-15 -2601 ((-1011) (-538) (-538) (-538) (-538) (-221) (-112) (-112) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-538))) (-15 -2602 ((-1011) (-538) (-538) (-538) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-112) (-221) (-112) (-669 (-538)) (-669 (-221)) (-538))) (-15 -2603 ((-1011) (-538) (-538) (-538) (-538) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-221) (-221) (-538))) (-15 -2604 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538))) (-15 -2605 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-538))) (-15 -2606 ((-1011) (-1131) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-669 (-221)) (-538))) (-15 -2607 ((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2608 ((-1011) (-538) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2609 ((-1011) (-1131) (-1131) (-538) (-538) (-669 (-166 (-221))) (-538) (-669 (-166 (-221))) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2610 ((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538))))) (T -735))
-((-2610 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-166 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2609 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-166 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2608 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-166 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2607 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2606 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2605 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2604 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2603 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-622 (-112))) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538))) (-5 *7 (-221)) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2602 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-669 (-538))) (-5 *5 (-112)) (-5 *7 (-669 (-221))) (-5 *3 (-538)) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2601 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-622 (-112))) (-5 *7 (-669 (-221))) (-5 *8 (-669 (-538))) (-5 *3 (-538)) (-5 *4 (-221)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-735)))))
-(-10 -7 (-15 -2601 ((-1011) (-538) (-538) (-538) (-538) (-221) (-112) (-112) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-538))) (-15 -2602 ((-1011) (-538) (-538) (-538) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-112) (-221) (-112) (-669 (-538)) (-669 (-221)) (-538))) (-15 -2603 ((-1011) (-538) (-538) (-538) (-538) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-221) (-221) (-538))) (-15 -2604 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538))) (-15 -2605 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-538))) (-15 -2606 ((-1011) (-1131) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-669 (-221)) (-538))) (-15 -2607 ((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2608 ((-1011) (-538) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2609 ((-1011) (-1131) (-1131) (-538) (-538) (-669 (-166 (-221))) (-538) (-669 (-166 (-221))) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2610 ((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538))))
-((-2625 (((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538)) 65)) (-2624 (((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538)) 60)) (-2623 (((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383)) 56) (((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) 55)) (-2622 (((-1011) (-538) (-538) (-538) (-221) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538)) 37)) (-2621 (((-1011) (-538) (-538) (-221) (-221) (-538) (-538) (-669 (-221)) (-538)) 33)) (-2620 (((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538) (-538)) 30)) (-2619 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 29)) (-2618 (((-1011) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 28)) (-2617 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 27)) (-2616 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538)) 26)) (-2615 (((-1011) (-538) (-538) (-669 (-221)) (-538)) 25)) (-2614 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 24)) (-2613 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 23)) (-2612 (((-1011) (-669 (-221)) (-538) (-538) (-538) (-538)) 22)) (-2611 (((-1011) (-538) (-538) (-669 (-221)) (-538)) 21)))
-(((-736) (-10 -7 (-15 -2611 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2612 ((-1011) (-669 (-221)) (-538) (-538) (-538) (-538))) (-15 -2613 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2614 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2615 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2616 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538))) (-15 -2617 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2618 ((-1011) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2619 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2620 ((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538) (-538))) (-15 -2621 ((-1011) (-538) (-538) (-221) (-221) (-538) (-538) (-669 (-221)) (-538))) (-15 -2622 ((-1011) (-538) (-538) (-538) (-221) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2623 ((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))))) (-15 -2623 ((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383))) (-15 -2624 ((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2625 ((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538))))) (T -736))
-((-2625 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-112)) (-5 *5 (-669 (-166 (-221)))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2624 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-112)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2623 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-383)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2623 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2622 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-538)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2621 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2620 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2619 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2618 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2617 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2616 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2615 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2614 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2613 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2612 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2611 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(-10 -7 (-15 -2611 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2612 ((-1011) (-669 (-221)) (-538) (-538) (-538) (-538))) (-15 -2613 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2614 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2615 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2616 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538))) (-15 -2617 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2618 ((-1011) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2619 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2620 ((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538) (-538))) (-15 -2621 ((-1011) (-538) (-538) (-221) (-221) (-538) (-538) (-669 (-221)) (-538))) (-15 -2622 ((-1011) (-538) (-538) (-538) (-221) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2623 ((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))))) (-15 -2623 ((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383))) (-15 -2624 ((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2625 ((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538))))
-((-2636 (((-1011) (-538) (-538) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) 61)) (-2635 (((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538)) 57)) (-2634 (((-1011) (-538) (-669 (-221)) (-112) (-221) (-538) (-538) (-538) (-538) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) 56)) (-2633 (((-1011) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538)) 37)) (-2632 (((-1011) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-538)) 36)) (-2631 (((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 33)) (-2630 (((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221))) 32)) (-2629 (((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538)) 28)) (-2628 (((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538)) 27)) (-2627 (((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538)) 26)) (-2626 (((-1011) (-538) (-669 (-166 (-221))) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-538)) 22)))
-(((-737) (-10 -7 (-15 -2626 ((-1011) (-538) (-669 (-166 (-221))) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2627 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2628 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2629 ((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538))) (-15 -2630 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221)))) (-15 -2631 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2632 ((-1011) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2633 ((-1011) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538))) (-15 -2634 ((-1011) (-538) (-669 (-221)) (-112) (-221) (-538) (-538) (-538) (-538) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE))))) (-15 -2635 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538))) (-15 -2636 ((-1011) (-538) (-538) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD))))))) (T -737))
-((-2636 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2635 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2634 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2633 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2632 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2631 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2630 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2629 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2628 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2627 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2626 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-166 (-221)))) (-5 *2 (-1011)) (-5 *1 (-737)))))
-(-10 -7 (-15 -2626 ((-1011) (-538) (-669 (-166 (-221))) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2627 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2628 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2629 ((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538))) (-15 -2630 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221)))) (-15 -2631 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2632 ((-1011) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2633 ((-1011) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538))) (-15 -2634 ((-1011) (-538) (-669 (-221)) (-112) (-221) (-538) (-538) (-538) (-538) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE))))) (-15 -2635 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538))) (-15 -2636 ((-1011) (-538) (-538) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD))))))
-((-2640 (((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-538) (-669 (-221))) 29)) (-2639 (((-1011) (-1131) (-538) (-538) (-669 (-221))) 28)) (-2638 (((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-221))) 27)) (-2637 (((-1011) (-538) (-538) (-538) (-669 (-221))) 21)))
-(((-738) (-10 -7 (-15 -2637 ((-1011) (-538) (-538) (-538) (-669 (-221)))) (-15 -2638 ((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-221)))) (-15 -2639 ((-1011) (-1131) (-538) (-538) (-669 (-221)))) (-15 -2640 ((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-538) (-669 (-221)))))) (T -738))
-((-2640 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))) (-2639 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))) (-2638 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-738)))) (-2637 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))))
-(-10 -7 (-15 -2637 ((-1011) (-538) (-538) (-538) (-669 (-221)))) (-15 -2638 ((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-221)))) (-15 -2639 ((-1011) (-1131) (-538) (-538) (-669 (-221)))) (-15 -2640 ((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-538) (-669 (-221)))))
-((-2678 (((-1011) (-221) (-221) (-221) (-221) (-538)) 62)) (-2677 (((-1011) (-221) (-221) (-221) (-538)) 61)) (-2676 (((-1011) (-221) (-221) (-221) (-538)) 60)) (-2675 (((-1011) (-221) (-221) (-538)) 59)) (-2674 (((-1011) (-221) (-538)) 58)) (-2673 (((-1011) (-221) (-538)) 57)) (-2672 (((-1011) (-221) (-538)) 56)) (-2671 (((-1011) (-221) (-538)) 55)) (-2670 (((-1011) (-221) (-538)) 54)) (-2669 (((-1011) (-221) (-538)) 53)) (-2668 (((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538)) 52)) (-2667 (((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538)) 51)) (-2666 (((-1011) (-221) (-538)) 50)) (-2665 (((-1011) (-221) (-538)) 49)) (-2664 (((-1011) (-221) (-538)) 48)) (-2663 (((-1011) (-221) (-538)) 47)) (-2662 (((-1011) (-538) (-221) (-166 (-221)) (-538) (-1131) (-538)) 46)) (-2661 (((-1011) (-1131) (-166 (-221)) (-1131) (-538)) 45)) (-2660 (((-1011) (-1131) (-166 (-221)) (-1131) (-538)) 44)) (-2659 (((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538)) 43)) (-2658 (((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538)) 42)) (-2657 (((-1011) (-221) (-538)) 39)) (-2656 (((-1011) (-221) (-538)) 38)) (-2655 (((-1011) (-221) (-538)) 37)) (-2654 (((-1011) (-221) (-538)) 36)) (-2653 (((-1011) (-221) (-538)) 35)) (-2652 (((-1011) (-221) (-538)) 34)) (-2651 (((-1011) (-221) (-538)) 33)) (-2650 (((-1011) (-221) (-538)) 32)) (-2649 (((-1011) (-221) (-538)) 31)) (-2648 (((-1011) (-221) (-538)) 30)) (-2647 (((-1011) (-221) (-221) (-221) (-538)) 29)) (-2646 (((-1011) (-221) (-538)) 28)) (-2645 (((-1011) (-221) (-538)) 27)) (-2644 (((-1011) (-221) (-538)) 26)) (-2643 (((-1011) (-221) (-538)) 25)) (-2642 (((-1011) (-221) (-538)) 24)) (-2641 (((-1011) (-166 (-221)) (-538)) 21)))
-(((-739) (-10 -7 (-15 -2641 ((-1011) (-166 (-221)) (-538))) (-15 -2642 ((-1011) (-221) (-538))) (-15 -2643 ((-1011) (-221) (-538))) (-15 -2644 ((-1011) (-221) (-538))) (-15 -2645 ((-1011) (-221) (-538))) (-15 -2646 ((-1011) (-221) (-538))) (-15 -2647 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2648 ((-1011) (-221) (-538))) (-15 -2649 ((-1011) (-221) (-538))) (-15 -2650 ((-1011) (-221) (-538))) (-15 -2651 ((-1011) (-221) (-538))) (-15 -2652 ((-1011) (-221) (-538))) (-15 -2653 ((-1011) (-221) (-538))) (-15 -2654 ((-1011) (-221) (-538))) (-15 -2655 ((-1011) (-221) (-538))) (-15 -2656 ((-1011) (-221) (-538))) (-15 -2657 ((-1011) (-221) (-538))) (-15 -2658 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2659 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2660 ((-1011) (-1131) (-166 (-221)) (-1131) (-538))) (-15 -2661 ((-1011) (-1131) (-166 (-221)) (-1131) (-538))) (-15 -2662 ((-1011) (-538) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2663 ((-1011) (-221) (-538))) (-15 -2664 ((-1011) (-221) (-538))) (-15 -2665 ((-1011) (-221) (-538))) (-15 -2666 ((-1011) (-221) (-538))) (-15 -2667 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2668 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2669 ((-1011) (-221) (-538))) (-15 -2670 ((-1011) (-221) (-538))) (-15 -2671 ((-1011) (-221) (-538))) (-15 -2672 ((-1011) (-221) (-538))) (-15 -2673 ((-1011) (-221) (-538))) (-15 -2674 ((-1011) (-221) (-538))) (-15 -2675 ((-1011) (-221) (-221) (-538))) (-15 -2676 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2677 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2678 ((-1011) (-221) (-221) (-221) (-221) (-538))))) (T -739))
-((-2678 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2677 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2676 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2675 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2674 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2671 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2670 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2668 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2667 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2662 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-538)) (-5 *5 (-166 (-221))) (-5 *6 (-1131)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2661 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2660 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2659 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2658 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2654 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2649 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2647 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(-10 -7 (-15 -2641 ((-1011) (-166 (-221)) (-538))) (-15 -2642 ((-1011) (-221) (-538))) (-15 -2643 ((-1011) (-221) (-538))) (-15 -2644 ((-1011) (-221) (-538))) (-15 -2645 ((-1011) (-221) (-538))) (-15 -2646 ((-1011) (-221) (-538))) (-15 -2647 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2648 ((-1011) (-221) (-538))) (-15 -2649 ((-1011) (-221) (-538))) (-15 -2650 ((-1011) (-221) (-538))) (-15 -2651 ((-1011) (-221) (-538))) (-15 -2652 ((-1011) (-221) (-538))) (-15 -2653 ((-1011) (-221) (-538))) (-15 -2654 ((-1011) (-221) (-538))) (-15 -2655 ((-1011) (-221) (-538))) (-15 -2656 ((-1011) (-221) (-538))) (-15 -2657 ((-1011) (-221) (-538))) (-15 -2658 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2659 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2660 ((-1011) (-1131) (-166 (-221)) (-1131) (-538))) (-15 -2661 ((-1011) (-1131) (-166 (-221)) (-1131) (-538))) (-15 -2662 ((-1011) (-538) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2663 ((-1011) (-221) (-538))) (-15 -2664 ((-1011) (-221) (-538))) (-15 -2665 ((-1011) (-221) (-538))) (-15 -2666 ((-1011) (-221) (-538))) (-15 -2667 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2668 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2669 ((-1011) (-221) (-538))) (-15 -2670 ((-1011) (-221) (-538))) (-15 -2671 ((-1011) (-221) (-538))) (-15 -2672 ((-1011) (-221) (-538))) (-15 -2673 ((-1011) (-221) (-538))) (-15 -2674 ((-1011) (-221) (-538))) (-15 -2675 ((-1011) (-221) (-221) (-538))) (-15 -2676 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2677 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2678 ((-1011) (-221) (-221) (-221) (-221) (-538))))
-((-2684 (((-1237)) 18)) (-2680 (((-1131)) 22)) (-2679 (((-1131)) 21)) (-2682 (((-1076) (-1149) (-669 (-538))) 37) (((-1076) (-1149) (-669 (-221))) 32)) (-2683 (((-112)) 16)) (-2681 (((-1131) (-1131)) 25)))
-(((-740) (-10 -7 (-15 -2679 ((-1131))) (-15 -2680 ((-1131))) (-15 -2681 ((-1131) (-1131))) (-15 -2682 ((-1076) (-1149) (-669 (-221)))) (-15 -2682 ((-1076) (-1149) (-669 (-538)))) (-15 -2683 ((-112))) (-15 -2684 ((-1237))))) (T -740))
-((-2684 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-740)))) (-2683 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-740)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-538))) (-5 *2 (-1076)) (-5 *1 (-740)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-221))) (-5 *2 (-1076)) (-5 *1 (-740)))) (-2681 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))) (-2680 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))) (-2679 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))))
-(-10 -7 (-15 -2679 ((-1131))) (-15 -2680 ((-1131))) (-15 -2681 ((-1131) (-1131))) (-15 -2682 ((-1076) (-1149) (-669 (-221)))) (-15 -2682 ((-1076) (-1149) (-669 (-538)))) (-15 -2683 ((-112))) (-15 -2684 ((-1237))))
-((-2686 (($ $ $) 10)) (-2687 (($ $ $ $) 9)) (-2685 (($ $ $) 12)))
-(((-741 |#1|) (-10 -8 (-15 -2685 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#1|)) (-15 -2687 (|#1| |#1| |#1| |#1|))) (-742)) (T -741))
-NIL
-(-10 -8 (-15 -2685 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#1|)) (-15 -2687 (|#1| |#1| |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2499 (($ $ (-895)) 28)) (-2498 (($ $ (-895)) 29)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-2686 (($ $ $) 25)) (-4317 (((-840) $) 11)) (-2687 (($ $ $ $) 26)) (-2685 (($ $ $) 24)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 27)))
+((-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-725 *3)) (-4 *3 (-170)))))
+(-13 (-742) (-698 |t#1|) (-10 -8 (-15 -2712 ($ $ (-897)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1073) . T))
+((-2731 (((-1011) (-669 (-221)) (-552) (-112) (-552)) 25)) (-2722 (((-1011) (-669 (-221)) (-552) (-112) (-552)) 24)))
+(((-726) (-10 -7 (-15 -2722 ((-1011) (-669 (-221)) (-552) (-112) (-552))) (-15 -2731 ((-1011) (-669 (-221)) (-552) (-112) (-552))))) (T -726))
+((-2731 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-726)))) (-2722 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-726)))))
+(-10 -7 (-15 -2722 ((-1011) (-669 (-221)) (-552) (-112) (-552))) (-15 -2731 ((-1011) (-669 (-221)) (-552) (-112) (-552))))
+((-2759 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) 43)) (-2750 (((-1011) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) 39)) (-2741 (((-1011) (-221) (-221) (-221) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) 32)))
+(((-727) (-10 -7 (-15 -2741 ((-1011) (-221) (-221) (-221) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2750 ((-1011) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN))))) (-15 -2759 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN))))))) (T -727))
+((-2759 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1011)) (-5 *1 (-727)))) (-2750 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1011)) (-5 *1 (-727)))) (-2741 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *2 (-1011)) (-5 *1 (-727)))))
+(-10 -7 (-15 -2741 ((-1011) (-221) (-221) (-221) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2750 ((-1011) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN))))) (-15 -2759 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN))))))
+((-2892 (((-1011) (-552) (-552) (-669 (-221)) (-552)) 34)) (-2882 (((-1011) (-552) (-552) (-669 (-221)) (-552)) 33)) (-2870 (((-1011) (-552) (-669 (-221)) (-552)) 32)) (-2859 (((-1011) (-552) (-669 (-221)) (-552)) 31)) (-2848 (((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 30)) (-2836 (((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 29)) (-2822 (((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552)) 28)) (-2810 (((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552)) 27)) (-2799 (((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 24)) (-2790 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552)) 23)) (-2779 (((-1011) (-552) (-669 (-221)) (-552)) 22)) (-2769 (((-1011) (-552) (-669 (-221)) (-552)) 21)))
+(((-728) (-10 -7 (-15 -2769 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2779 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2790 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2799 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2810 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2822 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2836 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2848 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2859 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2870 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2882 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2892 ((-1011) (-552) (-552) (-669 (-221)) (-552))))) (T -728))
+((-2892 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2882 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2870 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2859 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2848 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2836 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2822 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2810 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2799 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2790 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2779 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2769 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))))
+(-10 -7 (-15 -2769 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2779 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2790 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2799 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2810 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2822 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2836 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2848 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2859 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2870 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2882 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2892 ((-1011) (-552) (-552) (-669 (-221)) (-552))))
+((-3026 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))) 52)) (-3014 (((-1011) (-669 (-221)) (-669 (-221)) (-552) (-552)) 51)) (-3002 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2990 (((-1011) (-221) (-221) (-552) (-552) (-552) (-552)) 46)) (-2979 (((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) 45)) (-2968 (((-1011) (-221) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) 44)) (-2956 (((-1011) (-221) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) 43)) (-2944 (((-1011) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) 42)) (-2934 (((-1011) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) 38)) (-2922 (((-1011) (-221) (-221) (-552) (-669 (-221)) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) 37)) (-2912 (((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) 33)) (-2902 (((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) 32)))
+(((-729) (-10 -7 (-15 -2902 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2912 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2922 ((-1011) (-221) (-221) (-552) (-669 (-221)) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2934 ((-1011) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2944 ((-1011) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2956 ((-1011) (-221) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2968 ((-1011) (-221) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2979 ((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2990 ((-1011) (-221) (-221) (-552) (-552) (-552) (-552))) (-15 -3002 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN))))) (-15 -3014 ((-1011) (-669 (-221)) (-669 (-221)) (-552) (-552))) (-15 -3026 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN))))))) (T -729))
+((-3026 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-3014 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-3002 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2990 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2979 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2968 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2956 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2944 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2934 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2922 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2912 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2902 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *2 (-1011)) (-5 *1 (-729)))))
+(-10 -7 (-15 -2902 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2912 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2922 ((-1011) (-221) (-221) (-552) (-669 (-221)) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2934 ((-1011) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2944 ((-1011) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2956 ((-1011) (-221) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2968 ((-1011) (-221) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2979 ((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2990 ((-1011) (-221) (-221) (-552) (-552) (-552) (-552))) (-15 -3002 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN))))) (-15 -3014 ((-1011) (-669 (-221)) (-669 (-221)) (-552) (-552))) (-15 -3026 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN))))))
+((-3103 (((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-3094 (((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))) (-383) (-383)) 69) (((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL)))) 68)) (-3086 (((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNG)))) 57)) (-3078 (((-1011) (-669 (-221)) (-669 (-221)) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) 50)) (-3068 (((-1011) (-221) (-552) (-552) (-1131) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) 49)) (-3058 (((-1011) (-221) (-552) (-552) (-221) (-1131) (-221) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) 45)) (-3047 (((-1011) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) 42)) (-3037 (((-1011) (-221) (-552) (-552) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) 38)))
+(((-730) (-10 -7 (-15 -3037 ((-1011) (-221) (-552) (-552) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3047 ((-1011) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))) (-15 -3058 ((-1011) (-221) (-552) (-552) (-221) (-1131) (-221) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3068 ((-1011) (-221) (-552) (-552) (-1131) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3078 ((-1011) (-669 (-221)) (-669 (-221)) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))) (-15 -3086 ((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNG))))) (-15 -3094 ((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))))) (-15 -3094 ((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))) (-383) (-383))) (-15 -3103 ((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -730))
+((-3103 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3094 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-383)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3094 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3086 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3078 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3068 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-552)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3058 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-552)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3047 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3037 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))))
+(-10 -7 (-15 -3037 ((-1011) (-221) (-552) (-552) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3047 ((-1011) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))) (-15 -3058 ((-1011) (-221) (-552) (-552) (-221) (-1131) (-221) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3068 ((-1011) (-221) (-552) (-552) (-1131) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3078 ((-1011) (-669 (-221)) (-669 (-221)) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))) (-15 -3086 ((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNG))))) (-15 -3094 ((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))))) (-15 -3094 ((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))) (-383) (-383))) (-15 -3103 ((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 G JACOBG JACGEP))))))
+((-3129 (((-1011) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-655 (-221)) (-552)) 45)) (-3120 (((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-1131) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 BNDY)))) 41)) (-3111 (((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 23)))
+(((-731) (-10 -7 (-15 -3111 ((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -3120 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-1131) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 BNDY))))) (-15 -3129 ((-1011) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-655 (-221)) (-552))))) (T -731))
+((-3129 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-655 (-221))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-731)))) (-3120 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-1131)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1011)) (-5 *1 (-731)))) (-3111 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-731)))))
+(-10 -7 (-15 -3111 ((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -3120 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-1131) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 BNDY))))) (-15 -3129 ((-1011) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-655 (-221)) (-552))))
+((-2045 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-552)) 35)) (-2036 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-221) (-221) (-552)) 34)) (-2027 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-669 (-221)) (-221) (-221) (-552)) 33)) (-2018 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 29)) (-3184 (((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 28)) (-3175 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552)) 27)) (-3167 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552)) 24)) (-3160 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552)) 23)) (-3149 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552)) 22)) (-3138 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552)) 21)))
+(((-732) (-10 -7 (-15 -3138 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))) (-15 -3149 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -3160 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -3167 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -3175 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552))) (-15 -3184 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2018 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2027 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-669 (-221)) (-221) (-221) (-552))) (-15 -2036 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-221) (-221) (-552))) (-15 -2045 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-552))))) (T -732))
+((-2045 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2036 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2027 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *6 (-221)) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2018 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3184 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3175 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3167 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3160 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3149 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3138 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))))
+(-10 -7 (-15 -3138 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))) (-15 -3149 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -3160 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -3167 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -3175 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552))) (-15 -3184 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2018 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2027 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-669 (-221)) (-221) (-221) (-552))) (-15 -2036 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-221) (-221) (-552))) (-15 -2045 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-552))))
+((-2241 (((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552)) 45)) (-2232 (((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-552)) 44)) (-2219 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552)) 43)) (-2210 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 42)) (-2198 (((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552)) 41)) (-2187 (((-1011) (-1131) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552)) 40)) (-2176 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552) (-552) (-552) (-221) (-669 (-221)) (-552)) 39)) (-2166 (((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552))) 38)) (-2155 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552)) 35)) (-2141 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552)) 34)) (-2130 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552)) 33)) (-2120 (((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 32)) (-2111 (((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552)) 31)) (-2102 (((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-552)) 30)) (-2090 (((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-552) (-552) (-552)) 29)) (-2080 (((-1011) (-552) (-552) (-552) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-552)) (-552) (-552) (-552)) 28)) (-2069 (((-1011) (-552) (-669 (-221)) (-221) (-552)) 24)) (-2057 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 21)))
+(((-733) (-10 -7 (-15 -2057 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2069 ((-1011) (-552) (-669 (-221)) (-221) (-552))) (-15 -2080 ((-1011) (-552) (-552) (-552) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-552)) (-552) (-552) (-552))) (-15 -2090 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-552) (-552) (-552))) (-15 -2102 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-552))) (-15 -2111 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552))) (-15 -2120 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2130 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552))) (-15 -2141 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552))) (-15 -2155 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2166 ((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552)))) (-15 -2176 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552) (-552) (-552) (-221) (-669 (-221)) (-552))) (-15 -2187 ((-1011) (-1131) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552))) (-15 -2198 ((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2210 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2219 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))) (-15 -2232 ((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2241 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))))) (T -733))
+((-2241 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2232 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2219 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2210 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2198 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2187 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *7 (-669 (-552))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2176 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *6 (-221)) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2166 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *7 (-669 (-552))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2155 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2141 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2130 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2120 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2111 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2102 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2090 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2080 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-669 (-221))) (-5 *6 (-669 (-552))) (-5 *3 (-552)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2069 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2057 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))))
+(-10 -7 (-15 -2057 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2069 ((-1011) (-552) (-669 (-221)) (-221) (-552))) (-15 -2080 ((-1011) (-552) (-552) (-552) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-552)) (-552) (-552) (-552))) (-15 -2090 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-552) (-552) (-552))) (-15 -2102 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-552))) (-15 -2111 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552))) (-15 -2120 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2130 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552))) (-15 -2141 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552))) (-15 -2155 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2166 ((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552)))) (-15 -2176 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552) (-552) (-552) (-221) (-669 (-221)) (-552))) (-15 -2187 ((-1011) (-1131) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552))) (-15 -2198 ((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2210 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2219 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))) (-15 -2232 ((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2241 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))))
+((-2335 (((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-552) (-669 (-221)) (-552)) 63)) (-2321 (((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-112) (-221) (-552) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-552) (-552) (-552) (-552) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2308 (((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-552) (-552) (-669 (-221)) (-669 (-552)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) 58)) (-2294 (((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-552) (-552) (-669 (-221)) (-552)) 51)) (-2282 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2270 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-62 LSFUN2)))) 46)) (-2261 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2252 (((-1011) (-552) (-221) (-221) (-552) (-221) (-112) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN)))) 38)))
+(((-734) (-10 -7 (-15 -2252 ((-1011) (-552) (-221) (-221) (-552) (-221) (-112) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN))))) (-15 -2261 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1))))) (-15 -2270 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-62 LSFUN2))))) (-15 -2282 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1))))) (-15 -2294 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-552) (-552) (-669 (-221)) (-552))) (-15 -2308 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-552) (-552) (-669 (-221)) (-669 (-552)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS))))) (-15 -2321 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-112) (-221) (-552) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-552) (-552) (-552) (-552) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN))))) (-15 -2335 ((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-552) (-669 (-221)) (-552))))) (T -734))
+((-2335 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2321 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-669 (-552))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2308 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-669 (-221))) (-5 *6 (-112)) (-5 *7 (-669 (-552))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-552)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2294 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2282 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2270 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2261 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2252 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-552)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))))
+(-10 -7 (-15 -2252 ((-1011) (-552) (-221) (-221) (-552) (-221) (-112) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN))))) (-15 -2261 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1))))) (-15 -2270 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-62 LSFUN2))))) (-15 -2282 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1))))) (-15 -2294 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-552) (-552) (-669 (-221)) (-552))) (-15 -2308 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-552) (-552) (-669 (-221)) (-669 (-552)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS))))) (-15 -2321 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-112) (-221) (-552) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-552) (-552) (-552) (-552) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN))))) (-15 -2335 ((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-552) (-669 (-221)) (-552))))
+((-2445 (((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552)) 47)) (-2434 (((-1011) (-1131) (-1131) (-552) (-552) (-669 (-167 (-221))) (-552) (-669 (-167 (-221))) (-552) (-552) (-669 (-167 (-221))) (-552)) 46)) (-2425 (((-1011) (-552) (-552) (-552) (-669 (-167 (-221))) (-552)) 45)) (-2415 (((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 40)) (-2405 (((-1011) (-1131) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-669 (-221)) (-552)) 39)) (-2394 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-552)) 36)) (-2383 (((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552)) 35)) (-2372 (((-1011) (-552) (-552) (-552) (-552) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-221) (-221) (-552)) 34)) (-2361 (((-1011) (-552) (-552) (-552) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-112) (-221) (-112) (-669 (-552)) (-669 (-221)) (-552)) 33)) (-2347 (((-1011) (-552) (-552) (-552) (-552) (-221) (-112) (-112) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-552)) 32)))
+(((-735) (-10 -7 (-15 -2347 ((-1011) (-552) (-552) (-552) (-552) (-221) (-112) (-112) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-552))) (-15 -2361 ((-1011) (-552) (-552) (-552) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-112) (-221) (-112) (-669 (-552)) (-669 (-221)) (-552))) (-15 -2372 ((-1011) (-552) (-552) (-552) (-552) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-221) (-221) (-552))) (-15 -2383 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552))) (-15 -2394 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-552))) (-15 -2405 ((-1011) (-1131) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-669 (-221)) (-552))) (-15 -2415 ((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2425 ((-1011) (-552) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -2434 ((-1011) (-1131) (-1131) (-552) (-552) (-669 (-167 (-221))) (-552) (-669 (-167 (-221))) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -2445 ((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552))))) (T -735))
+((-2445 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-167 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2434 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-167 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2425 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-167 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2415 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2405 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2394 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2383 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2372 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-625 (-112))) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-552))) (-5 *7 (-221)) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2361 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-669 (-552))) (-5 *5 (-112)) (-5 *7 (-669 (-221))) (-5 *3 (-552)) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2347 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-625 (-112))) (-5 *7 (-669 (-221))) (-5 *8 (-669 (-552))) (-5 *3 (-552)) (-5 *4 (-221)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-735)))))
+(-10 -7 (-15 -2347 ((-1011) (-552) (-552) (-552) (-552) (-221) (-112) (-112) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-552))) (-15 -2361 ((-1011) (-552) (-552) (-552) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-112) (-221) (-112) (-669 (-552)) (-669 (-221)) (-552))) (-15 -2372 ((-1011) (-552) (-552) (-552) (-552) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-221) (-221) (-552))) (-15 -2383 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552))) (-15 -2394 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-552))) (-15 -2405 ((-1011) (-1131) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-669 (-221)) (-552))) (-15 -2415 ((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2425 ((-1011) (-552) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -2434 ((-1011) (-1131) (-1131) (-552) (-552) (-669 (-167 (-221))) (-552) (-669 (-167 (-221))) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -2445 ((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552))))
+((-2590 (((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552)) 65)) (-2580 (((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552)) 60)) (-2571 (((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383)) 56) (((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) 55)) (-2560 (((-1011) (-552) (-552) (-552) (-221) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552)) 37)) (-2551 (((-1011) (-552) (-552) (-221) (-221) (-552) (-552) (-669 (-221)) (-552)) 33)) (-2542 (((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552) (-552)) 30)) (-2534 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 29)) (-2524 (((-1011) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 28)) (-2515 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 27)) (-2506 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552)) 26)) (-2496 (((-1011) (-552) (-552) (-669 (-221)) (-552)) 25)) (-2485 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 24)) (-2474 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 23)) (-2466 (((-1011) (-669 (-221)) (-552) (-552) (-552) (-552)) 22)) (-2456 (((-1011) (-552) (-552) (-669 (-221)) (-552)) 21)))
+(((-736) (-10 -7 (-15 -2456 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2466 ((-1011) (-669 (-221)) (-552) (-552) (-552) (-552))) (-15 -2474 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2485 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2496 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2506 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552))) (-15 -2515 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2524 ((-1011) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2534 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2542 ((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552) (-552))) (-15 -2551 ((-1011) (-552) (-552) (-221) (-221) (-552) (-552) (-669 (-221)) (-552))) (-15 -2560 ((-1011) (-552) (-552) (-552) (-221) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2571 ((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))))) (-15 -2571 ((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383))) (-15 -2580 ((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2590 ((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552))))) (T -736))
+((-2590 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-112)) (-5 *5 (-669 (-167 (-221)))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2580 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-112)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2571 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-383)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2571 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2560 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-552)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2551 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2542 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2534 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2524 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2515 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2506 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2496 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2485 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2474 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2466 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2456 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))))
+(-10 -7 (-15 -2456 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2466 ((-1011) (-669 (-221)) (-552) (-552) (-552) (-552))) (-15 -2474 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2485 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2496 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2506 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552))) (-15 -2515 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2524 ((-1011) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2534 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2542 ((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552) (-552))) (-15 -2551 ((-1011) (-552) (-552) (-221) (-221) (-552) (-552) (-669 (-221)) (-552))) (-15 -2560 ((-1011) (-552) (-552) (-552) (-221) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2571 ((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))))) (-15 -2571 ((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383))) (-15 -2580 ((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2590 ((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552))))
+((-1491 (((-1011) (-552) (-552) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) 61)) (-1481 (((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552)) 57)) (-1469 (((-1011) (-552) (-669 (-221)) (-112) (-221) (-552) (-552) (-552) (-552) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) 56)) (-1458 (((-1011) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552)) 37)) (-1448 (((-1011) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-552)) 36)) (-1434 (((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 33)) (-1423 (((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221))) 32)) (-1413 (((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552)) 28)) (-1404 (((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552)) 27)) (-1394 (((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552)) 26)) (-2603 (((-1011) (-552) (-669 (-167 (-221))) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-552)) 22)))
+(((-737) (-10 -7 (-15 -2603 ((-1011) (-552) (-669 (-167 (-221))) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -1394 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -1404 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -1413 ((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552))) (-15 -1423 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221)))) (-15 -1434 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -1448 ((-1011) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -1458 ((-1011) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552))) (-15 -1469 ((-1011) (-552) (-669 (-221)) (-112) (-221) (-552) (-552) (-552) (-552) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE))))) (-15 -1481 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552))) (-15 -1491 ((-1011) (-552) (-552) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD))))))) (T -737))
+((-1491 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1481 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1469 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1458 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1448 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1434 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1423 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1413 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1404 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1394 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2603 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-167 (-221)))) (-5 *2 (-1011)) (-5 *1 (-737)))))
+(-10 -7 (-15 -2603 ((-1011) (-552) (-669 (-167 (-221))) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -1394 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -1404 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -1413 ((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552))) (-15 -1423 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221)))) (-15 -1434 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -1448 ((-1011) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -1458 ((-1011) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552))) (-15 -1469 ((-1011) (-552) (-669 (-221)) (-112) (-221) (-552) (-552) (-552) (-552) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE))))) (-15 -1481 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552))) (-15 -1491 ((-1011) (-552) (-552) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD))))))
+((-1537 (((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-552) (-669 (-221))) 29)) (-1526 (((-1011) (-1131) (-552) (-552) (-669 (-221))) 28)) (-1514 (((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-221))) 27)) (-1501 (((-1011) (-552) (-552) (-552) (-669 (-221))) 21)))
+(((-738) (-10 -7 (-15 -1501 ((-1011) (-552) (-552) (-552) (-669 (-221)))) (-15 -1514 ((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-221)))) (-15 -1526 ((-1011) (-1131) (-552) (-552) (-669 (-221)))) (-15 -1537 ((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-552) (-669 (-221)))))) (T -738))
+((-1537 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))) (-1526 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))) (-1514 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-552))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-738)))) (-1501 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))))
+(-10 -7 (-15 -1501 ((-1011) (-552) (-552) (-552) (-669 (-221)))) (-15 -1514 ((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-221)))) (-15 -1526 ((-1011) (-1131) (-552) (-552) (-669 (-221)))) (-15 -1537 ((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-552) (-669 (-221)))))
+((-1961 (((-1011) (-221) (-221) (-221) (-221) (-552)) 62)) (-1948 (((-1011) (-221) (-221) (-221) (-552)) 61)) (-1937 (((-1011) (-221) (-221) (-221) (-552)) 60)) (-1927 (((-1011) (-221) (-221) (-552)) 59)) (-1915 (((-1011) (-221) (-552)) 58)) (-1902 (((-1011) (-221) (-552)) 57)) (-1890 (((-1011) (-221) (-552)) 56)) (-1880 (((-1011) (-221) (-552)) 55)) (-1869 (((-1011) (-221) (-552)) 54)) (-1859 (((-1011) (-221) (-552)) 53)) (-1848 (((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552)) 52)) (-1835 (((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552)) 51)) (-1824 (((-1011) (-221) (-552)) 50)) (-1814 (((-1011) (-221) (-552)) 49)) (-1803 (((-1011) (-221) (-552)) 48)) (-1789 (((-1011) (-221) (-552)) 47)) (-1779 (((-1011) (-552) (-221) (-167 (-221)) (-552) (-1131) (-552)) 46)) (-1768 (((-1011) (-1131) (-167 (-221)) (-1131) (-552)) 45)) (-1758 (((-1011) (-1131) (-167 (-221)) (-1131) (-552)) 44)) (-1748 (((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552)) 43)) (-1738 (((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552)) 42)) (-1726 (((-1011) (-221) (-552)) 39)) (-1715 (((-1011) (-221) (-552)) 38)) (-1704 (((-1011) (-221) (-552)) 37)) (-1693 (((-1011) (-221) (-552)) 36)) (-1681 (((-1011) (-221) (-552)) 35)) (-1669 (((-1011) (-221) (-552)) 34)) (-1659 (((-1011) (-221) (-552)) 33)) (-1647 (((-1011) (-221) (-552)) 32)) (-1636 (((-1011) (-221) (-552)) 31)) (-1624 (((-1011) (-221) (-552)) 30)) (-1613 (((-1011) (-221) (-221) (-221) (-552)) 29)) (-1602 (((-1011) (-221) (-552)) 28)) (-1591 (((-1011) (-221) (-552)) 27)) (-1579 (((-1011) (-221) (-552)) 26)) (-1569 (((-1011) (-221) (-552)) 25)) (-1558 (((-1011) (-221) (-552)) 24)) (-1547 (((-1011) (-167 (-221)) (-552)) 21)))
+(((-739) (-10 -7 (-15 -1547 ((-1011) (-167 (-221)) (-552))) (-15 -1558 ((-1011) (-221) (-552))) (-15 -1569 ((-1011) (-221) (-552))) (-15 -1579 ((-1011) (-221) (-552))) (-15 -1591 ((-1011) (-221) (-552))) (-15 -1602 ((-1011) (-221) (-552))) (-15 -1613 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1624 ((-1011) (-221) (-552))) (-15 -1636 ((-1011) (-221) (-552))) (-15 -1647 ((-1011) (-221) (-552))) (-15 -1659 ((-1011) (-221) (-552))) (-15 -1669 ((-1011) (-221) (-552))) (-15 -1681 ((-1011) (-221) (-552))) (-15 -1693 ((-1011) (-221) (-552))) (-15 -1704 ((-1011) (-221) (-552))) (-15 -1715 ((-1011) (-221) (-552))) (-15 -1726 ((-1011) (-221) (-552))) (-15 -1738 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1748 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1758 ((-1011) (-1131) (-167 (-221)) (-1131) (-552))) (-15 -1768 ((-1011) (-1131) (-167 (-221)) (-1131) (-552))) (-15 -1779 ((-1011) (-552) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1789 ((-1011) (-221) (-552))) (-15 -1803 ((-1011) (-221) (-552))) (-15 -1814 ((-1011) (-221) (-552))) (-15 -1824 ((-1011) (-221) (-552))) (-15 -1835 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1848 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1859 ((-1011) (-221) (-552))) (-15 -1869 ((-1011) (-221) (-552))) (-15 -1880 ((-1011) (-221) (-552))) (-15 -1890 ((-1011) (-221) (-552))) (-15 -1902 ((-1011) (-221) (-552))) (-15 -1915 ((-1011) (-221) (-552))) (-15 -1927 ((-1011) (-221) (-221) (-552))) (-15 -1937 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1948 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1961 ((-1011) (-221) (-221) (-221) (-221) (-552))))) (T -739))
+((-1961 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1948 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1937 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1927 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1880 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1848 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1835 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1824 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1789 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1779 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-552)) (-5 *5 (-167 (-221))) (-5 *6 (-1131)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1768 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1758 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1748 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1738 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1715 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1669 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1647 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1613 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1602 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1591 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1569 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(-10 -7 (-15 -1547 ((-1011) (-167 (-221)) (-552))) (-15 -1558 ((-1011) (-221) (-552))) (-15 -1569 ((-1011) (-221) (-552))) (-15 -1579 ((-1011) (-221) (-552))) (-15 -1591 ((-1011) (-221) (-552))) (-15 -1602 ((-1011) (-221) (-552))) (-15 -1613 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1624 ((-1011) (-221) (-552))) (-15 -1636 ((-1011) (-221) (-552))) (-15 -1647 ((-1011) (-221) (-552))) (-15 -1659 ((-1011) (-221) (-552))) (-15 -1669 ((-1011) (-221) (-552))) (-15 -1681 ((-1011) (-221) (-552))) (-15 -1693 ((-1011) (-221) (-552))) (-15 -1704 ((-1011) (-221) (-552))) (-15 -1715 ((-1011) (-221) (-552))) (-15 -1726 ((-1011) (-221) (-552))) (-15 -1738 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1748 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1758 ((-1011) (-1131) (-167 (-221)) (-1131) (-552))) (-15 -1768 ((-1011) (-1131) (-167 (-221)) (-1131) (-552))) (-15 -1779 ((-1011) (-552) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1789 ((-1011) (-221) (-552))) (-15 -1803 ((-1011) (-221) (-552))) (-15 -1814 ((-1011) (-221) (-552))) (-15 -1824 ((-1011) (-221) (-552))) (-15 -1835 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1848 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1859 ((-1011) (-221) (-552))) (-15 -1869 ((-1011) (-221) (-552))) (-15 -1880 ((-1011) (-221) (-552))) (-15 -1890 ((-1011) (-221) (-552))) (-15 -1902 ((-1011) (-221) (-552))) (-15 -1915 ((-1011) (-221) (-552))) (-15 -1927 ((-1011) (-221) (-221) (-552))) (-15 -1937 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1948 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1961 ((-1011) (-221) (-221) (-221) (-221) (-552))))
+((-3807 (((-1237)) 18)) (-1981 (((-1131)) 22)) (-1973 (((-1131)) 21)) (-2002 (((-1077) (-1149) (-669 (-552))) 37) (((-1077) (-1149) (-669 (-221))) 32)) (-2631 (((-112)) 16)) (-1990 (((-1131) (-1131)) 25)))
+(((-740) (-10 -7 (-15 -1973 ((-1131))) (-15 -1981 ((-1131))) (-15 -1990 ((-1131) (-1131))) (-15 -2002 ((-1077) (-1149) (-669 (-221)))) (-15 -2002 ((-1077) (-1149) (-669 (-552)))) (-15 -2631 ((-112))) (-15 -3807 ((-1237))))) (T -740))
+((-3807 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-740)))) (-2631 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-740)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-552))) (-5 *2 (-1077)) (-5 *1 (-740)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-221))) (-5 *2 (-1077)) (-5 *1 (-740)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))) (-1981 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))) (-1973 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))))
+(-10 -7 (-15 -1973 ((-1131))) (-15 -1981 ((-1131))) (-15 -1990 ((-1131) (-1131))) (-15 -2002 ((-1077) (-1149) (-669 (-221)))) (-15 -2002 ((-1077) (-1149) (-669 (-552)))) (-15 -2631 ((-112))) (-15 -3807 ((-1237))))
+((-3828 (($ $ $) 10)) (-3842 (($ $ $ $) 9)) (-3818 (($ $ $) 12)))
+(((-741 |#1|) (-10 -8 (-15 -3818 (|#1| |#1| |#1|)) (-15 -3828 (|#1| |#1| |#1|)) (-15 -3842 (|#1| |#1| |#1| |#1|))) (-742)) (T -741))
+NIL
+(-10 -8 (-15 -3818 (|#1| |#1| |#1|)) (-15 -3828 (|#1| |#1| |#1|)) (-15 -3842 (|#1| |#1| |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-3629 (($ $ (-897)) 28)) (-3619 (($ $ (-897)) 29)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3828 (($ $ $) 25)) (-1683 (((-839) $) 11)) (-3842 (($ $ $ $) 26)) (-3818 (($ $ $) 24)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 30)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 27)))
(((-742) (-138)) (T -742))
-((-2687 (*1 *1 *1 *1 *1) (-4 *1 (-742))) (-2686 (*1 *1 *1 *1) (-4 *1 (-742))) (-2685 (*1 *1 *1 *1) (-4 *1 (-742))))
-(-13 (-21) (-701) (-10 -8 (-15 -2687 ($ $ $ $)) (-15 -2686 ($ $ $)) (-15 -2685 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-701) . T) ((-1074) . T))
-((-4317 (((-840) $) NIL) (($ (-538)) 10)))
-(((-743 |#1|) (-10 -8 (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-744)) (T -743))
-NIL
-(-10 -8 (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2496 (((-3 $ #1="failed") $) 40)) (-2499 (($ $ (-895)) 28) (($ $ (-751)) 35)) (-3821 (((-3 $ #1#) $) 38)) (-2502 (((-112) $) 34)) (-2497 (((-3 $ #1#) $) 39)) (-2498 (($ $ (-895)) 29) (($ $ (-751)) 36)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-2686 (($ $ $) 25)) (-4317 (((-840) $) 11) (($ (-538)) 31)) (-3461 (((-751)) 32)) (-2687 (($ $ $ $) 26)) (-2685 (($ $ $) 24)) (-2991 (($) 18 T CONST)) (-2997 (($) 33 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 30) (($ $ (-751)) 37)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 27)))
+((-3842 (*1 *1 *1 *1 *1) (-4 *1 (-742))) (-3828 (*1 *1 *1 *1) (-4 *1 (-742))) (-3818 (*1 *1 *1 *1) (-4 *1 (-742))))
+(-13 (-21) (-701) (-10 -8 (-15 -3842 ($ $ $ $)) (-15 -3828 ($ $ $)) (-15 -3818 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-701) . T) ((-1073) . T))
+((-1683 (((-839) $) NIL) (($ (-552)) 10)))
+(((-743 |#1|) (-10 -8 (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-744)) (T -743))
+NIL
+(-10 -8 (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-3598 (((-3 $ "failed") $) 40)) (-3629 (($ $ (-897)) 28) (($ $ (-751)) 35)) (-4174 (((-3 $ "failed") $) 38)) (-3650 (((-112) $) 34)) (-3609 (((-3 $ "failed") $) 39)) (-3619 (($ $ (-897)) 29) (($ $ (-751)) 36)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3828 (($ $ $) 25)) (-1683 (((-839) $) 11) (($ (-552)) 31)) (-4141 (((-751)) 32)) (-3842 (($ $ $ $) 26)) (-3818 (($ $ $) 24)) (-2089 (($) 18 T CONST)) (-2100 (($) 33 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 30) (($ $ (-751)) 37)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 27)))
(((-744) (-138)) (T -744))
-((-3461 (*1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-751)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-744)))))
-(-13 (-742) (-703) (-10 -8 (-15 -3461 ((-751))) (-15 -4317 ($ (-538)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-701) . T) ((-703) . T) ((-742) . T) ((-1074) . T))
-((-2689 (((-622 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 (-166 |#1|)))))) (-669 (-166 (-402 (-538)))) |#1|) 33)) (-2688 (((-622 (-166 |#1|)) (-669 (-166 (-402 (-538)))) |#1|) 23)) (-2698 (((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538)))) (-1149)) 20) (((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538))))) 19)))
-(((-745 |#1|) (-10 -7 (-15 -2698 ((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538)))))) (-15 -2698 ((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538)))) (-1149))) (-15 -2688 ((-622 (-166 |#1|)) (-669 (-166 (-402 (-538)))) |#1|)) (-15 -2689 ((-622 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 (-166 |#1|)))))) (-669 (-166 (-402 (-538)))) |#1|))) (-13 (-358) (-825))) (T -745))
-((-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 (-622 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 (-166 *4))))))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 (-622 (-166 *4))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *4 (-1149)) (-5 *2 (-922 (-166 (-402 (-538))))) (-5 *1 (-745 *5)) (-4 *5 (-13 (-358) (-825))))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 (-922 (-166 (-402 (-538))))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))))
-(-10 -7 (-15 -2698 ((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538)))))) (-15 -2698 ((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538)))) (-1149))) (-15 -2688 ((-622 (-166 |#1|)) (-669 (-166 (-402 (-538)))) |#1|)) (-15 -2689 ((-622 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 (-166 |#1|)))))) (-669 (-166 (-402 (-538)))) |#1|)))
-((-2945 (((-172 (-538)) |#1|) 25)))
-(((-746 |#1|) (-10 -7 (-15 -2945 ((-172 (-538)) |#1|))) (-399)) (T -746))
-((-2945 (*1 *2 *3) (-12 (-5 *2 (-172 (-538))) (-5 *1 (-746 *3)) (-4 *3 (-399)))))
-(-10 -7 (-15 -2945 ((-172 (-538)) |#1|)))
-((-2877 ((|#1| |#1| |#1|) 24)) (-2878 ((|#1| |#1| |#1|) 23)) (-2867 ((|#1| |#1| |#1|) 32)) (-2875 ((|#1| |#1| |#1|) 28)) (-2876 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2883 (((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|) 22)))
-(((-747 |#1| |#2|) (-10 -7 (-15 -2883 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -2878 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2875 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|))) (-689 |#2|) (-358)) (T -747))
-((-2867 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2875 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2876 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2877 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2878 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-747 *3 *4)) (-4 *3 (-689 *4)))))
-(-10 -7 (-15 -2883 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -2878 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2875 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)))
-((-4279 (((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538)))) (-538)) 59)) (-4278 (((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538))))) 57)) (-4117 (((-538)) 71)))
-(((-748 |#1| |#2|) (-10 -7 (-15 -4117 ((-538))) (-15 -4278 ((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538)))))) (-15 -4279 ((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538)))) (-538)))) (-1207 (-538)) (-405 (-538) |#1|)) (T -748))
-((-4279 (*1 *2 *3) (-12 (-5 *3 (-538)) (-4 *4 (-1207 *3)) (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-748 *4 *5)) (-4 *5 (-405 *3 *4)))) (-4278 (*1 *2) (-12 (-4 *3 (-1207 (-538))) (-5 *2 (-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538))))) (-5 *1 (-748 *3 *4)) (-4 *4 (-405 (-538) *3)))) (-4117 (*1 *2) (-12 (-4 *3 (-1207 *2)) (-5 *2 (-538)) (-5 *1 (-748 *3 *4)) (-4 *4 (-405 *2 *3)))))
-(-10 -7 (-15 -4117 ((-538))) (-15 -4278 ((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538)))))) (-15 -4279 ((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538)))) (-538))))
-((-2898 (((-112) $ $) NIL)) (-3507 (((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $) 21)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20) (($ (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13) (($ (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) 18)) (-3387 (((-112) $ $) NIL)))
-(((-749) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ($ (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $))))) (T -749))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-749)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-749)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-749)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-749)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-749)))))
-(-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ($ (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $))))
-((-2764 (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|))) 18) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149))) 17)) (-3936 (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|))) 20) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149))) 19)))
-(((-750 |#1|) (-10 -7 (-15 -2764 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -2764 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|))))) (-545)) (T -750))
-((-3936 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-750 *4)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-750 *5)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-750 *4)))) (-2764 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-750 *5)))))
-(-10 -7 (-15 -2764 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -2764 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2733 (($ $ $) 6)) (-1368 (((-3 $ "failed") $ $) 9)) (-2690 (($ $ (-538)) 7)) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($ $) NIL)) (-2893 (($ $ $) NIL)) (-2502 (((-112) $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3495 (($ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4317 (((-840) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ $ $) NIL)))
-(((-751) (-13 (-773) (-707) (-10 -8 (-15 -2893 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -3214 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -3820 ((-3 $ "failed") $ $)) (-15 -2690 ($ $ (-538))) (-15 -3327 ($ $)) (-6 (-4355 "*"))))) (T -751))
-((-2893 (*1 *1 *1 *1) (-5 *1 (-751))) (-2894 (*1 *1 *1 *1) (-5 *1 (-751))) (-3495 (*1 *1 *1 *1) (-5 *1 (-751))) (-3214 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2096 (-751)) (|:| -3235 (-751)))) (-5 *1 (-751)))) (-3820 (*1 *1 *1 *1) (|partial| -5 *1 (-751))) (-2690 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-751)))) (-3327 (*1 *1 *1) (-5 *1 (-751))))
-(-13 (-773) (-707) (-10 -8 (-15 -2893 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -3214 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -3820 ((-3 $ "failed") $ $)) (-15 -2690 ($ $ (-538))) (-15 -3327 ($ $)) (-6 (-4355 "*"))))
-((-3936 (((-3 |#2| "failed") |#2| |#2| (-113) (-1149)) 35)))
-(((-752 |#1| |#2|) (-10 -7 (-15 -3936 ((-3 |#2| "failed") |#2| |#2| (-113) (-1149)))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)) (-13 (-29 |#1|) (-1171) (-936))) (T -752))
-((-3936 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *1 (-752 *5 *2)) (-4 *2 (-13 (-29 *5) (-1171) (-936))))))
-(-10 -7 (-15 -3936 ((-3 |#2| "failed") |#2| |#2| (-113) (-1149))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 7)) (-3387 (((-112) $ $) 9)))
-(((-753) (-1074)) (T -753))
-NIL
-(-1074)
-((-4317 (((-753) |#1|) 8)))
-(((-754 |#1|) (-10 -7 (-15 -4317 ((-753) |#1|))) (-1185)) (T -754))
-((-4317 (*1 *2 *3) (-12 (-5 *2 (-753)) (-5 *1 (-754 *3)) (-4 *3 (-1185)))))
-(-10 -7 (-15 -4317 ((-753) |#1|)))
-((-3467 ((|#2| |#4|) 35)))
-(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3467 (|#2| |#4|))) (-446) (-1207 |#1|) (-705 |#1| |#2|) (-1207 |#3|)) (T -755))
-((-3467 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-705 *4 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-755 *4 *2 *5 *3)) (-4 *3 (-1207 *5)))))
-(-10 -7 (-15 -3467 (|#2| |#4|)))
-((-3821 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2693 (((-1237) (-1131) (-1131) |#4| |#5|) 33)) (-2691 ((|#4| |#4| |#5|) 73)) (-2692 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|) 77)) (-2694 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|) 16)))
-(((-756 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3821 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2691 (|#4| |#4| |#5|)) (-15 -2692 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -2693 ((-1237) (-1131) (-1131) |#4| |#5|)) (-15 -2694 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -756))
-((-2694 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2693 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1131)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *4 (-1039 *6 *7 *8)) (-5 *2 (-1237)) (-5 *1 (-756 *6 *7 *8 *4 *5)) (-4 *5 (-1045 *6 *7 *8 *4)))) (-2692 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2691 (*1 *2 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *2 (-1039 *4 *5 *6)) (-5 *1 (-756 *4 *5 *6 *2 *3)) (-4 *3 (-1045 *4 *5 *6 *2)))) (-3821 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3821 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2691 (|#4| |#4| |#5|)) (-15 -2692 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -2693 ((-1237) (-1131) (-1131) |#4| |#5|)) (-15 -2694 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)))
-((-3508 (((-3 (-1143 (-1143 |#1|)) "failed") |#4|) 43)) (-2695 (((-622 |#4|) |#4|) 15)) (-4288 ((|#4| |#4|) 11)))
-(((-757 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2695 ((-622 |#4|) |#4|)) (-15 -3508 ((-3 (-1143 (-1143 |#1|)) "failed") |#4|)) (-15 -4288 (|#4| |#4|))) (-345) (-324 |#1|) (-1207 |#2|) (-1207 |#3|) (-895)) (T -757))
-((-4288 (*1 *2 *2) (-12 (-4 *3 (-345)) (-4 *4 (-324 *3)) (-4 *5 (-1207 *4)) (-5 *1 (-757 *3 *4 *5 *2 *6)) (-4 *2 (-1207 *5)) (-14 *6 (-895)))) (-3508 (*1 *2 *3) (|partial| -12 (-4 *4 (-345)) (-4 *5 (-324 *4)) (-4 *6 (-1207 *5)) (-5 *2 (-1143 (-1143 *4))) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1207 *6)) (-14 *7 (-895)))) (-2695 (*1 *2 *3) (-12 (-4 *4 (-345)) (-4 *5 (-324 *4)) (-4 *6 (-1207 *5)) (-5 *2 (-622 *3)) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1207 *6)) (-14 *7 (-895)))))
-(-10 -7 (-15 -2695 ((-622 |#4|) |#4|)) (-15 -3508 ((-3 (-1143 (-1143 |#1|)) "failed") |#4|)) (-15 -4288 (|#4| |#4|)))
-((-2696 (((-2 (|:| |deter| (-622 (-1143 |#5|))) (|:| |dterm| (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-622 |#1|)) (|:| |nlead| (-622 |#5|))) (-1143 |#5|) (-622 |#1|) (-622 |#5|)) 54)) (-2697 (((-622 (-751)) |#1|) 13)))
-(((-758 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2696 ((-2 (|:| |deter| (-622 (-1143 |#5|))) (|:| |dterm| (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-622 |#1|)) (|:| |nlead| (-622 |#5|))) (-1143 |#5|) (-622 |#1|) (-622 |#5|))) (-15 -2697 ((-622 (-751)) |#1|))) (-1207 |#4|) (-773) (-827) (-302) (-926 |#4| |#2| |#3|)) (T -758))
-((-2697 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-622 (-751))) (-5 *1 (-758 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *6)) (-4 *7 (-926 *6 *4 *5)))) (-2696 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1207 *9)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-302)) (-4 *10 (-926 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-622 (-1143 *10))) (|:| |dterm| (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| *10))))) (|:| |nfacts| (-622 *6)) (|:| |nlead| (-622 *10)))) (-5 *1 (-758 *6 *7 *8 *9 *10)) (-5 *3 (-1143 *10)) (-5 *4 (-622 *6)) (-5 *5 (-622 *10)))))
-(-10 -7 (-15 -2696 ((-2 (|:| |deter| (-622 (-1143 |#5|))) (|:| |dterm| (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-622 |#1|)) (|:| |nlead| (-622 |#5|))) (-1143 |#5|) (-622 |#1|) (-622 |#5|))) (-15 -2697 ((-622 (-751)) |#1|)))
-((-2700 (((-622 (-2 (|:| |outval| |#1|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#1|))))) (-669 (-402 (-538))) |#1|) 31)) (-2699 (((-622 |#1|) (-669 (-402 (-538))) |#1|) 21)) (-2698 (((-922 (-402 (-538))) (-669 (-402 (-538))) (-1149)) 18) (((-922 (-402 (-538))) (-669 (-402 (-538)))) 17)))
-(((-759 |#1|) (-10 -7 (-15 -2698 ((-922 (-402 (-538))) (-669 (-402 (-538))))) (-15 -2698 ((-922 (-402 (-538))) (-669 (-402 (-538))) (-1149))) (-15 -2699 ((-622 |#1|) (-669 (-402 (-538))) |#1|)) (-15 -2700 ((-622 (-2 (|:| |outval| |#1|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#1|))))) (-669 (-402 (-538))) |#1|))) (-13 (-358) (-825))) (T -759))
-((-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 (-622 (-2 (|:| |outval| *4) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 *4)))))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))) (-2699 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 (-622 *4)) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *4 (-1149)) (-5 *2 (-922 (-402 (-538)))) (-5 *1 (-759 *5)) (-4 *5 (-13 (-358) (-825))))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 (-922 (-402 (-538)))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))))
-(-10 -7 (-15 -2698 ((-922 (-402 (-538))) (-669 (-402 (-538))))) (-15 -2698 ((-922 (-402 (-538))) (-669 (-402 (-538))) (-1149))) (-15 -2699 ((-622 |#1|) (-669 (-402 (-538))) |#1|)) (-15 -2700 ((-622 (-2 (|:| |outval| |#1|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#1|))))) (-669 (-402 (-538))) |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 34)) (-3417 (((-622 |#2|) $) NIL)) (-3419 (((-1143 $) $ |#2|) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 |#2|)) NIL)) (-4156 (($ $) 28)) (-3517 (((-112) $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4115 (($ $ $) 93 (|has| |#1| (-545)))) (-3499 (((-622 $) $ $) 106 (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-922 (-402 (-538)))) NIL (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149))))) (((-3 $ #3#) (-922 (-538))) NIL (-3891 (-12 (|has| |#1| (-38 (-538))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538)))))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149)))))) (((-3 $ #3#) (-922 |#1|)) NIL (-3891 (-12 (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-38 (-538))))) (-12 (|has| |#1| (-38 (-538))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-967 (-538))))))) (((-3 (-1098 |#1| |#2|) #2#) $) 18)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) ((|#2| $) NIL) (($ (-922 (-402 (-538)))) NIL (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149))))) (($ (-922 (-538))) NIL (-3891 (-12 (|has| |#1| (-38 (-538))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538)))))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149)))))) (($ (-922 |#1|)) NIL (-3891 (-12 (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-38 (-538))))) (-12 (|has| |#1| (-38 (-538))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-967 (-538))))))) (((-1098 |#1| |#2|) $) NIL)) (-4116 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-545)))) (-4319 (($ $) NIL) (($ $ |#2|) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4057 (((-112) $ $) NIL) (((-112) $ (-622 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3523 (((-112) $) NIL)) (-4112 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 70)) (-3494 (($ $) 119 (|has| |#1| (-446)))) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-3505 (($ $) NIL (|has| |#1| (-545)))) (-3506 (($ $) NIL (|has| |#1| (-545)))) (-3516 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3515 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1721 (($ $ |#1| (-524 |#2|) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| |#1| (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| |#1| (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-4058 (((-112) $ $) NIL) (((-112) $ (-622 $)) NIL)) (-3496 (($ $ $ $ $) 90 (|has| |#1| (-545)))) (-3531 ((|#2| $) 19)) (-3420 (($ (-1143 |#1|) |#2|) NIL) (($ (-1143 $) |#2|) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-524 |#2|)) NIL) (($ $ |#2| (-751)) 36) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-3510 (($ $ $) 60)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#2|) NIL)) (-3524 (((-112) $) NIL)) (-3153 (((-524 |#2|) $) NIL) (((-751) $ |#2|) NIL) (((-622 (-751)) $ (-622 |#2|)) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3530 (((-751) $) 20)) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 |#2|) (-524 |#2|)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3418 (((-3 |#2| #4="failed") $) NIL)) (-3491 (($ $) NIL (|has| |#1| (-446)))) (-3492 (($ $) NIL (|has| |#1| (-446)))) (-3519 (((-622 $) $) NIL)) (-3522 (($ $) 37)) (-3493 (($ $) NIL (|has| |#1| (-446)))) (-3520 (((-622 $) $) 41)) (-3521 (($ $) 39)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3509 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3835 (-751))) $ $) 82)) (-3511 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $) 67) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $ |#2|) NIL)) (-3512 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $) NIL) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $ |#2|) NIL)) (-3514 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3513 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3593 (((-1131) $) NIL)) (-3541 (($ $ $) 108 (|has| |#1| (-545)))) (-3527 (((-622 $) $) 30)) (-3156 (((-3 (-622 $) #4#) $) NIL)) (-3155 (((-3 (-622 $) #4#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| |#2|) (|:| -2493 (-751))) #4#) $) NIL)) (-4054 (((-112) $ $) NIL) (((-112) $ (-622 $)) NIL)) (-4049 (($ $ $) NIL)) (-3804 (($ $) 21)) (-4062 (((-112) $ $) NIL)) (-4055 (((-112) $ $) NIL) (((-112) $ (-622 $)) NIL)) (-4050 (($ $ $) NIL)) (-3529 (($ $) 23)) (-3594 (((-1093) $) NIL)) (-3500 (((-2 (|:| -3495 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-545)))) (-3501 (((-2 (|:| -3495 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-545)))) (-1916 (((-112) $) 52)) (-1915 ((|#1| $) 55)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 ((|#1| |#1| $) 116 (|has| |#1| (-446))) (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3502 (((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-545)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-3503 (($ $ |#1|) 112 (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-3504 (($ $ |#1|) 111 (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-622 |#2|) (-622 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-622 |#2|) (-622 $)) NIL)) (-4117 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4170 (($ $ |#2|) NIL) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-4307 (((-524 |#2|) $) NIL) (((-751) $ |#2|) 43) (((-622 (-751)) $ (-622 |#2|)) NIL)) (-3528 (($ $) NIL)) (-3526 (($ $) 33)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| |#1| (-598 (-527))) (|has| |#2| (-598 (-527))))) (($ (-922 (-402 (-538)))) NIL (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149))))) (($ (-922 (-538))) NIL (-3891 (-12 (|has| |#1| (-38 (-538))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538)))))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149)))))) (($ (-922 |#1|)) NIL (|has| |#2| (-598 (-1149)))) (((-1131) $) NIL (-12 (|has| |#1| (-1014 (-538))) (|has| |#2| (-598 (-1149))))) (((-922 |#1|) $) NIL (|has| |#2| (-598 (-1149))))) (-3150 ((|#1| $) 115 (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-922 |#1|) $) NIL (|has| |#2| (-598 (-1149)))) (((-1098 |#1| |#2|) $) 15) (($ (-1098 |#1| |#2|)) 16) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-524 |#2|)) NIL) (($ $ |#2| (-751)) 44) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 13 T CONST)) (-3518 (((-3 (-112) #3#) $ $) NIL)) (-2997 (($) 35 T CONST)) (-3497 (($ $ $ $ (-751)) 88 (|has| |#1| (-545)))) (-3498 (($ $ $ (-751)) 87 (|has| |#1| (-545)))) (-3002 (($ $ |#2|) NIL) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 54)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) 64)) (-4199 (($ $ $) 74)) (** (($ $ (-895)) NIL) (($ $ (-751)) 61)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 59) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+((-4141 (*1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-751)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-744)))))
+(-13 (-742) (-703) (-10 -8 (-15 -4141 ((-751))) (-15 -1683 ($ (-552)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-701) . T) ((-703) . T) ((-742) . T) ((-1073) . T))
+((-3869 (((-625 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 (-167 |#1|)))))) (-669 (-167 (-402 (-552)))) |#1|) 33)) (-3856 (((-625 (-167 |#1|)) (-669 (-167 (-402 (-552)))) |#1|) 23)) (-3974 (((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552)))) (-1149)) 20) (((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552))))) 19)))
+(((-745 |#1|) (-10 -7 (-15 -3974 ((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552)))))) (-15 -3974 ((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552)))) (-1149))) (-15 -3856 ((-625 (-167 |#1|)) (-669 (-167 (-402 (-552)))) |#1|)) (-15 -3869 ((-625 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 (-167 |#1|)))))) (-669 (-167 (-402 (-552)))) |#1|))) (-13 (-358) (-825))) (T -745))
+((-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *2 (-625 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 (-167 *4))))))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *2 (-625 (-167 *4))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *4 (-1149)) (-5 *2 (-928 (-167 (-402 (-552))))) (-5 *1 (-745 *5)) (-4 *5 (-13 (-358) (-825))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *2 (-928 (-167 (-402 (-552))))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))))
+(-10 -7 (-15 -3974 ((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552)))))) (-15 -3974 ((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552)))) (-1149))) (-15 -3856 ((-625 (-167 |#1|)) (-669 (-167 (-402 (-552)))) |#1|)) (-15 -3869 ((-625 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 (-167 |#1|)))))) (-669 (-167 (-402 (-552)))) |#1|)))
+((-1553 (((-172 (-552)) |#1|) 25)))
+(((-746 |#1|) (-10 -7 (-15 -1553 ((-172 (-552)) |#1|))) (-399)) (T -746))
+((-1553 (*1 *2 *3) (-12 (-5 *2 (-172 (-552))) (-5 *1 (-746 *3)) (-4 *3 (-399)))))
+(-10 -7 (-15 -1553 ((-172 (-552)) |#1|)))
+((-2215 ((|#1| |#1| |#1|) 24)) (-2225 ((|#1| |#1| |#1|) 23)) (-2107 ((|#1| |#1| |#1|) 32)) (-2193 ((|#1| |#1| |#1|) 28)) (-2204 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2257 (((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|) 22)))
+(((-747 |#1| |#2|) (-10 -7 (-15 -2257 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -2215 (|#1| |#1| |#1|)) (-15 -2204 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2193 (|#1| |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1|))) (-689 |#2|) (-358)) (T -747))
+((-2107 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2193 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2204 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2215 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2225 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2257 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-747 *3 *4)) (-4 *3 (-689 *4)))))
+(-10 -7 (-15 -2257 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -2215 (|#1| |#1| |#1|)) (-15 -2204 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2193 (|#1| |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1|)))
+((-4006 (((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552)))) (-552)) 59)) (-3993 (((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552))))) 57)) (-3217 (((-552)) 71)))
+(((-748 |#1| |#2|) (-10 -7 (-15 -3217 ((-552))) (-15 -3993 ((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552)))))) (-15 -4006 ((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552)))) (-552)))) (-1208 (-552)) (-404 (-552) |#1|)) (T -748))
+((-4006 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-1208 *3)) (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-748 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3993 (*1 *2) (-12 (-4 *3 (-1208 (-552))) (-5 *2 (-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552))))) (-5 *1 (-748 *3 *4)) (-4 *4 (-404 (-552) *3)))) (-3217 (*1 *2) (-12 (-4 *3 (-1208 *2)) (-5 *2 (-552)) (-5 *1 (-748 *3 *4)) (-4 *4 (-404 *2 *3)))))
+(-10 -7 (-15 -3217 ((-552))) (-15 -3993 ((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552)))))) (-15 -4006 ((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552)))) (-552))))
+((-1671 (((-112) $ $) NIL)) (-1895 (((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $) 21)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20) (($ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13) (($ (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) 18)) (-2281 (((-112) $ $) NIL)))
+(((-749) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $))))) (T -749))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-749)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-749)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-749)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-749)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-749)))))
+(-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $))))
+((-3414 (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|))) 18) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149))) 17)) (-1728 (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|))) 20) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149))) 19)))
+(((-750 |#1|) (-10 -7 (-15 -3414 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -3414 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|))))) (-544)) (T -750))
+((-1728 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-750 *4)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-750 *5)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-750 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-750 *5)))))
+(-10 -7 (-15 -3414 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -3414 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1282 (($ $ $) 6)) (-2077 (((-3 $ "failed") $ $) 9)) (-3420 (($ $ (-552)) 7)) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($ $) NIL)) (-2826 (($ $ $) NIL)) (-3650 (((-112) $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2633 (($ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1683 (((-839) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ $ $) NIL)))
+(((-751) (-13 (-773) (-707) (-10 -8 (-15 -2826 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -2633 ($ $ $)) (-15 -3481 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2802 ((-3 $ "failed") $ $)) (-15 -3420 ($ $ (-552))) (-15 -3702 ($ $)) (-6 (-4355 "*"))))) (T -751))
+((-2826 (*1 *1 *1 *1) (-5 *1 (-751))) (-2851 (*1 *1 *1 *1) (-5 *1 (-751))) (-2633 (*1 *1 *1 *1) (-5 *1 (-751))) (-3481 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3984 (-751)) (|:| -3645 (-751)))) (-5 *1 (-751)))) (-2802 (*1 *1 *1 *1) (|partial| -5 *1 (-751))) (-3420 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-751)))) (-3702 (*1 *1 *1) (-5 *1 (-751))))
+(-13 (-773) (-707) (-10 -8 (-15 -2826 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -2633 ($ $ $)) (-15 -3481 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2802 ((-3 $ "failed") $ $)) (-15 -3420 ($ $ (-552))) (-15 -3702 ($ $)) (-6 (-4355 "*"))))
+((-1728 (((-3 |#2| "failed") |#2| |#2| (-114) (-1149)) 35)))
+(((-752 |#1| |#2|) (-10 -7 (-15 -1728 ((-3 |#2| "failed") |#2| |#2| (-114) (-1149)))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)) (-13 (-29 |#1|) (-1171) (-935))) (T -752))
+((-1728 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *1 (-752 *5 *2)) (-4 *2 (-13 (-29 *5) (-1171) (-935))))))
+(-10 -7 (-15 -1728 ((-3 |#2| "failed") |#2| |#2| (-114) (-1149))))
+((-1683 (((-754) |#1|) 8)))
+(((-753 |#1|) (-10 -7 (-15 -1683 ((-754) |#1|))) (-1186)) (T -753))
+((-1683 (*1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-753 *3)) (-4 *3 (-1186)))))
+(-10 -7 (-15 -1683 ((-754) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 7)) (-2281 (((-112) $ $) 9)))
+(((-754) (-1073)) (T -754))
+NIL
+(-1073)
+((-4209 ((|#2| |#4|) 35)))
+(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4209 (|#2| |#4|))) (-446) (-1208 |#1|) (-705 |#1| |#2|) (-1208 |#3|)) (T -755))
+((-4209 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-705 *4 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-755 *4 *2 *5 *3)) (-4 *3 (-1208 *5)))))
+(-10 -7 (-15 -4209 (|#2| |#4|)))
+((-4174 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3910 (((-1237) (-1131) (-1131) |#4| |#5|) 33)) (-3882 ((|#4| |#4| |#5|) 73)) (-3895 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|) 77)) (-3923 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|) 16)))
+(((-756 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4174 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3882 (|#4| |#4| |#5|)) (-15 -3895 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -3910 ((-1237) (-1131) (-1131) |#4| |#5|)) (-15 -3923 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -756))
+((-3923 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3910 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1131)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *4 (-1039 *6 *7 *8)) (-5 *2 (-1237)) (-5 *1 (-756 *6 *7 *8 *4 *5)) (-4 *5 (-1045 *6 *7 *8 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3882 (*1 *2 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *2 (-1039 *4 *5 *6)) (-5 *1 (-756 *4 *5 *6 *2 *3)) (-4 *3 (-1045 *4 *5 *6 *2)))) (-4174 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(-10 -7 (-15 -4174 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3882 (|#4| |#4| |#5|)) (-15 -3895 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -3910 ((-1237) (-1131) (-1131) |#4| |#5|)) (-15 -3923 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)))
+((-1893 (((-3 (-1145 (-1145 |#1|)) "failed") |#4|) 43)) (-3937 (((-625 |#4|) |#4|) 15)) (-4104 ((|#4| |#4|) 11)))
+(((-757 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3937 ((-625 |#4|) |#4|)) (-15 -1893 ((-3 (-1145 (-1145 |#1|)) "failed") |#4|)) (-15 -4104 (|#4| |#4|))) (-344) (-324 |#1|) (-1208 |#2|) (-1208 |#3|) (-897)) (T -757))
+((-4104 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-324 *3)) (-4 *5 (-1208 *4)) (-5 *1 (-757 *3 *4 *5 *2 *6)) (-4 *2 (-1208 *5)) (-14 *6 (-897)))) (-1893 (*1 *2 *3) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1208 *5)) (-5 *2 (-1145 (-1145 *4))) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1208 *6)) (-14 *7 (-897)))) (-3937 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1208 *5)) (-5 *2 (-625 *3)) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1208 *6)) (-14 *7 (-897)))))
+(-10 -7 (-15 -3937 ((-625 |#4|) |#4|)) (-15 -1893 ((-3 (-1145 (-1145 |#1|)) "failed") |#4|)) (-15 -4104 (|#4| |#4|)))
+((-3947 (((-2 (|:| |deter| (-625 (-1145 |#5|))) (|:| |dterm| (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-625 |#1|)) (|:| |nlead| (-625 |#5|))) (-1145 |#5|) (-625 |#1|) (-625 |#5|)) 54)) (-3960 (((-625 (-751)) |#1|) 13)))
+(((-758 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3947 ((-2 (|:| |deter| (-625 (-1145 |#5|))) (|:| |dterm| (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-625 |#1|)) (|:| |nlead| (-625 |#5|))) (-1145 |#5|) (-625 |#1|) (-625 |#5|))) (-15 -3960 ((-625 (-751)) |#1|))) (-1208 |#4|) (-773) (-827) (-302) (-925 |#4| |#2| |#3|)) (T -758))
+((-3960 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-625 (-751))) (-5 *1 (-758 *3 *4 *5 *6 *7)) (-4 *3 (-1208 *6)) (-4 *7 (-925 *6 *4 *5)))) (-3947 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1208 *9)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-302)) (-4 *10 (-925 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-625 (-1145 *10))) (|:| |dterm| (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| *10))))) (|:| |nfacts| (-625 *6)) (|:| |nlead| (-625 *10)))) (-5 *1 (-758 *6 *7 *8 *9 *10)) (-5 *3 (-1145 *10)) (-5 *4 (-625 *6)) (-5 *5 (-625 *10)))))
+(-10 -7 (-15 -3947 ((-2 (|:| |deter| (-625 (-1145 |#5|))) (|:| |dterm| (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-625 |#1|)) (|:| |nlead| (-625 |#5|))) (-1145 |#5|) (-625 |#1|) (-625 |#5|))) (-15 -3960 ((-625 (-751)) |#1|)))
+((-3998 (((-625 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#1|))))) (-669 (-402 (-552))) |#1|) 31)) (-3986 (((-625 |#1|) (-669 (-402 (-552))) |#1|) 21)) (-3974 (((-928 (-402 (-552))) (-669 (-402 (-552))) (-1149)) 18) (((-928 (-402 (-552))) (-669 (-402 (-552)))) 17)))
+(((-759 |#1|) (-10 -7 (-15 -3974 ((-928 (-402 (-552))) (-669 (-402 (-552))))) (-15 -3974 ((-928 (-402 (-552))) (-669 (-402 (-552))) (-1149))) (-15 -3986 ((-625 |#1|) (-669 (-402 (-552))) |#1|)) (-15 -3998 ((-625 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#1|))))) (-669 (-402 (-552))) |#1|))) (-13 (-358) (-825))) (T -759))
+((-3998 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *2 (-625 (-2 (|:| |outval| *4) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 *4)))))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))) (-3986 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *2 (-625 *4)) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *4 (-1149)) (-5 *2 (-928 (-402 (-552)))) (-5 *1 (-759 *5)) (-4 *5 (-13 (-358) (-825))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *2 (-928 (-402 (-552)))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))))
+(-10 -7 (-15 -3974 ((-928 (-402 (-552))) (-669 (-402 (-552))))) (-15 -3974 ((-928 (-402 (-552))) (-669 (-402 (-552))) (-1149))) (-15 -3986 ((-625 |#1|) (-669 (-402 (-552))) |#1|)) (-15 -3998 ((-625 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#1|))))) (-669 (-402 (-552))) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 34)) (-3982 (((-625 |#2|) $) NIL)) (-3793 (((-1145 $) $ |#2|) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 |#2|)) NIL)) (-2101 (($ $) 28)) (-3431 (((-112) $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3197 (($ $ $) 93 (|has| |#1| (-544)))) (-3275 (((-625 $) $ $) 106 (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-928 (-402 (-552)))) NIL (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149))))) (((-3 $ "failed") (-928 (-552))) NIL (-1523 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552)))))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149)))))) (((-3 $ "failed") (-928 |#1|)) NIL (-1523 (-12 (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-38 (-552))))) (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-968 (-552))))))) (((-3 (-1098 |#1| |#2|) "failed") $) 18)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) ((|#2| $) NIL) (($ (-928 (-402 (-552)))) NIL (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149))))) (($ (-928 (-552))) NIL (-1523 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552)))))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149)))))) (($ (-928 |#1|)) NIL (-1523 (-12 (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-38 (-552))))) (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-968 (-552))))))) (((-1098 |#1| |#2|) $) NIL)) (-3207 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-544)))) (-4169 (($ $) NIL) (($ $ |#2|) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-2668 (((-112) $ $) NIL) (((-112) $ (-625 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3498 (((-112) $) NIL)) (-3173 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 70)) (-3239 (($ $) 119 (|has| |#1| (-446)))) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-3334 (($ $) NIL (|has| |#1| (-544)))) (-3343 (($ $) NIL (|has| |#1| (-544)))) (-3418 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3410 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1347 (($ $ |#1| (-524 |#2|) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| |#1| (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| |#1| (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-2678 (((-112) $ $) NIL) (((-112) $ (-625 $)) NIL)) (-3248 (($ $ $ $ $) 90 (|has| |#1| (-544)))) (-3565 ((|#2| $) 19)) (-3970 (($ (-1145 |#1|) |#2|) NIL) (($ (-1145 $) |#2|) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-524 |#2|)) NIL) (($ $ |#2| (-751)) 36) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-3361 (($ $ $) 60)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#2|) NIL)) (-3507 (((-112) $) NIL)) (-4134 (((-524 |#2|) $) NIL) (((-751) $ |#2|) NIL) (((-625 (-751)) $ (-625 |#2|)) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3556 (((-751) $) 20)) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 |#2|) (-524 |#2|)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-1942 (((-3 |#2| "failed") $) NIL)) (-3211 (($ $) NIL (|has| |#1| (-446)))) (-3222 (($ $) NIL (|has| |#1| (-446)))) (-3454 (((-625 $) $) NIL)) (-3487 (($ $) 37)) (-3230 (($ $) NIL (|has| |#1| (-446)))) (-3466 (((-625 $) $) 41)) (-3477 (($ $) 39)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3352 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4321 (-751))) $ $) 82)) (-3370 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $) 67) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $ |#2|) NIL)) (-3380 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $) NIL) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $ |#2|) NIL)) (-3401 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3390 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2883 (((-1131) $) NIL)) (-3662 (($ $ $) 108 (|has| |#1| (-544)))) (-3525 (((-625 $) $) 30)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| |#2|) (|:| -3564 (-751))) "failed") $) NIL)) (-3777 (((-112) $ $) NIL) (((-112) $ (-625 $)) NIL)) (-3727 (($ $ $) NIL)) (-2071 (($ $) 21)) (-2719 (((-112) $ $) NIL)) (-3788 (((-112) $ $) NIL) (((-112) $ (-625 $)) NIL)) (-3737 (($ $ $) NIL)) (-3545 (($ $) 23)) (-2831 (((-1093) $) NIL)) (-3285 (((-2 (|:| -2633 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-544)))) (-3294 (((-2 (|:| -2633 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-544)))) (-4105 (((-112) $) 52)) (-4117 ((|#1| $) 55)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 ((|#1| |#1| $) 116 (|has| |#1| (-446))) (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-3304 (((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-544)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3314 (($ $ |#1|) 112 (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-3325 (($ $ |#1|) 111 (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-625 |#2|) (-625 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-625 |#2|) (-625 $)) NIL)) (-3217 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-3072 (($ $ |#2|) NIL) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-4276 (((-524 |#2|) $) NIL) (((-751) $ |#2|) 43) (((-625 (-751)) $ (-625 |#2|)) NIL)) (-3535 (($ $) NIL)) (-3516 (($ $) 33)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-598 (-528))) (|has| |#2| (-598 (-528))))) (($ (-928 (-402 (-552)))) NIL (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149))))) (($ (-928 (-552))) NIL (-1523 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552)))))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149)))))) (($ (-928 |#1|)) NIL (|has| |#2| (-598 (-1149)))) (((-1131) $) NIL (-12 (|has| |#1| (-1014 (-552))) (|has| |#2| (-598 (-1149))))) (((-928 |#1|) $) NIL (|has| |#2| (-598 (-1149))))) (-4108 ((|#1| $) 115 (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-928 |#1|) $) NIL (|has| |#2| (-598 (-1149)))) (((-1098 |#1| |#2|) $) 15) (($ (-1098 |#1| |#2|)) 16) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-524 |#2|)) NIL) (($ $ |#2| (-751)) 44) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 13 T CONST)) (-3441 (((-3 (-112) "failed") $ $) NIL)) (-2100 (($) 35 T CONST)) (-3257 (($ $ $ $ (-751)) 88 (|has| |#1| (-544)))) (-3266 (($ $ $ (-751)) 87 (|has| |#1| (-544)))) (-3768 (($ $ |#2|) NIL) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 54)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) 64)) (-2382 (($ $ $) 74)) (** (($ $ (-897)) NIL) (($ $ (-751)) 61)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 59) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
(((-760 |#1| |#2|) (-13 (-1039 |#1| (-524 |#2|) |#2|) (-597 (-1098 |#1| |#2|)) (-1014 (-1098 |#1| |#2|))) (-1025) (-827)) (T -760))
NIL
(-13 (-1039 |#1| (-524 |#2|) |#2|) (-597 (-1098 |#1| |#2|)) (-1014 (-1098 |#1| |#2|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 12)) (-4126 (((-1231 |#1|) $ (-751)) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4124 (($ (-1143 |#1|)) NIL)) (-3419 (((-1143 $) $ (-1055)) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1055))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2704 (((-622 $) $ $) 39 (|has| |#1| (-545)))) (-4115 (($ $ $) 35 (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-4120 (($ $ (-751)) NIL)) (-4119 (($ $ (-751)) NIL)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-1055) #2#) $) NIL) (((-3 (-1143 |#1|) #2#) $) 10)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-1055) $) NIL) (((-1143 |#1|) $) NIL)) (-4116 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4118 (($ $ $) NIL)) (-4113 (($ $ $) 71 (|has| |#1| (-545)))) (-4112 (((-2 (|:| -4313 |#1|) (|:| -2096 $) (|:| -3235 $)) $ $) 70 (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-751) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1055) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1055) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ $) NIL (|has| |#1| (-545)))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3420 (($ (-1143 |#1|) (-1055)) NIL) (($ (-1143 $) (-1055)) NIL)) (-4136 (($ $ (-751)) NIL)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3510 (($ $ $) 20)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1055)) NIL) (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-3153 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-751) (-751)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4125 (((-1143 |#1|) $) NIL)) (-3418 (((-3 (-1055) #4="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3509 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3835 (-751))) $ $) 26)) (-2706 (($ $ $) 29)) (-2705 (($ $ $) 32)) (-3511 (((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $) 31)) (-3593 (((-1131) $) NIL)) (-3541 (($ $ $) 41 (|has| |#1| (-545)))) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) NIL)) (-3156 (((-3 (-622 $) #4#) $) NIL)) (-3155 (((-3 (-622 $) #4#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1055)) (|:| -2493 (-751))) #4#) $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) NIL (|has| |#1| (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3500 (((-2 (|:| -3495 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-545)))) (-3501 (((-2 (|:| -3495 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-545)))) (-2701 (((-2 (|:| -4116 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-545)))) (-2702 (((-2 (|:| -4116 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-545)))) (-1916 (((-112) $) 13)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4098 (($ $ (-751) |#1| $) 19)) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3502 (((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-545)))) (-2703 (((-2 (|:| -4116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-545)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-622 (-1055)) (-622 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-622 (-1055)) (-622 $)) NIL)) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-545))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-545)))) (-4123 (((-3 $ #5="failed") $ (-751)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4117 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4170 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4307 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1055) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4114 (((-3 $ #5#) $ $) NIL (|has| |#1| (-545))) (((-3 (-402 $) #5#) (-402 $) $) NIL (|has| |#1| (-545)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-1055)) NIL) (((-1143 |#1|) $) 7) (($ (-1143 |#1|)) 8) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 21 T CONST)) (-2997 (($) 24 T CONST)) (-3002 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) 28) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-761 |#1|) (-13 (-1207 |#1|) (-597 (-1143 |#1|)) (-1014 (-1143 |#1|)) (-10 -8 (-15 -4098 ($ $ (-751) |#1| $)) (-15 -3510 ($ $ $)) (-15 -3509 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3835 (-751))) $ $)) (-15 -2706 ($ $ $)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2705 ($ $ $)) (IF (|has| |#1| (-545)) (PROGN (-15 -2704 ((-622 $) $ $)) (-15 -3541 ($ $ $)) (-15 -3502 ((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3501 ((-2 (|:| -3495 $) (|:| |coef1| $)) $ $)) (-15 -3500 ((-2 (|:| -3495 $) (|:| |coef2| $)) $ $)) (-15 -2703 ((-2 (|:| -4116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2702 ((-2 (|:| -4116 |#1|) (|:| |coef1| $)) $ $)) (-15 -2701 ((-2 (|:| -4116 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1025)) (T -761))
-((-4098 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-761 *3)) (-4 *3 (-1025)))) (-3510 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025)))) (-3509 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-761 *3)) (|:| |polden| *3) (|:| -3835 (-751)))) (-5 *1 (-761 *3)) (-4 *3 (-1025)))) (-2706 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025)))) (-3511 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4313 *3) (|:| |gap| (-751)) (|:| -2096 (-761 *3)) (|:| -3235 (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-1025)))) (-2705 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025)))) (-2704 (*1 *2 *1 *1) (-12 (-5 *2 (-622 (-761 *3))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-3541 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-545)) (-4 *2 (-1025)))) (-3502 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3495 (-761 *3)) (|:| |coef1| (-761 *3)) (|:| |coef2| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-3501 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3495 (-761 *3)) (|:| |coef1| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-3500 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3495 (-761 *3)) (|:| |coef2| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-2703 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4116 *3) (|:| |coef1| (-761 *3)) (|:| |coef2| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-2702 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4116 *3) (|:| |coef1| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-2701 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4116 *3) (|:| |coef2| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))))
-(-13 (-1207 |#1|) (-597 (-1143 |#1|)) (-1014 (-1143 |#1|)) (-10 -8 (-15 -4098 ($ $ (-751) |#1| $)) (-15 -3510 ($ $ $)) (-15 -3509 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3835 (-751))) $ $)) (-15 -2706 ($ $ $)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2705 ($ $ $)) (IF (|has| |#1| (-545)) (PROGN (-15 -2704 ((-622 $) $ $)) (-15 -3541 ($ $ $)) (-15 -3502 ((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3501 ((-2 (|:| -3495 $) (|:| |coef1| $)) $ $)) (-15 -3500 ((-2 (|:| -3495 $) (|:| |coef2| $)) $ $)) (-15 -2703 ((-2 (|:| -4116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2702 ((-2 (|:| -4116 |#1|) (|:| |coef1| $)) $ $)) (-15 -2701 ((-2 (|:| -4116 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-4318 (((-761 |#2|) (-1 |#2| |#1|) (-761 |#1|)) 13)))
-(((-762 |#1| |#2|) (-10 -7 (-15 -4318 ((-761 |#2|) (-1 |#2| |#1|) (-761 |#1|)))) (-1025) (-1025)) (T -762))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-761 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-761 *6)) (-5 *1 (-762 *5 *6)))))
-(-10 -7 (-15 -4318 ((-761 |#2|) (-1 |#2| |#1|) (-761 |#1|))))
-((-2708 ((|#1| (-751) |#1|) 32 (|has| |#1| (-38 (-402 (-538)))))) (-3134 ((|#1| (-751) |#1|) 22)) (-2707 ((|#1| (-751) |#1|) 34 (|has| |#1| (-38 (-402 (-538)))))))
-(((-763 |#1|) (-10 -7 (-15 -3134 (|#1| (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -2707 (|#1| (-751) |#1|)) (-15 -2708 (|#1| (-751) |#1|))) |%noBranch|)) (-170)) (T -763))
-((-2708 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-170)))) (-2707 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-170)))) (-3134 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-170)))))
-(-10 -7 (-15 -3134 (|#1| (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -2707 (|#1| (-751) |#1|)) (-15 -2708 (|#1| (-751) |#1|))) |%noBranch|))
-((-2898 (((-112) $ $) 7)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) 85)) (-4045 (((-622 $) (-622 |#4|)) 86) (((-622 $) (-622 |#4|) (-112)) 111)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) 101) (((-112) $) 97)) (-4051 ((|#4| |#4| $) 92)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 126)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-4158 (((-3 $ #1#) $) 82)) (-4048 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4046 ((|#4| |#4| $) 87)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) 105)) (-3548 (((-112) |#4| $) 136)) (-3546 (((-112) |#4| $) 133)) (-3549 (((-112) |#4| $) 137) (((-112) $) 134)) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) 104) (((-112) $) 103)) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) 128)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 127)) (-4157 (((-3 |#4| #1#) $) 83)) (-3543 (((-622 $) |#4| $) 129)) (-3545 (((-3 (-112) (-622 $)) |#4| $) 132)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3589 (((-622 $) |#4| $) 125) (((-622 $) (-622 |#4|) $) 124) (((-622 $) (-622 |#4|) (-622 $)) 123) (((-622 $) |#4| (-622 $)) 122)) (-3799 (($ |#4| $) 117) (($ (-622 |#4|) $) 116)) (-4060 (((-622 |#4|) $) 107)) (-4054 (((-112) |#4| $) 99) (((-112) $) 95)) (-4049 ((|#4| |#4| $) 90)) (-4062 (((-112) $ $) 110)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) 100) (((-112) $) 96)) (-4050 ((|#4| |#4| $) 91)) (-3594 (((-1093) $) 10)) (-4160 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4042 (((-3 $ #1#) $ |#4|) 78)) (-4128 (($ $ |#4|) 77) (((-622 $) |#4| $) 115) (((-622 $) |#4| (-622 $)) 114) (((-622 $) (-622 |#4|) $) 113) (((-622 $) (-622 |#4|) (-622 $)) 112)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-4307 (((-751) $) 106)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-4047 (($ $) 88)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-4041 (((-751) $) 76 (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) 98)) (-3540 (((-622 $) |#4| $) 121) (((-622 $) |#4| (-622 $)) 120) (((-622 $) (-622 |#4|) $) 119) (((-622 $) (-622 |#4|) (-622 $)) 118)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) 81)) (-3547 (((-112) |#4| $) 135)) (-4293 (((-112) |#3| $) 80)) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353)))))
+((-1996 (((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|)) 13)))
+(((-761 |#1| |#2|) (-10 -7 (-15 -1996 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|)))) (-1025) (-1025)) (T -761))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-762 *6)) (-5 *1 (-761 *5 *6)))))
+(-10 -7 (-15 -1996 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 12)) (-2138 (((-1232 |#1|) $ (-751)) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2117 (($ (-1145 |#1|)) NIL)) (-3793 (((-1145 $) $ (-1055)) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1055))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4045 (((-625 $) $ $) 39 (|has| |#1| (-544)))) (-3197 (($ $ $) 35 (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2076 (($ $ (-751)) NIL)) (-2065 (($ $ (-751)) NIL)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-1055) "failed") $) NIL) (((-3 (-1145 |#1|) "failed") $) 10)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-1055) $) NIL) (((-1145 |#1|) $) NIL)) (-3207 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-2052 (($ $ $) NIL)) (-3181 (($ $ $) 71 (|has| |#1| (-544)))) (-3173 (((-2 (|:| -3340 |#1|) (|:| -3984 $) (|:| -3645 $)) $ $) 70 (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-751) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1055) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1055) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ $) NIL (|has| |#1| (-544)))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3970 (($ (-1145 |#1|) (-1055)) NIL) (($ (-1145 $) (-1055)) NIL)) (-2216 (($ $ (-751)) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-3361 (($ $ $) 20)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1055)) NIL) (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-4134 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-751) (-751)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2127 (((-1145 |#1|) $) NIL)) (-1942 (((-3 (-1055) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3352 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4321 (-751))) $ $) 26)) (-4070 (($ $ $) 29)) (-4058 (($ $ $) 32)) (-3370 (((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $) 31)) (-2883 (((-1131) $) NIL)) (-3662 (($ $ $) 41 (|has| |#1| (-544)))) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1055)) (|:| -3564 (-751))) "failed") $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) NIL (|has| |#1| (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-3285 (((-2 (|:| -2633 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-544)))) (-3294 (((-2 (|:| -2633 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-544)))) (-4010 (((-2 (|:| -3207 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-544)))) (-4021 (((-2 (|:| -3207 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-544)))) (-4105 (((-112) $) 13)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3044 (($ $ (-751) |#1| $) 19)) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-3304 (((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-544)))) (-4033 (((-2 (|:| -3207 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-544)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-625 (-1055)) (-625 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-625 (-1055)) (-625 $)) NIL)) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-544))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-544)))) (-2108 (((-3 $ "failed") $ (-751)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3217 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-3072 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4276 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1055) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-3190 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-544)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1055)) NIL) (((-1145 |#1|) $) 7) (($ (-1145 |#1|)) 8) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 21 T CONST)) (-2100 (($) 24 T CONST)) (-3768 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) 28) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-762 |#1|) (-13 (-1208 |#1|) (-597 (-1145 |#1|)) (-1014 (-1145 |#1|)) (-10 -8 (-15 -3044 ($ $ (-751) |#1| $)) (-15 -3361 ($ $ $)) (-15 -3352 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4321 (-751))) $ $)) (-15 -4070 ($ $ $)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -4058 ($ $ $)) (IF (|has| |#1| (-544)) (PROGN (-15 -4045 ((-625 $) $ $)) (-15 -3662 ($ $ $)) (-15 -3304 ((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3294 ((-2 (|:| -2633 $) (|:| |coef1| $)) $ $)) (-15 -3285 ((-2 (|:| -2633 $) (|:| |coef2| $)) $ $)) (-15 -4033 ((-2 (|:| -3207 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4021 ((-2 (|:| -3207 |#1|) (|:| |coef1| $)) $ $)) (-15 -4010 ((-2 (|:| -3207 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1025)) (T -762))
+((-3044 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-762 *3)) (-4 *3 (-1025)))) (-3361 (*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025)))) (-3352 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-762 *3)) (|:| |polden| *3) (|:| -4321 (-751)))) (-5 *1 (-762 *3)) (-4 *3 (-1025)))) (-4070 (*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025)))) (-3370 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3340 *3) (|:| |gap| (-751)) (|:| -3984 (-762 *3)) (|:| -3645 (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-1025)))) (-4058 (*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025)))) (-4045 (*1 *2 *1 *1) (-12 (-5 *2 (-625 (-762 *3))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-3662 (*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-544)) (-4 *2 (-1025)))) (-3304 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2633 (-762 *3)) (|:| |coef1| (-762 *3)) (|:| |coef2| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-3294 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2633 (-762 *3)) (|:| |coef1| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-3285 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2633 (-762 *3)) (|:| |coef2| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-4033 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3207 *3) (|:| |coef1| (-762 *3)) (|:| |coef2| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-4021 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3207 *3) (|:| |coef1| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-4010 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3207 *3) (|:| |coef2| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))))
+(-13 (-1208 |#1|) (-597 (-1145 |#1|)) (-1014 (-1145 |#1|)) (-10 -8 (-15 -3044 ($ $ (-751) |#1| $)) (-15 -3361 ($ $ $)) (-15 -3352 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4321 (-751))) $ $)) (-15 -4070 ($ $ $)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -4058 ($ $ $)) (IF (|has| |#1| (-544)) (PROGN (-15 -4045 ((-625 $) $ $)) (-15 -3662 ($ $ $)) (-15 -3304 ((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3294 ((-2 (|:| -2633 $) (|:| |coef1| $)) $ $)) (-15 -3285 ((-2 (|:| -2633 $) (|:| |coef2| $)) $ $)) (-15 -4033 ((-2 (|:| -3207 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4021 ((-2 (|:| -3207 |#1|) (|:| |coef1| $)) $ $)) (-15 -4010 ((-2 (|:| -3207 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-4096 ((|#1| (-751) |#1|) 32 (|has| |#1| (-38 (-402 (-552)))))) (-3909 ((|#1| (-751) |#1|) 22)) (-4083 ((|#1| (-751) |#1|) 34 (|has| |#1| (-38 (-402 (-552)))))))
+(((-763 |#1|) (-10 -7 (-15 -3909 (|#1| (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -4083 (|#1| (-751) |#1|)) (-15 -4096 (|#1| (-751) |#1|))) |%noBranch|)) (-170)) (T -763))
+((-4096 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-170)))) (-4083 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-170)))) (-3909 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-170)))))
+(-10 -7 (-15 -3909 (|#1| (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -4083 (|#1| (-751) |#1|)) (-15 -4096 (|#1| (-751) |#1|))) |%noBranch|))
+((-1671 (((-112) $ $) 7)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) 85)) (-3690 (((-625 $) (-625 |#4|)) 86) (((-625 $) (-625 |#4|) (-112)) 111)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 126)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2936 (((-3 $ "failed") $) 82)) (-3720 ((|#4| |#4| $) 89)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3699 ((|#4| |#4| $) 87)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) 105)) (-3731 (((-112) |#4| $) 136)) (-3714 (((-112) |#4| $) 133)) (-3741 (((-112) |#4| $) 137) (((-112) $) 134)) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) 104) (((-112) $) 103)) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) 128)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 127)) (-1437 (((-3 |#4| "failed") $) 83)) (-3685 (((-625 $) |#4| $) 129)) (-3704 (((-3 (-112) (-625 $)) |#4| $) 132)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2860 (((-625 $) |#4| $) 125) (((-625 $) (-625 |#4|) $) 124) (((-625 $) (-625 |#4|) (-625 $)) 123) (((-625 $) |#4| (-625 $)) 122)) (-3999 (($ |#4| $) 117) (($ (-625 |#4|) $) 116)) (-2699 (((-625 |#4|) $) 107)) (-3777 (((-112) |#4| $) 99) (((-112) $) 95)) (-3727 ((|#4| |#4| $) 90)) (-2719 (((-112) $ $) 110)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) 100) (((-112) $) 96)) (-3737 ((|#4| |#4| $) 91)) (-2831 (((-1093) $) 10)) (-2924 (((-3 |#4| "failed") $) 84)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3657 (((-3 $ "failed") $ |#4|) 78)) (-2147 (($ $ |#4|) 77) (((-625 $) |#4| $) 115) (((-625 $) |#4| (-625 $)) 114) (((-625 $) (-625 |#4|) $) 113) (((-625 $) (-625 |#4|) (-625 $)) 112)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-4276 (((-751) $) 106)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-3709 (($ $) 88)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-3647 (((-751) $) 76 (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) 98)) (-3651 (((-625 $) |#4| $) 121) (((-625 $) |#4| (-625 $)) 120) (((-625 $) (-625 |#4|) $) 119) (((-625 $) (-625 |#4|) (-625 $)) 118)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) 81)) (-3724 (((-112) |#4| $) 135)) (-4168 (((-112) |#3| $) 80)) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353)))))
(((-764 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -764))
NIL
(-13 (-1045 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1074) . T) ((-1180 |#1| |#2| |#3| |#4|) . T) ((-1185) . T))
-((-2711 (((-3 (-373) "failed") (-309 |#1|) (-895)) 62 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-373) "failed") (-309 |#1|)) 54 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-373) "failed") (-402 (-922 |#1|)) (-895)) 41 (|has| |#1| (-545))) (((-3 (-373) "failed") (-402 (-922 |#1|))) 40 (|has| |#1| (-545))) (((-3 (-373) "failed") (-922 |#1|) (-895)) 31 (|has| |#1| (-1025))) (((-3 (-373) "failed") (-922 |#1|)) 30 (|has| |#1| (-1025)))) (-2709 (((-373) (-309 |#1|) (-895)) 99 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-373) (-309 |#1|)) 94 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-373) (-402 (-922 |#1|)) (-895)) 91 (|has| |#1| (-545))) (((-373) (-402 (-922 |#1|))) 90 (|has| |#1| (-545))) (((-373) (-922 |#1|) (-895)) 86 (|has| |#1| (-1025))) (((-373) (-922 |#1|)) 85 (|has| |#1| (-1025))) (((-373) |#1| (-895)) 76) (((-373) |#1|) 22)) (-2712 (((-3 (-166 (-373)) "failed") (-309 (-166 |#1|)) (-895)) 71 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-166 (-373)) "failed") (-309 (-166 |#1|))) 70 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-166 (-373)) "failed") (-309 |#1|) (-895)) 63 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-166 (-373)) "failed") (-309 |#1|)) 61 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|))) (-895)) 46 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|)))) 45 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-402 (-922 |#1|)) (-895)) 39 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-402 (-922 |#1|))) 38 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-922 |#1|) (-895)) 28 (|has| |#1| (-1025))) (((-3 (-166 (-373)) "failed") (-922 |#1|)) 26 (|has| |#1| (-1025))) (((-3 (-166 (-373)) "failed") (-922 (-166 |#1|)) (-895)) 18 (|has| |#1| (-170))) (((-3 (-166 (-373)) "failed") (-922 (-166 |#1|))) 15 (|has| |#1| (-170)))) (-2710 (((-166 (-373)) (-309 (-166 |#1|)) (-895)) 102 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-166 (-373)) (-309 (-166 |#1|))) 101 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-166 (-373)) (-309 |#1|) (-895)) 100 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-166 (-373)) (-309 |#1|)) 98 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-166 (-373)) (-402 (-922 (-166 |#1|))) (-895)) 93 (|has| |#1| (-545))) (((-166 (-373)) (-402 (-922 (-166 |#1|)))) 92 (|has| |#1| (-545))) (((-166 (-373)) (-402 (-922 |#1|)) (-895)) 89 (|has| |#1| (-545))) (((-166 (-373)) (-402 (-922 |#1|))) 88 (|has| |#1| (-545))) (((-166 (-373)) (-922 |#1|) (-895)) 84 (|has| |#1| (-1025))) (((-166 (-373)) (-922 |#1|)) 83 (|has| |#1| (-1025))) (((-166 (-373)) (-922 (-166 |#1|)) (-895)) 78 (|has| |#1| (-170))) (((-166 (-373)) (-922 (-166 |#1|))) 77 (|has| |#1| (-170))) (((-166 (-373)) (-166 |#1|) (-895)) 80 (|has| |#1| (-170))) (((-166 (-373)) (-166 |#1|)) 79 (|has| |#1| (-170))) (((-166 (-373)) |#1| (-895)) 27) (((-166 (-373)) |#1|) 25)))
-(((-765 |#1|) (-10 -7 (-15 -2709 ((-373) |#1|)) (-15 -2709 ((-373) |#1| (-895))) (-15 -2710 ((-166 (-373)) |#1|)) (-15 -2710 ((-166 (-373)) |#1| (-895))) (IF (|has| |#1| (-170)) (PROGN (-15 -2710 ((-166 (-373)) (-166 |#1|))) (-15 -2710 ((-166 (-373)) (-166 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-922 (-166 |#1|)))) (-15 -2710 ((-166 (-373)) (-922 (-166 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -2709 ((-373) (-922 |#1|))) (-15 -2709 ((-373) (-922 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-922 |#1|))) (-15 -2710 ((-166 (-373)) (-922 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2709 ((-373) (-402 (-922 |#1|)))) (-15 -2709 ((-373) (-402 (-922 |#1|)) (-895))) (-15 -2710 ((-166 (-373)) (-402 (-922 |#1|)))) (-15 -2710 ((-166 (-373)) (-402 (-922 |#1|)) (-895))) (-15 -2710 ((-166 (-373)) (-402 (-922 (-166 |#1|))))) (-15 -2710 ((-166 (-373)) (-402 (-922 (-166 |#1|))) (-895))) (IF (|has| |#1| (-827)) (PROGN (-15 -2709 ((-373) (-309 |#1|))) (-15 -2709 ((-373) (-309 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-309 |#1|))) (-15 -2710 ((-166 (-373)) (-309 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-309 (-166 |#1|)))) (-15 -2710 ((-166 (-373)) (-309 (-166 |#1|)) (-895)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 (-166 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 (-166 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-922 |#1|))) (-15 -2711 ((-3 (-373) "failed") (-922 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 |#1|))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-402 (-922 |#1|)))) (-15 -2711 ((-3 (-373) "failed") (-402 (-922 |#1|)) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 |#1|)) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|))))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|))) (-895))) (IF (|has| |#1| (-827)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-309 |#1|))) (-15 -2711 ((-3 (-373) "failed") (-309 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 |#1|))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 (-166 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 (-166 |#1|)) (-895)))) |%noBranch|)) |%noBranch|)) (-598 (-373))) (T -765))
-((-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2711 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-922 (-166 *5)))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-922 (-166 *4)))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2711 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2711 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-922 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-922 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-309 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 (-166 *5)))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 (-166 *4)))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-922 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-922 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-166 (-373))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-373))))) (-2710 (*1 *2 *3) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-373))))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-373)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2)))))
-(-10 -7 (-15 -2709 ((-373) |#1|)) (-15 -2709 ((-373) |#1| (-895))) (-15 -2710 ((-166 (-373)) |#1|)) (-15 -2710 ((-166 (-373)) |#1| (-895))) (IF (|has| |#1| (-170)) (PROGN (-15 -2710 ((-166 (-373)) (-166 |#1|))) (-15 -2710 ((-166 (-373)) (-166 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-922 (-166 |#1|)))) (-15 -2710 ((-166 (-373)) (-922 (-166 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -2709 ((-373) (-922 |#1|))) (-15 -2709 ((-373) (-922 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-922 |#1|))) (-15 -2710 ((-166 (-373)) (-922 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2709 ((-373) (-402 (-922 |#1|)))) (-15 -2709 ((-373) (-402 (-922 |#1|)) (-895))) (-15 -2710 ((-166 (-373)) (-402 (-922 |#1|)))) (-15 -2710 ((-166 (-373)) (-402 (-922 |#1|)) (-895))) (-15 -2710 ((-166 (-373)) (-402 (-922 (-166 |#1|))))) (-15 -2710 ((-166 (-373)) (-402 (-922 (-166 |#1|))) (-895))) (IF (|has| |#1| (-827)) (PROGN (-15 -2709 ((-373) (-309 |#1|))) (-15 -2709 ((-373) (-309 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-309 |#1|))) (-15 -2710 ((-166 (-373)) (-309 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-309 (-166 |#1|)))) (-15 -2710 ((-166 (-373)) (-309 (-166 |#1|)) (-895)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 (-166 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 (-166 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-922 |#1|))) (-15 -2711 ((-3 (-373) "failed") (-922 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 |#1|))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-402 (-922 |#1|)))) (-15 -2711 ((-3 (-373) "failed") (-402 (-922 |#1|)) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 |#1|)) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|))))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|))) (-895))) (IF (|has| |#1| (-827)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-309 |#1|))) (-15 -2711 ((-3 (-373) "failed") (-309 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 |#1|))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 (-166 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 (-166 |#1|)) (-895)))) |%noBranch|)) |%noBranch|))
-((-2716 (((-895) (-1131)) 66)) (-2718 (((-3 (-373) "failed") (-1131)) 33)) (-2717 (((-373) (-1131)) 31)) (-2714 (((-895) (-1131)) 54)) (-2715 (((-1131) (-895)) 56)) (-2713 (((-1131) (-895)) 53)))
-(((-766) (-10 -7 (-15 -2713 ((-1131) (-895))) (-15 -2714 ((-895) (-1131))) (-15 -2715 ((-1131) (-895))) (-15 -2716 ((-895) (-1131))) (-15 -2717 ((-373) (-1131))) (-15 -2718 ((-3 (-373) "failed") (-1131))))) (T -766))
-((-2718 (*1 *2 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-766)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-766)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-895)) (-5 *1 (-766)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1131)) (-5 *1 (-766)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-895)) (-5 *1 (-766)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1131)) (-5 *1 (-766)))))
-(-10 -7 (-15 -2713 ((-1131) (-895))) (-15 -2714 ((-895) (-1131))) (-15 -2715 ((-1131) (-895))) (-15 -2716 ((-895) (-1131))) (-15 -2717 ((-373) (-1131))) (-15 -2718 ((-3 (-373) "failed") (-1131))))
-((-2898 (((-112) $ $) 7)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 15) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 13)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)))
+(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1073) . T) ((-1179 |#1| |#2| |#3| |#4|) . T) ((-1186) . T))
+((-4109 (((-3 (-374) "failed") (-311 |#1|) (-897)) 62 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-374) "failed") (-311 |#1|)) 54 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-374) "failed") (-402 (-928 |#1|)) (-897)) 41 (|has| |#1| (-544))) (((-3 (-374) "failed") (-402 (-928 |#1|))) 40 (|has| |#1| (-544))) (((-3 (-374) "failed") (-928 |#1|) (-897)) 31 (|has| |#1| (-1025))) (((-3 (-374) "failed") (-928 |#1|)) 30 (|has| |#1| (-1025)))) (-1959 (((-374) (-311 |#1|) (-897)) 99 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-374) (-311 |#1|)) 94 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-374) (-402 (-928 |#1|)) (-897)) 91 (|has| |#1| (-544))) (((-374) (-402 (-928 |#1|))) 90 (|has| |#1| (-544))) (((-374) (-928 |#1|) (-897)) 86 (|has| |#1| (-1025))) (((-374) (-928 |#1|)) 85 (|has| |#1| (-1025))) (((-374) |#1| (-897)) 76) (((-374) |#1|) 22)) (-4122 (((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-897)) 71 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-167 (-374)) "failed") (-311 (-167 |#1|))) 70 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-167 (-374)) "failed") (-311 |#1|) (-897)) 63 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-167 (-374)) "failed") (-311 |#1|)) 61 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|))) (-897)) 46 (|has| |#1| (-544))) (((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|)))) 45 (|has| |#1| (-544))) (((-3 (-167 (-374)) "failed") (-402 (-928 |#1|)) (-897)) 39 (|has| |#1| (-544))) (((-3 (-167 (-374)) "failed") (-402 (-928 |#1|))) 38 (|has| |#1| (-544))) (((-3 (-167 (-374)) "failed") (-928 |#1|) (-897)) 28 (|has| |#1| (-1025))) (((-3 (-167 (-374)) "failed") (-928 |#1|)) 26 (|has| |#1| (-1025))) (((-3 (-167 (-374)) "failed") (-928 (-167 |#1|)) (-897)) 18 (|has| |#1| (-170))) (((-3 (-167 (-374)) "failed") (-928 (-167 |#1|))) 15 (|has| |#1| (-170)))) (-3762 (((-167 (-374)) (-311 (-167 |#1|)) (-897)) 102 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-167 (-374)) (-311 (-167 |#1|))) 101 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-167 (-374)) (-311 |#1|) (-897)) 100 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-167 (-374)) (-311 |#1|)) 98 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-167 (-374)) (-402 (-928 (-167 |#1|))) (-897)) 93 (|has| |#1| (-544))) (((-167 (-374)) (-402 (-928 (-167 |#1|)))) 92 (|has| |#1| (-544))) (((-167 (-374)) (-402 (-928 |#1|)) (-897)) 89 (|has| |#1| (-544))) (((-167 (-374)) (-402 (-928 |#1|))) 88 (|has| |#1| (-544))) (((-167 (-374)) (-928 |#1|) (-897)) 84 (|has| |#1| (-1025))) (((-167 (-374)) (-928 |#1|)) 83 (|has| |#1| (-1025))) (((-167 (-374)) (-928 (-167 |#1|)) (-897)) 78 (|has| |#1| (-170))) (((-167 (-374)) (-928 (-167 |#1|))) 77 (|has| |#1| (-170))) (((-167 (-374)) (-167 |#1|) (-897)) 80 (|has| |#1| (-170))) (((-167 (-374)) (-167 |#1|)) 79 (|has| |#1| (-170))) (((-167 (-374)) |#1| (-897)) 27) (((-167 (-374)) |#1|) 25)))
+(((-765 |#1|) (-10 -7 (-15 -1959 ((-374) |#1|)) (-15 -1959 ((-374) |#1| (-897))) (-15 -3762 ((-167 (-374)) |#1|)) (-15 -3762 ((-167 (-374)) |#1| (-897))) (IF (|has| |#1| (-170)) (PROGN (-15 -3762 ((-167 (-374)) (-167 |#1|))) (-15 -3762 ((-167 (-374)) (-167 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-928 (-167 |#1|)))) (-15 -3762 ((-167 (-374)) (-928 (-167 |#1|)) (-897)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -1959 ((-374) (-928 |#1|))) (-15 -1959 ((-374) (-928 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-928 |#1|))) (-15 -3762 ((-167 (-374)) (-928 |#1|) (-897)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -1959 ((-374) (-402 (-928 |#1|)))) (-15 -1959 ((-374) (-402 (-928 |#1|)) (-897))) (-15 -3762 ((-167 (-374)) (-402 (-928 |#1|)))) (-15 -3762 ((-167 (-374)) (-402 (-928 |#1|)) (-897))) (-15 -3762 ((-167 (-374)) (-402 (-928 (-167 |#1|))))) (-15 -3762 ((-167 (-374)) (-402 (-928 (-167 |#1|))) (-897))) (IF (|has| |#1| (-827)) (PROGN (-15 -1959 ((-374) (-311 |#1|))) (-15 -1959 ((-374) (-311 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-311 |#1|))) (-15 -3762 ((-167 (-374)) (-311 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-311 (-167 |#1|)))) (-15 -3762 ((-167 (-374)) (-311 (-167 |#1|)) (-897)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 (-167 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 (-167 |#1|)) (-897)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-928 |#1|))) (-15 -4109 ((-3 (-374) "failed") (-928 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 |#1|))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 |#1|) (-897)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-402 (-928 |#1|)))) (-15 -4109 ((-3 (-374) "failed") (-402 (-928 |#1|)) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 |#1|)) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|))))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|))) (-897))) (IF (|has| |#1| (-827)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-311 |#1|))) (-15 -4109 ((-3 (-374) "failed") (-311 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 |#1|))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-897)))) |%noBranch|)) |%noBranch|)) (-598 (-374))) (T -765))
+((-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-4109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-4109 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-928 (-167 *5)))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-928 (-167 *4)))) (-4 *4 (-544)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-4109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-4109 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-4109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-4109 (*1 *2 *3) (|partial| -12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-928 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-170)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-928 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 (-167 *5)))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 (-167 *4)))) (-4 *4 (-544)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-928 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-170)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-928 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-897)) (-4 *5 (-170)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-5 *2 (-167 (-374))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-374))))) (-3762 (*1 *2 *3) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-374))))) (-1959 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-5 *2 (-374)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2)))) (-1959 (*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2)))))
+(-10 -7 (-15 -1959 ((-374) |#1|)) (-15 -1959 ((-374) |#1| (-897))) (-15 -3762 ((-167 (-374)) |#1|)) (-15 -3762 ((-167 (-374)) |#1| (-897))) (IF (|has| |#1| (-170)) (PROGN (-15 -3762 ((-167 (-374)) (-167 |#1|))) (-15 -3762 ((-167 (-374)) (-167 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-928 (-167 |#1|)))) (-15 -3762 ((-167 (-374)) (-928 (-167 |#1|)) (-897)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -1959 ((-374) (-928 |#1|))) (-15 -1959 ((-374) (-928 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-928 |#1|))) (-15 -3762 ((-167 (-374)) (-928 |#1|) (-897)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -1959 ((-374) (-402 (-928 |#1|)))) (-15 -1959 ((-374) (-402 (-928 |#1|)) (-897))) (-15 -3762 ((-167 (-374)) (-402 (-928 |#1|)))) (-15 -3762 ((-167 (-374)) (-402 (-928 |#1|)) (-897))) (-15 -3762 ((-167 (-374)) (-402 (-928 (-167 |#1|))))) (-15 -3762 ((-167 (-374)) (-402 (-928 (-167 |#1|))) (-897))) (IF (|has| |#1| (-827)) (PROGN (-15 -1959 ((-374) (-311 |#1|))) (-15 -1959 ((-374) (-311 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-311 |#1|))) (-15 -3762 ((-167 (-374)) (-311 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-311 (-167 |#1|)))) (-15 -3762 ((-167 (-374)) (-311 (-167 |#1|)) (-897)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 (-167 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 (-167 |#1|)) (-897)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-928 |#1|))) (-15 -4109 ((-3 (-374) "failed") (-928 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 |#1|))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 |#1|) (-897)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-402 (-928 |#1|)))) (-15 -4109 ((-3 (-374) "failed") (-402 (-928 |#1|)) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 |#1|)) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|))))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|))) (-897))) (IF (|has| |#1| (-827)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-311 |#1|))) (-15 -4109 ((-3 (-374) "failed") (-311 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 |#1|))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-897)))) |%noBranch|)) |%noBranch|))
+((-4173 (((-897) (-1131)) 66)) (-4195 (((-3 (-374) "failed") (-1131)) 33)) (-4183 (((-374) (-1131)) 31)) (-4149 (((-897) (-1131)) 54)) (-4161 (((-1131) (-897)) 56)) (-4135 (((-1131) (-897)) 53)))
+(((-766) (-10 -7 (-15 -4135 ((-1131) (-897))) (-15 -4149 ((-897) (-1131))) (-15 -4161 ((-1131) (-897))) (-15 -4173 ((-897) (-1131))) (-15 -4183 ((-374) (-1131))) (-15 -4195 ((-3 (-374) "failed") (-1131))))) (T -766))
+((-4195 (*1 *2 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-766)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-766)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-897)) (-5 *1 (-766)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1131)) (-5 *1 (-766)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-897)) (-5 *1 (-766)))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1131)) (-5 *1 (-766)))))
+(-10 -7 (-15 -4135 ((-1131) (-897))) (-15 -4149 ((-897) (-1131))) (-15 -4161 ((-1131) (-897))) (-15 -4173 ((-897) (-1131))) (-15 -4183 ((-374) (-1131))) (-15 -4195 ((-3 (-374) "failed") (-1131))))
+((-1671 (((-112) $ $) 7)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 15) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 13)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)))
(((-767) (-138)) (T -767))
-((-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-767)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011)))))) (-2719 (*1 *2 *3 *2) (-12 (-4 *1 (-767)) (-5 *2 (-1011)) (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-767)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011)))))) (-2719 (*1 *2 *3 *2) (-12 (-4 *1 (-767)) (-5 *2 (-1011)) (-5 *3 (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))))
-(-13 (-1074) (-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2719 ((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2719 ((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2722 (((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373))) 44) (((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373))) 43)) (-2723 (((-1237) (-1231 (-373)) (-538) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373))) 50)) (-2721 (((-1237) (-1231 (-373)) (-538) (-373) (-373) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373))) 41)) (-2720 (((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373))) 52) (((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373))) 51)))
-(((-768) (-10 -7 (-15 -2720 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2720 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)))) (-15 -2721 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2722 ((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2722 ((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)))) (-15 -2723 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))))) (T -768))
-((-2723 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-2722 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-538)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373)))) (-5 *7 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-2722 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-538)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373)))) (-5 *7 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-2721 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-2720 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-2720 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))))
-(-10 -7 (-15 -2720 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2720 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)))) (-15 -2721 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2722 ((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2722 ((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)))) (-15 -2723 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))))
-((-2732 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 53)) (-2729 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 31)) (-2731 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 52)) (-2728 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 29)) (-2730 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 51)) (-2727 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 19)) (-2726 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538)) 32)) (-2725 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538)) 30)) (-2724 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538)) 28)))
-(((-769) (-10 -7 (-15 -2724 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2725 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2726 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2727 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2728 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2729 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2730 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2731 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2732 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))))) (T -769))
-((-2732 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2731 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2730 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2729 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2728 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2727 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2726 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2725 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2724 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))))
-(-10 -7 (-15 -2724 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2725 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2726 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2727 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2728 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2729 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2730 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2731 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2732 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))))
-((-4068 (((-1181 |#1|) |#1| (-221) (-538)) 46)))
-(((-770 |#1|) (-10 -7 (-15 -4068 ((-1181 |#1|) |#1| (-221) (-538)))) (-950)) (T -770))
-((-4068 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-221)) (-5 *5 (-538)) (-5 *2 (-1181 *3)) (-5 *1 (-770 *3)) (-4 *3 (-950)))))
-(-10 -7 (-15 -4068 ((-1181 |#1|) |#1| (-221) (-538))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 24)) (-1368 (((-3 $ "failed") $ $) 26)) (-3896 (($) 23 T CONST)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 22 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4197 (($ $ $) 28) (($ $) 27)) (-4199 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-751) $) 25) (($ (-538) $) 29)))
+((-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-767)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011)))))) (-4205 (*1 *2 *3 *2) (-12 (-4 *1 (-767)) (-5 *2 (-1011)) (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-767)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011)))))) (-4205 (*1 *2 *3 *2) (-12 (-4 *1 (-767)) (-5 *2 (-1011)) (-5 *3 (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))))
+(-13 (-1073) (-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4205 ((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4205 ((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-4237 (((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374))) 44) (((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374))) 43)) (-4248 (((-1237) (-1232 (-374)) (-552) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374))) 50)) (-4226 (((-1237) (-1232 (-374)) (-552) (-374) (-374) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374))) 41)) (-4216 (((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374))) 52) (((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374))) 51)))
+(((-768) (-10 -7 (-15 -4216 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4216 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)))) (-15 -4226 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4237 ((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4237 ((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)))) (-15 -4248 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))))) (T -768))
+((-4248 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-4237 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-552)) (-5 *6 (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374)))) (-5 *7 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-4237 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-552)) (-5 *6 (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374)))) (-5 *7 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-4226 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-4216 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-4216 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))))
+(-10 -7 (-15 -4216 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4216 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)))) (-15 -4226 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4237 ((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4237 ((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)))) (-15 -4248 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))))
+((-1272 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 53)) (-4310 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 31)) (-4330 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 52)) (-4301 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 29)) (-4320 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 51)) (-4291 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 19)) (-4280 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552)) 32)) (-4270 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552)) 30)) (-4258 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552)) 28)))
+(((-769) (-10 -7 (-15 -4258 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4270 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4280 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4291 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4301 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4310 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4320 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4330 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -1272 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))))) (T -769))
+((-1272 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4330 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4320 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4310 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4301 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4291 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4280 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4270 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4258 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))))
+(-10 -7 (-15 -4258 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4270 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4280 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4291 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4301 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4310 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4320 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4330 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -1272 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))))
+((-2776 (((-1181 |#1|) |#1| (-221) (-552)) 46)))
+(((-770 |#1|) (-10 -7 (-15 -2776 ((-1181 |#1|) |#1| (-221) (-552)))) (-950)) (T -770))
+((-2776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-221)) (-5 *5 (-552)) (-5 *2 (-1181 *3)) (-5 *1 (-770 *3)) (-4 *3 (-950)))))
+(-10 -7 (-15 -2776 ((-1181 |#1|) |#1| (-221) (-552))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 24)) (-2077 (((-3 $ "failed") $ $) 26)) (-3101 (($) 23 T CONST)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 22 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2393 (($ $ $) 28) (($ $) 27)) (-2382 (($ $ $) 20)) (* (($ (-897) $) 21) (($ (-751) $) 25) (($ (-552) $) 29)))
(((-771) (-138)) (T -771))
NIL
-(-13 (-777) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-827) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 24)) (-3896 (($) 23 T CONST)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 22 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4199 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-751) $) 25)))
+(-13 (-775) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-827) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 24)) (-3101 (($) 23 T CONST)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 22 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2382 (($ $ $) 20)) (* (($ (-897) $) 21) (($ (-751) $) 25)))
(((-772) (-138)) (T -772))
NIL
(-13 (-774) (-23))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-774) . T) ((-827) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 24)) (-2733 (($ $ $) 27)) (-1368 (((-3 $ "failed") $ $) 26)) (-3896 (($) 23 T CONST)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 22 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4199 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-751) $) 25)))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-774) . T) ((-827) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 24)) (-1282 (($ $ $) 27)) (-2077 (((-3 $ "failed") $ $) 26)) (-3101 (($) 23 T CONST)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 22 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2382 (($ $ $) 20)) (* (($ (-897) $) 21) (($ (-751) $) 25)))
(((-773) (-138)) (T -773))
-((-2733 (*1 *1 *1 *1) (-4 *1 (-773))))
-(-13 (-777) (-10 -8 (-15 -2733 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-827) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 7)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4199 (($ $ $) 20)) (* (($ (-895) $) 21)))
+((-1282 (*1 *1 *1 *1) (-4 *1 (-773))))
+(-13 (-775) (-10 -8 (-15 -1282 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-827) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 7)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2382 (($ $ $) 20)) (* (($ (-897) $) 21)))
(((-774) (-138)) (T -774))
NIL
(-13 (-827) (-25))
-(((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-827) . T) ((-1074) . T))
-((-3539 (((-112) $) 41)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL) ((|#2| $) 42)) (-3357 (((-3 (-402 (-538)) "failed") $) 78)) (-3356 (((-112) $) 72)) (-3355 (((-402 (-538)) $) 76)) (-3467 ((|#2| $) 26)) (-4318 (($ (-1 |#2| |#2|) $) 23)) (-2734 (($ $) 61)) (-4330 (((-527) $) 67)) (-3342 (($ $) 21)) (-4317 (((-840) $) 56) (($ (-538)) 39) (($ |#2|) 37) (($ (-402 (-538))) NIL)) (-3461 (((-751)) 10)) (-3742 ((|#2| $) 71)) (-3387 (((-112) $ $) 29)) (-3018 (((-112) $ $) 69)) (-4197 (($ $) 31) (($ $ $) NIL)) (-4199 (($ $ $) 30)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-775 |#1| |#2|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3742 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-776 |#2|) (-170)) (T -775))
-((-3461 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-775 *3 *4)) (-4 *3 (-776 *4)))))
-(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3742 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3471 (((-751)) 51 (|has| |#1| (-363)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 92 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 90 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 88)) (-3507 (((-538) $) 93 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 91 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 87)) (-3821 (((-3 $ "failed") $) 32)) (-4006 ((|#1| $) 77)) (-3357 (((-3 (-402 (-538)) "failed") $) 64 (|has| |#1| (-537)))) (-3356 (((-112) $) 66 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 65 (|has| |#1| (-537)))) (-3327 (($) 54 (|has| |#1| (-363)))) (-2502 (((-112) $) 30)) (-2739 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3467 ((|#1| $) 69)) (-3677 (($ $ $) 60 (|has| |#1| (-827)))) (-3678 (($ $ $) 59 (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) 79)) (-2126 (((-895) $) 53 (|has| |#1| (-363)))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 63 (|has| |#1| (-358)))) (-2492 (($ (-895)) 52 (|has| |#1| (-363)))) (-2736 ((|#1| $) 74)) (-2737 ((|#1| $) 75)) (-2738 ((|#1| $) 76)) (-3339 ((|#1| $) 70)) (-3340 ((|#1| $) 71)) (-3341 ((|#1| $) 72)) (-2735 ((|#1| $) 73)) (-3594 (((-1093) $) 10)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) 85 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) 83 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) 82 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 81 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 80 (|has| |#1| (-507 (-1149) |#1|)))) (-4159 (($ $ |#1|) 86 (|has| |#1| (-281 |#1| |#1|)))) (-4330 (((-527) $) 61 (|has| |#1| (-598 (-527))))) (-3342 (($ $) 78)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35) (($ (-402 (-538))) 89 (|has| |#1| (-1014 (-402 (-538)))))) (-3035 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-3742 ((|#1| $) 67 (|has| |#1| (-1034)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 57 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 56 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 58 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 55 (|has| |#1| (-827)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-776 |#1|) (-138) (-170)) (T -776))
-((-3342 (*1 *1 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-2739 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) (-2734 (*1 *1 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)) (-4 *2 (-358)))))
-(-13 (-38 |t#1|) (-407 |t#1|) (-333 |t#1|) (-10 -8 (-15 -3342 ($ $)) (-15 -4006 (|t#1| $)) (-15 -2738 (|t#1| $)) (-15 -2737 (|t#1| $)) (-15 -2736 (|t#1| $)) (-15 -2735 (|t#1| $)) (-15 -3341 (|t#1| $)) (-15 -3340 (|t#1| $)) (-15 -3339 (|t#1| $)) (-15 -3467 (|t#1| $)) (-15 -2739 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -3742 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -2734 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-363) |has| |#1| (-363)) ((-333 |#1|) . T) ((-407 |#1|) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 24)) (-1368 (((-3 $ "failed") $ $) 26)) (-3896 (($) 23 T CONST)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 22 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4199 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-751) $) 25)))
-(((-777) (-138)) (T -777))
+(((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-827) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 24)) (-2077 (((-3 $ "failed") $ $) 26)) (-3101 (($) 23 T CONST)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 22 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2382 (($ $ $) 20)) (* (($ (-897) $) 21) (($ (-751) $) 25)))
+(((-775) (-138)) (T -775))
NIL
(-13 (-772) (-130))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-772) . T) ((-774) . T) ((-827) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #1="failed") $) NIL) (((-3 (-972 |#1|) #1#) $) 35) (((-3 (-538) #1#) $) NIL (-3891 (|has| (-972 |#1|) (-1014 (-538))) (|has| |#1| (-1014 (-538))))) (((-3 (-402 (-538)) #1#) $) NIL (-3891 (|has| (-972 |#1|) (-1014 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-3507 ((|#1| $) NIL) (((-972 |#1|) $) 33) (((-538) $) NIL (-3891 (|has| (-972 |#1|) (-1014 (-538))) (|has| |#1| (-1014 (-538))))) (((-402 (-538)) $) NIL (-3891 (|has| (-972 |#1|) (-1014 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-3821 (((-3 $ "failed") $) NIL)) (-4006 ((|#1| $) 16)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL (|has| |#1| (-537)))) (-3356 (((-112) $) NIL (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) NIL (|has| |#1| (-537)))) (-3327 (($) NIL (|has| |#1| (-363)))) (-2502 (((-112) $) NIL)) (-2739 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-972 |#1|) (-972 |#1|)) 29)) (-3467 ((|#1| $) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-2736 ((|#1| $) 22)) (-2737 ((|#1| $) 20)) (-2738 ((|#1| $) 18)) (-3339 ((|#1| $) 26)) (-3340 ((|#1| $) 25)) (-3341 ((|#1| $) 24)) (-2735 ((|#1| $) 23)) (-3594 (((-1093) $) NIL)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-4159 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3342 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-972 |#1|)) 30) (($ (-402 (-538))) NIL (-3891 (|has| (-972 |#1|) (-1014 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-3742 ((|#1| $) NIL (|has| |#1| (-1034)))) (-2991 (($) 8 T CONST)) (-2997 (($) 12 T CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-778 |#1|) (-13 (-776 |#1|) (-407 (-972 |#1|)) (-10 -8 (-15 -2739 ($ (-972 |#1|) (-972 |#1|))))) (-170)) (T -778))
-((-2739 (*1 *1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-170)) (-5 *1 (-778 *3)))))
-(-13 (-776 |#1|) (-407 (-972 |#1|)) (-10 -8 (-15 -2739 ($ (-972 |#1|) (-972 |#1|)))))
-((-4318 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-779 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|))) (-776 |#2|) (-170) (-776 |#4|) (-170)) (T -779))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-776 *6)) (-5 *1 (-779 *4 *5 *2 *6)) (-4 *4 (-776 *5)))))
-(-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2740 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13)) (-3387 (((-112) $ $) 6)))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-772) . T) ((-774) . T) ((-827) . T) ((-1073) . T))
+((-3641 (((-112) $) 41)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL) ((|#2| $) 42)) (-2555 (((-3 (-402 (-552)) "failed") $) 78)) (-2546 (((-112) $) 72)) (-2538 (((-402 (-552)) $) 76)) (-4209 ((|#2| $) 26)) (-1996 (($ (-1 |#2| |#2|) $) 23)) (-4092 (($ $) 61)) (-2042 (((-528) $) 67)) (-2410 (($ $) 21)) (-1683 (((-839) $) 56) (($ (-552)) 39) (($ |#2|) 37) (($ (-402 (-552))) NIL)) (-4141 (((-751)) 10)) (-1727 ((|#2| $) 71)) (-2281 (((-112) $ $) 29)) (-2307 (((-112) $ $) 69)) (-2393 (($ $) 31) (($ $ $) NIL)) (-2382 (($ $ $) 30)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-776 |#1| |#2|) (-10 -8 (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-777 |#2|) (-170)) (T -776))
+((-4141 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-776 *3 *4)) (-4 *3 (-777 *4)))))
+(-10 -8 (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-2894 (((-751)) 51 (|has| |#1| (-363)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 92 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 90 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 88)) (-1895 (((-552) $) 93 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 91 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 87)) (-4174 (((-3 $ "failed") $) 32)) (-3852 ((|#1| $) 77)) (-2555 (((-3 (-402 (-552)) "failed") $) 64 (|has| |#1| (-537)))) (-2546 (((-112) $) 66 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 65 (|has| |#1| (-537)))) (-3702 (($) 54 (|has| |#1| (-363)))) (-3650 (((-112) $) 30)) (-1334 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-4209 ((|#1| $) 69)) (-3658 (($ $ $) 60 (|has| |#1| (-827)))) (-3332 (($ $ $) 59 (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) 79)) (-4318 (((-897) $) 53 (|has| |#1| (-363)))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 63 (|has| |#1| (-358)))) (-3123 (($ (-897)) 52 (|has| |#1| (-363)))) (-1305 ((|#1| $) 74)) (-1313 ((|#1| $) 75)) (-1324 ((|#1| $) 76)) (-2377 ((|#1| $) 70)) (-2387 ((|#1| $) 71)) (-2399 ((|#1| $) 72)) (-1293 ((|#1| $) 73)) (-2831 (((-1093) $) 10)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) 85 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 83 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) 82 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 81 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 80 (|has| |#1| (-507 (-1149) |#1|)))) (-2154 (($ $ |#1|) 86 (|has| |#1| (-281 |#1| |#1|)))) (-2042 (((-528) $) 61 (|has| |#1| (-598 (-528))))) (-2410 (($ $) 78)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-402 (-552))) 89 (|has| |#1| (-1014 (-402 (-552)))))) (-4243 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-1727 ((|#1| $) 67 (|has| |#1| (-1034)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 57 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 56 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 58 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 55 (|has| |#1| (-827)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-777 |#1|) (-138) (-170)) (T -777))
+((-2410 (*1 *1 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1324 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1313 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1293 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1334 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552))))) (-2555 (*1 *2 *1) (|partial| -12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552))))) (-4092 (*1 *1 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)) (-4 *2 (-358)))))
+(-13 (-38 |t#1|) (-406 |t#1|) (-333 |t#1|) (-10 -8 (-15 -2410 ($ $)) (-15 -3852 (|t#1| $)) (-15 -1324 (|t#1| $)) (-15 -1313 (|t#1| $)) (-15 -1305 (|t#1| $)) (-15 -1293 (|t#1| $)) (-15 -2399 (|t#1| $)) (-15 -2387 (|t#1| $)) (-15 -2377 (|t#1| $)) (-15 -4209 (|t#1| $)) (-15 -1334 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -1727 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -4092 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-363) |has| |#1| (-363)) ((-333 |#1|) . T) ((-406 |#1|) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1996 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-778 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|))) (-777 |#2|) (-170) (-777 |#4|) (-170)) (T -778))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-777 *6)) (-5 *1 (-778 *4 *5 *2 *6)) (-4 *4 (-777 *5)))))
+(-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-975 |#1|) "failed") $) 35) (((-3 (-552) "failed") $) NIL (-1523 (|has| (-975 |#1|) (-1014 (-552))) (|has| |#1| (-1014 (-552))))) (((-3 (-402 (-552)) "failed") $) NIL (-1523 (|has| (-975 |#1|) (-1014 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-1895 ((|#1| $) NIL) (((-975 |#1|) $) 33) (((-552) $) NIL (-1523 (|has| (-975 |#1|) (-1014 (-552))) (|has| |#1| (-1014 (-552))))) (((-402 (-552)) $) NIL (-1523 (|has| (-975 |#1|) (-1014 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-4174 (((-3 $ "failed") $) NIL)) (-3852 ((|#1| $) 16)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-2546 (((-112) $) NIL (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) NIL (|has| |#1| (-537)))) (-3702 (($) NIL (|has| |#1| (-363)))) (-3650 (((-112) $) NIL)) (-1334 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-975 |#1|) (-975 |#1|)) 29)) (-4209 ((|#1| $) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-1305 ((|#1| $) 22)) (-1313 ((|#1| $) 20)) (-1324 ((|#1| $) 18)) (-2377 ((|#1| $) 26)) (-2387 ((|#1| $) 25)) (-2399 ((|#1| $) 24)) (-1293 ((|#1| $) 23)) (-2831 (((-1093) $) NIL)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-2154 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-2410 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-975 |#1|)) 30) (($ (-402 (-552))) NIL (-1523 (|has| (-975 |#1|) (-1014 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-1727 ((|#1| $) NIL (|has| |#1| (-1034)))) (-2089 (($) 8 T CONST)) (-2100 (($) 12 T CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-779 |#1|) (-13 (-777 |#1|) (-406 (-975 |#1|)) (-10 -8 (-15 -1334 ($ (-975 |#1|) (-975 |#1|))))) (-170)) (T -779))
+((-1334 (*1 *1 *2 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-170)) (-5 *1 (-779 *3)))))
+(-13 (-777 |#1|) (-406 (-975 |#1|)) (-10 -8 (-15 -1334 ($ (-975 |#1|) (-975 |#1|)))))
+((-1671 (((-112) $ $) 7)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-1345 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13)) (-2281 (((-112) $ $) 6)))
(((-780) (-138)) (T -780))
-((-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-780)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) (-2740 (*1 *2 *3) (-12 (-4 *1 (-780)) (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1011)))))
-(-13 (-1074) (-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2740 ((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2741 (((-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#3| |#2| (-1149)) 19)))
-(((-781 |#1| |#2| |#3|) (-10 -7 (-15 -2741 ((-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#3| |#2| (-1149)))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)) (-13 (-29 |#1|) (-1171) (-936)) (-638 |#2|)) (T -781))
-((-2741 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-4 *4 (-13 (-29 *6) (-1171) (-936))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2128 (-622 *4)))) (-5 *1 (-781 *6 *4 *3)) (-4 *3 (-638 *4)))))
-(-10 -7 (-15 -2741 ((-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#3| |#2| (-1149))))
-((-3936 (((-3 |#2| #1="failed") |#2| (-113) (-288 |#2|) (-622 |#2|)) 28) (((-3 |#2| #1#) (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #2="failed") |#2| (-113) (-1149)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #2#) (-288 |#2|) (-113) (-1149)) 18) (((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 |#2|) (-622 (-113)) (-1149)) 24) (((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 (-288 |#2|)) (-622 (-113)) (-1149)) 26) (((-3 (-622 (-1231 |#2|)) "failed") (-669 |#2|) (-1149)) 37) (((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-669 |#2|) (-1231 |#2|) (-1149)) 35)))
-(((-782 |#1| |#2|) (-10 -7 (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-669 |#2|) (-1231 |#2|) (-1149))) (-15 -3936 ((-3 (-622 (-1231 |#2|)) "failed") (-669 |#2|) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 (-288 |#2|)) (-622 (-113)) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 |#2|) (-622 (-113)) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #1="failed") (-288 |#2|) (-113) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #1#) |#2| (-113) (-1149))) (-15 -3936 ((-3 |#2| #2="failed") (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|))) (-15 -3936 ((-3 |#2| #2#) |#2| (-113) (-288 |#2|) (-622 |#2|)))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)) (-13 (-29 |#1|) (-1171) (-936))) (T -782))
-((-3936 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-622 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *1 (-782 *6 *2)))) (-3936 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-622 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-936))) (-5 *1 (-782 *6 *2)) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))))) (-3936 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2128 (-622 *3))) *3 #1="failed")) (-5 *1 (-782 *6 *3)) (-4 *3 (-13 (-29 *6) (-1171) (-936))))) (-3936 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2128 (-622 *7))) *7 #1#)) (-5 *1 (-782 *6 *7)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-622 *7)) (-5 *4 (-622 (-113))) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7))))) (-5 *1 (-782 *6 *7)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-622 (-288 *7))) (-5 *4 (-622 (-113))) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7))))) (-5 *1 (-782 *6 *7)))) (-3936 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-669 *6)) (-5 *4 (-1149)) (-4 *6 (-13 (-29 *5) (-1171) (-936))) (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-1231 *6))) (-5 *1 (-782 *5 *6)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-669 *7)) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7))))) (-5 *1 (-782 *6 *7)) (-5 *4 (-1231 *7)))))
-(-10 -7 (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-669 |#2|) (-1231 |#2|) (-1149))) (-15 -3936 ((-3 (-622 (-1231 |#2|)) "failed") (-669 |#2|) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 (-288 |#2|)) (-622 (-113)) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 |#2|) (-622 (-113)) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #1="failed") (-288 |#2|) (-113) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #1#) |#2| (-113) (-1149))) (-15 -3936 ((-3 |#2| #2="failed") (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|))) (-15 -3936 ((-3 |#2| #2#) |#2| (-113) (-288 |#2|) (-622 |#2|))))
-((-2742 (($) 9)) (-2746 (((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 31)) (-2744 (((-622 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 28)) (-3970 (($ (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) 25)) (-2745 (($ (-622 (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) 23)) (-2743 (((-1237)) 12)))
-(((-783) (-10 -8 (-15 -2742 ($)) (-15 -2743 ((-1237))) (-15 -2744 ((-622 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -2745 ($ (-622 (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -3970 ($ (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -2746 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -783))
-((-2746 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *1 (-783)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) (-5 *1 (-783)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-5 *1 (-783)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-783)))) (-2743 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-783)))) (-2742 (*1 *1) (-5 *1 (-783))))
-(-10 -8 (-15 -2742 ($)) (-15 -2743 ((-1237))) (-15 -2744 ((-622 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -2745 ($ (-622 (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -3970 ($ (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -2746 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
-((-3824 ((|#2| |#2| (-1149)) 16)) (-2747 ((|#2| |#2| (-1149)) 51)) (-2748 (((-1 |#2| |#2|) (-1149)) 11)))
-(((-784 |#1| |#2|) (-10 -7 (-15 -3824 (|#2| |#2| (-1149))) (-15 -2747 (|#2| |#2| (-1149))) (-15 -2748 ((-1 |#2| |#2|) (-1149)))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)) (-13 (-29 |#1|) (-1171) (-936))) (T -784))
-((-2748 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-784 *4 *5)) (-4 *5 (-13 (-29 *4) (-1171) (-936))))) (-2747 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-936))))) (-3824 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-936))))))
-(-10 -7 (-15 -3824 (|#2| |#2| (-1149))) (-15 -2747 (|#2| |#2| (-1149))) (-15 -2748 ((-1 |#2| |#2|) (-1149))))
-((-3936 (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373) (-373)) 116) (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373)) 117) (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-622 (-373)) (-373)) 119) (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-373)) 120) (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-373)) 121) (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373))) 122) (((-1011) (-788) (-1037)) 108) (((-1011) (-788)) 109)) (-3001 (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788) (-1037)) 75) (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788)) 77)))
-(((-785) (-10 -7 (-15 -3936 ((-1011) (-788))) (-15 -3936 ((-1011) (-788) (-1037))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373) (-373))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788) (-1037))))) (T -785))
-((-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-785)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373))) (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373))) (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373))) (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1011)) (-5 *1 (-785)))))
-(-10 -7 (-15 -3936 ((-1011) (-788))) (-15 -3936 ((-1011) (-788) (-1037))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373) (-373))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788) (-1037))))
-((-2749 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2128 (-622 |#4|))) (-635 |#4|) |#4|) 35)))
-(((-786 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2749 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2128 (-622 |#4|))) (-635 |#4|) |#4|))) (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -786))
-((-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *4)) (-4 *4 (-337 *5 *6 *7)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2128 (-622 *4)))) (-5 *1 (-786 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2749 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2128 (-622 |#4|))) (-635 |#4|) |#4|)))
-((-4101 (((-2 (|:| -3617 |#3|) (|:| |rh| (-622 (-402 |#2|)))) |#4| (-622 (-402 |#2|))) 52)) (-2751 (((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4| |#2|) 60) (((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4|) 59) (((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3| |#2|) 20) (((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3|) 21)) (-2752 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2750 ((|#2| |#3| (-622 (-402 |#2|))) 93) (((-3 |#2| "failed") |#3| (-402 |#2|)) 90)))
-(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2750 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -2750 (|#2| |#3| (-622 (-402 |#2|)))) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3| |#2|)) (-15 -2752 (|#2| |#3| |#1|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4| |#2|)) (-15 -2752 (|#2| |#4| |#1|)) (-15 -4101 ((-2 (|:| -3617 |#3|) (|:| |rh| (-622 (-402 |#2|)))) |#4| (-622 (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-402 (-538)))) (-1207 |#1|) (-638 |#2|) (-638 (-402 |#2|))) (T -787))
-((-4101 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-2 (|:| -3617 *7) (|:| |rh| (-622 (-402 *6))))) (-5 *1 (-787 *5 *6 *7 *3)) (-5 *4 (-622 (-402 *6))) (-4 *7 (-638 *6)) (-4 *3 (-638 (-402 *6))))) (-2752 (*1 *2 *3 *4) (-12 (-4 *2 (-1207 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-638 *2)) (-4 *3 (-638 (-402 *2))))) (-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *4 (-1207 *5)) (-5 *2 (-622 (-2 (|:| -4132 *4) (|:| -3577 *4)))) (-5 *1 (-787 *5 *4 *6 *3)) (-4 *6 (-638 *4)) (-4 *3 (-638 (-402 *4))))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-2 (|:| -4132 *5) (|:| -3577 *5)))) (-5 *1 (-787 *4 *5 *6 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 (-402 *5))))) (-2752 (*1 *2 *3 *4) (-12 (-4 *2 (-1207 *4)) (-5 *1 (-787 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-402 *2))))) (-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *4 (-1207 *5)) (-5 *2 (-622 (-2 (|:| -4132 *4) (|:| -3577 *4)))) (-5 *1 (-787 *5 *4 *3 *6)) (-4 *3 (-638 *4)) (-4 *6 (-638 (-402 *4))))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-2 (|:| -4132 *5) (|:| -3577 *5)))) (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-402 *5))))) (-2750 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-402 *2))) (-4 *2 (-1207 *5)) (-5 *1 (-787 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) (-4 *6 (-638 (-402 *2))))) (-2750 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1207 *5)) (-5 *1 (-787 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) (-4 *6 (-638 *4)))))
-(-10 -7 (-15 -2750 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -2750 (|#2| |#3| (-622 (-402 |#2|)))) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3| |#2|)) (-15 -2752 (|#2| |#3| |#1|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4| |#2|)) (-15 -2752 (|#2| |#4| |#1|)) (-15 -4101 ((-2 (|:| -3617 |#3|) (|:| |rh| (-622 (-402 |#2|)))) |#4| (-622 (-402 |#2|)))))
-((-2898 (((-112) $ $) NIL)) (-3507 (((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $) 13)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 15) (($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 12)) (-3387 (((-112) $ $) NIL)))
-(((-788) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $))))) (T -788))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-788)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-788)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-788)))))
-(-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $))))
-((-2760 (((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 |#3|))) |#3| (-1 (-622 |#2|) |#2| (-1143 |#2|)) (-1 (-400 |#2|) |#2|)) 118)) (-2761 (((-622 (-2 (|:| |poly| |#2|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|)) 46)) (-2754 (((-622 (-2 (|:| |deg| (-751)) (|:| -3617 |#2|))) |#3|) 95)) (-2753 ((|#2| |#3|) 37)) (-2755 (((-622 (-2 (|:| -4311 |#1|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|)) 82)) (-2756 ((|#3| |#3| (-402 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-789 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2753 (|#2| |#3|)) (-15 -2754 ((-622 (-2 (|:| |deg| (-751)) (|:| -3617 |#2|))) |#3|)) (-15 -2755 ((-622 (-2 (|:| -4311 |#1|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|))) (-15 -2761 ((-622 (-2 (|:| |poly| |#2|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|))) (-15 -2760 ((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 |#3|))) |#3| (-1 (-622 |#2|) |#2| (-1143 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2756 (|#3| |#3| |#2|)) (-15 -2756 (|#3| |#3| (-402 |#2|)))) (-13 (-358) (-145) (-1014 (-402 (-538)))) (-1207 |#1|) (-638 |#2|) (-638 (-402 |#2|))) (T -789))
-((-2756 (*1 *2 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *1 (-789 *4 *5 *2 *6)) (-4 *2 (-638 *5)) (-4 *6 (-638 *3)))) (-2756 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-1207 *4)) (-5 *1 (-789 *4 *3 *2 *5)) (-4 *2 (-638 *3)) (-4 *5 (-638 (-402 *3))))) (-2760 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-622 *7) *7 (-1143 *7))) (-5 *5 (-1 (-400 *7) *7)) (-4 *7 (-1207 *6)) (-4 *6 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-5 *2 (-622 (-2 (|:| |frac| (-402 *7)) (|:| -3617 *3)))) (-5 *1 (-789 *6 *7 *3 *8)) (-4 *3 (-638 *7)) (-4 *8 (-638 (-402 *7))))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-2 (|:| |poly| *6) (|:| -3617 *3)))) (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-402 *6))))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-2 (|:| -4311 *5) (|:| -3617 *3)))) (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-402 *6))))) (-2754 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-2 (|:| |deg| (-751)) (|:| -3617 *5)))) (-5 *1 (-789 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-402 *5))))) (-2753 (*1 *2 *3) (-12 (-4 *2 (-1207 *4)) (-5 *1 (-789 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-402 *2))))))
-(-10 -7 (-15 -2753 (|#2| |#3|)) (-15 -2754 ((-622 (-2 (|:| |deg| (-751)) (|:| -3617 |#2|))) |#3|)) (-15 -2755 ((-622 (-2 (|:| -4311 |#1|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|))) (-15 -2761 ((-622 (-2 (|:| |poly| |#2|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|))) (-15 -2760 ((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 |#3|))) |#3| (-1 (-622 |#2|) |#2| (-1143 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2756 (|#3| |#3| |#2|)) (-15 -2756 (|#3| |#3| (-402 |#2|))))
-((-2757 (((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-636 |#2| (-402 |#2|)) (-622 (-402 |#2|))) 121) (((-2 (|:| |particular| (-3 (-402 |#2|) #1="failed")) (|:| -2128 (-622 (-402 |#2|)))) (-636 |#2| (-402 |#2|)) (-402 |#2|)) 120) (((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-635 (-402 |#2|)) (-622 (-402 |#2|))) 115) (((-2 (|:| |particular| (-3 (-402 |#2|) #1#)) (|:| -2128 (-622 (-402 |#2|)))) (-635 (-402 |#2|)) (-402 |#2|)) 113)) (-2758 ((|#2| (-636 |#2| (-402 |#2|))) 80) ((|#2| (-635 (-402 |#2|))) 83)))
-(((-790 |#1| |#2|) (-10 -7 (-15 -2757 ((-2 (|:| |particular| (-3 (-402 |#2|) #1="failed")) (|:| -2128 (-622 (-402 |#2|)))) (-635 (-402 |#2|)) (-402 |#2|))) (-15 -2757 ((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-635 (-402 |#2|)) (-622 (-402 |#2|)))) (-15 -2757 ((-2 (|:| |particular| (-3 (-402 |#2|) #1#)) (|:| -2128 (-622 (-402 |#2|)))) (-636 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -2757 ((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-636 |#2| (-402 |#2|)) (-622 (-402 |#2|)))) (-15 -2758 (|#2| (-635 (-402 |#2|)))) (-15 -2758 (|#2| (-636 |#2| (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))) (-1207 |#1|)) (T -790))
-((-2758 (*1 *2 *3) (-12 (-5 *3 (-636 *2 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-790 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-635 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-790 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-402 *6))) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-2 (|:| -2128 (-622 (-402 *6))) (|:| -1700 (-669 *5)))) (-5 *1 (-790 *5 *6)) (-5 *4 (-622 (-402 *6))))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4)))) (-5 *1 (-790 *5 *6)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-402 *6))) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-2 (|:| -2128 (-622 (-402 *6))) (|:| -1700 (-669 *5)))) (-5 *1 (-790 *5 *6)) (-5 *4 (-622 (-402 *6))))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2128 (-622 *4)))) (-5 *1 (-790 *5 *6)))))
-(-10 -7 (-15 -2757 ((-2 (|:| |particular| (-3 (-402 |#2|) #1="failed")) (|:| -2128 (-622 (-402 |#2|)))) (-635 (-402 |#2|)) (-402 |#2|))) (-15 -2757 ((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-635 (-402 |#2|)) (-622 (-402 |#2|)))) (-15 -2757 ((-2 (|:| |particular| (-3 (-402 |#2|) #1#)) (|:| -2128 (-622 (-402 |#2|)))) (-636 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -2757 ((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-636 |#2| (-402 |#2|)) (-622 (-402 |#2|)))) (-15 -2758 (|#2| (-635 (-402 |#2|)))) (-15 -2758 (|#2| (-636 |#2| (-402 |#2|)))))
-((-2759 (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) |#5| |#4|) 48)))
-(((-791 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2759 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) |#5| |#4|))) (-358) (-638 |#1|) (-1207 |#1|) (-705 |#1| |#3|) (-638 |#4|)) (T -791))
-((-2759 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *7 (-1207 *5)) (-4 *4 (-705 *5 *7)) (-5 *2 (-2 (|:| -1700 (-669 *6)) (|:| |vec| (-1231 *5)))) (-5 *1 (-791 *5 *6 *7 *4 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 *4)))))
-(-10 -7 (-15 -2759 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) |#5| |#4|)))
-((-2760 (((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|)) 47)) (-2762 (((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|))) 138 (|has| |#1| (-27))) (((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-400 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-622 (-402 |#2|)) (-635 (-402 |#2|))) 140 (|has| |#1| (-27))) (((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|)) 38) (((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|)) 39) (((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|)) 36) (((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|)) 37)) (-2761 (((-622 (-2 (|:| |poly| |#2|) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|)) 83)))
-(((-792 |#1| |#2|) (-10 -7 (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|))) (-15 -2760 ((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2761 ((-622 (-2 (|:| |poly| |#2|) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)))) (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|)))) |%noBranch|)) (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))) (-1207 |#1|)) (T -792))
-((-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-636 *5 (-402 *5))) (-4 *5 (-1207 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-622 (-402 *5))) (-5 *1 (-792 *4 *5)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-635 (-402 *5))) (-4 *5 (-1207 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-622 (-402 *5))) (-5 *1 (-792 *4 *5)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-2 (|:| |poly| *6) (|:| -3617 (-636 *6 (-402 *6)))))) (-5 *1 (-792 *5 *6)) (-5 *3 (-636 *6 (-402 *6))))) (-2760 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-622 (-2 (|:| |frac| (-402 *6)) (|:| -3617 (-636 *6 (-402 *6)))))) (-5 *1 (-792 *5 *6)) (-5 *3 (-636 *6 (-402 *6))))) (-2762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-636 *7 (-402 *7))) (-5 *4 (-1 (-622 *6) *7)) (-5 *5 (-1 (-400 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *7 (-1207 *6)) (-5 *2 (-622 (-402 *7))) (-5 *1 (-792 *6 *7)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-2762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-402 *7))) (-5 *4 (-1 (-622 *6) *7)) (-5 *5 (-1 (-400 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *7 (-1207 *6)) (-5 *2 (-622 (-402 *7))) (-5 *1 (-792 *6 *7)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))))
-(-10 -7 (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|))) (-15 -2760 ((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2761 ((-622 (-2 (|:| |poly| |#2|) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)))) (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|)))) |%noBranch|))
-((-2763 (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) (-669 |#2|) (-1231 |#1|)) 85) (((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)) (|:| -3617 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1231 |#1|)) 15)) (-2764 (((-2 (|:| |particular| (-3 (-1231 |#1|) "failed")) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#2|) (-1231 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2128 (-622 |#1|))) |#2| |#1|)) 92)) (-3936 (((-3 (-2 (|:| |particular| (-1231 |#1|)) (|:| -2128 (-669 |#1|))) "failed") (-669 |#1|) (-1231 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-793 |#1| |#2|) (-10 -7 (-15 -2763 ((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)) (|:| -3617 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1231 |#1|))) (-15 -2763 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) (-669 |#2|) (-1231 |#1|))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#1|)) (|:| -2128 (-669 |#1|))) "failed") (-669 |#1|) (-1231 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) "failed") |#2| |#1|))) (-15 -2764 ((-2 (|:| |particular| (-3 (-1231 |#1|) "failed")) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#2|) (-1231 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2128 (-622 |#1|))) |#2| |#1|)))) (-358) (-638 |#1|)) (T -793))
-((-2764 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2128 (-622 *6))) *7 *6)) (-4 *6 (-358)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1231 *6) "failed")) (|:| -2128 (-622 (-1231 *6))))) (-5 *1 (-793 *6 *7)) (-5 *4 (-1231 *6)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2128 (-622 *6))) "failed") *7 *6)) (-4 *6 (-358)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-1231 *6)) (|:| -2128 (-669 *6)))) (-5 *1 (-793 *6 *7)) (-5 *3 (-669 *6)) (-5 *4 (-1231 *6)))) (-2763 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-638 *5)) (-5 *2 (-2 (|:| -1700 (-669 *6)) (|:| |vec| (-1231 *5)))) (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *6)) (-5 *4 (-1231 *5)))) (-2763 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| A (-669 *5)) (|:| |eqs| (-622 (-2 (|:| C (-669 *5)) (|:| |g| (-1231 *5)) (|:| -3617 *6) (|:| |rh| *5)))))) (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) (-4 *6 (-638 *5)))))
-(-10 -7 (-15 -2763 ((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)) (|:| -3617 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1231 |#1|))) (-15 -2763 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) (-669 |#2|) (-1231 |#1|))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#1|)) (|:| -2128 (-669 |#1|))) "failed") (-669 |#1|) (-1231 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) "failed") |#2| |#1|))) (-15 -2764 ((-2 (|:| |particular| (-3 (-1231 |#1|) "failed")) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#2|) (-1231 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2128 (-622 |#1|))) |#2| |#1|))))
-((-2765 (((-669 |#1|) (-622 |#1|) (-751)) 13) (((-669 |#1|) (-622 |#1|)) 14)) (-2766 (((-3 (-1231 |#1|) "failed") |#2| |#1| (-622 |#1|)) 34)) (-3699 (((-3 |#1| "failed") |#2| |#1| (-622 |#1|) (-1 |#1| |#1|)) 42)))
-(((-794 |#1| |#2|) (-10 -7 (-15 -2765 ((-669 |#1|) (-622 |#1|))) (-15 -2765 ((-669 |#1|) (-622 |#1|) (-751))) (-15 -2766 ((-3 (-1231 |#1|) "failed") |#2| |#1| (-622 |#1|))) (-15 -3699 ((-3 |#1| "failed") |#2| |#1| (-622 |#1|) (-1 |#1| |#1|)))) (-358) (-638 |#1|)) (T -794))
-((-3699 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-622 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358)) (-5 *1 (-794 *2 *3)) (-4 *3 (-638 *2)))) (-2766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-622 *4)) (-4 *4 (-358)) (-5 *2 (-1231 *4)) (-5 *1 (-794 *4 *3)) (-4 *3 (-638 *4)))) (-2765 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-751)) (-4 *5 (-358)) (-5 *2 (-669 *5)) (-5 *1 (-794 *5 *6)) (-4 *6 (-638 *5)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)) (-5 *1 (-794 *4 *5)) (-4 *5 (-638 *4)))))
-(-10 -7 (-15 -2765 ((-669 |#1|) (-622 |#1|))) (-15 -2765 ((-669 |#1|) (-622 |#1|) (-751))) (-15 -2766 ((-3 (-1231 |#1|) "failed") |#2| |#1| (-622 |#1|))) (-15 -3699 ((-3 |#1| "failed") |#2| |#1| (-622 |#1|) (-1 |#1| |#1|))))
-((-2898 (((-112) $ $) NIL (|has| |#2| (-1074)))) (-3539 (((-112) $) NIL (|has| |#2| (-130)))) (-4070 (($ (-895)) NIL (|has| |#2| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) NIL (|has| |#2| (-773)))) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#2| (-363)))) (-3986 (((-538) $) NIL (|has| |#2| (-825)))) (-4147 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1074)))) (-3507 (((-538) $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) ((|#2| $) NIL (|has| |#2| (-1074)))) (-2362 (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-3821 (((-3 $ "failed") $) NIL (|has| |#2| (-707)))) (-3327 (($) NIL (|has| |#2| (-363)))) (-1637 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ (-538)) NIL)) (-3537 (((-112) $) NIL (|has| |#2| (-825)))) (-2068 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (|has| |#2| (-707)))) (-3538 (((-112) $) NIL (|has| |#2| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2511 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2072 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#2| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#2| (-1074)))) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#2| (-363)))) (-3594 (((-1093) $) NIL (|has| |#2| (-1074)))) (-4160 ((|#2| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ (-538) |#2|) NIL) ((|#2| $ (-538)) NIL)) (-4196 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-1525 (($ (-1231 |#2|)) NIL)) (-4271 (((-133)) NIL (|has| |#2| (-358)))) (-4170 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2069 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#2|) $) NIL) (($ (-538)) NIL (-3891 (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (|has| |#2| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (($ |#2|) NIL (|has| |#2| (-1074))) (((-840) $) NIL (|has| |#2| (-597 (-840))))) (-3461 (((-751)) NIL (|has| |#2| (-1025)))) (-2071 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#2| (-825)))) (-2991 (($) NIL (|has| |#2| (-130)) CONST)) (-2997 (($) NIL (|has| |#2| (-707)) CONST)) (-3002 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3387 (((-112) $ $) NIL (|has| |#2| (-1074)))) (-3017 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3018 (((-112) $ $) 11 (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-4199 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-895)) NIL (|has| |#2| (-707)))) (* (($ (-538) $) NIL (|has| |#2| (-1025))) (($ $ $) NIL (|has| |#2| (-707))) (($ $ |#2|) NIL (|has| |#2| (-707))) (($ |#2| $) NIL (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-895) $) NIL (|has| |#2| (-25)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-795 |#1| |#2| |#3|) (-234 |#1| |#2|) (-751) (-773) (-1 (-112) (-1231 |#2|) (-1231 |#2|))) (T -795))
+((-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-780)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) (-1345 (*1 *2 *3) (-12 (-4 *1 (-780)) (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1011)))))
+(-13 (-1073) (-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1345 ((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1354 (((-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#3| |#2| (-1149)) 19)))
+(((-781 |#1| |#2| |#3|) (-10 -7 (-15 -1354 ((-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#3| |#2| (-1149)))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)) (-13 (-29 |#1|) (-1171) (-935)) (-636 |#2|)) (T -781))
+((-1354 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-4 *4 (-13 (-29 *6) (-1171) (-935))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1270 (-625 *4)))) (-5 *1 (-781 *6 *4 *3)) (-4 *3 (-636 *4)))))
+(-10 -7 (-15 -1354 ((-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#3| |#2| (-1149))))
+((-1728 (((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-625 |#2|)) 28) (((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") |#2| (-114) (-1149)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1149)) 18) (((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 |#2|) (-625 (-114)) (-1149)) 24) (((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 (-289 |#2|)) (-625 (-114)) (-1149)) 26) (((-3 (-625 (-1232 |#2|)) "failed") (-669 |#2|) (-1149)) 37) (((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-669 |#2|) (-1232 |#2|) (-1149)) 35)))
+(((-782 |#1| |#2|) (-10 -7 (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-669 |#2|) (-1232 |#2|) (-1149))) (-15 -1728 ((-3 (-625 (-1232 |#2|)) "failed") (-669 |#2|) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 (-289 |#2|)) (-625 (-114)) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 |#2|) (-625 (-114)) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") |#2| (-114) (-1149))) (-15 -1728 ((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|))) (-15 -1728 ((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-625 |#2|)))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)) (-13 (-29 |#1|) (-1171) (-935))) (T -782))
+((-1728 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-289 *2)) (-5 *5 (-625 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *1 (-782 *6 *2)))) (-1728 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-289 *2)) (-5 *4 (-114)) (-5 *5 (-625 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-935))) (-5 *1 (-782 *6 *2)) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))))) (-1728 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1270 (-625 *3))) *3 "failed")) (-5 *1 (-782 *6 *3)) (-4 *3 (-13 (-29 *6) (-1171) (-935))))) (-1728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1270 (-625 *7))) *7 "failed")) (-5 *1 (-782 *6 *7)))) (-1728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-625 *7)) (-5 *4 (-625 (-114))) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7))))) (-5 *1 (-782 *6 *7)))) (-1728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-625 (-289 *7))) (-5 *4 (-625 (-114))) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7))))) (-5 *1 (-782 *6 *7)))) (-1728 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-669 *6)) (-5 *4 (-1149)) (-4 *6 (-13 (-29 *5) (-1171) (-935))) (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-1232 *6))) (-5 *1 (-782 *5 *6)))) (-1728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-669 *7)) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7))))) (-5 *1 (-782 *6 *7)) (-5 *4 (-1232 *7)))))
+(-10 -7 (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-669 |#2|) (-1232 |#2|) (-1149))) (-15 -1728 ((-3 (-625 (-1232 |#2|)) "failed") (-669 |#2|) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 (-289 |#2|)) (-625 (-114)) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 |#2|) (-625 (-114)) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") |#2| (-114) (-1149))) (-15 -1728 ((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|))) (-15 -1728 ((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-625 |#2|))))
+((-1365 (($) 9)) (-3243 (((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 31)) (-3712 (((-625 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 28)) (-3966 (($ (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))) 25)) (-3234 (($ (-625 (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) 23)) (-1376 (((-1237)) 12)))
+(((-783) (-10 -8 (-15 -1365 ($)) (-15 -1376 ((-1237))) (-15 -3712 ((-625 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3234 ($ (-625 (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))))) (-15 -3966 ($ (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-15 -3243 ((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -783))
+((-3243 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) (-5 *1 (-783)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))) (-5 *1 (-783)))) (-3234 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-5 *1 (-783)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-783)))) (-1376 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-783)))) (-1365 (*1 *1) (-5 *1 (-783))))
+(-10 -8 (-15 -1365 ($)) (-15 -1376 ((-1237))) (-15 -3712 ((-625 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3234 ($ (-625 (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))))) (-15 -3966 ($ (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-15 -3243 ((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
+((-4206 ((|#2| |#2| (-1149)) 16)) (-3252 ((|#2| |#2| (-1149)) 51)) (-3261 (((-1 |#2| |#2|) (-1149)) 11)))
+(((-784 |#1| |#2|) (-10 -7 (-15 -4206 (|#2| |#2| (-1149))) (-15 -3252 (|#2| |#2| (-1149))) (-15 -3261 ((-1 |#2| |#2|) (-1149)))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)) (-13 (-29 |#1|) (-1171) (-935))) (T -784))
+((-3261 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-784 *4 *5)) (-4 *5 (-13 (-29 *4) (-1171) (-935))))) (-3252 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-935))))) (-4206 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-935))))))
+(-10 -7 (-15 -4206 (|#2| |#2| (-1149))) (-15 -3252 (|#2| |#2| (-1149))) (-15 -3261 ((-1 |#2| |#2|) (-1149))))
+((-1728 (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374) (-374)) 116) (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374)) 117) (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-625 (-374)) (-374)) 119) (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-374)) 120) (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-374)) 121) (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374))) 122) (((-1011) (-788) (-1037)) 108) (((-1011) (-788)) 109)) (-3890 (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788) (-1037)) 75) (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788)) 77)))
+(((-785) (-10 -7 (-15 -1728 ((-1011) (-788))) (-15 -1728 ((-1011) (-788) (-1037))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374) (-374))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788) (-1037))))) (T -785))
+((-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-785)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1011)) (-5 *1 (-785)))))
+(-10 -7 (-15 -1728 ((-1011) (-788))) (-15 -1728 ((-1011) (-788) (-1037))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374) (-374))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788) (-1037))))
+((-3270 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1270 (-625 |#4|))) (-633 |#4|) |#4|) 35)))
+(((-786 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3270 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1270 (-625 |#4|))) (-633 |#4|) |#4|))) (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -786))
+((-3270 (*1 *2 *3 *4) (-12 (-5 *3 (-633 *4)) (-4 *4 (-337 *5 *6 *7)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-786 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3270 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1270 (-625 |#4|))) (-633 |#4|) |#4|)))
+((-3076 (((-2 (|:| -2772 |#3|) (|:| |rh| (-625 (-402 |#2|)))) |#4| (-625 (-402 |#2|))) 52)) (-3290 (((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4| |#2|) 60) (((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4|) 59) (((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3| |#2|) 20) (((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3|) 21)) (-3299 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3278 ((|#2| |#3| (-625 (-402 |#2|))) 93) (((-3 |#2| "failed") |#3| (-402 |#2|)) 90)))
+(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3278 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -3278 (|#2| |#3| (-625 (-402 |#2|)))) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3| |#2|)) (-15 -3299 (|#2| |#3| |#1|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4| |#2|)) (-15 -3299 (|#2| |#4| |#1|)) (-15 -3076 ((-2 (|:| -2772 |#3|) (|:| |rh| (-625 (-402 |#2|)))) |#4| (-625 (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-402 (-552)))) (-1208 |#1|) (-636 |#2|) (-636 (-402 |#2|))) (T -787))
+((-3076 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-2 (|:| -2772 *7) (|:| |rh| (-625 (-402 *6))))) (-5 *1 (-787 *5 *6 *7 *3)) (-5 *4 (-625 (-402 *6))) (-4 *7 (-636 *6)) (-4 *3 (-636 (-402 *6))))) (-3299 (*1 *2 *3 *4) (-12 (-4 *2 (-1208 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-636 *2)) (-4 *3 (-636 (-402 *2))))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *4 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -2845 *4) (|:| -2438 *4)))) (-5 *1 (-787 *5 *4 *6 *3)) (-4 *6 (-636 *4)) (-4 *3 (-636 (-402 *4))))) (-3290 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-2 (|:| -2845 *5) (|:| -2438 *5)))) (-5 *1 (-787 *4 *5 *6 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 (-402 *5))))) (-3299 (*1 *2 *3 *4) (-12 (-4 *2 (-1208 *4)) (-5 *1 (-787 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) (-4 *5 (-636 (-402 *2))))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *4 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -2845 *4) (|:| -2438 *4)))) (-5 *1 (-787 *5 *4 *3 *6)) (-4 *3 (-636 *4)) (-4 *6 (-636 (-402 *4))))) (-3290 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-2 (|:| -2845 *5) (|:| -2438 *5)))) (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-636 (-402 *5))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-402 *2))) (-4 *2 (-1208 *5)) (-5 *1 (-787 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) (-4 *6 (-636 (-402 *2))))) (-3278 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1208 *5)) (-5 *1 (-787 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) (-4 *6 (-636 *4)))))
+(-10 -7 (-15 -3278 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -3278 (|#2| |#3| (-625 (-402 |#2|)))) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3| |#2|)) (-15 -3299 (|#2| |#3| |#1|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4| |#2|)) (-15 -3299 (|#2| |#4| |#1|)) (-15 -3076 ((-2 (|:| -2772 |#3|) (|:| |rh| (-625 (-402 |#2|)))) |#4| (-625 (-402 |#2|)))))
+((-1671 (((-112) $ $) NIL)) (-1895 (((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $) 13)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 15) (($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 12)) (-2281 (((-112) $ $) NIL)))
+(((-788) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $))))) (T -788))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-788)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-788)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-788)))))
+(-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $))))
+((-3374 (((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 |#3|))) |#3| (-1 (-625 |#2|) |#2| (-1145 |#2|)) (-1 (-413 |#2|) |#2|)) 118)) (-3385 (((-625 (-2 (|:| |poly| |#2|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|)) 46)) (-3319 (((-625 (-2 (|:| |deg| (-751)) (|:| -2772 |#2|))) |#3|) 95)) (-3309 ((|#2| |#3|) 37)) (-3329 (((-625 (-2 (|:| -1426 |#1|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|)) 82)) (-3338 ((|#3| |#3| (-402 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
+(((-789 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3309 (|#2| |#3|)) (-15 -3319 ((-625 (-2 (|:| |deg| (-751)) (|:| -2772 |#2|))) |#3|)) (-15 -3329 ((-625 (-2 (|:| -1426 |#1|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|))) (-15 -3385 ((-625 (-2 (|:| |poly| |#2|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|))) (-15 -3374 ((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 |#3|))) |#3| (-1 (-625 |#2|) |#2| (-1145 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3338 (|#3| |#3| |#2|)) (-15 -3338 (|#3| |#3| (-402 |#2|)))) (-13 (-358) (-145) (-1014 (-402 (-552)))) (-1208 |#1|) (-636 |#2|) (-636 (-402 |#2|))) (T -789))
+((-3338 (*1 *2 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *1 (-789 *4 *5 *2 *6)) (-4 *2 (-636 *5)) (-4 *6 (-636 *3)))) (-3338 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-1208 *4)) (-5 *1 (-789 *4 *3 *2 *5)) (-4 *2 (-636 *3)) (-4 *5 (-636 (-402 *3))))) (-3374 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-625 *7) *7 (-1145 *7))) (-5 *5 (-1 (-413 *7) *7)) (-4 *7 (-1208 *6)) (-4 *6 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-5 *2 (-625 (-2 (|:| |frac| (-402 *7)) (|:| -2772 *3)))) (-5 *1 (-789 *6 *7 *3 *8)) (-4 *3 (-636 *7)) (-4 *8 (-636 (-402 *7))))) (-3385 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-2 (|:| |poly| *6) (|:| -2772 *3)))) (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-636 *6)) (-4 *7 (-636 (-402 *6))))) (-3329 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -1426 *5) (|:| -2772 *3)))) (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-636 *6)) (-4 *7 (-636 (-402 *6))))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-2 (|:| |deg| (-751)) (|:| -2772 *5)))) (-5 *1 (-789 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-636 (-402 *5))))) (-3309 (*1 *2 *3) (-12 (-4 *2 (-1208 *4)) (-5 *1 (-789 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) (-4 *5 (-636 (-402 *2))))))
+(-10 -7 (-15 -3309 (|#2| |#3|)) (-15 -3319 ((-625 (-2 (|:| |deg| (-751)) (|:| -2772 |#2|))) |#3|)) (-15 -3329 ((-625 (-2 (|:| -1426 |#1|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|))) (-15 -3385 ((-625 (-2 (|:| |poly| |#2|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|))) (-15 -3374 ((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 |#3|))) |#3| (-1 (-625 |#2|) |#2| (-1145 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3338 (|#3| |#3| |#2|)) (-15 -3338 (|#3| |#3| (-402 |#2|))))
+((-3348 (((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-634 |#2| (-402 |#2|)) (-625 (-402 |#2|))) 121) (((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-634 |#2| (-402 |#2|)) (-402 |#2|)) 120) (((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-633 (-402 |#2|)) (-625 (-402 |#2|))) 115) (((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-633 (-402 |#2|)) (-402 |#2|)) 113)) (-3357 ((|#2| (-634 |#2| (-402 |#2|))) 80) ((|#2| (-633 (-402 |#2|))) 83)))
+(((-790 |#1| |#2|) (-10 -7 (-15 -3348 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-633 (-402 |#2|)) (-402 |#2|))) (-15 -3348 ((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-633 (-402 |#2|)) (-625 (-402 |#2|)))) (-15 -3348 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-634 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -3348 ((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-634 |#2| (-402 |#2|)) (-625 (-402 |#2|)))) (-15 -3357 (|#2| (-633 (-402 |#2|)))) (-15 -3357 (|#2| (-634 |#2| (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))) (-1208 |#1|)) (T -790))
+((-3357 (*1 *2 *3) (-12 (-5 *3 (-634 *2 (-402 *2))) (-4 *2 (-1208 *4)) (-5 *1 (-790 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-633 (-402 *2))) (-4 *2 (-1208 *4)) (-5 *1 (-790 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-402 *6))) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-2 (|:| -1270 (-625 (-402 *6))) (|:| -2351 (-669 *5)))) (-5 *1 (-790 *5 *6)) (-5 *4 (-625 (-402 *6))))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-790 *5 *6)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-402 *6))) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-2 (|:| -1270 (-625 (-402 *6))) (|:| -2351 (-669 *5)))) (-5 *1 (-790 *5 *6)) (-5 *4 (-625 (-402 *6))))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-790 *5 *6)))))
+(-10 -7 (-15 -3348 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-633 (-402 |#2|)) (-402 |#2|))) (-15 -3348 ((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-633 (-402 |#2|)) (-625 (-402 |#2|)))) (-15 -3348 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-634 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -3348 ((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-634 |#2| (-402 |#2|)) (-625 (-402 |#2|)))) (-15 -3357 (|#2| (-633 (-402 |#2|)))) (-15 -3357 (|#2| (-634 |#2| (-402 |#2|)))))
+((-3366 (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) |#5| |#4|) 48)))
+(((-791 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3366 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) |#5| |#4|))) (-358) (-636 |#1|) (-1208 |#1|) (-705 |#1| |#3|) (-636 |#4|)) (T -791))
+((-3366 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *7 (-1208 *5)) (-4 *4 (-705 *5 *7)) (-5 *2 (-2 (|:| -2351 (-669 *6)) (|:| |vec| (-1232 *5)))) (-5 *1 (-791 *5 *6 *7 *4 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 *4)))))
+(-10 -7 (-15 -3366 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) |#5| |#4|)))
+((-3374 (((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 47)) (-3396 (((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|))) 138 (|has| |#1| (-27))) (((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-625 (-402 |#2|)) (-633 (-402 |#2|))) 140 (|has| |#1| (-27))) (((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|)) 38) (((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|)) 39) (((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|)) 36) (((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|)) 37)) (-3385 (((-625 (-2 (|:| |poly| |#2|) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|)) 83)))
+(((-792 |#1| |#2|) (-10 -7 (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3374 ((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3385 ((-625 (-2 (|:| |poly| |#2|) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)))) (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)))) |%noBranch|)) (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))) (-1208 |#1|)) (T -792))
+((-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-634 *5 (-402 *5))) (-4 *5 (-1208 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-625 (-402 *5))) (-5 *1 (-792 *4 *5)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-633 (-402 *5))) (-4 *5 (-1208 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-625 (-402 *5))) (-5 *1 (-792 *4 *5)))) (-3385 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-2 (|:| |poly| *6) (|:| -2772 (-634 *6 (-402 *6)))))) (-5 *1 (-792 *5 *6)) (-5 *3 (-634 *6 (-402 *6))))) (-3374 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-625 (-2 (|:| |frac| (-402 *6)) (|:| -2772 (-634 *6 (-402 *6)))))) (-5 *1 (-792 *5 *6)) (-5 *3 (-634 *6 (-402 *6))))) (-3396 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *7 (-402 *7))) (-5 *4 (-1 (-625 *6) *7)) (-5 *5 (-1 (-413 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *7 (-1208 *6)) (-5 *2 (-625 (-402 *7))) (-5 *1 (-792 *6 *7)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-3396 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-633 (-402 *7))) (-5 *4 (-1 (-625 *6) *7)) (-5 *5 (-1 (-413 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *7 (-1208 *6)) (-5 *2 (-625 (-402 *7))) (-5 *1 (-792 *6 *7)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))))
+(-10 -7 (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3374 ((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3385 ((-625 (-2 (|:| |poly| |#2|) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)))) (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)))) |%noBranch|))
+((-3406 (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) (-669 |#2|) (-1232 |#1|)) 85) (((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)) (|:| -2772 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1232 |#1|)) 15)) (-3414 (((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#2|) (-1232 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1270 (-625 |#1|))) |#2| |#1|)) 92)) (-1728 (((-3 (-2 (|:| |particular| (-1232 |#1|)) (|:| -1270 (-669 |#1|))) "failed") (-669 |#1|) (-1232 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-793 |#1| |#2|) (-10 -7 (-15 -3406 ((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)) (|:| -2772 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1232 |#1|))) (-15 -3406 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) (-669 |#2|) (-1232 |#1|))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#1|)) (|:| -1270 (-669 |#1|))) "failed") (-669 |#1|) (-1232 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed") |#2| |#1|))) (-15 -3414 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#2|) (-1232 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1270 (-625 |#1|))) |#2| |#1|)))) (-358) (-636 |#1|)) (T -793))
+((-3414 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1270 (-625 *6))) *7 *6)) (-4 *6 (-358)) (-4 *7 (-636 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1232 *6) "failed")) (|:| -1270 (-625 (-1232 *6))))) (-5 *1 (-793 *6 *7)) (-5 *4 (-1232 *6)))) (-1728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1270 (-625 *6))) "failed") *7 *6)) (-4 *6 (-358)) (-4 *7 (-636 *6)) (-5 *2 (-2 (|:| |particular| (-1232 *6)) (|:| -1270 (-669 *6)))) (-5 *1 (-793 *6 *7)) (-5 *3 (-669 *6)) (-5 *4 (-1232 *6)))) (-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-636 *5)) (-5 *2 (-2 (|:| -2351 (-669 *6)) (|:| |vec| (-1232 *5)))) (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *6)) (-5 *4 (-1232 *5)))) (-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| A (-669 *5)) (|:| |eqs| (-625 (-2 (|:| C (-669 *5)) (|:| |g| (-1232 *5)) (|:| -2772 *6) (|:| |rh| *5)))))) (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) (-4 *6 (-636 *5)))))
+(-10 -7 (-15 -3406 ((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)) (|:| -2772 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1232 |#1|))) (-15 -3406 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) (-669 |#2|) (-1232 |#1|))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#1|)) (|:| -1270 (-669 |#1|))) "failed") (-669 |#1|) (-1232 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed") |#2| |#1|))) (-15 -3414 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#2|) (-1232 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1270 (-625 |#1|))) |#2| |#1|))))
+((-3426 (((-669 |#1|) (-625 |#1|) (-751)) 13) (((-669 |#1|) (-625 |#1|)) 14)) (-3436 (((-3 (-1232 |#1|) "failed") |#2| |#1| (-625 |#1|)) 34)) (-2535 (((-3 |#1| "failed") |#2| |#1| (-625 |#1|) (-1 |#1| |#1|)) 42)))
+(((-794 |#1| |#2|) (-10 -7 (-15 -3426 ((-669 |#1|) (-625 |#1|))) (-15 -3426 ((-669 |#1|) (-625 |#1|) (-751))) (-15 -3436 ((-3 (-1232 |#1|) "failed") |#2| |#1| (-625 |#1|))) (-15 -2535 ((-3 |#1| "failed") |#2| |#1| (-625 |#1|) (-1 |#1| |#1|)))) (-358) (-636 |#1|)) (T -794))
+((-2535 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-625 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358)) (-5 *1 (-794 *2 *3)) (-4 *3 (-636 *2)))) (-3436 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-625 *4)) (-4 *4 (-358)) (-5 *2 (-1232 *4)) (-5 *1 (-794 *4 *3)) (-4 *3 (-636 *4)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-751)) (-4 *5 (-358)) (-5 *2 (-669 *5)) (-5 *1 (-794 *5 *6)) (-4 *6 (-636 *5)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)) (-5 *1 (-794 *4 *5)) (-4 *5 (-636 *4)))))
+(-10 -7 (-15 -3426 ((-669 |#1|) (-625 |#1|))) (-15 -3426 ((-669 |#1|) (-625 |#1|) (-751))) (-15 -3436 ((-3 (-1232 |#1|) "failed") |#2| |#1| (-625 |#1|))) (-15 -2535 ((-3 |#1| "failed") |#2| |#1| (-625 |#1|) (-1 |#1| |#1|))))
+((-1671 (((-112) $ $) NIL (|has| |#2| (-1073)))) (-3641 (((-112) $) NIL (|has| |#2| (-130)))) (-2787 (($ (-897)) NIL (|has| |#2| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) NIL (|has| |#2| (-773)))) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#2| (-363)))) (-4127 (((-552) $) NIL (|has| |#2| (-825)))) (-1851 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1073)))) (-1895 (((-552) $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) ((|#2| $) NIL (|has| |#2| (-1073)))) (-1794 (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-4174 (((-3 $ "failed") $) NIL (|has| |#2| (-707)))) (-3702 (($) NIL (|has| |#2| (-363)))) (-3692 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ (-552)) NIL)) (-3620 (((-112) $) NIL (|has| |#2| (-825)))) (-3799 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (|has| |#2| (-707)))) (-3630 (((-112) $) NIL (|has| |#2| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3730 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3683 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#2| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#2| (-1073)))) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#2| (-363)))) (-2831 (((-1093) $) NIL (|has| |#2| (-1073)))) (-2924 ((|#2| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL)) (-1443 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-3878 (($ (-1232 |#2|)) NIL)) (-3904 (((-133)) NIL (|has| |#2| (-358)))) (-3072 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2840 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#2|) $) NIL) (($ (-552)) NIL (-1523 (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (|has| |#2| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (($ |#2|) NIL (|has| |#2| (-1073))) (((-839) $) NIL (|has| |#2| (-597 (-839))))) (-4141 (((-751)) NIL (|has| |#2| (-1025)))) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#2| (-825)))) (-2089 (($) NIL (|has| |#2| (-130)) CONST)) (-2100 (($) NIL (|has| |#2| (-707)) CONST)) (-3768 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2281 (((-112) $ $) NIL (|has| |#2| (-1073)))) (-2334 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2307 (((-112) $ $) 11 (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-2382 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-897)) NIL (|has| |#2| (-707)))) (* (($ (-552) $) NIL (|has| |#2| (-1025))) (($ $ $) NIL (|has| |#2| (-707))) (($ $ |#2|) NIL (|has| |#2| (-707))) (($ |#2| $) NIL (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-897) $) NIL (|has| |#2| (-25)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-795 |#1| |#2| |#3|) (-234 |#1| |#2|) (-751) (-773) (-1 (-112) (-1232 |#2|) (-1232 |#2|))) (T -795))
NIL
(-234 |#1| |#2|)
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1543 (((-622 (-751)) $) NIL) (((-622 (-751)) $ (-1149)) NIL)) (-1577 (((-751) $) NIL) (((-751) $ (-1149)) NIL)) (-3417 (((-622 (-798 (-1149))) $) NIL)) (-3419 (((-1143 $) $ (-798 (-1149))) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-798 (-1149)))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1539 (($ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-798 (-1149)) #2#) $) NIL) (((-3 (-1149) #2#) $) NIL) (((-3 (-1098 |#1| (-1149)) #2#) $) NIL)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-798 (-1149)) $) NIL) (((-1149) $) NIL) (((-1098 |#1| (-1149)) $) NIL)) (-4116 (($ $ $ (-798 (-1149))) NIL (|has| |#1| (-170)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ (-798 (-1149))) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-524 (-798 (-1149))) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-798 (-1149)) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-798 (-1149)) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ (-1149)) NIL) (((-751) $) NIL)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#1|) (-798 (-1149))) NIL) (($ (-1143 $) (-798 (-1149))) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-524 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-622 (-798 (-1149))) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-798 (-1149))) NIL)) (-3153 (((-524 (-798 (-1149))) $) NIL) (((-751) $ (-798 (-1149))) NIL) (((-622 (-751)) $ (-622 (-798 (-1149)))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 (-798 (-1149))) (-524 (-798 (-1149)))) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1 $ (-751)) (-1149)) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-3418 (((-3 (-798 (-1149)) #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-1541 (((-798 (-1149)) $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-1542 (((-112) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-798 (-1149))) (|:| -2493 (-751))) #3#) $) NIL)) (-1540 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-798 (-1149)) |#1|) NIL) (($ $ (-622 (-798 (-1149))) (-622 |#1|)) NIL) (($ $ (-798 (-1149)) $) NIL) (($ $ (-622 (-798 (-1149))) (-622 $)) NIL) (($ $ (-1149) $) NIL (|has| |#1| (-229))) (($ $ (-622 (-1149)) (-622 $)) NIL (|has| |#1| (-229))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-229))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-229)))) (-4117 (($ $ (-798 (-1149))) NIL (|has| |#1| (-170)))) (-4170 (($ $ (-798 (-1149))) NIL) (($ $ (-622 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-622 (-798 (-1149))) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1544 (((-622 (-1149)) $) NIL)) (-4307 (((-524 (-798 (-1149))) $) NIL) (((-751) $ (-798 (-1149))) NIL) (((-622 (-751)) $ (-622 (-798 (-1149)))) NIL) (((-751) $ (-1149)) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-798 (-1149))) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-798 (-1149))) NIL) (($ (-1149)) NIL) (($ (-1098 |#1| (-1149))) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-524 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-622 (-798 (-1149))) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-798 (-1149))) NIL) (($ $ (-622 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-622 (-798 (-1149))) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3169 (((-625 (-751)) $) NIL) (((-625 (-751)) $ (-1149)) NIL)) (-3469 (((-751) $) NIL) (((-751) $ (-1149)) NIL)) (-3982 (((-625 (-798 (-1149))) $) NIL)) (-3793 (((-1145 $) $ (-798 (-1149))) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-798 (-1149)))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3153 (($ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-798 (-1149)) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL) (((-3 (-1098 |#1| (-1149)) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-798 (-1149)) $) NIL) (((-1149) $) NIL) (((-1098 |#1| (-1149)) $) NIL)) (-3207 (($ $ $ (-798 (-1149))) NIL (|has| |#1| (-170)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ (-798 (-1149))) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-524 (-798 (-1149))) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-798 (-1149)) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-798 (-1149)) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ (-1149)) NIL) (((-751) $) NIL)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#1|) (-798 (-1149))) NIL) (($ (-1145 $) (-798 (-1149))) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-524 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-625 (-798 (-1149))) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-798 (-1149))) NIL)) (-4134 (((-524 (-798 (-1149))) $) NIL) (((-751) $ (-798 (-1149))) NIL) (((-625 (-751)) $ (-625 (-798 (-1149)))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 (-798 (-1149))) (-524 (-798 (-1149)))) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3479 (((-1 $ (-751)) (-1149)) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-1942 (((-3 (-798 (-1149)) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2578 (((-798 (-1149)) $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-3162 (((-112) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-798 (-1149))) (|:| -3564 (-751))) "failed") $) NIL)) (-4186 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-798 (-1149)) |#1|) NIL) (($ $ (-625 (-798 (-1149))) (-625 |#1|)) NIL) (($ $ (-798 (-1149)) $) NIL) (($ $ (-625 (-798 (-1149))) (-625 $)) NIL) (($ $ (-1149) $) NIL (|has| |#1| (-229))) (($ $ (-625 (-1149)) (-625 $)) NIL (|has| |#1| (-229))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-229))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-229)))) (-3217 (($ $ (-798 (-1149))) NIL (|has| |#1| (-170)))) (-3072 (($ $ (-798 (-1149))) NIL) (($ $ (-625 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-625 (-798 (-1149))) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3177 (((-625 (-1149)) $) NIL)) (-4276 (((-524 (-798 (-1149))) $) NIL) (((-751) $ (-798 (-1149))) NIL) (((-625 (-751)) $ (-625 (-798 (-1149)))) NIL) (((-751) $ (-1149)) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-798 (-1149))) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-798 (-1149))) NIL) (($ (-1149)) NIL) (($ (-1098 |#1| (-1149))) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-524 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-625 (-798 (-1149))) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-798 (-1149))) NIL) (($ $ (-625 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-625 (-798 (-1149))) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-796 |#1|) (-13 (-248 |#1| (-1149) (-798 (-1149)) (-524 (-798 (-1149)))) (-1014 (-1098 |#1| (-1149)))) (-1025)) (T -796))
NIL
(-13 (-248 |#1| (-1149) (-798 (-1149)) (-524 (-798 (-1149)))) (-1014 (-1098 |#1| (-1149))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-358)))) (-2178 (($ $) NIL (|has| |#2| (-358)))) (-2176 (((-112) $) NIL (|has| |#2| (-358)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#2| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-358)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-358)))) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL (|has| |#2| (-358)))) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#2| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#2| (-358)))) (-4086 (((-112) $) NIL (|has| |#2| (-358)))) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL (|has| |#2| (-358)))) (-2013 (($ (-622 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 20 (|has| |#2| (-358)))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#2| (-358)))) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#2| (-358)))) (-1704 (((-751) $) NIL (|has| |#2| (-358)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-358)))) (-4170 (($ $ (-751)) NIL) (($ $) 13)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-402 (-538))) NIL (|has| |#2| (-358))) (($ $) NIL (|has| |#2| (-358)))) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL (|has| |#2| (-358)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) 15 (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL) (($ $ (-538)) 18 (|has| |#2| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-402 (-538)) $) NIL (|has| |#2| (-358))) (($ $ (-402 (-538))) NIL (|has| |#2| (-358)))))
-(((-797 |#1| |#2| |#3|) (-13 (-111 $ $) (-229) (-10 -8 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|) (-15 -4317 ($ |#2|)) (-15 -4317 (|#2| $)))) (-1074) (-876 |#1|) |#1|) (T -797))
-((-4317 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-14 *4 *3) (-5 *1 (-797 *3 *2 *4)) (-4 *2 (-876 *3)))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-876 *3)) (-5 *1 (-797 *3 *2 *4)) (-4 *3 (-1074)) (-14 *4 *3))))
-(-13 (-111 $ $) (-229) (-10 -8 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|) (-15 -4317 ($ |#2|)) (-15 -4317 (|#2| $))))
-((-2898 (((-112) $ $) NIL)) (-1577 (((-751) $) NIL)) (-4191 ((|#1| $) 10)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-4131 (((-751) $) 11)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-1578 (($ |#1| (-751)) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4170 (($ $) NIL) (($ $ (-751)) NIL)) (-4317 (((-840) $) NIL) (($ |#1|) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-358)))) (-3528 (($ $) NIL (|has| |#2| (-358)))) (-3509 (((-112) $) NIL (|has| |#2| (-358)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#2| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-358)))) (-2408 (((-112) $ $) NIL (|has| |#2| (-358)))) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL (|has| |#2| (-358)))) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#2| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#2| (-358)))) (-2951 (((-112) $) NIL (|has| |#2| (-358)))) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#2| (-358)))) (-2605 (($ (-625 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 20 (|has| |#2| (-358)))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#2| (-358)))) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#2| (-358)))) (-2397 (((-751) $) NIL (|has| |#2| (-358)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-358)))) (-3072 (($ $ (-751)) NIL) (($ $) 13)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-402 (-552))) NIL (|has| |#2| (-358))) (($ $) NIL (|has| |#2| (-358)))) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL (|has| |#2| (-358)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) 15 (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL) (($ $ (-552)) 18 (|has| |#2| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-402 (-552)) $) NIL (|has| |#2| (-358))) (($ $ (-402 (-552))) NIL (|has| |#2| (-358)))))
+(((-797 |#1| |#2| |#3|) (-13 (-111 $ $) (-229) (-10 -8 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|) (-15 -1683 ($ |#2|)) (-15 -1683 (|#2| $)))) (-1073) (-876 |#1|) |#1|) (T -797))
+((-1683 (*1 *1 *2) (-12 (-4 *3 (-1073)) (-14 *4 *3) (-5 *1 (-797 *3 *2 *4)) (-4 *2 (-876 *3)))) (-1683 (*1 *2 *1) (-12 (-4 *2 (-876 *3)) (-5 *1 (-797 *3 *2 *4)) (-4 *3 (-1073)) (-14 *4 *3))))
+(-13 (-111 $ $) (-229) (-10 -8 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|) (-15 -1683 ($ |#2|)) (-15 -1683 (|#2| $))))
+((-1671 (((-112) $ $) NIL)) (-3469 (((-751) $) NIL)) (-2195 ((|#1| $) 10)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2172 (((-751) $) 11)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-3479 (($ |#1| (-751)) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3072 (($ $) NIL) (($ $ (-751)) NIL)) (-1683 (((-839) $) NIL) (($ |#1|) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)))
(((-798 |#1|) (-261 |#1|) (-827)) (T -798))
NIL
(-261 |#1|)
-((-2898 (((-112) $ $) NIL)) (-4294 (((-622 |#1|) $) 29)) (-3471 (((-751) $) NIL)) (-3896 (($) NIL T CONST)) (-4299 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-4158 (($ $) 31)) (-3821 (((-3 $ "failed") $) NIL)) (-2770 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2502 (((-112) $) NIL)) (-2768 ((|#1| $ (-538)) NIL)) (-2769 (((-751) $ (-538)) NIL)) (-4296 (($ $) 36)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4300 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2773 (((-112) $ $) 34)) (-4193 (((-751) $) 25)) (-3593 (((-1131) $) NIL)) (-2771 (($ $ $) NIL)) (-2772 (($ $ $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 ((|#1| $) 30)) (-2767 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $) NIL)) (-2895 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4317 (((-840) $) NIL) (($ |#1|) NIL)) (-2997 (($) 15 T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 35)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ |#1| (-751)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-799 |#1|) (-13 (-823) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -4160 (|#1| $)) (-15 -4158 ($ $)) (-15 -4296 ($ $)) (-15 -2773 ((-112) $ $)) (-15 -2772 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -4300 ((-3 $ "failed") $ $)) (-15 -4299 ((-3 $ "failed") $ $)) (-15 -4300 ((-3 $ "failed") $ |#1|)) (-15 -4299 ((-3 $ "failed") $ |#1|)) (-15 -2895 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2770 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3471 ((-751) $)) (-15 -2769 ((-751) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $)) (-15 -4193 ((-751) $)) (-15 -4294 ((-622 |#1|) $)))) (-827)) (T -799))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4160 (*1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4158 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4296 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2773 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-2772 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2771 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4300 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4299 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4300 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4299 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2895 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |rm| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-2770 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |mm| (-799 *3)) (|:| |rm| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-751)) (-5 *1 (-799 *4)) (-4 *4 (-827)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-751))))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-799 *3)) (-4 *3 (-827)))))
-(-13 (-823) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -4160 (|#1| $)) (-15 -4158 ($ $)) (-15 -4296 ($ $)) (-15 -2773 ((-112) $ $)) (-15 -2772 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -4300 ((-3 $ "failed") $ $)) (-15 -4299 ((-3 $ "failed") $ $)) (-15 -4300 ((-3 $ "failed") $ |#1|)) (-15 -4299 ((-3 $ "failed") $ |#1|)) (-15 -2895 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2770 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3471 ((-751) $)) (-15 -2769 ((-751) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $)) (-15 -4193 ((-751) $)) (-15 -4294 ((-622 |#1|) $))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3986 (((-538) $) 51)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-3537 (((-112) $) 49)) (-2502 (((-112) $) 30)) (-3538 (((-112) $) 50)) (-3677 (($ $ $) 48)) (-3678 (($ $ $) 47)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ $) 40)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-3742 (($ $) 52)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 45)) (-2897 (((-112) $ $) 44)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 46)) (-3018 (((-112) $ $) 43)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-1671 (((-112) $ $) NIL)) (-3202 (((-625 |#1|) $) 29)) (-2894 (((-751) $) NIL)) (-3101 (($) NIL T CONST)) (-4211 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2936 (($ $) 31)) (-4174 (((-3 $ "failed") $) NIL)) (-3482 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3650 (((-112) $) NIL)) (-3461 ((|#1| $ (-552)) NIL)) (-3472 (((-751) $ (-552)) NIL)) (-4191 (($ $) 36)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-4222 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3511 (((-112) $ $) 34)) (-3456 (((-751) $) 25)) (-2883 (((-1131) $) NIL)) (-3492 (($ $ $) NIL)) (-3502 (($ $ $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 ((|#1| $) 30)) (-3449 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $) NIL)) (-2813 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1683 (((-839) $) NIL) (($ |#1|) NIL)) (-2100 (($) 15 T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 35)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ |#1| (-751)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-799 |#1|) (-13 (-823) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -2924 (|#1| $)) (-15 -2936 ($ $)) (-15 -4191 ($ $)) (-15 -3511 ((-112) $ $)) (-15 -3502 ($ $ $)) (-15 -3492 ($ $ $)) (-15 -4222 ((-3 $ "failed") $ $)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -4222 ((-3 $ "failed") $ |#1|)) (-15 -4211 ((-3 $ "failed") $ |#1|)) (-15 -2813 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3482 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2894 ((-751) $)) (-15 -3472 ((-751) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $)) (-15 -3456 ((-751) $)) (-15 -3202 ((-625 |#1|) $)))) (-827)) (T -799))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2924 (*1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2936 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4191 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-3511 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3502 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-3492 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4222 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4211 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4222 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4211 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2813 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |rm| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3482 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |mm| (-799 *3)) (|:| |rm| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3472 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-751)) (-5 *1 (-799 *4)) (-4 *4 (-827)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-751))))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-799 *3)) (-4 *3 (-827)))))
+(-13 (-823) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -2924 (|#1| $)) (-15 -2936 ($ $)) (-15 -4191 ($ $)) (-15 -3511 ((-112) $ $)) (-15 -3502 ($ $ $)) (-15 -3492 ($ $ $)) (-15 -4222 ((-3 $ "failed") $ $)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -4222 ((-3 $ "failed") $ |#1|)) (-15 -4211 ((-3 $ "failed") $ |#1|)) (-15 -2813 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3482 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2894 ((-751) $)) (-15 -3472 ((-751) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $)) (-15 -3456 ((-751) $)) (-15 -3202 ((-625 |#1|) $))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-4127 (((-552) $) 51)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3620 (((-112) $) 49)) (-3650 (((-112) $) 30)) (-3630 (((-112) $) 50)) (-3658 (($ $ $) 48)) (-3332 (($ $ $) 47)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ $) 40)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-1727 (($ $) 52)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 45)) (-2320 (((-112) $ $) 44)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 46)) (-2307 (((-112) $ $) 43)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-800) (-138)) (T -800))
NIL
-(-13 (-545) (-825))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-825) . T) ((-827) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2834 (((-1237) (-803) $ (-112)) 9) (((-1237) (-803) $) 8) (((-1131) $ (-112)) 7) (((-1131) $) 6)))
-(((-801) (-138)) (T -801))
-((-2834 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-801)) (-5 *3 (-803)) (-5 *4 (-112)) (-5 *2 (-1237)))) (-2834 (*1 *2 *3 *1) (-12 (-4 *1 (-801)) (-5 *3 (-803)) (-5 *2 (-1237)))) (-2834 (*1 *2 *1 *3) (-12 (-4 *1 (-801)) (-5 *3 (-112)) (-5 *2 (-1131)))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-801)) (-5 *2 (-1131)))))
-(-13 (-10 -8 (-15 -2834 ((-1131) $)) (-15 -2834 ((-1131) $ (-112))) (-15 -2834 ((-1237) (-803) $)) (-15 -2834 ((-1237) (-803) $ (-112)))))
-((-2774 (($ (-1093)) 7)) (-2778 (((-112) $ (-1131) (-1093)) 15)) (-2777 (((-803) $) 12)) (-2776 (((-803) $) 11)) (-2775 (((-1237) $) 9)) (-2779 (((-112) $ (-1093)) 16)))
-(((-802) (-10 -8 (-15 -2774 ($ (-1093))) (-15 -2775 ((-1237) $)) (-15 -2776 ((-803) $)) (-15 -2777 ((-803) $)) (-15 -2778 ((-112) $ (-1131) (-1093))) (-15 -2779 ((-112) $ (-1093))))) (T -802))
-((-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-802)))) (-2778 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-802)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-803)) (-5 *1 (-802)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-803)) (-5 *1 (-802)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-802)))))
-(-10 -8 (-15 -2774 ($ (-1093))) (-15 -2775 ((-1237) $)) (-15 -2776 ((-803) $)) (-15 -2777 ((-803) $)) (-15 -2778 ((-112) $ (-1131) (-1093))) (-15 -2779 ((-112) $ (-1093))))
-((-2783 (((-1237) $ (-804)) 12)) (-2800 (((-1237) $ (-1149)) 32)) (-2802 (((-1237) $ (-1131) (-1131)) 34)) (-2801 (((-1237) $ (-1131)) 33)) (-2790 (((-1237) $) 19)) (-2798 (((-1237) $ (-538)) 28)) (-2799 (((-1237) $ (-221)) 30)) (-2789 (((-1237) $) 18)) (-2797 (((-1237) $) 26)) (-2796 (((-1237) $) 25)) (-2794 (((-1237) $) 23)) (-2795 (((-1237) $) 24)) (-2793 (((-1237) $) 22)) (-2792 (((-1237) $) 21)) (-2791 (((-1237) $) 20)) (-2787 (((-1237) $) 16)) (-2788 (((-1237) $) 17)) (-2786 (((-1237) $) 15)) (-2785 (((-1237) $) 14)) (-2784 (((-1237) $) 13)) (-2781 (($ (-1131) (-804)) 9)) (-2780 (($ (-1131) (-1131) (-804)) 8)) (-2819 (((-1149) $) 51)) (-2822 (((-1149) $) 55)) (-2821 (((-2 (|:| |cd| (-1131)) (|:| -3905 (-1131))) $) 54)) (-2820 (((-1131) $) 52)) (-2809 (((-1237) $) 41)) (-2817 (((-538) $) 49)) (-2818 (((-221) $) 50)) (-2808 (((-1237) $) 40)) (-2816 (((-1237) $) 48)) (-2815 (((-1237) $) 47)) (-2813 (((-1237) $) 45)) (-2814 (((-1237) $) 46)) (-2812 (((-1237) $) 44)) (-2811 (((-1237) $) 43)) (-2810 (((-1237) $) 42)) (-2806 (((-1237) $) 38)) (-2807 (((-1237) $) 39)) (-2805 (((-1237) $) 37)) (-2804 (((-1237) $) 36)) (-2803 (((-1237) $) 35)) (-2782 (((-1237) $) 11)))
-(((-803) (-10 -8 (-15 -2780 ($ (-1131) (-1131) (-804))) (-15 -2781 ($ (-1131) (-804))) (-15 -2782 ((-1237) $)) (-15 -2783 ((-1237) $ (-804))) (-15 -2784 ((-1237) $)) (-15 -2785 ((-1237) $)) (-15 -2786 ((-1237) $)) (-15 -2787 ((-1237) $)) (-15 -2788 ((-1237) $)) (-15 -2789 ((-1237) $)) (-15 -2790 ((-1237) $)) (-15 -2791 ((-1237) $)) (-15 -2792 ((-1237) $)) (-15 -2793 ((-1237) $)) (-15 -2794 ((-1237) $)) (-15 -2795 ((-1237) $)) (-15 -2796 ((-1237) $)) (-15 -2797 ((-1237) $)) (-15 -2798 ((-1237) $ (-538))) (-15 -2799 ((-1237) $ (-221))) (-15 -2800 ((-1237) $ (-1149))) (-15 -2801 ((-1237) $ (-1131))) (-15 -2802 ((-1237) $ (-1131) (-1131))) (-15 -2803 ((-1237) $)) (-15 -2804 ((-1237) $)) (-15 -2805 ((-1237) $)) (-15 -2806 ((-1237) $)) (-15 -2807 ((-1237) $)) (-15 -2808 ((-1237) $)) (-15 -2809 ((-1237) $)) (-15 -2810 ((-1237) $)) (-15 -2811 ((-1237) $)) (-15 -2812 ((-1237) $)) (-15 -2813 ((-1237) $)) (-15 -2814 ((-1237) $)) (-15 -2815 ((-1237) $)) (-15 -2816 ((-1237) $)) (-15 -2817 ((-538) $)) (-15 -2818 ((-221) $)) (-15 -2819 ((-1149) $)) (-15 -2820 ((-1131) $)) (-15 -2821 ((-2 (|:| |cd| (-1131)) (|:| -3905 (-1131))) $)) (-15 -2822 ((-1149) $)))) (T -803))
-((-2822 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-803)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1131)) (|:| -3905 (-1131)))) (-5 *1 (-803)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-803)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-803)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-803)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-803)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2801 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2800 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2799 (*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2798 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2783 (*1 *2 *1 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2781 (*1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-804)) (-5 *1 (-803)))) (-2780 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-804)) (-5 *1 (-803)))))
-(-10 -8 (-15 -2780 ($ (-1131) (-1131) (-804))) (-15 -2781 ($ (-1131) (-804))) (-15 -2782 ((-1237) $)) (-15 -2783 ((-1237) $ (-804))) (-15 -2784 ((-1237) $)) (-15 -2785 ((-1237) $)) (-15 -2786 ((-1237) $)) (-15 -2787 ((-1237) $)) (-15 -2788 ((-1237) $)) (-15 -2789 ((-1237) $)) (-15 -2790 ((-1237) $)) (-15 -2791 ((-1237) $)) (-15 -2792 ((-1237) $)) (-15 -2793 ((-1237) $)) (-15 -2794 ((-1237) $)) (-15 -2795 ((-1237) $)) (-15 -2796 ((-1237) $)) (-15 -2797 ((-1237) $)) (-15 -2798 ((-1237) $ (-538))) (-15 -2799 ((-1237) $ (-221))) (-15 -2800 ((-1237) $ (-1149))) (-15 -2801 ((-1237) $ (-1131))) (-15 -2802 ((-1237) $ (-1131) (-1131))) (-15 -2803 ((-1237) $)) (-15 -2804 ((-1237) $)) (-15 -2805 ((-1237) $)) (-15 -2806 ((-1237) $)) (-15 -2807 ((-1237) $)) (-15 -2808 ((-1237) $)) (-15 -2809 ((-1237) $)) (-15 -2810 ((-1237) $)) (-15 -2811 ((-1237) $)) (-15 -2812 ((-1237) $)) (-15 -2813 ((-1237) $)) (-15 -2814 ((-1237) $)) (-15 -2815 ((-1237) $)) (-15 -2816 ((-1237) $)) (-15 -2817 ((-538) $)) (-15 -2818 ((-221) $)) (-15 -2819 ((-1149) $)) (-15 -2820 ((-1131) $)) (-15 -2821 ((-2 (|:| |cd| (-1131)) (|:| -3905 (-1131))) $)) (-15 -2822 ((-1149) $)))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 12)) (-2825 (($) 15)) (-2826 (($) 13)) (-2824 (($) 16)) (-2823 (($) 14)) (-3387 (((-112) $ $) 8)))
-(((-804) (-13 (-1074) (-10 -8 (-15 -2826 ($)) (-15 -2825 ($)) (-15 -2824 ($)) (-15 -2823 ($))))) (T -804))
-((-2826 (*1 *1) (-5 *1 (-804))) (-2825 (*1 *1) (-5 *1 (-804))) (-2824 (*1 *1) (-5 *1 (-804))) (-2823 (*1 *1) (-5 *1 (-804))))
-(-13 (-1074) (-10 -8 (-15 -2826 ($)) (-15 -2825 ($)) (-15 -2824 ($)) (-15 -2823 ($))))
-((-2898 (((-112) $ $) NIL)) (-2827 (($ (-806) (-622 (-1149))) 24)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2829 (((-806) $) 25)) (-2828 (((-622 (-1149)) $) 26)) (-4317 (((-840) $) 23)) (-3387 (((-112) $ $) NIL)))
-(((-805) (-13 (-1074) (-10 -8 (-15 -2829 ((-806) $)) (-15 -2828 ((-622 (-1149)) $)) (-15 -2827 ($ (-806) (-622 (-1149))))))) (T -805))
-((-2829 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-805)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-805)))) (-2827 (*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-622 (-1149))) (-5 *1 (-805)))))
-(-13 (-1074) (-10 -8 (-15 -2829 ((-806) $)) (-15 -2828 ((-622 (-1149)) $)) (-15 -2827 ($ (-806) (-622 (-1149))))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21) (($ (-1149)) 17)) (-2831 (((-112) $) 10)) (-2832 (((-112) $) 9)) (-2830 (((-112) $) 11)) (-2833 (((-112) $) 8)) (-3387 (((-112) $ $) 19)))
-(((-806) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-1149))) (-15 -2833 ((-112) $)) (-15 -2832 ((-112) $)) (-15 -2831 ((-112) $)) (-15 -2830 ((-112) $))))) (T -806))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-806)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))))
-(-13 (-1074) (-10 -8 (-15 -4317 ($ (-1149))) (-15 -2833 ((-112) $)) (-15 -2832 ((-112) $)) (-15 -2831 ((-112) $)) (-15 -2830 ((-112) $))))
-((-2834 (((-1237) (-803) (-309 |#1|) (-112)) 23) (((-1237) (-803) (-309 |#1|)) 79) (((-1131) (-309 |#1|) (-112)) 78) (((-1131) (-309 |#1|)) 77)))
-(((-807 |#1|) (-10 -7 (-15 -2834 ((-1131) (-309 |#1|))) (-15 -2834 ((-1131) (-309 |#1|) (-112))) (-15 -2834 ((-1237) (-803) (-309 |#1|))) (-15 -2834 ((-1237) (-803) (-309 |#1|) (-112)))) (-13 (-801) (-827) (-1025))) (T -807))
-((-2834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-803)) (-5 *4 (-309 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-801) (-827) (-1025))) (-5 *2 (-1237)) (-5 *1 (-807 *6)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-803)) (-5 *4 (-309 *5)) (-4 *5 (-13 (-801) (-827) (-1025))) (-5 *2 (-1237)) (-5 *1 (-807 *5)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-801) (-827) (-1025))) (-5 *2 (-1131)) (-5 *1 (-807 *5)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-801) (-827) (-1025))) (-5 *2 (-1131)) (-5 *1 (-807 *4)))))
-(-10 -7 (-15 -2834 ((-1131) (-309 |#1|))) (-15 -2834 ((-1131) (-309 |#1|) (-112))) (-15 -2834 ((-1237) (-803) (-309 |#1|))) (-15 -2834 ((-1237) (-803) (-309 |#1|) (-112))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2835 ((|#1| $) 10)) (-2836 (($ |#1|) 9)) (-2502 (((-112) $) NIL)) (-3226 (($ |#2| (-751)) NIL)) (-3153 (((-751) $) NIL)) (-3525 ((|#2| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4170 (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-4307 (((-751) $) NIL)) (-4317 (((-840) $) 17) (($ (-538)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-4040 ((|#2| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-808 |#1| |#2|) (-13 (-689 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -2836 ($ |#1|)) (-15 -2835 (|#1| $)))) (-689 |#2|) (-1025)) (T -808))
-((-2836 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-808 *2 *3)) (-4 *2 (-689 *3)))) (-2835 (*1 *2 *1) (-12 (-4 *2 (-689 *3)) (-5 *1 (-808 *2 *3)) (-4 *3 (-1025)))))
-(-13 (-689 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -2836 ($ |#1|)) (-15 -2835 (|#1| $))))
-((-2844 (((-306) (-1131) (-1131)) 12)) (-2843 (((-112) (-1131) (-1131)) 34)) (-2842 (((-112) (-1131)) 33)) (-2839 (((-51) (-1131)) 25)) (-2838 (((-51) (-1131)) 23)) (-2837 (((-51) (-803)) 17)) (-2841 (((-622 (-1131)) (-1131)) 28)) (-2840 (((-622 (-1131))) 27)))
-(((-809) (-10 -7 (-15 -2837 ((-51) (-803))) (-15 -2838 ((-51) (-1131))) (-15 -2839 ((-51) (-1131))) (-15 -2840 ((-622 (-1131)))) (-15 -2841 ((-622 (-1131)) (-1131))) (-15 -2842 ((-112) (-1131))) (-15 -2843 ((-112) (-1131) (-1131))) (-15 -2844 ((-306) (-1131) (-1131))))) (T -809))
-((-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-809)))) (-2843 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))) (-2841 (*1 *2 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-809)) (-5 *3 (-1131)))) (-2840 (*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-809)))) (-2839 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-809)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-809)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-51)) (-5 *1 (-809)))))
-(-10 -7 (-15 -2837 ((-51) (-803))) (-15 -2838 ((-51) (-1131))) (-15 -2839 ((-51) (-1131))) (-15 -2840 ((-622 (-1131)))) (-15 -2841 ((-622 (-1131)) (-1131))) (-15 -2842 ((-112) (-1131))) (-15 -2843 ((-112) (-1131) (-1131))) (-15 -2844 ((-306) (-1131) (-1131))))
-((-2898 (((-112) $ $) 19)) (-3585 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3587 (($ $ $) 72)) (-3586 (((-112) $ $) 73)) (-1271 (((-112) $ (-751)) 8)) (-3590 (($ (-622 |#1|)) 68) (($) 67)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2455 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) 64)) (-4082 (((-112) $ (-751)) 9)) (-3677 ((|#1| $) 78)) (-3192 (($ $ $) 81)) (-3872 (($ $ $) 80)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3678 ((|#1| $) 79)) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22)) (-3589 (($ $ $) 69)) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-3594 (((-1093) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2454 (((-622 (-2 (|:| -2191 |#1|) (|:| -2069 (-751)))) $) 61)) (-3588 (($ $ |#1|) 71) (($ $ $) 70)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-4317 (((-840) $) 18)) (-3591 (($ (-622 |#1|)) 66) (($) 65)) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20)) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(-13 (-544) (-825))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-825) . T) ((-827) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-3520 (($ (-1093)) 7)) (-3560 (((-112) $ (-1131) (-1093)) 15)) (-3551 (((-802) $) 12)) (-3539 (((-802) $) 11)) (-3530 (((-1237) $) 9)) (-3571 (((-112) $ (-1093)) 16)))
+(((-801) (-10 -8 (-15 -3520 ($ (-1093))) (-15 -3530 ((-1237) $)) (-15 -3539 ((-802) $)) (-15 -3551 ((-802) $)) (-15 -3560 ((-112) $ (-1131) (-1093))) (-15 -3571 ((-112) $ (-1093))))) (T -801))
+((-3571 (*1 *2 *1 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-801)))) (-3560 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-801)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-801)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-801)))))
+(-10 -8 (-15 -3520 ($ (-1093))) (-15 -3530 ((-1237) $)) (-15 -3539 ((-802) $)) (-15 -3551 ((-802) $)) (-15 -3560 ((-112) $ (-1131) (-1093))) (-15 -3571 ((-112) $ (-1093))))
+((-3616 (((-1237) $ (-803)) 12)) (-3787 (((-1237) $ (-1149)) 32)) (-2664 (((-1237) $ (-1131) (-1131)) 34)) (-2655 (((-1237) $ (-1131)) 33)) (-3689 (((-1237) $) 19)) (-3766 (((-1237) $ (-552)) 28)) (-3776 (((-1237) $ (-221)) 30)) (-3679 (((-1237) $) 18)) (-3756 (((-1237) $) 26)) (-3747 (((-1237) $) 25)) (-3726 (((-1237) $) 23)) (-3736 (((-1237) $) 24)) (-3719 (((-1237) $) 22)) (-3708 (((-1237) $) 21)) (-3698 (((-1237) $) 20)) (-3656 (((-1237) $) 16)) (-3668 (((-1237) $) 17)) (-3646 (((-1237) $) 15)) (-3636 (((-1237) $) 14)) (-3625 (((-1237) $) 13)) (-3594 (($ (-1131) (-803)) 9)) (-3583 (($ (-1131) (-1131) (-803)) 8)) (-2842 (((-1149) $) 51)) (-2877 (((-1149) $) 55)) (-2866 (((-2 (|:| |cd| (-1131)) (|:| -1288 (-1131))) $) 54)) (-2855 (((-1131) $) 52)) (-2737 (((-1237) $) 41)) (-2818 (((-552) $) 49)) (-2832 (((-221) $) 50)) (-2727 (((-1237) $) 40)) (-2806 (((-1237) $) 48)) (-2795 (((-1237) $) 47)) (-2775 (((-1237) $) 45)) (-2786 (((-1237) $) 46)) (-2765 (((-1237) $) 44)) (-2755 (((-1237) $) 43)) (-2746 (((-1237) $) 42)) (-2708 (((-1237) $) 38)) (-2718 (((-1237) $) 39)) (-2697 (((-1237) $) 37)) (-2687 (((-1237) $) 36)) (-2677 (((-1237) $) 35)) (-3605 (((-1237) $) 11)))
+(((-802) (-10 -8 (-15 -3583 ($ (-1131) (-1131) (-803))) (-15 -3594 ($ (-1131) (-803))) (-15 -3605 ((-1237) $)) (-15 -3616 ((-1237) $ (-803))) (-15 -3625 ((-1237) $)) (-15 -3636 ((-1237) $)) (-15 -3646 ((-1237) $)) (-15 -3656 ((-1237) $)) (-15 -3668 ((-1237) $)) (-15 -3679 ((-1237) $)) (-15 -3689 ((-1237) $)) (-15 -3698 ((-1237) $)) (-15 -3708 ((-1237) $)) (-15 -3719 ((-1237) $)) (-15 -3726 ((-1237) $)) (-15 -3736 ((-1237) $)) (-15 -3747 ((-1237) $)) (-15 -3756 ((-1237) $)) (-15 -3766 ((-1237) $ (-552))) (-15 -3776 ((-1237) $ (-221))) (-15 -3787 ((-1237) $ (-1149))) (-15 -2655 ((-1237) $ (-1131))) (-15 -2664 ((-1237) $ (-1131) (-1131))) (-15 -2677 ((-1237) $)) (-15 -2687 ((-1237) $)) (-15 -2697 ((-1237) $)) (-15 -2708 ((-1237) $)) (-15 -2718 ((-1237) $)) (-15 -2727 ((-1237) $)) (-15 -2737 ((-1237) $)) (-15 -2746 ((-1237) $)) (-15 -2755 ((-1237) $)) (-15 -2765 ((-1237) $)) (-15 -2775 ((-1237) $)) (-15 -2786 ((-1237) $)) (-15 -2795 ((-1237) $)) (-15 -2806 ((-1237) $)) (-15 -2818 ((-552) $)) (-15 -2832 ((-221) $)) (-15 -2842 ((-1149) $)) (-15 -2855 ((-1131) $)) (-15 -2866 ((-2 (|:| |cd| (-1131)) (|:| -1288 (-1131))) $)) (-15 -2877 ((-1149) $)))) (T -802))
+((-2877 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-802)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1131)) (|:| -1288 (-1131)))) (-5 *1 (-802)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-802)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-802)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-802)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-802)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2765 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2664 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-2655 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-3787 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-3766 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-803)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3594 (*1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-803)) (-5 *1 (-802)))) (-3583 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-803)) (-5 *1 (-802)))))
+(-10 -8 (-15 -3583 ($ (-1131) (-1131) (-803))) (-15 -3594 ($ (-1131) (-803))) (-15 -3605 ((-1237) $)) (-15 -3616 ((-1237) $ (-803))) (-15 -3625 ((-1237) $)) (-15 -3636 ((-1237) $)) (-15 -3646 ((-1237) $)) (-15 -3656 ((-1237) $)) (-15 -3668 ((-1237) $)) (-15 -3679 ((-1237) $)) (-15 -3689 ((-1237) $)) (-15 -3698 ((-1237) $)) (-15 -3708 ((-1237) $)) (-15 -3719 ((-1237) $)) (-15 -3726 ((-1237) $)) (-15 -3736 ((-1237) $)) (-15 -3747 ((-1237) $)) (-15 -3756 ((-1237) $)) (-15 -3766 ((-1237) $ (-552))) (-15 -3776 ((-1237) $ (-221))) (-15 -3787 ((-1237) $ (-1149))) (-15 -2655 ((-1237) $ (-1131))) (-15 -2664 ((-1237) $ (-1131) (-1131))) (-15 -2677 ((-1237) $)) (-15 -2687 ((-1237) $)) (-15 -2697 ((-1237) $)) (-15 -2708 ((-1237) $)) (-15 -2718 ((-1237) $)) (-15 -2727 ((-1237) $)) (-15 -2737 ((-1237) $)) (-15 -2746 ((-1237) $)) (-15 -2755 ((-1237) $)) (-15 -2765 ((-1237) $)) (-15 -2775 ((-1237) $)) (-15 -2786 ((-1237) $)) (-15 -2795 ((-1237) $)) (-15 -2806 ((-1237) $)) (-15 -2818 ((-552) $)) (-15 -2832 ((-221) $)) (-15 -2842 ((-1149) $)) (-15 -2855 ((-1131) $)) (-15 -2866 ((-2 (|:| |cd| (-1131)) (|:| -1288 (-1131))) $)) (-15 -2877 ((-1149) $)))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 12)) (-2908 (($) 15)) (-2918 (($) 13)) (-2898 (($) 16)) (-2888 (($) 14)) (-2281 (((-112) $ $) 8)))
+(((-803) (-13 (-1073) (-10 -8 (-15 -2918 ($)) (-15 -2908 ($)) (-15 -2898 ($)) (-15 -2888 ($))))) (T -803))
+((-2918 (*1 *1) (-5 *1 (-803))) (-2908 (*1 *1) (-5 *1 (-803))) (-2898 (*1 *1) (-5 *1 (-803))) (-2888 (*1 *1) (-5 *1 (-803))))
+(-13 (-1073) (-10 -8 (-15 -2918 ($)) (-15 -2908 ($)) (-15 -2898 ($)) (-15 -2888 ($))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21) (($ (-1149)) 17)) (-2975 (((-112) $) 10)) (-2986 (((-112) $) 9)) (-2964 (((-112) $) 11)) (-2998 (((-112) $) 8)) (-2281 (((-112) $ $) 19)))
+(((-804) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-1149))) (-15 -2998 ((-112) $)) (-15 -2986 ((-112) $)) (-15 -2975 ((-112) $)) (-15 -2964 ((-112) $))))) (T -804))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-804)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))))
+(-13 (-1073) (-10 -8 (-15 -1683 ($ (-1149))) (-15 -2998 ((-112) $)) (-15 -2986 ((-112) $)) (-15 -2975 ((-112) $)) (-15 -2964 ((-112) $))))
+((-1671 (((-112) $ $) NIL)) (-2930 (($ (-804) (-625 (-1149))) 24)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2950 (((-804) $) 25)) (-2940 (((-625 (-1149)) $) 26)) (-1683 (((-839) $) 23)) (-2281 (((-112) $ $) NIL)))
+(((-805) (-13 (-1073) (-10 -8 (-15 -2950 ((-804) $)) (-15 -2940 ((-625 (-1149)) $)) (-15 -2930 ($ (-804) (-625 (-1149))))))) (T -805))
+((-2950 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-805)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-805)))) (-2930 (*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-625 (-1149))) (-5 *1 (-805)))))
+(-13 (-1073) (-10 -8 (-15 -2950 ((-804) $)) (-15 -2940 ((-625 (-1149)) $)) (-15 -2930 ($ (-804) (-625 (-1149))))))
+((-3010 (((-1237) (-802) (-311 |#1|) (-112)) 23) (((-1237) (-802) (-311 |#1|)) 79) (((-1131) (-311 |#1|) (-112)) 78) (((-1131) (-311 |#1|)) 77)))
+(((-806 |#1|) (-10 -7 (-15 -3010 ((-1131) (-311 |#1|))) (-15 -3010 ((-1131) (-311 |#1|) (-112))) (-15 -3010 ((-1237) (-802) (-311 |#1|))) (-15 -3010 ((-1237) (-802) (-311 |#1|) (-112)))) (-13 (-808) (-827) (-1025))) (T -806))
+((-3010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802)) (-5 *4 (-311 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-808) (-827) (-1025))) (-5 *2 (-1237)) (-5 *1 (-806 *6)))) (-3010 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-311 *5)) (-4 *5 (-13 (-808) (-827) (-1025))) (-5 *2 (-1237)) (-5 *1 (-806 *5)))) (-3010 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-808) (-827) (-1025))) (-5 *2 (-1131)) (-5 *1 (-806 *5)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-13 (-808) (-827) (-1025))) (-5 *2 (-1131)) (-5 *1 (-806 *4)))))
+(-10 -7 (-15 -3010 ((-1131) (-311 |#1|))) (-15 -3010 ((-1131) (-311 |#1|) (-112))) (-15 -3010 ((-1237) (-802) (-311 |#1|))) (-15 -3010 ((-1237) (-802) (-311 |#1|) (-112))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3022 ((|#1| $) 10)) (-3362 (($ |#1|) 9)) (-3650 (((-112) $) NIL)) (-3957 (($ |#2| (-751)) NIL)) (-4134 (((-751) $) NIL)) (-4144 ((|#2| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3072 (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-4276 (((-751) $) NIL)) (-1683 (((-839) $) 17) (($ (-552)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-3637 ((|#2| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-807 |#1| |#2|) (-13 (-689 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -3362 ($ |#1|)) (-15 -3022 (|#1| $)))) (-689 |#2|) (-1025)) (T -807))
+((-3362 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-807 *2 *3)) (-4 *2 (-689 *3)))) (-3022 (*1 *2 *1) (-12 (-4 *2 (-689 *3)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1025)))))
+(-13 (-689 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -3362 ($ |#1|)) (-15 -3022 (|#1| $))))
+((-3010 (((-1237) (-802) $ (-112)) 9) (((-1237) (-802) $) 8) (((-1131) $ (-112)) 7) (((-1131) $) 6)))
+(((-808) (-138)) (T -808))
+((-3010 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-808)) (-5 *3 (-802)) (-5 *4 (-112)) (-5 *2 (-1237)))) (-3010 (*1 *2 *3 *1) (-12 (-4 *1 (-808)) (-5 *3 (-802)) (-5 *2 (-1237)))) (-3010 (*1 *2 *1 *3) (-12 (-4 *1 (-808)) (-5 *3 (-112)) (-5 *2 (-1131)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-808)) (-5 *2 (-1131)))))
+(-13 (-10 -8 (-15 -3010 ((-1131) $)) (-15 -3010 ((-1131) $ (-112))) (-15 -3010 ((-1237) (-802) $)) (-15 -3010 ((-1237) (-802) $ (-112)))))
+((-3098 (((-307) (-1131) (-1131)) 12)) (-3091 (((-112) (-1131) (-1131)) 34)) (-3083 (((-112) (-1131)) 33)) (-3054 (((-52) (-1131)) 25)) (-3043 (((-52) (-1131)) 23)) (-3033 (((-52) (-802)) 17)) (-3075 (((-625 (-1131)) (-1131)) 28)) (-3065 (((-625 (-1131))) 27)))
+(((-809) (-10 -7 (-15 -3033 ((-52) (-802))) (-15 -3043 ((-52) (-1131))) (-15 -3054 ((-52) (-1131))) (-15 -3065 ((-625 (-1131)))) (-15 -3075 ((-625 (-1131)) (-1131))) (-15 -3083 ((-112) (-1131))) (-15 -3091 ((-112) (-1131) (-1131))) (-15 -3098 ((-307) (-1131) (-1131))))) (T -809))
+((-3098 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-809)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-809)) (-5 *3 (-1131)))) (-3065 (*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-809)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-809)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-809)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-52)) (-5 *1 (-809)))))
+(-10 -7 (-15 -3033 ((-52) (-802))) (-15 -3043 ((-52) (-1131))) (-15 -3054 ((-52) (-1131))) (-15 -3065 ((-625 (-1131)))) (-15 -3075 ((-625 (-1131)) (-1131))) (-15 -3083 ((-112) (-1131))) (-15 -3091 ((-112) (-1131) (-1131))) (-15 -3098 ((-307) (-1131) (-1131))))
+((-1671 (((-112) $ $) 19)) (-3419 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2837 (($ $ $) 72)) (-2823 (((-112) $ $) 73)) (-3495 (((-112) $ (-751)) 8)) (-1517 (($ (-625 |#1|)) 68) (($) 67)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3238 (($ $) 62)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) 64)) (-2909 (((-112) $ (-751)) 9)) (-3658 ((|#1| $) 78)) (-3260 (($ $ $) 81)) (-3280 (($ $ $) 80)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3332 ((|#1| $) 79)) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22)) (-2860 (($ $ $) 69)) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-2831 (((-1093) $) 21)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-3229 (((-625 (-2 (|:| -4120 |#1|) (|:| -2840 (-751)))) $) 61)) (-2849 (($ $ |#1|) 71) (($ $ $) 70)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-1683 (((-839) $) 18)) (-3761 (($ (-625 |#1|)) 66) (($) 65)) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20)) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
(((-810 |#1|) (-138) (-827)) (T -810))
-((-3677 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-827)))))
-(-13 (-718 |t#1|) (-944 |t#1|) (-10 -8 (-15 -3677 (|t#1| $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-675 |#1|) . T) ((-718 |#1|) . T) ((-944 |#1|) . T) ((-1072 |#1|) . T) ((-1074) . T) ((-1185) . T))
-((-2847 (((-1237) (-1093) (-1093)) 47)) (-2846 (((-1237) (-802) (-51)) 44)) (-2845 (((-51) (-802)) 16)))
-(((-811) (-10 -7 (-15 -2845 ((-51) (-802))) (-15 -2846 ((-1237) (-802) (-51))) (-15 -2847 ((-1237) (-1093) (-1093))))) (T -811))
-((-2847 (*1 *2 *3 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-1237)) (-5 *1 (-811)))) (-2846 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-51)) (-5 *2 (-1237)) (-5 *1 (-811)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-51)) (-5 *1 (-811)))))
-(-10 -7 (-15 -2845 ((-51) (-802))) (-15 -2846 ((-1237) (-802) (-51))) (-15 -2847 ((-1237) (-1093) (-1093))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL (|has| |#1| (-21)))) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3986 (((-538) $) NIL (|has| |#1| (-825)))) (-3896 (($) NIL (|has| |#1| (-21)) CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 15)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 9)) (-3821 (((-3 $ "failed") $) 40 (|has| |#1| (-825)))) (-3357 (((-3 (-402 (-538)) "failed") $) 49 (|has| |#1| (-537)))) (-3356 (((-112) $) 43 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 46 (|has| |#1| (-537)))) (-3537 (((-112) $) NIL (|has| |#1| (-825)))) (-2502 (((-112) $) NIL (|has| |#1| (-825)))) (-3538 (((-112) $) NIL (|has| |#1| (-825)))) (-3677 (($ $ $) NIL (|has| |#1| (-825)))) (-3678 (($ $ $) NIL (|has| |#1| (-825)))) (-3593 (((-1131) $) NIL)) (-2848 (($) 13)) (-2860 (((-112) $) 12)) (-3594 (((-1093) $) NIL)) (-2861 (((-112) $) 11)) (-4317 (((-840) $) 18) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) 8) (($ (-538)) NIL (-3891 (|has| |#1| (-825)) (|has| |#1| (-1014 (-538)))))) (-3461 (((-751)) 34 (|has| |#1| (-825)))) (-3742 (($ $) NIL (|has| |#1| (-825)))) (-2991 (($) 22 (|has| |#1| (-21)) CONST)) (-2997 (($) 31 (|has| |#1| (-825)) CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3387 (((-112) $ $) 20)) (-3017 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3018 (((-112) $ $) 42 (|has| |#1| (-825)))) (-4197 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4199 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-895)) NIL (|has| |#1| (-825))) (($ $ (-751)) NIL (|has| |#1| (-825)))) (* (($ $ $) 37 (|has| |#1| (-825))) (($ (-538) $) 25 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-895) $) NIL (|has| |#1| (-21)))))
-(((-812 |#1|) (-13 (-1074) (-407 |#1|) (-10 -8 (-15 -2848 ($)) (-15 -2861 ((-112) $)) (-15 -2860 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|))) (-1074)) (T -812))
-((-2848 (*1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1074)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-1074)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-1074)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-812 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) (-3357 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-812 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))))
-(-13 (-1074) (-407 |#1|) (-10 -8 (-15 -2848 ($)) (-15 -2861 ((-112) $)) (-15 -2860 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|)))
-((-4318 (((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|) (-812 |#2|)) 12) (((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)) 13)))
-(((-813 |#1| |#2|) (-10 -7 (-15 -4318 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|))) (-15 -4318 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|) (-812 |#2|)))) (-1074) (-1074)) (T -813))
-((-4318 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *1 (-813 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-812 *6)) (-5 *1 (-813 *5 *6)))))
-(-10 -7 (-15 -4318 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|))) (-15 -4318 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|) (-812 |#2|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3507 ((|#1| $) NIL) (((-113) $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2850 ((|#1| (-113) |#1|) NIL)) (-2502 (((-112) $) NIL)) (-2849 (($ |#1| (-356 (-113))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2851 (($ $ (-1 |#1| |#1|)) NIL)) (-2852 (($ $ (-1 |#1| |#1|)) NIL)) (-4159 ((|#1| $ |#1|) NIL)) (-2853 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-2854 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ (-113) (-538)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-814 |#1|) (-13 (-1025) (-1014 |#1|) (-1014 (-113)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2854 ($ $)) (-15 -2854 ($ $ $)) (-15 -2853 (|#1| |#1|))) |%noBranch|) (-15 -2852 ($ $ (-1 |#1| |#1|))) (-15 -2851 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-538))) (-15 ** ($ $ (-538))) (-15 -2850 (|#1| (-113) |#1|)) (-15 -2849 ($ |#1| (-356 (-113)))))) (-1025)) (T -814))
-((-2854 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-2854 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-2853 (*1 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-2852 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))) (-2851 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-538)) (-5 *1 (-814 *4)) (-4 *4 (-1025)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-814 *3)) (-4 *3 (-1025)))) (-2850 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-814 *2)) (-4 *2 (-1025)))) (-2849 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-113))) (-5 *1 (-814 *2)) (-4 *2 (-1025)))))
-(-13 (-1025) (-1014 |#1|) (-1014 (-113)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2854 ($ $)) (-15 -2854 ($ $ $)) (-15 -2853 (|#1| |#1|))) |%noBranch|) (-15 -2852 ($ $ (-1 |#1| |#1|))) (-15 -2851 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-538))) (-15 ** ($ $ (-538))) (-15 -2850 (|#1| (-113) |#1|)) (-15 -2849 ($ |#1| (-356 (-113))))))
-((-2855 (((-210 (-495)) (-1131)) 9)))
-(((-815) (-10 -7 (-15 -2855 ((-210 (-495)) (-1131))))) (T -815))
-((-2855 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-210 (-495))) (-5 *1 (-815)))))
-(-10 -7 (-15 -2855 ((-210 (-495)) (-1131))))
-((-2898 (((-112) $ $) 7)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 14) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 13)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 16) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 15)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)))
+((-3658 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-827)))))
+(-13 (-717 |t#1|) (-944 |t#1|) (-10 -8 (-15 -3658 (|t#1| $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-675 |#1|) . T) ((-717 |#1|) . T) ((-944 |#1|) . T) ((-1071 |#1|) . T) ((-1073) . T) ((-1186) . T))
+((-3126 (((-1237) (-1093) (-1093)) 47)) (-3116 (((-1237) (-801) (-52)) 44)) (-3108 (((-52) (-801)) 16)))
+(((-811) (-10 -7 (-15 -3108 ((-52) (-801))) (-15 -3116 ((-1237) (-801) (-52))) (-15 -3126 ((-1237) (-1093) (-1093))))) (T -811))
+((-3126 (*1 *2 *3 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-1237)) (-5 *1 (-811)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-801)) (-5 *4 (-52)) (-5 *2 (-1237)) (-5 *1 (-811)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-801)) (-5 *2 (-52)) (-5 *1 (-811)))))
+(-10 -7 (-15 -3108 ((-52) (-801))) (-15 -3116 ((-1237) (-801) (-52))) (-15 -3126 ((-1237) (-1093) (-1093))))
+((-1996 (((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|) (-813 |#2|)) 12) (((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)) 13)))
+(((-812 |#1| |#2|) (-10 -7 (-15 -1996 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|))) (-15 -1996 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|) (-813 |#2|)))) (-1073) (-1073)) (T -812))
+((-1996 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *1 (-812 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6)))))
+(-10 -7 (-15 -1996 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|))) (-15 -1996 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|) (-813 |#2|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL (|has| |#1| (-21)))) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4127 (((-552) $) NIL (|has| |#1| (-825)))) (-3101 (($) NIL (|has| |#1| (-21)) CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 15)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 9)) (-4174 (((-3 $ "failed") $) 40 (|has| |#1| (-825)))) (-2555 (((-3 (-402 (-552)) "failed") $) 49 (|has| |#1| (-537)))) (-2546 (((-112) $) 43 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 46 (|has| |#1| (-537)))) (-3620 (((-112) $) NIL (|has| |#1| (-825)))) (-3650 (((-112) $) NIL (|has| |#1| (-825)))) (-3630 (((-112) $) NIL (|has| |#1| (-825)))) (-3658 (($ $ $) NIL (|has| |#1| (-825)))) (-3332 (($ $ $) NIL (|has| |#1| (-825)))) (-2883 (((-1131) $) NIL)) (-1396 (($) 13)) (-2051 (((-112) $) 12)) (-2831 (((-1093) $) NIL)) (-2064 (((-112) $) 11)) (-1683 (((-839) $) 18) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) 8) (($ (-552)) NIL (-1523 (|has| |#1| (-825)) (|has| |#1| (-1014 (-552)))))) (-4141 (((-751)) 34 (|has| |#1| (-825)))) (-1727 (($ $) NIL (|has| |#1| (-825)))) (-2089 (($) 22 (|has| |#1| (-21)) CONST)) (-2100 (($) 31 (|has| |#1| (-825)) CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2281 (((-112) $ $) 20)) (-2334 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2307 (((-112) $ $) 42 (|has| |#1| (-825)))) (-2393 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2382 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-897)) NIL (|has| |#1| (-825))) (($ $ (-751)) NIL (|has| |#1| (-825)))) (* (($ $ $) 37 (|has| |#1| (-825))) (($ (-552) $) 25 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-897) $) NIL (|has| |#1| (-21)))))
+(((-813 |#1|) (-13 (-1073) (-406 |#1|) (-10 -8 (-15 -1396 ($)) (-15 -2064 ((-112) $)) (-15 -2051 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|))) (-1073)) (T -813))
+((-1396 (*1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1073)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-1073)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-1073)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-813 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))) (-2555 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-813 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))))
+(-13 (-1073) (-406 |#1|) (-10 -8 (-15 -1396 ($)) (-15 -2064 ((-112) $)) (-15 -2051 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-114) $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3145 ((|#1| (-114) |#1|) NIL)) (-3650 (((-112) $) NIL)) (-3134 (($ |#1| (-356 (-114))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3157 (($ $ (-1 |#1| |#1|)) NIL)) (-3164 (($ $ (-1 |#1| |#1|)) NIL)) (-2154 ((|#1| $ |#1|) NIL)) (-3172 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-3180 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ (-114) (-552)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-814 |#1|) (-13 (-1025) (-1014 |#1|) (-1014 (-114)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3180 ($ $)) (-15 -3180 ($ $ $)) (-15 -3172 (|#1| |#1|))) |%noBranch|) (-15 -3164 ($ $ (-1 |#1| |#1|))) (-15 -3157 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-552))) (-15 ** ($ $ (-552))) (-15 -3145 (|#1| (-114) |#1|)) (-15 -3134 ($ |#1| (-356 (-114)))))) (-1025)) (T -814))
+((-3180 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-3180 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-3172 (*1 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-3164 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-552)) (-5 *1 (-814 *4)) (-4 *4 (-1025)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-814 *3)) (-4 *3 (-1025)))) (-3145 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-814 *2)) (-4 *2 (-1025)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-114))) (-5 *1 (-814 *2)) (-4 *2 (-1025)))))
+(-13 (-1025) (-1014 |#1|) (-1014 (-114)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3180 ($ $)) (-15 -3180 ($ $ $)) (-15 -3172 (|#1| |#1|))) |%noBranch|) (-15 -3164 ($ $ (-1 |#1| |#1|))) (-15 -3157 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-552))) (-15 ** ($ $ (-552))) (-15 -3145 (|#1| (-114) |#1|)) (-15 -3134 ($ |#1| (-356 (-114))))))
+((-3189 (((-210 (-495)) (-1131)) 9)))
+(((-815) (-10 -7 (-15 -3189 ((-210 (-495)) (-1131))))) (T -815))
+((-3189 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-210 (-495))) (-5 *1 (-815)))))
+(-10 -7 (-15 -3189 ((-210 (-495)) (-1131))))
+((-1671 (((-112) $ $) 7)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 14) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 13)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 16) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 15)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)))
(((-816) (-138)) (T -816))
-((-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-816)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) (-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-816)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) (-2856 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) (-5 *2 (-1011)))) (-2856 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *3 (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (-5 *2 (-1011)))))
-(-13 (-1074) (-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -2856 ((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -2856 ((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2857 (((-1011) (-622 (-309 (-373))) (-622 (-373))) 147) (((-1011) (-309 (-373)) (-622 (-373))) 145) (((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-819 (-373)))) 144) (((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-309 (-373))) (-622 (-819 (-373)))) 143) (((-1011) (-818)) 117) (((-1011) (-818) (-1037)) 116)) (-3001 (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818) (-1037)) 82) (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818)) 84)) (-2858 (((-1011) (-622 (-309 (-373))) (-622 (-373))) 148) (((-1011) (-818)) 133)))
-(((-817) (-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818) (-1037))) (-15 -2857 ((-1011) (-818) (-1037))) (-15 -2857 ((-1011) (-818))) (-15 -2858 ((-1011) (-818))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-309 (-373))) (-622 (-819 (-373))))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-819 (-373))))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)))) (-15 -2857 ((-1011) (-622 (-309 (-373))) (-622 (-373)))) (-15 -2858 ((-1011) (-622 (-309 (-373))) (-622 (-373)))))) (T -817))
-((-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-309 (-373)))) (-5 *4 (-622 (-373))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-309 (-373)))) (-5 *4 (-622 (-373))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-373))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-373))) (-5 *5 (-622 (-819 (-373)))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-622 (-373))) (-5 *5 (-622 (-819 (-373)))) (-5 *6 (-622 (-309 (-373)))) (-5 *3 (-309 (-373))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-817)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-817)))))
-(-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818) (-1037))) (-15 -2857 ((-1011) (-818) (-1037))) (-15 -2857 ((-1011) (-818))) (-15 -2858 ((-1011) (-818))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-309 (-373))) (-622 (-819 (-373))))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-819 (-373))))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)))) (-15 -2857 ((-1011) (-622 (-309 (-373))) (-622 (-373)))) (-15 -2858 ((-1011) (-622 (-309 (-373))) (-622 (-373)))))
-((-2898 (((-112) $ $) NIL)) (-3507 (((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) $) 21)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20) (($ (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 14) (($ (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) 18)) (-3387 (((-112) $ $) NIL)))
-(((-818) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))) (-15 -4317 ($ (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -4317 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) $))))) (T -818))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-818)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (-5 *1 (-818)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) (-5 *1 (-818)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) (-5 *1 (-818)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) (-5 *1 (-818)))))
-(-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))) (-15 -4317 ($ (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -4317 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL (|has| |#1| (-21)))) (-2859 (((-1093) $) 24)) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3986 (((-538) $) NIL (|has| |#1| (-825)))) (-3896 (($) NIL (|has| |#1| (-21)) CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 16)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 9)) (-3821 (((-3 $ "failed") $) 47 (|has| |#1| (-825)))) (-3357 (((-3 (-402 (-538)) "failed") $) 54 (|has| |#1| (-537)))) (-3356 (((-112) $) 49 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 52 (|has| |#1| (-537)))) (-3537 (((-112) $) NIL (|has| |#1| (-825)))) (-2863 (($) 13)) (-2502 (((-112) $) NIL (|has| |#1| (-825)))) (-3538 (((-112) $) NIL (|has| |#1| (-825)))) (-2862 (($) 14)) (-3677 (($ $ $) NIL (|has| |#1| (-825)))) (-3678 (($ $ $) NIL (|has| |#1| (-825)))) (-3593 (((-1131) $) NIL)) (-2860 (((-112) $) 12)) (-3594 (((-1093) $) NIL)) (-2861 (((-112) $) 11)) (-4317 (((-840) $) 22) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) 8) (($ (-538)) NIL (-3891 (|has| |#1| (-825)) (|has| |#1| (-1014 (-538)))))) (-3461 (((-751)) 41 (|has| |#1| (-825)))) (-3742 (($ $) NIL (|has| |#1| (-825)))) (-2991 (($) 29 (|has| |#1| (-21)) CONST)) (-2997 (($) 38 (|has| |#1| (-825)) CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3387 (((-112) $ $) 27)) (-3017 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3018 (((-112) $ $) 48 (|has| |#1| (-825)))) (-4197 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4199 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-895)) NIL (|has| |#1| (-825))) (($ $ (-751)) NIL (|has| |#1| (-825)))) (* (($ $ $) 44 (|has| |#1| (-825))) (($ (-538) $) 32 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-895) $) NIL (|has| |#1| (-21)))))
-(((-819 |#1|) (-13 (-1074) (-407 |#1|) (-10 -8 (-15 -2863 ($)) (-15 -2862 ($)) (-15 -2861 ((-112) $)) (-15 -2860 ((-112) $)) (-15 -2859 ((-1093) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|))) (-1074)) (T -819))
-((-2863 (*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1074)))) (-2862 (*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1074)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-1074)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-1074)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-819 *3)) (-4 *3 (-1074)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-819 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) (-3357 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-819 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))))
-(-13 (-1074) (-407 |#1|) (-10 -8 (-15 -2863 ($)) (-15 -2862 ($)) (-15 -2861 ((-112) $)) (-15 -2860 ((-112) $)) (-15 -2859 ((-1093) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|)))
-((-4318 (((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|) (-819 |#2|) (-819 |#2|)) 13) (((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|)) 14)))
-(((-820 |#1| |#2|) (-10 -7 (-15 -4318 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|))) (-15 -4318 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|) (-819 |#2|) (-819 |#2|)))) (-1074) (-1074)) (T -820))
-((-4318 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-819 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *1 (-820 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-819 *6)) (-5 *1 (-820 *5 *6)))))
-(-10 -7 (-15 -4318 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|))) (-15 -4318 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|) (-819 |#2|) (-819 |#2|))))
-((-2898 (((-112) $ $) 7)) (-3471 (((-751)) 20)) (-3327 (($) 23)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-2126 (((-895) $) 22)) (-3593 (((-1131) $) 9)) (-2492 (($ (-895)) 21)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)))
+((-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-816)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) (-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-816)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) (-3196 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *3 (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) (-5 *2 (-1011)))) (-3196 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *3 (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (-5 *2 (-1011)))))
+(-13 (-1073) (-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3196 ((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3196 ((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-2038 (((-1011) (-625 (-311 (-374))) (-625 (-374))) 147) (((-1011) (-311 (-374)) (-625 (-374))) 145) (((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-820 (-374)))) 144) (((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-311 (-374))) (-625 (-820 (-374)))) 143) (((-1011) (-818)) 117) (((-1011) (-818) (-1037)) 116)) (-3890 (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818) (-1037)) 82) (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818)) 84)) (-3206 (((-1011) (-625 (-311 (-374))) (-625 (-374))) 148) (((-1011) (-818)) 133)))
+(((-817) (-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818) (-1037))) (-15 -2038 ((-1011) (-818) (-1037))) (-15 -2038 ((-1011) (-818))) (-15 -3206 ((-1011) (-818))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-311 (-374))) (-625 (-820 (-374))))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-820 (-374))))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)))) (-15 -2038 ((-1011) (-625 (-311 (-374))) (-625 (-374)))) (-15 -3206 ((-1011) (-625 (-311 (-374))) (-625 (-374)))))) (T -817))
+((-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-311 (-374)))) (-5 *4 (-625 (-374))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-311 (-374)))) (-5 *4 (-625 (-374))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-374))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-374))) (-5 *5 (-625 (-820 (-374)))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-625 (-374))) (-5 *5 (-625 (-820 (-374)))) (-5 *6 (-625 (-311 (-374)))) (-5 *3 (-311 (-374))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-817)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-817)))))
+(-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818) (-1037))) (-15 -2038 ((-1011) (-818) (-1037))) (-15 -2038 ((-1011) (-818))) (-15 -3206 ((-1011) (-818))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-311 (-374))) (-625 (-820 (-374))))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-820 (-374))))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)))) (-15 -2038 ((-1011) (-625 (-311 (-374))) (-625 (-374)))) (-15 -3206 ((-1011) (-625 (-311 (-374))) (-625 (-374)))))
+((-1671 (((-112) $ $) NIL)) (-1895 (((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) $) 21)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20) (($ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 14) (($ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))) 18)) (-2281 (((-112) $ $) NIL)))
+(((-818) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))) (-15 -1683 ($ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -1683 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) $))))) (T -818))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-818)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (-5 *1 (-818)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) (-5 *1 (-818)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))) (-5 *1 (-818)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))) (-5 *1 (-818)))))
+(-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))) (-15 -1683 ($ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -1683 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) $))))
+((-1996 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|) (-820 |#2|)) 13) (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 14)))
+(((-819 |#1| |#2|) (-10 -7 (-15 -1996 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))) (-15 -1996 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|) (-820 |#2|)))) (-1073) (-1073)) (T -819))
+((-1996 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-820 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *1 (-819 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))))
+(-10 -7 (-15 -1996 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))) (-15 -1996 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|) (-820 |#2|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL (|has| |#1| (-21)))) (-3216 (((-1093) $) 24)) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4127 (((-552) $) NIL (|has| |#1| (-825)))) (-3101 (($) NIL (|has| |#1| (-21)) CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 16)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 9)) (-4174 (((-3 $ "failed") $) 47 (|has| |#1| (-825)))) (-2555 (((-3 (-402 (-552)) "failed") $) 54 (|has| |#1| (-537)))) (-2546 (((-112) $) 49 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 52 (|has| |#1| (-537)))) (-3620 (((-112) $) NIL (|has| |#1| (-825)))) (-1828 (($) 13)) (-3650 (((-112) $) NIL (|has| |#1| (-825)))) (-3630 (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($) 14)) (-3658 (($ $ $) NIL (|has| |#1| (-825)))) (-3332 (($ $ $) NIL (|has| |#1| (-825)))) (-2883 (((-1131) $) NIL)) (-2051 (((-112) $) 12)) (-2831 (((-1093) $) NIL)) (-2064 (((-112) $) 11)) (-1683 (((-839) $) 22) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) 8) (($ (-552)) NIL (-1523 (|has| |#1| (-825)) (|has| |#1| (-1014 (-552)))))) (-4141 (((-751)) 41 (|has| |#1| (-825)))) (-1727 (($ $) NIL (|has| |#1| (-825)))) (-2089 (($) 29 (|has| |#1| (-21)) CONST)) (-2100 (($) 38 (|has| |#1| (-825)) CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2281 (((-112) $ $) 27)) (-2334 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2307 (((-112) $ $) 48 (|has| |#1| (-825)))) (-2393 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2382 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-897)) NIL (|has| |#1| (-825))) (($ $ (-751)) NIL (|has| |#1| (-825)))) (* (($ $ $) 44 (|has| |#1| (-825))) (($ (-552) $) 32 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-897) $) NIL (|has| |#1| (-21)))))
+(((-820 |#1|) (-13 (-1073) (-406 |#1|) (-10 -8 (-15 -1828 ($)) (-15 -1841 ($)) (-15 -2064 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -3216 ((-1093) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|))) (-1073)) (T -820))
+((-1828 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1073)))) (-1841 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1073)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1073)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1073)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-820 *3)) (-4 *3 (-1073)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-820 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))) (-2555 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-820 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))))
+(-13 (-1073) (-406 |#1|) (-10 -8 (-15 -1828 ($)) (-15 -1841 ($)) (-15 -2064 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -3216 ((-1093) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|)))
+((-1671 (((-112) $ $) 7)) (-2894 (((-751)) 20)) (-3702 (($) 23)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-4318 (((-897) $) 22)) (-2883 (((-1131) $) 9)) (-3123 (($ (-897)) 21)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)))
(((-821) (-138)) (T -821))
NIL
(-13 (-827) (-363))
-(((-101) . T) ((-597 (-840)) . T) ((-363) . T) ((-827) . T) ((-1074) . T))
-((-2865 (((-112) (-1231 |#2|) (-1231 |#2|)) 17)) (-2866 (((-112) (-1231 |#2|) (-1231 |#2|)) 18)) (-2864 (((-112) (-1231 |#2|) (-1231 |#2|)) 14)))
-(((-822 |#1| |#2|) (-10 -7 (-15 -2864 ((-112) (-1231 |#2|) (-1231 |#2|))) (-15 -2865 ((-112) (-1231 |#2|) (-1231 |#2|))) (-15 -2866 ((-112) (-1231 |#2|) (-1231 |#2|)))) (-751) (-772)) (T -822))
-((-2866 (*1 *2 *3 *3) (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))) (-2865 (*1 *2 *3 *3) (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))) (-2864 (*1 *2 *3 *3) (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))))
-(-10 -7 (-15 -2864 ((-112) (-1231 |#2|) (-1231 |#2|))) (-15 -2865 ((-112) (-1231 |#2|) (-1231 |#2|))) (-15 -2866 ((-112) (-1231 |#2|) (-1231 |#2|))))
-((-2898 (((-112) $ $) 7)) (-3896 (($) 23 T CONST)) (-3821 (((-3 $ "failed") $) 26)) (-2502 (((-112) $) 24)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2997 (($) 22 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (** (($ $ (-895)) 21) (($ $ (-751)) 25)) (* (($ $ $) 20)))
+(((-101) . T) ((-597 (-839)) . T) ((-363) . T) ((-827) . T) ((-1073) . T))
+((-2085 (((-112) (-1232 |#2|) (-1232 |#2|)) 17)) (-2096 (((-112) (-1232 |#2|) (-1232 |#2|)) 18)) (-2075 (((-112) (-1232 |#2|) (-1232 |#2|)) 14)))
+(((-822 |#1| |#2|) (-10 -7 (-15 -2075 ((-112) (-1232 |#2|) (-1232 |#2|))) (-15 -2085 ((-112) (-1232 |#2|) (-1232 |#2|))) (-15 -2096 ((-112) (-1232 |#2|) (-1232 |#2|)))) (-751) (-772)) (T -822))
+((-2096 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))) (-2085 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))) (-2075 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))))
+(-10 -7 (-15 -2075 ((-112) (-1232 |#2|) (-1232 |#2|))) (-15 -2085 ((-112) (-1232 |#2|) (-1232 |#2|))) (-15 -2096 ((-112) (-1232 |#2|) (-1232 |#2|))))
+((-1671 (((-112) $ $) 7)) (-3101 (($) 23 T CONST)) (-4174 (((-3 $ "failed") $) 26)) (-3650 (((-112) $) 24)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2100 (($) 22 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (** (($ $ (-897)) 21) (($ $ (-751)) 25)) (* (($ $ $) 20)))
(((-823) (-138)) (T -823))
NIL
(-13 (-834) (-707))
-(((-101) . T) ((-597 (-840)) . T) ((-707) . T) ((-834) . T) ((-827) . T) ((-1085) . T) ((-1074) . T))
-((-3986 (((-538) $) 17)) (-3537 (((-112) $) 10)) (-3538 (((-112) $) 11)) (-3742 (($ $) 19)))
-(((-824 |#1|) (-10 -8 (-15 -3742 (|#1| |#1|)) (-15 -3986 ((-538) |#1|)) (-15 -3538 ((-112) |#1|)) (-15 -3537 ((-112) |#1|))) (-825)) (T -824))
+(((-101) . T) ((-597 (-839)) . T) ((-707) . T) ((-834) . T) ((-827) . T) ((-1085) . T) ((-1073) . T))
+((-4127 (((-552) $) 17)) (-3620 (((-112) $) 10)) (-3630 (((-112) $) 11)) (-1727 (($ $) 19)))
+(((-824 |#1|) (-10 -8 (-15 -1727 (|#1| |#1|)) (-15 -4127 ((-552) |#1|)) (-15 -3630 ((-112) |#1|)) (-15 -3620 ((-112) |#1|))) (-825)) (T -824))
NIL
-(-10 -8 (-15 -3742 (|#1| |#1|)) (-15 -3986 ((-538) |#1|)) (-15 -3538 ((-112) |#1|)) (-15 -3537 ((-112) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 24)) (-1368 (((-3 $ "failed") $ $) 26)) (-3986 (((-538) $) 33)) (-3896 (($) 23 T CONST)) (-3821 (((-3 $ "failed") $) 38)) (-3537 (((-112) $) 35)) (-2502 (((-112) $) 40)) (-3538 (((-112) $) 34)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 43)) (-3461 (((-751)) 42)) (-3742 (($ $) 32)) (-2991 (($) 22 T CONST)) (-2997 (($) 41 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4197 (($ $ $) 28) (($ $) 27)) (-4199 (($ $ $) 20)) (** (($ $ (-751)) 39) (($ $ (-895)) 36)) (* (($ (-895) $) 21) (($ (-751) $) 25) (($ (-538) $) 29) (($ $ $) 37)))
+(-10 -8 (-15 -1727 (|#1| |#1|)) (-15 -4127 ((-552) |#1|)) (-15 -3630 ((-112) |#1|)) (-15 -3620 ((-112) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 24)) (-2077 (((-3 $ "failed") $ $) 26)) (-4127 (((-552) $) 33)) (-3101 (($) 23 T CONST)) (-4174 (((-3 $ "failed") $) 38)) (-3620 (((-112) $) 35)) (-3650 (((-112) $) 40)) (-3630 (((-112) $) 34)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 43)) (-4141 (((-751)) 42)) (-1727 (($ $) 32)) (-2089 (($) 22 T CONST)) (-2100 (($) 41 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2393 (($ $ $) 28) (($ $) 27)) (-2382 (($ $ $) 20)) (** (($ $ (-751)) 39) (($ $ (-897)) 36)) (* (($ (-897) $) 21) (($ (-751) $) 25) (($ (-552) $) 29) (($ $ $) 37)))
(((-825) (-138)) (T -825))
-((-3537 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-538)))) (-3742 (*1 *1 *1) (-4 *1 (-825))))
-(-13 (-771) (-1025) (-707) (-10 -8 (-15 -3537 ((-112) $)) (-15 -3538 ((-112) $)) (-15 -3986 ((-538) $)) (-15 -3742 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-827) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-3677 (($ $ $) 10)) (-3678 (($ $ $) 9)) (-2896 (((-112) $ $) 13)) (-2897 (((-112) $ $) 11)) (-3017 (((-112) $ $) 14)))
-(((-826 |#1|) (-10 -8 (-15 -3677 (|#1| |#1| |#1|)) (-15 -3678 (|#1| |#1| |#1|)) (-15 -3017 ((-112) |#1| |#1|)) (-15 -2896 ((-112) |#1| |#1|)) (-15 -2897 ((-112) |#1| |#1|))) (-827)) (T -826))
-NIL
-(-10 -8 (-15 -3677 (|#1| |#1| |#1|)) (-15 -3678 (|#1| |#1| |#1|)) (-15 -3017 ((-112) |#1| |#1|)) (-15 -2896 ((-112) |#1| |#1|)) (-15 -2897 ((-112) |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)))
+((-3620 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-552)))) (-1727 (*1 *1 *1) (-4 *1 (-825))))
+(-13 (-771) (-1025) (-707) (-10 -8 (-15 -3620 ((-112) $)) (-15 -3630 ((-112) $)) (-15 -4127 ((-552) $)) (-15 -1727 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-827) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-3658 (($ $ $) 10)) (-3332 (($ $ $) 9)) (-2346 (((-112) $ $) 13)) (-2320 (((-112) $ $) 11)) (-2334 (((-112) $ $) 14)))
+(((-826 |#1|) (-10 -8 (-15 -3658 (|#1| |#1| |#1|)) (-15 -3332 (|#1| |#1| |#1|)) (-15 -2334 ((-112) |#1| |#1|)) (-15 -2346 ((-112) |#1| |#1|)) (-15 -2320 ((-112) |#1| |#1|))) (-827)) (T -826))
+NIL
+(-10 -8 (-15 -3658 (|#1| |#1| |#1|)) (-15 -3332 (|#1| |#1| |#1|)) (-15 -2334 ((-112) |#1| |#1|)) (-15 -2346 ((-112) |#1| |#1|)) (-15 -2320 ((-112) |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)))
(((-827) (-138)) (T -827))
-((-3018 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-2897 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-2896 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-3017 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-3678 (*1 *1 *1 *1) (-4 *1 (-827))) (-3677 (*1 *1 *1 *1) (-4 *1 (-827))))
-(-13 (-1074) (-10 -8 (-15 -3018 ((-112) $ $)) (-15 -2897 ((-112) $ $)) (-15 -2896 ((-112) $ $)) (-15 -3017 ((-112) $ $)) (-15 -3678 ($ $ $)) (-15 -3677 ($ $ $))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2871 (($ $ $) 45)) (-2872 (($ $ $) 44)) (-2873 (($ $ $) 42)) (-2869 (($ $ $) 51)) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 46)) (-2870 (((-3 $ "failed") $ $) 49)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3857 (($ $) 35)) (-2877 (($ $ $) 39)) (-2878 (($ $ $) 38)) (-2867 (($ $ $) 47)) (-2875 (($ $ $) 53)) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 41)) (-2876 (((-3 $ "failed") $ $) 48)) (-3820 (((-3 $ "failed") $ |#2|) 28)) (-3150 ((|#2| $) 32)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL) (($ |#2|) 12)) (-4177 (((-622 |#2|) $) 18)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-828 |#1| |#2|) (-10 -8 (-15 -2867 (|#1| |#1| |#1|)) (-15 -2868 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -2870 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2874 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2875 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1|)) (-15 -2878 (|#1| |#1| |#1|)) (-15 -3857 (|#1| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4177 ((-622 |#2|) |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4317 ((-840) |#1|))) (-829 |#2|) (-1025)) (T -828))
-NIL
-(-10 -8 (-15 -2867 (|#1| |#1| |#1|)) (-15 -2868 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -2870 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2874 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2875 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1|)) (-15 -2878 (|#1| |#1| |#1|)) (-15 -3857 (|#1| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4177 ((-622 |#2|) |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2871 (($ $ $) 43 (|has| |#1| (-358)))) (-2872 (($ $ $) 44 (|has| |#1| (-358)))) (-2873 (($ $ $) 46 (|has| |#1| (-358)))) (-2869 (($ $ $) 41 (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 40 (|has| |#1| (-358)))) (-2870 (((-3 $ "failed") $ $) 42 (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 45 (|has| |#1| (-358)))) (-3508 (((-3 (-538) #1="failed") $) 72 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 70 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 67)) (-3507 (((-538) $) 73 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 71 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 66)) (-4319 (($ $) 62)) (-3821 (((-3 $ "failed") $) 32)) (-3857 (($ $) 53 (|has| |#1| (-446)))) (-2502 (((-112) $) 30)) (-3226 (($ |#1| (-751)) 60)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55 (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 56 (|has| |#1| (-545)))) (-3153 (((-751) $) 64)) (-2877 (($ $ $) 50 (|has| |#1| (-358)))) (-2878 (($ $ $) 51 (|has| |#1| (-358)))) (-2867 (($ $ $) 39 (|has| |#1| (-358)))) (-2875 (($ $ $) 48 (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 47 (|has| |#1| (-358)))) (-2876 (((-3 $ "failed") $ $) 49 (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 52 (|has| |#1| (-358)))) (-3525 ((|#1| $) 63)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-545)))) (-4307 (((-751) $) 65)) (-3150 ((|#1| $) 54 (|has| |#1| (-446)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 69 (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) 68)) (-4177 (((-622 |#1|) $) 59)) (-4040 ((|#1| $ (-751)) 61)) (-3461 (((-751)) 28)) (-2880 ((|#1| $ |#1| |#1|) 58)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
+((-2307 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-2320 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-2346 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-2334 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-3332 (*1 *1 *1 *1) (-4 *1 (-827))) (-3658 (*1 *1 *1 *1) (-4 *1 (-827))))
+(-13 (-1073) (-10 -8 (-15 -2307 ((-112) $ $)) (-15 -2320 ((-112) $ $)) (-15 -2346 ((-112) $ $)) (-15 -2334 ((-112) $ $)) (-15 -3332 ($ $ $)) (-15 -3658 ($ $ $))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-2146 (($ $ $) 45)) (-2161 (($ $ $) 44)) (-2171 (($ $ $) 42)) (-2126 (($ $ $) 51)) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 46)) (-2137 (((-3 $ "failed") $ $) 49)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1294 (($ $) 35)) (-2215 (($ $ $) 39)) (-2225 (($ $ $) 38)) (-2107 (($ $ $) 47)) (-2193 (($ $ $) 53)) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 41)) (-2204 (((-3 $ "failed") $ $) 48)) (-2802 (((-3 $ "failed") $ |#2|) 28)) (-4108 ((|#2| $) 32)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL) (($ |#2|) 12)) (-2512 (((-625 |#2|) $) 18)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-828 |#1| |#2|) (-10 -8 (-15 -2107 (|#1| |#1| |#1|)) (-15 -2116 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2126 (|#1| |#1| |#1|)) (-15 -2137 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2146 (|#1| |#1| |#1|)) (-15 -2161 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1| |#1|)) (-15 -2181 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2193 (|#1| |#1| |#1|)) (-15 -2204 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2215 (|#1| |#1| |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -1294 (|#1| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2512 ((-625 |#2|) |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -1683 ((-839) |#1|))) (-829 |#2|) (-1025)) (T -828))
+NIL
+(-10 -8 (-15 -2107 (|#1| |#1| |#1|)) (-15 -2116 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2126 (|#1| |#1| |#1|)) (-15 -2137 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2146 (|#1| |#1| |#1|)) (-15 -2161 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1| |#1|)) (-15 -2181 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2193 (|#1| |#1| |#1|)) (-15 -2204 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2215 (|#1| |#1| |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -1294 (|#1| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2512 ((-625 |#2|) |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2146 (($ $ $) 43 (|has| |#1| (-358)))) (-2161 (($ $ $) 44 (|has| |#1| (-358)))) (-2171 (($ $ $) 46 (|has| |#1| (-358)))) (-2126 (($ $ $) 41 (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 40 (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) 42 (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 45 (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) 72 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 70 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 67)) (-1895 (((-552) $) 73 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 71 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 66)) (-4169 (($ $) 62)) (-4174 (((-3 $ "failed") $) 32)) (-1294 (($ $) 53 (|has| |#1| (-446)))) (-3650 (((-112) $) 30)) (-3957 (($ |#1| (-751)) 60)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55 (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 56 (|has| |#1| (-544)))) (-4134 (((-751) $) 64)) (-2215 (($ $ $) 50 (|has| |#1| (-358)))) (-2225 (($ $ $) 51 (|has| |#1| (-358)))) (-2107 (($ $ $) 39 (|has| |#1| (-358)))) (-2193 (($ $ $) 48 (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 47 (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) 49 (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 52 (|has| |#1| (-358)))) (-4144 ((|#1| $) 63)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-544)))) (-4276 (((-751) $) 65)) (-4108 ((|#1| $) 54 (|has| |#1| (-446)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 69 (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) 68)) (-2512 (((-625 |#1|) $) 59)) (-3637 ((|#1| $ (-751)) 61)) (-4141 (((-751)) 28)) (-2872 ((|#1| $ |#1| |#1|) 58)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
(((-829 |#1|) (-138) (-1025)) (T -829))
-((-4307 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-4319 (*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-622 *3)))) (-2880 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-3820 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))) (-2881 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) (-2882 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-3857 (*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-2883 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) (-2878 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2877 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2876 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2875 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2874 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1))) (-4 *1 (-829 *3)))) (-2873 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2884 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) (-2872 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2871 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2870 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2869 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2868 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1))) (-4 *1 (-829 *3)))) (-2867 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(-13 (-1025) (-111 |t#1| |t#1|) (-407 |t#1|) (-10 -8 (-15 -4307 ((-751) $)) (-15 -3153 ((-751) $)) (-15 -3525 (|t#1| $)) (-15 -4319 ($ $)) (-15 -4040 (|t#1| $ (-751))) (-15 -3226 ($ |t#1| (-751))) (-15 -4177 ((-622 |t#1|) $)) (-15 -2880 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3820 ((-3 $ "failed") $ |t#1|)) (-15 -2881 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2882 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -3150 (|t#1| $)) (-15 -3857 ($ $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -2883 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2878 ($ $ $)) (-15 -2877 ($ $ $)) (-15 -2876 ((-3 $ "failed") $ $)) (-15 -2875 ($ $ $)) (-15 -2874 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $)) (-15 -2873 ($ $ $)) (-15 -2884 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2872 ($ $ $)) (-15 -2871 ($ $ $)) (-15 -2870 ((-3 $ "failed") $ $)) (-15 -2869 ($ $ $)) (-15 -2868 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $)) (-15 -2867 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-407 |#1|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2879 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2884 (((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-358)))) (-2882 (((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-545)))) (-2883 (((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-358)))) (-2880 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31)))
-(((-830 |#1| |#2|) (-10 -7 (-15 -2879 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2880 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-545)) (PROGN (-15 -2881 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2882 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2883 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2884 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1025) (-829 |#1|)) (T -830))
-((-2884 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2883 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2882 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2881 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2880 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1025)) (-5 *1 (-830 *2 *3)) (-4 *3 (-829 *2)))) (-2879 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1025)) (-5 *1 (-830 *5 *2)) (-4 *2 (-829 *5)))))
-(-10 -7 (-15 -2879 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2880 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-545)) (PROGN (-15 -2881 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2882 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2883 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2884 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2871 (($ $ $) NIL (|has| |#1| (-358)))) (-2872 (($ $ $) NIL (|has| |#1| (-358)))) (-2873 (($ $ $) NIL (|has| |#1| (-358)))) (-2869 (($ $ $) NIL (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2870 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 32 (|has| |#1| (-358)))) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-3887 (((-840) $ (-840)) NIL)) (-2502 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) NIL)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 28 (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 26 (|has| |#1| (-545)))) (-3153 (((-751) $) NIL)) (-2877 (($ $ $) NIL (|has| |#1| (-358)))) (-2878 (($ $ $) NIL (|has| |#1| (-358)))) (-2867 (($ $ $) NIL (|has| |#1| (-358)))) (-2875 (($ $ $) NIL (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2876 (((-3 $ #1#) $ $) NIL (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 30 (|has| |#1| (-358)))) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-545)))) (-4307 (((-751) $) NIL)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) NIL)) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2880 ((|#1| $ |#1| |#1|) 15)) (-2991 (($) NIL T CONST)) (-2997 (($) 20 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) 19) (($ $ (-751)) 22)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-831 |#1| |#2| |#3|) (-13 (-829 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-840))))) (-1025) (-98 |#1|) (-1 |#1| |#1|)) (T -831))
-((-3887 (*1 *2 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-831 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-829 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-840)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2871 (($ $ $) NIL (|has| |#2| (-358)))) (-2872 (($ $ $) NIL (|has| |#2| (-358)))) (-2873 (($ $ $) NIL (|has| |#2| (-358)))) (-2869 (($ $ $) NIL (|has| |#2| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#2| (-358)))) (-2870 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-358)))) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 |#2| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) ((|#2| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#2| (-446)))) (-2502 (((-112) $) NIL)) (-3226 (($ |#2| (-751)) 16)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-545)))) (-3153 (((-751) $) NIL)) (-2877 (($ $ $) NIL (|has| |#2| (-358)))) (-2878 (($ $ $) NIL (|has| |#2| (-358)))) (-2867 (($ $ $) NIL (|has| |#2| (-358)))) (-2875 (($ $ $) NIL (|has| |#2| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#2| (-358)))) (-2876 (((-3 $ #1#) $ $) NIL (|has| |#2| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-358)))) (-3525 ((|#2| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-545)))) (-4307 (((-751) $) NIL)) (-3150 ((|#2| $) NIL (|has| |#2| (-446)))) (-4317 (((-840) $) 23) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#2| (-1014 (-402 (-538))))) (($ |#2|) NIL) (($ (-1228 |#1|)) 18)) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2880 ((|#2| $ |#2| |#2|) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) 13 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-832 |#1| |#2| |#3| |#4|) (-13 (-829 |#2|) (-10 -8 (-15 -4317 ($ (-1228 |#1|))))) (-1149) (-1025) (-98 |#2|) (-1 |#2| |#2|)) (T -832))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-832 *3 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-829 |#2|) (-10 -8 (-15 -4317 ($ (-1228 |#1|)))))
-((-2887 ((|#1| (-751) |#1|) 35 (|has| |#1| (-38 (-402 (-538)))))) (-2886 ((|#1| (-751) (-751) |#1|) 27) ((|#1| (-751) |#1|) 20)) (-2885 ((|#1| (-751) |#1|) 31)) (-3133 ((|#1| (-751) |#1|) 29)) (-3132 ((|#1| (-751) |#1|) 28)))
-(((-833 |#1|) (-10 -7 (-15 -3132 (|#1| (-751) |#1|)) (-15 -3133 (|#1| (-751) |#1|)) (-15 -2885 (|#1| (-751) |#1|)) (-15 -2886 (|#1| (-751) |#1|)) (-15 -2886 (|#1| (-751) (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -2887 (|#1| (-751) |#1|)) |%noBranch|)) (-170)) (T -833))
-((-2887 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-170)))) (-2886 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-2886 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-2885 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-3133 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-3132 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))))
-(-10 -7 (-15 -3132 (|#1| (-751) |#1|)) (-15 -3133 (|#1| (-751) |#1|)) (-15 -2885 (|#1| (-751) |#1|)) (-15 -2886 (|#1| (-751) |#1|)) (-15 -2886 (|#1| (-751) (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -2887 (|#1| (-751) |#1|)) |%noBranch|))
-((-2898 (((-112) $ $) 7)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (** (($ $ (-895)) 21)) (* (($ $ $) 20)))
+((-4276 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-4169 (*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-625 *3)))) (-2872 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-2802 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))) (-2237 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) (-2248 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-1294 (*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-2257 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) (-2225 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2215 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2204 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2193 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2181 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1))) (-4 *1 (-829 *3)))) (-2171 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2266 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) (-2161 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2146 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2137 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2126 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2116 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1))) (-4 *1 (-829 *3)))) (-2107 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+(-13 (-1025) (-111 |t#1| |t#1|) (-406 |t#1|) (-10 -8 (-15 -4276 ((-751) $)) (-15 -4134 ((-751) $)) (-15 -4144 (|t#1| $)) (-15 -4169 ($ $)) (-15 -3637 (|t#1| $ (-751))) (-15 -3957 ($ |t#1| (-751))) (-15 -2512 ((-625 |t#1|) $)) (-15 -2872 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -2802 ((-3 $ "failed") $ |t#1|)) (-15 -2237 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2248 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -4108 (|t#1| $)) (-15 -1294 ($ $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -2257 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2225 ($ $ $)) (-15 -2215 ($ $ $)) (-15 -2204 ((-3 $ "failed") $ $)) (-15 -2193 ($ $ $)) (-15 -2181 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $)) (-15 -2171 ($ $ $)) (-15 -2266 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2161 ($ $ $)) (-15 -2146 ($ $ $)) (-15 -2137 ((-3 $ "failed") $ $)) (-15 -2126 ($ $ $)) (-15 -2116 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $)) (-15 -2107 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-406 |#1|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-2200 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2266 (((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-358)))) (-2248 (((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-544)))) (-2257 (((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-358)))) (-2872 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31)))
+(((-830 |#1| |#2|) (-10 -7 (-15 -2200 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2872 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-544)) (PROGN (-15 -2237 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2248 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2257 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2266 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1025) (-829 |#1|)) (T -830))
+((-2266 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2257 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2248 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2237 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2872 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1025)) (-5 *1 (-830 *2 *3)) (-4 *3 (-829 *2)))) (-2200 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1025)) (-5 *1 (-830 *5 *2)) (-4 *2 (-829 *5)))))
+(-10 -7 (-15 -2200 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2872 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-544)) (PROGN (-15 -2237 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2248 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2257 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2266 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2146 (($ $ $) NIL (|has| |#1| (-358)))) (-2161 (($ $ $) NIL (|has| |#1| (-358)))) (-2171 (($ $ $) NIL (|has| |#1| (-358)))) (-2126 (($ $ $) NIL (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 32 (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-3375 (((-839) $ (-839)) NIL)) (-3650 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) NIL)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 28 (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 26 (|has| |#1| (-544)))) (-4134 (((-751) $) NIL)) (-2215 (($ $ $) NIL (|has| |#1| (-358)))) (-2225 (($ $ $) NIL (|has| |#1| (-358)))) (-2107 (($ $ $) NIL (|has| |#1| (-358)))) (-2193 (($ $ $) NIL (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 30 (|has| |#1| (-358)))) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-4276 (((-751) $) NIL)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) NIL)) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2872 ((|#1| $ |#1| |#1|) 15)) (-2089 (($) NIL T CONST)) (-2100 (($) 20 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) 19) (($ $ (-751)) 22)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-831 |#1| |#2| |#3|) (-13 (-829 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-839))))) (-1025) (-98 |#1|) (-1 |#1| |#1|)) (T -831))
+((-3375 (*1 *2 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-831 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-829 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-839)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2146 (($ $ $) NIL (|has| |#2| (-358)))) (-2161 (($ $ $) NIL (|has| |#2| (-358)))) (-2171 (($ $ $) NIL (|has| |#2| (-358)))) (-2126 (($ $ $) NIL (|has| |#2| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#2| (-358)))) (-2137 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-358)))) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) ((|#2| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#2| (-446)))) (-3650 (((-112) $) NIL)) (-3957 (($ |#2| (-751)) 16)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-544)))) (-4134 (((-751) $) NIL)) (-2215 (($ $ $) NIL (|has| |#2| (-358)))) (-2225 (($ $ $) NIL (|has| |#2| (-358)))) (-2107 (($ $ $) NIL (|has| |#2| (-358)))) (-2193 (($ $ $) NIL (|has| |#2| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#2| (-358)))) (-2204 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-358)))) (-4144 ((|#2| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-4276 (((-751) $) NIL)) (-4108 ((|#2| $) NIL (|has| |#2| (-446)))) (-1683 (((-839) $) 23) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#2| (-1014 (-402 (-552))))) (($ |#2|) NIL) (($ (-1228 |#1|)) 18)) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2872 ((|#2| $ |#2| |#2|) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) 13 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-832 |#1| |#2| |#3| |#4|) (-13 (-829 |#2|) (-10 -8 (-15 -1683 ($ (-1228 |#1|))))) (-1149) (-1025) (-98 |#2|) (-1 |#2| |#2|)) (T -832))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-832 *3 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-829 |#2|) (-10 -8 (-15 -1683 ($ (-1228 |#1|)))))
+((-2300 ((|#1| (-751) |#1|) 35 (|has| |#1| (-38 (-402 (-552)))))) (-2288 ((|#1| (-751) (-751) |#1|) 27) ((|#1| (-751) |#1|) 20)) (-2277 ((|#1| (-751) |#1|) 31)) (-3894 ((|#1| (-751) |#1|) 29)) (-3881 ((|#1| (-751) |#1|) 28)))
+(((-833 |#1|) (-10 -7 (-15 -3881 (|#1| (-751) |#1|)) (-15 -3894 (|#1| (-751) |#1|)) (-15 -2277 (|#1| (-751) |#1|)) (-15 -2288 (|#1| (-751) |#1|)) (-15 -2288 (|#1| (-751) (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2300 (|#1| (-751) |#1|)) |%noBranch|)) (-170)) (T -833))
+((-2300 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-170)))) (-2288 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-2288 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-2277 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-3894 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-3881 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))))
+(-10 -7 (-15 -3881 (|#1| (-751) |#1|)) (-15 -3894 (|#1| (-751) |#1|)) (-15 -2277 (|#1| (-751) |#1|)) (-15 -2288 (|#1| (-751) |#1|)) (-15 -2288 (|#1| (-751) (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2300 (|#1| (-751) |#1|)) |%noBranch|))
+((-1671 (((-112) $ $) 7)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (** (($ $ (-897)) 21)) (* (($ $ $) 20)))
(((-834) (-138)) (T -834))
NIL
(-13 (-827) (-1085))
-(((-101) . T) ((-597 (-840)) . T) ((-827) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3761 (((-538) $) 12)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 18) (($ (-538)) 11)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 8)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 9)))
-(((-835) (-13 (-827) (-10 -8 (-15 -4317 ($ (-538))) (-15 -3761 ((-538) $))))) (T -835))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-835)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-835)))))
-(-13 (-827) (-10 -8 (-15 -4317 ($ (-538))) (-15 -3761 ((-538) $))))
-((-2888 (((-1237) (-622 (-51))) 24)) (-3814 (((-1237) (-1131) (-840)) 14) (((-1237) (-840)) 9) (((-1237) (-1131)) 11)))
-(((-836) (-10 -7 (-15 -3814 ((-1237) (-1131))) (-15 -3814 ((-1237) (-840))) (-15 -3814 ((-1237) (-1131) (-840))) (-15 -2888 ((-1237) (-622 (-51)))))) (T -836))
-((-2888 (*1 *2 *3) (-12 (-5 *3 (-622 (-51))) (-5 *2 (-1237)) (-5 *1 (-836)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-840)) (-5 *2 (-1237)) (-5 *1 (-836)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-836)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-836)))))
-(-10 -7 (-15 -3814 ((-1237) (-1131))) (-15 -3814 ((-1237) (-840))) (-15 -3814 ((-1237) (-1131) (-840))) (-15 -2888 ((-1237) (-622 (-51)))))
-((-2889 (((-1093) $ (-129)) 17)))
-(((-837 |#1|) (-10 -8 (-15 -2889 ((-1093) |#1| (-129)))) (-838)) (T -837))
-NIL
-(-10 -8 (-15 -2889 ((-1093) |#1| (-129))))
-((-2889 (((-1093) $ (-129)) 7)) (-2890 (((-1093) $ (-128)) 8)) (-1816 (($ $) 6)))
-(((-838) (-138)) (T -838))
-((-2890 (*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-128)) (-5 *2 (-1093)))) (-2889 (*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-129)) (-5 *2 (-1093)))))
-(-13 (-171) (-10 -8 (-15 -2890 ((-1093) $ (-128))) (-15 -2889 ((-1093) $ (-129)))))
+(((-101) . T) ((-597 (-839)) . T) ((-827) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3800 (((-552) $) 12)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 18) (($ (-552)) 11)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 8)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 9)))
+(((-835) (-13 (-827) (-10 -8 (-15 -1683 ($ (-552))) (-15 -3800 ((-552) $))))) (T -835))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-835)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-835)))))
+(-13 (-827) (-10 -8 (-15 -1683 ($ (-552))) (-15 -3800 ((-552) $))))
+((-2315 (((-1093) $ (-128)) 17)))
+(((-836 |#1|) (-10 -8 (-15 -2315 ((-1093) |#1| (-128)))) (-837)) (T -836))
+NIL
+(-10 -8 (-15 -2315 ((-1093) |#1| (-128))))
+((-2315 (((-1093) $ (-128)) 7)) (-2328 (((-1093) $ (-129)) 8)) (-4125 (($ $) 6)))
+(((-837) (-138)) (T -837))
+((-2328 (*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-129)) (-5 *2 (-1093)))) (-2315 (*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-128)) (-5 *2 (-1093)))))
+(-13 (-171) (-10 -8 (-15 -2328 ((-1093) $ (-129))) (-15 -2315 ((-1093) $ (-128)))))
(((-171) . T))
-((-2889 (((-1093) $ (-129)) NIL)) (-2890 (((-1093) $ (-128)) 22)) (-2892 (($ (-383)) 12) (($ (-1131)) 14)) (-2891 (((-112) $) 19)) (-4317 (((-840) $) 26)) (-1816 (($ $) 23)))
-(((-839) (-13 (-838) (-597 (-840)) (-10 -8 (-15 -2892 ($ (-383))) (-15 -2892 ($ (-1131))) (-15 -2891 ((-112) $))))) (T -839))
-((-2892 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-839)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839)))))
-(-13 (-838) (-597 (-840)) (-10 -8 (-15 -2892 ($ (-383))) (-15 -2892 ($ (-1131))) (-15 -2891 ((-112) $))))
-((-2898 (((-112) $ $) NIL) (($ $ $) 77)) (-2919 (($ $ $) 114)) (-2934 (((-538) $) 31) (((-538)) 36)) (-2929 (($ (-538)) 45)) (-2926 (($ $ $) 46) (($ (-622 $)) 76)) (-2910 (($ $ (-622 $)) 74)) (-2931 (((-538) $) 34)) (-2913 (($ $ $) 65)) (-3886 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2932 (((-538) $) 33)) (-2914 (($ $ $) 64)) (-3898 (($ $) 104)) (-2917 (($ $ $) 118)) (-2900 (($ (-622 $)) 53)) (-3903 (($ $ (-622 $)) 71)) (-2928 (($ (-538) (-538)) 47)) (-2940 (($ $) 115) (($ $ $) 116)) (-3472 (($ $ (-538)) 41) (($ $) 44)) (-2894 (($ $ $) 89)) (-2915 (($ $ $) 121)) (-2909 (($ $) 105)) (-2893 (($ $ $) 90)) (-2905 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3170 (((-1237) $) 10)) (-2908 (($ $) 108) (($ $ (-751)) 111)) (-2911 (($ $ $) 67)) (-2912 (($ $ $) 66)) (-2925 (($ $ (-622 $)) 100)) (-2923 (($ $ $) 103)) (-2902 (($ (-622 $)) 51)) (-2903 (($ $) 62) (($ (-622 $)) 63)) (-2906 (($ $ $) 112)) (-2907 (($ $) 106)) (-2918 (($ $ $) 117)) (-3887 (($ (-538)) 21) (($ (-1149)) 23) (($ (-1131)) 30) (($ (-221)) 25)) (-3190 (($ $ $) 93)) (-3676 (($ $) 94)) (-2936 (((-1237) (-1131)) 15)) (-2937 (($ (-1131)) 14)) (-3459 (($ (-622 (-622 $))) 50)) (-3473 (($ $ (-538)) 40) (($ $) 43)) (-3593 (((-1131) $) NIL)) (-2921 (($ $ $) 120)) (-3824 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2922 (((-112) $) 98)) (-2924 (($ $ (-622 $)) 101) (($ $ $ $) 102)) (-2930 (($ (-538)) 37)) (-2933 (((-538) $) 32) (((-538)) 35)) (-2927 (($ $ $) 38) (($ (-622 $)) 75)) (-3594 (((-1093) $) NIL)) (-3820 (($ $ $) 91)) (-3928 (($) 13)) (-4159 (($ $ (-622 $)) 99)) (-2935 (((-1131) (-1131)) 8)) (-4196 (($ $) 107) (($ $ (-751)) 110)) (-2895 (($ $ $) 88)) (-4170 (($ $ (-751)) 126)) (-2901 (($ (-622 $)) 52)) (-4317 (((-840) $) 19)) (-4132 (($ $ (-538)) 39) (($ $) 42)) (-2904 (($ $) 60) (($ (-622 $)) 61)) (-3591 (($ $) 58) (($ (-622 $)) 59)) (-2920 (($ $) 113)) (-2899 (($ (-622 $)) 57)) (-3437 (($ $ $) 97)) (-2916 (($ $ $) 119)) (-3191 (($ $ $) 92)) (-4097 (($ $ $) 95) (($ $) 96)) (-2896 (($ $ $) 81)) (-2897 (($ $ $) 79)) (-3387 (((-112) $ $) 16) (($ $ $) 17)) (-3017 (($ $ $) 80)) (-3018 (($ $ $) 78)) (-4308 (($ $ $) 86)) (-4197 (($ $ $) 83) (($ $) 84)) (-4199 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-840) (-13 (-1074) (-10 -8 (-15 -3170 ((-1237) $)) (-15 -2937 ($ (-1131))) (-15 -2936 ((-1237) (-1131))) (-15 -3887 ($ (-538))) (-15 -3887 ($ (-1149))) (-15 -3887 ($ (-1131))) (-15 -3887 ($ (-221))) (-15 -3928 ($)) (-15 -2935 ((-1131) (-1131))) (-15 -2934 ((-538) $)) (-15 -2933 ((-538) $)) (-15 -2934 ((-538))) (-15 -2933 ((-538))) (-15 -2932 ((-538) $)) (-15 -2931 ((-538) $)) (-15 -2930 ($ (-538))) (-15 -2929 ($ (-538))) (-15 -2928 ($ (-538) (-538))) (-15 -3473 ($ $ (-538))) (-15 -3472 ($ $ (-538))) (-15 -4132 ($ $ (-538))) (-15 -3473 ($ $)) (-15 -3472 ($ $)) (-15 -4132 ($ $)) (-15 -2927 ($ $ $)) (-15 -2926 ($ $ $)) (-15 -2927 ($ (-622 $))) (-15 -2926 ($ (-622 $))) (-15 -2925 ($ $ (-622 $))) (-15 -2924 ($ $ (-622 $))) (-15 -2924 ($ $ $ $)) (-15 -2923 ($ $ $)) (-15 -2922 ((-112) $)) (-15 -4159 ($ $ (-622 $))) (-15 -3898 ($ $)) (-15 -2921 ($ $ $)) (-15 -2920 ($ $)) (-15 -3459 ($ (-622 (-622 $)))) (-15 -2919 ($ $ $)) (-15 -2940 ($ $)) (-15 -2940 ($ $ $)) (-15 -2918 ($ $ $)) (-15 -2917 ($ $ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -4170 ($ $ (-751))) (-15 -3437 ($ $ $)) (-15 -2914 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ($ $ $)) (-15 -3903 ($ $ (-622 $))) (-15 -2910 ($ $ (-622 $))) (-15 -2909 ($ $)) (-15 -4196 ($ $)) (-15 -4196 ($ $ (-751))) (-15 -2908 ($ $)) (-15 -2908 ($ $ (-751))) (-15 -2907 ($ $)) (-15 -2906 ($ $ $)) (-15 -3886 ($ $)) (-15 -3886 ($ $ $)) (-15 -3886 ($ $ $ $)) (-15 -2905 ($ $)) (-15 -2905 ($ $ $)) (-15 -2905 ($ $ $ $)) (-15 -3824 ($ $)) (-15 -3824 ($ $ $)) (-15 -3824 ($ $ $ $)) (-15 -3591 ($ $)) (-15 -3591 ($ (-622 $))) (-15 -2904 ($ $)) (-15 -2904 ($ (-622 $))) (-15 -2903 ($ $)) (-15 -2903 ($ (-622 $))) (-15 -2902 ($ (-622 $))) (-15 -2901 ($ (-622 $))) (-15 -2900 ($ (-622 $))) (-15 -2899 ($ (-622 $))) (-15 -3387 ($ $ $)) (-15 -2898 ($ $ $)) (-15 -3018 ($ $ $)) (-15 -2897 ($ $ $)) (-15 -3017 ($ $ $)) (-15 -2896 ($ $ $)) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -4197 ($ $)) (-15 * ($ $ $)) (-15 -4308 ($ $ $)) (-15 ** ($ $ $)) (-15 -2895 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -3191 ($ $ $)) (-15 -3190 ($ $ $)) (-15 -3676 ($ $)) (-15 -4097 ($ $ $)) (-15 -4097 ($ $))))) (T -840))
-((-3170 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-840)))) (-2937 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-840)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-840)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-840)))) (-3928 (*1 *1) (-5 *1 (-840))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2934 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2933 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2930 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2928 (*1 *1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-3473 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-3472 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-4132 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-3473 (*1 *1 *1) (-5 *1 (-840))) (-3472 (*1 *1 *1) (-5 *1 (-840))) (-4132 (*1 *1 *1) (-5 *1 (-840))) (-2927 (*1 *1 *1 *1) (-5 *1 (-840))) (-2926 (*1 *1 *1 *1) (-5 *1 (-840))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2925 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2924 (*1 *1 *1 *1 *1) (-5 *1 (-840))) (-2923 (*1 *1 *1 *1) (-5 *1 (-840))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-3898 (*1 *1 *1) (-5 *1 (-840))) (-2921 (*1 *1 *1 *1) (-5 *1 (-840))) (-2920 (*1 *1 *1) (-5 *1 (-840))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-840)))) (-5 *1 (-840)))) (-2919 (*1 *1 *1 *1) (-5 *1 (-840))) (-2940 (*1 *1 *1) (-5 *1 (-840))) (-2940 (*1 *1 *1 *1) (-5 *1 (-840))) (-2918 (*1 *1 *1 *1) (-5 *1 (-840))) (-2917 (*1 *1 *1 *1) (-5 *1 (-840))) (-2916 (*1 *1 *1 *1) (-5 *1 (-840))) (-2915 (*1 *1 *1 *1) (-5 *1 (-840))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840)))) (-3437 (*1 *1 *1 *1) (-5 *1 (-840))) (-2914 (*1 *1 *1 *1) (-5 *1 (-840))) (-2913 (*1 *1 *1 *1) (-5 *1 (-840))) (-2912 (*1 *1 *1 *1) (-5 *1 (-840))) (-2911 (*1 *1 *1 *1) (-5 *1 (-840))) (-3903 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2910 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2909 (*1 *1 *1) (-5 *1 (-840))) (-4196 (*1 *1 *1) (-5 *1 (-840))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840)))) (-2908 (*1 *1 *1) (-5 *1 (-840))) (-2908 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840)))) (-2907 (*1 *1 *1) (-5 *1 (-840))) (-2906 (*1 *1 *1 *1) (-5 *1 (-840))) (-3886 (*1 *1 *1) (-5 *1 (-840))) (-3886 (*1 *1 *1 *1) (-5 *1 (-840))) (-3886 (*1 *1 *1 *1 *1) (-5 *1 (-840))) (-2905 (*1 *1 *1) (-5 *1 (-840))) (-2905 (*1 *1 *1 *1) (-5 *1 (-840))) (-2905 (*1 *1 *1 *1 *1) (-5 *1 (-840))) (-3824 (*1 *1 *1) (-5 *1 (-840))) (-3824 (*1 *1 *1 *1) (-5 *1 (-840))) (-3824 (*1 *1 *1 *1 *1) (-5 *1 (-840))) (-3591 (*1 *1 *1) (-5 *1 (-840))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2904 (*1 *1 *1) (-5 *1 (-840))) (-2904 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2903 (*1 *1 *1) (-5 *1 (-840))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2901 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2900 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-3387 (*1 *1 *1 *1) (-5 *1 (-840))) (-2898 (*1 *1 *1 *1) (-5 *1 (-840))) (-3018 (*1 *1 *1 *1) (-5 *1 (-840))) (-2897 (*1 *1 *1 *1) (-5 *1 (-840))) (-3017 (*1 *1 *1 *1) (-5 *1 (-840))) (-2896 (*1 *1 *1 *1) (-5 *1 (-840))) (-4199 (*1 *1 *1 *1) (-5 *1 (-840))) (-4197 (*1 *1 *1 *1) (-5 *1 (-840))) (-4197 (*1 *1 *1) (-5 *1 (-840))) (* (*1 *1 *1 *1) (-5 *1 (-840))) (-4308 (*1 *1 *1 *1) (-5 *1 (-840))) (** (*1 *1 *1 *1) (-5 *1 (-840))) (-2895 (*1 *1 *1 *1) (-5 *1 (-840))) (-2894 (*1 *1 *1 *1) (-5 *1 (-840))) (-2893 (*1 *1 *1 *1) (-5 *1 (-840))) (-3820 (*1 *1 *1 *1) (-5 *1 (-840))) (-3191 (*1 *1 *1 *1) (-5 *1 (-840))) (-3190 (*1 *1 *1 *1) (-5 *1 (-840))) (-3676 (*1 *1 *1) (-5 *1 (-840))) (-4097 (*1 *1 *1 *1) (-5 *1 (-840))) (-4097 (*1 *1 *1) (-5 *1 (-840))))
-(-13 (-1074) (-10 -8 (-15 -3170 ((-1237) $)) (-15 -2937 ($ (-1131))) (-15 -2936 ((-1237) (-1131))) (-15 -3887 ($ (-538))) (-15 -3887 ($ (-1149))) (-15 -3887 ($ (-1131))) (-15 -3887 ($ (-221))) (-15 -3928 ($)) (-15 -2935 ((-1131) (-1131))) (-15 -2934 ((-538) $)) (-15 -2933 ((-538) $)) (-15 -2934 ((-538))) (-15 -2933 ((-538))) (-15 -2932 ((-538) $)) (-15 -2931 ((-538) $)) (-15 -2930 ($ (-538))) (-15 -2929 ($ (-538))) (-15 -2928 ($ (-538) (-538))) (-15 -3473 ($ $ (-538))) (-15 -3472 ($ $ (-538))) (-15 -4132 ($ $ (-538))) (-15 -3473 ($ $)) (-15 -3472 ($ $)) (-15 -4132 ($ $)) (-15 -2927 ($ $ $)) (-15 -2926 ($ $ $)) (-15 -2927 ($ (-622 $))) (-15 -2926 ($ (-622 $))) (-15 -2925 ($ $ (-622 $))) (-15 -2924 ($ $ (-622 $))) (-15 -2924 ($ $ $ $)) (-15 -2923 ($ $ $)) (-15 -2922 ((-112) $)) (-15 -4159 ($ $ (-622 $))) (-15 -3898 ($ $)) (-15 -2921 ($ $ $)) (-15 -2920 ($ $)) (-15 -3459 ($ (-622 (-622 $)))) (-15 -2919 ($ $ $)) (-15 -2940 ($ $)) (-15 -2940 ($ $ $)) (-15 -2918 ($ $ $)) (-15 -2917 ($ $ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -4170 ($ $ (-751))) (-15 -3437 ($ $ $)) (-15 -2914 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ($ $ $)) (-15 -3903 ($ $ (-622 $))) (-15 -2910 ($ $ (-622 $))) (-15 -2909 ($ $)) (-15 -4196 ($ $)) (-15 -4196 ($ $ (-751))) (-15 -2908 ($ $)) (-15 -2908 ($ $ (-751))) (-15 -2907 ($ $)) (-15 -2906 ($ $ $)) (-15 -3886 ($ $)) (-15 -3886 ($ $ $)) (-15 -3886 ($ $ $ $)) (-15 -2905 ($ $)) (-15 -2905 ($ $ $)) (-15 -2905 ($ $ $ $)) (-15 -3824 ($ $)) (-15 -3824 ($ $ $)) (-15 -3824 ($ $ $ $)) (-15 -3591 ($ $)) (-15 -3591 ($ (-622 $))) (-15 -2904 ($ $)) (-15 -2904 ($ (-622 $))) (-15 -2903 ($ $)) (-15 -2903 ($ (-622 $))) (-15 -2902 ($ (-622 $))) (-15 -2901 ($ (-622 $))) (-15 -2900 ($ (-622 $))) (-15 -2899 ($ (-622 $))) (-15 -3387 ($ $ $)) (-15 -2898 ($ $ $)) (-15 -3018 ($ $ $)) (-15 -2897 ($ $ $)) (-15 -3017 ($ $ $)) (-15 -2896 ($ $ $)) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -4197 ($ $)) (-15 * ($ $ $)) (-15 -4308 ($ $ $)) (-15 ** ($ $ $)) (-15 -2895 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -3191 ($ $ $)) (-15 -3190 ($ $ $)) (-15 -3676 ($ $)) (-15 -4097 ($ $ $)) (-15 -4097 ($ $))))
-((-2898 (((-112) $ $) NIL)) (-4191 (((-3 $ "failed") (-1149)) 33)) (-3471 (((-751)) 31)) (-3327 (($) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-2126 (((-895) $) 29)) (-3593 (((-1131) $) 39)) (-2492 (($ (-895)) 28)) (-3594 (((-1093) $) NIL)) (-4330 (((-1149) $) 13) (((-527) $) 19) (((-866 (-373)) $) 26) (((-866 (-538)) $) 22)) (-4317 (((-840) $) 16)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 36)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 35)))
-(((-841 |#1|) (-13 (-821) (-598 (-1149)) (-598 (-527)) (-598 (-866 (-373))) (-598 (-866 (-538))) (-10 -8 (-15 -4191 ((-3 $ "failed") (-1149))))) (-622 (-1149))) (T -841))
-((-4191 (*1 *1 *2) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-841 *3)) (-14 *3 (-622 *2)))))
-(-13 (-821) (-598 (-1149)) (-598 (-527)) (-598 (-866 (-373))) (-598 (-866 (-538))) (-10 -8 (-15 -4191 ((-3 $ "failed") (-1149)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (((-922 |#1|) $) NIL) (($ (-922 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-3461 (((-751)) NIL)) (-4283 (((-1237) (-751)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-842 |#1| |#2| |#3| |#4|) (-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4317 ((-922 |#1|) $)) (-15 -4317 ($ (-922 |#1|))) (IF (|has| |#1| (-358)) (-15 -4308 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4283 ((-1237) (-751))))) (-1025) (-622 (-1149)) (-622 (-751)) (-751)) (T -842))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-922 *3)) (-5 *1 (-842 *3 *4 *5 *6)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))) (-14 *5 (-622 (-751))) (-14 *6 (-751)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-5 *1 (-842 *3 *4 *5 *6)) (-14 *4 (-622 (-1149))) (-14 *5 (-622 (-751))) (-14 *6 (-751)))) (-4308 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-842 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *2 (-1025)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-751))) (-14 *5 (-751)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-842 *4 *5 *6 *7)) (-4 *4 (-1025)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 *3)) (-14 *7 *3))))
-(-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4317 ((-922 |#1|) $)) (-15 -4317 ($ (-922 |#1|))) (IF (|has| |#1| (-358)) (-15 -4308 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4283 ((-1237) (-751)))))
-((-2938 (((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|) 31)) (-2939 (((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|) 24)))
-(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|)) (-15 -2938 ((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|))) (-358) (-1224 |#1|) (-1207 |#1|)) (T -843))
-((-2938 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-172 *6)) (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1224 *5)) (-4 *6 (-1207 *5)))) (-2939 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-402 *6)) (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1224 *5)) (-4 *6 (-1207 *5)))))
-(-10 -7 (-15 -2939 ((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|)) (-15 -2938 ((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|)))
-((-2939 (((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|)) 28) (((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) 26)))
-(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|))) (-15 -2939 ((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|)))) (-358) (-1149) |#1|) (T -844))
-((-2939 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1221 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1200 *6 *5))) (-5 *1 (-844 *5 *6 *7)))) (-2939 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1221 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1200 *6 *5))) (-5 *1 (-844 *5 *6 *7)))))
-(-10 -7 (-15 -2939 ((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|))) (-15 -2939 ((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $ (-538)) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2940 (($ (-1143 (-538)) (-538)) NIL)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2941 (($ $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4131 (((-751) $) NIL)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2943 (((-538)) NIL)) (-2942 (((-538) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4128 (($ $ (-538)) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-2944 (((-1126 (-538)) $) NIL)) (-3224 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-4129 (((-538) $ (-538)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL)))
-(((-845 |#1|) (-846 |#1|) (-538)) (T -845))
-NIL
-(-846 |#1|)
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3370 (($ $ (-538)) 60)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-2940 (($ (-1143 (-538)) (-538)) 59)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2941 (($ $) 62)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4131 (((-751) $) 67)) (-2502 (((-112) $) 30)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2943 (((-538)) 64)) (-2942 (((-538) $) 63)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-4128 (($ $ (-538)) 66)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-2944 (((-1126 (-538)) $) 68)) (-3224 (($ $) 65)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-4129 (((-538) $ (-538)) 61)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
-(((-846 |#1|) (-138) (-538)) (T -846))
-((-2944 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-1126 (-538))))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-751)))) (-4128 (*1 *1 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) (-3224 (*1 *1 *1) (-4 *1 (-846 *2))) (-2943 (*1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) (-2941 (*1 *1 *1) (-4 *1 (-846 *2))) (-4129 (*1 *2 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) (-3370 (*1 *1 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) (-2940 (*1 *1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *3 (-538)) (-4 *1 (-846 *4)))))
-(-13 (-302) (-145) (-10 -8 (-15 -2944 ((-1126 (-538)) $)) (-15 -4131 ((-751) $)) (-15 -4128 ($ $ (-538))) (-15 -3224 ($ $)) (-15 -2943 ((-538))) (-15 -2942 ((-538) $)) (-15 -2941 ($ $)) (-15 -4129 ((-538) $ (-538))) (-15 -3370 ($ $ (-538))) (-15 -2940 ($ (-1143 (-538)) (-538)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-845 |#1|) $) NIL (|has| (-845 |#1|) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-845 |#1|) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-845 |#1|) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-845 |#1|) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-845 |#1|) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-845 |#1|) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-845 |#1|) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-845 |#1|) (-1014 (-538))))) (-3507 (((-845 |#1|) $) NIL) (((-1149) $) NIL (|has| (-845 |#1|) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-845 |#1|) (-1014 (-538)))) (((-538) $) NIL (|has| (-845 |#1|) (-1014 (-538))))) (-4090 (($ $) NIL) (($ (-538) $) NIL)) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-845 |#1|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-845 |#1|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-845 |#1|))) (|:| |vec| (-1231 (-845 |#1|)))) (-669 $) (-1231 $)) NIL) (((-669 (-845 |#1|)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-845 |#1|) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-845 |#1|) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-845 |#1|) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-845 |#1|) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-845 |#1|) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-1124)))) (-3538 (((-112) $) NIL (|has| (-845 |#1|) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-845 |#1|) (-827)))) (-3678 (($ $ $) NIL (|has| (-845 |#1|) (-827)))) (-4318 (($ (-1 (-845 |#1|) (-845 |#1|)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-845 |#1|) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-845 |#1|) (-302)))) (-3465 (((-845 |#1|) $) NIL (|has| (-845 |#1|) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-845 |#1|) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-845 |#1|) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-845 |#1|)) (-622 (-845 |#1|))) NIL (|has| (-845 |#1|) (-304 (-845 |#1|)))) (($ $ (-845 |#1|) (-845 |#1|)) NIL (|has| (-845 |#1|) (-304 (-845 |#1|)))) (($ $ (-288 (-845 |#1|))) NIL (|has| (-845 |#1|) (-304 (-845 |#1|)))) (($ $ (-622 (-288 (-845 |#1|)))) NIL (|has| (-845 |#1|) (-304 (-845 |#1|)))) (($ $ (-622 (-1149)) (-622 (-845 |#1|))) NIL (|has| (-845 |#1|) (-507 (-1149) (-845 |#1|)))) (($ $ (-1149) (-845 |#1|)) NIL (|has| (-845 |#1|) (-507 (-1149) (-845 |#1|))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-845 |#1|)) NIL (|has| (-845 |#1|) (-281 (-845 |#1|) (-845 |#1|))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-845 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-845 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-1 (-845 |#1|) (-845 |#1|)) (-751)) NIL) (($ $ (-1 (-845 |#1|) (-845 |#1|))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-845 |#1|) $) NIL)) (-4330 (((-866 (-538)) $) NIL (|has| (-845 |#1|) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-845 |#1|) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-845 |#1|) (-598 (-527)))) (((-373) $) NIL (|has| (-845 |#1|) (-996))) (((-221) $) NIL (|has| (-845 |#1|) (-996)))) (-2945 (((-172 (-402 (-538))) $) NIL)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-845 |#1|) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-845 |#1|)) NIL) (($ (-1149)) NIL (|has| (-845 |#1|) (-1014 (-1149))))) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-845 |#1|) (-886))) (|has| (-845 |#1|) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-845 |#1|) $) NIL (|has| (-845 |#1|) (-537)))) (-2177 (((-112) $ $) NIL)) (-4129 (((-402 (-538)) $ (-538)) NIL)) (-3742 (($ $) NIL (|has| (-845 |#1|) (-800)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-845 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-845 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-1 (-845 |#1|) (-845 |#1|)) (-751)) NIL) (($ $ (-1 (-845 |#1|) (-845 |#1|))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-845 |#1|) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-845 |#1|) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-845 |#1|) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-845 |#1|) (-827)))) (-4308 (($ $ $) NIL) (($ (-845 |#1|) (-845 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-845 |#1|) $) NIL) (($ $ (-845 |#1|)) NIL)))
-(((-847 |#1|) (-13 (-967 (-845 |#1|)) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)))) (-538)) (T -847))
-((-4129 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-847 *4)) (-14 *4 *3) (-5 *3 (-538)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-847 *3)) (-14 *3 (-538)))) (-4090 (*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-14 *2 (-538)))) (-4090 (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-847 *3)) (-14 *3 *2))))
-(-13 (-967 (-845 |#1|)) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 ((|#2| $) NIL (|has| |#2| (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| |#2| (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| |#2| (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538))))) (-3507 ((|#2| $) NIL) (((-1149) $) NIL (|has| |#2| (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-538)))) (((-538) $) NIL (|has| |#2| (-1014 (-538))))) (-4090 (($ $) 31) (($ (-538) $) 32)) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) 53)) (-3327 (($) NIL (|has| |#2| (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| |#2| (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| |#2| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| |#2| (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 ((|#2| $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#2| (-1124)))) (-3538 (((-112) $) NIL (|has| |#2| (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 49)) (-3804 (($) NIL (|has| |#2| (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| |#2| (-302)))) (-3465 ((|#2| $) NIL (|has| |#2| (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 |#2|) (-622 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-304 |#2|))) (($ $ (-288 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ (-622 (-288 |#2|))) NIL (|has| |#2| (-304 |#2|))) (($ $ (-622 (-1149)) (-622 |#2|)) NIL (|has| |#2| (-507 (-1149) |#2|))) (($ $ (-1149) |#2|) NIL (|has| |#2| (-507 (-1149) |#2|)))) (-1704 (((-751) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| |#2| (-281 |#2| |#2|)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| |#2| (-229))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3328 (($ $) NIL)) (-3330 ((|#2| $) NIL)) (-4330 (((-866 (-538)) $) NIL (|has| |#2| (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| |#2| (-598 (-866 (-373))))) (((-527) $) NIL (|has| |#2| (-598 (-527)))) (((-373) $) NIL (|has| |#2| (-996))) (((-221) $) NIL (|has| |#2| (-996)))) (-2945 (((-172 (-402 (-538))) $) 68)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4317 (((-840) $) 87) (($ (-538)) 19) (($ $) NIL) (($ (-402 (-538))) 24) (($ |#2|) 18) (($ (-1149)) NIL (|has| |#2| (-1014 (-1149))))) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-3466 ((|#2| $) NIL (|has| |#2| (-537)))) (-2177 (((-112) $ $) NIL)) (-4129 (((-402 (-538)) $ (-538)) 60)) (-3742 (($ $) NIL (|has| |#2| (-800)))) (-2991 (($) 14 T CONST)) (-2997 (($) 16 T CONST)) (-3002 (($ $) NIL (|has| |#2| (-229))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) 35)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4197 (($ $) 39) (($ $ $) 41)) (-4199 (($ $ $) 37)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 50)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 42) (($ $ $) 44) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-848 |#1| |#2|) (-13 (-967 |#2|) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)))) (-538) (-846 |#1|)) (T -848))
-((-4129 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-402 (-538))) (-5 *1 (-848 *4 *5)) (-5 *3 (-538)) (-4 *5 (-846 *4)))) (-2945 (*1 *2 *1) (-12 (-14 *3 (-538)) (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-848 *3 *4)) (-4 *4 (-846 *3)))) (-4090 (*1 *1 *1) (-12 (-14 *2 (-538)) (-5 *1 (-848 *2 *3)) (-4 *3 (-846 *2)))) (-4090 (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-14 *3 *2) (-5 *1 (-848 *3 *4)) (-4 *4 (-846 *3)))))
-(-13 (-967 |#2|) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $))))
-((-2898 (((-112) $ $) NIL (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074))))) (-4155 ((|#2| $) 12)) (-2946 (($ |#1| |#2|) 9)) (-3593 (((-1131) $) NIL (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074))))) (-3594 (((-1093) $) NIL (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#1| $) 11)) (-3884 (($ |#1| |#2|) 10)) (-4317 (((-840) $) 18 (-3891 (-12 (|has| |#1| (-597 (-840))) (|has| |#2| (-597 (-840)))) (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074)))))) (-3387 (((-112) $ $) 22 (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074))))))
-(((-849 |#1| |#2|) (-13 (-1185) (-10 -8 (IF (|has| |#1| (-597 (-840))) (IF (|has| |#2| (-597 (-840))) (-6 (-597 (-840))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1074)) (IF (|has| |#2| (-1074)) (-6 (-1074)) |%noBranch|) |%noBranch|) (-15 -2946 ($ |#1| |#2|)) (-15 -3884 ($ |#1| |#2|)) (-15 -4160 (|#1| $)) (-15 -4155 (|#2| $)))) (-1185) (-1185)) (T -849))
-((-2946 (*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1185)) (-4 *3 (-1185)))) (-3884 (*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1185)) (-4 *3 (-1185)))) (-4160 (*1 *2 *1) (-12 (-4 *2 (-1185)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1185)))) (-4155 (*1 *2 *1) (-12 (-4 *2 (-1185)) (-5 *1 (-849 *3 *2)) (-4 *3 (-1185)))))
-(-13 (-1185) (-10 -8 (IF (|has| |#1| (-597 (-840))) (IF (|has| |#2| (-597 (-840))) (-6 (-597 (-840))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1074)) (IF (|has| |#2| (-1074)) (-6 (-1074)) |%noBranch|) |%noBranch|) (-15 -2946 ($ |#1| |#2|)) (-15 -3884 ($ |#1| |#2|)) (-15 -4160 (|#1| $)) (-15 -4155 (|#2| $))))
-((-2898 (((-112) $ $) NIL)) (-3290 (((-538) $) 15)) (-2948 (($ (-155)) 11)) (-2947 (($ (-155)) 12)) (-3593 (((-1131) $) NIL)) (-3289 (((-155) $) 13)) (-3594 (((-1093) $) NIL)) (-2950 (($ (-155)) 9)) (-2951 (($ (-155)) 8)) (-4317 (((-840) $) 23) (($ (-155)) 16)) (-2949 (($ (-155)) 10)) (-3387 (((-112) $ $) NIL)))
-(((-850) (-13 (-1074) (-10 -8 (-15 -2951 ($ (-155))) (-15 -2950 ($ (-155))) (-15 -2949 ($ (-155))) (-15 -2948 ($ (-155))) (-15 -2947 ($ (-155))) (-15 -3289 ((-155) $)) (-15 -3290 ((-538) $)) (-15 -4317 ($ (-155)))))) (T -850))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-2949 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-2948 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-2947 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-850)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
-(-13 (-1074) (-10 -8 (-15 -2951 ($ (-155))) (-15 -2950 ($ (-155))) (-15 -2949 ($ (-155))) (-15 -2948 ($ (-155))) (-15 -2947 ($ (-155))) (-15 -3289 ((-155) $)) (-15 -3290 ((-538) $)) (-15 -4317 ($ (-155)))))
-((-4317 (((-309 (-538)) (-402 (-922 (-48)))) 23) (((-309 (-538)) (-922 (-48))) 18)))
-(((-851) (-10 -7 (-15 -4317 ((-309 (-538)) (-922 (-48)))) (-15 -4317 ((-309 (-538)) (-402 (-922 (-48))))))) (T -851))
-((-4317 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 (-48)))) (-5 *2 (-309 (-538))) (-5 *1 (-851)))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-922 (-48))) (-5 *2 (-309 (-538))) (-5 *1 (-851)))))
-(-10 -7 (-15 -4317 ((-309 (-538)) (-922 (-48)))) (-15 -4317 ((-309 (-538)) (-402 (-922 (-48))))))
-((-4318 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14)))
-(((-852 |#1| |#2|) (-10 -7 (-15 -4318 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1185) (-1185)) (T -852))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))))
-(-10 -7 (-15 -4318 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))))
-((-3730 (($ |#1| |#1|) 8)) (-2954 ((|#1| $ (-751)) 10)))
-(((-853 |#1|) (-10 -8 (-15 -3730 ($ |#1| |#1|)) (-15 -2954 (|#1| $ (-751)))) (-1185)) (T -853))
-((-2954 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-853 *2)) (-4 *2 (-1185)))) (-3730 (*1 *1 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1185)))))
-(-10 -8 (-15 -3730 ($ |#1| |#1|)) (-15 -2954 (|#1| $ (-751))))
-((-4318 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14)))
-(((-854 |#1| |#2|) (-10 -7 (-15 -4318 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-1185) (-1185)) (T -854))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))))
-(-10 -7 (-15 -4318 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))))
-((-3730 (($ |#1| |#1| |#1|) 8)) (-2954 ((|#1| $ (-751)) 10)))
-(((-855 |#1|) (-10 -8 (-15 -3730 ($ |#1| |#1| |#1|)) (-15 -2954 (|#1| $ (-751)))) (-1185)) (T -855))
-((-2954 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-855 *2)) (-4 *2 (-1185)))) (-3730 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1185)))))
-(-10 -8 (-15 -3730 ($ |#1| |#1| |#1|)) (-15 -2954 (|#1| $ (-751))))
-((-2952 (((-622 (-1154)) (-1131)) 9)))
-(((-856) (-10 -7 (-15 -2952 ((-622 (-1154)) (-1131))))) (T -856))
-((-2952 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-622 (-1154))) (-5 *1 (-856)))))
-(-10 -7 (-15 -2952 ((-622 (-1154)) (-1131))))
-((-4318 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 14)))
-(((-857 |#1| |#2|) (-10 -7 (-15 -4318 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-1185) (-1185)) (T -857))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6)))))
-(-10 -7 (-15 -4318 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|))))
-((-2953 (($ |#1| |#1| |#1|) 8)) (-2954 ((|#1| $ (-751)) 10)))
-(((-858 |#1|) (-10 -8 (-15 -2953 ($ |#1| |#1| |#1|)) (-15 -2954 (|#1| $ (-751)))) (-1185)) (T -858))
-((-2954 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-858 *2)) (-4 *2 (-1185)))) (-2953 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1185)))))
-(-10 -8 (-15 -2953 ($ |#1| |#1| |#1|)) (-15 -2954 (|#1| $ (-751))))
-((-2958 (((-1126 (-622 (-538))) (-622 (-538)) (-1126 (-622 (-538)))) 32)) (-2957 (((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538))) 28)) (-2959 (((-1126 (-622 (-538))) (-622 (-538))) 41) (((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538))) 40)) (-2960 (((-1126 (-622 (-538))) (-538)) 42)) (-2955 (((-1126 (-622 (-538))) (-538) (-538)) 22) (((-1126 (-622 (-538))) (-538)) 16) (((-1126 (-622 (-538))) (-538) (-538) (-538)) 12)) (-2956 (((-1126 (-622 (-538))) (-1126 (-622 (-538)))) 26)) (-3342 (((-622 (-538)) (-622 (-538))) 25)))
-(((-859) (-10 -7 (-15 -2955 ((-1126 (-622 (-538))) (-538) (-538) (-538))) (-15 -2955 ((-1126 (-622 (-538))) (-538))) (-15 -2955 ((-1126 (-622 (-538))) (-538) (-538))) (-15 -3342 ((-622 (-538)) (-622 (-538)))) (-15 -2956 ((-1126 (-622 (-538))) (-1126 (-622 (-538))))) (-15 -2957 ((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538)))) (-15 -2958 ((-1126 (-622 (-538))) (-622 (-538)) (-1126 (-622 (-538))))) (-15 -2959 ((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538)))) (-15 -2959 ((-1126 (-622 (-538))) (-622 (-538)))) (-15 -2960 ((-1126 (-622 (-538))) (-538))))) (T -859))
-((-2960 (*1 *2 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))) (-2959 (*1 *2 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538))))) (-2959 (*1 *2 *3 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538))))) (-2958 (*1 *2 *3 *2) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *3 (-622 (-538))) (-5 *1 (-859)))) (-2957 (*1 *2 *3 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538))))) (-2956 (*1 *2 *2) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)))) (-3342 (*1 *2 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-859)))) (-2955 (*1 *2 *3 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))) (-2955 (*1 *2 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))) (-2955 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))))
-(-10 -7 (-15 -2955 ((-1126 (-622 (-538))) (-538) (-538) (-538))) (-15 -2955 ((-1126 (-622 (-538))) (-538))) (-15 -2955 ((-1126 (-622 (-538))) (-538) (-538))) (-15 -3342 ((-622 (-538)) (-622 (-538)))) (-15 -2956 ((-1126 (-622 (-538))) (-1126 (-622 (-538))))) (-15 -2957 ((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538)))) (-15 -2958 ((-1126 (-622 (-538))) (-622 (-538)) (-1126 (-622 (-538))))) (-15 -2959 ((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538)))) (-15 -2959 ((-1126 (-622 (-538))) (-622 (-538)))) (-15 -2960 ((-1126 (-622 (-538))) (-538))))
-((-4330 (((-866 (-373)) $) 9 (|has| |#1| (-598 (-866 (-373))))) (((-866 (-538)) $) 8 (|has| |#1| (-598 (-866 (-538)))))))
-(((-860 |#1|) (-138) (-1185)) (T -860))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-598 (-866 (-538)))) (-6 (-598 (-866 (-538)))) |%noBranch|) (IF (|has| |t#1| (-598 (-866 (-373)))) (-6 (-598 (-866 (-373)))) |%noBranch|)))
-(((-598 (-866 (-373))) |has| |#1| (-598 (-866 (-373)))) ((-598 (-866 (-538))) |has| |#1| (-598 (-866 (-538)))))
-((-2898 (((-112) $ $) NIL)) (-3977 (($) 14)) (-2963 (($ (-864 |#1| |#2|) (-864 |#1| |#3|)) 27)) (-2961 (((-864 |#1| |#3|) $) 16)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2971 (((-112) $) 22)) (-2970 (($) 19)) (-4317 (((-840) $) 30)) (-2962 (((-864 |#1| |#2|) $) 15)) (-3387 (((-112) $ $) 25)))
-(((-861 |#1| |#2| |#3|) (-13 (-1074) (-10 -8 (-15 -2971 ((-112) $)) (-15 -2970 ($)) (-15 -3977 ($)) (-15 -2963 ($ (-864 |#1| |#2|) (-864 |#1| |#3|))) (-15 -2962 ((-864 |#1| |#2|) $)) (-15 -2961 ((-864 |#1| |#3|) $)))) (-1074) (-1074) (-646 |#2|)) (T -861))
-((-2971 (*1 *2 *1) (-12 (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1074)) (-4 *5 (-646 *4)))) (-2970 (*1 *1) (-12 (-4 *3 (-1074)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1074)) (-4 *4 (-646 *3)))) (-3977 (*1 *1) (-12 (-4 *3 (-1074)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1074)) (-4 *4 (-646 *3)))) (-2963 (*1 *1 *2 *3) (-12 (-5 *2 (-864 *4 *5)) (-5 *3 (-864 *4 *6)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-646 *5)) (-5 *1 (-861 *4 *5 *6)))) (-2962 (*1 *2 *1) (-12 (-4 *4 (-1074)) (-5 *2 (-864 *3 *4)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1074)) (-4 *5 (-646 *4)))) (-2961 (*1 *2 *1) (-12 (-4 *4 (-1074)) (-5 *2 (-864 *3 *5)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1074)) (-4 *5 (-646 *4)))))
-(-13 (-1074) (-10 -8 (-15 -2971 ((-112) $)) (-15 -2970 ($)) (-15 -3977 ($)) (-15 -2963 ($ (-864 |#1| |#2|) (-864 |#1| |#3|))) (-15 -2962 ((-864 |#1| |#2|) $)) (-15 -2961 ((-864 |#1| |#3|) $))))
-((-2898 (((-112) $ $) 7)) (-3129 (((-864 |#1| $) $ (-866 |#1|) (-864 |#1| $)) 13)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)))
-(((-862 |#1|) (-138) (-1074)) (T -862))
-((-3129 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-864 *4 *1)) (-5 *3 (-866 *4)) (-4 *1 (-862 *4)) (-4 *4 (-1074)))))
-(-13 (-1074) (-10 -8 (-15 -3129 ((-864 |t#1| $) $ (-866 |t#1|) (-864 |t#1| $)))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2964 (((-112) (-622 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2965 (((-864 |#1| |#2|) |#2| |#3|) 43 (-12 (-3676 (|has| |#2| (-1014 (-1149)))) (-3676 (|has| |#2| (-1025))))) (((-622 (-288 (-922 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1025)) (-3676 (|has| |#2| (-1014 (-1149)))))) (((-622 (-288 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1014 (-1149)))) (((-861 |#1| |#2| (-622 |#2|)) (-622 |#2|) |#3|) 21)))
-(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -2964 ((-112) |#2| |#3|)) (-15 -2964 ((-112) (-622 |#2|) |#3|)) (-15 -2965 ((-861 |#1| |#2| (-622 |#2|)) (-622 |#2|) |#3|)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2965 ((-622 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1025)) (-15 -2965 ((-622 (-288 (-922 |#2|))) |#2| |#3|)) (-15 -2965 ((-864 |#1| |#2|) |#2| |#3|))))) (-1074) (-862 |#1|) (-598 (-866 |#1|))) (T -863))
-((-2965 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-5 *2 (-864 *5 *3)) (-5 *1 (-863 *5 *3 *4)) (-3676 (-4 *3 (-1014 (-1149)))) (-3676 (-4 *3 (-1025))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-866 *5))))) (-2965 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-5 *2 (-622 (-288 (-922 *3)))) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-1025)) (-3676 (-4 *3 (-1014 (-1149)))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-866 *5))))) (-2965 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-5 *2 (-622 (-288 *3))) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-1014 (-1149))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-866 *5))))) (-2965 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-4 *6 (-862 *5)) (-5 *2 (-861 *5 *6 (-622 *6))) (-5 *1 (-863 *5 *6 *4)) (-5 *3 (-622 *6)) (-4 *4 (-598 (-866 *5))))) (-2964 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *6)) (-4 *6 (-862 *5)) (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-863 *5 *6 *4)) (-4 *4 (-598 (-866 *5))))) (-2964 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-862 *5)) (-4 *4 (-598 (-866 *5))))))
-(-10 -7 (-15 -2964 ((-112) |#2| |#3|)) (-15 -2964 ((-112) (-622 |#2|) |#3|)) (-15 -2965 ((-861 |#1| |#2| (-622 |#2|)) (-622 |#2|) |#3|)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2965 ((-622 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1025)) (-15 -2965 ((-622 (-288 (-922 |#2|))) |#2| |#3|)) (-15 -2965 ((-864 |#1| |#2|) |#2| |#3|)))))
-((-2898 (((-112) $ $) NIL)) (-3585 (($ $ $) 39)) (-2992 (((-3 (-112) "failed") $ (-866 |#1|)) 36)) (-3977 (($) 12)) (-3593 (((-1131) $) NIL)) (-2967 (($ (-866 |#1|) |#2| $) 20)) (-3594 (((-1093) $) NIL)) (-2969 (((-3 |#2| "failed") (-866 |#1|) $) 50)) (-2971 (((-112) $) 15)) (-2970 (($) 13)) (-3608 (((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|))) $) 25)) (-3884 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|)))) 23)) (-4317 (((-840) $) 44)) (-2966 (($ (-866 |#1|) |#2| $ |#2|) 48)) (-2968 (($ (-866 |#1|) |#2| $) 47)) (-3387 (((-112) $ $) 41)))
-(((-864 |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -2971 ((-112) $)) (-15 -2970 ($)) (-15 -3977 ($)) (-15 -3585 ($ $ $)) (-15 -2969 ((-3 |#2| "failed") (-866 |#1|) $)) (-15 -2968 ($ (-866 |#1|) |#2| $)) (-15 -2967 ($ (-866 |#1|) |#2| $)) (-15 -2966 ($ (-866 |#1|) |#2| $ |#2|)) (-15 -3608 ((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|))) $)) (-15 -3884 ($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|))))) (-15 -2992 ((-3 (-112) "failed") $ (-866 |#1|))))) (-1074) (-1074)) (T -864))
-((-2971 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-2970 (*1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3977 (*1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3585 (*1 *1 *1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-2969 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-4 *2 (-1074)) (-5 *1 (-864 *4 *2)))) (-2968 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074)))) (-2967 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074)))) (-2966 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 *4)))) (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 *4)))) (-4 *4 (-1074)) (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)))) (-2992 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-864 *4 *5)) (-4 *5 (-1074)))))
-(-13 (-1074) (-10 -8 (-15 -2971 ((-112) $)) (-15 -2970 ($)) (-15 -3977 ($)) (-15 -3585 ($ $ $)) (-15 -2969 ((-3 |#2| "failed") (-866 |#1|) $)) (-15 -2968 ($ (-866 |#1|) |#2| $)) (-15 -2967 ($ (-866 |#1|) |#2| $)) (-15 -2966 ($ (-866 |#1|) |#2| $ |#2|)) (-15 -3608 ((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|))) $)) (-15 -3884 ($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|))))) (-15 -2992 ((-3 (-112) "failed") $ (-866 |#1|)))))
-((-4318 (((-864 |#1| |#3|) (-1 |#3| |#2|) (-864 |#1| |#2|)) 22)))
-(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-864 |#1| |#3|) (-1 |#3| |#2|) (-864 |#1| |#2|)))) (-1074) (-1074) (-1074)) (T -865))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-864 *5 *6)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-864 *5 *7)) (-5 *1 (-865 *5 *6 *7)))))
-(-10 -7 (-15 -4318 ((-864 |#1| |#3|) (-1 |#3| |#2|) (-864 |#1| |#2|))))
-((-2898 (((-112) $ $) NIL)) (-2979 (($ $ (-622 (-51))) 64)) (-3417 (((-622 $) $) 118)) (-2976 (((-2 (|:| |var| (-622 (-1149))) (|:| |pred| (-51))) $) 24)) (-3611 (((-112) $) 30)) (-2977 (($ $ (-622 (-1149)) (-51)) 25)) (-2980 (($ $ (-622 (-51))) 63)) (-3508 (((-3 |#1| #1="failed") $) 61) (((-3 (-1149) #1#) $) 140)) (-3507 ((|#1| $) 58) (((-1149) $) NIL)) (-2974 (($ $) 108)) (-2986 (((-112) $) 47)) (-2981 (((-622 (-51)) $) 45)) (-2978 (($ (-1149) (-112) (-112) (-112)) 65)) (-2972 (((-3 (-622 $) "failed") (-622 $)) 72)) (-2983 (((-112) $) 50)) (-2984 (((-112) $) 49)) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) "failed") $) 36)) (-2989 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3158 (((-3 (-2 (|:| |val| $) (|:| -2493 $)) "failed") $) 83)) (-3155 (((-3 (-622 $) "failed") $) 33)) (-2990 (((-3 (-622 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -2836 (-113)) (|:| |arg| (-622 $))) "failed") $) 95)) (-2988 (((-3 (-622 $) "failed") $) 37)) (-3157 (((-3 (-2 (|:| |val| $) (|:| -2493 (-751))) "failed") $) 40)) (-2987 (((-112) $) 29)) (-3594 (((-1093) $) NIL)) (-2975 (((-112) $) 21)) (-2982 (((-112) $) 46)) (-2973 (((-622 (-51)) $) 111)) (-2985 (((-112) $) 48)) (-4159 (($ (-113) (-622 $)) 92)) (-3682 (((-751) $) 28)) (-3759 (($ $) 62)) (-4330 (($ (-622 $)) 59)) (-4312 (((-112) $) 26)) (-4317 (((-840) $) 53) (($ |#1|) 18) (($ (-1149)) 66)) (-2993 (($ $ (-51)) 110)) (-2991 (($) 91 T CONST)) (-2997 (($) 73 T CONST)) (-3387 (((-112) $ $) 79)) (-4308 (($ $ $) 100)) (-4199 (($ $ $) 104)) (** (($ $ (-751)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
-(((-866 |#1|) (-13 (-1074) (-1014 |#1|) (-1014 (-1149)) (-10 -8 (-15 0 ($) -4311) (-15 1 ($) -4311) (-15 -3155 ((-3 (-622 $) "failed") $)) (-15 -3156 ((-3 (-622 $) "failed") $)) (-15 -2990 ((-3 (-622 $) "failed") $ (-113))) (-15 -2990 ((-3 (-2 (|:| -2836 (-113)) (|:| |arg| (-622 $))) "failed") $)) (-15 -3157 ((-3 (-2 (|:| |val| $) (|:| -2493 (-751))) "failed") $)) (-15 -2989 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2988 ((-3 (-622 $) "failed") $)) (-15 -3158 ((-3 (-2 (|:| |val| $) (|:| -2493 $)) "failed") $)) (-15 -4159 ($ (-113) (-622 $))) (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ $)) (-15 -4308 ($ $ $)) (-15 -3682 ((-751) $)) (-15 -4330 ($ (-622 $))) (-15 -3759 ($ $)) (-15 -2987 ((-112) $)) (-15 -2986 ((-112) $)) (-15 -3611 ((-112) $)) (-15 -4312 ((-112) $)) (-15 -2985 ((-112) $)) (-15 -2984 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -2982 ((-112) $)) (-15 -2981 ((-622 (-51)) $)) (-15 -2980 ($ $ (-622 (-51)))) (-15 -2979 ($ $ (-622 (-51)))) (-15 -2978 ($ (-1149) (-112) (-112) (-112))) (-15 -2977 ($ $ (-622 (-1149)) (-51))) (-15 -2976 ((-2 (|:| |var| (-622 (-1149))) (|:| |pred| (-51))) $)) (-15 -2975 ((-112) $)) (-15 -2974 ($ $)) (-15 -2993 ($ $ (-51))) (-15 -2973 ((-622 (-51)) $)) (-15 -3417 ((-622 $) $)) (-15 -2972 ((-3 (-622 $) "failed") (-622 $))))) (-1074)) (T -866))
-((-2991 (*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-2997 (*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-3155 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3156 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2990 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-622 (-866 *4))) (-5 *1 (-866 *4)) (-4 *4 (-1074)))) (-2990 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2836 (-113)) (|:| |arg| (-622 (-866 *3))))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3157 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -2493 (-751)))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2989 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-866 *3)) (|:| |den| (-866 *3)))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2988 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3158 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -2493 (-866 *3)))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-4159 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 (-866 *4))) (-5 *1 (-866 *4)) (-4 *4 (-1074)))) (-4199 (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-4308 (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3759 (*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2985 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2979 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2978 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-112)) (-5 *1 (-866 *4)) (-4 *4 (-1074)))) (-2977 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-51)) (-5 *1 (-866 *4)) (-4 *4 (-1074)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-622 (-1149))) (|:| |pred| (-51)))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2974 (*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-2993 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2972 (*1 *2 *2) (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(-13 (-1074) (-1014 |#1|) (-1014 (-1149)) (-10 -8 (-15 (-2991) ($) -4311) (-15 (-2997) ($) -4311) (-15 -3155 ((-3 (-622 $) "failed") $)) (-15 -3156 ((-3 (-622 $) "failed") $)) (-15 -2990 ((-3 (-622 $) "failed") $ (-113))) (-15 -2990 ((-3 (-2 (|:| -2836 (-113)) (|:| |arg| (-622 $))) "failed") $)) (-15 -3157 ((-3 (-2 (|:| |val| $) (|:| -2493 (-751))) "failed") $)) (-15 -2989 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2988 ((-3 (-622 $) "failed") $)) (-15 -3158 ((-3 (-2 (|:| |val| $) (|:| -2493 $)) "failed") $)) (-15 -4159 ($ (-113) (-622 $))) (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ $)) (-15 -4308 ($ $ $)) (-15 -3682 ((-751) $)) (-15 -4330 ($ (-622 $))) (-15 -3759 ($ $)) (-15 -2987 ((-112) $)) (-15 -2986 ((-112) $)) (-15 -3611 ((-112) $)) (-15 -4312 ((-112) $)) (-15 -2985 ((-112) $)) (-15 -2984 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -2982 ((-112) $)) (-15 -2981 ((-622 (-51)) $)) (-15 -2980 ($ $ (-622 (-51)))) (-15 -2979 ($ $ (-622 (-51)))) (-15 -2978 ($ (-1149) (-112) (-112) (-112))) (-15 -2977 ($ $ (-622 (-1149)) (-51))) (-15 -2976 ((-2 (|:| |var| (-622 (-1149))) (|:| |pred| (-51))) $)) (-15 -2975 ((-112) $)) (-15 -2974 ($ $)) (-15 -2993 ($ $ (-51))) (-15 -2973 ((-622 (-51)) $)) (-15 -3417 ((-622 $) $)) (-15 -2972 ((-3 (-622 $) "failed") (-622 $)))))
-((-3560 (((-866 |#1|) (-866 |#1|) (-622 (-1149)) (-1 (-112) (-622 |#2|))) 32) (((-866 |#1|) (-866 |#1|) (-622 (-1 (-112) |#2|))) 43) (((-866 |#1|) (-866 |#1|) (-1 (-112) |#2|)) 35)) (-2992 (((-112) (-622 |#2|) (-866 |#1|)) 40) (((-112) |#2| (-866 |#1|)) 36)) (-3885 (((-1 (-112) |#2|) (-866 |#1|)) 16)) (-2994 (((-622 |#2|) (-866 |#1|)) 24)) (-2993 (((-866 |#1|) (-866 |#1|) |#2|) 20)))
-(((-867 |#1| |#2|) (-10 -7 (-15 -3560 ((-866 |#1|) (-866 |#1|) (-1 (-112) |#2|))) (-15 -3560 ((-866 |#1|) (-866 |#1|) (-622 (-1 (-112) |#2|)))) (-15 -3560 ((-866 |#1|) (-866 |#1|) (-622 (-1149)) (-1 (-112) (-622 |#2|)))) (-15 -3885 ((-1 (-112) |#2|) (-866 |#1|))) (-15 -2992 ((-112) |#2| (-866 |#1|))) (-15 -2992 ((-112) (-622 |#2|) (-866 |#1|))) (-15 -2993 ((-866 |#1|) (-866 |#1|) |#2|)) (-15 -2994 ((-622 |#2|) (-866 |#1|)))) (-1074) (-1185)) (T -867))
-((-2994 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-622 *5)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1185)))) (-2993 (*1 *2 *2 *3) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1185)))) (-2992 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-1185)) (-5 *2 (-112)) (-5 *1 (-867 *5 *6)))) (-2992 (*1 *2 *3 *4) (-12 (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-867 *5 *3)) (-4 *3 (-1185)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1185)))) (-3560 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-866 *5)) (-5 *3 (-622 (-1149))) (-5 *4 (-1 (-112) (-622 *6))) (-4 *5 (-1074)) (-4 *6 (-1185)) (-5 *1 (-867 *5 *6)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-866 *4)) (-5 *3 (-622 (-1 (-112) *5))) (-4 *4 (-1074)) (-4 *5 (-1185)) (-5 *1 (-867 *4 *5)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-866 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1074)) (-4 *5 (-1185)) (-5 *1 (-867 *4 *5)))))
-(-10 -7 (-15 -3560 ((-866 |#1|) (-866 |#1|) (-1 (-112) |#2|))) (-15 -3560 ((-866 |#1|) (-866 |#1|) (-622 (-1 (-112) |#2|)))) (-15 -3560 ((-866 |#1|) (-866 |#1|) (-622 (-1149)) (-1 (-112) (-622 |#2|)))) (-15 -3885 ((-1 (-112) |#2|) (-866 |#1|))) (-15 -2992 ((-112) |#2| (-866 |#1|))) (-15 -2992 ((-112) (-622 |#2|) (-866 |#1|))) (-15 -2993 ((-866 |#1|) (-866 |#1|) |#2|)) (-15 -2994 ((-622 |#2|) (-866 |#1|))))
-((-4318 (((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)) 19)))
-(((-868 |#1| |#2|) (-10 -7 (-15 -4318 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)))) (-1074) (-1074)) (T -868))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-866 *6)) (-5 *1 (-868 *5 *6)))))
-(-10 -7 (-15 -4318 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|))))
-((-2898 (((-112) $ $) NIL)) (-4294 (((-622 |#1|) $) 16)) (-2995 (((-112) $) 38)) (-3508 (((-3 (-652 |#1|) "failed") $) 43)) (-3507 (((-652 |#1|) $) 41)) (-4158 (($ $) 18)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4193 (((-751) $) 46)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-652 |#1|) $) 17)) (-4317 (((-840) $) 37) (($ (-652 |#1|)) 21) (((-799 |#1|) $) 27) (($ |#1|) 20)) (-2997 (($) 8 T CONST)) (-2996 (((-622 (-652 |#1|)) $) 23)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 11)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 49)))
-(((-869 |#1|) (-13 (-827) (-1014 (-652 |#1|)) (-10 -8 (-15 1 ($) -4311) (-15 -4317 ((-799 |#1|) $)) (-15 -4317 ($ |#1|)) (-15 -4160 ((-652 |#1|) $)) (-15 -4193 ((-751) $)) (-15 -2996 ((-622 (-652 |#1|)) $)) (-15 -4158 ($ $)) (-15 -2995 ((-112) $)) (-15 -4294 ((-622 |#1|) $)))) (-827)) (T -869))
-((-2997 (*1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-4317 (*1 *1 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-622 (-652 *3))) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-4158 (*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))))
-(-13 (-827) (-1014 (-652 |#1|)) (-10 -8 (-15 (-2997) ($) -4311) (-15 -4317 ((-799 |#1|) $)) (-15 -4317 ($ |#1|)) (-15 -4160 ((-652 |#1|) $)) (-15 -4193 ((-751) $)) (-15 -2996 ((-622 (-652 |#1|)) $)) (-15 -4158 ($ $)) (-15 -2995 ((-112) $)) (-15 -4294 ((-622 |#1|) $))))
-((-3828 ((|#1| |#1| |#1|) 19)))
-(((-870 |#1| |#2|) (-10 -7 (-15 -3828 (|#1| |#1| |#1|))) (-1207 |#2|) (-1025)) (T -870))
-((-3828 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1207 *3)))))
-(-10 -7 (-15 -3828 (|#1| |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2998 (((-1011) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 13)) (-3387 (((-112) $ $) 6)))
+((-2315 (((-1093) $ (-128)) NIL)) (-2328 (((-1093) $ (-129)) 22)) (-2355 (($ (-383)) 12) (($ (-1131)) 14)) (-2341 (((-112) $) 19)) (-1683 (((-839) $) 26)) (-4125 (($ $) 23)))
+(((-838) (-13 (-837) (-597 (-839)) (-10 -8 (-15 -2355 ($ (-383))) (-15 -2355 ($ (-1131))) (-15 -2341 ((-112) $))))) (T -838))
+((-2355 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-838)))) (-2355 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-838)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838)))))
+(-13 (-837) (-597 (-839)) (-10 -8 (-15 -2355 ($ (-383))) (-15 -2355 ($ (-1131))) (-15 -2341 ((-112) $))))
+((-1671 (((-112) $ $) NIL) (($ $ $) 77)) (-2566 (($ $ $) 114)) (-1924 (((-552) $) 31) (((-552)) 36)) (-2626 (($ (-552)) 45)) (-2597 (($ $ $) 46) (($ (-625 $)) 76)) (-2480 (($ $ (-625 $)) 74)) (-1430 (((-552) $) 34)) (-2511 (($ $ $) 65)) (-1791 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-1442 (((-552) $) 33)) (-2520 (($ $ $) 64)) (-4265 (($ $) 104)) (-2547 (($ $ $) 118)) (-2378 (($ (-625 $)) 53)) (-3468 (($ $ (-625 $)) 71)) (-2616 (($ (-552) (-552)) 47)) (-1496 (($ $) 115) (($ $ $) 116)) (-2303 (($ $ (-552)) 41) (($ $) 44)) (-2851 (($ $ $) 89)) (-2529 (($ $ $) 121)) (-2471 (($ $) 105)) (-2826 (($ $ $) 90)) (-2430 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3871 (((-1237) $) 10)) (-2462 (($ $) 108) (($ $ (-751)) 111)) (-2492 (($ $ $) 67)) (-2501 (($ $ $) 66)) (-2667 (($ $ (-625 $)) 100)) (-2575 (($ $ $) 103)) (-2400 (($ (-625 $)) 51)) (-2411 (($ $) 62) (($ (-625 $)) 63)) (-2440 (($ $ $) 112)) (-2450 (($ $) 106)) (-2556 (($ $ $) 117)) (-3375 (($ (-552)) 21) (($ (-1149)) 23) (($ (-1131)) 30) (($ (-221)) 25)) (-3152 (($ $ $) 93)) (-2960 (($ $) 94)) (-1464 (((-1237) (-1131)) 15)) (-2133 (($ (-1131)) 14)) (-3907 (($ (-625 (-625 $))) 50)) (-2290 (($ $ (-552)) 40) (($ $) 43)) (-2883 (((-1131) $) NIL)) (-3050 (($ $ $) 120)) (-4206 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2047 (((-112) $) 98)) (-2585 (($ $ (-625 $)) 101) (($ $ $ $) 102)) (-2637 (($ (-552)) 37)) (-2207 (((-552) $) 32) (((-552)) 35)) (-2609 (($ $ $) 38) (($ (-625 $)) 75)) (-2831 (((-1093) $) NIL)) (-2802 (($ $ $) 91)) (-3600 (($) 13)) (-2154 (($ $ (-625 $)) 99)) (-1453 (((-1131) (-1131)) 8)) (-1443 (($ $) 107) (($ $ (-751)) 110)) (-2813 (($ $ $) 88)) (-3072 (($ $ (-751)) 126)) (-2388 (($ (-625 $)) 52)) (-1683 (((-839) $) 19)) (-2845 (($ $ (-552)) 39) (($ $) 42)) (-2420 (($ $) 60) (($ (-625 $)) 61)) (-3761 (($ $) 58) (($ (-625 $)) 59)) (-3779 (($ $) 113)) (-2367 (($ (-625 $)) 57)) (-3901 (($ $ $) 97)) (-2539 (($ $ $) 119)) (-3743 (($ $ $) 92)) (-1504 (($ $ $) 95) (($ $) 96)) (-2346 (($ $ $) 81)) (-2320 (($ $ $) 79)) (-2281 (((-112) $ $) 16) (($ $ $) 17)) (-2334 (($ $ $) 80)) (-2307 (($ $ $) 78)) (-2404 (($ $ $) 86)) (-2393 (($ $ $) 83) (($ $) 84)) (-2382 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-839) (-13 (-1073) (-10 -8 (-15 -3871 ((-1237) $)) (-15 -2133 ($ (-1131))) (-15 -1464 ((-1237) (-1131))) (-15 -3375 ($ (-552))) (-15 -3375 ($ (-1149))) (-15 -3375 ($ (-1131))) (-15 -3375 ($ (-221))) (-15 -3600 ($)) (-15 -1453 ((-1131) (-1131))) (-15 -1924 ((-552) $)) (-15 -2207 ((-552) $)) (-15 -1924 ((-552))) (-15 -2207 ((-552))) (-15 -1442 ((-552) $)) (-15 -1430 ((-552) $)) (-15 -2637 ($ (-552))) (-15 -2626 ($ (-552))) (-15 -2616 ($ (-552) (-552))) (-15 -2290 ($ $ (-552))) (-15 -2303 ($ $ (-552))) (-15 -2845 ($ $ (-552))) (-15 -2290 ($ $)) (-15 -2303 ($ $)) (-15 -2845 ($ $)) (-15 -2609 ($ $ $)) (-15 -2597 ($ $ $)) (-15 -2609 ($ (-625 $))) (-15 -2597 ($ (-625 $))) (-15 -2667 ($ $ (-625 $))) (-15 -2585 ($ $ (-625 $))) (-15 -2585 ($ $ $ $)) (-15 -2575 ($ $ $)) (-15 -2047 ((-112) $)) (-15 -2154 ($ $ (-625 $))) (-15 -4265 ($ $)) (-15 -3050 ($ $ $)) (-15 -3779 ($ $)) (-15 -3907 ($ (-625 (-625 $)))) (-15 -2566 ($ $ $)) (-15 -1496 ($ $)) (-15 -1496 ($ $ $)) (-15 -2556 ($ $ $)) (-15 -2547 ($ $ $)) (-15 -2539 ($ $ $)) (-15 -2529 ($ $ $)) (-15 -3072 ($ $ (-751))) (-15 -3901 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -2511 ($ $ $)) (-15 -2501 ($ $ $)) (-15 -2492 ($ $ $)) (-15 -3468 ($ $ (-625 $))) (-15 -2480 ($ $ (-625 $))) (-15 -2471 ($ $)) (-15 -1443 ($ $)) (-15 -1443 ($ $ (-751))) (-15 -2462 ($ $)) (-15 -2462 ($ $ (-751))) (-15 -2450 ($ $)) (-15 -2440 ($ $ $)) (-15 -1791 ($ $)) (-15 -1791 ($ $ $)) (-15 -1791 ($ $ $ $)) (-15 -2430 ($ $)) (-15 -2430 ($ $ $)) (-15 -2430 ($ $ $ $)) (-15 -4206 ($ $)) (-15 -4206 ($ $ $)) (-15 -4206 ($ $ $ $)) (-15 -3761 ($ $)) (-15 -3761 ($ (-625 $))) (-15 -2420 ($ $)) (-15 -2420 ($ (-625 $))) (-15 -2411 ($ $)) (-15 -2411 ($ (-625 $))) (-15 -2400 ($ (-625 $))) (-15 -2388 ($ (-625 $))) (-15 -2378 ($ (-625 $))) (-15 -2367 ($ (-625 $))) (-15 -2281 ($ $ $)) (-15 -1671 ($ $ $)) (-15 -2307 ($ $ $)) (-15 -2320 ($ $ $)) (-15 -2334 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)) (-15 -2393 ($ $)) (-15 * ($ $ $)) (-15 -2404 ($ $ $)) (-15 ** ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -2826 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -2960 ($ $)) (-15 -1504 ($ $ $)) (-15 -1504 ($ $))))) (T -839))
+((-3871 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-839)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-839)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-839)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-839)))) (-3600 (*1 *1) (-5 *1 (-839))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-1924 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2207 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2637 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2616 (*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2290 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2303 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2845 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2290 (*1 *1 *1) (-5 *1 (-839))) (-2303 (*1 *1 *1) (-5 *1 (-839))) (-2845 (*1 *1 *1) (-5 *1 (-839))) (-2609 (*1 *1 *1 *1) (-5 *1 (-839))) (-2597 (*1 *1 *1 *1) (-5 *1 (-839))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2585 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2585 (*1 *1 *1 *1 *1) (-5 *1 (-839))) (-2575 (*1 *1 *1 *1) (-5 *1 (-839))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-4265 (*1 *1 *1) (-5 *1 (-839))) (-3050 (*1 *1 *1 *1) (-5 *1 (-839))) (-3779 (*1 *1 *1) (-5 *1 (-839))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-839)))) (-5 *1 (-839)))) (-2566 (*1 *1 *1 *1) (-5 *1 (-839))) (-1496 (*1 *1 *1) (-5 *1 (-839))) (-1496 (*1 *1 *1 *1) (-5 *1 (-839))) (-2556 (*1 *1 *1 *1) (-5 *1 (-839))) (-2547 (*1 *1 *1 *1) (-5 *1 (-839))) (-2539 (*1 *1 *1 *1) (-5 *1 (-839))) (-2529 (*1 *1 *1 *1) (-5 *1 (-839))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839)))) (-3901 (*1 *1 *1 *1) (-5 *1 (-839))) (-2520 (*1 *1 *1 *1) (-5 *1 (-839))) (-2511 (*1 *1 *1 *1) (-5 *1 (-839))) (-2501 (*1 *1 *1 *1) (-5 *1 (-839))) (-2492 (*1 *1 *1 *1) (-5 *1 (-839))) (-3468 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2480 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2471 (*1 *1 *1) (-5 *1 (-839))) (-1443 (*1 *1 *1) (-5 *1 (-839))) (-1443 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839)))) (-2462 (*1 *1 *1) (-5 *1 (-839))) (-2462 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839)))) (-2450 (*1 *1 *1) (-5 *1 (-839))) (-2440 (*1 *1 *1 *1) (-5 *1 (-839))) (-1791 (*1 *1 *1) (-5 *1 (-839))) (-1791 (*1 *1 *1 *1) (-5 *1 (-839))) (-1791 (*1 *1 *1 *1 *1) (-5 *1 (-839))) (-2430 (*1 *1 *1) (-5 *1 (-839))) (-2430 (*1 *1 *1 *1) (-5 *1 (-839))) (-2430 (*1 *1 *1 *1 *1) (-5 *1 (-839))) (-4206 (*1 *1 *1) (-5 *1 (-839))) (-4206 (*1 *1 *1 *1) (-5 *1 (-839))) (-4206 (*1 *1 *1 *1 *1) (-5 *1 (-839))) (-3761 (*1 *1 *1) (-5 *1 (-839))) (-3761 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2420 (*1 *1 *1) (-5 *1 (-839))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2411 (*1 *1 *1) (-5 *1 (-839))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2281 (*1 *1 *1 *1) (-5 *1 (-839))) (-1671 (*1 *1 *1 *1) (-5 *1 (-839))) (-2307 (*1 *1 *1 *1) (-5 *1 (-839))) (-2320 (*1 *1 *1 *1) (-5 *1 (-839))) (-2334 (*1 *1 *1 *1) (-5 *1 (-839))) (-2346 (*1 *1 *1 *1) (-5 *1 (-839))) (-2382 (*1 *1 *1 *1) (-5 *1 (-839))) (-2393 (*1 *1 *1 *1) (-5 *1 (-839))) (-2393 (*1 *1 *1) (-5 *1 (-839))) (* (*1 *1 *1 *1) (-5 *1 (-839))) (-2404 (*1 *1 *1 *1) (-5 *1 (-839))) (** (*1 *1 *1 *1) (-5 *1 (-839))) (-2813 (*1 *1 *1 *1) (-5 *1 (-839))) (-2851 (*1 *1 *1 *1) (-5 *1 (-839))) (-2826 (*1 *1 *1 *1) (-5 *1 (-839))) (-2802 (*1 *1 *1 *1) (-5 *1 (-839))) (-3743 (*1 *1 *1 *1) (-5 *1 (-839))) (-3152 (*1 *1 *1 *1) (-5 *1 (-839))) (-2960 (*1 *1 *1) (-5 *1 (-839))) (-1504 (*1 *1 *1 *1) (-5 *1 (-839))) (-1504 (*1 *1 *1) (-5 *1 (-839))))
+(-13 (-1073) (-10 -8 (-15 -3871 ((-1237) $)) (-15 -2133 ($ (-1131))) (-15 -1464 ((-1237) (-1131))) (-15 -3375 ($ (-552))) (-15 -3375 ($ (-1149))) (-15 -3375 ($ (-1131))) (-15 -3375 ($ (-221))) (-15 -3600 ($)) (-15 -1453 ((-1131) (-1131))) (-15 -1924 ((-552) $)) (-15 -2207 ((-552) $)) (-15 -1924 ((-552))) (-15 -2207 ((-552))) (-15 -1442 ((-552) $)) (-15 -1430 ((-552) $)) (-15 -2637 ($ (-552))) (-15 -2626 ($ (-552))) (-15 -2616 ($ (-552) (-552))) (-15 -2290 ($ $ (-552))) (-15 -2303 ($ $ (-552))) (-15 -2845 ($ $ (-552))) (-15 -2290 ($ $)) (-15 -2303 ($ $)) (-15 -2845 ($ $)) (-15 -2609 ($ $ $)) (-15 -2597 ($ $ $)) (-15 -2609 ($ (-625 $))) (-15 -2597 ($ (-625 $))) (-15 -2667 ($ $ (-625 $))) (-15 -2585 ($ $ (-625 $))) (-15 -2585 ($ $ $ $)) (-15 -2575 ($ $ $)) (-15 -2047 ((-112) $)) (-15 -2154 ($ $ (-625 $))) (-15 -4265 ($ $)) (-15 -3050 ($ $ $)) (-15 -3779 ($ $)) (-15 -3907 ($ (-625 (-625 $)))) (-15 -2566 ($ $ $)) (-15 -1496 ($ $)) (-15 -1496 ($ $ $)) (-15 -2556 ($ $ $)) (-15 -2547 ($ $ $)) (-15 -2539 ($ $ $)) (-15 -2529 ($ $ $)) (-15 -3072 ($ $ (-751))) (-15 -3901 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -2511 ($ $ $)) (-15 -2501 ($ $ $)) (-15 -2492 ($ $ $)) (-15 -3468 ($ $ (-625 $))) (-15 -2480 ($ $ (-625 $))) (-15 -2471 ($ $)) (-15 -1443 ($ $)) (-15 -1443 ($ $ (-751))) (-15 -2462 ($ $)) (-15 -2462 ($ $ (-751))) (-15 -2450 ($ $)) (-15 -2440 ($ $ $)) (-15 -1791 ($ $)) (-15 -1791 ($ $ $)) (-15 -1791 ($ $ $ $)) (-15 -2430 ($ $)) (-15 -2430 ($ $ $)) (-15 -2430 ($ $ $ $)) (-15 -4206 ($ $)) (-15 -4206 ($ $ $)) (-15 -4206 ($ $ $ $)) (-15 -3761 ($ $)) (-15 -3761 ($ (-625 $))) (-15 -2420 ($ $)) (-15 -2420 ($ (-625 $))) (-15 -2411 ($ $)) (-15 -2411 ($ (-625 $))) (-15 -2400 ($ (-625 $))) (-15 -2388 ($ (-625 $))) (-15 -2378 ($ (-625 $))) (-15 -2367 ($ (-625 $))) (-15 -2281 ($ $ $)) (-15 -1671 ($ $ $)) (-15 -2307 ($ $ $)) (-15 -2320 ($ $ $)) (-15 -2334 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)) (-15 -2393 ($ $)) (-15 * ($ $ $)) (-15 -2404 ($ $ $)) (-15 ** ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -2826 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -2960 ($ $)) (-15 -1504 ($ $ $)) (-15 -1504 ($ $))))
+((-2505 (((-1237) (-625 (-52))) 24)) (-4213 (((-1237) (-1131) (-839)) 14) (((-1237) (-839)) 9) (((-1237) (-1131)) 11)))
+(((-840) (-10 -7 (-15 -4213 ((-1237) (-1131))) (-15 -4213 ((-1237) (-839))) (-15 -4213 ((-1237) (-1131) (-839))) (-15 -2505 ((-1237) (-625 (-52)))))) (T -840))
+((-2505 (*1 *2 *3) (-12 (-5 *3 (-625 (-52))) (-5 *2 (-1237)) (-5 *1 (-840)))) (-4213 (*1 *2 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-839)) (-5 *2 (-1237)) (-5 *1 (-840)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-840)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-840)))))
+(-10 -7 (-15 -4213 ((-1237) (-1131))) (-15 -4213 ((-1237) (-839))) (-15 -4213 ((-1237) (-1131) (-839))) (-15 -2505 ((-1237) (-625 (-52)))))
+((-1671 (((-112) $ $) NIL)) (-2195 (((-3 $ "failed") (-1149)) 33)) (-2894 (((-751)) 31)) (-3702 (($) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-4318 (((-897) $) 29)) (-2883 (((-1131) $) 39)) (-3123 (($ (-897)) 28)) (-2831 (((-1093) $) NIL)) (-2042 (((-1149) $) 13) (((-528) $) 19) (((-868 (-374)) $) 26) (((-868 (-552)) $) 22)) (-1683 (((-839) $) 16)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 36)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 35)))
+(((-841 |#1|) (-13 (-821) (-598 (-1149)) (-598 (-528)) (-598 (-868 (-374))) (-598 (-868 (-552))) (-10 -8 (-15 -2195 ((-3 $ "failed") (-1149))))) (-625 (-1149))) (T -841))
+((-2195 (*1 *1 *2) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-841 *3)) (-14 *3 (-625 *2)))))
+(-13 (-821) (-598 (-1149)) (-598 (-528)) (-598 (-868 (-374))) (-598 (-868 (-552))) (-10 -8 (-15 -2195 ((-3 $ "failed") (-1149)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (((-928 |#1|) $) NIL) (($ (-928 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-4141 (((-751)) NIL)) (-4040 (((-1237) (-751)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-842 |#1| |#2| |#3| |#4|) (-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1683 ((-928 |#1|) $)) (-15 -1683 ($ (-928 |#1|))) (IF (|has| |#1| (-358)) (-15 -2404 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4040 ((-1237) (-751))))) (-1025) (-625 (-1149)) (-625 (-751)) (-751)) (T -842))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-928 *3)) (-5 *1 (-842 *3 *4 *5 *6)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))) (-14 *5 (-625 (-751))) (-14 *6 (-751)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-5 *1 (-842 *3 *4 *5 *6)) (-14 *4 (-625 (-1149))) (-14 *5 (-625 (-751))) (-14 *6 (-751)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-842 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *2 (-1025)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-751))) (-14 *5 (-751)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-842 *4 *5 *6 *7)) (-4 *4 (-1025)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 *3)) (-14 *7 *3))))
+(-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1683 ((-928 |#1|) $)) (-15 -1683 ($ (-928 |#1|))) (IF (|has| |#1| (-358)) (-15 -2404 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4040 ((-1237) (-751)))))
+((-1476 (((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|) 31)) (-1486 (((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|) 24)))
+(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -1486 ((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|)) (-15 -1476 ((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|))) (-358) (-1223 |#1|) (-1208 |#1|)) (T -843))
+((-1476 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-172 *6)) (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1223 *5)) (-4 *6 (-1208 *5)))) (-1486 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-402 *6)) (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1223 *5)) (-4 *6 (-1208 *5)))))
+(-10 -7 (-15 -1486 ((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|)) (-15 -1476 ((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|)))
+((-1486 (((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|)) 28) (((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) 26)))
+(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -1486 ((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) (-15 -1486 ((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|)))) (-358) (-1149) |#1|) (T -844))
+((-1486 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1224 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1205 *6 *5))) (-5 *1 (-844 *5 *6 *7)))) (-1486 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1224 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1205 *6 *5))) (-5 *1 (-844 *5 *6 *7)))))
+(-10 -7 (-15 -1486 ((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) (-15 -1486 ((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-3837 (($ $ (-552)) 60)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-1496 (($ (-1145 (-552)) (-552)) 59)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-1507 (($ $) 62)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2172 (((-751) $) 67)) (-3650 (((-112) $) 30)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-1531 (((-552)) 64)) (-1520 (((-552) $) 63)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2147 (($ $ (-552)) 66)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1542 (((-1129 (-552)) $) 68)) (-3580 (($ $) 65)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2874 (((-552) $ (-552)) 61)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
+(((-845 |#1|) (-138) (-552)) (T -845))
+((-1542 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-1129 (-552))))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-751)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) (-3580 (*1 *1 *1) (-4 *1 (-845 *2))) (-1531 (*1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) (-1507 (*1 *1 *1) (-4 *1 (-845 *2))) (-2874 (*1 *2 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) (-3837 (*1 *1 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) (-1496 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *3 (-552)) (-4 *1 (-845 *4)))))
+(-13 (-302) (-145) (-10 -8 (-15 -1542 ((-1129 (-552)) $)) (-15 -2172 ((-751) $)) (-15 -2147 ($ $ (-552))) (-15 -3580 ($ $)) (-15 -1531 ((-552))) (-15 -1520 ((-552) $)) (-15 -1507 ($ $)) (-15 -2874 ((-552) $ (-552))) (-15 -3837 ($ $ (-552))) (-15 -1496 ($ (-1145 (-552)) (-552)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $ (-552)) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-1496 (($ (-1145 (-552)) (-552)) NIL)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1507 (($ $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2172 (((-751) $) NIL)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1531 (((-552)) NIL)) (-1520 (((-552) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2147 (($ $ (-552)) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1542 (((-1129 (-552)) $) NIL)) (-3580 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2874 (((-552) $ (-552)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL)))
+(((-846 |#1|) (-845 |#1|) (-552)) (T -846))
+NIL
+(-845 |#1|)
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-846 |#1|) $) NIL (|has| (-846 |#1|) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-846 |#1|) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-846 |#1|) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-846 |#1|) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-846 |#1|) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-846 |#1|) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-846 |#1|) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-846 |#1|) (-1014 (-552))))) (-1895 (((-846 |#1|) $) NIL) (((-1149) $) NIL (|has| (-846 |#1|) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-846 |#1|) (-1014 (-552)))) (((-552) $) NIL (|has| (-846 |#1|) (-1014 (-552))))) (-2987 (($ $) NIL) (($ (-552) $) NIL)) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-846 |#1|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-846 |#1|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-846 |#1|))) (|:| |vec| (-1232 (-846 |#1|)))) (-669 $) (-1232 $)) NIL) (((-669 (-846 |#1|)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-846 |#1|) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-846 |#1|) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-846 |#1|) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-846 |#1|) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-846 |#1|) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-846 |#1|) (-1124)))) (-3630 (((-112) $) NIL (|has| (-846 |#1|) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-846 |#1|) (-827)))) (-3332 (($ $ $) NIL (|has| (-846 |#1|) (-827)))) (-1996 (($ (-1 (-846 |#1|) (-846 |#1|)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-846 |#1|) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-846 |#1|) (-302)))) (-4189 (((-846 |#1|) $) NIL (|has| (-846 |#1|) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-846 |#1|) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-846 |#1|) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-846 |#1|)) (-625 (-846 |#1|))) NIL (|has| (-846 |#1|) (-304 (-846 |#1|)))) (($ $ (-846 |#1|) (-846 |#1|)) NIL (|has| (-846 |#1|) (-304 (-846 |#1|)))) (($ $ (-289 (-846 |#1|))) NIL (|has| (-846 |#1|) (-304 (-846 |#1|)))) (($ $ (-625 (-289 (-846 |#1|)))) NIL (|has| (-846 |#1|) (-304 (-846 |#1|)))) (($ $ (-625 (-1149)) (-625 (-846 |#1|))) NIL (|has| (-846 |#1|) (-507 (-1149) (-846 |#1|)))) (($ $ (-1149) (-846 |#1|)) NIL (|has| (-846 |#1|) (-507 (-1149) (-846 |#1|))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-846 |#1|)) NIL (|has| (-846 |#1|) (-281 (-846 |#1|) (-846 |#1|))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-846 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-846 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-1 (-846 |#1|) (-846 |#1|)) (-751)) NIL) (($ $ (-1 (-846 |#1|) (-846 |#1|))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-846 |#1|) $) NIL)) (-2042 (((-868 (-552)) $) NIL (|has| (-846 |#1|) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-846 |#1|) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-846 |#1|) (-598 (-528)))) (((-374) $) NIL (|has| (-846 |#1|) (-998))) (((-221) $) NIL (|has| (-846 |#1|) (-998)))) (-1553 (((-172 (-402 (-552))) $) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-846 |#1|) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-846 |#1|)) NIL) (($ (-1149)) NIL (|has| (-846 |#1|) (-1014 (-1149))))) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-846 |#1|) (-885))) (|has| (-846 |#1|) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-846 |#1|) $) NIL (|has| (-846 |#1|) (-537)))) (-3518 (((-112) $ $) NIL)) (-2874 (((-402 (-552)) $ (-552)) NIL)) (-1727 (($ $) NIL (|has| (-846 |#1|) (-800)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-846 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-846 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-1 (-846 |#1|) (-846 |#1|)) (-751)) NIL) (($ $ (-1 (-846 |#1|) (-846 |#1|))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-846 |#1|) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-846 |#1|) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-846 |#1|) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-846 |#1|) (-827)))) (-2404 (($ $ $) NIL) (($ (-846 |#1|) (-846 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-846 |#1|) $) NIL) (($ $ (-846 |#1|)) NIL)))
+(((-847 |#1|) (-13 (-968 (-846 |#1|)) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)))) (-552)) (T -847))
+((-2874 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-847 *4)) (-14 *4 *3) (-5 *3 (-552)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-552)))) (-5 *1 (-847 *3)) (-14 *3 (-552)))) (-2987 (*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-14 *2 (-552)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-847 *3)) (-14 *3 *2))))
+(-13 (-968 (-846 |#1|)) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 ((|#2| $) NIL (|has| |#2| (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| |#2| (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| |#2| (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552))))) (-1895 ((|#2| $) NIL) (((-1149) $) NIL (|has| |#2| (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-552)))) (((-552) $) NIL (|has| |#2| (-1014 (-552))))) (-2987 (($ $) 31) (($ (-552) $) 32)) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) 53)) (-3702 (($) NIL (|has| |#2| (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| |#2| (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| |#2| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| |#2| (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 ((|#2| $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#2| (-1124)))) (-3630 (((-112) $) NIL (|has| |#2| (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 49)) (-2071 (($) NIL (|has| |#2| (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| |#2| (-302)))) (-4189 ((|#2| $) NIL (|has| |#2| (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 |#2|) (-625 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-304 |#2|))) (($ $ (-289 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ (-625 (-289 |#2|))) NIL (|has| |#2| (-304 |#2|))) (($ $ (-625 (-1149)) (-625 |#2|)) NIL (|has| |#2| (-507 (-1149) |#2|))) (($ $ (-1149) |#2|) NIL (|has| |#2| (-507 (-1149) |#2|)))) (-2397 (((-751) $) NIL)) (-2154 (($ $ |#2|) NIL (|has| |#2| (-281 |#2| |#2|)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| |#2| (-229))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2265 (($ $) NIL)) (-1368 ((|#2| $) NIL)) (-2042 (((-868 (-552)) $) NIL (|has| |#2| (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| |#2| (-598 (-868 (-374))))) (((-528) $) NIL (|has| |#2| (-598 (-528)))) (((-374) $) NIL (|has| |#2| (-998))) (((-221) $) NIL (|has| |#2| (-998)))) (-1553 (((-172 (-402 (-552))) $) 68)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-1683 (((-839) $) 87) (($ (-552)) 19) (($ $) NIL) (($ (-402 (-552))) 24) (($ |#2|) 18) (($ (-1149)) NIL (|has| |#2| (-1014 (-1149))))) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-4199 ((|#2| $) NIL (|has| |#2| (-537)))) (-3518 (((-112) $ $) NIL)) (-2874 (((-402 (-552)) $ (-552)) 60)) (-1727 (($ $) NIL (|has| |#2| (-800)))) (-2089 (($) 14 T CONST)) (-2100 (($) 16 T CONST)) (-3768 (($ $) NIL (|has| |#2| (-229))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) 35)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2393 (($ $) 39) (($ $ $) 41)) (-2382 (($ $ $) 37)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 50)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 42) (($ $ $) 44) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-848 |#1| |#2|) (-13 (-968 |#2|) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)))) (-552) (-845 |#1|)) (T -848))
+((-2874 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-402 (-552))) (-5 *1 (-848 *4 *5)) (-5 *3 (-552)) (-4 *5 (-845 *4)))) (-1553 (*1 *2 *1) (-12 (-14 *3 (-552)) (-5 *2 (-172 (-402 (-552)))) (-5 *1 (-848 *3 *4)) (-4 *4 (-845 *3)))) (-2987 (*1 *1 *1) (-12 (-14 *2 (-552)) (-5 *1 (-848 *2 *3)) (-4 *3 (-845 *2)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-14 *3 *2) (-5 *1 (-848 *3 *4)) (-4 *4 (-845 *3)))))
+(-13 (-968 |#2|) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $))))
+((-1671 (((-112) $ $) NIL (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073))))) (-2673 ((|#2| $) 12)) (-3154 (($ |#1| |#2|) 9)) (-2883 (((-1131) $) NIL (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073))))) (-2831 (((-1093) $) NIL (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#1| $) 11)) (-1695 (($ |#1| |#2|) 10)) (-1683 (((-839) $) 18 (-1523 (-12 (|has| |#1| (-597 (-839))) (|has| |#2| (-597 (-839)))) (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073)))))) (-2281 (((-112) $ $) 22 (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073))))))
+(((-849 |#1| |#2|) (-13 (-1186) (-10 -8 (IF (|has| |#1| (-597 (-839))) (IF (|has| |#2| (-597 (-839))) (-6 (-597 (-839))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1073)) (IF (|has| |#2| (-1073)) (-6 (-1073)) |%noBranch|) |%noBranch|) (-15 -3154 ($ |#1| |#2|)) (-15 -1695 ($ |#1| |#2|)) (-15 -2924 (|#1| $)) (-15 -2673 (|#2| $)))) (-1186) (-1186)) (T -849))
+((-3154 (*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1186)) (-4 *3 (-1186)))) (-1695 (*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1186)) (-4 *3 (-1186)))) (-2924 (*1 *2 *1) (-12 (-4 *2 (-1186)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1186)))) (-2673 (*1 *2 *1) (-12 (-4 *2 (-1186)) (-5 *1 (-849 *3 *2)) (-4 *3 (-1186)))))
+(-13 (-1186) (-10 -8 (IF (|has| |#1| (-597 (-839))) (IF (|has| |#2| (-597 (-839))) (-6 (-597 (-839))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1073)) (IF (|has| |#2| (-1073)) (-6 (-1073)) |%noBranch|) |%noBranch|) (-15 -3154 ($ |#1| |#2|)) (-15 -1695 ($ |#1| |#2|)) (-15 -2924 (|#1| $)) (-15 -2673 (|#2| $))))
+((-1671 (((-112) $ $) NIL)) (-3074 (((-552) $) 15)) (-1574 (($ (-155)) 11)) (-1564 (($ (-155)) 12)) (-2883 (((-1131) $) NIL)) (-3064 (((-155) $) 13)) (-2831 (((-1093) $) NIL)) (-2562 (($ (-155)) 9)) (-1583 (($ (-155)) 8)) (-1683 (((-839) $) 23) (($ (-155)) 16)) (-3931 (($ (-155)) 10)) (-2281 (((-112) $ $) NIL)))
+(((-850) (-13 (-1073) (-10 -8 (-15 -1583 ($ (-155))) (-15 -2562 ($ (-155))) (-15 -3931 ($ (-155))) (-15 -1574 ($ (-155))) (-15 -1564 ($ (-155))) (-15 -3064 ((-155) $)) (-15 -3074 ((-552) $)) (-15 -1683 ($ (-155)))))) (T -850))
+((-1583 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-3931 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-850)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
+(-13 (-1073) (-10 -8 (-15 -1583 ($ (-155))) (-15 -2562 ($ (-155))) (-15 -3931 ($ (-155))) (-15 -1574 ($ (-155))) (-15 -1564 ($ (-155))) (-15 -3064 ((-155) $)) (-15 -3074 ((-552) $)) (-15 -1683 ($ (-155)))))
+((-1683 (((-311 (-552)) (-402 (-928 (-48)))) 23) (((-311 (-552)) (-928 (-48))) 18)))
+(((-851) (-10 -7 (-15 -1683 ((-311 (-552)) (-928 (-48)))) (-15 -1683 ((-311 (-552)) (-402 (-928 (-48))))))) (T -851))
+((-1683 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 (-48)))) (-5 *2 (-311 (-552))) (-5 *1 (-851)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-928 (-48))) (-5 *2 (-311 (-552))) (-5 *1 (-851)))))
+(-10 -7 (-15 -1683 ((-311 (-552)) (-928 (-48)))) (-15 -1683 ((-311 (-552)) (-402 (-928 (-48))))))
+((-1996 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14)))
+(((-852 |#1| |#2|) (-10 -7 (-15 -1996 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1186) (-1186)) (T -852))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))))
+(-10 -7 (-15 -1996 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))))
+((-1614 (($ |#1| |#1|) 8)) (-1619 ((|#1| $ (-751)) 10)))
+(((-853 |#1|) (-10 -8 (-15 -1614 ($ |#1| |#1|)) (-15 -1619 (|#1| $ (-751)))) (-1186)) (T -853))
+((-1619 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-853 *2)) (-4 *2 (-1186)))) (-1614 (*1 *1 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1186)))))
+(-10 -8 (-15 -1614 ($ |#1| |#1|)) (-15 -1619 (|#1| $ (-751))))
+((-1996 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14)))
+(((-854 |#1| |#2|) (-10 -7 (-15 -1996 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-1186) (-1186)) (T -854))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))))
+(-10 -7 (-15 -1996 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))))
+((-1614 (($ |#1| |#1| |#1|) 8)) (-1619 ((|#1| $ (-751)) 10)))
+(((-855 |#1|) (-10 -8 (-15 -1614 ($ |#1| |#1| |#1|)) (-15 -1619 (|#1| $ (-751)))) (-1186)) (T -855))
+((-1619 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-855 *2)) (-4 *2 (-1186)))) (-1614 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1186)))))
+(-10 -8 (-15 -1614 ($ |#1| |#1| |#1|)) (-15 -1619 (|#1| $ (-751))))
+((-1595 (((-625 (-1154)) (-1131)) 9)))
+(((-856) (-10 -7 (-15 -1595 ((-625 (-1154)) (-1131))))) (T -856))
+((-1595 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-625 (-1154))) (-5 *1 (-856)))))
+(-10 -7 (-15 -1595 ((-625 (-1154)) (-1131))))
+((-1996 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 14)))
+(((-857 |#1| |#2|) (-10 -7 (-15 -1996 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-1186) (-1186)) (T -857))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6)))))
+(-10 -7 (-15 -1996 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|))))
+((-1608 (($ |#1| |#1| |#1|) 8)) (-1619 ((|#1| $ (-751)) 10)))
+(((-858 |#1|) (-10 -8 (-15 -1608 ($ |#1| |#1| |#1|)) (-15 -1619 (|#1| $ (-751)))) (-1186)) (T -858))
+((-1619 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-858 *2)) (-4 *2 (-1186)))) (-1608 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1186)))))
+(-10 -8 (-15 -1608 ($ |#1| |#1| |#1|)) (-15 -1619 (|#1| $ (-751))))
+((-1664 (((-1129 (-625 (-552))) (-625 (-552)) (-1129 (-625 (-552)))) 32)) (-1653 (((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552))) 28)) (-1675 (((-1129 (-625 (-552))) (-625 (-552))) 41) (((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552))) 40)) (-1687 (((-1129 (-625 (-552))) (-552)) 42)) (-1630 (((-1129 (-625 (-552))) (-552) (-552)) 22) (((-1129 (-625 (-552))) (-552)) 16) (((-1129 (-625 (-552))) (-552) (-552) (-552)) 12)) (-1642 (((-1129 (-625 (-552))) (-1129 (-625 (-552)))) 26)) (-2410 (((-625 (-552)) (-625 (-552))) 25)))
+(((-859) (-10 -7 (-15 -1630 ((-1129 (-625 (-552))) (-552) (-552) (-552))) (-15 -1630 ((-1129 (-625 (-552))) (-552))) (-15 -1630 ((-1129 (-625 (-552))) (-552) (-552))) (-15 -2410 ((-625 (-552)) (-625 (-552)))) (-15 -1642 ((-1129 (-625 (-552))) (-1129 (-625 (-552))))) (-15 -1653 ((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552)))) (-15 -1664 ((-1129 (-625 (-552))) (-625 (-552)) (-1129 (-625 (-552))))) (-15 -1675 ((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552)))) (-15 -1675 ((-1129 (-625 (-552))) (-625 (-552)))) (-15 -1687 ((-1129 (-625 (-552))) (-552))))) (T -859))
+((-1687 (*1 *2 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))) (-1675 (*1 *2 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-625 (-552))))) (-1675 (*1 *2 *3 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-625 (-552))))) (-1664 (*1 *2 *3 *2) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *3 (-625 (-552))) (-5 *1 (-859)))) (-1653 (*1 *2 *3 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-625 (-552))))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-859)))) (-1630 (*1 *2 *3 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))) (-1630 (*1 *2 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))) (-1630 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))))
+(-10 -7 (-15 -1630 ((-1129 (-625 (-552))) (-552) (-552) (-552))) (-15 -1630 ((-1129 (-625 (-552))) (-552))) (-15 -1630 ((-1129 (-625 (-552))) (-552) (-552))) (-15 -2410 ((-625 (-552)) (-625 (-552)))) (-15 -1642 ((-1129 (-625 (-552))) (-1129 (-625 (-552))))) (-15 -1653 ((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552)))) (-15 -1664 ((-1129 (-625 (-552))) (-625 (-552)) (-1129 (-625 (-552))))) (-15 -1675 ((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552)))) (-15 -1675 ((-1129 (-625 (-552))) (-625 (-552)))) (-15 -1687 ((-1129 (-625 (-552))) (-552))))
+((-2042 (((-868 (-374)) $) 9 (|has| |#1| (-598 (-868 (-374))))) (((-868 (-552)) $) 8 (|has| |#1| (-598 (-868 (-552)))))))
+(((-860 |#1|) (-138) (-1186)) (T -860))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-598 (-868 (-552)))) (-6 (-598 (-868 (-552)))) |%noBranch|) (IF (|has| |t#1| (-598 (-868 (-374)))) (-6 (-598 (-868 (-374)))) |%noBranch|)))
+(((-598 (-868 (-374))) |has| |#1| (-598 (-868 (-374)))) ((-598 (-868 (-552))) |has| |#1| (-598 (-868 (-552)))))
+((-1671 (((-112) $ $) NIL)) (-2183 (($) 14)) (-1709 (($ (-865 |#1| |#2|) (-865 |#1| |#3|)) 27)) (-3223 (((-865 |#1| |#3|) $) 16)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1785 (((-112) $) 22)) (-3547 (($) 19)) (-1683 (((-839) $) 30)) (-1699 (((-865 |#1| |#2|) $) 15)) (-2281 (((-112) $ $) 25)))
+(((-861 |#1| |#2| |#3|) (-13 (-1073) (-10 -8 (-15 -1785 ((-112) $)) (-15 -3547 ($)) (-15 -2183 ($)) (-15 -1709 ($ (-865 |#1| |#2|) (-865 |#1| |#3|))) (-15 -1699 ((-865 |#1| |#2|) $)) (-15 -3223 ((-865 |#1| |#3|) $)))) (-1073) (-1073) (-646 |#2|)) (T -861))
+((-1785 (*1 *2 *1) (-12 (-4 *4 (-1073)) (-5 *2 (-112)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1073)) (-4 *5 (-646 *4)))) (-3547 (*1 *1) (-12 (-4 *3 (-1073)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1073)) (-4 *4 (-646 *3)))) (-2183 (*1 *1) (-12 (-4 *3 (-1073)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1073)) (-4 *4 (-646 *3)))) (-1709 (*1 *1 *2 *3) (-12 (-5 *2 (-865 *4 *5)) (-5 *3 (-865 *4 *6)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-646 *5)) (-5 *1 (-861 *4 *5 *6)))) (-1699 (*1 *2 *1) (-12 (-4 *4 (-1073)) (-5 *2 (-865 *3 *4)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1073)) (-4 *5 (-646 *4)))) (-3223 (*1 *2 *1) (-12 (-4 *4 (-1073)) (-5 *2 (-865 *3 *5)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1073)) (-4 *5 (-646 *4)))))
+(-13 (-1073) (-10 -8 (-15 -1785 ((-112) $)) (-15 -3547 ($)) (-15 -2183 ($)) (-15 -1709 ($ (-865 |#1| |#2|) (-865 |#1| |#3|))) (-15 -1699 ((-865 |#1| |#2|) $)) (-15 -3223 ((-865 |#1| |#3|) $))))
+((-1671 (((-112) $ $) 7)) (-3841 (((-865 |#1| $) $ (-868 |#1|) (-865 |#1| $)) 13)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)))
+(((-862 |#1|) (-138) (-1073)) (T -862))
+((-3841 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-865 *4 *1)) (-5 *3 (-868 *4)) (-4 *1 (-862 *4)) (-4 *4 (-1073)))))
+(-13 (-1073) (-10 -8 (-15 -3841 ((-865 |t#1| $) $ (-868 |t#1|) (-865 |t#1| $)))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1721 (((-112) (-625 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1733 (((-865 |#1| |#2|) |#2| |#3|) 43 (-12 (-2960 (|has| |#2| (-1014 (-1149)))) (-2960 (|has| |#2| (-1025))))) (((-625 (-289 (-928 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1025)) (-2960 (|has| |#2| (-1014 (-1149)))))) (((-625 (-289 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1014 (-1149)))) (((-861 |#1| |#2| (-625 |#2|)) (-625 |#2|) |#3|) 21)))
+(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -1721 ((-112) |#2| |#3|)) (-15 -1721 ((-112) (-625 |#2|) |#3|)) (-15 -1733 ((-861 |#1| |#2| (-625 |#2|)) (-625 |#2|) |#3|)) (IF (|has| |#2| (-1014 (-1149))) (-15 -1733 ((-625 (-289 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1025)) (-15 -1733 ((-625 (-289 (-928 |#2|))) |#2| |#3|)) (-15 -1733 ((-865 |#1| |#2|) |#2| |#3|))))) (-1073) (-862 |#1|) (-598 (-868 |#1|))) (T -863))
+((-1733 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-5 *2 (-865 *5 *3)) (-5 *1 (-863 *5 *3 *4)) (-2960 (-4 *3 (-1014 (-1149)))) (-2960 (-4 *3 (-1025))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5))))) (-1733 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-5 *2 (-625 (-289 (-928 *3)))) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-1025)) (-2960 (-4 *3 (-1014 (-1149)))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5))))) (-1733 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-5 *2 (-625 (-289 *3))) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-1014 (-1149))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5))))) (-1733 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-4 *6 (-862 *5)) (-5 *2 (-861 *5 *6 (-625 *6))) (-5 *1 (-863 *5 *6 *4)) (-5 *3 (-625 *6)) (-4 *4 (-598 (-868 *5))))) (-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *6)) (-4 *6 (-862 *5)) (-4 *5 (-1073)) (-5 *2 (-112)) (-5 *1 (-863 *5 *6 *4)) (-4 *4 (-598 (-868 *5))))) (-1721 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-5 *2 (-112)) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5))))))
+(-10 -7 (-15 -1721 ((-112) |#2| |#3|)) (-15 -1721 ((-112) (-625 |#2|) |#3|)) (-15 -1733 ((-861 |#1| |#2| (-625 |#2|)) (-625 |#2|) |#3|)) (IF (|has| |#2| (-1014 (-1149))) (-15 -1733 ((-625 (-289 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1025)) (-15 -1733 ((-625 (-289 (-928 |#2|))) |#2| |#3|)) (-15 -1733 ((-865 |#1| |#2|) |#2| |#3|)))))
+((-1996 (((-865 |#1| |#3|) (-1 |#3| |#2|) (-865 |#1| |#2|)) 22)))
+(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-865 |#1| |#3|) (-1 |#3| |#2|) (-865 |#1| |#2|)))) (-1073) (-1073) (-1073)) (T -864))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-865 *5 *6)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-865 *5 *7)) (-5 *1 (-864 *5 *6 *7)))))
+(-10 -7 (-15 -1996 ((-865 |#1| |#3|) (-1 |#3| |#2|) (-865 |#1| |#2|))))
+((-1671 (((-112) $ $) NIL)) (-3419 (($ $ $) 39)) (-1997 (((-3 (-112) "failed") $ (-868 |#1|)) 36)) (-2183 (($) 12)) (-2883 (((-1131) $) NIL)) (-1753 (($ (-868 |#1|) |#2| $) 20)) (-2831 (((-1093) $) NIL)) (-1774 (((-3 |#2| "failed") (-868 |#1|) $) 50)) (-1785 (((-112) $) 15)) (-3547 (($) 13)) (-3905 (((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|))) $) 25)) (-1695 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|)))) 23)) (-1683 (((-839) $) 44)) (-1743 (($ (-868 |#1|) |#2| $ |#2|) 48)) (-1763 (($ (-868 |#1|) |#2| $) 47)) (-2281 (((-112) $ $) 41)))
+(((-865 |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -1785 ((-112) $)) (-15 -3547 ($)) (-15 -2183 ($)) (-15 -3419 ($ $ $)) (-15 -1774 ((-3 |#2| "failed") (-868 |#1|) $)) (-15 -1763 ($ (-868 |#1|) |#2| $)) (-15 -1753 ($ (-868 |#1|) |#2| $)) (-15 -1743 ($ (-868 |#1|) |#2| $ |#2|)) (-15 -3905 ((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|))) $)) (-15 -1695 ($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|))))) (-15 -1997 ((-3 (-112) "failed") $ (-868 |#1|))))) (-1073) (-1073)) (T -865))
+((-1785 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3547 (*1 *1) (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-2183 (*1 *1) (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-3419 (*1 *1 *1 *1) (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-1774 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-4 *2 (-1073)) (-5 *1 (-865 *4 *2)))) (-1763 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1073)))) (-1753 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1073)))) (-1743 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1073)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 *4)))) (-5 *1 (-865 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 *4)))) (-4 *4 (-1073)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1073)))) (-1997 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-112)) (-5 *1 (-865 *4 *5)) (-4 *5 (-1073)))))
+(-13 (-1073) (-10 -8 (-15 -1785 ((-112) $)) (-15 -3547 ($)) (-15 -2183 ($)) (-15 -3419 ($ $ $)) (-15 -1774 ((-3 |#2| "failed") (-868 |#1|) $)) (-15 -1763 ($ (-868 |#1|) |#2| $)) (-15 -1753 ($ (-868 |#1|) |#2| $)) (-15 -1743 ($ (-868 |#1|) |#2| $ |#2|)) (-15 -3905 ((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|))) $)) (-15 -1695 ($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|))))) (-15 -1997 ((-3 (-112) "failed") $ (-868 |#1|)))))
+((-3925 (((-868 |#1|) (-868 |#1|) (-625 (-1149)) (-1 (-112) (-625 |#2|))) 32) (((-868 |#1|) (-868 |#1|) (-625 (-1 (-112) |#2|))) 43) (((-868 |#1|) (-868 |#1|) (-1 (-112) |#2|)) 35)) (-1997 (((-112) (-625 |#2|) (-868 |#1|)) 40) (((-112) |#2| (-868 |#1|)) 36)) (-3321 (((-1 (-112) |#2|) (-868 |#1|)) 16)) (-2014 (((-625 |#2|) (-868 |#1|)) 24)) (-2007 (((-868 |#1|) (-868 |#1|) |#2|) 20)))
+(((-866 |#1| |#2|) (-10 -7 (-15 -3925 ((-868 |#1|) (-868 |#1|) (-1 (-112) |#2|))) (-15 -3925 ((-868 |#1|) (-868 |#1|) (-625 (-1 (-112) |#2|)))) (-15 -3925 ((-868 |#1|) (-868 |#1|) (-625 (-1149)) (-1 (-112) (-625 |#2|)))) (-15 -3321 ((-1 (-112) |#2|) (-868 |#1|))) (-15 -1997 ((-112) |#2| (-868 |#1|))) (-15 -1997 ((-112) (-625 |#2|) (-868 |#1|))) (-15 -2007 ((-868 |#1|) (-868 |#1|) |#2|)) (-15 -2014 ((-625 |#2|) (-868 |#1|)))) (-1073) (-1186)) (T -866))
+((-2014 (*1 *2 *3) (-12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-625 *5)) (-5 *1 (-866 *4 *5)) (-4 *5 (-1186)))) (-2007 (*1 *2 *2 *3) (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-866 *4 *3)) (-4 *3 (-1186)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-4 *6 (-1186)) (-5 *2 (-112)) (-5 *1 (-866 *5 *6)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-5 *2 (-112)) (-5 *1 (-866 *5 *3)) (-4 *3 (-1186)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-866 *4 *5)) (-4 *5 (-1186)))) (-3925 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-868 *5)) (-5 *3 (-625 (-1149))) (-5 *4 (-1 (-112) (-625 *6))) (-4 *5 (-1073)) (-4 *6 (-1186)) (-5 *1 (-866 *5 *6)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *2 (-868 *4)) (-5 *3 (-625 (-1 (-112) *5))) (-4 *4 (-1073)) (-4 *5 (-1186)) (-5 *1 (-866 *4 *5)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *2 (-868 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1073)) (-4 *5 (-1186)) (-5 *1 (-866 *4 *5)))))
+(-10 -7 (-15 -3925 ((-868 |#1|) (-868 |#1|) (-1 (-112) |#2|))) (-15 -3925 ((-868 |#1|) (-868 |#1|) (-625 (-1 (-112) |#2|)))) (-15 -3925 ((-868 |#1|) (-868 |#1|) (-625 (-1149)) (-1 (-112) (-625 |#2|)))) (-15 -3321 ((-1 (-112) |#2|) (-868 |#1|))) (-15 -1997 ((-112) |#2| (-868 |#1|))) (-15 -1997 ((-112) (-625 |#2|) (-868 |#1|))) (-15 -2007 ((-868 |#1|) (-868 |#1|) |#2|)) (-15 -2014 ((-625 |#2|) (-868 |#1|))))
+((-1996 (((-868 |#2|) (-1 |#2| |#1|) (-868 |#1|)) 19)))
+(((-867 |#1| |#2|) (-10 -7 (-15 -1996 ((-868 |#2|) (-1 |#2| |#1|) (-868 |#1|)))) (-1073) (-1073)) (T -867))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-868 *6)) (-5 *1 (-867 *5 *6)))))
+(-10 -7 (-15 -1996 ((-868 |#2|) (-1 |#2| |#1|) (-868 |#1|))))
+((-1671 (((-112) $ $) NIL)) (-1875 (($ $ (-625 (-52))) 64)) (-3982 (((-625 $) $) 118)) (-1843 (((-2 (|:| |var| (-625 (-1149))) (|:| |pred| (-52))) $) 24)) (-2981 (((-112) $) 30)) (-1855 (($ $ (-625 (-1149)) (-52)) 25)) (-1885 (($ $ (-625 (-52))) 63)) (-1893 (((-3 |#1| "failed") $) 61) (((-3 (-1149) "failed") $) 140)) (-1895 ((|#1| $) 58) (((-1149) $) NIL)) (-1819 (($ $) 108)) (-1956 (((-112) $) 47)) (-1896 (((-625 (-52)) $) 45)) (-1864 (($ (-1149) (-112) (-112) (-112)) 65)) (-1796 (((-3 (-625 $) "failed") (-625 $)) 72)) (-1920 (((-112) $) 50)) (-1934 (((-112) $) 49)) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) 36)) (-2151 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-4194 (((-3 (-2 (|:| |val| $) (|:| -3564 $)) "failed") $) 83)) (-4160 (((-3 (-625 $) "failed") $) 33)) (-1986 (((-3 (-625 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -3362 (-114)) (|:| |arg| (-625 $))) "failed") $) 95)) (-1977 (((-3 (-625 $) "failed") $) 37)) (-4182 (((-3 (-2 (|:| |val| $) (|:| -3564 (-751))) "failed") $) 40)) (-1968 (((-112) $) 29)) (-2831 (((-1093) $) NIL)) (-1830 (((-112) $) 21)) (-1909 (((-112) $) 46)) (-1808 (((-625 (-52)) $) 111)) (-1944 (((-112) $) 48)) (-2154 (($ (-114) (-625 $)) 92)) (-2389 (((-751) $) 28)) (-1871 (($ $) 62)) (-2042 (($ (-625 $)) 59)) (-4307 (((-112) $) 26)) (-1683 (((-839) $) 53) (($ |#1|) 18) (($ (-1149)) 66)) (-2007 (($ $ (-52)) 110)) (-2089 (($) 91 T CONST)) (-2100 (($) 73 T CONST)) (-2281 (((-112) $ $) 79)) (-2404 (($ $ $) 100)) (-2382 (($ $ $) 104)) (** (($ $ (-751)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
+(((-868 |#1|) (-13 (-1073) (-1014 |#1|) (-1014 (-1149)) (-10 -8 (-15 0 ($) -1426) (-15 1 ($) -1426) (-15 -4160 ((-3 (-625 $) "failed") $)) (-15 -4172 ((-3 (-625 $) "failed") $)) (-15 -1986 ((-3 (-625 $) "failed") $ (-114))) (-15 -1986 ((-3 (-2 (|:| -3362 (-114)) (|:| |arg| (-625 $))) "failed") $)) (-15 -4182 ((-3 (-2 (|:| |val| $) (|:| -3564 (-751))) "failed") $)) (-15 -2151 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1977 ((-3 (-625 $) "failed") $)) (-15 -4194 ((-3 (-2 (|:| |val| $) (|:| -3564 $)) "failed") $)) (-15 -2154 ($ (-114) (-625 $))) (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ $)) (-15 -2404 ($ $ $)) (-15 -2389 ((-751) $)) (-15 -2042 ($ (-625 $))) (-15 -1871 ($ $)) (-15 -1968 ((-112) $)) (-15 -1956 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -4307 ((-112) $)) (-15 -1944 ((-112) $)) (-15 -1934 ((-112) $)) (-15 -1920 ((-112) $)) (-15 -1909 ((-112) $)) (-15 -1896 ((-625 (-52)) $)) (-15 -1885 ($ $ (-625 (-52)))) (-15 -1875 ($ $ (-625 (-52)))) (-15 -1864 ($ (-1149) (-112) (-112) (-112))) (-15 -1855 ($ $ (-625 (-1149)) (-52))) (-15 -1843 ((-2 (|:| |var| (-625 (-1149))) (|:| |pred| (-52))) $)) (-15 -1830 ((-112) $)) (-15 -1819 ($ $)) (-15 -2007 ($ $ (-52))) (-15 -1808 ((-625 (-52)) $)) (-15 -3982 ((-625 $) $)) (-15 -1796 ((-3 (-625 $) "failed") (-625 $))))) (-1073)) (T -868))
+((-2089 (*1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-2100 (*1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-4160 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-4172 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1986 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-625 (-868 *4))) (-5 *1 (-868 *4)) (-4 *4 (-1073)))) (-1986 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3362 (-114)) (|:| |arg| (-625 (-868 *3))))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-4182 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-868 *3)) (|:| -3564 (-751)))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-2151 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-868 *3)) (|:| |den| (-868 *3)))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1977 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-4194 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-868 *3)) (|:| -3564 (-868 *3)))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-2154 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 (-868 *4))) (-5 *1 (-868 *4)) (-4 *4 (-1073)))) (-2382 (*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-2404 (*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1871 (*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1885 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1875 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1864 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-112)) (-5 *1 (-868 *4)) (-4 *4 (-1073)))) (-1855 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-52)) (-5 *1 (-868 *4)) (-4 *4 (-1073)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-625 (-1149))) (|:| |pred| (-52)))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1819 (*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1796 (*1 *2 *2) (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
+(-13 (-1073) (-1014 |#1|) (-1014 (-1149)) (-10 -8 (-15 (-2089) ($) -1426) (-15 (-2100) ($) -1426) (-15 -4160 ((-3 (-625 $) "failed") $)) (-15 -4172 ((-3 (-625 $) "failed") $)) (-15 -1986 ((-3 (-625 $) "failed") $ (-114))) (-15 -1986 ((-3 (-2 (|:| -3362 (-114)) (|:| |arg| (-625 $))) "failed") $)) (-15 -4182 ((-3 (-2 (|:| |val| $) (|:| -3564 (-751))) "failed") $)) (-15 -2151 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1977 ((-3 (-625 $) "failed") $)) (-15 -4194 ((-3 (-2 (|:| |val| $) (|:| -3564 $)) "failed") $)) (-15 -2154 ($ (-114) (-625 $))) (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ $)) (-15 -2404 ($ $ $)) (-15 -2389 ((-751) $)) (-15 -2042 ($ (-625 $))) (-15 -1871 ($ $)) (-15 -1968 ((-112) $)) (-15 -1956 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -4307 ((-112) $)) (-15 -1944 ((-112) $)) (-15 -1934 ((-112) $)) (-15 -1920 ((-112) $)) (-15 -1909 ((-112) $)) (-15 -1896 ((-625 (-52)) $)) (-15 -1885 ($ $ (-625 (-52)))) (-15 -1875 ($ $ (-625 (-52)))) (-15 -1864 ($ (-1149) (-112) (-112) (-112))) (-15 -1855 ($ $ (-625 (-1149)) (-52))) (-15 -1843 ((-2 (|:| |var| (-625 (-1149))) (|:| |pred| (-52))) $)) (-15 -1830 ((-112) $)) (-15 -1819 ($ $)) (-15 -2007 ($ $ (-52))) (-15 -1808 ((-625 (-52)) $)) (-15 -3982 ((-625 $) $)) (-15 -1796 ((-3 (-625 $) "failed") (-625 $)))))
+((-1671 (((-112) $ $) NIL)) (-3202 (((-625 |#1|) $) 16)) (-2023 (((-112) $) 38)) (-1893 (((-3 (-652 |#1|) "failed") $) 43)) (-1895 (((-652 |#1|) $) 41)) (-2936 (($ $) 18)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-3456 (((-751) $) 46)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-652 |#1|) $) 17)) (-1683 (((-839) $) 37) (($ (-652 |#1|)) 21) (((-799 |#1|) $) 27) (($ |#1|) 20)) (-2100 (($) 8 T CONST)) (-2032 (((-625 (-652 |#1|)) $) 23)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 11)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 49)))
+(((-869 |#1|) (-13 (-827) (-1014 (-652 |#1|)) (-10 -8 (-15 1 ($) -1426) (-15 -1683 ((-799 |#1|) $)) (-15 -1683 ($ |#1|)) (-15 -2924 ((-652 |#1|) $)) (-15 -3456 ((-751) $)) (-15 -2032 ((-625 (-652 |#1|)) $)) (-15 -2936 ($ $)) (-15 -2023 ((-112) $)) (-15 -3202 ((-625 |#1|) $)))) (-827)) (T -869))
+((-2100 (*1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-1683 (*1 *1 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-625 (-652 *3))) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-2936 (*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))))
+(-13 (-827) (-1014 (-652 |#1|)) (-10 -8 (-15 (-2100) ($) -1426) (-15 -1683 ((-799 |#1|) $)) (-15 -1683 ($ |#1|)) (-15 -2924 ((-652 |#1|) $)) (-15 -3456 ((-751) $)) (-15 -2032 ((-625 (-652 |#1|)) $)) (-15 -2936 ($ $)) (-15 -2023 ((-112) $)) (-15 -3202 ((-625 |#1|) $))))
+((-4249 ((|#1| |#1| |#1|) 19)))
+(((-870 |#1| |#2|) (-10 -7 (-15 -4249 (|#1| |#1| |#1|))) (-1208 |#2|) (-1025)) (T -870))
+((-4249 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1208 *3)))))
+(-10 -7 (-15 -4249 (|#1| |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-3850 (((-1011) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 13)) (-2281 (((-112) $ $) 6)))
(((-871) (-138)) (T -871))
-((-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-871)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) (-2998 (*1 *2 *3) (-12 (-4 *1 (-871)) (-5 *3 (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-1011)))))
-(-13 (-1074) (-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -2998 ((-1011) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-3000 ((|#1| |#1| (-751)) 24)) (-2999 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3794 (((-3 (-2 (|:| -3473 |#1|) (|:| -3472 |#1|)) "failed") |#1| (-751) (-751)) 27) (((-622 |#1|) |#1|) 29)))
-(((-872 |#1| |#2|) (-10 -7 (-15 -3794 ((-622 |#1|) |#1|)) (-15 -3794 ((-3 (-2 (|:| -3473 |#1|) (|:| -3472 |#1|)) "failed") |#1| (-751) (-751))) (-15 -2999 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3000 (|#1| |#1| (-751)))) (-1207 |#2|) (-358)) (T -872))
-((-3000 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-5 *1 (-872 *2 *4)) (-4 *2 (-1207 *4)))) (-2999 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-872 *2 *3)) (-4 *2 (-1207 *3)))) (-3794 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-751)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3473 *3) (|:| -3472 *3))) (-5 *1 (-872 *3 *5)) (-4 *3 (-1207 *5)))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-872 *3 *4)) (-4 *3 (-1207 *4)))))
-(-10 -7 (-15 -3794 ((-622 |#1|) |#1|)) (-15 -3794 ((-3 (-2 (|:| -3473 |#1|) (|:| -3472 |#1|)) "failed") |#1| (-751) (-751))) (-15 -2999 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3000 (|#1| |#1| (-751))))
-((-3936 (((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131)) 96) (((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131) (-221)) 91) (((-1011) (-874) (-1037)) 83) (((-1011) (-874)) 84)) (-3001 (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874) (-1037)) 59) (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874)) 61)))
-(((-873) (-10 -7 (-15 -3936 ((-1011) (-874))) (-15 -3936 ((-1011) (-874) (-1037))) (-15 -3936 ((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131) (-221))) (-15 -3936 ((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874) (-1037))))) (T -873))
-((-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-873)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-873)))) (-3936 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-751)) (-5 *6 (-622 (-622 (-309 *3)))) (-5 *7 (-1131)) (-5 *5 (-622 (-309 (-373)))) (-5 *3 (-373)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-3936 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-751)) (-5 *6 (-622 (-622 (-309 *3)))) (-5 *7 (-1131)) (-5 *8 (-221)) (-5 *5 (-622 (-309 (-373)))) (-5 *3 (-373)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1011)) (-5 *1 (-873)))))
-(-10 -7 (-15 -3936 ((-1011) (-874))) (-15 -3936 ((-1011) (-874) (-1037))) (-15 -3936 ((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131) (-221))) (-15 -3936 ((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874) (-1037))))
-((-2898 (((-112) $ $) NIL)) (-3507 (((-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $) 19)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21) (($ (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 18)) (-3387 (((-112) $ $) NIL)))
-(((-874) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $))))) (T -874))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-874)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *1 (-874)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *1 (-874)))))
-(-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $))))
-((-4170 (($ $ |#2|) NIL) (($ $ (-622 |#2|)) 10) (($ $ |#2| (-751)) 12) (($ $ (-622 |#2|) (-622 (-751))) 15)) (-3002 (($ $ |#2|) 16) (($ $ (-622 |#2|)) 18) (($ $ |#2| (-751)) 19) (($ $ (-622 |#2|) (-622 (-751))) 21)))
-(((-875 |#1| |#2|) (-10 -8 (-15 -3002 (|#1| |#1| (-622 |#2|) (-622 (-751)))) (-15 -3002 (|#1| |#1| |#2| (-751))) (-15 -3002 (|#1| |#1| (-622 |#2|))) (-15 -3002 (|#1| |#1| |#2|)) (-15 -4170 (|#1| |#1| (-622 |#2|) (-622 (-751)))) (-15 -4170 (|#1| |#1| |#2| (-751))) (-15 -4170 (|#1| |#1| (-622 |#2|))) (-15 -4170 (|#1| |#1| |#2|))) (-876 |#2|) (-1074)) (T -875))
-NIL
-(-10 -8 (-15 -3002 (|#1| |#1| (-622 |#2|) (-622 (-751)))) (-15 -3002 (|#1| |#1| |#2| (-751))) (-15 -3002 (|#1| |#1| (-622 |#2|))) (-15 -3002 (|#1| |#1| |#2|)) (-15 -4170 (|#1| |#1| (-622 |#2|) (-622 (-751)))) (-15 -4170 (|#1| |#1| |#2| (-751))) (-15 -4170 (|#1| |#1| (-622 |#2|))) (-15 -4170 (|#1| |#1| |#2|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4170 (($ $ |#1|) 40) (($ $ (-622 |#1|)) 39) (($ $ |#1| (-751)) 38) (($ $ (-622 |#1|) (-622 (-751))) 37)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ |#1|) 36) (($ $ (-622 |#1|)) 35) (($ $ |#1| (-751)) 34) (($ $ (-622 |#1|) (-622 (-751))) 33)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
-(((-876 |#1|) (-138) (-1074)) (T -876))
-((-4170 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1074)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1074)))) (-4170 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1074)))) (-4170 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 (-751))) (-4 *1 (-876 *4)) (-4 *4 (-1074)))) (-3002 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1074)))) (-3002 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1074)))) (-3002 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1074)))) (-3002 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 (-751))) (-4 *1 (-876 *4)) (-4 *4 (-1074)))))
-(-13 (-1025) (-10 -8 (-15 -4170 ($ $ |t#1|)) (-15 -4170 ($ $ (-622 |t#1|))) (-15 -4170 ($ $ |t#1| (-751))) (-15 -4170 ($ $ (-622 |t#1|) (-622 (-751)))) (-15 -3002 ($ $ |t#1|)) (-15 -3002 ($ $ (-622 |t#1|))) (-15 -3002 ($ $ |t#1| (-751))) (-15 -3002 ($ $ (-622 |t#1|) (-622 (-751))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) 26)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1353 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1354 (($ $ $) NIL (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #2="left" $) NIL (|has| $ (-6 -4354))) (($ $ #3="right" $) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3472 (($ $) 25)) (-3003 (($ |#1|) 12) (($ $ $) 17)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3473 (($ $) 23)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) 20)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1172 |#1|) $) 9) (((-840) $) 29 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 21 (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-877 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -3003 ($ |#1|)) (-15 -3003 ($ $ $)) (-15 -4317 ((-1172 |#1|) $)))) (-1074)) (T -877))
-((-3003 (*1 *1 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1074)))) (-3003 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1074)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1074)))))
-(-13 (-119 |#1|) (-10 -8 (-15 -3003 ($ |#1|)) (-15 -3003 ($ $ $)) (-15 -4317 ((-1172 |#1|) $))))
-((-2898 (((-112) $ $) NIL)) (-3242 (((-622 $) (-622 $)) 77)) (-3986 (((-538) $) 60)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-4131 (((-751) $) 58)) (-3023 (((-1070 |#1|) $ |#1|) 49)) (-2502 (((-112) $) NIL)) (-3006 (((-112) $) 63)) (-3008 (((-751) $) 61)) (-3019 (((-1070 |#1|) $) 42)) (-3677 (($ $ $) NIL (-3891 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-3678 (($ $ $) NIL (-3891 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-3012 (((-2 (|:| |preimage| (-622 |#1|)) (|:| |image| (-622 |#1|))) $) 37)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 93)) (-3594 (((-1093) $) NIL)) (-3005 (((-1070 |#1|) $) 100 (|has| |#1| (-363)))) (-3007 (((-112) $) 59)) (-4127 ((|#1| $ |#1|) 47)) (-4159 ((|#1| $ |#1|) 94)) (-4307 (((-751) $) 44)) (-3014 (($ (-622 (-622 |#1|))) 85)) (-3009 (((-947) $) 53)) (-3015 (($ (-622 |#1|)) 21)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-3011 (($ (-622 (-622 |#1|))) 39)) (-3010 (($ (-622 (-622 |#1|))) 88)) (-3004 (($ (-622 |#1|)) 96)) (-4317 (((-840) $) 84) (($ (-622 (-622 |#1|))) 66) (($ (-622 |#1|)) 67)) (-2997 (($) 16 T CONST)) (-2896 (((-112) $ $) NIL (-3891 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-3387 (((-112) $ $) 45)) (-3017 (((-112) $ $) NIL (-3891 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-3018 (((-112) $ $) 65)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ $ $) 22)))
-(((-878 |#1|) (-13 (-880 |#1|) (-10 -8 (-15 -3012 ((-2 (|:| |preimage| (-622 |#1|)) (|:| |image| (-622 |#1|))) $)) (-15 -3011 ($ (-622 (-622 |#1|)))) (-15 -4317 ($ (-622 (-622 |#1|)))) (-15 -4317 ($ (-622 |#1|))) (-15 -3010 ($ (-622 (-622 |#1|)))) (-15 -4307 ((-751) $)) (-15 -3019 ((-1070 |#1|) $)) (-15 -3009 ((-947) $)) (-15 -4131 ((-751) $)) (-15 -3008 ((-751) $)) (-15 -3986 ((-538) $)) (-15 -3007 ((-112) $)) (-15 -3006 ((-112) $)) (-15 -3242 ((-622 $) (-622 $))) (IF (|has| |#1| (-363)) (-15 -3005 ((-1070 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3004 ($ (-622 |#1|))) (IF (|has| |#1| (-363)) (-15 -3004 ($ (-622 |#1|))) |%noBranch|)))) (-1074)) (T -878))
-((-3012 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-622 *3)) (|:| |image| (-622 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3011 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-878 *3)))) (-3010 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3009 (*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3242 (*1 *2 *2) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-363)) (-4 *3 (-1074)))) (-3004 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-878 *3)))))
-(-13 (-880 |#1|) (-10 -8 (-15 -3012 ((-2 (|:| |preimage| (-622 |#1|)) (|:| |image| (-622 |#1|))) $)) (-15 -3011 ($ (-622 (-622 |#1|)))) (-15 -4317 ($ (-622 (-622 |#1|)))) (-15 -4317 ($ (-622 |#1|))) (-15 -3010 ($ (-622 (-622 |#1|)))) (-15 -4307 ((-751) $)) (-15 -3019 ((-1070 |#1|) $)) (-15 -3009 ((-947) $)) (-15 -4131 ((-751) $)) (-15 -3008 ((-751) $)) (-15 -3986 ((-538) $)) (-15 -3007 ((-112) $)) (-15 -3006 ((-112) $)) (-15 -3242 ((-622 $) (-622 $))) (IF (|has| |#1| (-363)) (-15 -3005 ((-1070 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3004 ($ (-622 |#1|))) (IF (|has| |#1| (-363)) (-15 -3004 ($ (-622 |#1|))) |%noBranch|))))
-((-3013 ((|#2| (-1115 |#1| |#2|)) 40)))
-(((-879 |#1| |#2|) (-10 -7 (-15 -3013 (|#2| (-1115 |#1| |#2|)))) (-895) (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) (T -879))
-((-3013 (*1 *2 *3) (-12 (-5 *3 (-1115 *4 *2)) (-14 *4 (-895)) (-4 *2 (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) (-5 *1 (-879 *4 *2)))))
-(-10 -7 (-15 -3013 (|#2| (-1115 |#1| |#2|))))
-((-2898 (((-112) $ $) 7)) (-3896 (($) 18 T CONST)) (-3821 (((-3 $ "failed") $) 15)) (-3023 (((-1070 |#1|) $ |#1|) 32)) (-2502 (((-112) $) 17)) (-3677 (($ $ $) 30 (-3891 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-3678 (($ $ $) 29 (-3891 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 24)) (-3594 (((-1093) $) 10)) (-4127 ((|#1| $ |#1|) 34)) (-4159 ((|#1| $ |#1|) 33)) (-3014 (($ (-622 (-622 |#1|))) 35)) (-3015 (($ (-622 |#1|)) 36)) (-3342 (($ $ $) 21)) (-2686 (($ $ $) 20)) (-4317 (((-840) $) 11)) (-2997 (($) 19 T CONST)) (-2896 (((-112) $ $) 27 (-3891 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-2897 (((-112) $ $) 26 (-3891 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 28 (-3891 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-3018 (((-112) $ $) 31)) (-4308 (($ $ $) 23)) (** (($ $ (-895)) 13) (($ $ (-751)) 16) (($ $ (-538)) 22)) (* (($ $ $) 14)))
-(((-880 |#1|) (-138) (-1074)) (T -880))
-((-3015 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-880 *3)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-4 *1 (-880 *3)))) (-4127 (*1 *2 *1 *2) (-12 (-4 *1 (-880 *2)) (-4 *2 (-1074)))) (-4159 (*1 *2 *1 *2) (-12 (-4 *1 (-880 *2)) (-4 *2 (-1074)))) (-3023 (*1 *2 *1 *3) (-12 (-4 *1 (-880 *3)) (-4 *3 (-1074)) (-5 *2 (-1070 *3)))) (-3018 (*1 *2 *1 *1) (-12 (-4 *1 (-880 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))))
-(-13 (-467) (-10 -8 (-15 -3015 ($ (-622 |t#1|))) (-15 -3014 ($ (-622 (-622 |t#1|)))) (-15 -4127 (|t#1| $ |t#1|)) (-15 -4159 (|t#1| $ |t#1|)) (-15 -3023 ((-1070 |t#1|) $ |t#1|)) (-15 -3018 ((-112) $ $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-827)) |%noBranch|)))
-(((-101) . T) ((-597 (-840)) . T) ((-467) . T) ((-707) . T) ((-827) -3891 (|has| |#1| (-827)) (|has| |#1| (-363))) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3025 (((-622 (-622 (-751))) $) 108)) (-3021 (((-622 (-751)) (-878 |#1|) $) 130)) (-3020 (((-622 (-751)) (-878 |#1|) $) 131)) (-3026 (((-622 (-878 |#1|)) $) 98)) (-3327 (((-878 |#1|) $ (-538)) 103) (((-878 |#1|) $) 104)) (-3024 (($ (-622 (-878 |#1|))) 110)) (-4131 (((-751) $) 105)) (-3022 (((-1070 (-1070 |#1|)) $) 128)) (-3023 (((-1070 |#1|) $ |#1|) 121) (((-1070 (-1070 |#1|)) $ (-1070 |#1|)) 139) (((-1070 (-622 |#1|)) $ (-622 |#1|)) 142)) (-3019 (((-1070 |#1|) $) 101)) (-3596 (((-112) (-878 |#1|) $) 92)) (-3593 (((-1131) $) NIL)) (-3016 (((-1237) $) 95) (((-1237) $ (-538) (-538)) 143)) (-3594 (((-1093) $) NIL)) (-3028 (((-622 (-878 |#1|)) $) 96)) (-4159 (((-878 |#1|) $ (-751)) 99)) (-4307 (((-751) $) 106)) (-4317 (((-840) $) 119) (((-622 (-878 |#1|)) $) 23) (($ (-622 (-878 |#1|))) 109)) (-3027 (((-622 |#1|) $) 107)) (-3387 (((-112) $ $) 136)) (-3017 (((-112) $ $) 134)) (-3018 (((-112) $ $) 133)))
-(((-881 |#1|) (-13 (-1074) (-10 -8 (-15 -4317 ((-622 (-878 |#1|)) $)) (-15 -3028 ((-622 (-878 |#1|)) $)) (-15 -4159 ((-878 |#1|) $ (-751))) (-15 -3327 ((-878 |#1|) $ (-538))) (-15 -3327 ((-878 |#1|) $)) (-15 -4131 ((-751) $)) (-15 -4307 ((-751) $)) (-15 -3027 ((-622 |#1|) $)) (-15 -3026 ((-622 (-878 |#1|)) $)) (-15 -3025 ((-622 (-622 (-751))) $)) (-15 -4317 ($ (-622 (-878 |#1|)))) (-15 -3024 ($ (-622 (-878 |#1|)))) (-15 -3023 ((-1070 |#1|) $ |#1|)) (-15 -3022 ((-1070 (-1070 |#1|)) $)) (-15 -3023 ((-1070 (-1070 |#1|)) $ (-1070 |#1|))) (-15 -3023 ((-1070 (-622 |#1|)) $ (-622 |#1|))) (-15 -3596 ((-112) (-878 |#1|) $)) (-15 -3021 ((-622 (-751)) (-878 |#1|) $)) (-15 -3020 ((-622 (-751)) (-878 |#1|) $)) (-15 -3019 ((-1070 |#1|) $)) (-15 -3018 ((-112) $ $)) (-15 -3017 ((-112) $ $)) (-15 -3016 ((-1237) $)) (-15 -3016 ((-1237) $ (-538) (-538))))) (-1074)) (T -881))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-878 *4)) (-5 *1 (-881 *4)) (-4 *4 (-1074)))) (-3327 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-878 *4)) (-5 *1 (-881 *4)) (-4 *4 (-1074)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-878 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-751)))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-878 *3))) (-4 *3 (-1074)) (-5 *1 (-881 *3)))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-622 (-878 *3))) (-4 *3 (-1074)) (-5 *1 (-881 *3)))) (-3023 (*1 *2 *1 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-1070 (-1070 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3023 (*1 *2 *1 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-881 *4)) (-5 *3 (-1070 *4)))) (-3023 (*1 *2 *1 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-1070 (-622 *4))) (-5 *1 (-881 *4)) (-5 *3 (-622 *4)))) (-3596 (*1 *2 *3 *1) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-881 *4)))) (-3021 (*1 *2 *3 *1) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-622 (-751))) (-5 *1 (-881 *4)))) (-3020 (*1 *2 *3 *1) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-622 (-751))) (-5 *1 (-881 *4)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3018 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3017 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3016 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-881 *4)) (-4 *4 (-1074)))))
-(-13 (-1074) (-10 -8 (-15 -4317 ((-622 (-878 |#1|)) $)) (-15 -3028 ((-622 (-878 |#1|)) $)) (-15 -4159 ((-878 |#1|) $ (-751))) (-15 -3327 ((-878 |#1|) $ (-538))) (-15 -3327 ((-878 |#1|) $)) (-15 -4131 ((-751) $)) (-15 -4307 ((-751) $)) (-15 -3027 ((-622 |#1|) $)) (-15 -3026 ((-622 (-878 |#1|)) $)) (-15 -3025 ((-622 (-622 (-751))) $)) (-15 -4317 ($ (-622 (-878 |#1|)))) (-15 -3024 ($ (-622 (-878 |#1|)))) (-15 -3023 ((-1070 |#1|) $ |#1|)) (-15 -3022 ((-1070 (-1070 |#1|)) $)) (-15 -3023 ((-1070 (-1070 |#1|)) $ (-1070 |#1|))) (-15 -3023 ((-1070 (-622 |#1|)) $ (-622 |#1|))) (-15 -3596 ((-112) (-878 |#1|) $)) (-15 -3021 ((-622 (-751)) (-878 |#1|) $)) (-15 -3020 ((-622 (-751)) (-878 |#1|) $)) (-15 -3019 ((-1070 |#1|) $)) (-15 -3018 ((-112) $ $)) (-15 -3017 ((-112) $ $)) (-15 -3016 ((-1237) $)) (-15 -3016 ((-1237) $ (-538) (-538)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (($ $ (-895)) NIL (|has| $ (-363))) (($ $) NIL)) (-1791 (((-1158 (-895) (-751)) (-538)) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 $ "failed") $) NIL)) (-3507 (($ $) NIL)) (-1911 (($ (-1231 $)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL)) (-1796 (((-112) $) NIL)) (-1886 (($ $) NIL) (($ $ (-751)) NIL)) (-4086 (((-112) $) NIL)) (-4131 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| $ (-363)))) (-2127 (((-112) $) NIL (|has| $ (-363)))) (-3467 (($ $ (-895)) NIL (|has| $ (-363))) (($ $) NIL)) (-3803 (((-3 $ "failed") $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 $) $ (-895)) NIL (|has| $ (-363))) (((-1143 $) $) NIL)) (-2126 (((-895) $) NIL)) (-1724 (((-1143 $) $) NIL (|has| $ (-363)))) (-1723 (((-3 (-1143 $) "failed") $ $) NIL (|has| $ (-363))) (((-1143 $) $) NIL (|has| $ (-363)))) (-1725 (($ $ (-1143 $)) NIL (|has| $ (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL T CONST)) (-2492 (($ (-895)) NIL)) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL (|has| $ (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL)) (-4092 (((-400 $) $) NIL)) (-4290 (((-895)) NIL) (((-812 (-895))) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-3 (-751) "failed") $ $) NIL) (((-751) $) NIL)) (-4271 (((-133)) NIL)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-4307 (((-895) $) NIL) (((-812 (-895)) $) NIL)) (-3536 (((-1143 $)) NIL)) (-1790 (($) NIL)) (-1726 (($) NIL (|has| $ (-363)))) (-3575 (((-669 $) (-1231 $)) NIL) (((-1231 $) $) NIL)) (-4330 (((-538) $) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL)) (-3035 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3461 (((-751)) NIL)) (-2128 (((-1231 $) (-895)) NIL) (((-1231 $)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $ (-751)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL)))
-(((-882 |#1|) (-13 (-345) (-324 $) (-598 (-538))) (-895)) (T -882))
-NIL
-(-13 (-345) (-324 $) (-598 (-538)))
-((-3030 (((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|)) 128)) (-3033 ((|#1|) 77)) (-3032 (((-400 (-1143 |#4|)) (-1143 |#4|)) 137)) (-3034 (((-400 (-1143 |#4|)) (-622 |#3|) (-1143 |#4|)) 69)) (-3031 (((-400 (-1143 |#4|)) (-1143 |#4|)) 147)) (-3029 (((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|) |#3|) 92)))
-(((-883 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3030 ((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|))) (-15 -3031 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -3032 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -3033 (|#1|)) (-15 -3029 ((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|) |#3|)) (-15 -3034 ((-400 (-1143 |#4|)) (-622 |#3|) (-1143 |#4|)))) (-886) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -883))
-((-3034 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *7)) (-4 *7 (-827)) (-4 *5 (-886)) (-4 *6 (-773)) (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-400 (-1143 *8))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-1143 *8)))) (-3029 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-622 (-1143 *7))) (-5 *3 (-1143 *7)) (-4 *7 (-926 *5 *6 *4)) (-4 *5 (-886)) (-4 *6 (-773)) (-4 *4 (-827)) (-5 *1 (-883 *5 *6 *4 *7)))) (-3033 (*1 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-886)) (-5 *1 (-883 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-3031 (*1 *2 *3) (-12 (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-3030 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 *7))) (-5 *3 (-1143 *7)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-883 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3030 ((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|))) (-15 -3031 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -3032 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -3033 (|#1|)) (-15 -3029 ((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|) |#3|)) (-15 -3034 ((-400 (-1143 |#4|)) (-622 |#3|) (-1143 |#4|))))
-((-3030 (((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|)) 36)) (-3033 ((|#1|) 54)) (-3032 (((-400 (-1143 |#2|)) (-1143 |#2|)) 102)) (-3034 (((-400 (-1143 |#2|)) (-1143 |#2|)) 90)) (-3031 (((-400 (-1143 |#2|)) (-1143 |#2|)) 113)))
-(((-884 |#1| |#2|) (-10 -7 (-15 -3030 ((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|))) (-15 -3031 ((-400 (-1143 |#2|)) (-1143 |#2|))) (-15 -3032 ((-400 (-1143 |#2|)) (-1143 |#2|))) (-15 -3033 (|#1|)) (-15 -3034 ((-400 (-1143 |#2|)) (-1143 |#2|)))) (-886) (-1207 |#1|)) (T -884))
-((-3034 (*1 *2 *3) (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5))) (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5)))) (-3033 (*1 *2) (-12 (-4 *2 (-886)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1207 *2)))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5))) (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5)))) (-3031 (*1 *2 *3) (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5))) (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5)))) (-3030 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 *5))) (-5 *3 (-1143 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-886)) (-5 *1 (-884 *4 *5)))))
-(-10 -7 (-15 -3030 ((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|))) (-15 -3031 ((-400 (-1143 |#2|)) (-1143 |#2|))) (-15 -3032 ((-400 (-1143 |#2|)) (-1143 |#2|))) (-15 -3033 (|#1|)) (-15 -3034 ((-400 (-1143 |#2|)) (-1143 |#2|))))
-((-3037 (((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $)) 41)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 18)) (-3035 (((-3 $ "failed") $) 35)))
-(((-885 |#1|) (-10 -8 (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)))) (-886)) (T -885))
-NIL
-(-10 -8 (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 58)) (-4134 (($ $) 49)) (-4329 (((-400 $) $) 50)) (-3037 (((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $)) 55)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-4086 (((-112) $) 51)) (-2502 (((-112) $) 30)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3038 (((-400 (-1143 $)) (-1143 $)) 56)) (-3039 (((-400 (-1143 $)) (-1143 $)) 57)) (-4092 (((-400 $) $) 48)) (-3820 (((-3 $ "failed") $ $) 40)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 54 (|has| $ (-143)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3035 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
-(((-886) (-138)) (T -886))
-((-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-886)))) (-3040 (*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1)))) (-3039 (*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1)))) (-3038 (*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1)))) (-3037 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 *1))) (-5 *3 (-1143 *1)) (-4 *1 (-886)))) (-3036 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-143)) (-4 *1 (-886)) (-5 *2 (-1231 *1)))) (-3035 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-886)))))
-(-13 (-1190) (-10 -8 (-15 -3040 ((-400 (-1143 $)) (-1143 $))) (-15 -3039 ((-400 (-1143 $)) (-1143 $))) (-15 -3038 ((-400 (-1143 $)) (-1143 $))) (-15 -3041 ((-1143 $) (-1143 $) (-1143 $))) (-15 -3037 ((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $))) (IF (|has| $ (-143)) (PROGN (-15 -3036 ((-3 (-1231 $) "failed") (-669 $))) (-15 -3035 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T))
-((-3043 (((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)) 79)) (-3042 (((-112) (-328 |#2| |#3| |#4| |#5|)) 17)) (-4131 (((-3 (-751) "failed") (-328 |#2| |#3| |#4| |#5|)) 15)))
-(((-887 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4131 ((-3 (-751) "failed") (-328 |#2| |#3| |#4| |#5|))) (-15 -3042 ((-112) (-328 |#2| |#3| |#4| |#5|))) (-15 -3043 ((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)))) (-13 (-827) (-545) (-1014 (-538))) (-416 |#1|) (-1207 |#2|) (-1207 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -887))
-((-3043 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-2 (|:| -4131 (-751)) (|:| -2475 *8))) (-5 *1 (-887 *4 *5 *6 *7 *8)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-112)) (-5 *1 (-887 *4 *5 *6 *7 *8)))) (-4131 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-751)) (-5 *1 (-887 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4131 ((-3 (-751) "failed") (-328 |#2| |#3| |#4| |#5|))) (-15 -3042 ((-112) (-328 |#2| |#3| |#4| |#5|))) (-15 -3043 ((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|))))
-((-3043 (((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#3|)) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|)) 56)) (-3042 (((-112) (-328 (-402 (-538)) |#1| |#2| |#3|)) 16)) (-4131 (((-3 (-751) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|)) 14)))
-(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -4131 ((-3 (-751) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|))) (-15 -3042 ((-112) (-328 (-402 (-538)) |#1| |#2| |#3|))) (-15 -3043 ((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#3|)) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|)))) (-1207 (-402 (-538))) (-1207 (-402 |#1|)) (-337 (-402 (-538)) |#1| |#2|)) (T -888))
-((-3043 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6)) (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 (-402 (-538)) *4 *5)) (-5 *2 (-2 (|:| -4131 (-751)) (|:| -2475 *6))) (-5 *1 (-888 *4 *5 *6)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6)) (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 (-402 (-538)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-888 *4 *5 *6)))) (-4131 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6)) (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 (-402 (-538)) *4 *5)) (-5 *2 (-751)) (-5 *1 (-888 *4 *5 *6)))))
-(-10 -7 (-15 -4131 ((-3 (-751) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|))) (-15 -3042 ((-112) (-328 (-402 (-538)) |#1| |#2| |#3|))) (-15 -3043 ((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#3|)) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|))))
-((-3048 ((|#2| |#2|) 26)) (-3046 (((-538) (-622 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))))) 15)) (-3044 (((-895) (-538)) 35)) (-3047 (((-538) |#2|) 42)) (-3045 (((-538) |#2|) 21) (((-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))) |#1|) 20)))
-(((-889 |#1| |#2|) (-10 -7 (-15 -3044 ((-895) (-538))) (-15 -3045 ((-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))) |#1|)) (-15 -3045 ((-538) |#2|)) (-15 -3046 ((-538) (-622 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538)))))) (-15 -3047 ((-538) |#2|)) (-15 -3048 (|#2| |#2|))) (-1207 (-402 (-538))) (-1207 (-402 |#1|))) (T -889))
-((-3048 (*1 *2 *2) (-12 (-4 *3 (-1207 (-402 (-538)))) (-5 *1 (-889 *3 *2)) (-4 *2 (-1207 (-402 *3))))) (-3047 (*1 *2 *3) (-12 (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1207 (-402 *4))))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))))) (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1207 (-402 *4))))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1207 (-402 *4))))) (-3045 (*1 *2 *3) (-12 (-4 *3 (-1207 (-402 (-538)))) (-5 *2 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538)))) (-5 *1 (-889 *3 *4)) (-4 *4 (-1207 (-402 *3))))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-538)) (-4 *4 (-1207 (-402 *3))) (-5 *2 (-895)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1207 (-402 *4))))))
-(-10 -7 (-15 -3044 ((-895) (-538))) (-15 -3045 ((-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))) |#1|)) (-15 -3045 ((-538) |#2|)) (-15 -3046 ((-538) (-622 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538)))))) (-15 -3047 ((-538) |#2|)) (-15 -3048 (|#2| |#2|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 ((|#1| $) 81)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) 75)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3056 (($ |#1| (-400 |#1|)) 73)) (-3050 (((-1143 |#1|) |#1| |#1|) 41)) (-3049 (($ $) 49)) (-2502 (((-112) $) NIL)) (-3051 (((-538) $) 78)) (-3052 (($ $ (-538)) 80)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3053 ((|#1| $) 77)) (-3054 (((-400 |#1|) $) 76)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) 74)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-3055 (($ $) 39)) (-4317 (((-840) $) 99) (($ (-538)) 54) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 31) (((-402 |#1|) $) 59) (($ (-402 (-400 |#1|))) 67)) (-3461 (((-751)) 52)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 23 T CONST)) (-2997 (($) 12 T CONST)) (-3387 (((-112) $ $) 68)) (-4308 (($ $ $) NIL)) (-4197 (($ $) 88) (($ $ $) NIL)) (-4199 (($ $ $) 38)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 90) (($ $ $) 37) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-890 |#1|) (-13 (-358) (-38 |#1|) (-10 -8 (-15 -4317 ((-402 |#1|) $)) (-15 -4317 ($ (-402 (-400 |#1|)))) (-15 -3055 ($ $)) (-15 -3054 ((-400 |#1|) $)) (-15 -3053 (|#1| $)) (-15 -3052 ($ $ (-538))) (-15 -3051 ((-538) $)) (-15 -3050 ((-1143 |#1|) |#1| |#1|)) (-15 -3049 ($ $)) (-15 -3056 ($ |#1| (-400 |#1|))) (-15 -3464 (|#1| $)))) (-302)) (T -890))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-402 (-400 *3))) (-4 *3 (-302)) (-5 *1 (-890 *3)))) (-3055 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-3053 (*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-3052 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-3050 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-3049 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-3056 (*1 *1 *2 *3) (-12 (-5 *3 (-400 *2)) (-4 *2 (-302)) (-5 *1 (-890 *2)))) (-3464 (*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))))
-(-13 (-358) (-38 |#1|) (-10 -8 (-15 -4317 ((-402 |#1|) $)) (-15 -4317 ($ (-402 (-400 |#1|)))) (-15 -3055 ($ $)) (-15 -3054 ((-400 |#1|) $)) (-15 -3053 (|#1| $)) (-15 -3052 ($ $ (-538))) (-15 -3051 ((-538) $)) (-15 -3050 ((-1143 |#1|) |#1| |#1|)) (-15 -3049 ($ $)) (-15 -3056 ($ |#1| (-400 |#1|))) (-15 -3464 (|#1| $))))
-((-3056 (((-51) (-922 |#1|) (-400 (-922 |#1|)) (-1149)) 17) (((-51) (-402 (-922 |#1|)) (-1149)) 18)))
-(((-891 |#1|) (-10 -7 (-15 -3056 ((-51) (-402 (-922 |#1|)) (-1149))) (-15 -3056 ((-51) (-922 |#1|) (-400 (-922 |#1|)) (-1149)))) (-13 (-302) (-145))) (T -891))
-((-3056 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-400 (-922 *6))) (-5 *5 (-1149)) (-5 *3 (-922 *6)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-51)) (-5 *1 (-891 *6)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-51)) (-5 *1 (-891 *5)))))
-(-10 -7 (-15 -3056 ((-51) (-402 (-922 |#1|)) (-1149))) (-15 -3056 ((-51) (-922 |#1|) (-400 (-922 |#1|)) (-1149))))
-((-3057 ((|#4| (-622 |#4|)) 121) (((-1143 |#4|) (-1143 |#4|) (-1143 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3495 (((-1143 |#4|) (-622 (-1143 |#4|))) 114) (((-1143 |#4|) (-1143 |#4|) (-1143 |#4|)) 50) ((|#4| (-622 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
-(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3495 (|#4| |#4| |#4|)) (-15 -3495 (|#4| (-622 |#4|))) (-15 -3495 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3495 ((-1143 |#4|) (-622 (-1143 |#4|)))) (-15 -3057 (|#4| |#4| |#4|)) (-15 -3057 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3057 (|#4| (-622 |#4|)))) (-773) (-827) (-302) (-926 |#3| |#1| |#2|)) (T -892))
-((-3057 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)))) (-3057 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) (-3057 (*1 *2 *2 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-926 *5 *3 *4)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-622 (-1143 *7))) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-1143 *7)) (-5 *1 (-892 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) (-3495 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)))) (-3495 (*1 *2 *2 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-926 *5 *3 *4)))))
-(-10 -7 (-15 -3495 (|#4| |#4| |#4|)) (-15 -3495 (|#4| (-622 |#4|))) (-15 -3495 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3495 ((-1143 |#4|) (-622 (-1143 |#4|)))) (-15 -3057 (|#4| |#4| |#4|)) (-15 -3057 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3057 (|#4| (-622 |#4|))))
-((-3070 (((-881 (-538)) (-947)) 23) (((-881 (-538)) (-622 (-538))) 20)) (-3058 (((-881 (-538)) (-622 (-538))) 48) (((-881 (-538)) (-895)) 49)) (-3069 (((-881 (-538))) 24)) (-3067 (((-881 (-538))) 38) (((-881 (-538)) (-622 (-538))) 37)) (-3066 (((-881 (-538))) 36) (((-881 (-538)) (-622 (-538))) 35)) (-3065 (((-881 (-538))) 34) (((-881 (-538)) (-622 (-538))) 33)) (-3064 (((-881 (-538))) 32) (((-881 (-538)) (-622 (-538))) 31)) (-3063 (((-881 (-538))) 30) (((-881 (-538)) (-622 (-538))) 29)) (-3068 (((-881 (-538))) 40) (((-881 (-538)) (-622 (-538))) 39)) (-3062 (((-881 (-538)) (-622 (-538))) 52) (((-881 (-538)) (-895)) 53)) (-3061 (((-881 (-538)) (-622 (-538))) 50) (((-881 (-538)) (-895)) 51)) (-3059 (((-881 (-538)) (-622 (-538))) 46) (((-881 (-538)) (-895)) 47)) (-3060 (((-881 (-538)) (-622 (-895))) 43)))
-(((-893) (-10 -7 (-15 -3058 ((-881 (-538)) (-895))) (-15 -3058 ((-881 (-538)) (-622 (-538)))) (-15 -3059 ((-881 (-538)) (-895))) (-15 -3059 ((-881 (-538)) (-622 (-538)))) (-15 -3060 ((-881 (-538)) (-622 (-895)))) (-15 -3061 ((-881 (-538)) (-895))) (-15 -3061 ((-881 (-538)) (-622 (-538)))) (-15 -3062 ((-881 (-538)) (-895))) (-15 -3062 ((-881 (-538)) (-622 (-538)))) (-15 -3063 ((-881 (-538)) (-622 (-538)))) (-15 -3063 ((-881 (-538)))) (-15 -3064 ((-881 (-538)) (-622 (-538)))) (-15 -3064 ((-881 (-538)))) (-15 -3065 ((-881 (-538)) (-622 (-538)))) (-15 -3065 ((-881 (-538)))) (-15 -3066 ((-881 (-538)) (-622 (-538)))) (-15 -3066 ((-881 (-538)))) (-15 -3067 ((-881 (-538)) (-622 (-538)))) (-15 -3067 ((-881 (-538)))) (-15 -3068 ((-881 (-538)) (-622 (-538)))) (-15 -3068 ((-881 (-538)))) (-15 -3069 ((-881 (-538)))) (-15 -3070 ((-881 (-538)) (-622 (-538)))) (-15 -3070 ((-881 (-538)) (-947))))) (T -893))
-((-3070 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3069 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3068 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3067 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3066 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3065 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3064 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3063 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-622 (-895))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(-10 -7 (-15 -3058 ((-881 (-538)) (-895))) (-15 -3058 ((-881 (-538)) (-622 (-538)))) (-15 -3059 ((-881 (-538)) (-895))) (-15 -3059 ((-881 (-538)) (-622 (-538)))) (-15 -3060 ((-881 (-538)) (-622 (-895)))) (-15 -3061 ((-881 (-538)) (-895))) (-15 -3061 ((-881 (-538)) (-622 (-538)))) (-15 -3062 ((-881 (-538)) (-895))) (-15 -3062 ((-881 (-538)) (-622 (-538)))) (-15 -3063 ((-881 (-538)) (-622 (-538)))) (-15 -3063 ((-881 (-538)))) (-15 -3064 ((-881 (-538)) (-622 (-538)))) (-15 -3064 ((-881 (-538)))) (-15 -3065 ((-881 (-538)) (-622 (-538)))) (-15 -3065 ((-881 (-538)))) (-15 -3066 ((-881 (-538)) (-622 (-538)))) (-15 -3066 ((-881 (-538)))) (-15 -3067 ((-881 (-538)) (-622 (-538)))) (-15 -3067 ((-881 (-538)))) (-15 -3068 ((-881 (-538)) (-622 (-538)))) (-15 -3068 ((-881 (-538)))) (-15 -3069 ((-881 (-538)))) (-15 -3070 ((-881 (-538)) (-622 (-538)))) (-15 -3070 ((-881 (-538)) (-947))))
-((-3072 (((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149))) 12)) (-3071 (((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149))) 11)))
-(((-894 |#1|) (-10 -7 (-15 -3071 ((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3072 ((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149))))) (-446)) (T -894))
-((-3072 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-922 *4))) (-5 *3 (-622 (-1149))) (-4 *4 (-446)) (-5 *1 (-894 *4)))) (-3071 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-922 *4))) (-5 *3 (-622 (-1149))) (-4 *4 (-446)) (-5 *1 (-894 *4)))))
-(-10 -7 (-15 -3071 ((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3072 ((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)))))
-((-2898 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3495 (($ $ $) NIL)) (-4317 (((-840) $) NIL)) (-2997 (($) NIL T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ $ $) NIL)))
-(((-895) (-13 (-774) (-707) (-10 -8 (-15 -3495 ($ $ $)) (-6 (-4355 "*"))))) (T -895))
-((-3495 (*1 *1 *1 *1) (-5 *1 (-895))))
-(-13 (-774) (-707) (-10 -8 (-15 -3495 ($ $ $)) (-6 (-4355 "*"))))
-((-4317 (((-309 |#1|) (-471)) 16)))
-(((-896 |#1|) (-10 -7 (-15 -4317 ((-309 |#1|) (-471)))) (-13 (-827) (-545))) (T -896))
-((-4317 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-309 *4)) (-5 *1 (-896 *4)) (-4 *4 (-13 (-827) (-545))))))
-(-10 -7 (-15 -4317 ((-309 |#1|) (-471))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-2502 (((-112) $) 30)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
-(((-897) (-138)) (T -897))
-((-3074 (*1 *2 *3) (-12 (-4 *1 (-897)) (-5 *2 (-2 (|:| -4313 (-622 *1)) (|:| -2501 *1))) (-5 *3 (-622 *1)))) (-3073 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-897)))))
-(-13 (-446) (-10 -8 (-15 -3074 ((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $))) (-15 -3073 ((-3 (-622 $) "failed") (-622 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-3441 (((-1143 |#2|) (-622 |#2|) (-622 |#2|)) 17) (((-1200 |#1| |#2|) (-1200 |#1| |#2|) (-622 |#2|) (-622 |#2|)) 13)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -3441 ((-1200 |#1| |#2|) (-1200 |#1| |#2|) (-622 |#2|) (-622 |#2|))) (-15 -3441 ((-1143 |#2|) (-622 |#2|) (-622 |#2|)))) (-1149) (-358)) (T -898))
-((-3441 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-358)) (-5 *2 (-1143 *5)) (-5 *1 (-898 *4 *5)) (-14 *4 (-1149)))) (-3441 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1200 *4 *5)) (-5 *3 (-622 *5)) (-14 *4 (-1149)) (-4 *5 (-358)) (-5 *1 (-898 *4 *5)))))
-(-10 -7 (-15 -3441 ((-1200 |#1| |#2|) (-1200 |#1| |#2|) (-622 |#2|) (-622 |#2|))) (-15 -3441 ((-1143 |#2|) (-622 |#2|) (-622 |#2|))))
-((-3075 ((|#2| (-622 |#1|) (-622 |#1|)) 24)))
-(((-899 |#1| |#2|) (-10 -7 (-15 -3075 (|#2| (-622 |#1|) (-622 |#1|)))) (-358) (-1207 |#1|)) (T -899))
-((-3075 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-358)) (-4 *2 (-1207 *4)) (-5 *1 (-899 *4 *2)))))
-(-10 -7 (-15 -3075 (|#2| (-622 |#1|) (-622 |#1|))))
-((-3077 (((-538) (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131)) 139)) (-3096 ((|#4| |#4|) 155)) (-3081 (((-622 (-402 (-922 |#1|))) (-622 (-1149))) 118)) (-3095 (((-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-622 (-622 |#4|)) (-751) (-751) (-538)) 75)) (-3085 (((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-622 |#4|)) 59)) (-3094 (((-669 |#4|) (-669 |#4|) (-622 |#4|)) 55)) (-3078 (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131)) 151)) (-3076 (((-538) (-669 |#4|) (-895) (-1131)) 132) (((-538) (-669 |#4|) (-622 (-1149)) (-895) (-1131)) 131) (((-538) (-669 |#4|) (-622 |#4|) (-895) (-1131)) 130) (((-538) (-669 |#4|) (-1131)) 127) (((-538) (-669 |#4|) (-622 (-1149)) (-1131)) 126) (((-538) (-669 |#4|) (-622 |#4|) (-1131)) 125) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-895)) 124) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149)) (-895)) 123) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|) (-895)) 122) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|)) 120) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149))) 119) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|)) 115)) (-3082 ((|#4| (-922 |#1|)) 68)) (-3092 (((-112) (-622 |#4|) (-622 (-622 |#4|))) 152)) (-3091 (((-622 (-622 (-538))) (-538) (-538)) 129)) (-3090 (((-622 (-622 |#4|)) (-622 (-622 |#4|))) 88)) (-3089 (((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|))))) 86)) (-3088 (((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|))))) 85)) (-3097 (((-112) (-622 (-922 |#1|))) 17) (((-112) (-622 |#4|)) 13)) (-3083 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-622 |#4|)) (|:| |n0| (-622 |#4|))) (-622 |#4|) (-622 |#4|)) 71)) (-3087 (((-622 |#4|) |#4|) 49)) (-3080 (((-622 (-402 (-922 |#1|))) (-622 |#4|)) 114) (((-669 (-402 (-922 |#1|))) (-669 |#4|)) 56) (((-402 (-922 |#1|)) |#4|) 111)) (-3079 (((-2 (|:| |rgl| (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))))) (|:| |rgsz| (-538))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-751) (-1131) (-538)) 93)) (-3084 (((-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))) (-669 |#4|) (-751)) 84)) (-3093 (((-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) (-669 |#4|) (-751)) 101)) (-3086 (((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| -1700 (-669 (-402 (-922 |#1|)))) (|:| |vec| (-622 (-402 (-922 |#1|)))) (|:| -3444 (-751)) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) 48)))
-(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149)))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|) (-895))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149)) (-895))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-895))) (-15 -3076 ((-538) (-669 |#4|) (-622 |#4|) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 (-1149)) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 |#4|) (-895) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 (-1149)) (-895) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-895) (-1131))) (-15 -3077 ((-538) (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131))) (-15 -3078 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131))) (-15 -3079 ((-2 (|:| |rgl| (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))))) (|:| |rgsz| (-538))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-751) (-1131) (-538))) (-15 -3080 ((-402 (-922 |#1|)) |#4|)) (-15 -3080 ((-669 (-402 (-922 |#1|))) (-669 |#4|))) (-15 -3080 ((-622 (-402 (-922 |#1|))) (-622 |#4|))) (-15 -3081 ((-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3082 (|#4| (-922 |#1|))) (-15 -3083 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-622 |#4|)) (|:| |n0| (-622 |#4|))) (-622 |#4|) (-622 |#4|))) (-15 -3084 ((-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))) (-669 |#4|) (-751))) (-15 -3085 ((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-622 |#4|))) (-15 -3086 ((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| -1700 (-669 (-402 (-922 |#1|)))) (|:| |vec| (-622 (-402 (-922 |#1|)))) (|:| -3444 (-751)) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (-15 -3087 ((-622 |#4|) |#4|)) (-15 -3088 ((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))))) (-15 -3089 ((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))))) (-15 -3090 ((-622 (-622 |#4|)) (-622 (-622 |#4|)))) (-15 -3091 ((-622 (-622 (-538))) (-538) (-538))) (-15 -3092 ((-112) (-622 |#4|) (-622 (-622 |#4|)))) (-15 -3093 ((-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) (-669 |#4|) (-751))) (-15 -3094 ((-669 |#4|) (-669 |#4|) (-622 |#4|))) (-15 -3095 ((-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-622 (-622 |#4|)) (-751) (-751) (-538))) (-15 -3096 (|#4| |#4|)) (-15 -3097 ((-112) (-622 |#4|))) (-15 -3097 ((-112) (-622 (-922 |#1|))))) (-13 (-302) (-145)) (-13 (-827) (-598 (-1149))) (-773) (-926 |#1| |#3| |#2|)) (T -900))
-((-3097 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5 *6 *7)))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *2 (-926 *3 *5 *4)))) (-3095 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) (-5 *4 (-669 *12)) (-5 *5 (-622 (-402 (-922 *9)))) (-5 *6 (-622 (-622 *12))) (-5 *7 (-751)) (-5 *8 (-538)) (-4 *9 (-13 (-302) (-145))) (-4 *12 (-926 *9 *11 *10)) (-4 *10 (-13 (-827) (-598 (-1149)))) (-4 *11 (-773)) (-5 *2 (-2 (|:| |eqzro| (-622 *12)) (|:| |neqzro| (-622 *12)) (|:| |wcond| (-622 (-922 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *9)))) (|:| -2128 (-622 (-1231 (-402 (-922 *9))))))))) (-5 *1 (-900 *9 *10 *11 *12)))) (-3094 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *7)) (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-751)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-622 (-2 (|:| |det| *8) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-622 *8))) (-5 *3 (-622 *8)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *7 *8)))) (-3091 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 (-622 (-538)))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-538)) (-4 *7 (-926 *4 *6 *5)))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-622 (-622 *6))) (-4 *6 (-926 *3 *5 *4)) (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *6)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| *7) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 *7))))) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) (-5 *1 (-900 *4 *5 *6 *7)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| *7) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 *7))))) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) (-5 *1 (-900 *4 *5 *6 *7)))) (-3087 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 *3)) (-5 *1 (-900 *4 *5 *6 *3)) (-4 *3 (-926 *4 *6 *5)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1700 (-669 (-402 (-922 *4)))) (|:| |vec| (-622 (-402 (-922 *4)))) (|:| -3444 (-751)) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) (|:| -2128 (-622 (-1231 (-402 (-922 *4))))))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))) (-3085 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) (|:| -2128 (-622 (-1231 (-402 (-922 *4))))))) (-5 *3 (-622 *7)) (-4 *4 (-13 (-302) (-145))) (-4 *7 (-926 *4 *6 *5)) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| *8) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 *8))))) (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-751)))) (-3083 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-4 *7 (-926 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-622 *7)) (|:| |n0| (-622 *7)))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-922 *4)) (-4 *4 (-13 (-302) (-145))) (-4 *2 (-926 *4 *6 *5)) (-5 *1 (-900 *4 *5 *6 *2)) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-669 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-669 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7)))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-402 (-922 *4))) (-5 *1 (-900 *4 *5 *6 *3)) (-4 *3 (-926 *4 *6 *5)))) (-3079 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-669 *11)) (-5 *4 (-622 (-402 (-922 *8)))) (-5 *5 (-751)) (-5 *6 (-1131)) (-4 *8 (-13 (-302) (-145))) (-4 *11 (-926 *8 *10 *9)) (-4 *9 (-13 (-827) (-598 (-1149)))) (-4 *10 (-773)) (-5 *2 (-2 (|:| |rgl| (-622 (-2 (|:| |eqzro| (-622 *11)) (|:| |neqzro| (-622 *11)) (|:| |wcond| (-622 (-922 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *8)))) (|:| -2128 (-622 (-1231 (-402 (-922 *8)))))))))) (|:| |rgsz| (-538)))) (-5 *1 (-900 *8 *9 *10 *11)) (-5 *7 (-538)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *7)) (|:| |neqzro| (-622 *7)) (|:| |wcond| (-622 (-922 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) (|:| -2128 (-622 (-1231 (-402 (-922 *4)))))))))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) (-5 *4 (-1131)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-926 *5 *7 *6)) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *5 *6 *7 *8)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-895)) (-5 *5 (-1131)) (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *6 *7 *8 *9)))) (-3076 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-669 *10)) (-5 *4 (-622 (-1149))) (-5 *5 (-895)) (-5 *6 (-1131)) (-4 *10 (-926 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *7 *8 *9 *10)))) (-3076 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-669 *10)) (-5 *4 (-622 *10)) (-5 *5 (-895)) (-5 *6 (-1131)) (-4 *10 (-926 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *7 *8 *9 *10)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-1131)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *5 *6 *7 *8)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 (-1149))) (-5 *5 (-1131)) (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *6 *7 *8 *9)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 *9)) (-5 *5 (-1131)) (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *6 *7 *8 *9)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-895)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 (-1149))) (-5 *5 (-895)) (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *9)) (|:| |neqzro| (-622 *9)) (|:| |wcond| (-622 (-922 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *6)))) (|:| -2128 (-622 (-1231 (-402 (-922 *6)))))))))) (-5 *1 (-900 *6 *7 *8 *9)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *5 (-895)) (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *9)) (|:| |neqzro| (-622 *9)) (|:| |wcond| (-622 (-922 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *6)))) (|:| -2128 (-622 (-1231 (-402 (-922 *6)))))))))) (-5 *1 (-900 *6 *7 *8 *9)) (-5 *4 (-622 *9)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-669 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *7)) (|:| |neqzro| (-622 *7)) (|:| |wcond| (-622 (-922 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) (|:| -2128 (-622 (-1231 (-402 (-922 *4)))))))))) (-5 *1 (-900 *4 *5 *6 *7)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-622 (-1149))) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-622 *8)))))
-(-10 -7 (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149)))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|) (-895))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149)) (-895))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-895))) (-15 -3076 ((-538) (-669 |#4|) (-622 |#4|) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 (-1149)) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 |#4|) (-895) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 (-1149)) (-895) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-895) (-1131))) (-15 -3077 ((-538) (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131))) (-15 -3078 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131))) (-15 -3079 ((-2 (|:| |rgl| (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))))) (|:| |rgsz| (-538))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-751) (-1131) (-538))) (-15 -3080 ((-402 (-922 |#1|)) |#4|)) (-15 -3080 ((-669 (-402 (-922 |#1|))) (-669 |#4|))) (-15 -3080 ((-622 (-402 (-922 |#1|))) (-622 |#4|))) (-15 -3081 ((-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3082 (|#4| (-922 |#1|))) (-15 -3083 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-622 |#4|)) (|:| |n0| (-622 |#4|))) (-622 |#4|) (-622 |#4|))) (-15 -3084 ((-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))) (-669 |#4|) (-751))) (-15 -3085 ((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-622 |#4|))) (-15 -3086 ((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| -1700 (-669 (-402 (-922 |#1|)))) (|:| |vec| (-622 (-402 (-922 |#1|)))) (|:| -3444 (-751)) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (-15 -3087 ((-622 |#4|) |#4|)) (-15 -3088 ((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))))) (-15 -3089 ((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))))) (-15 -3090 ((-622 (-622 |#4|)) (-622 (-622 |#4|)))) (-15 -3091 ((-622 (-622 (-538))) (-538) (-538))) (-15 -3092 ((-112) (-622 |#4|) (-622 (-622 |#4|)))) (-15 -3093 ((-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) (-669 |#4|) (-751))) (-15 -3094 ((-669 |#4|) (-669 |#4|) (-622 |#4|))) (-15 -3095 ((-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-622 (-622 |#4|)) (-751) (-751) (-538))) (-15 -3096 (|#4| |#4|)) (-15 -3097 ((-112) (-622 |#4|))) (-15 -3097 ((-112) (-622 (-922 |#1|)))))
-((-4234 (($ $ (-1062 (-221))) 70) (($ $ (-1062 (-221)) (-1062 (-221))) 71)) (-3229 (((-1062 (-221)) $) 44)) (-3230 (((-1062 (-221)) $) 43)) (-3121 (((-1062 (-221)) $) 45)) (-3102 (((-538) (-538)) 37)) (-3106 (((-538) (-538)) 33)) (-3104 (((-538) (-538)) 35)) (-3100 (((-112) (-112)) 39)) (-3103 (((-538)) 36)) (-3469 (($ $ (-1062 (-221))) 74) (($ $) 75)) (-3123 (($ (-1 (-919 (-221)) (-221)) (-1062 (-221))) 84) (($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221))) 85)) (-3109 (($ (-1 (-221) (-221)) (-1062 (-221))) 92) (($ (-1 (-221) (-221))) 95)) (-3122 (($ (-1 (-221) (-221)) (-1062 (-221))) 79) (($ (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221))) 80) (($ (-622 (-1 (-221) (-221))) (-1062 (-221))) 87) (($ (-622 (-1 (-221) (-221))) (-1062 (-221)) (-1062 (-221))) 88) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221))) 82) (($ $ (-1062 (-221))) 76)) (-3108 (((-112) $) 40)) (-3099 (((-538)) 41)) (-3107 (((-538)) 32)) (-3105 (((-538)) 34)) (-3231 (((-622 (-622 (-919 (-221)))) $) 23)) (-3098 (((-112) (-112)) 42)) (-4317 (((-840) $) 106)) (-3101 (((-112)) 38)))
-(((-901) (-13 (-931) (-10 -8 (-15 -3122 ($ (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-622 (-1 (-221) (-221))) (-1062 (-221)))) (-15 -3122 ($ (-622 (-1 (-221) (-221))) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3109 ($ (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3109 ($ (-1 (-221) (-221)))) (-15 -3122 ($ $ (-1062 (-221)))) (-15 -3108 ((-112) $)) (-15 -4234 ($ $ (-1062 (-221)))) (-15 -4234 ($ $ (-1062 (-221)) (-1062 (-221)))) (-15 -3469 ($ $ (-1062 (-221)))) (-15 -3469 ($ $)) (-15 -3121 ((-1062 (-221)) $)) (-15 -3107 ((-538))) (-15 -3106 ((-538) (-538))) (-15 -3105 ((-538))) (-15 -3104 ((-538) (-538))) (-15 -3103 ((-538))) (-15 -3102 ((-538) (-538))) (-15 -3101 ((-112))) (-15 -3100 ((-112) (-112))) (-15 -3099 ((-538))) (-15 -3098 ((-112) (-112)))))) (T -901))
-((-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-622 (-1 (-221) (-221)))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-622 (-1 (-221) (-221)))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3123 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3123 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3109 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3109 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-4234 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) (-4234 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) (-3469 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) (-3469 (*1 *1 *1) (-5 *1 (-901))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) (-3107 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3105 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3104 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3103 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3101 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-3099 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))))
-(-13 (-931) (-10 -8 (-15 -3122 ($ (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-622 (-1 (-221) (-221))) (-1062 (-221)))) (-15 -3122 ($ (-622 (-1 (-221) (-221))) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3109 ($ (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3109 ($ (-1 (-221) (-221)))) (-15 -3122 ($ $ (-1062 (-221)))) (-15 -3108 ((-112) $)) (-15 -4234 ($ $ (-1062 (-221)))) (-15 -4234 ($ $ (-1062 (-221)) (-1062 (-221)))) (-15 -3469 ($ $ (-1062 (-221)))) (-15 -3469 ($ $)) (-15 -3121 ((-1062 (-221)) $)) (-15 -3107 ((-538))) (-15 -3106 ((-538) (-538))) (-15 -3105 ((-538))) (-15 -3104 ((-538) (-538))) (-15 -3103 ((-538))) (-15 -3102 ((-538) (-538))) (-15 -3101 ((-112))) (-15 -3100 ((-112) (-112))) (-15 -3099 ((-538))) (-15 -3098 ((-112) (-112)))))
-((-3109 (((-901) |#1| (-1149)) 17) (((-901) |#1| (-1149) (-1062 (-221))) 21)) (-3122 (((-901) |#1| |#1| (-1149) (-1062 (-221))) 19) (((-901) |#1| (-1149) (-1062 (-221))) 15)))
-(((-902 |#1|) (-10 -7 (-15 -3122 ((-901) |#1| (-1149) (-1062 (-221)))) (-15 -3122 ((-901) |#1| |#1| (-1149) (-1062 (-221)))) (-15 -3109 ((-901) |#1| (-1149) (-1062 (-221)))) (-15 -3109 ((-901) |#1| (-1149)))) (-598 (-527))) (T -902))
-((-3109 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-901)) (-5 *1 (-902 *3)) (-4 *3 (-598 (-527))))) (-3109 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3)) (-4 *3 (-598 (-527))))) (-3122 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3)) (-4 *3 (-598 (-527))))) (-3122 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3)) (-4 *3 (-598 (-527))))))
-(-10 -7 (-15 -3122 ((-901) |#1| (-1149) (-1062 (-221)))) (-15 -3122 ((-901) |#1| |#1| (-1149) (-1062 (-221)))) (-15 -3109 ((-901) |#1| (-1149) (-1062 (-221)))) (-15 -3109 ((-901) |#1| (-1149))))
-((-4234 (($ $ (-1062 (-221)) (-1062 (-221)) (-1062 (-221))) 70)) (-3228 (((-1062 (-221)) $) 40)) (-3229 (((-1062 (-221)) $) 39)) (-3230 (((-1062 (-221)) $) 38)) (-3120 (((-622 (-622 (-221))) $) 43)) (-3121 (((-1062 (-221)) $) 41)) (-3114 (((-538) (-538)) 32)) (-3118 (((-538) (-538)) 28)) (-3116 (((-538) (-538)) 30)) (-3112 (((-112) (-112)) 35)) (-3115 (((-538)) 31)) (-3469 (($ $ (-1062 (-221))) 73) (($ $) 74)) (-3123 (($ (-1 (-919 (-221)) (-221)) (-1062 (-221))) 78) (($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221))) 79)) (-3122 (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221))) 82) (($ $ (-1062 (-221))) 76)) (-3111 (((-538)) 36)) (-3119 (((-538)) 27)) (-3117 (((-538)) 29)) (-3231 (((-622 (-622 (-919 (-221)))) $) 95)) (-3110 (((-112) (-112)) 37)) (-4317 (((-840) $) 94)) (-3113 (((-112)) 34)))
-(((-903) (-13 (-950) (-10 -8 (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ $ (-1062 (-221)))) (-15 -4234 ($ $ (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3469 ($ $ (-1062 (-221)))) (-15 -3469 ($ $)) (-15 -3121 ((-1062 (-221)) $)) (-15 -3120 ((-622 (-622 (-221))) $)) (-15 -3119 ((-538))) (-15 -3118 ((-538) (-538))) (-15 -3117 ((-538))) (-15 -3116 ((-538) (-538))) (-15 -3115 ((-538))) (-15 -3114 ((-538) (-538))) (-15 -3113 ((-112))) (-15 -3112 ((-112) (-112))) (-15 -3111 ((-538))) (-15 -3110 ((-112) (-112)))))) (T -903))
-((-3123 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903)))) (-3123 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903)))) (-3122 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903)))) (-3122 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) (-4234 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) (-3469 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) (-3469 (*1 *1 *1) (-5 *1 (-903))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-221)))) (-5 *1 (-903)))) (-3119 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3117 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3116 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3115 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3113 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))) (-3112 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))) (-3111 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))))
-(-13 (-950) (-10 -8 (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ $ (-1062 (-221)))) (-15 -4234 ($ $ (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3469 ($ $ (-1062 (-221)))) (-15 -3469 ($ $)) (-15 -3121 ((-1062 (-221)) $)) (-15 -3120 ((-622 (-622 (-221))) $)) (-15 -3119 ((-538))) (-15 -3118 ((-538) (-538))) (-15 -3117 ((-538))) (-15 -3116 ((-538) (-538))) (-15 -3115 ((-538))) (-15 -3114 ((-538) (-538))) (-15 -3113 ((-112))) (-15 -3112 ((-112) (-112))) (-15 -3111 ((-538))) (-15 -3110 ((-112) (-112)))))
-((-3124 (((-622 (-1062 (-221))) (-622 (-622 (-919 (-221))))) 24)))
-(((-904) (-10 -7 (-15 -3124 ((-622 (-1062 (-221))) (-622 (-622 (-919 (-221)))))))) (T -904))
-((-3124 (*1 *2 *3) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-622 (-1062 (-221)))) (-5 *1 (-904)))))
-(-10 -7 (-15 -3124 ((-622 (-1062 (-221))) (-622 (-622 (-919 (-221)))))))
-((-3126 (((-309 (-538)) (-1149)) 16)) (-3127 (((-309 (-538)) (-1149)) 14)) (-4311 (((-309 (-538)) (-1149)) 12)) (-3125 (((-309 (-538)) (-1149) (-1131)) 19)))
-(((-905) (-10 -7 (-15 -3125 ((-309 (-538)) (-1149) (-1131))) (-15 -4311 ((-309 (-538)) (-1149))) (-15 -3126 ((-309 (-538)) (-1149))) (-15 -3127 ((-309 (-538)) (-1149))))) (T -905))
-((-3127 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1131)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))))
-(-10 -7 (-15 -3125 ((-309 (-538)) (-1149) (-1131))) (-15 -4311 ((-309 (-538)) (-1149))) (-15 -3126 ((-309 (-538)) (-1149))) (-15 -3127 ((-309 (-538)) (-1149))))
-((-3126 ((|#2| |#2|) 26)) (-3127 ((|#2| |#2|) 27)) (-4311 ((|#2| |#2|) 25)) (-3125 ((|#2| |#2| (-1131)) 24)))
-(((-906 |#1| |#2|) (-10 -7 (-15 -3125 (|#2| |#2| (-1131))) (-15 -4311 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -3127 (|#2| |#2|))) (-827) (-416 |#1|)) (T -906))
-((-3127 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3)))) (-3126 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3)))) (-4311 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-827)) (-5 *1 (-906 *4 *2)) (-4 *2 (-416 *4)))))
-(-10 -7 (-15 -3125 (|#2| |#2| (-1131))) (-15 -4311 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -3127 (|#2| |#2|)))
-((-3129 (((-864 |#1| |#3|) |#2| (-866 |#1|) (-864 |#1| |#3|)) 25)) (-3128 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-907 |#1| |#2| |#3|) (-10 -7 (-15 -3128 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3129 ((-864 |#1| |#3|) |#2| (-866 |#1|) (-864 |#1| |#3|)))) (-1074) (-862 |#1|) (-13 (-1074) (-1014 |#2|))) (T -907))
-((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-13 (-1074) (-1014 *3))) (-4 *3 (-862 *5)) (-5 *1 (-907 *5 *3 *6)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1074) (-1014 *5))) (-4 *5 (-862 *4)) (-4 *4 (-1074)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-907 *4 *5 *6)))))
-(-10 -7 (-15 -3128 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3129 ((-864 |#1| |#3|) |#2| (-866 |#1|) (-864 |#1| |#3|))))
-((-3129 (((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)) 30)))
-(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))) (-1074) (-13 (-545) (-827) (-862 |#1|)) (-13 (-416 |#2|) (-598 (-866 |#1|)) (-862 |#1|) (-1014 (-595 $)))) (T -908))
-((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074)) (-4 *3 (-13 (-416 *6) (-598 *4) (-862 *5) (-1014 (-595 $)))) (-5 *4 (-866 *5)) (-4 *6 (-13 (-545) (-827) (-862 *5))) (-5 *1 (-908 *5 *6 *3)))))
-(-10 -7 (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))))
-((-3129 (((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|)) 13)))
-(((-909 |#1|) (-10 -7 (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|)))) (-537)) (T -909))
-((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 (-538) *3)) (-5 *4 (-866 (-538))) (-4 *3 (-537)) (-5 *1 (-909 *3)))))
-(-10 -7 (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))))
-((-3129 (((-864 |#1| |#2|) (-595 |#2|) (-866 |#1|) (-864 |#1| |#2|)) 54)))
-(((-910 |#1| |#2|) (-10 -7 (-15 -3129 ((-864 |#1| |#2|) (-595 |#2|) (-866 |#1|) (-864 |#1| |#2|)))) (-1074) (-13 (-827) (-1014 (-595 $)) (-598 (-866 |#1|)) (-862 |#1|))) (T -910))
-((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *6)) (-5 *3 (-595 *6)) (-4 *5 (-1074)) (-4 *6 (-13 (-827) (-1014 (-595 $)) (-598 *4) (-862 *5))) (-5 *4 (-866 *5)) (-5 *1 (-910 *5 *6)))))
-(-10 -7 (-15 -3129 ((-864 |#1| |#2|) (-595 |#2|) (-866 |#1|) (-864 |#1| |#2|))))
-((-3129 (((-861 |#1| |#2| |#3|) |#3| (-866 |#1|) (-861 |#1| |#2| |#3|)) 15)))
-(((-911 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-861 |#1| |#2| |#3|) |#3| (-866 |#1|) (-861 |#1| |#2| |#3|)))) (-1074) (-862 |#1|) (-646 |#2|)) (T -911))
-((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-861 *5 *6 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-862 *5)) (-4 *3 (-646 *6)) (-5 *1 (-911 *5 *6 *3)))))
-(-10 -7 (-15 -3129 ((-861 |#1| |#2| |#3|) |#3| (-866 |#1|) (-861 |#1| |#2| |#3|))))
-((-3129 (((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|)) 17 (|has| |#3| (-862 |#1|))) (((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|) (-1 (-864 |#1| |#5|) |#3| (-866 |#1|) (-864 |#1| |#5|))) 16)))
-(((-912 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3129 ((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|) (-1 (-864 |#1| |#5|) |#3| (-866 |#1|) (-864 |#1| |#5|)))) (IF (|has| |#3| (-862 |#1|)) (-15 -3129 ((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|))) |%noBranch|)) (-1074) (-773) (-827) (-13 (-1025) (-827) (-862 |#1|)) (-13 (-926 |#4| |#2| |#3|) (-598 (-866 |#1|)))) (T -912))
-((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074)) (-4 *3 (-13 (-926 *8 *6 *7) (-598 *4))) (-5 *4 (-866 *5)) (-4 *7 (-862 *5)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-13 (-1025) (-827) (-862 *5))) (-5 *1 (-912 *5 *6 *7 *8 *3)))) (-3129 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-864 *6 *3) *8 (-866 *6) (-864 *6 *3))) (-4 *8 (-827)) (-5 *2 (-864 *6 *3)) (-5 *4 (-866 *6)) (-4 *6 (-1074)) (-4 *3 (-13 (-926 *9 *7 *8) (-598 *4))) (-4 *7 (-773)) (-4 *9 (-13 (-1025) (-827) (-862 *6))) (-5 *1 (-912 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -3129 ((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|) (-1 (-864 |#1| |#5|) |#3| (-866 |#1|) (-864 |#1| |#5|)))) (IF (|has| |#3| (-862 |#1|)) (-15 -3129 ((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|))) |%noBranch|))
-((-3560 (((-309 (-538)) (-1149) (-622 (-1 (-112) |#1|))) 18) (((-309 (-538)) (-1149) (-1 (-112) |#1|)) 15)))
-(((-913 |#1|) (-10 -7 (-15 -3560 ((-309 (-538)) (-1149) (-1 (-112) |#1|))) (-15 -3560 ((-309 (-538)) (-1149) (-622 (-1 (-112) |#1|))))) (-1185)) (T -913))
-((-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-622 (-1 (-112) *5))) (-4 *5 (-1185)) (-5 *2 (-309 (-538))) (-5 *1 (-913 *5)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1185)) (-5 *2 (-309 (-538))) (-5 *1 (-913 *5)))))
-(-10 -7 (-15 -3560 ((-309 (-538)) (-1149) (-1 (-112) |#1|))) (-15 -3560 ((-309 (-538)) (-1149) (-622 (-1 (-112) |#1|)))))
-((-3560 ((|#2| |#2| (-622 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -3560 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3560 (|#2| |#2| (-622 (-1 (-112) |#3|))))) (-827) (-416 |#1|) (-1185)) (T -914))
-((-3560 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-1 (-112) *5))) (-4 *5 (-1185)) (-4 *4 (-827)) (-5 *1 (-914 *4 *2 *5)) (-4 *2 (-416 *4)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1185)) (-4 *4 (-827)) (-5 *1 (-914 *4 *2 *5)) (-4 *2 (-416 *4)))))
-(-10 -7 (-15 -3560 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3560 (|#2| |#2| (-622 (-1 (-112) |#3|)))))
-((-3129 (((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)) 25)))
-(((-915 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))) (-1074) (-13 (-545) (-862 |#1|) (-598 (-866 |#1|))) (-967 |#2|)) (T -915))
-((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074)) (-4 *3 (-967 *6)) (-4 *6 (-13 (-545) (-862 *5) (-598 *4))) (-5 *4 (-866 *5)) (-5 *1 (-915 *5 *6 *3)))))
-(-10 -7 (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))))
-((-3129 (((-864 |#1| (-1149)) (-1149) (-866 |#1|) (-864 |#1| (-1149))) 17)))
-(((-916 |#1|) (-10 -7 (-15 -3129 ((-864 |#1| (-1149)) (-1149) (-866 |#1|) (-864 |#1| (-1149))))) (-1074)) (T -916))
-((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 (-1149))) (-5 *3 (-1149)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-5 *1 (-916 *5)))))
-(-10 -7 (-15 -3129 ((-864 |#1| (-1149)) (-1149) (-866 |#1|) (-864 |#1| (-1149)))))
-((-3130 (((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))) 33)) (-3129 (((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-1 |#3| (-622 |#3|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))) 32)))
-(((-917 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-1 |#3| (-622 |#3|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))) (-15 -3130 ((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))))) (-1074) (-13 (-1025) (-827)) (-13 (-1025) (-598 (-866 |#1|)) (-1014 |#2|))) (T -917))
-((-3130 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 (-866 *6))) (-5 *5 (-1 (-864 *6 *8) *8 (-866 *6) (-864 *6 *8))) (-4 *6 (-1074)) (-4 *8 (-13 (-1025) (-598 (-866 *6)) (-1014 *7))) (-5 *2 (-864 *6 *8)) (-4 *7 (-13 (-1025) (-827))) (-5 *1 (-917 *6 *7 *8)))) (-3129 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-622 (-866 *7))) (-5 *5 (-1 *9 (-622 *9))) (-5 *6 (-1 (-864 *7 *9) *9 (-866 *7) (-864 *7 *9))) (-4 *7 (-1074)) (-4 *9 (-13 (-1025) (-598 (-866 *7)) (-1014 *8))) (-5 *2 (-864 *7 *9)) (-5 *3 (-622 *9)) (-4 *8 (-13 (-1025) (-827))) (-5 *1 (-917 *7 *8 *9)))))
-(-10 -7 (-15 -3129 ((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-1 |#3| (-622 |#3|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))) (-15 -3130 ((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))))
-((-3138 (((-1143 (-402 (-538))) (-538)) 63)) (-3137 (((-1143 (-538)) (-538)) 66)) (-3693 (((-1143 (-538)) (-538)) 60)) (-3136 (((-538) (-1143 (-538))) 55)) (-3135 (((-1143 (-402 (-538))) (-538)) 49)) (-3134 (((-1143 (-538)) (-538)) 38)) (-3133 (((-1143 (-538)) (-538)) 68)) (-3132 (((-1143 (-538)) (-538)) 67)) (-3131 (((-1143 (-402 (-538))) (-538)) 51)))
-(((-918) (-10 -7 (-15 -3131 ((-1143 (-402 (-538))) (-538))) (-15 -3132 ((-1143 (-538)) (-538))) (-15 -3133 ((-1143 (-538)) (-538))) (-15 -3134 ((-1143 (-538)) (-538))) (-15 -3135 ((-1143 (-402 (-538))) (-538))) (-15 -3136 ((-538) (-1143 (-538)))) (-15 -3693 ((-1143 (-538)) (-538))) (-15 -3137 ((-1143 (-538)) (-538))) (-15 -3138 ((-1143 (-402 (-538))) (-538))))) (T -918))
-((-3138 (*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3137 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3693 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-1143 (-538))) (-5 *2 (-538)) (-5 *1 (-918)))) (-3135 (*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3134 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3133 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3131 (*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538)))))
-(-10 -7 (-15 -3131 ((-1143 (-402 (-538))) (-538))) (-15 -3132 ((-1143 (-538)) (-538))) (-15 -3133 ((-1143 (-538)) (-538))) (-15 -3134 ((-1143 (-538)) (-538))) (-15 -3135 ((-1143 (-402 (-538))) (-538))) (-15 -3136 ((-538) (-1143 (-538)))) (-15 -3693 ((-1143 (-538)) (-538))) (-15 -3137 ((-1143 (-538)) (-538))) (-15 -3138 ((-1143 (-402 (-538))) (-538))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751)) NIL (|has| |#1| (-23)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) 11 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-4069 (($ (-622 |#1|)) 13)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4195 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-3977 (($ (-751) |#1|) 8)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 10 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4192 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-4079 (((-112) $ (-751)) NIL)) (-4193 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-4128 (($ $ (-622 |#1|)) 26)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) 20) (($ $ (-1198 (-538))) NIL)) (-4196 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-4271 (((-895) $) 16)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-4194 (($ $ $) 24)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527)))) (($ (-622 |#1|)) 17)) (-3884 (($ (-622 |#1|)) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4197 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4199 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-538) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-4316 (((-751) $) 14 (|has| $ (-6 -4353)))))
+((-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-871)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) (-3850 (*1 *2 *3) (-12 (-4 *1 (-871)) (-5 *3 (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-1011)))))
+(-13 (-1073) (-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -3850 ((-1011) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-3876 ((|#1| |#1| (-751)) 24)) (-3863 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3950 (((-3 (-2 (|:| -2290 |#1|) (|:| -2303 |#1|)) "failed") |#1| (-751) (-751)) 27) (((-625 |#1|) |#1|) 29)))
+(((-872 |#1| |#2|) (-10 -7 (-15 -3950 ((-625 |#1|) |#1|)) (-15 -3950 ((-3 (-2 (|:| -2290 |#1|) (|:| -2303 |#1|)) "failed") |#1| (-751) (-751))) (-15 -3863 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3876 (|#1| |#1| (-751)))) (-1208 |#2|) (-358)) (T -872))
+((-3876 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-5 *1 (-872 *2 *4)) (-4 *2 (-1208 *4)))) (-3863 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-872 *2 *3)) (-4 *2 (-1208 *3)))) (-3950 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-751)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -2290 *3) (|:| -2303 *3))) (-5 *1 (-872 *3 *5)) (-4 *3 (-1208 *5)))) (-3950 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-872 *3 *4)) (-4 *3 (-1208 *4)))))
+(-10 -7 (-15 -3950 ((-625 |#1|) |#1|)) (-15 -3950 ((-3 (-2 (|:| -2290 |#1|) (|:| -2303 |#1|)) "failed") |#1| (-751) (-751))) (-15 -3863 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3876 (|#1| |#1| (-751))))
+((-1728 (((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131)) 96) (((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131) (-221)) 91) (((-1011) (-874) (-1037)) 83) (((-1011) (-874)) 84)) (-3890 (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874) (-1037)) 59) (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874)) 61)))
+(((-873) (-10 -7 (-15 -1728 ((-1011) (-874))) (-15 -1728 ((-1011) (-874) (-1037))) (-15 -1728 ((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131) (-221))) (-15 -1728 ((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874) (-1037))))) (T -873))
+((-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-873)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-873)))) (-1728 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-751)) (-5 *6 (-625 (-625 (-311 *3)))) (-5 *7 (-1131)) (-5 *5 (-625 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-1728 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-751)) (-5 *6 (-625 (-625 (-311 *3)))) (-5 *7 (-1131)) (-5 *8 (-221)) (-5 *5 (-625 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1011)) (-5 *1 (-873)))))
+(-10 -7 (-15 -1728 ((-1011) (-874))) (-15 -1728 ((-1011) (-874) (-1037))) (-15 -1728 ((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131) (-221))) (-15 -1728 ((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874) (-1037))))
+((-1671 (((-112) $ $) NIL)) (-1895 (((-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $) 19)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21) (($ (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 18)) (-2281 (((-112) $ $) NIL)))
+(((-874) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $))))) (T -874))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-874)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *1 (-874)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *1 (-874)))))
+(-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $))))
+((-3072 (($ $ |#2|) NIL) (($ $ (-625 |#2|)) 10) (($ $ |#2| (-751)) 12) (($ $ (-625 |#2|) (-625 (-751))) 15)) (-3768 (($ $ |#2|) 16) (($ $ (-625 |#2|)) 18) (($ $ |#2| (-751)) 19) (($ $ (-625 |#2|) (-625 (-751))) 21)))
+(((-875 |#1| |#2|) (-10 -8 (-15 -3768 (|#1| |#1| (-625 |#2|) (-625 (-751)))) (-15 -3768 (|#1| |#1| |#2| (-751))) (-15 -3768 (|#1| |#1| (-625 |#2|))) (-15 -3768 (|#1| |#1| |#2|)) (-15 -3072 (|#1| |#1| (-625 |#2|) (-625 (-751)))) (-15 -3072 (|#1| |#1| |#2| (-751))) (-15 -3072 (|#1| |#1| (-625 |#2|))) (-15 -3072 (|#1| |#1| |#2|))) (-876 |#2|) (-1073)) (T -875))
+NIL
+(-10 -8 (-15 -3768 (|#1| |#1| (-625 |#2|) (-625 (-751)))) (-15 -3768 (|#1| |#1| |#2| (-751))) (-15 -3768 (|#1| |#1| (-625 |#2|))) (-15 -3768 (|#1| |#1| |#2|)) (-15 -3072 (|#1| |#1| (-625 |#2|) (-625 (-751)))) (-15 -3072 (|#1| |#1| |#2| (-751))) (-15 -3072 (|#1| |#1| (-625 |#2|))) (-15 -3072 (|#1| |#1| |#2|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3072 (($ $ |#1|) 40) (($ $ (-625 |#1|)) 39) (($ $ |#1| (-751)) 38) (($ $ (-625 |#1|) (-625 (-751))) 37)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ |#1|) 36) (($ $ (-625 |#1|)) 35) (($ $ |#1| (-751)) 34) (($ $ (-625 |#1|) (-625 (-751))) 33)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
+(((-876 |#1|) (-138) (-1073)) (T -876))
+((-3072 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1073)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1073)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1073)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 (-751))) (-4 *1 (-876 *4)) (-4 *4 (-1073)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1073)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1073)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1073)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 (-751))) (-4 *1 (-876 *4)) (-4 *4 (-1073)))))
+(-13 (-1025) (-10 -8 (-15 -3072 ($ $ |t#1|)) (-15 -3072 ($ $ (-625 |t#1|))) (-15 -3072 ($ $ |t#1| (-751))) (-15 -3072 ($ $ (-625 |t#1|) (-625 (-751)))) (-15 -3768 ($ $ |t#1|)) (-15 -3768 ($ $ (-625 |t#1|))) (-15 -3768 ($ $ |t#1| (-751))) (-15 -3768 ($ $ (-625 |t#1|) (-625 (-751))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) 26)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1958 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1964 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "left" $) NIL (|has| $ (-6 -4354))) (($ $ "right" $) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-2303 (($ $) 25)) (-1638 (($ |#1|) 12) (($ $ $) 17)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2290 (($ $) 23)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) 20)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1172 |#1|) $) 9) (((-839) $) 29 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 21 (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-877 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -1638 ($ |#1|)) (-15 -1638 ($ $ $)) (-15 -1683 ((-1172 |#1|) $)))) (-1073)) (T -877))
+((-1638 (*1 *1 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1073)))) (-1638 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1073)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1073)))))
+(-13 (-119 |#1|) (-10 -8 (-15 -1638 ($ |#1|)) (-15 -1638 ($ $ $)) (-15 -1683 ((-1172 |#1|) $))))
+((-4016 ((|#2| (-1115 |#1| |#2|)) 40)))
+(((-878 |#1| |#2|) (-10 -7 (-15 -4016 (|#2| (-1115 |#1| |#2|)))) (-897) (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) (T -878))
+((-4016 (*1 *2 *3) (-12 (-5 *3 (-1115 *4 *2)) (-14 *4 (-897)) (-4 *2 (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) (-5 *1 (-878 *4 *2)))))
+(-10 -7 (-15 -4016 (|#2| (-1115 |#1| |#2|))))
+((-1671 (((-112) $ $) 7)) (-3101 (($) 18 T CONST)) (-4174 (((-3 $ "failed") $) 15)) (-4115 (((-1075 |#1|) $ |#1|) 32)) (-3650 (((-112) $) 17)) (-3658 (($ $ $) 30 (-1523 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-3332 (($ $ $) 29 (-1523 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 24)) (-2831 (((-1093) $) 10)) (-4073 ((|#1| $ |#1|) 34)) (-2154 ((|#1| $ |#1|) 33)) (-4028 (($ (-625 (-625 |#1|))) 35)) (-4039 (($ (-625 |#1|)) 36)) (-2410 (($ $ $) 21)) (-3828 (($ $ $) 20)) (-1683 (((-839) $) 11)) (-2100 (($) 19 T CONST)) (-2346 (((-112) $ $) 27 (-1523 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-2320 (((-112) $ $) 26 (-1523 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 28 (-1523 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-2307 (((-112) $ $) 31)) (-2404 (($ $ $) 23)) (** (($ $ (-897)) 13) (($ $ (-751)) 16) (($ $ (-552)) 22)) (* (($ $ $) 14)))
+(((-879 |#1|) (-138) (-1073)) (T -879))
+((-4039 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-879 *3)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-4 *1 (-879 *3)))) (-4073 (*1 *2 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1073)))) (-2154 (*1 *2 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1073)))) (-4115 (*1 *2 *1 *3) (-12 (-4 *1 (-879 *3)) (-4 *3 (-1073)) (-5 *2 (-1075 *3)))) (-2307 (*1 *2 *1 *1) (-12 (-4 *1 (-879 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))))
+(-13 (-467) (-10 -8 (-15 -4039 ($ (-625 |t#1|))) (-15 -4028 ($ (-625 (-625 |t#1|)))) (-15 -4073 (|t#1| $ |t#1|)) (-15 -2154 (|t#1| $ |t#1|)) (-15 -4115 ((-1075 |t#1|) $ |t#1|)) (-15 -2307 ((-112) $ $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-827)) |%noBranch|)))
+(((-101) . T) ((-597 (-839)) . T) ((-467) . T) ((-707) . T) ((-827) -1523 (|has| |#1| (-827)) (|has| |#1| (-363))) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-4142 (((-625 (-625 (-751))) $) 108)) (-4090 (((-625 (-751)) (-881 |#1|) $) 130)) (-4078 (((-625 (-751)) (-881 |#1|) $) 131)) (-4155 (((-625 (-881 |#1|)) $) 98)) (-3702 (((-881 |#1|) $ (-552)) 103) (((-881 |#1|) $) 104)) (-4129 (($ (-625 (-881 |#1|))) 110)) (-2172 (((-751) $) 105)) (-4103 (((-1075 (-1075 |#1|)) $) 128)) (-4115 (((-1075 |#1|) $ |#1|) 121) (((-1075 (-1075 |#1|)) $ (-1075 |#1|)) 139) (((-1075 (-625 |#1|)) $ (-625 |#1|)) 142)) (-4064 (((-1075 |#1|) $) 101)) (-2893 (((-112) (-881 |#1|) $) 92)) (-2883 (((-1131) $) NIL)) (-4051 (((-1237) $) 95) (((-1237) $ (-552) (-552)) 143)) (-2831 (((-1093) $) NIL)) (-4167 (((-625 (-881 |#1|)) $) 96)) (-2154 (((-881 |#1|) $ (-751)) 99)) (-4276 (((-751) $) 106)) (-1683 (((-839) $) 119) (((-625 (-881 |#1|)) $) 23) (($ (-625 (-881 |#1|))) 109)) (-3929 (((-625 |#1|) $) 107)) (-2281 (((-112) $ $) 136)) (-2334 (((-112) $ $) 134)) (-2307 (((-112) $ $) 133)))
+(((-880 |#1|) (-13 (-1073) (-10 -8 (-15 -1683 ((-625 (-881 |#1|)) $)) (-15 -4167 ((-625 (-881 |#1|)) $)) (-15 -2154 ((-881 |#1|) $ (-751))) (-15 -3702 ((-881 |#1|) $ (-552))) (-15 -3702 ((-881 |#1|) $)) (-15 -2172 ((-751) $)) (-15 -4276 ((-751) $)) (-15 -3929 ((-625 |#1|) $)) (-15 -4155 ((-625 (-881 |#1|)) $)) (-15 -4142 ((-625 (-625 (-751))) $)) (-15 -1683 ($ (-625 (-881 |#1|)))) (-15 -4129 ($ (-625 (-881 |#1|)))) (-15 -4115 ((-1075 |#1|) $ |#1|)) (-15 -4103 ((-1075 (-1075 |#1|)) $)) (-15 -4115 ((-1075 (-1075 |#1|)) $ (-1075 |#1|))) (-15 -4115 ((-1075 (-625 |#1|)) $ (-625 |#1|))) (-15 -2893 ((-112) (-881 |#1|) $)) (-15 -4090 ((-625 (-751)) (-881 |#1|) $)) (-15 -4078 ((-625 (-751)) (-881 |#1|) $)) (-15 -4064 ((-1075 |#1|) $)) (-15 -2307 ((-112) $ $)) (-15 -2334 ((-112) $ $)) (-15 -4051 ((-1237) $)) (-15 -4051 ((-1237) $ (-552) (-552))))) (-1073)) (T -880))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-881 *4)) (-5 *1 (-880 *4)) (-4 *4 (-1073)))) (-3702 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-881 *4)) (-5 *1 (-880 *4)) (-4 *4 (-1073)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-881 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-751)))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-881 *3))) (-4 *3 (-1073)) (-5 *1 (-880 *3)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-625 (-881 *3))) (-4 *3 (-1073)) (-5 *1 (-880 *3)))) (-4115 (*1 *2 *1 *3) (-12 (-5 *2 (-1075 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-1075 (-1075 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4115 (*1 *2 *1 *3) (-12 (-4 *4 (-1073)) (-5 *2 (-1075 (-1075 *4))) (-5 *1 (-880 *4)) (-5 *3 (-1075 *4)))) (-4115 (*1 *2 *1 *3) (-12 (-4 *4 (-1073)) (-5 *2 (-1075 (-625 *4))) (-5 *1 (-880 *4)) (-5 *3 (-625 *4)))) (-2893 (*1 *2 *3 *1) (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-112)) (-5 *1 (-880 *4)))) (-4090 (*1 *2 *3 *1) (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-625 (-751))) (-5 *1 (-880 *4)))) (-4078 (*1 *2 *3 *1) (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-625 (-751))) (-5 *1 (-880 *4)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1075 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-2307 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-2334 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4051 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-880 *4)) (-4 *4 (-1073)))))
+(-13 (-1073) (-10 -8 (-15 -1683 ((-625 (-881 |#1|)) $)) (-15 -4167 ((-625 (-881 |#1|)) $)) (-15 -2154 ((-881 |#1|) $ (-751))) (-15 -3702 ((-881 |#1|) $ (-552))) (-15 -3702 ((-881 |#1|) $)) (-15 -2172 ((-751) $)) (-15 -4276 ((-751) $)) (-15 -3929 ((-625 |#1|) $)) (-15 -4155 ((-625 (-881 |#1|)) $)) (-15 -4142 ((-625 (-625 (-751))) $)) (-15 -1683 ($ (-625 (-881 |#1|)))) (-15 -4129 ($ (-625 (-881 |#1|)))) (-15 -4115 ((-1075 |#1|) $ |#1|)) (-15 -4103 ((-1075 (-1075 |#1|)) $)) (-15 -4115 ((-1075 (-1075 |#1|)) $ (-1075 |#1|))) (-15 -4115 ((-1075 (-625 |#1|)) $ (-625 |#1|))) (-15 -2893 ((-112) (-881 |#1|) $)) (-15 -4090 ((-625 (-751)) (-881 |#1|) $)) (-15 -4078 ((-625 (-751)) (-881 |#1|) $)) (-15 -4064 ((-1075 |#1|) $)) (-15 -2307 ((-112) $ $)) (-15 -2334 ((-112) $ $)) (-15 -4051 ((-1237) $)) (-15 -4051 ((-1237) $ (-552) (-552)))))
+((-1671 (((-112) $ $) NIL)) (-1800 (((-625 $) (-625 $)) 77)) (-4127 (((-552) $) 60)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-2172 (((-751) $) 58)) (-4115 (((-1075 |#1|) $ |#1|) 49)) (-3650 (((-112) $) NIL)) (-3932 (((-112) $) 63)) (-3955 (((-751) $) 61)) (-4064 (((-1075 |#1|) $) 42)) (-3658 (($ $ $) NIL (-1523 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-3332 (($ $ $) NIL (-1523 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-4005 (((-2 (|:| |preimage| (-625 |#1|)) (|:| |image| (-625 |#1|))) $) 37)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 93)) (-2831 (((-1093) $) NIL)) (-3917 (((-1075 |#1|) $) 100 (|has| |#1| (-363)))) (-3943 (((-112) $) 59)) (-4073 ((|#1| $ |#1|) 47)) (-2154 ((|#1| $ |#1|) 94)) (-4276 (((-751) $) 44)) (-4028 (($ (-625 (-625 |#1|))) 85)) (-3968 (((-947) $) 53)) (-4039 (($ (-625 |#1|)) 21)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-3992 (($ (-625 (-625 |#1|))) 39)) (-3980 (($ (-625 (-625 |#1|))) 88)) (-3903 (($ (-625 |#1|)) 96)) (-1683 (((-839) $) 84) (($ (-625 (-625 |#1|))) 66) (($ (-625 |#1|)) 67)) (-2100 (($) 16 T CONST)) (-2346 (((-112) $ $) NIL (-1523 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-2281 (((-112) $ $) 45)) (-2334 (((-112) $ $) NIL (-1523 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-2307 (((-112) $ $) 65)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 22)))
+(((-881 |#1|) (-13 (-879 |#1|) (-10 -8 (-15 -4005 ((-2 (|:| |preimage| (-625 |#1|)) (|:| |image| (-625 |#1|))) $)) (-15 -3992 ($ (-625 (-625 |#1|)))) (-15 -1683 ($ (-625 (-625 |#1|)))) (-15 -1683 ($ (-625 |#1|))) (-15 -3980 ($ (-625 (-625 |#1|)))) (-15 -4276 ((-751) $)) (-15 -4064 ((-1075 |#1|) $)) (-15 -3968 ((-947) $)) (-15 -2172 ((-751) $)) (-15 -3955 ((-751) $)) (-15 -4127 ((-552) $)) (-15 -3943 ((-112) $)) (-15 -3932 ((-112) $)) (-15 -1800 ((-625 $) (-625 $))) (IF (|has| |#1| (-363)) (-15 -3917 ((-1075 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3903 ($ (-625 |#1|))) (IF (|has| |#1| (-363)) (-15 -3903 ($ (-625 |#1|))) |%noBranch|)))) (-1073)) (T -881))
+((-4005 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-625 *3)) (|:| |image| (-625 *3)))) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3992 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-881 *3)))) (-3980 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1075 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-1800 (*1 *2 *2) (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-1075 *3)) (-5 *1 (-881 *3)) (-4 *3 (-363)) (-4 *3 (-1073)))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-881 *3)))))
+(-13 (-879 |#1|) (-10 -8 (-15 -4005 ((-2 (|:| |preimage| (-625 |#1|)) (|:| |image| (-625 |#1|))) $)) (-15 -3992 ($ (-625 (-625 |#1|)))) (-15 -1683 ($ (-625 (-625 |#1|)))) (-15 -1683 ($ (-625 |#1|))) (-15 -3980 ($ (-625 (-625 |#1|)))) (-15 -4276 ((-751) $)) (-15 -4064 ((-1075 |#1|) $)) (-15 -3968 ((-947) $)) (-15 -2172 ((-751) $)) (-15 -3955 ((-751) $)) (-15 -4127 ((-552) $)) (-15 -3943 ((-112) $)) (-15 -3932 ((-112) $)) (-15 -1800 ((-625 $) (-625 $))) (IF (|has| |#1| (-363)) (-15 -3917 ((-1075 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3903 ($ (-625 |#1|))) (IF (|has| |#1| (-363)) (-15 -3903 ($ (-625 |#1|))) |%noBranch|))))
+((-4190 (((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|)) 128)) (-4221 ((|#1|) 77)) (-4210 (((-413 (-1145 |#4|)) (-1145 |#4|)) 137)) (-4231 (((-413 (-1145 |#4|)) (-625 |#3|) (-1145 |#4|)) 69)) (-4200 (((-413 (-1145 |#4|)) (-1145 |#4|)) 147)) (-4178 (((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|) |#3|) 92)))
+(((-882 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4190 ((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|))) (-15 -4200 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -4210 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -4221 (|#1|)) (-15 -4178 ((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|) |#3|)) (-15 -4231 ((-413 (-1145 |#4|)) (-625 |#3|) (-1145 |#4|)))) (-885) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -882))
+((-4231 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *7)) (-4 *7 (-827)) (-4 *5 (-885)) (-4 *6 (-773)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-413 (-1145 *8))) (-5 *1 (-882 *5 *6 *7 *8)) (-5 *4 (-1145 *8)))) (-4178 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-625 (-1145 *7))) (-5 *3 (-1145 *7)) (-4 *7 (-925 *5 *6 *4)) (-4 *5 (-885)) (-4 *6 (-773)) (-4 *4 (-827)) (-5 *1 (-882 *5 *6 *4 *7)))) (-4221 (*1 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-885)) (-5 *1 (-882 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-885)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-882 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-885)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-882 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-4190 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 *7))) (-5 *3 (-1145 *7)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-885)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-882 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4190 ((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|))) (-15 -4200 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -4210 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -4221 (|#1|)) (-15 -4178 ((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|) |#3|)) (-15 -4231 ((-413 (-1145 |#4|)) (-625 |#3|) (-1145 |#4|))))
+((-4190 (((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|)) 36)) (-4221 ((|#1|) 54)) (-4210 (((-413 (-1145 |#2|)) (-1145 |#2|)) 102)) (-4231 (((-413 (-1145 |#2|)) (-1145 |#2|)) 90)) (-4200 (((-413 (-1145 |#2|)) (-1145 |#2|)) 113)))
+(((-883 |#1| |#2|) (-10 -7 (-15 -4190 ((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|))) (-15 -4200 ((-413 (-1145 |#2|)) (-1145 |#2|))) (-15 -4210 ((-413 (-1145 |#2|)) (-1145 |#2|))) (-15 -4221 (|#1|)) (-15 -4231 ((-413 (-1145 |#2|)) (-1145 |#2|)))) (-885) (-1208 |#1|)) (T -883))
+((-4231 (*1 *2 *3) (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5))) (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5)))) (-4221 (*1 *2) (-12 (-4 *2 (-885)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1208 *2)))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5))) (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5))) (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5)))) (-4190 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 *5))) (-5 *3 (-1145 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-885)) (-5 *1 (-883 *4 *5)))))
+(-10 -7 (-15 -4190 ((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|))) (-15 -4200 ((-413 (-1145 |#2|)) (-1145 |#2|))) (-15 -4210 ((-413 (-1145 |#2|)) (-1145 |#2|))) (-15 -4221 (|#1|)) (-15 -4231 ((-413 (-1145 |#2|)) (-1145 |#2|))))
+((-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 41)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 18)) (-4243 (((-3 $ "failed") $) 35)))
+(((-884 |#1|) (-10 -8 (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|)))) (-885)) (T -884))
+NIL
+(-10 -8 (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 58)) (-2194 (($ $) 49)) (-1330 (((-413 $) $) 50)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 55)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-2951 (((-112) $) 51)) (-3650 (((-112) $) 30)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-4275 (((-413 (-1145 $)) (-1145 $)) 56)) (-4286 (((-413 (-1145 $)) (-1145 $)) 57)) (-3824 (((-413 $) $) 48)) (-2802 (((-3 $ "failed") $ $) 40)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 54 (|has| $ (-143)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4243 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
+(((-885) (-138)) (T -885))
+((-4306 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-885)))) (-4296 (*1 *2 *3) (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1)))) (-4286 (*1 *2 *3) (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1)))) (-4275 (*1 *2 *3) (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1)))) (-4264 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 *1))) (-5 *3 (-1145 *1)) (-4 *1 (-885)))) (-4253 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-143)) (-4 *1 (-885)) (-5 *2 (-1232 *1)))) (-4243 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-885)))))
+(-13 (-1190) (-10 -8 (-15 -4296 ((-413 (-1145 $)) (-1145 $))) (-15 -4286 ((-413 (-1145 $)) (-1145 $))) (-15 -4275 ((-413 (-1145 $)) (-1145 $))) (-15 -4306 ((-1145 $) (-1145 $) (-1145 $))) (-15 -4264 ((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $))) (IF (|has| $ (-143)) (PROGN (-15 -4253 ((-3 (-1232 $) "failed") (-669 $))) (-15 -4243 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (($ $ (-897)) NIL (|has| $ (-363))) (($ $) NIL)) (-3811 (((-1159 (-897) (-751)) (-552)) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 $ "failed") $) NIL)) (-1895 (($ $) NIL)) (-2670 (($ (-1232 $)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL)) (-3872 (((-112) $) NIL)) (-3554 (($ $) NIL) (($ $ (-751)) NIL)) (-2951 (((-112) $) NIL)) (-2172 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| $ (-363)))) (-4328 (((-112) $) NIL (|has| $ (-363)))) (-4209 (($ $ (-897)) NIL (|has| $ (-363))) (($ $) NIL)) (-4034 (((-3 $ "failed") $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 $) $ (-897)) NIL (|has| $ (-363))) (((-1145 $) $) NIL)) (-4318 (((-897) $) NIL)) (-1378 (((-1145 $) $) NIL (|has| $ (-363)))) (-1369 (((-3 (-1145 $) "failed") $ $) NIL (|has| $ (-363))) (((-1145 $) $) NIL (|has| $ (-363)))) (-1386 (($ $ (-1145 $)) NIL (|has| $ (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL T CONST)) (-3123 (($ (-897)) NIL)) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL (|has| $ (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL)) (-3824 (((-413 $) $) NIL)) (-4130 (((-897)) NIL) (((-813 (-897))) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-3 (-751) "failed") $ $) NIL) (((-751) $) NIL)) (-3904 (((-133)) NIL)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-4276 (((-897) $) NIL) (((-813 (-897)) $) NIL)) (-3610 (((-1145 $)) NIL)) (-3798 (($) NIL)) (-1397 (($) NIL (|has| $ (-363)))) (-2780 (((-669 $) (-1232 $)) NIL) (((-1232 $) $) NIL)) (-2042 (((-552) $) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL)) (-4243 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4141 (((-751)) NIL)) (-1270 (((-1232 $) (-897)) NIL) (((-1232 $)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $ (-751)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL)))
+(((-886 |#1|) (-13 (-344) (-324 $) (-598 (-552))) (-897)) (T -886))
+NIL
+(-13 (-344) (-324 $) (-598 (-552)))
+((-4325 (((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|)) 79)) (-4315 (((-112) (-331 |#2| |#3| |#4| |#5|)) 17)) (-2172 (((-3 (-751) "failed") (-331 |#2| |#3| |#4| |#5|)) 15)))
+(((-887 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2172 ((-3 (-751) "failed") (-331 |#2| |#3| |#4| |#5|))) (-15 -4315 ((-112) (-331 |#2| |#3| |#4| |#5|))) (-15 -4325 ((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|)))) (-13 (-827) (-544) (-1014 (-552))) (-425 |#1|) (-1208 |#2|) (-1208 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -887))
+((-4325 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-2 (|:| -2172 (-751)) (|:| -2487 *8))) (-5 *1 (-887 *4 *5 *6 *7 *8)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-112)) (-5 *1 (-887 *4 *5 *6 *7 *8)))) (-2172 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-751)) (-5 *1 (-887 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2172 ((-3 (-751) "failed") (-331 |#2| |#3| |#4| |#5|))) (-15 -4315 ((-112) (-331 |#2| |#3| |#4| |#5|))) (-15 -4325 ((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|))))
+((-4325 (((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#3|)) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|)) 56)) (-4315 (((-112) (-331 (-402 (-552)) |#1| |#2| |#3|)) 16)) (-2172 (((-3 (-751) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|)) 14)))
+(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -2172 ((-3 (-751) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|))) (-15 -4315 ((-112) (-331 (-402 (-552)) |#1| |#2| |#3|))) (-15 -4325 ((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#3|)) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|)))) (-1208 (-402 (-552))) (-1208 (-402 |#1|)) (-337 (-402 (-552)) |#1| |#2|)) (T -888))
+((-4325 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6)) (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 (-402 (-552)) *4 *5)) (-5 *2 (-2 (|:| -2172 (-751)) (|:| -2487 *6))) (-5 *1 (-888 *4 *5 *6)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6)) (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 (-402 (-552)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-888 *4 *5 *6)))) (-2172 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6)) (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 (-402 (-552)) *4 *5)) (-5 *2 (-751)) (-5 *1 (-888 *4 *5 *6)))))
+(-10 -7 (-15 -2172 ((-3 (-751) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|))) (-15 -4315 ((-112) (-331 (-402 (-552)) |#1| |#2| |#3|))) (-15 -4325 ((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#3|)) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|))))
+((-1310 ((|#2| |#2|) 26)) (-1286 (((-552) (-625 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) 15)) (-1267 (((-897) (-552)) 35)) (-1298 (((-552) |#2|) 42)) (-1277 (((-552) |#2|) 21) (((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|) 20)))
+(((-889 |#1| |#2|) (-10 -7 (-15 -1267 ((-897) (-552))) (-15 -1277 ((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|)) (-15 -1277 ((-552) |#2|)) (-15 -1286 ((-552) (-625 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))) (-15 -1298 ((-552) |#2|)) (-15 -1310 (|#2| |#2|))) (-1208 (-402 (-552))) (-1208 (-402 |#1|))) (T -889))
+((-1310 (*1 *2 *2) (-12 (-4 *3 (-1208 (-402 (-552)))) (-5 *1 (-889 *3 *2)) (-4 *2 (-1208 (-402 *3))))) (-1298 (*1 *2 *3) (-12 (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1208 (-402 *4))))) (-1286 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1208 (-402 *4))))) (-1277 (*1 *2 *3) (-12 (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1208 (-402 *4))))) (-1277 (*1 *2 *3) (-12 (-4 *3 (-1208 (-402 (-552)))) (-5 *2 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))) (-5 *1 (-889 *3 *4)) (-4 *4 (-1208 (-402 *3))))) (-1267 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-1208 (-402 *3))) (-5 *2 (-897)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1208 (-402 *4))))))
+(-10 -7 (-15 -1267 ((-897) (-552))) (-15 -1277 ((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|)) (-15 -1277 ((-552) |#2|)) (-15 -1286 ((-552) (-625 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))) (-15 -1298 ((-552) |#2|)) (-15 -1310 (|#2| |#2|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 ((|#1| $) 81)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) 75)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1390 (($ |#1| (-413 |#1|)) 73)) (-1329 (((-1145 |#1|) |#1| |#1|) 41)) (-1319 (($ $) 49)) (-3650 (((-112) $) NIL)) (-1340 (((-552) $) 78)) (-1348 (($ $ (-552)) 80)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-1360 ((|#1| $) 77)) (-1372 (((-413 |#1|) $) 76)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) 74)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1381 (($ $) 39)) (-1683 (((-839) $) 99) (($ (-552)) 54) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 31) (((-402 |#1|) $) 59) (($ (-402 (-413 |#1|))) 67)) (-4141 (((-751)) 52)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 23 T CONST)) (-2100 (($) 12 T CONST)) (-2281 (((-112) $ $) 68)) (-2404 (($ $ $) NIL)) (-2393 (($ $) 88) (($ $ $) NIL)) (-2382 (($ $ $) 38)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 90) (($ $ $) 37) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-890 |#1|) (-13 (-358) (-38 |#1|) (-10 -8 (-15 -1683 ((-402 |#1|) $)) (-15 -1683 ($ (-402 (-413 |#1|)))) (-15 -1381 ($ $)) (-15 -1372 ((-413 |#1|) $)) (-15 -1360 (|#1| $)) (-15 -1348 ($ $ (-552))) (-15 -1340 ((-552) $)) (-15 -1329 ((-1145 |#1|) |#1| |#1|)) (-15 -1319 ($ $)) (-15 -1390 ($ |#1| (-413 |#1|))) (-15 -4177 (|#1| $)))) (-302)) (T -890))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-402 (-413 *3))) (-4 *3 (-302)) (-5 *1 (-890 *3)))) (-1381 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-1360 (*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-1348 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-1329 (*1 *2 *3 *3) (-12 (-5 *2 (-1145 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-1319 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *3 (-413 *2)) (-4 *2 (-302)) (-5 *1 (-890 *2)))) (-4177 (*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))))
+(-13 (-358) (-38 |#1|) (-10 -8 (-15 -1683 ((-402 |#1|) $)) (-15 -1683 ($ (-402 (-413 |#1|)))) (-15 -1381 ($ $)) (-15 -1372 ((-413 |#1|) $)) (-15 -1360 (|#1| $)) (-15 -1348 ($ $ (-552))) (-15 -1340 ((-552) $)) (-15 -1329 ((-1145 |#1|) |#1| |#1|)) (-15 -1319 ($ $)) (-15 -1390 ($ |#1| (-413 |#1|))) (-15 -4177 (|#1| $))))
+((-1390 (((-52) (-928 |#1|) (-413 (-928 |#1|)) (-1149)) 17) (((-52) (-402 (-928 |#1|)) (-1149)) 18)))
+(((-891 |#1|) (-10 -7 (-15 -1390 ((-52) (-402 (-928 |#1|)) (-1149))) (-15 -1390 ((-52) (-928 |#1|) (-413 (-928 |#1|)) (-1149)))) (-13 (-302) (-145))) (T -891))
+((-1390 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-413 (-928 *6))) (-5 *5 (-1149)) (-5 *3 (-928 *6)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-891 *6)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-891 *5)))))
+(-10 -7 (-15 -1390 ((-52) (-402 (-928 |#1|)) (-1149))) (-15 -1390 ((-52) (-928 |#1|) (-413 (-928 |#1|)) (-1149))))
+((-1400 ((|#4| (-625 |#4|)) 121) (((-1145 |#4|) (-1145 |#4|) (-1145 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2633 (((-1145 |#4|) (-625 (-1145 |#4|))) 114) (((-1145 |#4|) (-1145 |#4|) (-1145 |#4|)) 50) ((|#4| (-625 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
+(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2633 (|#4| |#4| |#4|)) (-15 -2633 (|#4| (-625 |#4|))) (-15 -2633 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -2633 ((-1145 |#4|) (-625 (-1145 |#4|)))) (-15 -1400 (|#4| |#4| |#4|)) (-15 -1400 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -1400 (|#4| (-625 |#4|)))) (-773) (-827) (-302) (-925 |#3| |#1| |#2|)) (T -892))
+((-1400 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)))) (-1400 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1400 (*1 *2 *2 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-925 *5 *3 *4)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-625 (-1145 *7))) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-1145 *7)) (-5 *1 (-892 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) (-2633 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)))) (-2633 (*1 *2 *2 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-925 *5 *3 *4)))))
+(-10 -7 (-15 -2633 (|#4| |#4| |#4|)) (-15 -2633 (|#4| (-625 |#4|))) (-15 -2633 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -2633 ((-1145 |#4|) (-625 (-1145 |#4|)))) (-15 -1400 (|#4| |#4| |#4|)) (-15 -1400 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -1400 (|#4| (-625 |#4|))))
+((-1435 (((-880 (-552)) (-947)) 23) (((-880 (-552)) (-625 (-552))) 20)) (-1410 (((-880 (-552)) (-625 (-552))) 48) (((-880 (-552)) (-897)) 49)) (-1422 (((-880 (-552))) 24)) (-1403 (((-880 (-552))) 38) (((-880 (-552)) (-625 (-552))) 37)) (-1393 (((-880 (-552))) 36) (((-880 (-552)) (-625 (-552))) 35)) (-1384 (((-880 (-552))) 34) (((-880 (-552)) (-625 (-552))) 33)) (-1375 (((-880 (-552))) 32) (((-880 (-552)) (-625 (-552))) 31)) (-1364 (((-880 (-552))) 30) (((-880 (-552)) (-625 (-552))) 29)) (-1414 (((-880 (-552))) 40) (((-880 (-552)) (-625 (-552))) 39)) (-1352 (((-880 (-552)) (-625 (-552))) 52) (((-880 (-552)) (-897)) 53)) (-1344 (((-880 (-552)) (-625 (-552))) 50) (((-880 (-552)) (-897)) 51)) (-1323 (((-880 (-552)) (-625 (-552))) 46) (((-880 (-552)) (-897)) 47)) (-1333 (((-880 (-552)) (-625 (-897))) 43)))
+(((-893) (-10 -7 (-15 -1410 ((-880 (-552)) (-897))) (-15 -1410 ((-880 (-552)) (-625 (-552)))) (-15 -1323 ((-880 (-552)) (-897))) (-15 -1323 ((-880 (-552)) (-625 (-552)))) (-15 -1333 ((-880 (-552)) (-625 (-897)))) (-15 -1344 ((-880 (-552)) (-897))) (-15 -1344 ((-880 (-552)) (-625 (-552)))) (-15 -1352 ((-880 (-552)) (-897))) (-15 -1352 ((-880 (-552)) (-625 (-552)))) (-15 -1364 ((-880 (-552)) (-625 (-552)))) (-15 -1364 ((-880 (-552)))) (-15 -1375 ((-880 (-552)) (-625 (-552)))) (-15 -1375 ((-880 (-552)))) (-15 -1384 ((-880 (-552)) (-625 (-552)))) (-15 -1384 ((-880 (-552)))) (-15 -1393 ((-880 (-552)) (-625 (-552)))) (-15 -1393 ((-880 (-552)))) (-15 -1403 ((-880 (-552)) (-625 (-552)))) (-15 -1403 ((-880 (-552)))) (-15 -1414 ((-880 (-552)) (-625 (-552)))) (-15 -1414 ((-880 (-552)))) (-15 -1422 ((-880 (-552)))) (-15 -1435 ((-880 (-552)) (-625 (-552)))) (-15 -1435 ((-880 (-552)) (-947))))) (T -893))
+((-1435 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1422 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1414 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1403 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1393 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1384 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1375 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1364 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-625 (-897))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(-10 -7 (-15 -1410 ((-880 (-552)) (-897))) (-15 -1410 ((-880 (-552)) (-625 (-552)))) (-15 -1323 ((-880 (-552)) (-897))) (-15 -1323 ((-880 (-552)) (-625 (-552)))) (-15 -1333 ((-880 (-552)) (-625 (-897)))) (-15 -1344 ((-880 (-552)) (-897))) (-15 -1344 ((-880 (-552)) (-625 (-552)))) (-15 -1352 ((-880 (-552)) (-897))) (-15 -1352 ((-880 (-552)) (-625 (-552)))) (-15 -1364 ((-880 (-552)) (-625 (-552)))) (-15 -1364 ((-880 (-552)))) (-15 -1375 ((-880 (-552)) (-625 (-552)))) (-15 -1375 ((-880 (-552)))) (-15 -1384 ((-880 (-552)) (-625 (-552)))) (-15 -1384 ((-880 (-552)))) (-15 -1393 ((-880 (-552)) (-625 (-552)))) (-15 -1393 ((-880 (-552)))) (-15 -1403 ((-880 (-552)) (-625 (-552)))) (-15 -1403 ((-880 (-552)))) (-15 -1414 ((-880 (-552)) (-625 (-552)))) (-15 -1414 ((-880 (-552)))) (-15 -1422 ((-880 (-552)))) (-15 -1435 ((-880 (-552)) (-625 (-552)))) (-15 -1435 ((-880 (-552)) (-947))))
+((-1457 (((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149))) 12)) (-1447 (((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149))) 11)))
+(((-894 |#1|) (-10 -7 (-15 -1447 ((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -1457 ((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149))))) (-446)) (T -894))
+((-1457 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-928 *4))) (-5 *3 (-625 (-1149))) (-4 *4 (-446)) (-5 *1 (-894 *4)))) (-1447 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-928 *4))) (-5 *3 (-625 (-1149))) (-4 *4 (-446)) (-5 *1 (-894 *4)))))
+(-10 -7 (-15 -1447 ((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -1457 ((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)))))
+((-1683 (((-311 |#1|) (-471)) 16)))
+(((-895 |#1|) (-10 -7 (-15 -1683 ((-311 |#1|) (-471)))) (-13 (-827) (-544))) (T -895))
+((-1683 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-311 *4)) (-5 *1 (-895 *4)) (-4 *4 (-13 (-827) (-544))))))
+(-10 -7 (-15 -1683 ((-311 |#1|) (-471))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-3650 (((-112) $) 30)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
+(((-896) (-138)) (T -896))
+((-1480 (*1 *2 *3) (-12 (-4 *1 (-896)) (-5 *2 (-2 (|:| -3340 (-625 *1)) (|:| -3212 *1))) (-5 *3 (-625 *1)))) (-1468 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-896)))))
+(-13 (-446) (-10 -8 (-15 -1480 ((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $))) (-15 -1468 ((-3 (-625 $) "failed") (-625 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2633 (($ $ $) NIL)) (-1683 (((-839) $) NIL)) (-2100 (($) NIL T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ $ $) NIL)))
+(((-897) (-13 (-774) (-707) (-10 -8 (-15 -2633 ($ $ $)) (-6 (-4355 "*"))))) (T -897))
+((-2633 (*1 *1 *1 *1) (-5 *1 (-897))))
+(-13 (-774) (-707) (-10 -8 (-15 -2633 ($ $ $)) (-6 (-4355 "*"))))
+((-1490 ((|#2| (-625 |#1|) (-625 |#1|)) 24)))
+(((-898 |#1| |#2|) (-10 -7 (-15 -1490 (|#2| (-625 |#1|) (-625 |#1|)))) (-358) (-1208 |#1|)) (T -898))
+((-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-358)) (-4 *2 (-1208 *4)) (-5 *1 (-898 *4 *2)))))
+(-10 -7 (-15 -1490 (|#2| (-625 |#1|) (-625 |#1|))))
+((-3953 (((-1145 |#2|) (-625 |#2|) (-625 |#2|)) 17) (((-1205 |#1| |#2|) (-1205 |#1| |#2|) (-625 |#2|) (-625 |#2|)) 13)))
+(((-899 |#1| |#2|) (-10 -7 (-15 -3953 ((-1205 |#1| |#2|) (-1205 |#1| |#2|) (-625 |#2|) (-625 |#2|))) (-15 -3953 ((-1145 |#2|) (-625 |#2|) (-625 |#2|)))) (-1149) (-358)) (T -899))
+((-3953 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-358)) (-5 *2 (-1145 *5)) (-5 *1 (-899 *4 *5)) (-14 *4 (-1149)))) (-3953 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1205 *4 *5)) (-5 *3 (-625 *5)) (-14 *4 (-1149)) (-4 *5 (-358)) (-5 *1 (-899 *4 *5)))))
+(-10 -7 (-15 -3953 ((-1205 |#1| |#2|) (-1205 |#1| |#2|) (-625 |#2|) (-625 |#2|))) (-15 -3953 ((-1145 |#2|) (-625 |#2|) (-625 |#2|))))
+((-1513 (((-552) (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131)) 139)) (-1725 ((|#4| |#4|) 155)) (-1557 (((-625 (-402 (-928 |#1|))) (-625 (-1149))) 118)) (-1714 (((-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-625 (-625 |#4|)) (-751) (-751) (-552)) 75)) (-1601 (((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-625 |#4|)) 59)) (-1703 (((-669 |#4|) (-669 |#4|) (-625 |#4|)) 55)) (-1525 (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131)) 151)) (-1500 (((-552) (-669 |#4|) (-897) (-1131)) 132) (((-552) (-669 |#4|) (-625 (-1149)) (-897) (-1131)) 131) (((-552) (-669 |#4|) (-625 |#4|) (-897) (-1131)) 130) (((-552) (-669 |#4|) (-1131)) 127) (((-552) (-669 |#4|) (-625 (-1149)) (-1131)) 126) (((-552) (-669 |#4|) (-625 |#4|) (-1131)) 125) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-897)) 124) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149)) (-897)) 123) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|) (-897)) 122) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|)) 120) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149))) 119) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|)) 115)) (-1568 ((|#4| (-928 |#1|)) 68)) (-1680 (((-112) (-625 |#4|) (-625 (-625 |#4|))) 152)) (-1668 (((-625 (-625 (-552))) (-552) (-552)) 129)) (-1658 (((-625 (-625 |#4|)) (-625 (-625 |#4|))) 88)) (-1646 (((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|))))) 86)) (-1635 (((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|))))) 85)) (-1737 (((-112) (-625 (-928 |#1|))) 17) (((-112) (-625 |#4|)) 13)) (-1578 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-625 |#4|)) (|:| |n0| (-625 |#4|))) (-625 |#4|) (-625 |#4|)) 71)) (-1623 (((-625 |#4|) |#4|) 49)) (-1546 (((-625 (-402 (-928 |#1|))) (-625 |#4|)) 114) (((-669 (-402 (-928 |#1|))) (-669 |#4|)) 56) (((-402 (-928 |#1|)) |#4|) 111)) (-1536 (((-2 (|:| |rgl| (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))))) (|:| |rgsz| (-552))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-751) (-1131) (-552)) 93)) (-1590 (((-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))) (-669 |#4|) (-751)) 84)) (-1692 (((-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) (-669 |#4|) (-751)) 101)) (-1612 (((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| -2351 (-669 (-402 (-928 |#1|)))) (|:| |vec| (-625 (-402 (-928 |#1|)))) (|:| -3442 (-751)) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) 48)))
+(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149)))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|) (-897))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149)) (-897))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-897))) (-15 -1500 ((-552) (-669 |#4|) (-625 |#4|) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 (-1149)) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 |#4|) (-897) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 (-1149)) (-897) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-897) (-1131))) (-15 -1513 ((-552) (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131))) (-15 -1525 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131))) (-15 -1536 ((-2 (|:| |rgl| (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))))) (|:| |rgsz| (-552))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-751) (-1131) (-552))) (-15 -1546 ((-402 (-928 |#1|)) |#4|)) (-15 -1546 ((-669 (-402 (-928 |#1|))) (-669 |#4|))) (-15 -1546 ((-625 (-402 (-928 |#1|))) (-625 |#4|))) (-15 -1557 ((-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1568 (|#4| (-928 |#1|))) (-15 -1578 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-625 |#4|)) (|:| |n0| (-625 |#4|))) (-625 |#4|) (-625 |#4|))) (-15 -1590 ((-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))) (-669 |#4|) (-751))) (-15 -1601 ((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-625 |#4|))) (-15 -1612 ((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| -2351 (-669 (-402 (-928 |#1|)))) (|:| |vec| (-625 (-402 (-928 |#1|)))) (|:| -3442 (-751)) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (-15 -1623 ((-625 |#4|) |#4|)) (-15 -1635 ((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))))) (-15 -1646 ((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))))) (-15 -1658 ((-625 (-625 |#4|)) (-625 (-625 |#4|)))) (-15 -1668 ((-625 (-625 (-552))) (-552) (-552))) (-15 -1680 ((-112) (-625 |#4|) (-625 (-625 |#4|)))) (-15 -1692 ((-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) (-669 |#4|) (-751))) (-15 -1703 ((-669 |#4|) (-669 |#4|) (-625 |#4|))) (-15 -1714 ((-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-625 (-625 |#4|)) (-751) (-751) (-552))) (-15 -1725 (|#4| |#4|)) (-15 -1737 ((-112) (-625 |#4|))) (-15 -1737 ((-112) (-625 (-928 |#1|))))) (-13 (-302) (-145)) (-13 (-827) (-598 (-1149))) (-773) (-925 |#1| |#3| |#2|)) (T -900))
+((-1737 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5 *6 *7)))) (-1725 (*1 *2 *2) (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *2 (-925 *3 *5 *4)))) (-1714 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) (-5 *4 (-669 *12)) (-5 *5 (-625 (-402 (-928 *9)))) (-5 *6 (-625 (-625 *12))) (-5 *7 (-751)) (-5 *8 (-552)) (-4 *9 (-13 (-302) (-145))) (-4 *12 (-925 *9 *11 *10)) (-4 *10 (-13 (-827) (-598 (-1149)))) (-4 *11 (-773)) (-5 *2 (-2 (|:| |eqzro| (-625 *12)) (|:| |neqzro| (-625 *12)) (|:| |wcond| (-625 (-928 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *9)))) (|:| -1270 (-625 (-1232 (-402 (-928 *9))))))))) (-5 *1 (-900 *9 *10 *11 *12)))) (-1703 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *7)) (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-751)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-625 (-2 (|:| |det| *8) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-1680 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-625 *8))) (-5 *3 (-625 *8)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *7 *8)))) (-1668 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 (-625 (-552)))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-552)) (-4 *7 (-925 *4 *6 *5)))) (-1658 (*1 *2 *2) (-12 (-5 *2 (-625 (-625 *6))) (-4 *6 (-925 *3 *5 *4)) (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *6)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| *7) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 *7))))) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) (-5 *1 (-900 *4 *5 *6 *7)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| *7) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 *7))))) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) (-5 *1 (-900 *4 *5 *6 *7)))) (-1623 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 *3)) (-5 *1 (-900 *4 *5 *6 *3)) (-4 *3 (-925 *4 *6 *5)))) (-1612 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2351 (-669 (-402 (-928 *4)))) (|:| |vec| (-625 (-402 (-928 *4)))) (|:| -3442 (-751)) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) (|:| -1270 (-625 (-1232 (-402 (-928 *4))))))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))) (-1601 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) (|:| -1270 (-625 (-1232 (-402 (-928 *4))))))) (-5 *3 (-625 *7)) (-4 *4 (-13 (-302) (-145))) (-4 *7 (-925 *4 *6 *5)) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| *8) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 *8))))) (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-751)))) (-1578 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-4 *7 (-925 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-625 *7)) (|:| |n0| (-625 *7)))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-928 *4)) (-4 *4 (-13 (-302) (-145))) (-4 *2 (-925 *4 *6 *5)) (-5 *1 (-900 *4 *5 *6 *2)) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 (-402 (-928 *4)))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 (-402 (-928 *4)))) (-5 *1 (-900 *4 *5 *6 *7)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-669 *7)) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-669 (-402 (-928 *4)))) (-5 *1 (-900 *4 *5 *6 *7)))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-402 (-928 *4))) (-5 *1 (-900 *4 *5 *6 *3)) (-4 *3 (-925 *4 *6 *5)))) (-1536 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-669 *11)) (-5 *4 (-625 (-402 (-928 *8)))) (-5 *5 (-751)) (-5 *6 (-1131)) (-4 *8 (-13 (-302) (-145))) (-4 *11 (-925 *8 *10 *9)) (-4 *9 (-13 (-827) (-598 (-1149)))) (-4 *10 (-773)) (-5 *2 (-2 (|:| |rgl| (-625 (-2 (|:| |eqzro| (-625 *11)) (|:| |neqzro| (-625 *11)) (|:| |wcond| (-625 (-928 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *8)))) (|:| -1270 (-625 (-1232 (-402 (-928 *8)))))))))) (|:| |rgsz| (-552)))) (-5 *1 (-900 *8 *9 *10 *11)) (-5 *7 (-552)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *7)) (|:| |neqzro| (-625 *7)) (|:| |wcond| (-625 (-928 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) (|:| -1270 (-625 (-1232 (-402 (-928 *4)))))))))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))) (-1513 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) (|:| |wcond| (-625 (-928 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) (-5 *4 (-1131)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-925 *5 *7 *6)) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *5 *6 *7 *8)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-897)) (-5 *5 (-1131)) (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *6 *7 *8 *9)))) (-1500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-669 *10)) (-5 *4 (-625 (-1149))) (-5 *5 (-897)) (-5 *6 (-1131)) (-4 *10 (-925 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *7 *8 *9 *10)))) (-1500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-669 *10)) (-5 *4 (-625 *10)) (-5 *5 (-897)) (-5 *6 (-1131)) (-4 *10 (-925 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *7 *8 *9 *10)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-1131)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *5 *6 *7 *8)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 (-1149))) (-5 *5 (-1131)) (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *6 *7 *8 *9)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 *9)) (-5 *5 (-1131)) (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *6 *7 *8 *9)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-897)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) (|:| |wcond| (-625 (-928 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 (-1149))) (-5 *5 (-897)) (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *9)) (|:| |neqzro| (-625 *9)) (|:| |wcond| (-625 (-928 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *6)))) (|:| -1270 (-625 (-1232 (-402 (-928 *6)))))))))) (-5 *1 (-900 *6 *7 *8 *9)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *5 (-897)) (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *9)) (|:| |neqzro| (-625 *9)) (|:| |wcond| (-625 (-928 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *6)))) (|:| -1270 (-625 (-1232 (-402 (-928 *6)))))))))) (-5 *1 (-900 *6 *7 *8 *9)) (-5 *4 (-625 *9)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-669 *7)) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *7)) (|:| |neqzro| (-625 *7)) (|:| |wcond| (-625 (-928 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) (|:| -1270 (-625 (-1232 (-402 (-928 *4)))))))))) (-5 *1 (-900 *4 *5 *6 *7)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-625 (-1149))) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) (|:| |wcond| (-625 (-928 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) (|:| |wcond| (-625 (-928 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-625 *8)))))
+(-10 -7 (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149)))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|) (-897))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149)) (-897))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-897))) (-15 -1500 ((-552) (-669 |#4|) (-625 |#4|) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 (-1149)) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 |#4|) (-897) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 (-1149)) (-897) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-897) (-1131))) (-15 -1513 ((-552) (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131))) (-15 -1525 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131))) (-15 -1536 ((-2 (|:| |rgl| (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))))) (|:| |rgsz| (-552))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-751) (-1131) (-552))) (-15 -1546 ((-402 (-928 |#1|)) |#4|)) (-15 -1546 ((-669 (-402 (-928 |#1|))) (-669 |#4|))) (-15 -1546 ((-625 (-402 (-928 |#1|))) (-625 |#4|))) (-15 -1557 ((-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1568 (|#4| (-928 |#1|))) (-15 -1578 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-625 |#4|)) (|:| |n0| (-625 |#4|))) (-625 |#4|) (-625 |#4|))) (-15 -1590 ((-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))) (-669 |#4|) (-751))) (-15 -1601 ((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-625 |#4|))) (-15 -1612 ((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| -2351 (-669 (-402 (-928 |#1|)))) (|:| |vec| (-625 (-402 (-928 |#1|)))) (|:| -3442 (-751)) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (-15 -1623 ((-625 |#4|) |#4|)) (-15 -1635 ((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))))) (-15 -1646 ((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))))) (-15 -1658 ((-625 (-625 |#4|)) (-625 (-625 |#4|)))) (-15 -1668 ((-625 (-625 (-552))) (-552) (-552))) (-15 -1680 ((-112) (-625 |#4|) (-625 (-625 |#4|)))) (-15 -1692 ((-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) (-669 |#4|) (-751))) (-15 -1703 ((-669 |#4|) (-669 |#4|) (-625 |#4|))) (-15 -1714 ((-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-625 (-625 |#4|)) (-751) (-751) (-552))) (-15 -1725 (|#4| |#4|)) (-15 -1737 ((-112) (-625 |#4|))) (-15 -1737 ((-112) (-625 (-928 |#1|)))))
+((-1858 (((-903) |#1| (-1149)) 17) (((-903) |#1| (-1149) (-1067 (-221))) 21)) (-3796 (((-903) |#1| |#1| (-1149) (-1067 (-221))) 19) (((-903) |#1| (-1149) (-1067 (-221))) 15)))
+(((-901 |#1|) (-10 -7 (-15 -3796 ((-903) |#1| (-1149) (-1067 (-221)))) (-15 -3796 ((-903) |#1| |#1| (-1149) (-1067 (-221)))) (-15 -1858 ((-903) |#1| (-1149) (-1067 (-221)))) (-15 -1858 ((-903) |#1| (-1149)))) (-598 (-528))) (T -901))
+((-1858 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-903)) (-5 *1 (-901 *3)) (-4 *3 (-598 (-528))))) (-1858 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903)) (-5 *1 (-901 *3)) (-4 *3 (-598 (-528))))) (-3796 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903)) (-5 *1 (-901 *3)) (-4 *3 (-598 (-528))))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903)) (-5 *1 (-901 *3)) (-4 *3 (-598 (-528))))))
+(-10 -7 (-15 -3796 ((-903) |#1| (-1149) (-1067 (-221)))) (-15 -3796 ((-903) |#1| |#1| (-1149) (-1067 (-221)))) (-15 -1858 ((-903) |#1| (-1149) (-1067 (-221)))) (-15 -1858 ((-903) |#1| (-1149))))
+((-1722 (($ $ (-1067 (-221)) (-1067 (-221)) (-1067 (-221))) 70)) (-3675 (((-1067 (-221)) $) 40)) (-3663 (((-1067 (-221)) $) 39)) (-3652 (((-1067 (-221)) $) 38)) (-3775 (((-625 (-625 (-221))) $) 43)) (-3786 (((-1067 (-221)) $) 41)) (-1914 (((-552) (-552)) 32)) (-3755 (((-552) (-552)) 28)) (-3735 (((-552) (-552)) 30)) (-1889 (((-112) (-112)) 35)) (-1926 (((-552)) 31)) (-4230 (($ $ (-1067 (-221))) 73) (($ $) 74)) (-3806 (($ (-1 (-919 (-221)) (-221)) (-1067 (-221))) 78) (($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221))) 79)) (-3796 (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221))) 82) (($ $ (-1067 (-221))) 76)) (-1879 (((-552)) 36)) (-3765 (((-552)) 27)) (-3746 (((-552)) 29)) (-3603 (((-625 (-625 (-919 (-221)))) $) 95)) (-1868 (((-112) (-112)) 37)) (-1683 (((-839) $) 94)) (-1901 (((-112)) 34)))
+(((-902) (-13 (-950) (-10 -8 (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ $ (-1067 (-221)))) (-15 -1722 ($ $ (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -4230 ($ $ (-1067 (-221)))) (-15 -4230 ($ $)) (-15 -3786 ((-1067 (-221)) $)) (-15 -3775 ((-625 (-625 (-221))) $)) (-15 -3765 ((-552))) (-15 -3755 ((-552) (-552))) (-15 -3746 ((-552))) (-15 -3735 ((-552) (-552))) (-15 -1926 ((-552))) (-15 -1914 ((-552) (-552))) (-15 -1901 ((-112))) (-15 -1889 ((-112) (-112))) (-15 -1879 ((-552))) (-15 -1868 ((-112) (-112)))))) (T -902))
+((-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-902)))) (-3806 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-902)))) (-3796 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-902)))) (-3796 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-902)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) (-1722 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) (-4230 (*1 *1 *1) (-5 *1 (-902))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-221)))) (-5 *1 (-902)))) (-3765 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-3755 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-3746 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-1926 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-1914 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-1901 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902)))) (-1879 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-1868 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902)))))
+(-13 (-950) (-10 -8 (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ $ (-1067 (-221)))) (-15 -1722 ($ $ (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -4230 ($ $ (-1067 (-221)))) (-15 -4230 ($ $)) (-15 -3786 ((-1067 (-221)) $)) (-15 -3775 ((-625 (-625 (-221))) $)) (-15 -3765 ((-552))) (-15 -3755 ((-552) (-552))) (-15 -3746 ((-552))) (-15 -3735 ((-552) (-552))) (-15 -1926 ((-552))) (-15 -1914 ((-552) (-552))) (-15 -1901 ((-112))) (-15 -1889 ((-112) (-112))) (-15 -1879 ((-552))) (-15 -1868 ((-112) (-112)))))
+((-1722 (($ $ (-1067 (-221))) 70) (($ $ (-1067 (-221)) (-1067 (-221))) 71)) (-3663 (((-1067 (-221)) $) 44)) (-3652 (((-1067 (-221)) $) 43)) (-3786 (((-1067 (-221)) $) 45)) (-1778 (((-552) (-552)) 37)) (-1823 (((-552) (-552)) 33)) (-1802 (((-552) (-552)) 35)) (-1757 (((-112) (-112)) 39)) (-1790 (((-552)) 36)) (-4230 (($ $ (-1067 (-221))) 74) (($ $) 75)) (-3806 (($ (-1 (-919 (-221)) (-221)) (-1067 (-221))) 84) (($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221))) 85)) (-1858 (($ (-1 (-221) (-221)) (-1067 (-221))) 92) (($ (-1 (-221) (-221))) 95)) (-3796 (($ (-1 (-221) (-221)) (-1067 (-221))) 79) (($ (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221))) 80) (($ (-625 (-1 (-221) (-221))) (-1067 (-221))) 87) (($ (-625 (-1 (-221) (-221))) (-1067 (-221)) (-1067 (-221))) 88) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221))) 82) (($ $ (-1067 (-221))) 76)) (-1847 (((-112) $) 40)) (-1747 (((-552)) 41)) (-1834 (((-552)) 32)) (-1813 (((-552)) 34)) (-3603 (((-625 (-625 (-919 (-221)))) $) 23)) (-3758 (((-112) (-112)) 42)) (-1683 (((-839) $) 106)) (-1767 (((-112)) 38)))
+(((-903) (-13 (-931) (-10 -8 (-15 -3796 ($ (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-625 (-1 (-221) (-221))) (-1067 (-221)))) (-15 -3796 ($ (-625 (-1 (-221) (-221))) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -1858 ($ (-1 (-221) (-221)) (-1067 (-221)))) (-15 -1858 ($ (-1 (-221) (-221)))) (-15 -3796 ($ $ (-1067 (-221)))) (-15 -1847 ((-112) $)) (-15 -1722 ($ $ (-1067 (-221)))) (-15 -1722 ($ $ (-1067 (-221)) (-1067 (-221)))) (-15 -4230 ($ $ (-1067 (-221)))) (-15 -4230 ($ $)) (-15 -3786 ((-1067 (-221)) $)) (-15 -1834 ((-552))) (-15 -1823 ((-552) (-552))) (-15 -1813 ((-552))) (-15 -1802 ((-552) (-552))) (-15 -1790 ((-552))) (-15 -1778 ((-552) (-552))) (-15 -1767 ((-112))) (-15 -1757 ((-112) (-112))) (-15 -1747 ((-552))) (-15 -3758 ((-112) (-112)))))) (T -903))
+((-3796 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *2 *3) (-12 (-5 *2 (-625 (-1 (-221) (-221)))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-625 (-1 (-221) (-221)))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3806 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-1858 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-1858 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903)))) (-1722 (*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) (-1722 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) (-4230 (*1 *1 *1) (-5 *1 (-903))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) (-1834 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1813 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1790 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1778 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1767 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))) (-1747 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))))
+(-13 (-931) (-10 -8 (-15 -3796 ($ (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-625 (-1 (-221) (-221))) (-1067 (-221)))) (-15 -3796 ($ (-625 (-1 (-221) (-221))) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -1858 ($ (-1 (-221) (-221)) (-1067 (-221)))) (-15 -1858 ($ (-1 (-221) (-221)))) (-15 -3796 ($ $ (-1067 (-221)))) (-15 -1847 ((-112) $)) (-15 -1722 ($ $ (-1067 (-221)))) (-15 -1722 ($ $ (-1067 (-221)) (-1067 (-221)))) (-15 -4230 ($ $ (-1067 (-221)))) (-15 -4230 ($ $)) (-15 -3786 ((-1067 (-221)) $)) (-15 -1834 ((-552))) (-15 -1823 ((-552) (-552))) (-15 -1813 ((-552))) (-15 -1802 ((-552) (-552))) (-15 -1790 ((-552))) (-15 -1778 ((-552) (-552))) (-15 -1767 ((-112))) (-15 -1757 ((-112) (-112))) (-15 -1747 ((-552))) (-15 -3758 ((-112) (-112)))))
+((-3817 (((-625 (-1067 (-221))) (-625 (-625 (-919 (-221))))) 24)))
+(((-904) (-10 -7 (-15 -3817 ((-625 (-1067 (-221))) (-625 (-625 (-919 (-221)))))))) (T -904))
+((-3817 (*1 *2 *3) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *2 (-625 (-1067 (-221)))) (-5 *1 (-904)))))
+(-10 -7 (-15 -3817 ((-625 (-1067 (-221))) (-625 (-625 (-919 (-221)))))))
+((-2001 ((|#2| |#2|) 26)) (-3830 ((|#2| |#2|) 27)) (-1426 ((|#2| |#2|) 25)) (-1950 ((|#2| |#2| (-1131)) 24)))
+(((-905 |#1| |#2|) (-10 -7 (-15 -1950 (|#2| |#2| (-1131))) (-15 -1426 (|#2| |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -3830 (|#2| |#2|))) (-827) (-425 |#1|)) (T -905))
+((-3830 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3)))) (-2001 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3)))) (-1426 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3)))) (-1950 (*1 *2 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-827)) (-5 *1 (-905 *4 *2)) (-4 *2 (-425 *4)))))
+(-10 -7 (-15 -1950 (|#2| |#2| (-1131))) (-15 -1426 (|#2| |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)))
+((-2001 (((-311 (-552)) (-1149)) 16)) (-3830 (((-311 (-552)) (-1149)) 14)) (-1426 (((-311 (-552)) (-1149)) 12)) (-1950 (((-311 (-552)) (-1149) (-1131)) 19)))
+(((-906) (-10 -7 (-15 -1950 ((-311 (-552)) (-1149) (-1131))) (-15 -1426 ((-311 (-552)) (-1149))) (-15 -2001 ((-311 (-552)) (-1149))) (-15 -3830 ((-311 (-552)) (-1149))))) (T -906))
+((-3830 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906)))) (-1950 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1131)) (-5 *2 (-311 (-552))) (-5 *1 (-906)))))
+(-10 -7 (-15 -1950 ((-311 (-552)) (-1149) (-1131))) (-15 -1426 ((-311 (-552)) (-1149))) (-15 -2001 ((-311 (-552)) (-1149))) (-15 -3830 ((-311 (-552)) (-1149))))
+((-3841 (((-865 |#1| |#3|) |#2| (-868 |#1|) (-865 |#1| |#3|)) 25)) (-3827 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-907 |#1| |#2| |#3|) (-10 -7 (-15 -3827 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3841 ((-865 |#1| |#3|) |#2| (-868 |#1|) (-865 |#1| |#3|)))) (-1073) (-862 |#1|) (-13 (-1073) (-1014 |#2|))) (T -907))
+((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *6)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-4 *6 (-13 (-1073) (-1014 *3))) (-4 *3 (-862 *5)) (-5 *1 (-907 *5 *3 *6)))) (-3827 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1073) (-1014 *5))) (-4 *5 (-862 *4)) (-4 *4 (-1073)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-907 *4 *5 *6)))))
+(-10 -7 (-15 -3827 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3841 ((-865 |#1| |#3|) |#2| (-868 |#1|) (-865 |#1| |#3|))))
+((-3841 (((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)) 30)))
+(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))) (-1073) (-13 (-544) (-827) (-862 |#1|)) (-13 (-425 |#2|) (-598 (-868 |#1|)) (-862 |#1|) (-1014 (-596 $)))) (T -908))
+((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073)) (-4 *3 (-13 (-425 *6) (-598 *4) (-862 *5) (-1014 (-596 $)))) (-5 *4 (-868 *5)) (-4 *6 (-13 (-544) (-827) (-862 *5))) (-5 *1 (-908 *5 *6 *3)))))
+(-10 -7 (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))))
+((-3841 (((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|)) 13)))
+(((-909 |#1|) (-10 -7 (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|)))) (-537)) (T -909))
+((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 (-552) *3)) (-5 *4 (-868 (-552))) (-4 *3 (-537)) (-5 *1 (-909 *3)))))
+(-10 -7 (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))))
+((-3841 (((-865 |#1| |#2|) (-596 |#2|) (-868 |#1|) (-865 |#1| |#2|)) 54)))
+(((-910 |#1| |#2|) (-10 -7 (-15 -3841 ((-865 |#1| |#2|) (-596 |#2|) (-868 |#1|) (-865 |#1| |#2|)))) (-1073) (-13 (-827) (-1014 (-596 $)) (-598 (-868 |#1|)) (-862 |#1|))) (T -910))
+((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *6)) (-5 *3 (-596 *6)) (-4 *5 (-1073)) (-4 *6 (-13 (-827) (-1014 (-596 $)) (-598 *4) (-862 *5))) (-5 *4 (-868 *5)) (-5 *1 (-910 *5 *6)))))
+(-10 -7 (-15 -3841 ((-865 |#1| |#2|) (-596 |#2|) (-868 |#1|) (-865 |#1| |#2|))))
+((-3841 (((-861 |#1| |#2| |#3|) |#3| (-868 |#1|) (-861 |#1| |#2| |#3|)) 15)))
+(((-911 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-861 |#1| |#2| |#3|) |#3| (-868 |#1|) (-861 |#1| |#2| |#3|)))) (-1073) (-862 |#1|) (-646 |#2|)) (T -911))
+((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-861 *5 *6 *3)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-4 *6 (-862 *5)) (-4 *3 (-646 *6)) (-5 *1 (-911 *5 *6 *3)))))
+(-10 -7 (-15 -3841 ((-861 |#1| |#2| |#3|) |#3| (-868 |#1|) (-861 |#1| |#2| |#3|))))
+((-3841 (((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|)) 17 (|has| |#3| (-862 |#1|))) (((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|) (-1 (-865 |#1| |#5|) |#3| (-868 |#1|) (-865 |#1| |#5|))) 16)))
+(((-912 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3841 ((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|) (-1 (-865 |#1| |#5|) |#3| (-868 |#1|) (-865 |#1| |#5|)))) (IF (|has| |#3| (-862 |#1|)) (-15 -3841 ((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|))) |%noBranch|)) (-1073) (-773) (-827) (-13 (-1025) (-827) (-862 |#1|)) (-13 (-925 |#4| |#2| |#3|) (-598 (-868 |#1|)))) (T -912))
+((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073)) (-4 *3 (-13 (-925 *8 *6 *7) (-598 *4))) (-5 *4 (-868 *5)) (-4 *7 (-862 *5)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-13 (-1025) (-827) (-862 *5))) (-5 *1 (-912 *5 *6 *7 *8 *3)))) (-3841 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-865 *6 *3) *8 (-868 *6) (-865 *6 *3))) (-4 *8 (-827)) (-5 *2 (-865 *6 *3)) (-5 *4 (-868 *6)) (-4 *6 (-1073)) (-4 *3 (-13 (-925 *9 *7 *8) (-598 *4))) (-4 *7 (-773)) (-4 *9 (-13 (-1025) (-827) (-862 *6))) (-5 *1 (-912 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3841 ((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|) (-1 (-865 |#1| |#5|) |#3| (-868 |#1|) (-865 |#1| |#5|)))) (IF (|has| |#3| (-862 |#1|)) (-15 -3841 ((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|))) |%noBranch|))
+((-3925 ((|#2| |#2| (-625 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -3925 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3925 (|#2| |#2| (-625 (-1 (-112) |#3|))))) (-827) (-425 |#1|) (-1186)) (T -913))
+((-3925 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-1 (-112) *5))) (-4 *5 (-1186)) (-4 *4 (-827)) (-5 *1 (-913 *4 *2 *5)) (-4 *2 (-425 *4)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1186)) (-4 *4 (-827)) (-5 *1 (-913 *4 *2 *5)) (-4 *2 (-425 *4)))))
+(-10 -7 (-15 -3925 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3925 (|#2| |#2| (-625 (-1 (-112) |#3|)))))
+((-3925 (((-311 (-552)) (-1149) (-625 (-1 (-112) |#1|))) 18) (((-311 (-552)) (-1149) (-1 (-112) |#1|)) 15)))
+(((-914 |#1|) (-10 -7 (-15 -3925 ((-311 (-552)) (-1149) (-1 (-112) |#1|))) (-15 -3925 ((-311 (-552)) (-1149) (-625 (-1 (-112) |#1|))))) (-1186)) (T -914))
+((-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-625 (-1 (-112) *5))) (-4 *5 (-1186)) (-5 *2 (-311 (-552))) (-5 *1 (-914 *5)))) (-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1186)) (-5 *2 (-311 (-552))) (-5 *1 (-914 *5)))))
+(-10 -7 (-15 -3925 ((-311 (-552)) (-1149) (-1 (-112) |#1|))) (-15 -3925 ((-311 (-552)) (-1149) (-625 (-1 (-112) |#1|)))))
+((-3841 (((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)) 25)))
+(((-915 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))) (-1073) (-13 (-544) (-862 |#1|) (-598 (-868 |#1|))) (-968 |#2|)) (T -915))
+((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073)) (-4 *3 (-968 *6)) (-4 *6 (-13 (-544) (-862 *5) (-598 *4))) (-5 *4 (-868 *5)) (-5 *1 (-915 *5 *6 *3)))))
+(-10 -7 (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))))
+((-3841 (((-865 |#1| (-1149)) (-1149) (-868 |#1|) (-865 |#1| (-1149))) 17)))
+(((-916 |#1|) (-10 -7 (-15 -3841 ((-865 |#1| (-1149)) (-1149) (-868 |#1|) (-865 |#1| (-1149))))) (-1073)) (T -916))
+((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 (-1149))) (-5 *3 (-1149)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-5 *1 (-916 *5)))))
+(-10 -7 (-15 -3841 ((-865 |#1| (-1149)) (-1149) (-868 |#1|) (-865 |#1| (-1149)))))
+((-3855 (((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))) 33)) (-3841 (((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-1 |#3| (-625 |#3|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))) 32)))
+(((-917 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-1 |#3| (-625 |#3|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))) (-15 -3855 ((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))))) (-1073) (-13 (-1025) (-827)) (-13 (-1025) (-598 (-868 |#1|)) (-1014 |#2|))) (T -917))
+((-3855 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 (-868 *6))) (-5 *5 (-1 (-865 *6 *8) *8 (-868 *6) (-865 *6 *8))) (-4 *6 (-1073)) (-4 *8 (-13 (-1025) (-598 (-868 *6)) (-1014 *7))) (-5 *2 (-865 *6 *8)) (-4 *7 (-13 (-1025) (-827))) (-5 *1 (-917 *6 *7 *8)))) (-3841 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-625 (-868 *7))) (-5 *5 (-1 *9 (-625 *9))) (-5 *6 (-1 (-865 *7 *9) *9 (-868 *7) (-865 *7 *9))) (-4 *7 (-1073)) (-4 *9 (-13 (-1025) (-598 (-868 *7)) (-1014 *8))) (-5 *2 (-865 *7 *9)) (-5 *3 (-625 *9)) (-4 *8 (-13 (-1025) (-827))) (-5 *1 (-917 *7 *8 *9)))))
+(-10 -7 (-15 -3841 ((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-1 |#3| (-625 |#3|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))) (-15 -3855 ((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))))
+((-3961 (((-1145 (-402 (-552))) (-552)) 63)) (-3948 (((-1145 (-552)) (-552)) 66)) (-2475 (((-1145 (-552)) (-552)) 60)) (-3936 (((-552) (-1145 (-552))) 55)) (-3922 (((-1145 (-402 (-552))) (-552)) 49)) (-3909 (((-1145 (-552)) (-552)) 38)) (-3894 (((-1145 (-552)) (-552)) 68)) (-3881 (((-1145 (-552)) (-552)) 67)) (-3868 (((-1145 (-402 (-552))) (-552)) 51)))
+(((-918) (-10 -7 (-15 -3868 ((-1145 (-402 (-552))) (-552))) (-15 -3881 ((-1145 (-552)) (-552))) (-15 -3894 ((-1145 (-552)) (-552))) (-15 -3909 ((-1145 (-552)) (-552))) (-15 -3922 ((-1145 (-402 (-552))) (-552))) (-15 -3936 ((-552) (-1145 (-552)))) (-15 -2475 ((-1145 (-552)) (-552))) (-15 -3948 ((-1145 (-552)) (-552))) (-15 -3961 ((-1145 (-402 (-552))) (-552))))) (T -918))
+((-3961 (*1 *2 *3) (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) (-2475 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-1145 (-552))) (-5 *2 (-552)) (-5 *1 (-918)))) (-3922 (*1 *2 *3) (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3909 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3894 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3881 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552)))))
+(-10 -7 (-15 -3868 ((-1145 (-402 (-552))) (-552))) (-15 -3881 ((-1145 (-552)) (-552))) (-15 -3894 ((-1145 (-552)) (-552))) (-15 -3909 ((-1145 (-552)) (-552))) (-15 -3922 ((-1145 (-402 (-552))) (-552))) (-15 -3936 ((-552) (-1145 (-552)))) (-15 -2475 ((-1145 (-552)) (-552))) (-15 -3948 ((-1145 (-552)) (-552))) (-15 -3961 ((-1145 (-402 (-552))) (-552))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751)) NIL (|has| |#1| (-23)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) 11 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3582 (($ (-625 |#1|)) 13)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3191 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-2183 (($ (-751) |#1|) 8)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 10 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2638 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2878 (((-112) $ (-751)) NIL)) (-3456 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2147 (($ $ (-625 |#1|)) 26)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 20) (($ $ (-1199 (-552))) NIL)) (-1443 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-3904 (((-897) $) 16)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-1431 (($ $ $) 24)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528)))) (($ (-625 |#1|)) 17)) (-1695 (($ (-625 |#1|)) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2393 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2382 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-1471 (((-751) $) 14 (|has| $ (-6 -4353)))))
(((-919 |#1|) (-956 |#1|) (-1025)) (T -919))
NIL
(-956 |#1|)
-((-3141 (((-475 |#1| |#2|) (-922 |#2|)) 20)) (-3144 (((-243 |#1| |#2|) (-922 |#2|)) 33)) (-3142 (((-922 |#2|) (-475 |#1| |#2|)) 25)) (-3140 (((-243 |#1| |#2|) (-475 |#1| |#2|)) 55)) (-3143 (((-922 |#2|) (-243 |#1| |#2|)) 30)) (-3139 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 46)))
-(((-920 |#1| |#2|) (-10 -7 (-15 -3139 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3140 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -3141 ((-475 |#1| |#2|) (-922 |#2|))) (-15 -3142 ((-922 |#2|) (-475 |#1| |#2|))) (-15 -3143 ((-922 |#2|) (-243 |#1| |#2|))) (-15 -3144 ((-243 |#1| |#2|) (-922 |#2|)))) (-622 (-1149)) (-1025)) (T -920))
-((-3144 (*1 *2 *3) (-12 (-5 *3 (-922 *5)) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-622 (-1149))))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) (-5 *2 (-922 *5)) (-5 *1 (-920 *4 *5)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) (-5 *2 (-922 *5)) (-5 *1 (-920 *4 *5)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-922 *5)) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-622 (-1149))))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5)))))
-(-10 -7 (-15 -3139 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3140 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -3141 ((-475 |#1| |#2|) (-922 |#2|))) (-15 -3142 ((-922 |#2|) (-475 |#1| |#2|))) (-15 -3143 ((-922 |#2|) (-243 |#1| |#2|))) (-15 -3144 ((-243 |#1| |#2|) (-922 |#2|))))
-((-3145 (((-622 |#2|) |#2| |#2|) 10)) (-3148 (((-751) (-622 |#1|)) 37 (|has| |#1| (-825)))) (-3146 (((-622 |#2|) |#2|) 11)) (-3149 (((-751) (-622 |#1|) (-538) (-538)) 39 (|has| |#1| (-825)))) (-3147 ((|#1| |#2|) 32 (|has| |#1| (-825)))))
-(((-921 |#1| |#2|) (-10 -7 (-15 -3145 ((-622 |#2|) |#2| |#2|)) (-15 -3146 ((-622 |#2|) |#2|)) (IF (|has| |#1| (-825)) (PROGN (-15 -3147 (|#1| |#2|)) (-15 -3148 ((-751) (-622 |#1|))) (-15 -3149 ((-751) (-622 |#1|) (-538) (-538)))) |%noBranch|)) (-358) (-1207 |#1|)) (T -921))
-((-3149 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-538)) (-4 *5 (-825)) (-4 *5 (-358)) (-5 *2 (-751)) (-5 *1 (-921 *5 *6)) (-4 *6 (-1207 *5)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-825)) (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-921 *4 *5)) (-4 *5 (-1207 *4)))) (-3147 (*1 *2 *3) (-12 (-4 *2 (-358)) (-4 *2 (-825)) (-5 *1 (-921 *2 *3)) (-4 *3 (-1207 *2)))) (-3146 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-921 *4 *3)) (-4 *3 (-1207 *4)))) (-3145 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-921 *4 *3)) (-4 *3 (-1207 *4)))))
-(-10 -7 (-15 -3145 ((-622 |#2|) |#2| |#2|)) (-15 -3146 ((-622 |#2|) |#2|)) (IF (|has| |#1| (-825)) (PROGN (-15 -3147 (|#1| |#2|)) (-15 -3148 ((-751) (-622 |#1|))) (-15 -3149 ((-751) (-622 |#1|) (-538) (-538)))) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1149)) $) 16)) (-3419 (((-1143 $) $ (-1149)) 21) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1149))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) 8) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-1149) #2#) $) NIL)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-1149) $) NIL)) (-4116 (($ $ $ (-1149)) NIL (|has| |#1| (-170)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1149)) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-524 (-1149)) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1149) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1149) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#1|) (-1149)) NIL) (($ (-1143 $) (-1149)) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1149)) NIL)) (-3153 (((-524 (-1149)) $) NIL) (((-751) $ (-1149)) NIL) (((-622 (-751)) $ (-622 (-1149))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 (-1149)) (-524 (-1149))) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3418 (((-3 (-1149) #3="failed") $) 19)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1149)) (|:| -2493 (-751))) #3#) $) NIL)) (-4172 (($ $ (-1149)) 29 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1149) |#1|) NIL) (($ $ (-622 (-1149)) (-622 |#1|)) NIL) (($ $ (-1149) $) NIL) (($ $ (-622 (-1149)) (-622 $)) NIL)) (-4117 (($ $ (-1149)) NIL (|has| |#1| (-170)))) (-4170 (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-4307 (((-524 (-1149)) $) NIL) (((-751) $ (-1149)) NIL) (((-622 (-751)) $ (-622 (-1149))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1149) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1149) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1149) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1149)) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 25) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-1149)) 27) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-922 |#1|) (-13 (-926 |#1| (-524 (-1149)) (-1149)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1149))) |%noBranch|))) (-1025)) (T -922))
-((-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-922 *3)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)))))
-(-13 (-926 |#1| (-524 (-1149)) (-1149)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1149))) |%noBranch|)))
-((-4318 (((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)) 19)))
-(((-923 |#1| |#2|) (-10 -7 (-15 -4318 ((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)))) (-1025) (-1025)) (T -923))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-922 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-922 *6)) (-5 *1 (-923 *5 *6)))))
-(-10 -7 (-15 -4318 ((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|))))
-((-3419 (((-1200 |#1| (-922 |#2|)) (-922 |#2|) (-1228 |#1|)) 18)))
-(((-924 |#1| |#2|) (-10 -7 (-15 -3419 ((-1200 |#1| (-922 |#2|)) (-922 |#2|) (-1228 |#1|)))) (-1149) (-1025)) (T -924))
-((-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1228 *5)) (-14 *5 (-1149)) (-4 *6 (-1025)) (-5 *2 (-1200 *5 (-922 *6))) (-5 *1 (-924 *5 *6)) (-5 *3 (-922 *6)))))
-(-10 -7 (-15 -3419 ((-1200 |#1| (-922 |#2|)) (-922 |#2|) (-1228 |#1|))))
-((-3152 (((-751) $) 71) (((-751) $ (-622 |#4|)) 74)) (-4134 (($ $) 173)) (-4329 (((-400 $) $) 165)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 116)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL) (((-3 (-538) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL) (((-538) $) NIL) ((|#4| $) 59)) (-4116 (($ $ $ |#4|) 76)) (-2362 (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 106) (((-669 |#2|) (-669 $)) 99)) (-3857 (($ $) 180) (($ $ |#4|) 183)) (-3151 (((-622 $) $) 63)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 199) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 192)) (-3154 (((-622 $) $) 28)) (-3226 (($ |#2| |#3|) NIL) (($ $ |#4| (-751)) NIL) (($ $ (-622 |#4|) (-622 (-751))) 57)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#4|) 162)) (-3156 (((-3 (-622 $) "failed") $) 42)) (-3155 (((-3 (-622 $) "failed") $) 31)) (-3157 (((-3 (-2 (|:| |var| |#4|) (|:| -2493 (-751))) "failed") $) 47)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 109)) (-3038 (((-400 (-1143 $)) (-1143 $)) 122)) (-3039 (((-400 (-1143 $)) (-1143 $)) 120)) (-4092 (((-400 $) $) 140)) (-4127 (($ $ (-622 (-288 $))) 21) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-622 |#4|) (-622 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-622 |#4|) (-622 $)) NIL)) (-4117 (($ $ |#4|) 78)) (-4330 (((-866 (-373)) $) 213) (((-866 (-538)) $) 206) (((-527) $) 221)) (-3150 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 154)) (-4040 ((|#2| $ |#3|) NIL) (($ $ |#4| (-751)) 52) (($ $ (-622 |#4|) (-622 (-751))) 55)) (-3035 (((-3 $ #1#) $) 156)) (-3018 (((-112) $ $) 186)))
-(((-925 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -3035 ((-3 |#1| #1="failed") |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) #1#) (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3036 ((-3 (-1231 |#1|) #1#) (-669 |#1|))) (-15 -3857 (|#1| |#1| |#4|)) (-15 -3150 (|#1| |#1| |#4|)) (-15 -4117 (|#1| |#1| |#4|)) (-15 -4116 (|#1| |#1| |#1| |#4|)) (-15 -3151 ((-622 |#1|) |#1|)) (-15 -3152 ((-751) |#1| (-622 |#4|))) (-15 -3152 ((-751) |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| |#4|) (|:| -2493 (-751))) "failed") |#1|)) (-15 -3156 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3155 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3226 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -3226 (|#1| |#1| |#4| (-751))) (-15 -4122 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3154 ((-622 |#1|) |#1|)) (-15 -4040 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -4040 (|#1| |#1| |#4| (-751))) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#4| |#1|)) (-15 -3508 ((-3 |#4| #2="failed") |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#4| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#4| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -3226 (|#1| |#2| |#3|)) (-15 -4040 (|#2| |#1| |#3|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #2#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #2#) |#1|)) (-15 -3508 ((-3 |#2| #2#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3857 (|#1| |#1|))) (-926 |#2| |#3| |#4|) (-1025) (-773) (-827)) (T -925))
-NIL
-(-10 -8 (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -3035 ((-3 |#1| #1="failed") |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) #1#) (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3036 ((-3 (-1231 |#1|) #1#) (-669 |#1|))) (-15 -3857 (|#1| |#1| |#4|)) (-15 -3150 (|#1| |#1| |#4|)) (-15 -4117 (|#1| |#1| |#4|)) (-15 -4116 (|#1| |#1| |#1| |#4|)) (-15 -3151 ((-622 |#1|) |#1|)) (-15 -3152 ((-751) |#1| (-622 |#4|))) (-15 -3152 ((-751) |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| |#4|) (|:| -2493 (-751))) "failed") |#1|)) (-15 -3156 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3155 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3226 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -3226 (|#1| |#1| |#4| (-751))) (-15 -4122 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3154 ((-622 |#1|) |#1|)) (-15 -4040 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -4040 (|#1| |#1| |#4| (-751))) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#4| |#1|)) (-15 -3508 ((-3 |#4| #2="failed") |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#4| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#4| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -3226 (|#1| |#2| |#3|)) (-15 -4040 (|#2| |#1| |#3|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #2#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #2#) |#1|)) (-15 -3508 ((-3 |#2| #2#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3857 (|#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 |#3|) $) 108)) (-3419 (((-1143 $) $ |#3|) 123) (((-1143 |#1|) $) 122)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-545)))) (-2178 (($ $) 86 (|has| |#1| (-545)))) (-2176 (((-112) $) 88 (|has| |#1| (-545)))) (-3152 (((-751) $) 110) (((-751) $ (-622 |#3|)) 109)) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 98 (|has| |#1| (-886)))) (-4134 (($ $) 96 (|has| |#1| (-446)))) (-4329 (((-400 $) $) 95 (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 101 (|has| |#1| (-886)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| #2="failed") $) 162) (((-3 (-402 (-538)) #2#) $) 160 (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) 158 (|has| |#1| (-1014 (-538)))) (((-3 |#3| #2#) $) 134)) (-3507 ((|#1| $) 163) (((-402 (-538)) $) 159 (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) 157 (|has| |#1| (-1014 (-538)))) ((|#3| $) 133)) (-4116 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4319 (($ $) 152)) (-2362 (((-669 (-538)) (-669 $)) 132 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 131 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-3821 (((-3 $ "failed") $) 32)) (-3857 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-3151 (((-622 $) $) 107)) (-4086 (((-112) $) 94 (|has| |#1| (-886)))) (-1721 (($ $ |#1| |#2| $) 170)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 82 (-12 (|has| |#3| (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 81 (-12 (|has| |#3| (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-2502 (((-112) $) 30)) (-2510 (((-751) $) 167)) (-3420 (($ (-1143 |#1|) |#3|) 115) (($ (-1143 $) |#3|) 114)) (-3154 (((-622 $) $) 124)) (-4297 (((-112) $) 150)) (-3226 (($ |#1| |#2|) 151) (($ $ |#3| (-751)) 117) (($ $ (-622 |#3|) (-622 (-751))) 116)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#3|) 118)) (-3153 ((|#2| $) 168) (((-751) $ |#3|) 120) (((-622 (-751)) $ (-622 |#3|)) 119)) (-3677 (($ $ $) 77 (|has| |#1| (-827)))) (-3678 (($ $ $) 76 (|has| |#1| (-827)))) (-1722 (($ (-1 |#2| |#2|) $) 169)) (-4318 (($ (-1 |#1| |#1|) $) 149)) (-3418 (((-3 |#3| "failed") $) 121)) (-3227 (($ $) 147)) (-3525 ((|#1| $) 146)) (-2013 (($ (-622 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-3593 (((-1131) $) 9)) (-3156 (((-3 (-622 $) "failed") $) 112)) (-3155 (((-3 (-622 $) "failed") $) 113)) (-3157 (((-3 (-2 (|:| |var| |#3|) (|:| -2493 (-751))) "failed") $) 111)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 164)) (-1915 ((|#1| $) 165)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 93 (|has| |#1| (-446)))) (-3495 (($ (-622 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 100 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 99 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 97 (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-622 $) (-622 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-622 |#3|) (-622 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-622 |#3|) (-622 $)) 136)) (-4117 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4170 (($ $ |#3|) 40) (($ $ (-622 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-622 |#3|) (-622 (-751))) 37)) (-4307 ((|#2| $) 148) (((-751) $ |#3|) 128) (((-622 (-751)) $ (-622 |#3|)) 127)) (-4330 (((-866 (-373)) $) 80 (-12 (|has| |#3| (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) 79 (-12 (|has| |#3| (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) 78 (-12 (|has| |#3| (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 102 (-3191 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-545))) (($ (-402 (-538))) 70 (-3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| |#1| (-38 (-402 (-538))))))) (-4177 (((-622 |#1|) $) 166)) (-4040 ((|#1| $ |#2|) 153) (($ $ |#3| (-751)) 126) (($ $ (-622 |#3|) (-622 (-751))) 125)) (-3035 (((-3 $ "failed") $) 71 (-3891 (-3191 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 28)) (-1720 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 87 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ |#3|) 36) (($ $ (-622 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-622 |#3|) (-622 (-751))) 33)) (-2896 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 73 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 75 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 72 (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 156 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 155 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-926 |#1| |#2| |#3|) (-138) (-1025) (-773) (-827)) (T -926))
-((-3857 (*1 *1 *1) (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-4307 (*1 *2 *1 *3) (-12 (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4307 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 (-751))))) (-4040 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-926 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *2 (-827)))) (-4040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 (-751))) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) (-3154 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5)))) (-3419 (*1 *2 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-1143 *1)) (-4 *1 (-926 *4 *5 *3)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-1143 *3)))) (-3418 (*1 *2 *1) (|partial| -12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3153 (*1 *2 *1 *3) (-12 (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-751)))) (-3153 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 (-751))))) (-4122 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-926 *4 *5 *3)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-926 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *2 (-827)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 (-751))) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) (-3420 (*1 *1 *2 *3) (-12 (-5 *2 (-1143 *4)) (-4 *4 (-1025)) (-4 *1 (-926 *4 *5 *3)) (-4 *5 (-773)) (-4 *3 (-827)))) (-3420 (*1 *1 *2 *3) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)))) (-3155 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5)))) (-3156 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5)))) (-3157 (*1 *2 *1) (|partial| -12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| |var| *5) (|:| -2493 (-751)))))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-751)))) (-3152 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *5)))) (-3151 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5)))) (-4116 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4117 (*1 *1 *1 *2) (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-170)))) (-3150 (*1 *1 *1 *2) (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-446)))) (-3857 (*1 *1 *1 *2) (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-446)))) (-4134 (*1 *1 *1) (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-4329 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-400 *1)) (-4 *1 (-926 *3 *4 *5)))))
-(-13 (-876 |t#3|) (-321 |t#1| |t#2|) (-304 $) (-507 |t#3| |t#1|) (-507 |t#3| $) (-1014 |t#3|) (-372 |t#1|) (-10 -8 (-15 -4307 ((-751) $ |t#3|)) (-15 -4307 ((-622 (-751)) $ (-622 |t#3|))) (-15 -4040 ($ $ |t#3| (-751))) (-15 -4040 ($ $ (-622 |t#3|) (-622 (-751)))) (-15 -3154 ((-622 $) $)) (-15 -3419 ((-1143 $) $ |t#3|)) (-15 -3419 ((-1143 |t#1|) $)) (-15 -3418 ((-3 |t#3| "failed") $)) (-15 -3153 ((-751) $ |t#3|)) (-15 -3153 ((-622 (-751)) $ (-622 |t#3|))) (-15 -4122 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |t#3|)) (-15 -3226 ($ $ |t#3| (-751))) (-15 -3226 ($ $ (-622 |t#3|) (-622 (-751)))) (-15 -3420 ($ (-1143 |t#1|) |t#3|)) (-15 -3420 ($ (-1143 $) |t#3|)) (-15 -3155 ((-3 (-622 $) "failed") $)) (-15 -3156 ((-3 (-622 $) "failed") $)) (-15 -3157 ((-3 (-2 (|:| |var| |t#3|) (|:| -2493 (-751))) "failed") $)) (-15 -3152 ((-751) $)) (-15 -3152 ((-751) $ (-622 |t#3|))) (-15 -3417 ((-622 |t#3|) $)) (-15 -3151 ((-622 $) $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (IF (|has| |t#3| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-598 (-866 (-538)))) (IF (|has| |t#3| (-598 (-866 (-538)))) (-6 (-598 (-866 (-538)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-598 (-866 (-373)))) (IF (|has| |t#3| (-598 (-866 (-373)))) (-6 (-598 (-866 (-373)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862 (-538))) (IF (|has| |t#3| (-862 (-538))) (-6 (-862 (-538))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862 (-373))) (IF (|has| |t#3| (-862 (-373))) (-6 (-862 (-373))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4116 ($ $ $ |t#3|)) (-15 -4117 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-6 (-446)) (-15 -3150 ($ $ |t#3|)) (-15 -3857 ($ $)) (-15 -3857 ($ $ |t#3|)) (-15 -4329 ((-400 $) $)) (-15 -4134 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4351)) (-6 -4351) |%noBranch|) (IF (|has| |t#1| (-886)) (-6 (-886)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#3| (-598 (-527)))) ((-598 (-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#3| (-598 (-866 (-373))))) ((-598 (-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#3| (-598 (-866 (-538))))) ((-285) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-886)) (|has| |#1| (-446))) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-545) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 |#3|) . T) ((-862 (-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#3| (-862 (-373)))) ((-862 (-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#3| (-862 (-538)))) ((-886) |has| |#1| (-886)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1014 |#3|) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) |has| |#1| (-886)))
-((-3417 (((-622 |#2|) |#5|) 36)) (-3419 (((-1143 |#5|) |#5| |#2| (-1143 |#5|)) 23) (((-402 (-1143 |#5|)) |#5| |#2|) 16)) (-3420 ((|#5| (-402 (-1143 |#5|)) |#2|) 30)) (-3418 (((-3 |#2| "failed") |#5|) 65)) (-3156 (((-3 (-622 |#5|) "failed") |#5|) 59)) (-3158 (((-3 (-2 (|:| |val| |#5|) (|:| -2493 (-538))) "failed") |#5|) 47)) (-3155 (((-3 (-622 |#5|) "failed") |#5|) 61)) (-3157 (((-3 (-2 (|:| |var| |#2|) (|:| -2493 (-538))) "failed") |#5|) 51)))
-(((-927 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3417 ((-622 |#2|) |#5|)) (-15 -3418 ((-3 |#2| "failed") |#5|)) (-15 -3419 ((-402 (-1143 |#5|)) |#5| |#2|)) (-15 -3420 (|#5| (-402 (-1143 |#5|)) |#2|)) (-15 -3419 ((-1143 |#5|) |#5| |#2| (-1143 |#5|))) (-15 -3155 ((-3 (-622 |#5|) "failed") |#5|)) (-15 -3156 ((-3 (-622 |#5|) "failed") |#5|)) (-15 -3157 ((-3 (-2 (|:| |var| |#2|) (|:| -2493 (-538))) "failed") |#5|)) (-15 -3158 ((-3 (-2 (|:| |val| |#5|) (|:| -2493 (-538))) "failed") |#5|))) (-773) (-827) (-1025) (-926 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -4317 ($ |#4|)) (-15 -3331 (|#4| $)) (-15 -3330 (|#4| $))))) (T -927))
-((-3158 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2493 (-538)))) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) (-3157 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2493 (-538)))) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) (-3156 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-622 *3)) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) (-3155 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-622 *3)) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) (-3419 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))) (-4 *7 (-926 *6 *5 *4)) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-5 *1 (-927 *5 *4 *6 *7 *3)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1143 *2))) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *2 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))) (-5 *1 (-927 *5 *4 *6 *7 *2)) (-4 *7 (-926 *6 *5 *4)))) (-3419 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *5 *4)) (-5 *2 (-402 (-1143 *3))) (-5 *1 (-927 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) (-3418 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-1025)) (-4 *6 (-926 *5 *4 *2)) (-4 *2 (-827)) (-5 *1 (-927 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *6)) (-15 -3331 (*6 $)) (-15 -3330 (*6 $))))))) (-3417 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-622 *5)) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))))
-(-10 -7 (-15 -3417 ((-622 |#2|) |#5|)) (-15 -3418 ((-3 |#2| "failed") |#5|)) (-15 -3419 ((-402 (-1143 |#5|)) |#5| |#2|)) (-15 -3420 (|#5| (-402 (-1143 |#5|)) |#2|)) (-15 -3419 ((-1143 |#5|) |#5| |#2| (-1143 |#5|))) (-15 -3155 ((-3 (-622 |#5|) "failed") |#5|)) (-15 -3156 ((-3 (-622 |#5|) "failed") |#5|)) (-15 -3157 ((-3 (-2 (|:| |var| |#2|) (|:| -2493 (-538))) "failed") |#5|)) (-15 -3158 ((-3 (-2 (|:| |val| |#5|) (|:| -2493 (-538))) "failed") |#5|)))
-((-4318 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4318 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-773) (-827) (-1025) (-926 |#3| |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751)))))) (T -928))
-((-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-827)) (-4 *8 (-1025)) (-4 *6 (-773)) (-4 *2 (-13 (-1074) (-10 -8 (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751)))))) (-5 *1 (-928 *6 *7 *8 *5 *2)) (-4 *5 (-926 *8 *6 *7)))))
-(-10 -7 (-15 -4318 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-3159 (((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#3| (-751)) 38)) (-3160 (((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) (-402 (-538)) (-751)) 34)) (-3162 (((-2 (|:| -2493 (-751)) (|:| -4313 |#4|) (|:| |radicand| (-622 |#4|))) |#4| (-751)) 54)) (-3161 (((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#5| (-751)) 64 (|has| |#3| (-446)))))
-(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3159 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#3| (-751))) (-15 -3160 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) (-402 (-538)) (-751))) (IF (|has| |#3| (-446)) (-15 -3161 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#5| (-751))) |%noBranch|) (-15 -3162 ((-2 (|:| -2493 (-751)) (|:| -4313 |#4|) (|:| |radicand| (-622 |#4|))) |#4| (-751)))) (-773) (-827) (-545) (-926 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -3331 (|#4| $)) (-15 -3330 (|#4| $)) (-15 -4317 ($ |#4|))))) (T -929))
-((-3162 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545)) (-4 *3 (-926 *7 *5 *6)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| (-622 *3)))) (-5 *1 (-929 *5 *6 *7 *3 *8)) (-5 *4 (-751)) (-4 *8 (-13 (-358) (-10 -8 (-15 -3331 (*3 $)) (-15 -3330 (*3 $)) (-15 -4317 ($ *3))))))) (-3161 (*1 *2 *3 *4) (-12 (-4 *7 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545)) (-4 *8 (-926 *7 *5 *6)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| *3))) (-5 *1 (-929 *5 *6 *7 *8 *3)) (-5 *4 (-751)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3331 (*8 $)) (-15 -3330 (*8 $)) (-15 -4317 ($ *8))))))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-538))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545)) (-4 *8 (-926 *7 *5 *6)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *9) (|:| |radicand| *9))) (-5 *1 (-929 *5 *6 *7 *8 *9)) (-5 *4 (-751)) (-4 *9 (-13 (-358) (-10 -8 (-15 -3331 (*8 $)) (-15 -3330 (*8 $)) (-15 -4317 ($ *8))))))) (-3159 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-545)) (-4 *7 (-926 *3 *5 *6)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *8) (|:| |radicand| *8))) (-5 *1 (-929 *5 *6 *3 *7 *8)) (-5 *4 (-751)) (-4 *8 (-13 (-358) (-10 -8 (-15 -3331 (*7 $)) (-15 -3330 (*7 $)) (-15 -4317 ($ *7))))))))
-(-10 -7 (-15 -3159 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#3| (-751))) (-15 -3160 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) (-402 (-538)) (-751))) (IF (|has| |#3| (-446)) (-15 -3161 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#5| (-751))) |%noBranch|) (-15 -3162 ((-2 (|:| -2493 (-751)) (|:| -4313 |#4|) (|:| |radicand| (-622 |#4|))) |#4| (-751))))
-((-2898 (((-112) $ $) NIL)) (-3163 (($ (-1093)) 8)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 14) (((-1093) $) 11)) (-3387 (((-112) $ $) 10)))
-(((-930) (-13 (-1074) (-597 (-1093)) (-10 -8 (-15 -3163 ($ (-1093)))))) (T -930))
-((-3163 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-930)))))
-(-13 (-1074) (-597 (-1093)) (-10 -8 (-15 -3163 ($ (-1093)))))
-((-3229 (((-1062 (-221)) $) 8)) (-3230 (((-1062 (-221)) $) 9)) (-3231 (((-622 (-622 (-919 (-221)))) $) 10)) (-4317 (((-840) $) 6)))
+((-3997 (((-475 |#1| |#2|) (-928 |#2|)) 20)) (-4032 (((-243 |#1| |#2|) (-928 |#2|)) 33)) (-4009 (((-928 |#2|) (-475 |#1| |#2|)) 25)) (-3985 (((-243 |#1| |#2|) (-475 |#1| |#2|)) 55)) (-4020 (((-928 |#2|) (-243 |#1| |#2|)) 30)) (-3973 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 46)))
+(((-920 |#1| |#2|) (-10 -7 (-15 -3973 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3985 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -3997 ((-475 |#1| |#2|) (-928 |#2|))) (-15 -4009 ((-928 |#2|) (-475 |#1| |#2|))) (-15 -4020 ((-928 |#2|) (-243 |#1| |#2|))) (-15 -4032 ((-243 |#1| |#2|) (-928 |#2|)))) (-625 (-1149)) (-1025)) (T -920))
+((-4032 (*1 *2 *3) (-12 (-5 *3 (-928 *5)) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-625 (-1149))))) (-4020 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) (-5 *2 (-928 *5)) (-5 *1 (-920 *4 *5)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) (-5 *2 (-928 *5)) (-5 *1 (-920 *4 *5)))) (-3997 (*1 *2 *3) (-12 (-5 *3 (-928 *5)) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-625 (-1149))))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5)))))
+(-10 -7 (-15 -3973 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3985 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -3997 ((-475 |#1| |#2|) (-928 |#2|))) (-15 -4009 ((-928 |#2|) (-475 |#1| |#2|))) (-15 -4020 ((-928 |#2|) (-243 |#1| |#2|))) (-15 -4032 ((-243 |#1| |#2|) (-928 |#2|))))
+((-4044 (((-625 |#2|) |#2| |#2|) 10)) (-4082 (((-751) (-625 |#1|)) 37 (|has| |#1| (-825)))) (-4056 (((-625 |#2|) |#2|) 11)) (-4095 (((-751) (-625 |#1|) (-552) (-552)) 39 (|has| |#1| (-825)))) (-4069 ((|#1| |#2|) 32 (|has| |#1| (-825)))))
+(((-921 |#1| |#2|) (-10 -7 (-15 -4044 ((-625 |#2|) |#2| |#2|)) (-15 -4056 ((-625 |#2|) |#2|)) (IF (|has| |#1| (-825)) (PROGN (-15 -4069 (|#1| |#2|)) (-15 -4082 ((-751) (-625 |#1|))) (-15 -4095 ((-751) (-625 |#1|) (-552) (-552)))) |%noBranch|)) (-358) (-1208 |#1|)) (T -921))
+((-4095 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-552)) (-4 *5 (-825)) (-4 *5 (-358)) (-5 *2 (-751)) (-5 *1 (-921 *5 *6)) (-4 *6 (-1208 *5)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-825)) (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-921 *4 *5)) (-4 *5 (-1208 *4)))) (-4069 (*1 *2 *3) (-12 (-4 *2 (-358)) (-4 *2 (-825)) (-5 *1 (-921 *2 *3)) (-4 *3 (-1208 *2)))) (-4056 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-921 *4 *3)) (-4 *3 (-1208 *4)))) (-4044 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-921 *4 *3)) (-4 *3 (-1208 *4)))))
+(-10 -7 (-15 -4044 ((-625 |#2|) |#2| |#2|)) (-15 -4056 ((-625 |#2|) |#2|)) (IF (|has| |#1| (-825)) (PROGN (-15 -4069 (|#1| |#2|)) (-15 -4082 ((-751) (-625 |#1|))) (-15 -4095 ((-751) (-625 |#1|) (-552) (-552)))) |%noBranch|))
+((-1996 (((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|)) 19)))
+(((-922 |#1| |#2|) (-10 -7 (-15 -1996 ((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|)))) (-1025) (-1025)) (T -922))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-928 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-928 *6)) (-5 *1 (-922 *5 *6)))))
+(-10 -7 (-15 -1996 ((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|))))
+((-3793 (((-1205 |#1| (-928 |#2|)) (-928 |#2|) (-1228 |#1|)) 18)))
+(((-923 |#1| |#2|) (-10 -7 (-15 -3793 ((-1205 |#1| (-928 |#2|)) (-928 |#2|) (-1228 |#1|)))) (-1149) (-1025)) (T -923))
+((-3793 (*1 *2 *3 *4) (-12 (-5 *4 (-1228 *5)) (-14 *5 (-1149)) (-4 *6 (-1025)) (-5 *2 (-1205 *5 (-928 *6))) (-5 *1 (-923 *5 *6)) (-5 *3 (-928 *6)))))
+(-10 -7 (-15 -3793 ((-1205 |#1| (-928 |#2|)) (-928 |#2|) (-1228 |#1|))))
+((-4121 (((-751) $) 71) (((-751) $ (-625 |#4|)) 74)) (-2194 (($ $) 173)) (-1330 (((-413 $) $) 165)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 116)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL) (((-552) $) NIL) ((|#4| $) 59)) (-3207 (($ $ $ |#4|) 76)) (-1794 (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 106) (((-669 |#2|) (-669 $)) 99)) (-1294 (($ $) 180) (($ $ |#4|) 183)) (-4157 (((-625 $) $) 63)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 199) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 192)) (-4148 (((-625 $) $) 28)) (-3957 (($ |#2| |#3|) NIL) (($ $ |#4| (-751)) NIL) (($ $ (-625 |#4|) (-625 (-751))) 57)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#4|) 162)) (-4172 (((-3 (-625 $) "failed") $) 42)) (-4160 (((-3 (-625 $) "failed") $) 31)) (-4182 (((-3 (-2 (|:| |var| |#4|) (|:| -3564 (-751))) "failed") $) 47)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 109)) (-4275 (((-413 (-1145 $)) (-1145 $)) 122)) (-4286 (((-413 (-1145 $)) (-1145 $)) 120)) (-3824 (((-413 $) $) 140)) (-4073 (($ $ (-625 (-289 $))) 21) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-625 |#4|) (-625 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-625 |#4|) (-625 $)) NIL)) (-3217 (($ $ |#4|) 78)) (-2042 (((-868 (-374)) $) 213) (((-868 (-552)) $) 206) (((-528) $) 221)) (-4108 ((|#2| $) NIL) (($ $ |#4|) 175)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 154)) (-3637 ((|#2| $ |#3|) NIL) (($ $ |#4| (-751)) 52) (($ $ (-625 |#4|) (-625 (-751))) 55)) (-4243 (((-3 $ "failed") $) 156)) (-2307 (((-112) $ $) 186)))
+(((-924 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4253 ((-3 (-1232 |#1|) "failed") (-669 |#1|))) (-15 -1294 (|#1| |#1| |#4|)) (-15 -4108 (|#1| |#1| |#4|)) (-15 -3217 (|#1| |#1| |#4|)) (-15 -3207 (|#1| |#1| |#1| |#4|)) (-15 -4157 ((-625 |#1|) |#1|)) (-15 -4121 ((-751) |#1| (-625 |#4|))) (-15 -4121 ((-751) |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| |#4|) (|:| -3564 (-751))) "failed") |#1|)) (-15 -4172 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4160 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -3957 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3957 (|#1| |#1| |#4| (-751))) (-15 -2097 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -4148 ((-625 |#1|) |#1|)) (-15 -3637 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3637 (|#1| |#1| |#4| (-751))) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#4| |#1|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#4| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#4| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3957 (|#1| |#2| |#3|)) (-15 -3637 (|#2| |#1| |#3|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -1294 (|#1| |#1|))) (-925 |#2| |#3| |#4|) (-1025) (-773) (-827)) (T -924))
+NIL
+(-10 -8 (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4253 ((-3 (-1232 |#1|) "failed") (-669 |#1|))) (-15 -1294 (|#1| |#1| |#4|)) (-15 -4108 (|#1| |#1| |#4|)) (-15 -3217 (|#1| |#1| |#4|)) (-15 -3207 (|#1| |#1| |#1| |#4|)) (-15 -4157 ((-625 |#1|) |#1|)) (-15 -4121 ((-751) |#1| (-625 |#4|))) (-15 -4121 ((-751) |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| |#4|) (|:| -3564 (-751))) "failed") |#1|)) (-15 -4172 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4160 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -3957 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3957 (|#1| |#1| |#4| (-751))) (-15 -2097 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -4148 ((-625 |#1|) |#1|)) (-15 -3637 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3637 (|#1| |#1| |#4| (-751))) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#4| |#1|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#4| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#4| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3957 (|#1| |#2| |#3|)) (-15 -3637 (|#2| |#1| |#3|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -1294 (|#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 |#3|) $) 108)) (-3793 (((-1145 $) $ |#3|) 123) (((-1145 |#1|) $) 122)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3528 (($ $) 86 (|has| |#1| (-544)))) (-3509 (((-112) $) 88 (|has| |#1| (-544)))) (-4121 (((-751) $) 110) (((-751) $ (-625 |#3|)) 109)) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 98 (|has| |#1| (-885)))) (-2194 (($ $) 96 (|has| |#1| (-446)))) (-1330 (((-413 $) $) 95 (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 101 (|has| |#1| (-885)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 162) (((-3 (-402 (-552)) "failed") $) 160 (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1014 (-552)))) (((-3 |#3| "failed") $) 134)) (-1895 ((|#1| $) 163) (((-402 (-552)) $) 159 (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) 157 (|has| |#1| (-1014 (-552)))) ((|#3| $) 133)) (-3207 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4169 (($ $) 152)) (-1794 (((-669 (-552)) (-669 $)) 132 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 131 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-4174 (((-3 $ "failed") $) 32)) (-1294 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-4157 (((-625 $) $) 107)) (-2951 (((-112) $) 94 (|has| |#1| (-885)))) (-1347 (($ $ |#1| |#2| $) 170)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 82 (-12 (|has| |#3| (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 81 (-12 (|has| |#3| (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-3650 (((-112) $) 30)) (-3723 (((-751) $) 167)) (-3970 (($ (-1145 |#1|) |#3|) 115) (($ (-1145 $) |#3|) 114)) (-4148 (((-625 $) $) 124)) (-4201 (((-112) $) 150)) (-3957 (($ |#1| |#2|) 151) (($ $ |#3| (-751)) 117) (($ $ (-625 |#3|) (-625 (-751))) 116)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#3|) 118)) (-4134 ((|#2| $) 168) (((-751) $ |#3|) 120) (((-625 (-751)) $ (-625 |#3|)) 119)) (-3658 (($ $ $) 77 (|has| |#1| (-827)))) (-3332 (($ $ $) 76 (|has| |#1| (-827)))) (-1357 (($ (-1 |#2| |#2|) $) 169)) (-1996 (($ (-1 |#1| |#1|) $) 149)) (-1942 (((-3 |#3| "failed") $) 121)) (-4131 (($ $) 147)) (-4144 ((|#1| $) 146)) (-2605 (($ (-625 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-2883 (((-1131) $) 9)) (-4172 (((-3 (-625 $) "failed") $) 112)) (-4160 (((-3 (-625 $) "failed") $) 113)) (-4182 (((-3 (-2 (|:| |var| |#3|) (|:| -3564 (-751))) "failed") $) 111)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 164)) (-4117 ((|#1| $) 165)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 93 (|has| |#1| (-446)))) (-2633 (($ (-625 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 100 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 99 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 97 (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) 143) (($ $ (-289 $)) 142) (($ $ $ $) 141) (($ $ (-625 $) (-625 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-625 |#3|) (-625 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-625 |#3|) (-625 $)) 136)) (-3217 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3072 (($ $ |#3|) 40) (($ $ (-625 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-625 |#3|) (-625 (-751))) 37)) (-4276 ((|#2| $) 148) (((-751) $ |#3|) 128) (((-625 (-751)) $ (-625 |#3|)) 127)) (-2042 (((-868 (-374)) $) 80 (-12 (|has| |#3| (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) 79 (-12 (|has| |#3| (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 102 (-3743 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-544))) (($ (-402 (-552))) 70 (-1523 (|has| |#1| (-1014 (-402 (-552)))) (|has| |#1| (-38 (-402 (-552))))))) (-2512 (((-625 |#1|) $) 166)) (-3637 ((|#1| $ |#2|) 153) (($ $ |#3| (-751)) 126) (($ $ (-625 |#3|) (-625 (-751))) 125)) (-4243 (((-3 $ "failed") $) 71 (-1523 (-3743 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 28)) (-1336 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 87 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ |#3|) 36) (($ $ (-625 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-625 |#3|) (-625 (-751))) 33)) (-2346 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 73 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 75 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 72 (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 156 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 155 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-925 |#1| |#2| |#3|) (-138) (-1025) (-773) (-827)) (T -925))
+((-1294 (*1 *1 *1) (-12 (-4 *1 (-925 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-4276 (*1 *2 *1 *3) (-12 (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4276 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-751))))) (-3637 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-925 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *2 (-827)))) (-3637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 (-751))) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) (-4148 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5)))) (-3793 (*1 *2 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-1145 *1)) (-4 *1 (-925 *4 *5 *3)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-1145 *3)))) (-1942 (*1 *2 *1) (|partial| -12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-4134 (*1 *2 *1 *3) (-12 (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4134 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-751))))) (-2097 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-925 *4 *5 *3)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-925 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *2 (-827)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 (-751))) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) (-3970 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 *4)) (-4 *4 (-1025)) (-4 *1 (-925 *4 *5 *3)) (-4 *5 (-773)) (-4 *3 (-827)))) (-3970 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)))) (-4160 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5)))) (-4172 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5)))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| |var| *5) (|:| -3564 (-751)))))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-751)))) (-4121 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *5)))) (-4157 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5)))) (-3207 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-170)))) (-3217 (*1 *1 *1 *2) (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4108 (*1 *1 *1 *2) (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-446)))) (-1294 (*1 *1 *1 *2) (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-446)))) (-2194 (*1 *1 *1) (-12 (-4 *1 (-925 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-1330 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-413 *1)) (-4 *1 (-925 *3 *4 *5)))))
+(-13 (-876 |t#3|) (-321 |t#1| |t#2|) (-304 $) (-507 |t#3| |t#1|) (-507 |t#3| $) (-1014 |t#3|) (-372 |t#1|) (-10 -8 (-15 -4276 ((-751) $ |t#3|)) (-15 -4276 ((-625 (-751)) $ (-625 |t#3|))) (-15 -3637 ($ $ |t#3| (-751))) (-15 -3637 ($ $ (-625 |t#3|) (-625 (-751)))) (-15 -4148 ((-625 $) $)) (-15 -3793 ((-1145 $) $ |t#3|)) (-15 -3793 ((-1145 |t#1|) $)) (-15 -1942 ((-3 |t#3| "failed") $)) (-15 -4134 ((-751) $ |t#3|)) (-15 -4134 ((-625 (-751)) $ (-625 |t#3|))) (-15 -2097 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |t#3|)) (-15 -3957 ($ $ |t#3| (-751))) (-15 -3957 ($ $ (-625 |t#3|) (-625 (-751)))) (-15 -3970 ($ (-1145 |t#1|) |t#3|)) (-15 -3970 ($ (-1145 $) |t#3|)) (-15 -4160 ((-3 (-625 $) "failed") $)) (-15 -4172 ((-3 (-625 $) "failed") $)) (-15 -4182 ((-3 (-2 (|:| |var| |t#3|) (|:| -3564 (-751))) "failed") $)) (-15 -4121 ((-751) $)) (-15 -4121 ((-751) $ (-625 |t#3|))) (-15 -3982 ((-625 |t#3|) $)) (-15 -4157 ((-625 $) $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (IF (|has| |t#3| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-598 (-868 (-552)))) (IF (|has| |t#3| (-598 (-868 (-552)))) (-6 (-598 (-868 (-552)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-598 (-868 (-374)))) (IF (|has| |t#3| (-598 (-868 (-374)))) (-6 (-598 (-868 (-374)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862 (-552))) (IF (|has| |t#3| (-862 (-552))) (-6 (-862 (-552))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862 (-374))) (IF (|has| |t#3| (-862 (-374))) (-6 (-862 (-374))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -3207 ($ $ $ |t#3|)) (-15 -3217 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-6 (-446)) (-15 -4108 ($ $ |t#3|)) (-15 -1294 ($ $)) (-15 -1294 ($ $ |t#3|)) (-15 -1330 ((-413 $) $)) (-15 -2194 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4351)) (-6 -4351) |%noBranch|) (IF (|has| |t#1| (-885)) (-6 (-885)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#3| (-598 (-528)))) ((-598 (-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#3| (-598 (-868 (-374))))) ((-598 (-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#3| (-598 (-868 (-552))))) ((-285) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-885)) (|has| |#1| (-446))) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-544) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 |#3|) . T) ((-862 (-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#3| (-862 (-374)))) ((-862 (-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#3| (-862 (-552)))) ((-885) |has| |#1| (-885)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1014 |#3|) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) |has| |#1| (-885)))
+((-3982 (((-625 |#2|) |#5|) 36)) (-3793 (((-1145 |#5|) |#5| |#2| (-1145 |#5|)) 23) (((-402 (-1145 |#5|)) |#5| |#2|) 16)) (-3970 ((|#5| (-402 (-1145 |#5|)) |#2|) 30)) (-1942 (((-3 |#2| "failed") |#5|) 65)) (-4172 (((-3 (-625 |#5|) "failed") |#5|) 59)) (-4194 (((-3 (-2 (|:| |val| |#5|) (|:| -3564 (-552))) "failed") |#5|) 47)) (-4160 (((-3 (-625 |#5|) "failed") |#5|) 61)) (-4182 (((-3 (-2 (|:| |var| |#2|) (|:| -3564 (-552))) "failed") |#5|) 51)))
+(((-926 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3982 ((-625 |#2|) |#5|)) (-15 -1942 ((-3 |#2| "failed") |#5|)) (-15 -3793 ((-402 (-1145 |#5|)) |#5| |#2|)) (-15 -3970 (|#5| (-402 (-1145 |#5|)) |#2|)) (-15 -3793 ((-1145 |#5|) |#5| |#2| (-1145 |#5|))) (-15 -4160 ((-3 (-625 |#5|) "failed") |#5|)) (-15 -4172 ((-3 (-625 |#5|) "failed") |#5|)) (-15 -4182 ((-3 (-2 (|:| |var| |#2|) (|:| -3564 (-552))) "failed") |#5|)) (-15 -4194 ((-3 (-2 (|:| |val| |#5|) (|:| -3564 (-552))) "failed") |#5|))) (-773) (-827) (-1025) (-925 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -1683 ($ |#4|)) (-15 -1356 (|#4| $)) (-15 -1368 (|#4| $))))) (T -926))
+((-4194 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3564 (-552)))) (-5 *1 (-926 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) (-4182 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3564 (-552)))) (-5 *1 (-926 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) (-4172 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *3)) (-5 *1 (-926 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) (-4160 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *3)) (-5 *1 (-926 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) (-3793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1145 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))) (-4 *7 (-925 *6 *5 *4)) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-5 *1 (-926 *5 *4 *6 *7 *3)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1145 *2))) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *2 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))) (-5 *1 (-926 *5 *4 *6 *7 *2)) (-4 *7 (-925 *6 *5 *4)))) (-3793 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-402 (-1145 *3))) (-5 *1 (-926 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) (-1942 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-1025)) (-4 *6 (-925 *5 *4 *2)) (-4 *2 (-827)) (-5 *1 (-926 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *6)) (-15 -1356 (*6 $)) (-15 -1368 (*6 $))))))) (-3982 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *5)) (-5 *1 (-926 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))))
+(-10 -7 (-15 -3982 ((-625 |#2|) |#5|)) (-15 -1942 ((-3 |#2| "failed") |#5|)) (-15 -3793 ((-402 (-1145 |#5|)) |#5| |#2|)) (-15 -3970 (|#5| (-402 (-1145 |#5|)) |#2|)) (-15 -3793 ((-1145 |#5|) |#5| |#2| (-1145 |#5|))) (-15 -4160 ((-3 (-625 |#5|) "failed") |#5|)) (-15 -4172 ((-3 (-625 |#5|) "failed") |#5|)) (-15 -4182 ((-3 (-2 (|:| |var| |#2|) (|:| -3564 (-552))) "failed") |#5|)) (-15 -4194 ((-3 (-2 (|:| |val| |#5|) (|:| -3564 (-552))) "failed") |#5|)))
+((-1996 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-927 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1996 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-773) (-827) (-1025) (-925 |#3| |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751)))))) (T -927))
+((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-827)) (-4 *8 (-1025)) (-4 *6 (-773)) (-4 *2 (-13 (-1073) (-10 -8 (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751)))))) (-5 *1 (-927 *6 *7 *8 *5 *2)) (-4 *5 (-925 *8 *6 *7)))))
+(-10 -7 (-15 -1996 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1149)) $) 16)) (-3793 (((-1145 $) $ (-1149)) 21) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1149))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 8) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-1149) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-1149) $) NIL)) (-3207 (($ $ $ (-1149)) NIL (|has| |#1| (-170)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1149)) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-524 (-1149)) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1149) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1149) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#1|) (-1149)) NIL) (($ (-1145 $) (-1149)) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1149)) NIL)) (-4134 (((-524 (-1149)) $) NIL) (((-751) $ (-1149)) NIL) (((-625 (-751)) $ (-625 (-1149))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 (-1149)) (-524 (-1149))) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-1942 (((-3 (-1149) "failed") $) 19)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1149)) (|:| -3564 (-751))) "failed") $) NIL)) (-2481 (($ $ (-1149)) 29 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1149) |#1|) NIL) (($ $ (-625 (-1149)) (-625 |#1|)) NIL) (($ $ (-1149) $) NIL) (($ $ (-625 (-1149)) (-625 $)) NIL)) (-3217 (($ $ (-1149)) NIL (|has| |#1| (-170)))) (-3072 (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-4276 (((-524 (-1149)) $) NIL) (((-751) $ (-1149)) NIL) (((-625 (-751)) $ (-625 (-1149))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1149) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1149) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1149) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1149)) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 25) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1149)) 27) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-928 |#1|) (-13 (-925 |#1| (-524 (-1149)) (-1149)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1149))) |%noBranch|))) (-1025)) (T -928))
+((-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-928 *3)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)))))
+(-13 (-925 |#1| (-524 (-1149)) (-1149)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1149))) |%noBranch|)))
+((-4204 (((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#3| (-751)) 38)) (-4215 (((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) (-402 (-552)) (-751)) 34)) (-4236 (((-2 (|:| -3564 (-751)) (|:| -3340 |#4|) (|:| |radicand| (-625 |#4|))) |#4| (-751)) 54)) (-4225 (((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#5| (-751)) 64 (|has| |#3| (-446)))))
+(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4204 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#3| (-751))) (-15 -4215 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) (-402 (-552)) (-751))) (IF (|has| |#3| (-446)) (-15 -4225 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#5| (-751))) |%noBranch|) (-15 -4236 ((-2 (|:| -3564 (-751)) (|:| -3340 |#4|) (|:| |radicand| (-625 |#4|))) |#4| (-751)))) (-773) (-827) (-544) (-925 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -1356 (|#4| $)) (-15 -1368 (|#4| $)) (-15 -1683 ($ |#4|))))) (T -929))
+((-4236 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-544)) (-4 *3 (-925 *7 *5 *6)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| (-625 *3)))) (-5 *1 (-929 *5 *6 *7 *3 *8)) (-5 *4 (-751)) (-4 *8 (-13 (-358) (-10 -8 (-15 -1356 (*3 $)) (-15 -1368 (*3 $)) (-15 -1683 ($ *3))))))) (-4225 (*1 *2 *3 *4) (-12 (-4 *7 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-544)) (-4 *8 (-925 *7 *5 *6)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| *3))) (-5 *1 (-929 *5 *6 *7 *8 *3)) (-5 *4 (-751)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1356 (*8 $)) (-15 -1368 (*8 $)) (-15 -1683 ($ *8))))))) (-4215 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-552))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-544)) (-4 *8 (-925 *7 *5 *6)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *9) (|:| |radicand| *9))) (-5 *1 (-929 *5 *6 *7 *8 *9)) (-5 *4 (-751)) (-4 *9 (-13 (-358) (-10 -8 (-15 -1356 (*8 $)) (-15 -1368 (*8 $)) (-15 -1683 ($ *8))))))) (-4204 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-544)) (-4 *7 (-925 *3 *5 *6)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *8) (|:| |radicand| *8))) (-5 *1 (-929 *5 *6 *3 *7 *8)) (-5 *4 (-751)) (-4 *8 (-13 (-358) (-10 -8 (-15 -1356 (*7 $)) (-15 -1368 (*7 $)) (-15 -1683 ($ *7))))))))
+(-10 -7 (-15 -4204 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#3| (-751))) (-15 -4215 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) (-402 (-552)) (-751))) (IF (|has| |#3| (-446)) (-15 -4225 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#5| (-751))) |%noBranch|) (-15 -4236 ((-2 (|:| -3564 (-751)) (|:| -3340 |#4|) (|:| |radicand| (-625 |#4|))) |#4| (-751))))
+((-1671 (((-112) $ $) NIL)) (-4247 (($ (-1093)) 8)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 14) (((-1093) $) 11)) (-2281 (((-112) $ $) 10)))
+(((-930) (-13 (-1073) (-597 (-1093)) (-10 -8 (-15 -4247 ($ (-1093)))))) (T -930))
+((-4247 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-930)))))
+(-13 (-1073) (-597 (-1093)) (-10 -8 (-15 -4247 ($ (-1093)))))
+((-3663 (((-1067 (-221)) $) 8)) (-3652 (((-1067 (-221)) $) 9)) (-3603 (((-625 (-625 (-919 (-221)))) $) 10)) (-1683 (((-839) $) 6)))
(((-931) (-138)) (T -931))
-((-3231 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-622 (-622 (-919 (-221))))))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1062 (-221))))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1062 (-221))))))
-(-13 (-597 (-840)) (-10 -8 (-15 -3231 ((-622 (-622 (-919 (-221)))) $)) (-15 -3230 ((-1062 (-221)) $)) (-15 -3229 ((-1062 (-221)) $))))
-(((-597 (-840)) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 61 (|has| |#1| (-545)))) (-2178 (($ $) 62 (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 28)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) 24)) (-3821 (((-3 $ "failed") $) 35)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-1721 (($ $ |#1| |#2| $) 48)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) 16)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| |#2|) NIL)) (-3153 ((|#2| $) 19)) (-1722 (($ (-1 |#2| |#2|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3227 (($ $) 23)) (-3525 ((|#1| $) 21)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) 40)) (-1915 ((|#1| $) NIL)) (-4098 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-545))))) (-3820 (((-3 $ "failed") $ $) 74 (|has| |#1| (-545))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-545)))) (-4307 ((|#2| $) 17)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) 39) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 34) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ |#2|) 31)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) 15)) (-1720 (($ $ $ (-751)) 57 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 67 (|has| |#1| (-545)))) (-2991 (($) 22 T CONST)) (-2997 (($) 12 T CONST)) (-3387 (((-112) $ $) 66)) (-4308 (($ $ |#1|) 75 (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) 54) (($ $ (-751)) 52)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-932 |#1| |#2|) (-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| |#2| (-130)) (-15 -4098 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025) (-772)) (T -932))
-((-4098 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *2 (-772)))))
-(-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| |#2| (-130)) (-15 -4098 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|)))
-((-3164 (((-3 (-669 |#1|) "failed") |#2| (-895)) 15)))
-(((-933 |#1| |#2|) (-10 -7 (-15 -3164 ((-3 (-669 |#1|) "failed") |#2| (-895)))) (-545) (-638 |#1|)) (T -933))
-((-3164 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-895)) (-4 *5 (-545)) (-5 *2 (-669 *5)) (-5 *1 (-933 *5 *3)) (-4 *3 (-638 *5)))))
-(-10 -7 (-15 -3164 ((-3 (-669 |#1|) "failed") |#2| (-895))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) 16 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 15 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 13)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 12)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 10 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) 17 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 11)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) 14) (($ $ (-1198 (-538))) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) 8 (|has| $ (-6 -4353)))))
-(((-934 |#1|) (-19 |#1|) (-1185)) (T -934))
+((-3603 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-625 (-625 (-919 (-221))))))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1067 (-221))))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1067 (-221))))))
+(-13 (-597 (-839)) (-10 -8 (-15 -3603 ((-625 (-625 (-919 (-221)))) $)) (-15 -3652 ((-1067 (-221)) $)) (-15 -3663 ((-1067 (-221)) $))))
+(((-597 (-839)) . T))
+((-4257 (((-3 (-669 |#1|) "failed") |#2| (-897)) 15)))
+(((-932 |#1| |#2|) (-10 -7 (-15 -4257 ((-3 (-669 |#1|) "failed") |#2| (-897)))) (-544) (-636 |#1|)) (T -932))
+((-4257 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-897)) (-4 *5 (-544)) (-5 *2 (-669 *5)) (-5 *1 (-932 *5 *3)) (-4 *3 (-636 *5)))))
+(-10 -7 (-15 -4257 ((-3 (-669 |#1|) "failed") |#2| (-897))))
+((-1454 (((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|) 16)) (-2163 ((|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|) 18)) (-1996 (((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)) 13)))
+(((-933 |#1| |#2|) (-10 -7 (-15 -1454 ((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -1996 ((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)))) (-1186) (-1186)) (T -933))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-934 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-934 *6)) (-5 *1 (-933 *5 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-934 *5)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-933 *5 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-934 *6)) (-4 *6 (-1186)) (-4 *5 (-1186)) (-5 *2 (-934 *5)) (-5 *1 (-933 *6 *5)))))
+(-10 -7 (-15 -1454 ((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -1996 ((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) 16 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 15 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 13)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 12)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 10 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) 17 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 11)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 14) (($ $ (-1199 (-552))) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) 8 (|has| $ (-6 -4353)))))
+(((-934 |#1|) (-19 |#1|) (-1186)) (T -934))
NIL
(-19 |#1|)
-((-4201 (((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|) 16)) (-4202 ((|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|) 18)) (-4318 (((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)) 13)))
-(((-935 |#1| |#2|) (-10 -7 (-15 -4201 ((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -4318 ((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)))) (-1185) (-1185)) (T -935))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-934 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-934 *6)) (-5 *1 (-935 *5 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-934 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-935 *5 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-934 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-5 *2 (-934 *5)) (-5 *1 (-935 *6 *5)))))
-(-10 -7 (-15 -4201 ((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -4318 ((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|))))
-((-3165 (($ $ (-1065 $)) 7) (($ $ (-1149)) 6)))
-(((-936) (-138)) (T -936))
-((-3165 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-936)))) (-3165 (*1 *1 *1 *2) (-12 (-4 *1 (-936)) (-5 *2 (-1149)))))
-(-13 (-10 -8 (-15 -3165 ($ $ (-1149))) (-15 -3165 ($ $ (-1065 $)))))
-((-3166 (((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149)) (-1149)) 25) (((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149))) 26) (((-2 (|:| |coef1| (-538)) (|:| |coef2| (-538)) (|:| |prim| (-1143 |#1|))) (-922 |#1|) (-1149) (-922 |#1|) (-1149)) 43)))
-(((-937 |#1|) (-10 -7 (-15 -3166 ((-2 (|:| |coef1| (-538)) (|:| |coef2| (-538)) (|:| |prim| (-1143 |#1|))) (-922 |#1|) (-1149) (-922 |#1|) (-1149))) (-15 -3166 ((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3166 ((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149)) (-1149)))) (-13 (-358) (-145))) (T -937))
-((-3166 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) (-5 *5 (-1149)) (-4 *6 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 *6))) (|:| |prim| (-1143 *6)))) (-5 *1 (-937 *6)))) (-3166 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 *5))) (|:| |prim| (-1143 *5)))) (-5 *1 (-937 *5)))) (-3166 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-922 *5)) (-5 *4 (-1149)) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| |coef1| (-538)) (|:| |coef2| (-538)) (|:| |prim| (-1143 *5)))) (-5 *1 (-937 *5)))))
-(-10 -7 (-15 -3166 ((-2 (|:| |coef1| (-538)) (|:| |coef2| (-538)) (|:| |prim| (-1143 |#1|))) (-922 |#1|) (-1149) (-922 |#1|) (-1149))) (-15 -3166 ((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3166 ((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149)) (-1149))))
-((-3169 (((-622 |#1|) |#1| |#1|) 42)) (-4086 (((-112) |#1|) 39)) (-3168 ((|#1| |#1|) 65)) (-3167 ((|#1| |#1|) 64)))
-(((-938 |#1|) (-10 -7 (-15 -4086 ((-112) |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3169 ((-622 |#1|) |#1| |#1|))) (-537)) (T -938))
-((-3169 (*1 *2 *3 *3) (-12 (-5 *2 (-622 *3)) (-5 *1 (-938 *3)) (-4 *3 (-537)))) (-3168 (*1 *2 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-537)))) (-3167 (*1 *2 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-537)))) (-4086 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-938 *3)) (-4 *3 (-537)))))
-(-10 -7 (-15 -4086 ((-112) |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3169 ((-622 |#1|) |#1| |#1|)))
-((-3170 (((-1237) (-840)) 9)))
-(((-939) (-10 -7 (-15 -3170 ((-1237) (-840))))) (T -939))
-((-3170 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-939)))))
-(-10 -7 (-15 -3170 ((-1237) (-840))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (-2733 (($ $ $) 63 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (-1368 (((-3 $ "failed") $ $) 50 (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (-3471 (((-751)) 34 (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3171 ((|#2| $) 21)) (-3172 ((|#1| $) 20)) (-3896 (($) NIL (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) CONST)) (-3821 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (-3327 (($) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-2502 (((-112) $) NIL (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (-3677 (($ $ $) NIL (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-3678 (($ $ $) NIL (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-3173 (($ |#1| |#2|) 19)) (-2126 (((-895) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 37 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-2492 (($ (-895)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3594 (((-1093) $) NIL)) (-3342 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-2686 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-4317 (((-840) $) 14)) (-2991 (($) 40 (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) CONST)) (-2997 (($) 24 (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))) CONST)) (-2896 (((-112) $ $) NIL (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-2897 (((-112) $ $) NIL (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-3387 (((-112) $ $) 18)) (-3017 (((-112) $ $) NIL (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-3018 (((-112) $ $) 66 (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-4308 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-4197 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4199 (($ $ $) 43 (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (** (($ $ (-538)) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467)))) (($ $ (-751)) 31 (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))))) (($ $ (-895)) NIL (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (* (($ (-538) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-751) $) 46 (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (($ (-895) $) NIL (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (($ $ $) 27 (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))))
-(((-940 |#1| |#2|) (-13 (-1074) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-707)) (IF (|has| |#2| (-707)) (-6 (-707)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-773)) (IF (|has| |#2| (-773)) (-6 (-773)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-827)) (IF (|has| |#2| (-827)) (-6 (-827)) |%noBranch|) |%noBranch|) (-15 -3173 ($ |#1| |#2|)) (-15 -3172 (|#1| $)) (-15 -3171 (|#2| $)))) (-1074) (-1074)) (T -940))
-((-3173 (*1 *1 *2 *3) (-12 (-5 *1 (-940 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3172 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1074)))) (-3171 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-940 *3 *2)) (-4 *3 (-1074)))))
-(-13 (-1074) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-707)) (IF (|has| |#2| (-707)) (-6 (-707)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-773)) (IF (|has| |#2| (-773)) (-6 (-773)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-827)) (IF (|has| |#2| (-827)) (-6 (-827)) |%noBranch|) |%noBranch|) (-15 -3173 ($ |#1| |#2|)) (-15 -3172 (|#1| $)) (-15 -3171 (|#2| $))))
-((-3761 (((-1076) $) 12)) (-3174 (($ (-1149) (-1076)) 13)) (-3905 (((-1149) $) 10)) (-4317 (((-840) $) 22)))
-(((-941) (-13 (-597 (-840)) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -3761 ((-1076) $)) (-15 -3174 ($ (-1149) (-1076)))))) (T -941))
-((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-941)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-941)))) (-3174 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1076)) (-5 *1 (-941)))))
-(-13 (-597 (-840)) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -3761 ((-1076) $)) (-15 -3174 ($ (-1149) (-1076)))))
-((-2898 (((-112) $ $) NIL)) (-3417 (((-1070 (-1149)) $) 19)) (-3185 (((-112) $) 26)) (-4191 (((-1149) $) 27)) (-3187 (((-112) $) 24)) (-3186 ((|#1| $) 25)) (-3179 (((-849 $ $) $) 34)) (-3180 (((-112) $) 33)) (-3190 (($ $ $) 12)) (-3183 (($ $) 29)) (-3184 (((-112) $) 28)) (-3676 (($ $) 10)) (-3593 (((-1131) $) NIL)) (-3177 (((-849 $ $) $) 36)) (-3178 (((-112) $) 35)) (-3189 (($ $ $) 13)) (-3594 (((-1093) $) NIL)) (-3175 (((-849 $ $) $) 38)) (-3176 (((-112) $) 37)) (-3188 (($ $ $) 14)) (-4317 (((-840) $) 40) (($ |#1|) 7) (($ (-1149)) 9)) (-3181 (((-849 $ $) $) 32)) (-3182 (((-112) $) 30)) (-3191 (($ $ $) 11)) (-3387 (((-112) $ $) NIL)))
-(((-942 |#1|) (-13 (-943) (-10 -8 (-15 -4317 ($ |#1|)) (-15 -4317 ($ (-1149))) (-15 -3417 ((-1070 (-1149)) $)) (-15 -3187 ((-112) $)) (-15 -3186 (|#1| $)) (-15 -3185 ((-112) $)) (-15 -4191 ((-1149) $)) (-15 -3184 ((-112) $)) (-15 -3183 ($ $)) (-15 -3182 ((-112) $)) (-15 -3181 ((-849 $ $) $)) (-15 -3180 ((-112) $)) (-15 -3179 ((-849 $ $) $)) (-15 -3178 ((-112) $)) (-15 -3177 ((-849 $ $) $)) (-15 -3176 ((-112) $)) (-15 -3175 ((-849 $ $) $)))) (-943)) (T -942))
-((-4317 (*1 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1070 (-1149))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3186 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3183 (*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3178 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(-13 (-943) (-10 -8 (-15 -4317 ($ |#1|)) (-15 -4317 ($ (-1149))) (-15 -3417 ((-1070 (-1149)) $)) (-15 -3187 ((-112) $)) (-15 -3186 (|#1| $)) (-15 -3185 ((-112) $)) (-15 -4191 ((-1149) $)) (-15 -3184 ((-112) $)) (-15 -3183 ($ $)) (-15 -3182 ((-112) $)) (-15 -3181 ((-849 $ $) $)) (-15 -3180 ((-112) $)) (-15 -3179 ((-849 $ $) $)) (-15 -3178 ((-112) $)) (-15 -3177 ((-849 $ $) $)) (-15 -3176 ((-112) $)) (-15 -3175 ((-849 $ $) $))))
-((-2898 (((-112) $ $) 7)) (-3190 (($ $ $) 15)) (-3676 (($ $) 17)) (-3593 (((-1131) $) 9)) (-3189 (($ $ $) 14)) (-3594 (((-1093) $) 10)) (-3188 (($ $ $) 13)) (-4317 (((-840) $) 11)) (-3191 (($ $ $) 16)) (-3387 (((-112) $ $) 6)))
+((-4269 (($ $ (-1065 $)) 7) (($ $ (-1149)) 6)))
+(((-935) (-138)) (T -935))
+((-4269 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-935)))) (-4269 (*1 *1 *1 *2) (-12 (-4 *1 (-935)) (-5 *2 (-1149)))))
+(-13 (-10 -8 (-15 -4269 ($ $ (-1149))) (-15 -4269 ($ $ (-1065 $)))))
+((-4279 (((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149)) (-1149)) 25) (((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149))) 26) (((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1145 |#1|))) (-928 |#1|) (-1149) (-928 |#1|) (-1149)) 43)))
+(((-936 |#1|) (-10 -7 (-15 -4279 ((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1145 |#1|))) (-928 |#1|) (-1149) (-928 |#1|) (-1149))) (-15 -4279 ((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -4279 ((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149)) (-1149)))) (-13 (-358) (-145))) (T -936))
+((-4279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) (-5 *5 (-1149)) (-4 *6 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 *6))) (|:| |prim| (-1145 *6)))) (-5 *1 (-936 *6)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 *5))) (|:| |prim| (-1145 *5)))) (-5 *1 (-936 *5)))) (-4279 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-928 *5)) (-5 *4 (-1149)) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1145 *5)))) (-5 *1 (-936 *5)))))
+(-10 -7 (-15 -4279 ((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1145 |#1|))) (-928 |#1|) (-1149) (-928 |#1|) (-1149))) (-15 -4279 ((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -4279 ((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149)) (-1149))))
+((-4309 (((-625 |#1|) |#1| |#1|) 42)) (-2951 (((-112) |#1|) 39)) (-4300 ((|#1| |#1|) 65)) (-4290 ((|#1| |#1|) 64)))
+(((-937 |#1|) (-10 -7 (-15 -2951 ((-112) |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -4300 (|#1| |#1|)) (-15 -4309 ((-625 |#1|) |#1| |#1|))) (-537)) (T -937))
+((-4309 (*1 *2 *3 *3) (-12 (-5 *2 (-625 *3)) (-5 *1 (-937 *3)) (-4 *3 (-537)))) (-4300 (*1 *2 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-537)))) (-4290 (*1 *2 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-537)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-537)))))
+(-10 -7 (-15 -2951 ((-112) |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -4300 (|#1| |#1|)) (-15 -4309 ((-625 |#1|) |#1| |#1|)))
+((-3871 (((-1237) (-839)) 9)))
+(((-938) (-10 -7 (-15 -3871 ((-1237) (-839))))) (T -938))
+((-3871 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-938)))))
+(-10 -7 (-15 -3871 ((-1237) (-839))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 61 (|has| |#1| (-544)))) (-3528 (($ $) 62 (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 28)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) 24)) (-4174 (((-3 $ "failed") $) 35)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-1347 (($ $ |#1| |#2| $) 48)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) 16)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| |#2|) NIL)) (-4134 ((|#2| $) 19)) (-1357 (($ (-1 |#2| |#2|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (($ $) 23)) (-4144 ((|#1| $) 21)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) 40)) (-4117 ((|#1| $) NIL)) (-3044 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-544))))) (-2802 (((-3 $ "failed") $ $) 74 (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-544)))) (-4276 ((|#2| $) 17)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) 39) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 34) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ |#2|) 31)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) 15)) (-1336 (($ $ $ (-751)) 57 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 67 (|has| |#1| (-544)))) (-2089 (($) 22 T CONST)) (-2100 (($) 12 T CONST)) (-2281 (((-112) $ $) 66)) (-2404 (($ $ |#1|) 75 (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) 54) (($ $ (-751)) 52)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-939 |#1| |#2|) (-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| |#2| (-130)) (-15 -3044 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025) (-772)) (T -939))
+((-3044 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-939 *3 *2)) (-4 *2 (-130)) (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *2 (-772)))))
+(-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| |#2| (-130)) (-15 -3044 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (-1282 (($ $ $) 63 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (-2077 (((-3 $ "failed") $ $) 50 (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (-2894 (((-751)) 34 (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-4319 ((|#2| $) 21)) (-4329 ((|#1| $) 20)) (-3101 (($) NIL (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) CONST)) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (-3702 (($) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3650 (((-112) $) NIL (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (-3658 (($ $ $) NIL (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-3332 (($ $ $) NIL (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-1271 (($ |#1| |#2|) 19)) (-4318 (((-897) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 37 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-3123 (($ (-897)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-2831 (((-1093) $) NIL)) (-2410 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-3828 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-1683 (((-839) $) 14)) (-2089 (($) 40 (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) CONST)) (-2100 (($) 24 (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))) CONST)) (-2346 (((-112) $ $) NIL (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-2320 (((-112) $ $) NIL (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-2281 (((-112) $ $) 18)) (-2334 (((-112) $ $) NIL (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-2307 (((-112) $ $) 66 (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-2404 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-2393 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2382 (($ $ $) 43 (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (** (($ $ (-552)) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467)))) (($ $ (-751)) 31 (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))))) (($ $ (-897)) NIL (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (* (($ (-552) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-751) $) 46 (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (($ (-897) $) NIL (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (($ $ $) 27 (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))))
+(((-940 |#1| |#2|) (-13 (-1073) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-707)) (IF (|has| |#2| (-707)) (-6 (-707)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-773)) (IF (|has| |#2| (-773)) (-6 (-773)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-827)) (IF (|has| |#2| (-827)) (-6 (-827)) |%noBranch|) |%noBranch|) (-15 -1271 ($ |#1| |#2|)) (-15 -4329 (|#1| $)) (-15 -4319 (|#2| $)))) (-1073) (-1073)) (T -940))
+((-1271 (*1 *1 *2 *3) (-12 (-5 *1 (-940 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-4329 (*1 *2 *1) (-12 (-4 *2 (-1073)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1073)))) (-4319 (*1 *2 *1) (-12 (-4 *2 (-1073)) (-5 *1 (-940 *3 *2)) (-4 *3 (-1073)))))
+(-13 (-1073) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-707)) (IF (|has| |#2| (-707)) (-6 (-707)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-773)) (IF (|has| |#2| (-773)) (-6 (-773)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-827)) (IF (|has| |#2| (-827)) (-6 (-827)) |%noBranch|) |%noBranch|) (-15 -1271 ($ |#1| |#2|)) (-15 -4329 (|#1| $)) (-15 -4319 (|#2| $))))
+((-3800 (((-1077) $) 12)) (-4085 (($ (-1149) (-1077)) 13)) (-1288 (((-1149) $) 10)) (-1683 (((-839) $) 22)))
+(((-941) (-13 (-597 (-839)) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -3800 ((-1077) $)) (-15 -4085 ($ (-1149) (-1077)))))) (T -941))
+((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-941)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-941)))) (-4085 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1077)) (-5 *1 (-941)))))
+(-13 (-597 (-839)) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -3800 ((-1077) $)) (-15 -4085 ($ (-1149) (-1077)))))
+((-1671 (((-112) $ $) NIL)) (-3982 (((-1075 (-1149)) $) 19)) (-3226 (((-112) $) 26)) (-2195 (((-1149) $) 27)) (-3242 (((-112) $) 24)) (-3233 ((|#1| $) 25)) (-3179 (((-849 $ $) $) 34)) (-3188 (((-112) $) 33)) (-3152 (($ $ $) 12)) (-3215 (($ $) 29)) (-3005 (((-112) $) 28)) (-2960 (($ $) 10)) (-2883 (((-1131) $) NIL)) (-1304 (((-849 $ $) $) 36)) (-3171 (((-112) $) 35)) (-2221 (($ $ $) 13)) (-2831 (((-1093) $) NIL)) (-1281 (((-849 $ $) $) 38)) (-1292 (((-112) $) 37)) (-3251 (($ $ $) 14)) (-1683 (((-839) $) 40) (($ |#1|) 7) (($ (-1149)) 9)) (-3195 (((-849 $ $) $) 32)) (-3205 (((-112) $) 30)) (-3743 (($ $ $) 11)) (-2281 (((-112) $ $) NIL)))
+(((-942 |#1|) (-13 (-943) (-10 -8 (-15 -1683 ($ |#1|)) (-15 -1683 ($ (-1149))) (-15 -3982 ((-1075 (-1149)) $)) (-15 -3242 ((-112) $)) (-15 -3233 (|#1| $)) (-15 -3226 ((-112) $)) (-15 -2195 ((-1149) $)) (-15 -3005 ((-112) $)) (-15 -3215 ($ $)) (-15 -3205 ((-112) $)) (-15 -3195 ((-849 $ $) $)) (-15 -3188 ((-112) $)) (-15 -3179 ((-849 $ $) $)) (-15 -3171 ((-112) $)) (-15 -1304 ((-849 $ $) $)) (-15 -1292 ((-112) $)) (-15 -1281 ((-849 $ $) $)))) (-943)) (T -942))
+((-1683 (*1 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-1075 (-1149))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3233 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3215 (*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-1281 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
+(-13 (-943) (-10 -8 (-15 -1683 ($ |#1|)) (-15 -1683 ($ (-1149))) (-15 -3982 ((-1075 (-1149)) $)) (-15 -3242 ((-112) $)) (-15 -3233 (|#1| $)) (-15 -3226 ((-112) $)) (-15 -2195 ((-1149) $)) (-15 -3005 ((-112) $)) (-15 -3215 ($ $)) (-15 -3205 ((-112) $)) (-15 -3195 ((-849 $ $) $)) (-15 -3188 ((-112) $)) (-15 -3179 ((-849 $ $) $)) (-15 -3171 ((-112) $)) (-15 -1304 ((-849 $ $) $)) (-15 -1292 ((-112) $)) (-15 -1281 ((-849 $ $) $))))
+((-1671 (((-112) $ $) 7)) (-3152 (($ $ $) 15)) (-2960 (($ $) 17)) (-2883 (((-1131) $) 9)) (-2221 (($ $ $) 14)) (-2831 (((-1093) $) 10)) (-3251 (($ $ $) 13)) (-1683 (((-839) $) 11)) (-3743 (($ $ $) 16)) (-2281 (((-112) $ $) 6)))
(((-943) (-138)) (T -943))
-((-3676 (*1 *1 *1) (-4 *1 (-943))) (-3191 (*1 *1 *1 *1) (-4 *1 (-943))) (-3190 (*1 *1 *1 *1) (-4 *1 (-943))) (-3189 (*1 *1 *1 *1) (-4 *1 (-943))) (-3188 (*1 *1 *1 *1) (-4 *1 (-943))))
-(-13 (-1074) (-10 -8 (-15 -3676 ($ $)) (-15 -3191 ($ $ $)) (-15 -3190 ($ $ $)) (-15 -3189 ($ $ $)) (-15 -3188 ($ $ $))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-3192 (($ $ $) 43)) (-3872 (($ $ $) 44)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3678 ((|#1| $) 45)) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
+((-2960 (*1 *1 *1) (-4 *1 (-943))) (-3743 (*1 *1 *1 *1) (-4 *1 (-943))) (-3152 (*1 *1 *1 *1) (-4 *1 (-943))) (-2221 (*1 *1 *1 *1) (-4 *1 (-943))) (-3251 (*1 *1 *1 *1) (-4 *1 (-943))))
+(-13 (-1073) (-10 -8 (-15 -2960 ($ $)) (-15 -3743 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -2221 ($ $ $)) (-15 -3251 ($ $ $))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3260 (($ $ $) 43)) (-3280 (($ $ $) 44)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3332 ((|#1| $) 45)) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
(((-944 |#1|) (-138) (-827)) (T -944))
-((-3678 (*1 *2 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) (-3872 (*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) (-3192 (*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))))
-(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -3678 (|t#1| $)) (-15 -3872 ($ $ $)) (-15 -3192 ($ $ $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-3204 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|) 85)) (-4115 ((|#2| |#2| |#2|) 83)) (-3205 (((-2 (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|) 87)) (-3206 (((-2 (|:| |coef1| |#2|) (|:| -3495 |#2|)) |#2| |#2|) 89)) (-3213 (((-2 (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|) 107 (|has| |#1| (-446)))) (-3220 (((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 46)) (-3194 (((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 64)) (-3195 (((-2 (|:| |coef1| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 66)) (-3203 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3198 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 71)) (-3208 (((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|) 97)) (-3201 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 74)) (-3210 (((-622 (-751)) |#2| |#2|) 82)) (-3218 ((|#1| |#2| |#2|) 42)) (-3212 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|) 105 (|has| |#1| (-446)))) (-3211 ((|#1| |#2| |#2|) 103 (|has| |#1| (-446)))) (-3219 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 44)) (-3193 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 63)) (-4116 ((|#1| |#2| |#2|) 61)) (-4112 (((-2 (|:| -4313 |#1|) (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|) 35)) (-3217 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3202 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3541 ((|#2| |#2| |#2|) 75)) (-3197 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 69)) (-3196 ((|#2| |#2| |#2| (-751)) 67)) (-3495 ((|#2| |#2| |#2|) 111 (|has| |#1| (-446)))) (-3820 (((-1231 |#2|) (-1231 |#2|) |#1|) 21)) (-3214 (((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|) 39)) (-3207 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|) 95)) (-4117 ((|#1| |#2|) 92)) (-3200 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 73)) (-3199 ((|#2| |#2| |#2| (-751)) 72)) (-3209 (((-622 |#2|) |#2| |#2|) 80)) (-3216 ((|#2| |#2| |#1| |#1| (-751)) 50)) (-3215 ((|#1| |#1| |#1| (-751)) 49)) (* (((-1231 |#2|) |#1| (-1231 |#2|)) 16)))
-(((-945 |#1| |#2|) (-10 -7 (-15 -4116 (|#1| |#2| |#2|)) (-15 -3193 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3194 ((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3196 (|#2| |#2| |#2| (-751))) (-15 -3197 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3198 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3199 (|#2| |#2| |#2| (-751))) (-15 -3200 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3201 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3541 (|#2| |#2| |#2|)) (-15 -3202 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3203 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4115 (|#2| |#2| |#2|)) (-15 -3204 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -3205 ((-2 (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -3206 ((-2 (|:| |coef1| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -4117 (|#1| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|)) (-15 -3209 ((-622 |#2|) |#2| |#2|)) (-15 -3210 ((-622 (-751)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -3211 (|#1| |#2| |#2|)) (-15 -3212 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|)) (-15 -3213 ((-2 (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|)) (-15 -3495 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1231 |#2|) |#1| (-1231 |#2|))) (-15 -3820 ((-1231 |#2|) (-1231 |#2|) |#1|)) (-15 -4112 ((-2 (|:| -4313 |#1|) (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -3214 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -3215 (|#1| |#1| |#1| (-751))) (-15 -3216 (|#2| |#2| |#1| |#1| (-751))) (-15 -3217 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3218 (|#1| |#2| |#2|)) (-15 -3219 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3220 ((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|))) (-545) (-1207 |#1|)) (T -945))
-((-3220 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3219 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3218 (*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))) (-3217 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) (-3216 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) (-3215 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *2 (-545)) (-5 *1 (-945 *2 *4)) (-4 *4 (-1207 *2)))) (-3214 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-4112 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -4313 *4) (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-545)) (-5 *1 (-945 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-545)) (-5 *1 (-945 *3 *4)))) (-3495 (*1 *2 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) (-3213 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3211 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3212 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3211 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3211 (*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-4 *2 (-446)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))) (-3210 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 (-751))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3209 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3208 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4117 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3207 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4117 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-4117 (*1 *2 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))) (-3206 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3495 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3205 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3495 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3204 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3495 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-4115 (*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) (-3203 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3202 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3541 (*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) (-3201 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5)))) (-3200 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5)))) (-3199 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-545)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1207 *4)))) (-3198 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5)))) (-3197 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5)))) (-3196 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-545)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1207 *4)))) (-3195 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4116 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3194 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3193 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-4116 (*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))))
-(-10 -7 (-15 -4116 (|#1| |#2| |#2|)) (-15 -3193 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3194 ((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3196 (|#2| |#2| |#2| (-751))) (-15 -3197 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3198 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3199 (|#2| |#2| |#2| (-751))) (-15 -3200 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3201 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3541 (|#2| |#2| |#2|)) (-15 -3202 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3203 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4115 (|#2| |#2| |#2|)) (-15 -3204 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -3205 ((-2 (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -3206 ((-2 (|:| |coef1| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -4117 (|#1| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|)) (-15 -3209 ((-622 |#2|) |#2| |#2|)) (-15 -3210 ((-622 (-751)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -3211 (|#1| |#2| |#2|)) (-15 -3212 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|)) (-15 -3213 ((-2 (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|)) (-15 -3495 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1231 |#2|) |#1| (-1231 |#2|))) (-15 -3820 ((-1231 |#2|) (-1231 |#2|) |#1|)) (-15 -4112 ((-2 (|:| -4313 |#1|) (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -3214 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -3215 (|#1| |#1| |#1| (-751))) (-15 -3216 (|#2| |#2| |#1| |#1| (-751))) (-15 -3217 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3218 (|#1| |#2| |#2|)) (-15 -3219 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3220 ((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)))
-((-2898 (((-112) $ $) NIL)) (-3669 (((-1186) $) 13)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 10)) (-4317 (((-840) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-946) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $))))) (T -946))
-((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-946)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-946)))))
-(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) 27)) (-3896 (($) NIL T CONST)) (-3222 (((-622 (-622 (-538))) (-622 (-538))) 29)) (-3221 (((-538) $) 45)) (-3223 (($ (-622 (-538))) 17)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4330 (((-622 (-538)) $) 12)) (-3342 (($ $) 32)) (-4317 (((-840) $) 43) (((-622 (-538)) $) 10)) (-2991 (($) 7 T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 20)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 19)) (-4199 (($ $ $) 21)) (* (($ (-895) $) NIL) (($ (-751) $) 25)))
-(((-947) (-13 (-777) (-598 (-622 (-538))) (-10 -8 (-15 -3223 ($ (-622 (-538)))) (-15 -3222 ((-622 (-622 (-538))) (-622 (-538)))) (-15 -3221 ((-538) $)) (-15 -3342 ($ $)) (-15 -4317 ((-622 (-538)) $))))) (T -947))
-((-3223 (*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-947)))) (-3222 (*1 *2 *3) (-12 (-5 *2 (-622 (-622 (-538)))) (-5 *1 (-947)) (-5 *3 (-622 (-538))))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-947)))) (-3342 (*1 *1 *1) (-5 *1 (-947))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-947)))))
-(-13 (-777) (-598 (-622 (-538))) (-10 -8 (-15 -3223 ($ (-622 (-538)))) (-15 -3222 ((-622 (-622 (-538))) (-622 (-538)))) (-15 -3221 ((-538) $)) (-15 -3342 ($ $)) (-15 -4317 ((-622 (-538)) $))))
-((-4308 (($ $ |#2|) 30)) (-4197 (($ $) 22) (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-402 (-538)) $) 26) (($ $ (-402 (-538))) 28)))
-(((-948 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4308 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) (-949 |#2| |#3| |#4|) (-1025) (-772) (-827)) (T -948))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4308 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 |#3|) $) 72)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-3225 (((-112) $) 71)) (-2502 (((-112) $) 30)) (-4297 (((-112) $) 60)) (-3226 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-622 |#3|) (-622 |#2|)) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-4307 ((|#2| $) 62)) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4040 ((|#1| $ |#2|) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538)))))))
+((-3332 (*1 *2 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) (-3280 (*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) (-3260 (*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))))
+(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -3332 (|t#1| $)) (-15 -3280 ($ $ $)) (-15 -3260 ($ $ $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-3373 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|) 85)) (-3197 ((|#2| |#2| |#2|) 83)) (-3384 (((-2 (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|) 87)) (-3395 (((-2 (|:| |coef1| |#2|) (|:| -2633 |#2|)) |#2| |#2|) 89)) (-3471 (((-2 (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|) 107 (|has| |#1| (-446)))) (-3538 (((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|) 46)) (-3279 (((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|) 64)) (-3289 (((-2 (|:| |coef1| |#2|) (|:| -3207 |#1|)) |#2| |#2|) 66)) (-3365 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3318 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 71)) (-3413 (((-2 (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|) 97)) (-3347 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 74)) (-3435 (((-625 (-751)) |#2| |#2|) 82)) (-3519 ((|#1| |#2| |#2|) 42)) (-3460 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|) 105 (|has| |#1| (-446)))) (-3447 ((|#1| |#2| |#2|) 103 (|has| |#1| (-446)))) (-3529 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|) 44)) (-3269 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|) 63)) (-3207 ((|#1| |#2| |#2|) 61)) (-3173 (((-2 (|:| -3340 |#1|) (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|) 35)) (-3510 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3356 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3662 ((|#2| |#2| |#2|) 75)) (-3308 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 69)) (-3298 ((|#2| |#2| |#2| (-751)) 67)) (-2633 ((|#2| |#2| |#2|) 111 (|has| |#1| (-446)))) (-2802 (((-1232 |#2|) (-1232 |#2|) |#1|) 21)) (-3481 (((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|) 39)) (-3405 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|) 95)) (-3217 ((|#1| |#2|) 92)) (-3337 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 73)) (-3328 ((|#2| |#2| |#2| (-751)) 72)) (-3425 (((-625 |#2|) |#2| |#2|) 80)) (-3501 ((|#2| |#2| |#1| |#1| (-751)) 50)) (-3491 ((|#1| |#1| |#1| (-751)) 49)) (* (((-1232 |#2|) |#1| (-1232 |#2|)) 16)))
+(((-945 |#1| |#2|) (-10 -7 (-15 -3207 (|#1| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3279 ((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3289 ((-2 (|:| |coef1| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3298 (|#2| |#2| |#2| (-751))) (-15 -3308 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3318 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3328 (|#2| |#2| |#2| (-751))) (-15 -3337 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3347 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3662 (|#2| |#2| |#2|)) (-15 -3356 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3365 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3197 (|#2| |#2| |#2|)) (-15 -3373 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3384 ((-2 (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3395 ((-2 (|:| |coef1| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3217 (|#1| |#2|)) (-15 -3405 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|)) (-15 -3413 ((-2 (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|)) (-15 -3425 ((-625 |#2|) |#2| |#2|)) (-15 -3435 ((-625 (-751)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -3447 (|#1| |#2| |#2|)) (-15 -3460 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|)) (-15 -3471 ((-2 (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|)) (-15 -2633 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1232 |#2|) |#1| (-1232 |#2|))) (-15 -2802 ((-1232 |#2|) (-1232 |#2|) |#1|)) (-15 -3173 ((-2 (|:| -3340 |#1|) (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|)) (-15 -3481 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|)) (-15 -3491 (|#1| |#1| |#1| (-751))) (-15 -3501 (|#2| |#2| |#1| |#1| (-751))) (-15 -3510 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3519 (|#1| |#2| |#2|)) (-15 -3529 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3538 ((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|))) (-544) (-1208 |#1|)) (T -945))
+((-3538 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3207 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3529 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3207 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3519 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2)))) (-3510 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) (-3501 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) (-3491 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *2 (-544)) (-5 *1 (-945 *2 *4)) (-4 *4 (-1208 *2)))) (-3481 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3173 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3340 *4) (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-2802 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-544)) (-5 *1 (-945 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-544)) (-5 *1 (-945 *3 *4)))) (-2633 (*1 *2 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) (-3471 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3447 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3460 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3447 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3447 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-4 *2 (-446)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2)))) (-3435 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 (-751))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3425 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3413 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3217 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3405 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3217 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3217 (*1 *2 *3) (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2)))) (-3395 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2633 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3384 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2633 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3373 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2633 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3197 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) (-3365 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3356 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3662 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) (-3347 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))) (-3337 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))) (-3328 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-544)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1208 *4)))) (-3318 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))) (-3308 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))) (-3298 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-544)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1208 *4)))) (-3289 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3207 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3207 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3207 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3207 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2)))))
+(-10 -7 (-15 -3207 (|#1| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3279 ((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3289 ((-2 (|:| |coef1| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3298 (|#2| |#2| |#2| (-751))) (-15 -3308 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3318 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3328 (|#2| |#2| |#2| (-751))) (-15 -3337 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3347 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3662 (|#2| |#2| |#2|)) (-15 -3356 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3365 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3197 (|#2| |#2| |#2|)) (-15 -3373 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3384 ((-2 (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3395 ((-2 (|:| |coef1| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3217 (|#1| |#2|)) (-15 -3405 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|)) (-15 -3413 ((-2 (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|)) (-15 -3425 ((-625 |#2|) |#2| |#2|)) (-15 -3435 ((-625 (-751)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -3447 (|#1| |#2| |#2|)) (-15 -3460 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|)) (-15 -3471 ((-2 (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|)) (-15 -2633 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1232 |#2|) |#1| (-1232 |#2|))) (-15 -2802 ((-1232 |#2|) (-1232 |#2|) |#1|)) (-15 -3173 ((-2 (|:| -3340 |#1|) (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|)) (-15 -3481 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|)) (-15 -3491 (|#1| |#1| |#1| (-751))) (-15 -3501 (|#2| |#2| |#1| |#1| (-751))) (-15 -3510 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3519 (|#1| |#2| |#2|)) (-15 -3529 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3538 ((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)))
+((-1671 (((-112) $ $) NIL)) (-1711 (((-1185) $) 13)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 10)) (-1683 (((-839) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-946) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $))))) (T -946))
+((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-946)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-946)))))
+(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) 27)) (-3101 (($) NIL T CONST)) (-3559 (((-625 (-625 (-552))) (-625 (-552))) 29)) (-3550 (((-552) $) 45)) (-3570 (($ (-625 (-552))) 17)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2042 (((-625 (-552)) $) 12)) (-2410 (($ $) 32)) (-1683 (((-839) $) 43) (((-625 (-552)) $) 10)) (-2089 (($) 7 T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 20)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 19)) (-2382 (($ $ $) 21)) (* (($ (-897) $) NIL) (($ (-751) $) 25)))
+(((-947) (-13 (-775) (-598 (-625 (-552))) (-10 -8 (-15 -3570 ($ (-625 (-552)))) (-15 -3559 ((-625 (-625 (-552))) (-625 (-552)))) (-15 -3550 ((-552) $)) (-15 -2410 ($ $)) (-15 -1683 ((-625 (-552)) $))))) (T -947))
+((-3570 (*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-947)))) (-3559 (*1 *2 *3) (-12 (-5 *2 (-625 (-625 (-552)))) (-5 *1 (-947)) (-5 *3 (-625 (-552))))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-947)))) (-2410 (*1 *1 *1) (-5 *1 (-947))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-947)))))
+(-13 (-775) (-598 (-625 (-552))) (-10 -8 (-15 -3570 ($ (-625 (-552)))) (-15 -3559 ((-625 (-625 (-552))) (-625 (-552)))) (-15 -3550 ((-552) $)) (-15 -2410 ($ $)) (-15 -1683 ((-625 (-552)) $))))
+((-2404 (($ $ |#2|) 30)) (-2393 (($ $) 22) (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-402 (-552)) $) 26) (($ $ (-402 (-552))) 28)))
+(((-948 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -2404 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) (-949 |#2| |#3| |#4|) (-1025) (-772) (-827)) (T -948))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -2404 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 |#3|) $) 72)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-3592 (((-112) $) 71)) (-3650 (((-112) $) 30)) (-4201 (((-112) $) 60)) (-3957 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-625 |#3|) (-625 |#2|)) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-4276 ((|#2| $) 62)) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-170)))) (-3637 ((|#1| $ |#2|) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552)))))))
(((-949 |#1| |#2| |#3|) (-138) (-1025) (-772) (-827)) (T -949))
-((-3525 (*1 *2 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *3 (-772)) (-4 *4 (-827)) (-4 *2 (-1025)))) (-3227 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *2 *4)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *2 (-772)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-949 *4 *3 *2)) (-4 *4 (-1025)) (-4 *3 (-772)) (-4 *2 (-827)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 *5)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-772)) (-4 *6 (-827)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827)) (-5 *2 (-622 *5)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3224 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3226 ($ $ |t#3| |t#2|)) (-15 -3226 ($ $ (-622 |t#3|) (-622 |t#2|))) (-15 -3227 ($ $)) (-15 -3525 (|t#1| $)) (-15 -4307 (|t#2| $)) (-15 -3417 ((-622 |t#3|) $)) (-15 -3225 ((-112) $)) (-15 -3224 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-285) |has| |#1| (-545)) ((-545) |has| |#1| (-545)) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-3228 (((-1062 (-221)) $) 8)) (-3229 (((-1062 (-221)) $) 9)) (-3230 (((-1062 (-221)) $) 10)) (-3231 (((-622 (-622 (-919 (-221)))) $) 11)) (-4317 (((-840) $) 6)))
+((-4144 (*1 *2 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *3 (-772)) (-4 *4 (-827)) (-4 *2 (-1025)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *2 *4)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *2 (-772)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-949 *4 *3 *2)) (-4 *4 (-1025)) (-4 *3 (-772)) (-4 *2 (-827)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 *5)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-772)) (-4 *6 (-827)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827)) (-5 *2 (-625 *5)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3580 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3957 ($ $ |t#3| |t#2|)) (-15 -3957 ($ $ (-625 |t#3|) (-625 |t#2|))) (-15 -4131 ($ $)) (-15 -4144 (|t#1| $)) (-15 -4276 (|t#2| $)) (-15 -3982 ((-625 |t#3|) $)) (-15 -3592 ((-112) $)) (-15 -3580 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-285) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-3675 (((-1067 (-221)) $) 8)) (-3663 (((-1067 (-221)) $) 9)) (-3652 (((-1067 (-221)) $) 10)) (-3603 (((-625 (-625 (-919 (-221)))) $) 11)) (-1683 (((-839) $) 6)))
(((-950) (-138)) (T -950))
-((-3231 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-622 (-622 (-919 (-221))))))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221))))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221))))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221))))))
-(-13 (-597 (-840)) (-10 -8 (-15 -3231 ((-622 (-622 (-919 (-221)))) $)) (-15 -3230 ((-1062 (-221)) $)) (-15 -3229 ((-1062 (-221)) $)) (-15 -3228 ((-1062 (-221)) $))))
-(((-597 (-840)) . T))
-((-3417 (((-622 |#4|) $) 23)) (-3241 (((-112) $) 48)) (-3232 (((-112) $) 47)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#4|) 36)) (-3237 (((-112) $) 49)) (-3239 (((-112) $ $) 55)) (-3238 (((-112) $ $) 58)) (-3240 (((-112) $) 53)) (-3233 (((-622 |#5|) (-622 |#5|) $) 90)) (-3234 (((-622 |#5|) (-622 |#5|) $) 87)) (-3235 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3247 (((-622 |#4|) $) 27)) (-3246 (((-112) |#4| $) 30)) (-3236 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3243 (($ $ |#4|) 33)) (-3245 (($ $ |#4|) 32)) (-3244 (($ $ |#4|) 34)) (-3387 (((-112) $ $) 40)))
-(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3232 ((-112) |#1|)) (-15 -3233 ((-622 |#5|) (-622 |#5|) |#1|)) (-15 -3234 ((-622 |#5|) (-622 |#5|) |#1|)) (-15 -3235 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3236 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -3238 ((-112) |#1| |#1|)) (-15 -3239 ((-112) |#1| |#1|)) (-15 -3240 ((-112) |#1|)) (-15 -3241 ((-112) |#1|)) (-15 -3242 ((-2 (|:| |under| |#1|) (|:| -3465 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3243 (|#1| |#1| |#4|)) (-15 -3244 (|#1| |#1| |#4|)) (-15 -3245 (|#1| |#1| |#4|)) (-15 -3246 ((-112) |#4| |#1|)) (-15 -3247 ((-622 |#4|) |#1|)) (-15 -3417 ((-622 |#4|) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-952 |#2| |#3| |#4| |#5|) (-1025) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -951))
-NIL
-(-10 -8 (-15 -3232 ((-112) |#1|)) (-15 -3233 ((-622 |#5|) (-622 |#5|) |#1|)) (-15 -3234 ((-622 |#5|) (-622 |#5|) |#1|)) (-15 -3235 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3236 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -3238 ((-112) |#1| |#1|)) (-15 -3239 ((-112) |#1| |#1|)) (-15 -3240 ((-112) |#1|)) (-15 -3241 ((-112) |#1|)) (-15 -3242 ((-2 (|:| |under| |#1|) (|:| -3465 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3243 (|#1| |#1| |#4|)) (-15 -3244 (|#1| |#1| |#4|)) (-15 -3245 (|#1| |#1| |#4|)) (-15 -3246 ((-112) |#4| |#1|)) (-15 -3247 ((-622 |#4|) |#1|)) (-15 -3417 ((-622 |#4|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353)))) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353)))) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-3594 (((-1093) $) 10)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353)))))
+((-3603 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-625 (-625 (-919 (-221))))))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221))))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221))))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221))))))
+(-13 (-597 (-839)) (-10 -8 (-15 -3603 ((-625 (-625 (-919 (-221)))) $)) (-15 -3652 ((-1067 (-221)) $)) (-15 -3663 ((-1067 (-221)) $)) (-15 -3675 ((-1067 (-221)) $))))
+(((-597 (-839)) . T))
+((-3982 (((-625 |#4|) $) 23)) (-3707 (((-112) $) 48)) (-3613 (((-112) $) 47)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#4|) 36)) (-3667 (((-112) $) 49)) (-3688 (((-112) $ $) 55)) (-3678 (((-112) $ $) 58)) (-3697 (((-112) $) 53)) (-3624 (((-625 |#5|) (-625 |#5|) $) 90)) (-3635 (((-625 |#5|) (-625 |#5|) $) 87)) (-3645 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2615 (((-625 |#4|) $) 27)) (-2608 (((-112) |#4| $) 30)) (-3655 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3718 (($ $ |#4|) 33)) (-2595 (($ $ |#4|) 32)) (-2584 (($ $ |#4|) 34)) (-2281 (((-112) $ $) 40)))
+(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3613 ((-112) |#1|)) (-15 -3624 ((-625 |#5|) (-625 |#5|) |#1|)) (-15 -3635 ((-625 |#5|) (-625 |#5|) |#1|)) (-15 -3645 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3655 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3667 ((-112) |#1|)) (-15 -3678 ((-112) |#1| |#1|)) (-15 -3688 ((-112) |#1| |#1|)) (-15 -3697 ((-112) |#1|)) (-15 -3707 ((-112) |#1|)) (-15 -1800 ((-2 (|:| |under| |#1|) (|:| -4189 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3718 (|#1| |#1| |#4|)) (-15 -2584 (|#1| |#1| |#4|)) (-15 -2595 (|#1| |#1| |#4|)) (-15 -2608 ((-112) |#4| |#1|)) (-15 -2615 ((-625 |#4|) |#1|)) (-15 -3982 ((-625 |#4|) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-952 |#2| |#3| |#4| |#5|) (-1025) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -951))
+NIL
+(-10 -8 (-15 -3613 ((-112) |#1|)) (-15 -3624 ((-625 |#5|) (-625 |#5|) |#1|)) (-15 -3635 ((-625 |#5|) (-625 |#5|) |#1|)) (-15 -3645 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3655 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3667 ((-112) |#1|)) (-15 -3678 ((-112) |#1| |#1|)) (-15 -3688 ((-112) |#1| |#1|)) (-15 -3697 ((-112) |#1|)) (-15 -3707 ((-112) |#1|)) (-15 -1800 ((-2 (|:| |under| |#1|) (|:| -4189 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3718 (|#1| |#1| |#4|)) (-15 -2584 (|#1| |#1| |#4|)) (-15 -2595 (|#1| |#1| |#4|)) (-15 -2608 ((-112) |#4| |#1|)) (-15 -2615 ((-625 |#4|) |#1|)) (-15 -3982 ((-625 |#4|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353)))) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353)))) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2831 (((-1093) $) 10)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353)))))
(((-952 |#1| |#2| |#3| |#4|) (-138) (-1025) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -952))
-((-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-1039 *3 *4 *2)) (-4 *2 (-827)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5)))) (-3247 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5)))) (-3246 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *3 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))) (-3245 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-3244 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-3243 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-3242 (*1 *2 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3465 *1) (|:| |upper| *1))) (-4 *1 (-952 *4 *5 *3 *6)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3239 (*1 *2 *1 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3238 (*1 *2 *1 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3236 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3235 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3234 (*1 *2 *2 *1) (-12 (-5 *2 (-622 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)))) (-3233 (*1 *2 *2 *1) (-12 (-5 *2 (-622 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))))
-(-13 (-1074) (-149 |t#4|) (-597 (-622 |t#4|)) (-10 -8 (-6 -4353) (-15 -3508 ((-3 $ "failed") (-622 |t#4|))) (-15 -3507 ($ (-622 |t#4|))) (-15 -3531 (|t#3| $)) (-15 -3417 ((-622 |t#3|) $)) (-15 -3247 ((-622 |t#3|) $)) (-15 -3246 ((-112) |t#3| $)) (-15 -3245 ($ $ |t#3|)) (-15 -3244 ($ $ |t#3|)) (-15 -3243 ($ $ |t#3|)) (-15 -3242 ((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |t#3|)) (-15 -3241 ((-112) $)) (IF (|has| |t#1| (-545)) (PROGN (-15 -3240 ((-112) $)) (-15 -3239 ((-112) $ $)) (-15 -3238 ((-112) $ $)) (-15 -3237 ((-112) $)) (-15 -3236 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3235 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3234 ((-622 |t#4|) (-622 |t#4|) $)) (-15 -3233 ((-622 |t#4|) (-622 |t#4|) $)) (-15 -3232 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-1074) . T) ((-1185) . T))
-((-3249 (((-622 |#4|) |#4| |#4|) 118)) (-3272 (((-622 |#4|) (-622 |#4|) (-112)) 107 (|has| |#1| (-446))) (((-622 |#4|) (-622 |#4|)) 108 (|has| |#1| (-446)))) (-3259 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|)) 35)) (-3258 (((-112) |#4|) 34)) (-3271 (((-622 |#4|) |#4|) 103 (|has| |#1| (-446)))) (-3254 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-1 (-112) |#4|) (-622 |#4|)) 20)) (-3255 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|)) 22)) (-3256 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|)) 23)) (-3267 (((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -3683 (-622 |#4|))) "failed") (-622 |#4|)) 73)) (-3269 (((-622 |#4|) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3270 (((-622 |#4|) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3248 (((-622 |#4|) (-622 |#4|)) 110)) (-3264 (((-622 |#4|) (-622 |#4|) (-622 |#4|) (-112)) 48) (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 50)) (-3265 ((|#4| |#4| (-622 |#4|)) 49)) (-3273 (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 114 (|has| |#1| (-446)))) (-3275 (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 117 (|has| |#1| (-446)))) (-3274 (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 116 (|has| |#1| (-446)))) (-3250 (((-622 |#4|) (-622 |#4|) (-622 |#4|) (-1 (-622 |#4|) (-622 |#4|))) 87) (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 89) (((-622 |#4|) (-622 |#4|) |#4|) 121) (((-622 |#4|) |#4| |#4|) 119) (((-622 |#4|) (-622 |#4|)) 88)) (-3278 (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3257 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|)) 41)) (-3253 (((-112) (-622 |#4|)) 62)) (-3252 (((-112) (-622 |#4|) (-622 (-622 |#4|))) 53)) (-3261 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|)) 29)) (-3260 (((-112) |#4|) 28)) (-3277 (((-622 |#4|) (-622 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3276 (((-622 |#4|) (-622 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3266 (((-622 |#4|) (-622 |#4|)) 66)) (-3268 (((-622 |#4|) (-622 |#4|)) 79)) (-3251 (((-112) (-622 |#4|) (-622 |#4|)) 51)) (-3263 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|)) 39)) (-3262 (((-112) |#4|) 36)))
-(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3250 ((-622 |#4|) (-622 |#4|))) (-15 -3250 ((-622 |#4|) |#4| |#4|)) (-15 -3248 ((-622 |#4|) (-622 |#4|))) (-15 -3249 ((-622 |#4|) |#4| |#4|)) (-15 -3250 ((-622 |#4|) (-622 |#4|) |#4|)) (-15 -3250 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3250 ((-622 |#4|) (-622 |#4|) (-622 |#4|) (-1 (-622 |#4|) (-622 |#4|)))) (-15 -3251 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3252 ((-112) (-622 |#4|) (-622 (-622 |#4|)))) (-15 -3253 ((-112) (-622 |#4|))) (-15 -3254 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-1 (-112) |#4|) (-622 |#4|))) (-15 -3255 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|))) (-15 -3256 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|))) (-15 -3257 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3258 ((-112) |#4|)) (-15 -3259 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3260 ((-112) |#4|)) (-15 -3261 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3262 ((-112) |#4|)) (-15 -3263 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3264 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3264 ((-622 |#4|) (-622 |#4|) (-622 |#4|) (-112))) (-15 -3265 (|#4| |#4| (-622 |#4|))) (-15 -3266 ((-622 |#4|) (-622 |#4|))) (-15 -3267 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -3683 (-622 |#4|))) "failed") (-622 |#4|))) (-15 -3268 ((-622 |#4|) (-622 |#4|))) (-15 -3269 ((-622 |#4|) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3270 ((-622 |#4|) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3271 ((-622 |#4|) |#4|)) (-15 -3272 ((-622 |#4|) (-622 |#4|))) (-15 -3272 ((-622 |#4|) (-622 |#4|) (-112))) (-15 -3273 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3274 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3275 ((-622 |#4|) (-622 |#4|) (-622 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -3276 ((-622 |#4|) (-622 |#4|))) (-15 -3277 ((-622 |#4|) (-622 |#4|))) (-15 -3278 ((-622 |#4|) (-622 |#4|) (-622 |#4|)))) |%noBranch|) |%noBranch|)) (-545) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -953))
-((-3278 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3275 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3274 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3273 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3272 (*1 *2 *2 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3271 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3270 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-953 *5 *6 *7 *8)))) (-3269 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-622 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *1 (-953 *6 *7 *8 *9)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3267 (*1 *2 *3) (|partial| -12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -3683 (-622 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3265 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *2)))) (-3264 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3264 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3263 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3262 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3261 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3260 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3259 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3258 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3257 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3256 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8)))) (-3255 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3252 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-622 *8))) (-5 *3 (-622 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *5 *6 *7 *8)))) (-3251 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3250 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-622 *7) (-622 *7))) (-5 *2 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3250 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *3)))) (-3249 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3248 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3250 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3250 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3250 ((-622 |#4|) (-622 |#4|))) (-15 -3250 ((-622 |#4|) |#4| |#4|)) (-15 -3248 ((-622 |#4|) (-622 |#4|))) (-15 -3249 ((-622 |#4|) |#4| |#4|)) (-15 -3250 ((-622 |#4|) (-622 |#4|) |#4|)) (-15 -3250 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3250 ((-622 |#4|) (-622 |#4|) (-622 |#4|) (-1 (-622 |#4|) (-622 |#4|)))) (-15 -3251 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3252 ((-112) (-622 |#4|) (-622 (-622 |#4|)))) (-15 -3253 ((-112) (-622 |#4|))) (-15 -3254 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-1 (-112) |#4|) (-622 |#4|))) (-15 -3255 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|))) (-15 -3256 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|))) (-15 -3257 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3258 ((-112) |#4|)) (-15 -3259 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3260 ((-112) |#4|)) (-15 -3261 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3262 ((-112) |#4|)) (-15 -3263 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3264 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3264 ((-622 |#4|) (-622 |#4|) (-622 |#4|) (-112))) (-15 -3265 (|#4| |#4| (-622 |#4|))) (-15 -3266 ((-622 |#4|) (-622 |#4|))) (-15 -3267 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -3683 (-622 |#4|))) "failed") (-622 |#4|))) (-15 -3268 ((-622 |#4|) (-622 |#4|))) (-15 -3269 ((-622 |#4|) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3270 ((-622 |#4|) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3271 ((-622 |#4|) |#4|)) (-15 -3272 ((-622 |#4|) (-622 |#4|))) (-15 -3272 ((-622 |#4|) (-622 |#4|) (-112))) (-15 -3273 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3274 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3275 ((-622 |#4|) (-622 |#4|) (-622 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -3276 ((-622 |#4|) (-622 |#4|))) (-15 -3277 ((-622 |#4|) (-622 |#4|))) (-15 -3278 ((-622 |#4|) (-622 |#4|) (-622 |#4|)))) |%noBranch|) |%noBranch|))
-((-3279 (((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-3281 (((-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|)) 36)) (-3280 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16)))
-(((-954 |#1|) (-10 -7 (-15 -3279 ((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3280 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3281 ((-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|)))) (-358)) (T -954))
-((-3281 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-622 (-2 (|:| C (-669 *5)) (|:| |g| (-1231 *5))))) (-5 *1 (-954 *5)) (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)))) (-3280 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-669 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-954 *5)))) (-3279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| R (-669 *6)) (|:| A (-669 *6)) (|:| |Ainv| (-669 *6)))) (-5 *1 (-954 *6)) (-5 *3 (-669 *6)))))
-(-10 -7 (-15 -3279 ((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3280 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3281 ((-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|))))
-((-4329 (((-400 |#4|) |#4|) 48)))
-(((-955 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4329 ((-400 |#4|) |#4|))) (-827) (-773) (-446) (-926 |#3| |#2| |#1|)) (T -955))
-((-4329 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-446)) (-5 *2 (-400 *3)) (-5 *1 (-955 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4)))))
-(-10 -7 (-15 -4329 ((-400 |#4|) |#4|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-4198 (($ (-751)) 112 (|has| |#1| (-23)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-3778 (((-538) (-1 (-112) |#1|) $) 97) (((-538) |#1| $) 96 (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) 95 (|has| |#1| (-1074)))) (-4069 (($ (-622 |#1|)) 118)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4195 (((-669 |#1|) $ $) 105 (|has| |#1| (-1025)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4192 ((|#1| $) 102 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-4079 (((-112) $ (-751)) 10)) (-4193 ((|#1| $) 103 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-4128 (($ $ (-622 |#1|)) 115)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-4196 ((|#1| $ $) 106 (|has| |#1| (-1025)))) (-4271 (((-895) $) 117)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-4194 (($ $ $) 104)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527)))) (($ (-622 |#1|)) 116)) (-3884 (($ (-622 |#1|)) 70)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) 85 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 82 (|has| |#1| (-827)))) (-4197 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4199 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-538) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-707))) (($ $ |#1|) 107 (|has| |#1| (-707)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
+((-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-1039 *3 *4 *2)) (-4 *2 (-827)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5)))) (-2608 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *3 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))) (-2595 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-2584 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-3718 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-1800 (*1 *2 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4189 *1) (|:| |upper| *1))) (-4 *1 (-952 *4 *5 *3 *6)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3688 (*1 *2 *1 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3678 (*1 *2 *1 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3655 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3645 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3635 (*1 *2 *2 *1) (-12 (-5 *2 (-625 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)))) (-3624 (*1 *2 *2 *1) (-12 (-5 *2 (-625 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-112)))))
+(-13 (-1073) (-149 |t#4|) (-597 (-625 |t#4|)) (-10 -8 (-6 -4353) (-15 -1893 ((-3 $ "failed") (-625 |t#4|))) (-15 -1895 ($ (-625 |t#4|))) (-15 -3565 (|t#3| $)) (-15 -3982 ((-625 |t#3|) $)) (-15 -2615 ((-625 |t#3|) $)) (-15 -2608 ((-112) |t#3| $)) (-15 -2595 ($ $ |t#3|)) (-15 -2584 ($ $ |t#3|)) (-15 -3718 ($ $ |t#3|)) (-15 -1800 ((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |t#3|)) (-15 -3707 ((-112) $)) (IF (|has| |t#1| (-544)) (PROGN (-15 -3697 ((-112) $)) (-15 -3688 ((-112) $ $)) (-15 -3678 ((-112) $ $)) (-15 -3667 ((-112) $)) (-15 -3655 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3645 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3635 ((-625 |t#4|) (-625 |t#4|) $)) (-15 -3624 ((-625 |t#4|) (-625 |t#4|) $)) (-15 -3613 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-1073) . T) ((-1186) . T))
+((-2636 (((-625 |#4|) |#4| |#4|) 118)) (-2876 (((-625 |#4|) (-625 |#4|) (-112)) 107 (|has| |#1| (-446))) (((-625 |#4|) (-625 |#4|)) 108 (|has| |#1| (-446)))) (-2736 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|)) 35)) (-2726 (((-112) |#4|) 34)) (-2865 (((-625 |#4|) |#4|) 103 (|has| |#1| (-446)))) (-2688 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-1 (-112) |#4|) (-625 |#4|)) 20)) (-2698 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|)) 22)) (-2707 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|)) 23)) (-2817 (((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|)) 73)) (-2843 (((-625 |#4|) (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2854 (((-625 |#4|) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-2625 (((-625 |#4|) (-625 |#4|)) 110)) (-2785 (((-625 |#4|) (-625 |#4|) (-625 |#4|) (-112)) 48) (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 50)) (-2794 ((|#4| |#4| (-625 |#4|)) 49)) (-2887 (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 114 (|has| |#1| (-446)))) (-2907 (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 117 (|has| |#1| (-446)))) (-2897 (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 116 (|has| |#1| (-446)))) (-2646 (((-625 |#4|) (-625 |#4|) (-625 |#4|) (-1 (-625 |#4|) (-625 |#4|))) 87) (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 89) (((-625 |#4|) (-625 |#4|) |#4|) 121) (((-625 |#4|) |#4| |#4|) 119) (((-625 |#4|) (-625 |#4|)) 88)) (-2939 (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-2717 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|)) 41)) (-2676 (((-112) (-625 |#4|)) 62)) (-2666 (((-112) (-625 |#4|) (-625 (-625 |#4|))) 53)) (-2754 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|)) 29)) (-2745 (((-112) |#4|) 28)) (-2929 (((-625 |#4|) (-625 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-2917 (((-625 |#4|) (-625 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-2805 (((-625 |#4|) (-625 |#4|)) 66)) (-2830 (((-625 |#4|) (-625 |#4|)) 79)) (-2654 (((-112) (-625 |#4|) (-625 |#4|)) 51)) (-2774 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|)) 39)) (-2764 (((-112) |#4|) 36)))
+(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2646 ((-625 |#4|) (-625 |#4|))) (-15 -2646 ((-625 |#4|) |#4| |#4|)) (-15 -2625 ((-625 |#4|) (-625 |#4|))) (-15 -2636 ((-625 |#4|) |#4| |#4|)) (-15 -2646 ((-625 |#4|) (-625 |#4|) |#4|)) (-15 -2646 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2646 ((-625 |#4|) (-625 |#4|) (-625 |#4|) (-1 (-625 |#4|) (-625 |#4|)))) (-15 -2654 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2666 ((-112) (-625 |#4|) (-625 (-625 |#4|)))) (-15 -2676 ((-112) (-625 |#4|))) (-15 -2688 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-1 (-112) |#4|) (-625 |#4|))) (-15 -2698 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|))) (-15 -2707 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|))) (-15 -2717 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2726 ((-112) |#4|)) (-15 -2736 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2745 ((-112) |#4|)) (-15 -2754 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2764 ((-112) |#4|)) (-15 -2774 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2785 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2785 ((-625 |#4|) (-625 |#4|) (-625 |#4|) (-112))) (-15 -2794 (|#4| |#4| (-625 |#4|))) (-15 -2805 ((-625 |#4|) (-625 |#4|))) (-15 -2817 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|))) (-15 -2830 ((-625 |#4|) (-625 |#4|))) (-15 -2843 ((-625 |#4|) (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2854 ((-625 |#4|) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2865 ((-625 |#4|) |#4|)) (-15 -2876 ((-625 |#4|) (-625 |#4|))) (-15 -2876 ((-625 |#4|) (-625 |#4|) (-112))) (-15 -2887 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2897 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2907 ((-625 |#4|) (-625 |#4|) (-625 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -2917 ((-625 |#4|) (-625 |#4|))) (-15 -2929 ((-625 |#4|) (-625 |#4|))) (-15 -2939 ((-625 |#4|) (-625 |#4|) (-625 |#4|)))) |%noBranch|) |%noBranch|)) (-544) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -953))
+((-2939 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2929 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2907 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2897 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2887 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2876 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2876 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2865 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2854 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-953 *5 *6 *7 *8)))) (-2843 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-625 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2830 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2817 (*1 *2 *3) (|partial| -12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -1549 (-625 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2794 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *2)))) (-2785 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2785 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2774 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2764 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2754 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2736 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2726 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-625 *8))) (-5 *3 (-625 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *5 *6 *7 *8)))) (-2654 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2646 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-625 *7) (-625 *7))) (-5 *2 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2646 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2646 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *3)))) (-2636 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2646 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2646 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2646 ((-625 |#4|) (-625 |#4|))) (-15 -2646 ((-625 |#4|) |#4| |#4|)) (-15 -2625 ((-625 |#4|) (-625 |#4|))) (-15 -2636 ((-625 |#4|) |#4| |#4|)) (-15 -2646 ((-625 |#4|) (-625 |#4|) |#4|)) (-15 -2646 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2646 ((-625 |#4|) (-625 |#4|) (-625 |#4|) (-1 (-625 |#4|) (-625 |#4|)))) (-15 -2654 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2666 ((-112) (-625 |#4|) (-625 (-625 |#4|)))) (-15 -2676 ((-112) (-625 |#4|))) (-15 -2688 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-1 (-112) |#4|) (-625 |#4|))) (-15 -2698 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|))) (-15 -2707 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|))) (-15 -2717 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2726 ((-112) |#4|)) (-15 -2736 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2745 ((-112) |#4|)) (-15 -2754 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2764 ((-112) |#4|)) (-15 -2774 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2785 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2785 ((-625 |#4|) (-625 |#4|) (-625 |#4|) (-112))) (-15 -2794 (|#4| |#4| (-625 |#4|))) (-15 -2805 ((-625 |#4|) (-625 |#4|))) (-15 -2817 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|))) (-15 -2830 ((-625 |#4|) (-625 |#4|))) (-15 -2843 ((-625 |#4|) (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2854 ((-625 |#4|) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2865 ((-625 |#4|) |#4|)) (-15 -2876 ((-625 |#4|) (-625 |#4|))) (-15 -2876 ((-625 |#4|) (-625 |#4|) (-112))) (-15 -2887 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2897 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2907 ((-625 |#4|) (-625 |#4|) (-625 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -2917 ((-625 |#4|) (-625 |#4|))) (-15 -2929 ((-625 |#4|) (-625 |#4|))) (-15 -2939 ((-625 |#4|) (-625 |#4|) (-625 |#4|)))) |%noBranch|) |%noBranch|))
+((-2949 (((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-2974 (((-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|)) 36)) (-2963 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16)))
+(((-954 |#1|) (-10 -7 (-15 -2949 ((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2963 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2974 ((-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|)))) (-358)) (T -954))
+((-2974 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-625 (-2 (|:| C (-669 *5)) (|:| |g| (-1232 *5))))) (-5 *1 (-954 *5)) (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)))) (-2963 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-669 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-954 *5)))) (-2949 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| R (-669 *6)) (|:| A (-669 *6)) (|:| |Ainv| (-669 *6)))) (-5 *1 (-954 *6)) (-5 *3 (-669 *6)))))
+(-10 -7 (-15 -2949 ((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2963 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2974 ((-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|))))
+((-1330 (((-413 |#4|) |#4|) 48)))
+(((-955 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1330 ((-413 |#4|) |#4|))) (-827) (-773) (-446) (-925 |#3| |#2| |#1|)) (T -955))
+((-1330 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-446)) (-5 *2 (-413 *3)) (-5 *1 (-955 *4 *5 *6 *3)) (-4 *3 (-925 *6 *5 *4)))))
+(-10 -7 (-15 -1330 ((-413 |#4|) |#4|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2983 (($ (-751)) 112 (|has| |#1| (-23)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-2483 (((-552) (-1 (-112) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1073)))) (-3582 (($ (-625 |#1|)) 118)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3191 (((-669 |#1|) $ $) 105 (|has| |#1| (-1025)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2638 ((|#1| $) 102 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-2878 (((-112) $ (-751)) 10)) (-3456 ((|#1| $) 103 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2147 (($ $ (-625 |#1|)) 115)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-1443 ((|#1| $ $) 106 (|has| |#1| (-1025)))) (-3904 (((-897) $) 117)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-1431 (($ $ $) 104)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528)))) (($ (-625 |#1|)) 116)) (-1695 (($ (-625 |#1|)) 70)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 83 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) 85 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 82 (|has| |#1| (-827)))) (-2393 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2382 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-552) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-707))) (($ $ |#1|) 107 (|has| |#1| (-707)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
(((-956 |#1|) (-138) (-1025)) (T -956))
-((-4069 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) (-4271 (*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-1025)) (-5 *2 (-895)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) (-4194 (*1 *1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1025)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-956 *3)) (-4 *3 (-1025)))))
-(-13 (-1230 |t#1|) (-10 -8 (-15 -4069 ($ (-622 |t#1|))) (-15 -4271 ((-895) $)) (-15 -4330 ($ (-622 |t#1|))) (-15 -4194 ($ $ $)) (-15 -4128 ($ $ (-622 |t#1|)))))
-(((-34) . T) ((-101) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-367 |#1|) . T) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-19 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1074) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-1185) . T) ((-1230 |#1|) . T))
-((-4318 (((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|)) 17)))
-(((-957 |#1| |#2|) (-10 -7 (-15 -4318 ((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|)))) (-1025) (-1025)) (T -957))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-919 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-919 *6)) (-5 *1 (-957 *5 *6)))))
-(-10 -7 (-15 -4318 ((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|))))
-((-3284 ((|#1| (-919 |#1|)) 13)) (-3283 ((|#1| (-919 |#1|)) 12)) (-3282 ((|#1| (-919 |#1|)) 11)) (-3286 ((|#1| (-919 |#1|)) 15)) (-3290 ((|#1| (-919 |#1|)) 21)) (-3285 ((|#1| (-919 |#1|)) 14)) (-3287 ((|#1| (-919 |#1|)) 16)) (-3289 ((|#1| (-919 |#1|)) 20)) (-3288 ((|#1| (-919 |#1|)) 19)))
-(((-958 |#1|) (-10 -7 (-15 -3282 (|#1| (-919 |#1|))) (-15 -3283 (|#1| (-919 |#1|))) (-15 -3284 (|#1| (-919 |#1|))) (-15 -3285 (|#1| (-919 |#1|))) (-15 -3286 (|#1| (-919 |#1|))) (-15 -3287 (|#1| (-919 |#1|))) (-15 -3288 (|#1| (-919 |#1|))) (-15 -3289 (|#1| (-919 |#1|))) (-15 -3290 (|#1| (-919 |#1|)))) (-1025)) (T -958))
-((-3290 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
-(-10 -7 (-15 -3282 (|#1| (-919 |#1|))) (-15 -3283 (|#1| (-919 |#1|))) (-15 -3284 (|#1| (-919 |#1|))) (-15 -3285 (|#1| (-919 |#1|))) (-15 -3286 (|#1| (-919 |#1|))) (-15 -3287 (|#1| (-919 |#1|))) (-15 -3288 (|#1| (-919 |#1|))) (-15 -3289 (|#1| (-919 |#1|))) (-15 -3290 (|#1| (-919 |#1|))))
-((-3308 (((-3 |#1| "failed") |#1|) 18)) (-3296 (((-3 |#1| "failed") |#1|) 6)) (-3306 (((-3 |#1| "failed") |#1|) 16)) (-3294 (((-3 |#1| "failed") |#1|) 4)) (-3310 (((-3 |#1| "failed") |#1|) 20)) (-3298 (((-3 |#1| "failed") |#1|) 8)) (-3291 (((-3 |#1| "failed") |#1| (-751)) 1)) (-3293 (((-3 |#1| "failed") |#1|) 3)) (-3292 (((-3 |#1| "failed") |#1|) 2)) (-3311 (((-3 |#1| "failed") |#1|) 21)) (-3299 (((-3 |#1| "failed") |#1|) 9)) (-3309 (((-3 |#1| "failed") |#1|) 19)) (-3297 (((-3 |#1| "failed") |#1|) 7)) (-3307 (((-3 |#1| "failed") |#1|) 17)) (-3295 (((-3 |#1| "failed") |#1|) 5)) (-3314 (((-3 |#1| "failed") |#1|) 24)) (-3302 (((-3 |#1| "failed") |#1|) 12)) (-3312 (((-3 |#1| "failed") |#1|) 22)) (-3300 (((-3 |#1| "failed") |#1|) 10)) (-3316 (((-3 |#1| "failed") |#1|) 26)) (-3304 (((-3 |#1| "failed") |#1|) 14)) (-3317 (((-3 |#1| "failed") |#1|) 27)) (-3305 (((-3 |#1| "failed") |#1|) 15)) (-3315 (((-3 |#1| "failed") |#1|) 25)) (-3303 (((-3 |#1| "failed") |#1|) 13)) (-3313 (((-3 |#1| "failed") |#1|) 23)) (-3301 (((-3 |#1| "failed") |#1|) 11)))
+((-3582 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-1025)) (-5 *2 (-897)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) (-1431 (*1 *1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1025)))) (-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *1 (-956 *3)) (-4 *3 (-1025)))))
+(-13 (-1230 |t#1|) (-10 -8 (-15 -3582 ($ (-625 |t#1|))) (-15 -3904 ((-897) $)) (-15 -2042 ($ (-625 |t#1|))) (-15 -1431 ($ $ $)) (-15 -2147 ($ $ (-625 |t#1|)))))
+(((-34) . T) ((-101) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-19 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1073) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-1186) . T) ((-1230 |#1|) . T))
+((-1996 (((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|)) 17)))
+(((-957 |#1| |#2|) (-10 -7 (-15 -1996 ((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|)))) (-1025) (-1025)) (T -957))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-919 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-919 *6)) (-5 *1 (-957 *5 *6)))))
+(-10 -7 (-15 -1996 ((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|))))
+((-3009 ((|#1| (-919 |#1|)) 13)) (-2997 ((|#1| (-919 |#1|)) 12)) (-2985 ((|#1| (-919 |#1|)) 11)) (-3032 ((|#1| (-919 |#1|)) 15)) (-3074 ((|#1| (-919 |#1|)) 21)) (-3021 ((|#1| (-919 |#1|)) 14)) (-3042 ((|#1| (-919 |#1|)) 16)) (-3064 ((|#1| (-919 |#1|)) 20)) (-3053 ((|#1| (-919 |#1|)) 19)))
+(((-958 |#1|) (-10 -7 (-15 -2985 (|#1| (-919 |#1|))) (-15 -2997 (|#1| (-919 |#1|))) (-15 -3009 (|#1| (-919 |#1|))) (-15 -3021 (|#1| (-919 |#1|))) (-15 -3032 (|#1| (-919 |#1|))) (-15 -3042 (|#1| (-919 |#1|))) (-15 -3053 (|#1| (-919 |#1|))) (-15 -3064 (|#1| (-919 |#1|))) (-15 -3074 (|#1| (-919 |#1|)))) (-1025)) (T -958))
+((-3074 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
+(-10 -7 (-15 -2985 (|#1| (-919 |#1|))) (-15 -2997 (|#1| (-919 |#1|))) (-15 -3009 (|#1| (-919 |#1|))) (-15 -3021 (|#1| (-919 |#1|))) (-15 -3032 (|#1| (-919 |#1|))) (-15 -3042 (|#1| (-919 |#1|))) (-15 -3053 (|#1| (-919 |#1|))) (-15 -3064 (|#1| (-919 |#1|))) (-15 -3074 (|#1| (-919 |#1|))))
+((-2063 (((-3 |#1| "failed") |#1|) 18)) (-3125 (((-3 |#1| "failed") |#1|) 6)) (-2041 (((-3 |#1| "failed") |#1|) 16)) (-3107 (((-3 |#1| "failed") |#1|) 4)) (-2084 (((-3 |#1| "failed") |#1|) 20)) (-3144 (((-3 |#1| "failed") |#1|) 8)) (-3082 (((-3 |#1| "failed") |#1| (-751)) 1)) (-3097 (((-3 |#1| "failed") |#1|) 3)) (-3090 (((-3 |#1| "failed") |#1|) 2)) (-2095 (((-3 |#1| "failed") |#1|) 21)) (-3156 (((-3 |#1| "failed") |#1|) 9)) (-2074 (((-3 |#1| "failed") |#1|) 19)) (-3133 (((-3 |#1| "failed") |#1|) 7)) (-2050 (((-3 |#1| "failed") |#1|) 17)) (-3115 (((-3 |#1| "failed") |#1|) 5)) (-2124 (((-3 |#1| "failed") |#1|) 24)) (-2006 (((-3 |#1| "failed") |#1|) 12)) (-2106 (((-3 |#1| "failed") |#1|) 22)) (-1985 (((-3 |#1| "failed") |#1|) 10)) (-2145 (((-3 |#1| "failed") |#1|) 26)) (-2022 (((-3 |#1| "failed") |#1|) 14)) (-2160 (((-3 |#1| "failed") |#1|) 27)) (-2031 (((-3 |#1| "failed") |#1|) 15)) (-2136 (((-3 |#1| "failed") |#1|) 25)) (-2013 (((-3 |#1| "failed") |#1|) 13)) (-2115 (((-3 |#1| "failed") |#1|) 23)) (-1995 (((-3 |#1| "failed") |#1|) 11)))
(((-959 |#1|) (-138) (-1171)) (T -959))
-((-3317 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3316 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3315 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3314 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3313 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3312 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3311 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3310 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3309 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3308 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3307 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3306 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3305 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3304 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3303 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3302 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3301 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3300 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3299 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3298 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3297 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3296 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3295 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3294 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3293 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3292 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3291 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(-13 (-10 -7 (-15 -3291 ((-3 |t#1| "failed") |t#1| (-751))) (-15 -3292 ((-3 |t#1| "failed") |t#1|)) (-15 -3293 ((-3 |t#1| "failed") |t#1|)) (-15 -3294 ((-3 |t#1| "failed") |t#1|)) (-15 -3295 ((-3 |t#1| "failed") |t#1|)) (-15 -3296 ((-3 |t#1| "failed") |t#1|)) (-15 -3297 ((-3 |t#1| "failed") |t#1|)) (-15 -3298 ((-3 |t#1| "failed") |t#1|)) (-15 -3299 ((-3 |t#1| "failed") |t#1|)) (-15 -3300 ((-3 |t#1| "failed") |t#1|)) (-15 -3301 ((-3 |t#1| "failed") |t#1|)) (-15 -3302 ((-3 |t#1| "failed") |t#1|)) (-15 -3303 ((-3 |t#1| "failed") |t#1|)) (-15 -3304 ((-3 |t#1| "failed") |t#1|)) (-15 -3305 ((-3 |t#1| "failed") |t#1|)) (-15 -3306 ((-3 |t#1| "failed") |t#1|)) (-15 -3307 ((-3 |t#1| "failed") |t#1|)) (-15 -3308 ((-3 |t#1| "failed") |t#1|)) (-15 -3309 ((-3 |t#1| "failed") |t#1|)) (-15 -3310 ((-3 |t#1| "failed") |t#1|)) (-15 -3311 ((-3 |t#1| "failed") |t#1|)) (-15 -3312 ((-3 |t#1| "failed") |t#1|)) (-15 -3313 ((-3 |t#1| "failed") |t#1|)) (-15 -3314 ((-3 |t#1| "failed") |t#1|)) (-15 -3315 ((-3 |t#1| "failed") |t#1|)) (-15 -3316 ((-3 |t#1| "failed") |t#1|)) (-15 -3317 ((-3 |t#1| "failed") |t#1|))))
-((-3319 ((|#4| |#4| (-622 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3318 ((|#4| |#4| (-622 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4318 ((|#4| (-1 |#4| (-922 |#1|)) |#4|) 30)))
-(((-960 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3318 (|#4| |#4| |#3|)) (-15 -3318 (|#4| |#4| (-622 |#3|))) (-15 -3319 (|#4| |#4| |#3|)) (-15 -3319 (|#4| |#4| (-622 |#3|))) (-15 -4318 (|#4| (-1 |#4| (-922 |#1|)) |#4|))) (-1025) (-773) (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149))))) (-926 (-922 |#1|) |#2| |#3|)) (T -960))
-((-4318 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-922 *4))) (-4 *4 (-1025)) (-4 *2 (-926 (-922 *4) *5 *6)) (-4 *5 (-773)) (-4 *6 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1="failed") (-1149)))))) (-5 *1 (-960 *4 *5 *6 *2)))) (-3319 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149)))))) (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) (-4 *2 (-926 (-922 *4) *5 *6)))) (-3319 (*1 *2 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149)))))) (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-926 (-922 *4) *5 *3)))) (-3318 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149)))))) (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) (-4 *2 (-926 (-922 *4) *5 *6)))) (-3318 (*1 *2 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149)))))) (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-926 (-922 *4) *5 *3)))))
-(-10 -7 (-15 -3318 (|#4| |#4| |#3|)) (-15 -3318 (|#4| |#4| (-622 |#3|))) (-15 -3319 (|#4| |#4| |#3|)) (-15 -3319 (|#4| |#4| (-622 |#3|))) (-15 -4318 (|#4| (-1 |#4| (-922 |#1|)) |#4|)))
-((-3320 ((|#2| |#3|) 35)) (-4279 (((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|) 73)) (-4278 (((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) 89)))
-(((-961 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|)) (-15 -3320 (|#2| |#3|))) (-345) (-1207 |#1|) (-1207 |#2|) (-705 |#2| |#3|)) (T -961))
-((-3320 (*1 *2 *3) (-12 (-4 *3 (-1207 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-961 *4 *2 *3 *5)) (-4 *4 (-345)) (-4 *5 (-705 *2 *3)))) (-4279 (*1 *2 *3) (-12 (-4 *4 (-345)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 *3)) (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-961 *4 *3 *5 *6)) (-4 *6 (-705 *3 *5)))) (-4278 (*1 *2) (-12 (-4 *3 (-345)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| -2128 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4)))) (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-705 *4 *5)))))
-(-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|)) (-15 -3320 (|#2| |#3|)))
-((-2898 (((-112) $ $) NIL)) (-3760 (((-3 (-112) #1="failed") $) 69)) (-4012 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3324 (($ $ (-3 (-112) #1#)) 70)) (-3325 (($ (-622 |#4|) |#4|) 25)) (-3593 (((-1131) $) NIL)) (-3321 (($ $) 67)) (-3594 (((-1093) $) NIL)) (-3762 (((-112) $) 68)) (-3928 (($) 30)) (-3322 ((|#4| $) 72)) (-3323 (((-622 |#4|) $) 71)) (-4317 (((-840) $) 66)) (-3387 (((-112) $ $) NIL)))
-(((-962 |#1| |#2| |#3| |#4|) (-13 (-1074) (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -3325 ($ (-622 |#4|) |#4|)) (-15 -3760 ((-3 (-112) #1="failed") $)) (-15 -3324 ($ $ (-3 (-112) #1#))) (-15 -3762 ((-112) $)) (-15 -3323 ((-622 |#4|) $)) (-15 -3322 (|#4| $)) (-15 -3321 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -4012 ($ $)) |%noBranch|) |%noBranch|))) (-446) (-827) (-773) (-926 |#1| |#3| |#2|)) (T -962))
-((-3928 (*1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5)) (-4 *5 (-926 *2 *4 *3)))) (-3325 (*1 *1 *2 *3) (-12 (-5 *2 (-622 *3)) (-4 *3 (-926 *4 *6 *5)) (-4 *4 (-446)) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *1 (-962 *4 *5 *6 *3)))) (-3760 (*1 *2 *1) (|partial| -12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))) (-3762 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))) (-3323 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-622 *6)) (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))) (-3322 (*1 *2 *1) (-12 (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-962 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)))) (-3321 (*1 *1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5)) (-4 *5 (-926 *2 *4 *3)))) (-4012 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5)) (-4 *5 (-926 *2 *4 *3)))))
-(-13 (-1074) (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -3325 ($ (-622 |#4|) |#4|)) (-15 -3760 ((-3 (-112) #1="failed") $)) (-15 -3324 ($ $ (-3 (-112) #1#))) (-15 -3762 ((-112) $)) (-15 -3323 ((-622 |#4|) $)) (-15 -3322 (|#4| $)) (-15 -3321 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -4012 ($ $)) |%noBranch|) |%noBranch|)))
-((-3326 (((-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538)))) (-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538))))) 69)))
-(((-963 |#1| |#2|) (-10 -7 (-15 -3326 ((-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538)))) (-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538))))))) (-622 (-1149)) (-751)) (T -963))
-((-3326 (*1 *2 *2) (-12 (-5 *2 (-962 (-402 (-538)) (-841 *3) (-235 *4 (-751)) (-243 *3 (-402 (-538))))) (-14 *3 (-622 (-1149))) (-14 *4 (-751)) (-5 *1 (-963 *3 *4)))))
-(-10 -7 (-15 -3326 ((-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538)))) (-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538)))))))
-((-3621 (((-112) |#5| |#5|) 38)) (-3624 (((-112) |#5| |#5|) 52)) (-3629 (((-112) |#5| (-622 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3625 (((-112) (-622 |#4|) (-622 |#4|)) 58)) (-3631 (((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) 63)) (-3620 (((-1237)) 33)) (-3619 (((-1237) (-1131) (-1131) (-1131)) 29)) (-3630 (((-622 |#5|) (-622 |#5|)) 81)) (-3632 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) 79)) (-3633 (((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112)) 101)) (-3623 (((-112) |#5| |#5|) 47)) (-3628 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3626 (((-112) (-622 |#4|) (-622 |#4|)) 57)) (-3627 (((-112) (-622 |#4|) (-622 |#4|)) 59)) (-4062 (((-112) (-622 |#4|) (-622 |#4|)) 60)) (-3634 (((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3622 (((-622 |#5|) (-622 |#5|)) 43)))
-(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3619 ((-1237) (-1131) (-1131) (-1131))) (-15 -3620 ((-1237))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3622 ((-622 |#5|) (-622 |#5|))) (-15 -3623 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3625 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3626 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3627 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -4062 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3628 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3629 ((-112) |#5| |#5|)) (-15 -3629 ((-112) |#5| (-622 |#5|))) (-15 -3630 ((-622 |#5|) (-622 |#5|))) (-15 -3631 ((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3632 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-15 -3633 ((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3634 ((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -964))
-((-3634 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *4) (|:| |ineq| (-622 *9)))) (-5 *1 (-964 *6 *7 *8 *9 *4)) (-5 *3 (-622 *9)) (-4 *4 (-1045 *6 *7 *8 *9)))) (-3633 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-622 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *10) (|:| |ineq| (-622 *9))))) (-5 *1 (-964 *6 *7 *8 *9 *10)) (-5 *3 (-622 *9)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-622 (-2 (|:| |val| (-622 *6)) (|:| -1660 *7)))) (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3631 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-964 *5 *6 *7 *8 *3)))) (-3629 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3628 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-4062 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3627 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3626 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3623 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3620 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-964 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3619 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3619 ((-1237) (-1131) (-1131) (-1131))) (-15 -3620 ((-1237))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3622 ((-622 |#5|) (-622 |#5|))) (-15 -3623 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3625 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3626 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3627 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -4062 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3628 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3629 ((-112) |#5| |#5|)) (-15 -3629 ((-112) |#5| (-622 |#5|))) (-15 -3630 ((-622 |#5|) (-622 |#5|))) (-15 -3631 ((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3632 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-15 -3633 ((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3634 ((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-4191 (((-1149) $) 15)) (-3761 (((-1131) $) 16)) (-3577 (($ (-1149) (-1131)) 14)) (-4317 (((-840) $) 13)))
-(((-965) (-13 (-597 (-840)) (-10 -8 (-15 -3577 ($ (-1149) (-1131))) (-15 -4191 ((-1149) $)) (-15 -3761 ((-1131) $))))) (T -965))
-((-3577 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-965)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-965)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-965)))))
-(-13 (-597 (-840)) (-10 -8 (-15 -3577 ($ (-1149) (-1131))) (-15 -4191 ((-1149) $)) (-15 -3761 ((-1131) $))))
-((-3508 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1149) #1#) $) 65) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 (-538) #1#) $) 95)) (-3507 ((|#2| $) NIL) (((-1149) $) 60) (((-402 (-538)) $) NIL) (((-538) $) 92)) (-2362 (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 112) (((-669 |#2|) (-669 $)) 28)) (-3327 (($) 98)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 75) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 84)) (-3329 (($ $) 10)) (-3803 (((-3 $ "failed") $) 20)) (-4318 (($ (-1 |#2| |#2|) $) 22)) (-3804 (($) 16)) (-3463 (($ $) 54)) (-4170 (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3328 (($ $) 12)) (-4330 (((-866 (-538)) $) 70) (((-866 (-373)) $) 79) (((-527) $) 40) (((-373) $) 44) (((-221) $) 47)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) 90) (($ |#2|) NIL) (($ (-1149)) 57)) (-3461 (((-751)) 31)) (-3018 (((-112) $ $) 50)))
-(((-966 |#1| |#2|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -4317 (|#1| (-1149))) (-15 -3327 (|#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3329 (|#1| |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -4317 ((-840) |#1|))) (-967 |#2|) (-545)) (T -966))
-((-3461 (*1 *2) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-966 *3 *4)) (-4 *3 (-967 *4)))))
-(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -4317 (|#1| (-1149))) (-15 -3327 (|#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3329 (|#1| |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3464 ((|#1| $) 136 (|has| |#1| (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 127 (|has| |#1| (-886)))) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 130 (|has| |#1| (-886)))) (-1705 (((-112) $ $) 57)) (-3986 (((-538) $) 117 (|has| |#1| (-800)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| #2="failed") $) 175) (((-3 (-1149) #2#) $) 125 (|has| |#1| (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) 109 (|has| |#1| (-1014 (-538)))) (((-3 (-538) #2#) $) 107 (|has| |#1| (-1014 (-538))))) (-3507 ((|#1| $) 174) (((-1149) $) 124 (|has| |#1| (-1014 (-1149)))) (((-402 (-538)) $) 108 (|has| |#1| (-1014 (-538)))) (((-538) $) 106 (|has| |#1| (-1014 (-538))))) (-2894 (($ $ $) 53)) (-2362 (((-669 (-538)) (-669 $)) 149 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 148 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 147) (((-669 |#1|) (-669 $)) 146)) (-3821 (((-3 $ "failed") $) 32)) (-3327 (($) 134 (|has| |#1| (-537)))) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-3537 (((-112) $) 119 (|has| |#1| (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 143 (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 142 (|has| |#1| (-862 (-373))))) (-2502 (((-112) $) 30)) (-3329 (($ $) 138)) (-3331 ((|#1| $) 140)) (-3803 (((-3 $ "failed") $) 105 (|has| |#1| (-1124)))) (-3538 (((-112) $) 118 (|has| |#1| (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) 50)) (-3677 (($ $ $) 115 (|has| |#1| (-827)))) (-3678 (($ $ $) 114 (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) 166)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3804 (($) 104 (|has| |#1| (-1124)) CONST)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3463 (($ $) 135 (|has| |#1| (-302)))) (-3465 ((|#1| $) 132 (|has| |#1| (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 129 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 128 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) 172 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) 170 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) 169 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 168 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 167 (|has| |#1| (-507 (-1149) |#1|)))) (-1704 (((-751) $) 56)) (-4159 (($ $ |#1|) 173 (|has| |#1| (-281 |#1| |#1|)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-4170 (($ $) 165 (|has| |#1| (-229))) (($ $ (-751)) 163 (|has| |#1| (-229))) (($ $ (-1149)) 161 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 160 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 159 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 158 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3328 (($ $) 137)) (-3330 ((|#1| $) 139)) (-4330 (((-866 (-538)) $) 145 (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) 144 (|has| |#1| (-598 (-866 (-373))))) (((-527) $) 122 (|has| |#1| (-598 (-527)))) (((-373) $) 121 (|has| |#1| (-996))) (((-221) $) 120 (|has| |#1| (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 131 (-3191 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ |#1|) 178) (($ (-1149)) 126 (|has| |#1| (-1014 (-1149))))) (-3035 (((-3 $ "failed") $) 123 (-3891 (|has| |#1| (-143)) (-3191 (|has| $ (-143)) (|has| |#1| (-886)))))) (-3461 (((-751)) 28)) (-3466 ((|#1| $) 133 (|has| |#1| (-537)))) (-2177 (((-112) $ $) 37)) (-3742 (($ $) 116 (|has| |#1| (-800)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $) 164 (|has| |#1| (-229))) (($ $ (-751)) 162 (|has| |#1| (-229))) (($ $ (-1149)) 157 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 156 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 155 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 154 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2896 (((-112) $ $) 112 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 111 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 113 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 110 (|has| |#1| (-827)))) (-4308 (($ $ $) 62) (($ |#1| |#1|) 141)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176)))
-(((-967 |#1|) (-138) (-545)) (T -967))
-((-4308 (*1 *1 *2 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) (-3329 (*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) (-3328 (*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-302)))) (-3463 (*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-302)))) (-3327 (*1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-537)) (-4 *2 (-545)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-537)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-537)))))
-(-13 (-358) (-38 |t#1|) (-1014 |t#1|) (-333 |t#1|) (-227 |t#1|) (-372 |t#1|) (-860 |t#1|) (-395 |t#1|) (-10 -8 (-15 -4308 ($ |t#1| |t#1|)) (-15 -3331 (|t#1| $)) (-15 -3330 (|t#1| $)) (-15 -3329 ($ $)) (-15 -3328 ($ $)) (IF (|has| |t#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |t#1| (-1014 (-538))) (PROGN (-6 (-1014 (-538))) (-6 (-1014 (-402 (-538))))) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-800)) (-6 (-800)) |%noBranch|) (IF (|has| |t#1| (-996)) (-6 (-996)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1014 (-1149))) (-6 (-1014 (-1149))) |%noBranch|) (IF (|has| |t#1| (-302)) (PROGN (-15 -3464 (|t#1| $)) (-15 -3463 ($ $))) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -3327 ($)) (-15 -3466 (|t#1| $)) (-15 -3465 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-886)) (-6 (-886)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-598 (-221)) |has| |#1| (-996)) ((-598 (-373)) |has| |#1| (-996)) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-598 (-866 (-373))) |has| |#1| (-598 (-866 (-373)))) ((-598 (-866 (-538))) |has| |#1| (-598 (-866 (-538)))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) . T) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) . T) ((-302) . T) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-446) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-545) . T) ((-628 #1#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-771) |has| |#1| (-800)) ((-772) |has| |#1| (-800)) ((-774) |has| |#1| (-800)) ((-777) |has| |#1| (-800)) ((-800) |has| |#1| (-800)) ((-825) |has| |#1| (-800)) ((-827) -3891 (|has| |#1| (-827)) (|has| |#1| (-800))) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-373)) |has| |#1| (-862 (-373))) ((-862 (-538)) |has| |#1| (-862 (-538))) ((-860 |#1|) . T) ((-886) |has| |#1| (-886)) ((-897) . T) ((-996) |has| |#1| (-996)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-538))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 (-1149)) |has| |#1| (-1014 (-1149))) ((-1014 |#1|) . T) ((-1031 #1#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| |#1| (-1124)) ((-1185) . T) ((-1190) . T))
-((-4318 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-968 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#2| |#1|) |#3|))) (-545) (-545) (-967 |#1|) (-967 |#2|)) (T -968))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-4 *2 (-967 *6)) (-5 *1 (-968 *5 *6 *4 *2)) (-4 *4 (-967 *5)))))
-(-10 -7 (-15 -4318 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3332 (($ (-1115 |#1| |#2|)) 11)) (-3459 (((-1115 |#1| |#2|) $) 12)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4159 ((|#2| $ (-235 |#1| |#2|)) 16)) (-4317 (((-840) $) NIL)) (-2991 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL)))
-(((-969 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3332 ($ (-1115 |#1| |#2|))) (-15 -3459 ((-1115 |#1| |#2|) $)) (-15 -4159 (|#2| $ (-235 |#1| |#2|))))) (-895) (-358)) (T -969))
-((-3332 (*1 *1 *2) (-12 (-5 *2 (-1115 *3 *4)) (-14 *3 (-895)) (-4 *4 (-358)) (-5 *1 (-969 *3 *4)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-1115 *3 *4)) (-5 *1 (-969 *3 *4)) (-14 *3 (-895)) (-4 *4 (-358)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-895)) (-4 *2 (-358)) (-5 *1 (-969 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -3332 ($ (-1115 |#1| |#2|))) (-15 -3459 ((-1115 |#1| |#2|) $)) (-15 -4159 (|#2| $ (-235 |#1| |#2|)))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 9)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-970) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $))))) (T -970))
-((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-970)))))
-(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $))))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-3335 (($ $) 46)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-4193 (((-751) $) 45)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-3334 ((|#1| $) 44)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3337 ((|#1| |#1| $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-3336 ((|#1| $) 47)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-3333 ((|#1| $) 43)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-971 |#1|) (-138) (-1185)) (T -971))
-((-3337 (*1 *2 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))) (-3335 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))))
-(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -3337 (|t#1| |t#1| $)) (-15 -3336 (|t#1| $)) (-15 -3335 ($ $)) (-15 -4193 ((-751) $)) (-15 -3334 (|t#1| $)) (-15 -3333 (|t#1| $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4006 ((|#1| $) 12)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL (|has| |#1| (-537)))) (-3356 (((-112) $) NIL (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) NIL (|has| |#1| (-537)))) (-3338 (($ |#1| |#1| |#1| |#1|) 16)) (-2502 (((-112) $) NIL)) (-3467 ((|#1| $) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-3339 ((|#1| $) 15)) (-3340 ((|#1| $) 14)) (-3341 ((|#1| $) 13)) (-3594 (((-1093) $) NIL)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-4159 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-4170 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3342 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538))))))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-3742 ((|#1| $) NIL (|has| |#1| (-1034)))) (-2991 (($) 8 T CONST)) (-2997 (($) 10 T CONST)) (-3002 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-358))) (($ (-402 (-538)) $) NIL (|has| |#1| (-358)))))
-(((-972 |#1|) (-974 |#1|) (-170)) (T -972))
-NIL
-(-974 |#1|)
-((-3539 (((-112) $) 42)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL) ((|#2| $) 43)) (-3357 (((-3 (-402 (-538)) "failed") $) 78)) (-3356 (((-112) $) 72)) (-3355 (((-402 (-538)) $) 76)) (-2502 (((-112) $) 41)) (-3467 ((|#2| $) 22)) (-4318 (($ (-1 |#2| |#2|) $) 19)) (-2734 (($ $) 61)) (-4170 (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4330 (((-527) $) 67)) (-3342 (($ $) 17)) (-4317 (((-840) $) 56) (($ (-538)) 38) (($ |#2|) 36) (($ (-402 (-538))) NIL)) (-3461 (((-751)) 10)) (-3742 ((|#2| $) 71)) (-3387 (((-112) $ $) 25)) (-3018 (((-112) $ $) 69)) (-4197 (($ $) 29) (($ $ $) 28)) (-4199 (($ $ $) 26)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL)))
-(((-973 |#1| |#2|) (-10 -8 (-15 -4317 (|#1| (-402 (-538)))) (-15 -3018 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 * (|#1| |#1| (-402 (-538)))) (-15 -2734 (|#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3742 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -2502 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-974 |#2|) (-170)) (T -973))
-((-3461 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-973 *3 *4)) (-4 *3 (-974 *4)))))
-(-10 -8 (-15 -4317 (|#1| (-402 (-538)))) (-15 -3018 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 * (|#1| |#1| (-402 (-538)))) (-15 -2734 (|#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3742 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -2502 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 116 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 114 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 113)) (-3507 (((-538) $) 117 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 115 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 112)) (-2362 (((-669 (-538)) (-669 $)) 87 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 86 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 85) (((-669 |#1|) (-669 $)) 84)) (-3821 (((-3 $ "failed") $) 32)) (-4006 ((|#1| $) 77)) (-3357 (((-3 (-402 (-538)) "failed") $) 73 (|has| |#1| (-537)))) (-3356 (((-112) $) 75 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 74 (|has| |#1| (-537)))) (-3338 (($ |#1| |#1| |#1| |#1|) 78)) (-2502 (((-112) $) 30)) (-3467 ((|#1| $) 79)) (-3677 (($ $ $) 66 (|has| |#1| (-827)))) (-3678 (($ $ $) 65 (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) 88)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 70 (|has| |#1| (-358)))) (-3339 ((|#1| $) 80)) (-3340 ((|#1| $) 81)) (-3341 ((|#1| $) 82)) (-3594 (((-1093) $) 10)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) 94 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) 92 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) 91 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 90 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 89 (|has| |#1| (-507 (-1149) |#1|)))) (-4159 (($ $ |#1|) 95 (|has| |#1| (-281 |#1| |#1|)))) (-4170 (($ $) 111 (|has| |#1| (-229))) (($ $ (-751)) 109 (|has| |#1| (-229))) (($ $ (-1149)) 107 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 106 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 105 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 104 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-4330 (((-527) $) 71 (|has| |#1| (-598 (-527))))) (-3342 (($ $) 83)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35) (($ (-402 (-538))) 60 (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538))))))) (-3035 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-3742 ((|#1| $) 76 (|has| |#1| (-1034)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $) 110 (|has| |#1| (-229))) (($ $ (-751)) 108 (|has| |#1| (-229))) (($ $ (-1149)) 103 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 102 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 101 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 100 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2896 (((-112) $ $) 63 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 62 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 64 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 61 (|has| |#1| (-827)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 69 (|has| |#1| (-358)))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-402 (-538))) 68 (|has| |#1| (-358))) (($ (-402 (-538)) $) 67 (|has| |#1| (-358)))))
-(((-974 |#1|) (-138) (-170)) (T -974))
-((-3342 (*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3338 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))))
-(-13 (-38 |t#1|) (-407 |t#1|) (-227 |t#1|) (-333 |t#1|) (-372 |t#1|) (-10 -8 (-15 -3342 ($ $)) (-15 -3341 (|t#1| $)) (-15 -3340 (|t#1| $)) (-15 -3339 (|t#1| $)) (-15 -3467 (|t#1| $)) (-15 -3338 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4006 (|t#1| $)) (IF (|has| |t#1| (-285)) (-6 (-285)) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -3742 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-358)) ((-38 |#1|) . T) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-358)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) |has| |#1| (-358)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -3891 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-628 #1#) |has| |#1| (-358)) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) |has| |#1| (-358)) ((-698 |#1|) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 #1#) |has| |#1| (-358)) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-4318 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|))) (-974 |#2|) (-170) (-974 |#4|) (-170)) (T -975))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-974 *6)) (-5 *1 (-975 *4 *5 *2 *6)) (-4 *4 (-974 *5)))))
-(-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-3335 (($ $) 20)) (-3343 (($ (-622 |#1|)) 29)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-4193 (((-751) $) 22)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) 24)) (-3970 (($ |#1| $) 15)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-3334 ((|#1| $) 23)) (-1334 ((|#1| $) 19)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3337 ((|#1| |#1| $) 14)) (-3762 (((-112) $) 17)) (-3928 (($) NIL)) (-3336 ((|#1| $) 18)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) NIL)) (-3333 ((|#1| $) 26)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-976 |#1|) (-13 (-971 |#1|) (-10 -8 (-15 -3343 ($ (-622 |#1|))))) (-1074)) (T -976))
-((-3343 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-976 *3)))))
-(-13 (-971 |#1|) (-10 -8 (-15 -3343 ($ (-622 |#1|)))))
-((-3370 (($ $) 12)) (-3344 (($ $ (-538)) 13)))
-(((-977 |#1|) (-10 -8 (-15 -3370 (|#1| |#1|)) (-15 -3344 (|#1| |#1| (-538)))) (-978)) (T -977))
-NIL
-(-10 -8 (-15 -3370 (|#1| |#1|)) (-15 -3344 (|#1| |#1| (-538))))
-((-3370 (($ $) 6)) (-3344 (($ $ (-538)) 7)) (** (($ $ (-402 (-538))) 8)))
+((-2160 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2145 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2136 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2124 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2115 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2106 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2095 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2084 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2074 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2063 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2050 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2041 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2031 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2022 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2013 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2006 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-1995 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-1985 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3156 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3144 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3133 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3125 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3115 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3107 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3097 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3090 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3082 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(-13 (-10 -7 (-15 -3082 ((-3 |t#1| "failed") |t#1| (-751))) (-15 -3090 ((-3 |t#1| "failed") |t#1|)) (-15 -3097 ((-3 |t#1| "failed") |t#1|)) (-15 -3107 ((-3 |t#1| "failed") |t#1|)) (-15 -3115 ((-3 |t#1| "failed") |t#1|)) (-15 -3125 ((-3 |t#1| "failed") |t#1|)) (-15 -3133 ((-3 |t#1| "failed") |t#1|)) (-15 -3144 ((-3 |t#1| "failed") |t#1|)) (-15 -3156 ((-3 |t#1| "failed") |t#1|)) (-15 -1985 ((-3 |t#1| "failed") |t#1|)) (-15 -1995 ((-3 |t#1| "failed") |t#1|)) (-15 -2006 ((-3 |t#1| "failed") |t#1|)) (-15 -2013 ((-3 |t#1| "failed") |t#1|)) (-15 -2022 ((-3 |t#1| "failed") |t#1|)) (-15 -2031 ((-3 |t#1| "failed") |t#1|)) (-15 -2041 ((-3 |t#1| "failed") |t#1|)) (-15 -2050 ((-3 |t#1| "failed") |t#1|)) (-15 -2063 ((-3 |t#1| "failed") |t#1|)) (-15 -2074 ((-3 |t#1| "failed") |t#1|)) (-15 -2084 ((-3 |t#1| "failed") |t#1|)) (-15 -2095 ((-3 |t#1| "failed") |t#1|)) (-15 -2106 ((-3 |t#1| "failed") |t#1|)) (-15 -2115 ((-3 |t#1| "failed") |t#1|)) (-15 -2124 ((-3 |t#1| "failed") |t#1|)) (-15 -2136 ((-3 |t#1| "failed") |t#1|)) (-15 -2145 ((-3 |t#1| "failed") |t#1|)) (-15 -2160 ((-3 |t#1| "failed") |t#1|))))
+((-2180 ((|#4| |#4| (-625 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2170 ((|#4| |#4| (-625 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1996 ((|#4| (-1 |#4| (-928 |#1|)) |#4|) 30)))
+(((-960 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2170 (|#4| |#4| |#3|)) (-15 -2170 (|#4| |#4| (-625 |#3|))) (-15 -2180 (|#4| |#4| |#3|)) (-15 -2180 (|#4| |#4| (-625 |#3|))) (-15 -1996 (|#4| (-1 |#4| (-928 |#1|)) |#4|))) (-1025) (-773) (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149))))) (-925 (-928 |#1|) |#2| |#3|)) (T -960))
+((-1996 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-928 *4))) (-4 *4 (-1025)) (-4 *2 (-925 (-928 *4) *5 *6)) (-4 *5 (-773)) (-4 *6 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-5 *1 (-960 *4 *5 *6 *2)))) (-2180 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) (-4 *2 (-925 (-928 *4) *5 *6)))) (-2180 (*1 *2 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-925 (-928 *4) *5 *3)))) (-2170 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) (-4 *2 (-925 (-928 *4) *5 *6)))) (-2170 (*1 *2 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-925 (-928 *4) *5 *3)))))
+(-10 -7 (-15 -2170 (|#4| |#4| |#3|)) (-15 -2170 (|#4| |#4| (-625 |#3|))) (-15 -2180 (|#4| |#4| |#3|)) (-15 -2180 (|#4| |#4| (-625 |#3|))) (-15 -1996 (|#4| (-1 |#4| (-928 |#1|)) |#4|)))
+((-2192 ((|#2| |#3|) 35)) (-4006 (((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|) 73)) (-3993 (((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) 89)))
+(((-961 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|)) (-15 -2192 (|#2| |#3|))) (-344) (-1208 |#1|) (-1208 |#2|) (-705 |#2| |#3|)) (T -961))
+((-2192 (*1 *2 *3) (-12 (-4 *3 (-1208 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-961 *4 *2 *3 *5)) (-4 *4 (-344)) (-4 *5 (-705 *2 *3)))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 *3)) (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-961 *4 *3 *5 *6)) (-4 *6 (-705 *3 *5)))) (-3993 (*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| -1270 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4)))) (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-705 *4 *5)))))
+(-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|)) (-15 -2192 (|#2| |#3|)))
+((-2256 (((-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552)))) (-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552))))) 69)))
+(((-962 |#1| |#2|) (-10 -7 (-15 -2256 ((-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552)))) (-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552))))))) (-625 (-1149)) (-751)) (T -962))
+((-2256 (*1 *2 *2) (-12 (-5 *2 (-963 (-402 (-552)) (-841 *3) (-236 *4 (-751)) (-243 *3 (-402 (-552))))) (-14 *3 (-625 (-1149))) (-14 *4 (-751)) (-5 *1 (-962 *3 *4)))))
+(-10 -7 (-15 -2256 ((-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552)))) (-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552)))))))
+((-1671 (((-112) $ $) NIL)) (-2229 (((-3 (-112) "failed") $) 69)) (-1933 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-2236 (($ $ (-3 (-112) "failed")) 70)) (-2247 (($ (-625 |#4|) |#4|) 25)) (-2883 (((-1131) $) NIL)) (-2203 (($ $) 67)) (-2831 (((-1093) $) NIL)) (-1916 (((-112) $) 68)) (-3600 (($) 30)) (-2214 ((|#4| $) 72)) (-2224 (((-625 |#4|) $) 71)) (-1683 (((-839) $) 66)) (-2281 (((-112) $ $) NIL)))
+(((-963 |#1| |#2| |#3| |#4|) (-13 (-1073) (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2247 ($ (-625 |#4|) |#4|)) (-15 -2229 ((-3 (-112) "failed") $)) (-15 -2236 ($ $ (-3 (-112) "failed"))) (-15 -1916 ((-112) $)) (-15 -2224 ((-625 |#4|) $)) (-15 -2214 (|#4| $)) (-15 -2203 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -1933 ($ $)) |%noBranch|) |%noBranch|))) (-446) (-827) (-773) (-925 |#1| |#3| |#2|)) (T -963))
+((-3600 (*1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3)))) (-2247 (*1 *1 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-925 *4 *6 *5)) (-4 *4 (-446)) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *1 (-963 *4 *5 *6 *3)))) (-2229 (*1 *2 *1) (|partial| -12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))) (-2236 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))) (-1916 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))) (-2224 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-625 *6)) (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))) (-2214 (*1 *2 *1) (-12 (-4 *2 (-925 *3 *5 *4)) (-5 *1 (-963 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)))) (-2203 (*1 *1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3)))) (-1933 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3)))))
+(-13 (-1073) (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2247 ($ (-625 |#4|) |#4|)) (-15 -2229 ((-3 (-112) "failed") $)) (-15 -2236 ($ $ (-3 (-112) "failed"))) (-15 -1916 ((-112) $)) (-15 -2224 ((-625 |#4|) $)) (-15 -2214 (|#4| $)) (-15 -2203 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -1933 ($ $)) |%noBranch|) |%noBranch|)))
+((-3070 (((-112) |#5| |#5|) 38)) (-3095 (((-112) |#5| |#5|) 52)) (-3140 (((-112) |#5| (-625 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3104 (((-112) (-625 |#4|) (-625 |#4|)) 58)) (-3161 (((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) 63)) (-3060 (((-1237)) 33)) (-3049 (((-1237) (-1131) (-1131) (-1131)) 29)) (-3151 (((-625 |#5|) (-625 |#5|)) 81)) (-3168 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) 79)) (-3176 (((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112)) 101)) (-3087 (((-112) |#5| |#5|) 47)) (-3130 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3112 (((-112) (-625 |#4|) (-625 |#4|)) 57)) (-3121 (((-112) (-625 |#4|) (-625 |#4|)) 59)) (-2719 (((-112) (-625 |#4|) (-625 |#4|)) 60)) (-3185 (((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3079 (((-625 |#5|) (-625 |#5|)) 43)))
+(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3049 ((-1237) (-1131) (-1131) (-1131))) (-15 -3060 ((-1237))) (-15 -3070 ((-112) |#5| |#5|)) (-15 -3079 ((-625 |#5|) (-625 |#5|))) (-15 -3087 ((-112) |#5| |#5|)) (-15 -3095 ((-112) |#5| |#5|)) (-15 -3104 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3112 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3121 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2719 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3130 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3140 ((-112) |#5| |#5|)) (-15 -3140 ((-112) |#5| (-625 |#5|))) (-15 -3151 ((-625 |#5|) (-625 |#5|))) (-15 -3161 ((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -3168 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-15 -3176 ((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3185 ((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -964))
+((-3185 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| -2772 (-625 *9)) (|:| -3715 *4) (|:| |ineq| (-625 *9)))) (-5 *1 (-964 *6 *7 *8 *9 *4)) (-5 *3 (-625 *9)) (-4 *4 (-1045 *6 *7 *8 *9)))) (-3176 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-625 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-625 (-2 (|:| -2772 (-625 *9)) (|:| -3715 *10) (|:| |ineq| (-625 *9))))) (-5 *1 (-964 *6 *7 *8 *9 *10)) (-5 *3 (-625 *9)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-625 (-2 (|:| |val| (-625 *6)) (|:| -3715 *7)))) (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3161 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)))) (-3151 (*1 *2 *2) (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3140 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-964 *5 *6 *7 *8 *3)))) (-3140 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3130 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-2719 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3121 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3112 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3095 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3087 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3070 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3060 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-964 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3049 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3049 ((-1237) (-1131) (-1131) (-1131))) (-15 -3060 ((-1237))) (-15 -3070 ((-112) |#5| |#5|)) (-15 -3079 ((-625 |#5|) (-625 |#5|))) (-15 -3087 ((-112) |#5| |#5|)) (-15 -3095 ((-112) |#5| |#5|)) (-15 -3104 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3112 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3121 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2719 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3130 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3140 ((-112) |#5| |#5|)) (-15 -3140 ((-112) |#5| (-625 |#5|))) (-15 -3151 ((-625 |#5|) (-625 |#5|))) (-15 -3161 ((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -3168 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-15 -3176 ((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3185 ((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2195 (((-1149) $) 15)) (-3800 (((-1131) $) 16)) (-2438 (($ (-1149) (-1131)) 14)) (-1683 (((-839) $) 13)))
+(((-965) (-13 (-597 (-839)) (-10 -8 (-15 -2438 ($ (-1149) (-1131))) (-15 -2195 ((-1149) $)) (-15 -3800 ((-1131) $))))) (T -965))
+((-2438 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-965)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-965)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-965)))))
+(-13 (-597 (-839)) (-10 -8 (-15 -2438 ($ (-1149) (-1131))) (-15 -2195 ((-1149) $)) (-15 -3800 ((-1131) $))))
+((-1996 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-966 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#2| |#1|) |#3|))) (-544) (-544) (-968 |#1|) (-968 |#2|)) (T -966))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-4 *2 (-968 *6)) (-5 *1 (-966 *5 *6 *4 *2)) (-4 *4 (-968 *5)))))
+(-10 -7 (-15 -1996 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-1149) "failed") $) 65) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) 95)) (-1895 ((|#2| $) NIL) (((-1149) $) 60) (((-402 (-552)) $) NIL) (((-552) $) 92)) (-1794 (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 112) (((-669 |#2|) (-669 $)) 28)) (-3702 (($) 98)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 75) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 84)) (-2276 (($ $) 10)) (-4034 (((-3 $ "failed") $) 20)) (-1996 (($ (-1 |#2| |#2|) $) 22)) (-2071 (($) 16)) (-4166 (($ $) 54)) (-3072 (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2265 (($ $) 12)) (-2042 (((-868 (-552)) $) 70) (((-868 (-374)) $) 79) (((-528) $) 40) (((-374) $) 44) (((-221) $) 47)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) 90) (($ |#2|) NIL) (($ (-1149)) 57)) (-4141 (((-751)) 31)) (-2307 (((-112) $ $) 50)))
+(((-967 |#1| |#2|) (-10 -8 (-15 -2307 ((-112) |#1| |#1|)) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1683 (|#1| (-1149))) (-15 -3702 (|#1|)) (-15 -4166 (|#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -1683 ((-839) |#1|))) (-968 |#2|) (-544)) (T -967))
+((-4141 (*1 *2) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-967 *3 *4)) (-4 *3 (-968 *4)))))
+(-10 -8 (-15 -2307 ((-112) |#1| |#1|)) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1683 (|#1| (-1149))) (-15 -3702 (|#1|)) (-15 -4166 (|#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-4177 ((|#1| $) 136 (|has| |#1| (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 127 (|has| |#1| (-885)))) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 130 (|has| |#1| (-885)))) (-2408 (((-112) $ $) 57)) (-4127 (((-552) $) 117 (|has| |#1| (-800)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 175) (((-3 (-1149) "failed") $) 125 (|has| |#1| (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) 109 (|has| |#1| (-1014 (-552)))) (((-3 (-552) "failed") $) 107 (|has| |#1| (-1014 (-552))))) (-1895 ((|#1| $) 174) (((-1149) $) 124 (|has| |#1| (-1014 (-1149)))) (((-402 (-552)) $) 108 (|has| |#1| (-1014 (-552)))) (((-552) $) 106 (|has| |#1| (-1014 (-552))))) (-2851 (($ $ $) 53)) (-1794 (((-669 (-552)) (-669 $)) 149 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 148 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 147) (((-669 |#1|) (-669 $)) 146)) (-4174 (((-3 $ "failed") $) 32)) (-3702 (($) 134 (|has| |#1| (-537)))) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-3620 (((-112) $) 119 (|has| |#1| (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 143 (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 142 (|has| |#1| (-862 (-374))))) (-3650 (((-112) $) 30)) (-2276 (($ $) 138)) (-1356 ((|#1| $) 140)) (-4034 (((-3 $ "failed") $) 105 (|has| |#1| (-1124)))) (-3630 (((-112) $) 118 (|has| |#1| (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-3658 (($ $ $) 115 (|has| |#1| (-827)))) (-3332 (($ $ $) 114 (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) 166)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2071 (($) 104 (|has| |#1| (-1124)) CONST)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-4166 (($ $) 135 (|has| |#1| (-302)))) (-4189 ((|#1| $) 132 (|has| |#1| (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 129 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 128 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) 172 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 170 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) 169 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 168 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 167 (|has| |#1| (-507 (-1149) |#1|)))) (-2397 (((-751) $) 56)) (-2154 (($ $ |#1|) 173 (|has| |#1| (-281 |#1| |#1|)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-3072 (($ $) 165 (|has| |#1| (-229))) (($ $ (-751)) 163 (|has| |#1| (-229))) (($ $ (-1149)) 161 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 160 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 159 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 158 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-2265 (($ $) 137)) (-1368 ((|#1| $) 139)) (-2042 (((-868 (-552)) $) 145 (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) 144 (|has| |#1| (-598 (-868 (-374))))) (((-528) $) 122 (|has| |#1| (-598 (-528)))) (((-374) $) 121 (|has| |#1| (-998))) (((-221) $) 120 (|has| |#1| (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 131 (-3743 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ |#1|) 178) (($ (-1149)) 126 (|has| |#1| (-1014 (-1149))))) (-4243 (((-3 $ "failed") $) 123 (-1523 (|has| |#1| (-143)) (-3743 (|has| $ (-143)) (|has| |#1| (-885)))))) (-4141 (((-751)) 28)) (-4199 ((|#1| $) 133 (|has| |#1| (-537)))) (-3518 (((-112) $ $) 37)) (-1727 (($ $) 116 (|has| |#1| (-800)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $) 164 (|has| |#1| (-229))) (($ $ (-751)) 162 (|has| |#1| (-229))) (($ $ (-1149)) 157 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 156 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 155 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 154 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2346 (((-112) $ $) 112 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 111 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 113 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 110 (|has| |#1| (-827)))) (-2404 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176)))
+(((-968 |#1|) (-138) (-544)) (T -968))
+((-2404 (*1 *1 *2 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) (-2276 (*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) (-2265 (*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-302)))) (-4166 (*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-302)))) (-3702 (*1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-537)) (-4 *2 (-544)))) (-4199 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-537)))))
+(-13 (-358) (-38 |t#1|) (-1014 |t#1|) (-333 |t#1|) (-227 |t#1|) (-372 |t#1|) (-860 |t#1|) (-395 |t#1|) (-10 -8 (-15 -2404 ($ |t#1| |t#1|)) (-15 -1356 (|t#1| $)) (-15 -1368 (|t#1| $)) (-15 -2276 ($ $)) (-15 -2265 ($ $)) (IF (|has| |t#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |t#1| (-1014 (-552))) (PROGN (-6 (-1014 (-552))) (-6 (-1014 (-402 (-552))))) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-800)) (-6 (-800)) |%noBranch|) (IF (|has| |t#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1014 (-1149))) (-6 (-1014 (-1149))) |%noBranch|) (IF (|has| |t#1| (-302)) (PROGN (-15 -4177 (|t#1| $)) (-15 -4166 ($ $))) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -3702 ($)) (-15 -4199 (|t#1| $)) (-15 -4189 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-885)) (-6 (-885)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-598 (-221)) |has| |#1| (-998)) ((-598 (-374)) |has| |#1| (-998)) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-598 (-868 (-374))) |has| |#1| (-598 (-868 (-374)))) ((-598 (-868 (-552))) |has| |#1| (-598 (-868 (-552)))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) . T) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) . T) ((-302) . T) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-446) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-544) . T) ((-628 #0#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-771) |has| |#1| (-800)) ((-772) |has| |#1| (-800)) ((-774) |has| |#1| (-800)) ((-775) |has| |#1| (-800)) ((-800) |has| |#1| (-800)) ((-825) |has| |#1| (-800)) ((-827) -1523 (|has| |#1| (-827)) (|has| |#1| (-800))) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-374)) |has| |#1| (-862 (-374))) ((-862 (-552)) |has| |#1| (-862 (-552))) ((-860 |#1|) . T) ((-885) |has| |#1| (-885)) ((-896) . T) ((-998) |has| |#1| (-998)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-552))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 (-1149)) |has| |#1| (-1014 (-1149))) ((-1014 |#1|) . T) ((-1031 #0#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| |#1| (-1124)) ((-1186) . T) ((-1190) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2287 (($ (-1115 |#1| |#2|)) 11)) (-3907 (((-1115 |#1| |#2|) $) 12)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2154 ((|#2| $ (-236 |#1| |#2|)) 16)) (-1683 (((-839) $) NIL)) (-2089 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL)))
+(((-969 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2287 ($ (-1115 |#1| |#2|))) (-15 -3907 ((-1115 |#1| |#2|) $)) (-15 -2154 (|#2| $ (-236 |#1| |#2|))))) (-897) (-358)) (T -969))
+((-2287 (*1 *1 *2) (-12 (-5 *2 (-1115 *3 *4)) (-14 *3 (-897)) (-4 *4 (-358)) (-5 *1 (-969 *3 *4)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-1115 *3 *4)) (-5 *1 (-969 *3 *4)) (-14 *3 (-897)) (-4 *4 (-358)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-236 *4 *2)) (-14 *4 (-897)) (-4 *2 (-358)) (-5 *1 (-969 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -2287 ($ (-1115 |#1| |#2|))) (-15 -3907 ((-1115 |#1| |#2|) $)) (-15 -2154 (|#2| $ (-236 |#1| |#2|)))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 9)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-970) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $))))) (T -970))
+((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-970)))))
+(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $))))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-2327 (($ $) 46)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-3456 (((-751) $) 45)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2314 ((|#1| $) 44)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2354 ((|#1| |#1| $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2340 ((|#1| $) 47)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-2299 ((|#1| $) 43)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-971 |#1|) (-138) (-1186)) (T -971))
+((-2354 (*1 *2 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))) (-2327 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))))
+(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -2354 (|t#1| |t#1| $)) (-15 -2340 (|t#1| $)) (-15 -2327 ($ $)) (-15 -3456 ((-751) $)) (-15 -2314 (|t#1| $)) (-15 -2299 (|t#1| $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-3641 (((-112) $) 42)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL) ((|#2| $) 43)) (-2555 (((-3 (-402 (-552)) "failed") $) 78)) (-2546 (((-112) $) 72)) (-2538 (((-402 (-552)) $) 76)) (-3650 (((-112) $) 41)) (-4209 ((|#2| $) 22)) (-1996 (($ (-1 |#2| |#2|) $) 19)) (-4092 (($ $) 61)) (-3072 (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2042 (((-528) $) 67)) (-2410 (($ $) 17)) (-1683 (((-839) $) 56) (($ (-552)) 38) (($ |#2|) 36) (($ (-402 (-552))) NIL)) (-4141 (((-751)) 10)) (-1727 ((|#2| $) 71)) (-2281 (((-112) $ $) 25)) (-2307 (((-112) $ $) 69)) (-2393 (($ $) 29) (($ $ $) 28)) (-2382 (($ $ $) 26)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL)))
+(((-972 |#1| |#2|) (-10 -8 (-15 -1683 (|#1| (-402 (-552)))) (-15 -2307 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 * (|#1| |#1| (-402 (-552)))) (-15 -4092 (|#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -3650 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-973 |#2|) (-170)) (T -972))
+((-4141 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-972 *3 *4)) (-4 *3 (-973 *4)))))
+(-10 -8 (-15 -1683 (|#1| (-402 (-552)))) (-15 -2307 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 * (|#1| |#1| (-402 (-552)))) (-15 -4092 (|#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -3650 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 116 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 114 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 113)) (-1895 (((-552) $) 117 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 115 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 112)) (-1794 (((-669 (-552)) (-669 $)) 87 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 86 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 85) (((-669 |#1|) (-669 $)) 84)) (-4174 (((-3 $ "failed") $) 32)) (-3852 ((|#1| $) 77)) (-2555 (((-3 (-402 (-552)) "failed") $) 73 (|has| |#1| (-537)))) (-2546 (((-112) $) 75 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 74 (|has| |#1| (-537)))) (-2366 (($ |#1| |#1| |#1| |#1|) 78)) (-3650 (((-112) $) 30)) (-4209 ((|#1| $) 79)) (-3658 (($ $ $) 66 (|has| |#1| (-827)))) (-3332 (($ $ $) 65 (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) 88)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 70 (|has| |#1| (-358)))) (-2377 ((|#1| $) 80)) (-2387 ((|#1| $) 81)) (-2399 ((|#1| $) 82)) (-2831 (((-1093) $) 10)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) 94 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 92 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) 91 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 90 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 89 (|has| |#1| (-507 (-1149) |#1|)))) (-2154 (($ $ |#1|) 95 (|has| |#1| (-281 |#1| |#1|)))) (-3072 (($ $) 111 (|has| |#1| (-229))) (($ $ (-751)) 109 (|has| |#1| (-229))) (($ $ (-1149)) 107 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 106 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 105 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 104 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-2042 (((-528) $) 71 (|has| |#1| (-598 (-528))))) (-2410 (($ $) 83)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-402 (-552))) 60 (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552))))))) (-4243 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-1727 ((|#1| $) 76 (|has| |#1| (-1034)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $) 110 (|has| |#1| (-229))) (($ $ (-751)) 108 (|has| |#1| (-229))) (($ $ (-1149)) 103 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 102 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 101 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 100 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2346 (((-112) $ $) 63 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 62 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 64 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 61 (|has| |#1| (-827)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 69 (|has| |#1| (-358)))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-402 (-552))) 68 (|has| |#1| (-358))) (($ (-402 (-552)) $) 67 (|has| |#1| (-358)))))
+(((-973 |#1|) (-138) (-170)) (T -973))
+((-2410 (*1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-2366 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552))))) (-2555 (*1 *2 *1) (|partial| -12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552))))))
+(-13 (-38 |t#1|) (-406 |t#1|) (-227 |t#1|) (-333 |t#1|) (-372 |t#1|) (-10 -8 (-15 -2410 ($ $)) (-15 -2399 (|t#1| $)) (-15 -2387 (|t#1| $)) (-15 -2377 (|t#1| $)) (-15 -4209 (|t#1| $)) (-15 -2366 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3852 (|t#1| $)) (IF (|has| |t#1| (-285)) (-6 (-285)) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -1727 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-358)) ((-38 |#1|) . T) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-358)) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) |has| |#1| (-358)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -1523 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-628 #0#) |has| |#1| (-358)) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) |has| |#1| (-358)) ((-698 |#1|) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 #0#) |has| |#1| (-358)) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1996 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-974 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|))) (-973 |#2|) (-170) (-973 |#4|) (-170)) (T -974))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-973 *6)) (-5 *1 (-974 *4 *5 *2 *6)) (-4 *4 (-973 *5)))))
+(-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3852 ((|#1| $) 12)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-2546 (((-112) $) NIL (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) NIL (|has| |#1| (-537)))) (-2366 (($ |#1| |#1| |#1| |#1|) 16)) (-3650 (((-112) $) NIL)) (-4209 ((|#1| $) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2377 ((|#1| $) 15)) (-2387 ((|#1| $) 14)) (-2399 ((|#1| $) 13)) (-2831 (((-1093) $) NIL)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-2154 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3072 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-2410 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552))))))) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-1727 ((|#1| $) NIL (|has| |#1| (-1034)))) (-2089 (($) 8 T CONST)) (-2100 (($) 10 T CONST)) (-3768 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-358))) (($ (-402 (-552)) $) NIL (|has| |#1| (-358)))))
+(((-975 |#1|) (-973 |#1|) (-170)) (T -975))
+NIL
+(-973 |#1|)
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-2327 (($ $) 20)) (-2419 (($ (-625 |#1|)) 29)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3456 (((-751) $) 22)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) 24)) (-3966 (($ |#1| $) 15)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2314 ((|#1| $) 23)) (-2966 ((|#1| $) 19)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2354 ((|#1| |#1| $) 14)) (-1916 (((-112) $) 17)) (-3600 (($) NIL)) (-2340 ((|#1| $) 18)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) NIL)) (-2299 ((|#1| $) 26)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-976 |#1|) (-13 (-971 |#1|) (-10 -8 (-15 -2419 ($ (-625 |#1|))))) (-1073)) (T -976))
+((-2419 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-976 *3)))))
+(-13 (-971 |#1|) (-10 -8 (-15 -2419 ($ (-625 |#1|)))))
+((-3837 (($ $) 12)) (-2429 (($ $ (-552)) 13)))
+(((-977 |#1|) (-10 -8 (-15 -3837 (|#1| |#1|)) (-15 -2429 (|#1| |#1| (-552)))) (-978)) (T -977))
+NIL
+(-10 -8 (-15 -3837 (|#1| |#1|)) (-15 -2429 (|#1| |#1| (-552))))
+((-3837 (($ $) 6)) (-2429 (($ $ (-552)) 7)) (** (($ $ (-402 (-552))) 8)))
(((-978) (-138)) (T -978))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-402 (-538))))) (-3344 (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-538)))) (-3370 (*1 *1 *1) (-4 *1 (-978))))
-(-13 (-10 -8 (-15 -3370 ($ $)) (-15 -3344 ($ $ (-538))) (-15 ** ($ $ (-402 (-538))))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1763 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-2178 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2176 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-1901 (((-669 (-402 |#2|)) (-1231 $)) NIL) (((-669 (-402 |#2|))) NIL)) (-3689 (((-402 |#2|) $) NIL)) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-402 |#2|) (-345)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-4329 (((-400 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1705 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3471 (((-751)) NIL (|has| (-402 |#2|) (-363)))) (-1777 (((-112)) NIL)) (-1776 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| (-402 |#2|) (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-3 (-402 |#2|) #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| (-402 |#2|) (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-402 |#2|) $) NIL)) (-1911 (($ (-1231 (-402 |#2|)) (-1231 $)) NIL) (($ (-1231 (-402 |#2|))) 70) (($ (-1231 |#2|) |#2|) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-345)))) (-2894 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1900 (((-669 (-402 |#2|)) $ (-1231 $)) NIL) (((-669 (-402 |#2|)) $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-402 |#2|))) (|:| |vec| (-1231 (-402 |#2|)))) (-669 $) (-1231 $)) NIL) (((-669 (-402 |#2|)) (-669 $)) NIL)) (-1768 (((-1231 $) (-1231 $)) NIL)) (-4202 (($ |#3|) 65) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-3821 (((-3 $ "failed") $) NIL)) (-1755 (((-622 (-622 |#1|))) NIL (|has| |#1| (-363)))) (-1780 (((-112) |#1| |#1|) NIL)) (-3444 (((-895)) NIL)) (-3327 (($) NIL (|has| (-402 |#2|) (-363)))) (-1775 (((-112)) NIL)) (-1774 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2893 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| (-402 |#2|) (-358)))) (-3857 (($ $) NIL)) (-3166 (($) NIL (|has| (-402 |#2|) (-345)))) (-1796 (((-112) $) NIL (|has| (-402 |#2|) (-345)))) (-1886 (($ $ (-751)) NIL (|has| (-402 |#2|) (-345))) (($ $) NIL (|has| (-402 |#2|) (-345)))) (-4086 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-4131 (((-895) $) NIL (|has| (-402 |#2|) (-345))) (((-812 (-895)) $) NIL (|has| (-402 |#2|) (-345)))) (-2502 (((-112) $) NIL)) (-3736 (((-751)) NIL)) (-1769 (((-1231 $) (-1231 $)) NIL)) (-3467 (((-402 |#2|) $) NIL)) (-1756 (((-622 (-922 |#1|)) (-1149)) NIL (|has| |#1| (-358)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2130 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-2126 (((-895) $) NIL (|has| (-402 |#2|) (-363)))) (-3413 ((|#3| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3593 (((-1131) $) NIL)) (-1764 (((-669 (-402 |#2|))) 52)) (-1766 (((-669 (-402 |#2|))) 51)) (-2734 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1761 (($ (-1231 |#2|) |#2|) 71)) (-1765 (((-669 (-402 |#2|))) 50)) (-1767 (((-669 (-402 |#2|))) 49)) (-1760 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1762 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) 77)) (-1773 (((-1231 $)) 46)) (-4278 (((-1231 $)) 45)) (-1772 (((-112) $) NIL)) (-1771 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3804 (($) NIL (|has| (-402 |#2|) (-345)) CONST)) (-2492 (($ (-895)) NIL (|has| (-402 |#2|) (-363)))) (-1758 (((-3 |#2| #3="failed")) 63)) (-3594 (((-1093) $) NIL)) (-1782 (((-751)) NIL)) (-2501 (($) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| (-402 |#2|) (-358)))) (-3495 (($ (-622 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-402 |#2|) (-345)))) (-4092 (((-400 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3820 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1704 (((-751) $) NIL (|has| (-402 |#2|) (-358)))) (-4159 ((|#1| $ |#1| |#1|) NIL)) (-1759 (((-3 |#2| #3#)) 62)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-4117 (((-402 |#2|) (-1231 $)) NIL) (((-402 |#2|)) 42)) (-1887 (((-751) $) NIL (|has| (-402 |#2|) (-345))) (((-3 (-751) "failed") $ $) NIL (|has| (-402 |#2|) (-345)))) (-4170 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-2500 (((-669 (-402 |#2|)) (-1231 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-3536 ((|#3|) 53)) (-1790 (($) NIL (|has| (-402 |#2|) (-345)))) (-3575 (((-1231 (-402 |#2|)) $ (-1231 $)) NIL) (((-669 (-402 |#2|)) (-1231 $) (-1231 $)) NIL) (((-1231 (-402 |#2|)) $) 72) (((-669 (-402 |#2|)) (-1231 $)) NIL)) (-4330 (((-1231 (-402 |#2|)) $) NIL) (($ (-1231 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-402 |#2|) (-345)))) (-1770 (((-1231 $) (-1231 $)) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-538))) NIL (-3891 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-1014 (-402 (-538)))))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-3035 (($ $) NIL (|has| (-402 |#2|) (-345))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-2698 ((|#3| $) NIL)) (-3461 (((-751)) NIL)) (-1779 (((-112)) 60)) (-1778 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-2128 (((-1231 $)) 121)) (-2177 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1757 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1781 (((-112)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-538)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-538))) NIL (|has| (-402 |#2|) (-358)))))
-(((-979 |#1| |#2| |#3| |#4| |#5|) (-337 |#1| |#2| |#3|) (-1190) (-1207 |#1|) (-1207 (-402 |#2|)) (-402 |#2|) (-751)) (T -979))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-402 (-552))))) (-2429 (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-552)))) (-3837 (*1 *1 *1) (-4 *1 (-978))))
+(-13 (-10 -8 (-15 -3837 ($ $)) (-15 -2429 ($ $ (-552))) (-15 ** ($ $ (-402 (-552))))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1706 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-3528 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-3509 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2570 (((-669 (-402 |#2|)) (-1232 $)) NIL) (((-669 (-402 |#2|))) NIL)) (-1650 (((-402 |#2|) $) NIL)) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-402 |#2|) (-344)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1330 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2408 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-2894 (((-751)) NIL (|has| (-402 |#2|) (-363)))) (-1861 (((-112)) NIL)) (-1852 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| (-402 |#2|) (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-3 (-402 |#2|) "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| (-402 |#2|) (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-402 |#2|) $) NIL)) (-2670 (($ (-1232 (-402 |#2|)) (-1232 $)) NIL) (($ (-1232 (-402 |#2|))) 70) (($ (-1232 |#2|) |#2|) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-344)))) (-2851 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2559 (((-669 (-402 |#2|)) $ (-1232 $)) NIL) (((-669 (-402 |#2|)) $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-402 |#2|))) (|:| |vec| (-1232 (-402 |#2|)))) (-669 $) (-1232 $)) NIL) (((-669 (-402 |#2|)) (-669 $)) NIL)) (-1760 (((-1232 $) (-1232 $)) NIL)) (-2163 (($ |#3|) 65) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-4174 (((-3 $ "failed") $) NIL)) (-1615 (((-625 (-625 |#1|))) NIL (|has| |#1| (-363)))) (-3701 (((-112) |#1| |#1|) NIL)) (-3442 (((-897)) NIL)) (-3702 (($) NIL (|has| (-402 |#2|) (-363)))) (-1839 (((-112)) NIL)) (-1826 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2826 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| (-402 |#2|) (-358)))) (-1294 (($ $) NIL)) (-4279 (($) NIL (|has| (-402 |#2|) (-344)))) (-3872 (((-112) $) NIL (|has| (-402 |#2|) (-344)))) (-3554 (($ $ (-751)) NIL (|has| (-402 |#2|) (-344))) (($ $) NIL (|has| (-402 |#2|) (-344)))) (-2951 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2172 (((-897) $) NIL (|has| (-402 |#2|) (-344))) (((-813 (-897)) $) NIL (|has| (-402 |#2|) (-344)))) (-3650 (((-112) $) NIL)) (-1682 (((-751)) NIL)) (-1770 (((-1232 $) (-1232 $)) NIL)) (-4209 (((-402 |#2|) $) NIL)) (-1626 (((-625 (-928 |#1|)) (-1149)) NIL (|has| |#1| (-358)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1291 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-4318 (((-897) $) NIL (|has| (-402 |#2|) (-363)))) (-2148 ((|#3| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2883 (((-1131) $) NIL)) (-1718 (((-669 (-402 |#2|))) 52)) (-1740 (((-669 (-402 |#2|))) 51)) (-4092 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1684 (($ (-1232 |#2|) |#2|) 71)) (-1729 (((-669 (-402 |#2|))) 50)) (-1750 (((-669 (-402 |#2|))) 49)) (-1672 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1696 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) 77)) (-1816 (((-1232 $)) 46)) (-3993 (((-1232 $)) 45)) (-1805 (((-112) $) NIL)) (-1793 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2071 (($) NIL (|has| (-402 |#2|) (-344)) CONST)) (-3123 (($ (-897)) NIL (|has| (-402 |#2|) (-363)))) (-1649 (((-3 |#2| "failed")) 63)) (-2831 (((-1093) $) NIL)) (-3722 (((-751)) NIL)) (-3212 (($) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| (-402 |#2|) (-358)))) (-2633 (($ (-625 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-402 |#2|) (-344)))) (-3824 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-2802 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2397 (((-751) $) NIL (|has| (-402 |#2|) (-358)))) (-2154 ((|#1| $ |#1| |#1|) NIL)) (-1661 (((-3 |#2| "failed")) 62)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3217 (((-402 |#2|) (-1232 $)) NIL) (((-402 |#2|)) 42)) (-3563 (((-751) $) NIL (|has| (-402 |#2|) (-344))) (((-3 (-751) "failed") $ $) NIL (|has| (-402 |#2|) (-344)))) (-3072 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-3640 (((-669 (-402 |#2|)) (-1232 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-3610 ((|#3|) 53)) (-3798 (($) NIL (|has| (-402 |#2|) (-344)))) (-2780 (((-1232 (-402 |#2|)) $ (-1232 $)) NIL) (((-669 (-402 |#2|)) (-1232 $) (-1232 $)) NIL) (((-1232 (-402 |#2|)) $) 72) (((-669 (-402 |#2|)) (-1232 $)) NIL)) (-2042 (((-1232 (-402 |#2|)) $) NIL) (($ (-1232 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-402 |#2|) (-344)))) (-1781 (((-1232 $) (-1232 $)) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-552))) NIL (-1523 (|has| (-402 |#2|) (-1014 (-402 (-552)))) (|has| (-402 |#2|) (-358)))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-4243 (($ $) NIL (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-3974 ((|#3| $) NIL)) (-4141 (((-751)) NIL)) (-1882 (((-112)) 60)) (-1872 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-1270 (((-1232 $)) 121)) (-3518 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3711 (((-112)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-552)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-552))) NIL (|has| (-402 |#2|) (-358)))))
+(((-979 |#1| |#2| |#3| |#4| |#5|) (-337 |#1| |#2| |#3|) (-1190) (-1208 |#1|) (-1208 (-402 |#2|)) (-402 |#2|) (-751)) (T -979))
NIL
(-337 |#1| |#2| |#3|)
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3350 (((-622 (-538)) $) 54)) (-3346 (($ (-622 (-538))) 62)) (-3464 (((-538) $) 40 (|has| (-538) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-538) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) 49) (((-3 (-1149) #2#) $) NIL (|has| (-538) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) 47 (|has| (-538) (-1014 (-538)))) (((-3 (-538) #2#) $) 49 (|has| (-538) (-1014 (-538))))) (-3507 (((-538) $) NIL) (((-1149) $) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-538) (-1014 (-538)))) (((-538) $) NIL (|has| (-538) (-1014 (-538))))) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-538) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3348 (((-622 (-538)) $) 60)) (-3537 (((-112) $) NIL (|has| (-538) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-538) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-538) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-538) $) 37)) (-3803 (((-3 $ "failed") $) NIL (|has| (-538) (-1124)))) (-3538 (((-112) $) NIL (|has| (-538) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-538) (-827)))) (-4318 (($ (-1 (-538) (-538)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-538) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-538) (-302))) (((-402 (-538)) $) 42)) (-3349 (((-1126 (-538)) $) 59)) (-3345 (($ (-622 (-538)) (-622 (-538))) 63)) (-3465 (((-538) $) 53 (|has| (-538) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-538)) (-622 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-538) (-538)) NIL (|has| (-538) (-304 (-538)))) (($ $ (-288 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-288 (-538)))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-1149)) (-622 (-538))) NIL (|has| (-538) (-507 (-1149) (-538)))) (($ $ (-1149) (-538)) NIL (|has| (-538) (-507 (-1149) (-538))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-538)) NIL (|has| (-538) (-281 (-538) (-538))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) 11 (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-538) $) 39)) (-3347 (((-622 (-538)) $) 61)) (-4330 (((-866 (-538)) $) NIL (|has| (-538) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-538) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-538) (-598 (-527)))) (((-373) $) NIL (|has| (-538) (-996))) (((-221) $) NIL (|has| (-538) (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-538) (-886))))) (-4317 (((-840) $) 77) (($ (-538)) 43) (($ $) NIL) (($ (-402 (-538))) 20) (($ (-538)) 43) (($ (-1149)) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) 18)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-538) (-886))) (|has| (-538) (-143))))) (-3461 (((-751)) 9)) (-3466 (((-538) $) 51 (|has| (-538) (-537)))) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| (-538) (-800)))) (-2991 (($) 10 T CONST)) (-2997 (($) 12 T CONST)) (-3002 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-538) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3387 (((-112) $ $) 14)) (-3017 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3018 (((-112) $ $) 33 (|has| (-538) (-827)))) (-4308 (($ $ $) 29) (($ (-538) (-538)) 31)) (-4197 (($ $) 15) (($ $ $) 23)) (-4199 (($ $ $) 21)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 25) (($ $ $) 27) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-538) $) 25) (($ $ (-538)) NIL)))
-(((-980 |#1|) (-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -3350 ((-622 (-538)) $)) (-15 -3349 ((-1126 (-538)) $)) (-15 -3348 ((-622 (-538)) $)) (-15 -3347 ((-622 (-538)) $)) (-15 -3346 ($ (-622 (-538)))) (-15 -3345 ($ (-622 (-538)) (-622 (-538)))))) (-538)) (T -980))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3346 (*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3345 (*1 *1 *2 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))))
-(-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -3350 ((-622 (-538)) $)) (-15 -3349 ((-1126 (-538)) $)) (-15 -3348 ((-622 (-538)) $)) (-15 -3347 ((-622 (-538)) $)) (-15 -3346 ($ (-622 (-538)))) (-15 -3345 ($ (-622 (-538)) (-622 (-538))))))
-((-3351 (((-51) (-402 (-538)) (-538)) 9)))
-(((-981) (-10 -7 (-15 -3351 ((-51) (-402 (-538)) (-538))))) (T -981))
-((-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-538))) (-5 *4 (-538)) (-5 *2 (-51)) (-5 *1 (-981)))))
-(-10 -7 (-15 -3351 ((-51) (-402 (-538)) (-538))))
-((-3471 (((-538)) 13)) (-3354 (((-538)) 16)) (-3353 (((-1237) (-538)) 15)) (-3352 (((-538) (-538)) 17) (((-538)) 12)))
-(((-982) (-10 -7 (-15 -3352 ((-538))) (-15 -3471 ((-538))) (-15 -3352 ((-538) (-538))) (-15 -3353 ((-1237) (-538))) (-15 -3354 ((-538))))) (T -982))
-((-3354 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-982)))) (-3352 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))) (-3471 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))) (-3352 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))))
-(-10 -7 (-15 -3352 ((-538))) (-15 -3471 ((-538))) (-15 -3352 ((-538) (-538))) (-15 -3353 ((-1237) (-538))) (-15 -3354 ((-538))))
-((-4093 (((-400 |#1|) |#1|) 41)) (-4092 (((-400 |#1|) |#1|) 40)))
-(((-983 |#1|) (-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1|))) (-1207 (-402 (-538)))) (T -983))
-((-4093 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1207 (-402 (-538)))))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1207 (-402 (-538)))))))
-(-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1|)))
-((-3357 (((-3 (-402 (-538)) "failed") |#1|) 15)) (-3356 (((-112) |#1|) 14)) (-3355 (((-402 (-538)) |#1|) 10)))
-(((-984 |#1|) (-10 -7 (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|))) (-1014 (-402 (-538)))) (T -984))
-((-3357 (*1 *2 *3) (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2)))) (-3356 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-1014 (-402 (-538)))))) (-3355 (*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2)))))
-(-10 -7 (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)))
-((-4147 ((|#2| $ "value" |#2|) 12)) (-4159 ((|#2| $ "value") 10)) (-3361 (((-112) $ $) 18)))
-(((-985 |#1| |#2|) (-10 -8 (-15 -4147 (|#2| |#1| "value" |#2|)) (-15 -3361 ((-112) |#1| |#1|)) (-15 -4159 (|#2| |#1| "value"))) (-986 |#2|) (-1185)) (T -985))
-NIL
-(-10 -8 (-15 -4147 (|#2| |#1| "value" |#2|)) (-15 -3361 ((-112) |#1| |#1|)) (-15 -4159 (|#2| |#1| "value")))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ "value") 47)) (-3362 (((-538) $ $) 44)) (-3996 (((-112) $) 46)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-986 |#1|) (-138) (-1185)) (T -986))
-((-3876 (*1 *2 *1) (-12 (-4 *3 (-1185)) (-5 *2 (-622 *1)) (-4 *1 (-986 *3)))) (-3364 (*1 *2 *1) (-12 (-4 *3 (-1185)) (-5 *2 (-622 *1)) (-4 *1 (-986 *3)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1185)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-986 *2)) (-4 *2 (-1185)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-622 *3)))) (-3362 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-538)))) (-3361 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3360 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3359 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *1)) (|has| *1 (-6 -4354)) (-4 *1 (-986 *3)) (-4 *3 (-1185)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1185)))) (-3358 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1185)))))
-(-13 (-483 |t#1|) (-10 -8 (-15 -3876 ((-622 $) $)) (-15 -3364 ((-622 $) $)) (-15 -3881 ((-112) $)) (-15 -3761 (|t#1| $)) (-15 -4159 (|t#1| $ "value")) (-15 -3996 ((-112) $)) (-15 -3363 ((-622 |t#1|) $)) (-15 -3362 ((-538) $ $)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -3361 ((-112) $ $)) (-15 -3360 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -3359 ($ $ (-622 $))) (-15 -4147 (|t#1| $ "value" |t#1|)) (-15 -3358 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-3370 (($ $) 9) (($ $ (-895)) 43) (($ (-402 (-538))) 13) (($ (-538)) 15)) (-3534 (((-3 $ "failed") (-1143 $) (-895) (-840)) 23) (((-3 $ "failed") (-1143 $) (-895)) 28)) (-3344 (($ $ (-538)) 49)) (-3461 (((-751)) 17)) (-3535 (((-622 $) (-1143 $)) NIL) (((-622 $) (-1143 (-402 (-538)))) 54) (((-622 $) (-1143 (-538))) 59) (((-622 $) (-922 $)) 63) (((-622 $) (-922 (-402 (-538)))) 67) (((-622 $) (-922 (-538))) 71)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL) (($ $ (-402 (-538))) 47)))
-(((-987 |#1|) (-10 -8 (-15 -3370 (|#1| (-538))) (-15 -3370 (|#1| (-402 (-538)))) (-15 -3370 (|#1| |#1| (-895))) (-15 -3535 ((-622 |#1|) (-922 (-538)))) (-15 -3535 ((-622 |#1|) (-922 (-402 (-538))))) (-15 -3535 ((-622 |#1|) (-922 |#1|))) (-15 -3535 ((-622 |#1|) (-1143 (-538)))) (-15 -3535 ((-622 |#1|) (-1143 (-402 (-538))))) (-15 -3535 ((-622 |#1|) (-1143 |#1|))) (-15 -3534 ((-3 |#1| "failed") (-1143 |#1|) (-895))) (-15 -3534 ((-3 |#1| "failed") (-1143 |#1|) (-895) (-840))) (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -3344 (|#1| |#1| (-538))) (-15 -3370 (|#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -3461 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895)))) (-988)) (T -987))
-((-3461 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-987 *3)) (-4 *3 (-988)))))
-(-10 -8 (-15 -3370 (|#1| (-538))) (-15 -3370 (|#1| (-402 (-538)))) (-15 -3370 (|#1| |#1| (-895))) (-15 -3535 ((-622 |#1|) (-922 (-538)))) (-15 -3535 ((-622 |#1|) (-922 (-402 (-538))))) (-15 -3535 ((-622 |#1|) (-922 |#1|))) (-15 -3535 ((-622 |#1|) (-1143 (-538)))) (-15 -3535 ((-622 |#1|) (-1143 (-402 (-538))))) (-15 -3535 ((-622 |#1|) (-1143 |#1|))) (-15 -3534 ((-3 |#1| "failed") (-1143 |#1|) (-895))) (-15 -3534 ((-3 |#1| "failed") (-1143 |#1|) (-895) (-840))) (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -3344 (|#1| |#1| (-538))) (-15 -3370 (|#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -3461 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 87)) (-2178 (($ $) 88)) (-2176 (((-112) $) 90)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 107)) (-4329 (((-400 $) $) 108)) (-3370 (($ $) 71) (($ $ (-895)) 57) (($ (-402 (-538))) 56) (($ (-538)) 55)) (-1705 (((-112) $ $) 98)) (-3986 (((-538) $) 124)) (-3896 (($) 17 T CONST)) (-3534 (((-3 $ "failed") (-1143 $) (-895) (-840)) 65) (((-3 $ "failed") (-1143 $) (-895)) 64)) (-3508 (((-3 (-538) #1="failed") $) 83 (|has| (-402 (-538)) (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 81 (|has| (-402 (-538)) (-1014 (-402 (-538))))) (((-3 (-402 (-538)) #1#) $) 79)) (-3507 (((-538) $) 84 (|has| (-402 (-538)) (-1014 (-538)))) (((-402 (-538)) $) 82 (|has| (-402 (-538)) (-1014 (-402 (-538))))) (((-402 (-538)) $) 78)) (-3366 (($ $ (-840)) 54)) (-3365 (($ $ (-840)) 53)) (-2894 (($ $ $) 102)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 101)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 96)) (-4086 (((-112) $) 109)) (-3537 (((-112) $) 122)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 70)) (-3538 (((-112) $) 123)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 105)) (-3677 (($ $ $) 121)) (-3678 (($ $ $) 120)) (-3367 (((-3 (-1143 $) "failed") $) 66)) (-3369 (((-3 (-840) "failed") $) 68)) (-3368 (((-3 (-1143 $) "failed") $) 67)) (-2013 (($ (-622 $)) 94) (($ $ $) 93)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 110)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 95)) (-3495 (($ (-622 $)) 92) (($ $ $) 91)) (-4092 (((-400 $) $) 106)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 103)) (-3820 (((-3 $ "failed") $ $) 86)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 97)) (-1704 (((-751) $) 99)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 100)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 114) (($ $) 85) (($ (-402 (-538))) 80) (($ (-538)) 77) (($ (-402 (-538))) 74)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 89)) (-4129 (((-402 (-538)) $ $) 52)) (-3535 (((-622 $) (-1143 $)) 63) (((-622 $) (-1143 (-402 (-538)))) 62) (((-622 $) (-1143 (-538))) 61) (((-622 $) (-922 $)) 60) (((-622 $) (-922 (-402 (-538)))) 59) (((-622 $) (-922 (-538))) 58)) (-3742 (($ $) 125)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 118)) (-2897 (((-112) $ $) 117)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 119)) (-3018 (((-112) $ $) 116)) (-4308 (($ $ $) 115)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 111) (($ $ (-402 (-538))) 69)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ (-402 (-538)) $) 113) (($ $ (-402 (-538))) 112) (($ (-538) $) 76) (($ $ (-538)) 75) (($ (-402 (-538)) $) 73) (($ $ (-402 (-538))) 72)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2491 (((-625 (-552)) $) 54)) (-2449 (($ (-625 (-552))) 62)) (-4177 (((-552) $) 40 (|has| (-552) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-552) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) 49) (((-3 (-1149) "failed") $) NIL (|has| (-552) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) 47 (|has| (-552) (-1014 (-552)))) (((-3 (-552) "failed") $) 49 (|has| (-552) (-1014 (-552))))) (-1895 (((-552) $) NIL) (((-1149) $) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-552) (-1014 (-552)))) (((-552) $) NIL (|has| (-552) (-1014 (-552))))) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-552) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-2470 (((-625 (-552)) $) 60)) (-3620 (((-112) $) NIL (|has| (-552) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-552) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-552) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-552) $) 37)) (-4034 (((-3 $ "failed") $) NIL (|has| (-552) (-1124)))) (-3630 (((-112) $) NIL (|has| (-552) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-552) (-827)))) (-1996 (($ (-1 (-552) (-552)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-552) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-552) (-302))) (((-402 (-552)) $) 42)) (-2479 (((-1129 (-552)) $) 59)) (-2439 (($ (-625 (-552)) (-625 (-552))) 63)) (-4189 (((-552) $) 53 (|has| (-552) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-552)) (-625 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-304 (-552)))) (($ $ (-289 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-289 (-552)))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-1149)) (-625 (-552))) NIL (|has| (-552) (-507 (-1149) (-552)))) (($ $ (-1149) (-552)) NIL (|has| (-552) (-507 (-1149) (-552))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-552)) NIL (|has| (-552) (-281 (-552) (-552))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) 11 (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-552) $) 39)) (-2461 (((-625 (-552)) $) 61)) (-2042 (((-868 (-552)) $) NIL (|has| (-552) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-552) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-552) (-598 (-528)))) (((-374) $) NIL (|has| (-552) (-998))) (((-221) $) NIL (|has| (-552) (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-552) (-885))))) (-1683 (((-839) $) 77) (($ (-552)) 43) (($ $) NIL) (($ (-402 (-552))) 20) (($ (-552)) 43) (($ (-1149)) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) 18)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-552) (-885))) (|has| (-552) (-143))))) (-4141 (((-751)) 9)) (-4199 (((-552) $) 51 (|has| (-552) (-537)))) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| (-552) (-800)))) (-2089 (($) 10 T CONST)) (-2100 (($) 12 T CONST)) (-3768 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2281 (((-112) $ $) 14)) (-2334 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2307 (((-112) $ $) 33 (|has| (-552) (-827)))) (-2404 (($ $ $) 29) (($ (-552) (-552)) 31)) (-2393 (($ $) 15) (($ $ $) 23)) (-2382 (($ $ $) 21)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 25) (($ $ $) 27) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-552) $) 25) (($ $ (-552)) NIL)))
+(((-980 |#1|) (-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -2491 ((-625 (-552)) $)) (-15 -2479 ((-1129 (-552)) $)) (-15 -2470 ((-625 (-552)) $)) (-15 -2461 ((-625 (-552)) $)) (-15 -2449 ($ (-625 (-552)))) (-15 -2439 ($ (-625 (-552)) (-625 (-552)))))) (-552)) (T -980))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2439 (*1 *1 *2 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))))
+(-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -2491 ((-625 (-552)) $)) (-15 -2479 ((-1129 (-552)) $)) (-15 -2470 ((-625 (-552)) $)) (-15 -2461 ((-625 (-552)) $)) (-15 -2449 ($ (-625 (-552)))) (-15 -2439 ($ (-625 (-552)) (-625 (-552))))))
+((-2500 (((-52) (-402 (-552)) (-552)) 9)))
+(((-981) (-10 -7 (-15 -2500 ((-52) (-402 (-552)) (-552))))) (T -981))
+((-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-552))) (-5 *4 (-552)) (-5 *2 (-52)) (-5 *1 (-981)))))
+(-10 -7 (-15 -2500 ((-52) (-402 (-552)) (-552))))
+((-2894 (((-552)) 13)) (-2528 (((-552)) 16)) (-2519 (((-1237) (-552)) 15)) (-2510 (((-552) (-552)) 17) (((-552)) 12)))
+(((-982) (-10 -7 (-15 -2510 ((-552))) (-15 -2894 ((-552))) (-15 -2510 ((-552) (-552))) (-15 -2519 ((-1237) (-552))) (-15 -2528 ((-552))))) (T -982))
+((-2528 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-982)))) (-2510 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))) (-2894 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))) (-2510 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))))
+(-10 -7 (-15 -2510 ((-552))) (-15 -2894 ((-552))) (-15 -2510 ((-552) (-552))) (-15 -2519 ((-1237) (-552))) (-15 -2528 ((-552))))
+((-3011 (((-413 |#1|) |#1|) 41)) (-3824 (((-413 |#1|) |#1|) 40)))
+(((-983 |#1|) (-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1|))) (-1208 (-402 (-552)))) (T -983))
+((-3011 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1208 (-402 (-552)))))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1208 (-402 (-552)))))))
+(-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1|)))
+((-2555 (((-3 (-402 (-552)) "failed") |#1|) 15)) (-2546 (((-112) |#1|) 14)) (-2538 (((-402 (-552)) |#1|) 10)))
+(((-984 |#1|) (-10 -7 (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|))) (-1014 (-402 (-552)))) (T -984))
+((-2555 (*1 *2 *3) (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2)))) (-2546 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-1014 (-402 (-552)))))) (-2538 (*1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2)))))
+(-10 -7 (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)))
+((-1851 ((|#2| $ "value" |#2|) 12)) (-2154 ((|#2| $ "value") 10)) (-1380 (((-112) $ $) 18)))
+(((-985 |#1| |#2|) (-10 -8 (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1380 ((-112) |#1| |#1|)) (-15 -2154 (|#2| |#1| "value"))) (-986 |#2|) (-1186)) (T -985))
+NIL
+(-10 -8 (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1380 ((-112) |#1| |#1|)) (-15 -2154 (|#2| |#1| "value")))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47)) (-1389 (((-552) $ $) 44)) (-2316 (((-112) $) 46)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-986 |#1|) (-138) (-1186)) (T -986))
+((-3320 (*1 *2 *1) (-12 (-4 *3 (-1186)) (-5 *2 (-625 *1)) (-4 *1 (-986 *3)))) (-1399 (*1 *2 *1) (-12 (-4 *3 (-1186)) (-5 *2 (-625 *1)) (-4 *1 (-986 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1186)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-986 *2)) (-4 *2 (-1186)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-625 *3)))) (-1389 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-552)))) (-1380 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-112)))) (-1371 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-112)))) (-1359 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *1)) (|has| *1 (-6 -4354)) (-4 *1 (-986 *3)) (-4 *3 (-1186)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1186)))) (-2565 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1186)))))
+(-13 (-483 |t#1|) (-10 -8 (-15 -3320 ((-625 $) $)) (-15 -1399 ((-625 $) $)) (-15 -3367 ((-112) $)) (-15 -3800 (|t#1| $)) (-15 -2154 (|t#1| $ "value")) (-15 -2316 ((-112) $)) (-15 -3183 ((-625 |t#1|) $)) (-15 -1389 ((-552) $ $)) (IF (|has| |t#1| (-1073)) (PROGN (-15 -1380 ((-112) $ $)) (-15 -1371 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -1359 ($ $ (-625 $))) (-15 -1851 (|t#1| $ "value" |t#1|)) (-15 -2565 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-3837 (($ $) 9) (($ $ (-897)) 43) (($ (-402 (-552))) 13) (($ (-552)) 15)) (-3588 (((-3 $ "failed") (-1145 $) (-897) (-839)) 23) (((-3 $ "failed") (-1145 $) (-897)) 28)) (-2429 (($ $ (-552)) 49)) (-4141 (((-751)) 17)) (-3599 (((-625 $) (-1145 $)) NIL) (((-625 $) (-1145 (-402 (-552)))) 54) (((-625 $) (-1145 (-552))) 59) (((-625 $) (-928 $)) 63) (((-625 $) (-928 (-402 (-552)))) 67) (((-625 $) (-928 (-552))) 71)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL) (($ $ (-402 (-552))) 47)))
+(((-987 |#1|) (-10 -8 (-15 -3837 (|#1| (-552))) (-15 -3837 (|#1| (-402 (-552)))) (-15 -3837 (|#1| |#1| (-897))) (-15 -3599 ((-625 |#1|) (-928 (-552)))) (-15 -3599 ((-625 |#1|) (-928 (-402 (-552))))) (-15 -3599 ((-625 |#1|) (-928 |#1|))) (-15 -3599 ((-625 |#1|) (-1145 (-552)))) (-15 -3599 ((-625 |#1|) (-1145 (-402 (-552))))) (-15 -3599 ((-625 |#1|) (-1145 |#1|))) (-15 -3588 ((-3 |#1| "failed") (-1145 |#1|) (-897))) (-15 -3588 ((-3 |#1| "failed") (-1145 |#1|) (-897) (-839))) (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -2429 (|#1| |#1| (-552))) (-15 -3837 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -4141 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897)))) (-988)) (T -987))
+((-4141 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-987 *3)) (-4 *3 (-988)))))
+(-10 -8 (-15 -3837 (|#1| (-552))) (-15 -3837 (|#1| (-402 (-552)))) (-15 -3837 (|#1| |#1| (-897))) (-15 -3599 ((-625 |#1|) (-928 (-552)))) (-15 -3599 ((-625 |#1|) (-928 (-402 (-552))))) (-15 -3599 ((-625 |#1|) (-928 |#1|))) (-15 -3599 ((-625 |#1|) (-1145 (-552)))) (-15 -3599 ((-625 |#1|) (-1145 (-402 (-552))))) (-15 -3599 ((-625 |#1|) (-1145 |#1|))) (-15 -3588 ((-3 |#1| "failed") (-1145 |#1|) (-897))) (-15 -3588 ((-3 |#1| "failed") (-1145 |#1|) (-897) (-839))) (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -2429 (|#1| |#1| (-552))) (-15 -3837 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -4141 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 87)) (-3528 (($ $) 88)) (-3509 (((-112) $) 90)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 107)) (-1330 (((-413 $) $) 108)) (-3837 (($ $) 71) (($ $ (-897)) 57) (($ (-402 (-552))) 56) (($ (-552)) 55)) (-2408 (((-112) $ $) 98)) (-4127 (((-552) $) 124)) (-3101 (($) 17 T CONST)) (-3588 (((-3 $ "failed") (-1145 $) (-897) (-839)) 65) (((-3 $ "failed") (-1145 $) (-897)) 64)) (-1893 (((-3 (-552) "failed") $) 83 (|has| (-402 (-552)) (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 81 (|has| (-402 (-552)) (-1014 (-402 (-552))))) (((-3 (-402 (-552)) "failed") $) 79)) (-1895 (((-552) $) 84 (|has| (-402 (-552)) (-1014 (-552)))) (((-402 (-552)) $) 82 (|has| (-402 (-552)) (-1014 (-402 (-552))))) (((-402 (-552)) $) 78)) (-1419 (($ $ (-839)) 54)) (-1409 (($ $ (-839)) 53)) (-2851 (($ $ $) 102)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 101)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 96)) (-2951 (((-112) $) 109)) (-3620 (((-112) $) 122)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 70)) (-3630 (((-112) $) 123)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 105)) (-3658 (($ $ $) 121)) (-3332 (($ $ $) 120)) (-1429 (((-3 (-1145 $) "failed") $) 66)) (-1452 (((-3 (-839) "failed") $) 68)) (-1441 (((-3 (-1145 $) "failed") $) 67)) (-2605 (($ (-625 $)) 94) (($ $ $) 93)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 110)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 95)) (-2633 (($ (-625 $)) 92) (($ $ $) 91)) (-3824 (((-413 $) $) 106)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 103)) (-2802 (((-3 $ "failed") $ $) 86)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 97)) (-2397 (((-751) $) 99)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 100)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 114) (($ $) 85) (($ (-402 (-552))) 80) (($ (-552)) 77) (($ (-402 (-552))) 74)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 89)) (-2874 (((-402 (-552)) $ $) 52)) (-3599 (((-625 $) (-1145 $)) 63) (((-625 $) (-1145 (-402 (-552)))) 62) (((-625 $) (-1145 (-552))) 61) (((-625 $) (-928 $)) 60) (((-625 $) (-928 (-402 (-552)))) 59) (((-625 $) (-928 (-552))) 58)) (-1727 (($ $) 125)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 118)) (-2320 (((-112) $ $) 117)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 119)) (-2307 (((-112) $ $) 116)) (-2404 (($ $ $) 115)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 111) (($ $ (-402 (-552))) 69)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ (-402 (-552)) $) 113) (($ $ (-402 (-552))) 112) (($ (-552) $) 76) (($ $ (-552)) 75) (($ (-402 (-552)) $) 73) (($ $ (-402 (-552))) 72)))
(((-988) (-138)) (T -988))
-((-3370 (*1 *1 *1) (-4 *1 (-988))) (-3369 (*1 *2 *1) (|partial| -12 (-4 *1 (-988)) (-5 *2 (-840)))) (-3368 (*1 *2 *1) (|partial| -12 (-5 *2 (-1143 *1)) (-4 *1 (-988)))) (-3367 (*1 *2 *1) (|partial| -12 (-5 *2 (-1143 *1)) (-4 *1 (-988)))) (-3534 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1143 *1)) (-5 *3 (-895)) (-5 *4 (-840)) (-4 *1 (-988)))) (-3534 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1143 *1)) (-5 *3 (-895)) (-4 *1 (-988)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-988)) (-5 *2 (-622 *1)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-1143 (-402 (-538)))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-1143 (-538))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-988)) (-5 *2 (-622 *1)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-922 (-538))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) (-3370 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-895)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-4 *1 (-988)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-988)))) (-3366 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-840)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-840)))) (-4129 (*1 *2 *1 *1) (-12 (-4 *1 (-988)) (-5 *2 (-402 (-538))))))
-(-13 (-145) (-825) (-170) (-358) (-407 (-402 (-538))) (-38 (-538)) (-38 (-402 (-538))) (-978) (-10 -8 (-15 -3369 ((-3 (-840) "failed") $)) (-15 -3368 ((-3 (-1143 $) "failed") $)) (-15 -3367 ((-3 (-1143 $) "failed") $)) (-15 -3534 ((-3 $ "failed") (-1143 $) (-895) (-840))) (-15 -3534 ((-3 $ "failed") (-1143 $) (-895))) (-15 -3535 ((-622 $) (-1143 $))) (-15 -3535 ((-622 $) (-1143 (-402 (-538))))) (-15 -3535 ((-622 $) (-1143 (-538)))) (-15 -3535 ((-622 $) (-922 $))) (-15 -3535 ((-622 $) (-922 (-402 (-538))))) (-15 -3535 ((-622 $) (-922 (-538)))) (-15 -3370 ($ $ (-895))) (-15 -3370 ($ $)) (-15 -3370 ($ (-402 (-538)))) (-15 -3370 ($ (-538))) (-15 -3366 ($ $ (-840))) (-15 -3365 ($ $ (-840))) (-15 -4129 ((-402 (-538)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 #2=(-538)) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-840)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-407 (-402 (-538))) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 #2#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 #2#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-825) . T) ((-827) . T) ((-897) . T) ((-978) . T) ((-1014 (-402 (-538))) . T) ((-1014 (-538)) |has| (-402 (-538)) (-1014 (-538))) ((-1031 #1#) . T) ((-1031 #2#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T))
-((-3371 (((-2 (|:| |ans| |#2|) (|:| -3472 |#2|) (|:| |sol?| (-112))) (-538) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
-(((-989 |#1| |#2|) (-10 -7 (-15 -3371 ((-2 (|:| |ans| |#2|) (|:| -3472 |#2|) (|:| |sol?| (-112))) (-538) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-27) (-416 |#1|))) (T -989))
-((-3371 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1149)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-622 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1171) (-27) (-416 *8))) (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-538)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3472 *4) (|:| |sol?| (-112)))) (-5 *1 (-989 *8 *4)))))
-(-10 -7 (-15 -3371 ((-2 (|:| |ans| |#2|) (|:| -3472 |#2|) (|:| |sol?| (-112))) (-538) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3372 (((-3 (-622 |#2|) "failed") (-538) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-990 |#1| |#2|) (-10 -7 (-15 -3372 ((-3 (-622 |#2|) "failed") (-538) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-27) (-416 |#1|))) (T -990))
-((-3372 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1149)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-622 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1171) (-27) (-416 *8))) (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-538)) (-5 *2 (-622 *4)) (-5 *1 (-990 *8 *4)))))
-(-10 -7 (-15 -3372 ((-3 (-622 |#2|) "failed") (-538) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3375 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3617 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-538)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-538) (-1 |#2| |#2|)) 30)) (-3373 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 58)) (-3374 (((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|)) 63)))
-(((-991 |#1| |#2|) (-10 -7 (-15 -3373 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3374 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -3375 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3617 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-538)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-538) (-1 |#2| |#2|)))) (-13 (-358) (-145) (-1014 (-538))) (-1207 |#1|)) (T -991))
-((-3375 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1207 *6)) (-4 *6 (-13 (-358) (-145) (-1014 *4))) (-5 *4 (-538)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3617 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-991 *6 *3)))) (-3374 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112)))) (-5 *1 (-991 *4 *5)) (-5 *3 (-402 *5)))) (-3373 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6)) (|:| -3429 *6))) (-5 *1 (-991 *5 *6)) (-5 *3 (-402 *6)))))
-(-10 -7 (-15 -3373 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3374 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -3375 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3617 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-538)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-538) (-1 |#2| |#2|))))
-((-3376 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 22)) (-3377 (((-3 (-622 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 33)))
-(((-992 |#1| |#2|) (-10 -7 (-15 -3376 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3377 ((-3 (-622 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)))) (-13 (-358) (-145) (-1014 (-538))) (-1207 |#1|)) (T -992))
-((-3377 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-402 *5))) (-5 *1 (-992 *4 *5)) (-5 *3 (-402 *5)))) (-3376 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6) (|:| |c1| (-402 *6)) (|:| |c2| (-402 *6)) (|:| -3429 *6))) (-5 *1 (-992 *5 *6)) (-5 *3 (-402 *6)))))
-(-10 -7 (-15 -3376 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3377 ((-3 (-622 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))))
-((-3378 (((-1 |#1|) (-622 (-2 (|:| -3761 |#1|) (|:| -1577 (-538))))) 37)) (-3436 (((-1 |#1|) (-1070 |#1|)) 45)) (-3379 (((-1 |#1|) (-1231 |#1|) (-1231 (-538)) (-538)) 34)))
-(((-993 |#1|) (-10 -7 (-15 -3436 ((-1 |#1|) (-1070 |#1|))) (-15 -3378 ((-1 |#1|) (-622 (-2 (|:| -3761 |#1|) (|:| -1577 (-538)))))) (-15 -3379 ((-1 |#1|) (-1231 |#1|) (-1231 (-538)) (-538)))) (-1074)) (T -993))
-((-3379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1231 *6)) (-5 *4 (-1231 (-538))) (-5 *5 (-538)) (-4 *6 (-1074)) (-5 *2 (-1 *6)) (-5 *1 (-993 *6)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -3761 *4) (|:| -1577 (-538))))) (-4 *4 (-1074)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-1074)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4)))))
-(-10 -7 (-15 -3436 ((-1 |#1|) (-1070 |#1|))) (-15 -3378 ((-1 |#1|) (-622 (-2 (|:| -3761 |#1|) (|:| -1577 (-538)))))) (-15 -3379 ((-1 |#1|) (-1231 |#1|) (-1231 (-538)) (-538))))
-((-4131 (((-751) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4131 ((-751) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-13 (-363) (-358))) (T -994))
-((-4131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-4 *4 (-1207 (-402 *7))) (-4 *8 (-337 *6 *7 *4)) (-4 *9 (-13 (-363) (-358))) (-5 *2 (-751)) (-5 *1 (-994 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -4131 ((-751) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2898 (((-112) $ $) NIL)) (-3380 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 11)) (-3387 (((-112) $ $) NIL)))
-(((-995) (-13 (-1056) (-10 -8 (-15 -3380 ((-1108) $)) (-15 -3584 ((-1108) $))))) (T -995))
-((-3380 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995)))))
-(-13 (-1056) (-10 -8 (-15 -3380 ((-1108) $)) (-15 -3584 ((-1108) $))))
-((-4330 (((-221) $) 6) (((-373) $) 9)))
-(((-996) (-138)) (T -996))
-NIL
-(-13 (-598 (-221)) (-598 (-373)))
-(((-598 (-221)) . T) ((-598 (-373)) . T))
-((-3469 (((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) 31) (((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538))) 28)) (-3383 (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538))) 33) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538))) 29) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) 32) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|) 27)) (-3382 (((-622 (-402 (-538))) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) 19)) (-3381 (((-402 (-538)) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) 16)))
-(((-997 |#1|) (-10 -7 (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|)) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538)))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3381 ((-402 (-538)) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3382 ((-622 (-402 (-538))) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))))) (-1207 (-538))) (T -997))
-((-3382 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *2 (-622 (-402 (-538)))) (-5 *1 (-997 *4)) (-4 *4 (-1207 (-538))))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) (-5 *2 (-402 (-538))) (-5 *1 (-997 *4)) (-4 *4 (-1207 (-538))))) (-3469 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))))) (-3469 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) (-5 *4 (-402 (-538))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))))) (-3383 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *5) (|:| -3472 *5)))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))) (-5 *4 (-2 (|:| -3473 *5) (|:| -3472 *5))))) (-3383 (*1 *2 *3 *4) (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))) (-5 *4 (-402 (-538))))) (-3383 (*1 *2 *3 *4) (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))) (-5 *4 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) (-3383 (*1 *2 *3) (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))))))
-(-10 -7 (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|)) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538)))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3381 ((-402 (-538)) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3382 ((-622 (-402 (-538))) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))))
-((-3469 (((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) 35) (((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538))) 32)) (-3383 (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538))) 30) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538))) 26) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) 28) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|) 24)))
-(((-998 |#1|) (-10 -7 (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|)) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538)))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) (-1207 (-402 (-538)))) (T -998))
-((-3469 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538)))))) (-3469 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) (-5 *4 (-402 (-538))) (-5 *1 (-998 *3)) (-4 *3 (-1207 *4)))) (-3383 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *5) (|:| -3472 *5)))) (-5 *1 (-998 *3)) (-4 *3 (-1207 *5)) (-5 *4 (-2 (|:| -3473 *5) (|:| -3472 *5))))) (-3383 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *4) (|:| -3472 *4)))) (-5 *1 (-998 *3)) (-4 *3 (-1207 *4)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538)))) (-5 *4 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) (-3383 (*1 *2 *3) (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538)))))))
-(-10 -7 (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|)) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538)))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))))
-((-3936 (((-622 (-373)) (-922 (-538)) (-373)) 28) (((-622 (-373)) (-922 (-402 (-538))) (-373)) 27)) (-4327 (((-622 (-622 (-373))) (-622 (-922 (-538))) (-622 (-1149)) (-373)) 37)))
-(((-999) (-10 -7 (-15 -3936 ((-622 (-373)) (-922 (-402 (-538))) (-373))) (-15 -3936 ((-622 (-373)) (-922 (-538)) (-373))) (-15 -4327 ((-622 (-622 (-373))) (-622 (-922 (-538))) (-622 (-1149)) (-373))))) (T -999))
-((-4327 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-622 (-1149))) (-5 *2 (-622 (-622 (-373)))) (-5 *1 (-999)) (-5 *5 (-373)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-922 (-538))) (-5 *2 (-622 (-373))) (-5 *1 (-999)) (-5 *4 (-373)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *2 (-622 (-373))) (-5 *1 (-999)) (-5 *4 (-373)))))
-(-10 -7 (-15 -3936 ((-622 (-373)) (-922 (-402 (-538))) (-373))) (-15 -3936 ((-622 (-373)) (-922 (-538)) (-373))) (-15 -4327 ((-622 (-622 (-373))) (-622 (-922 (-538))) (-622 (-1149)) (-373))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 70)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) NIL) (($ $ (-895)) NIL) (($ (-402 (-538))) NIL) (($ (-538)) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) 65)) (-3896 (($) NIL T CONST)) (-3534 (((-3 $ #1="failed") (-1143 $) (-895) (-840)) NIL) (((-3 $ #1#) (-1143 $) (-895)) 50)) (-3508 (((-3 (-402 (-538)) #2="failed") $) NIL (|has| (-402 (-538)) (-1014 (-402 (-538))))) (((-3 (-402 (-538)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-538) #2#) $) NIL (-3891 (|has| (-402 (-538)) (-1014 (-538))) (|has| |#1| (-1014 (-538)))))) (-3507 (((-402 (-538)) $) 15 (|has| (-402 (-538)) (-1014 (-402 (-538))))) (((-402 (-538)) $) 15) ((|#1| $) 108) (((-538) $) NIL (-3891 (|has| (-402 (-538)) (-1014 (-538))) (|has| |#1| (-1014 (-538)))))) (-3366 (($ $ (-840)) 42)) (-3365 (($ $ (-840)) 43)) (-2894 (($ $ $) NIL)) (-3533 (((-402 (-538)) $ $) 19)) (-3821 (((-3 $ "failed") $) 83)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) 61)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL)) (-3538 (((-112) $) 64)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3367 (((-3 (-1143 $) #1#) $) 78)) (-3369 (((-3 (-840) #1#) $) 77)) (-3368 (((-3 (-1143 $) #1#) $) 75)) (-3384 (((-3 (-1035 $ (-1143 $)) "failed") $) 73)) (-2013 (($ (-622 $)) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 84)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ (-622 $)) NIL) (($ $ $) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4317 (((-840) $) 82) (($ (-538)) NIL) (($ (-402 (-538))) NIL) (($ $) 58) (($ (-402 (-538))) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 110)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-4129 (((-402 (-538)) $ $) 25)) (-3535 (((-622 $) (-1143 $)) 56) (((-622 $) (-1143 (-402 (-538)))) NIL) (((-622 $) (-1143 (-538))) NIL) (((-622 $) (-922 $)) NIL) (((-622 $) (-922 (-402 (-538)))) NIL) (((-622 $) (-922 (-538))) NIL)) (-3385 (($ (-1035 $ (-1143 $)) (-840)) 41)) (-3742 (($ $) 20)) (-2991 (($) 29 T CONST)) (-2997 (($) 35 T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 71)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 22)) (-4308 (($ $ $) 33)) (-4197 (($ $) 34) (($ $ $) 69)) (-4199 (($ $ $) 103)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL) (($ $ (-402 (-538))) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 91) (($ $ $) 96) (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL) (($ (-538) $) 91) (($ $ (-538)) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-1000 |#1|) (-13 (-988) (-407 |#1|) (-38 |#1|) (-10 -8 (-15 -3385 ($ (-1035 $ (-1143 $)) (-840))) (-15 -3384 ((-3 (-1035 $ (-1143 $)) "failed") $)) (-15 -3533 ((-402 (-538)) $ $)))) (-13 (-825) (-358) (-996))) (T -1000))
-((-3385 (*1 *1 *2 *3) (-12 (-5 *2 (-1035 (-1000 *4) (-1143 (-1000 *4)))) (-5 *3 (-840)) (-5 *1 (-1000 *4)) (-4 *4 (-13 (-825) (-358) (-996))))) (-3384 (*1 *2 *1) (|partial| -12 (-5 *2 (-1035 (-1000 *3) (-1143 (-1000 *3)))) (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-996))))) (-3533 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-996))))))
-(-13 (-988) (-407 |#1|) (-38 |#1|) (-10 -8 (-15 -3385 ($ (-1035 $ (-1143 $)) (-840))) (-15 -3384 ((-3 (-1035 $ (-1143 $)) "failed") $)) (-15 -3533 ((-402 (-538)) $ $))))
-((-3386 (((-2 (|:| -3617 |#2|) (|:| -2836 (-622 |#1|))) |#2| (-622 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-1001 |#1| |#2|) (-10 -7 (-15 -3386 (|#2| |#2| |#1|)) (-15 -3386 ((-2 (|:| -3617 |#2|) (|:| -2836 (-622 |#1|))) |#2| (-622 |#1|)))) (-358) (-638 |#1|)) (T -1001))
-((-3386 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -3617 *3) (|:| -2836 (-622 *5)))) (-5 *1 (-1001 *5 *3)) (-5 *4 (-622 *5)) (-4 *3 (-638 *5)))) (-3386 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-638 *3)))))
-(-10 -7 (-15 -3386 (|#2| |#2| |#1|)) (-15 -3386 ((-2 (|:| -3617 |#2|) (|:| -2836 (-622 |#1|))) |#2| (-622 |#1|))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3388 ((|#1| $ |#1|) 14)) (-4147 ((|#1| $ |#1|) 12)) (-3390 (($ |#1|) 10)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4159 ((|#1| $) 11)) (-3389 ((|#1| $) 13)) (-4317 (((-840) $) 21 (|has| |#1| (-1074)))) (-3387 (((-112) $ $) 9)))
-(((-1002 |#1|) (-13 (-1185) (-10 -8 (-15 -3390 ($ |#1|)) (-15 -4159 (|#1| $)) (-15 -4147 (|#1| $ |#1|)) (-15 -3389 (|#1| $)) (-15 -3388 (|#1| $ |#1|)) (-15 -3387 ((-112) $ $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|))) (-1185)) (T -1002))
-((-3390 (*1 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) (-4159 (*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) (-4147 (*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) (-3389 (*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) (-3388 (*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) (-3387 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1002 *3)) (-4 *3 (-1185)))))
-(-13 (-1185) (-10 -8 (-15 -3390 ($ |#1|)) (-15 -4159 (|#1| $)) (-15 -4147 (|#1| $ |#1|)) (-15 -3389 (|#1| $)) (-15 -3388 (|#1| $ |#1|)) (-15 -3387 ((-112) $ $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|)))
-((-2898 (((-112) $ $) NIL)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) NIL)) (-4045 (((-622 $) (-622 |#4|)) 105) (((-622 $) (-622 |#4|) (-112)) 106) (((-622 $) (-622 |#4|) (-112) (-112)) 104) (((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3417 (((-622 |#3|) $) NIL)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4051 ((|#4| |#4| $) NIL)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 99)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) 26 (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3233 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) NIL)) (-3507 (($ (-622 |#4|)) NIL)) (-4158 (((-3 $ #1#) $) 39)) (-4048 ((|#4| |#4| $) 57)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3765 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) NIL)) (-3548 (((-112) |#4| $) NIL)) (-3546 (((-112) |#4| $) NIL)) (-3549 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3797 (((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112)) 119)) (-2068 (((-622 |#4|) $) 16 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3531 ((|#3| $) 33)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#4|) $) 17 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2072 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 21)) (-3247 (((-622 |#3|) $) NIL)) (-3246 (((-112) |#3| $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) NIL)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 97)) (-4157 (((-3 |#4| #1#) $) 37)) (-3543 (((-622 $) |#4| $) 80)) (-3545 (((-3 (-112) (-622 $)) |#4| $) NIL)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3589 (((-622 $) |#4| $) 102) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) 103) (((-622 $) |#4| (-622 $)) NIL)) (-3798 (((-622 $) (-622 |#4|) (-112) (-112) (-112)) 114)) (-3799 (($ |#4| $) 70) (($ (-622 |#4|) $) 71) (((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-4060 (((-622 |#4|) $) NIL)) (-4054 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-4062 (((-112) $ $) NIL)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4050 ((|#4| |#4| $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4042 (((-3 $ #1#) $ |#4|) 48)) (-4128 (($ $ |#4|) NIL) (((-622 $) |#4| $) 82) (((-622 $) |#4| (-622 $)) NIL) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) 77)) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 15)) (-3928 (($) 13)) (-4307 (((-751) $) NIL)) (-2069 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) 12)) (-4330 (((-527) $) NIL (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 20)) (-3243 (($ $ |#3|) 42)) (-3245 (($ $ |#3|) 44)) (-4047 (($ $) NIL)) (-3244 (($ $ |#3|) NIL)) (-4317 (((-840) $) 31) (((-622 |#4|) $) 40)) (-4041 (((-751) $) NIL (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) NIL)) (-3540 (((-622 $) |#4| $) 79) (((-622 $) |#4| (-622 $)) NIL) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) NIL)) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) NIL)) (-3547 (((-112) |#4| $) NIL)) (-4293 (((-112) |#3| $) 53)) (-3387 (((-112) $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1003 |#1| |#2| |#3| |#4|) (-13 (-1045 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3799 ((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112))) (-15 -3798 ((-622 $) (-622 |#4|) (-112) (-112) (-112))) (-15 -3797 ((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112))))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1003))
-((-3799 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *3))) (-5 *1 (-1003 *5 *6 *7 *3)) (-4 *3 (-1039 *5 *6 *7)))) (-4045 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-4045 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-3798 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-3797 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-622 *8)) (|:| |towers| (-622 (-1003 *5 *6 *7 *8))))) (-5 *1 (-1003 *5 *6 *7 *8)) (-5 *3 (-622 *8)))))
-(-13 (-1045 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3799 ((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112))) (-15 -3798 ((-622 $) (-622 |#4|) (-112) (-112) (-112))) (-15 -3797 ((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112)))))
-((-3391 (((-622 (-2 (|:| |radval| (-309 (-538))) (|:| |radmult| (-538)) (|:| |radvect| (-622 (-669 (-309 (-538))))))) (-669 (-402 (-922 (-538))))) 59)) (-3392 (((-622 (-669 (-309 (-538)))) (-309 (-538)) (-669 (-402 (-922 (-538))))) 48)) (-3393 (((-622 (-309 (-538))) (-669 (-402 (-922 (-538))))) 41)) (-3397 (((-622 (-669 (-309 (-538)))) (-669 (-402 (-922 (-538))))) 68)) (-3395 (((-669 (-309 (-538))) (-669 (-309 (-538)))) 34)) (-3396 (((-622 (-669 (-309 (-538)))) (-622 (-669 (-309 (-538))))) 62)) (-3394 (((-3 (-669 (-309 (-538))) "failed") (-669 (-402 (-922 (-538))))) 66)))
-(((-1004) (-10 -7 (-15 -3391 ((-622 (-2 (|:| |radval| (-309 (-538))) (|:| |radmult| (-538)) (|:| |radvect| (-622 (-669 (-309 (-538))))))) (-669 (-402 (-922 (-538)))))) (-15 -3392 ((-622 (-669 (-309 (-538)))) (-309 (-538)) (-669 (-402 (-922 (-538)))))) (-15 -3393 ((-622 (-309 (-538))) (-669 (-402 (-922 (-538)))))) (-15 -3394 ((-3 (-669 (-309 (-538))) "failed") (-669 (-402 (-922 (-538)))))) (-15 -3395 ((-669 (-309 (-538))) (-669 (-309 (-538))))) (-15 -3396 ((-622 (-669 (-309 (-538)))) (-622 (-669 (-309 (-538)))))) (-15 -3397 ((-622 (-669 (-309 (-538)))) (-669 (-402 (-922 (-538)))))))) (T -1004))
-((-3397 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-669 (-309 (-538))))) (-5 *1 (-1004)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-622 (-669 (-309 (-538))))) (-5 *1 (-1004)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-669 (-309 (-538)))) (-5 *1 (-1004)))) (-3394 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-669 (-309 (-538)))) (-5 *1 (-1004)))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-309 (-538)))) (-5 *1 (-1004)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *4 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-669 (-309 (-538))))) (-5 *1 (-1004)) (-5 *3 (-309 (-538))))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-2 (|:| |radval| (-309 (-538))) (|:| |radmult| (-538)) (|:| |radvect| (-622 (-669 (-309 (-538)))))))) (-5 *1 (-1004)))))
-(-10 -7 (-15 -3391 ((-622 (-2 (|:| |radval| (-309 (-538))) (|:| |radmult| (-538)) (|:| |radvect| (-622 (-669 (-309 (-538))))))) (-669 (-402 (-922 (-538)))))) (-15 -3392 ((-622 (-669 (-309 (-538)))) (-309 (-538)) (-669 (-402 (-922 (-538)))))) (-15 -3393 ((-622 (-309 (-538))) (-669 (-402 (-922 (-538)))))) (-15 -3394 ((-3 (-669 (-309 (-538))) "failed") (-669 (-402 (-922 (-538)))))) (-15 -3395 ((-669 (-309 (-538))) (-669 (-309 (-538))))) (-15 -3396 ((-622 (-669 (-309 (-538)))) (-622 (-669 (-309 (-538)))))) (-15 -3397 ((-622 (-669 (-309 (-538)))) (-669 (-402 (-922 (-538)))))))
-((-3401 (((-622 (-669 |#1|)) (-622 (-669 |#1|))) 58) (((-669 |#1|) (-669 |#1|)) 57) (((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-622 (-669 |#1|))) 56) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 53)) (-3400 (((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895)) 52) (((-669 |#1|) (-669 |#1|) (-895)) 51)) (-3402 (((-622 (-669 (-538))) (-622 (-622 (-538)))) 68) (((-622 (-669 (-538))) (-622 (-878 (-538))) (-538)) 67) (((-669 (-538)) (-622 (-538))) 64) (((-669 (-538)) (-878 (-538)) (-538)) 63)) (-3399 (((-669 (-922 |#1|)) (-751)) 81)) (-3398 (((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895)) 37 (|has| |#1| (-6 (-4355 "*")))) (((-669 |#1|) (-669 |#1|) (-895)) 35 (|has| |#1| (-6 (-4355 "*"))))))
-(((-1005 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -3398 ((-669 |#1|) (-669 |#1|) (-895))) |%noBranch|) (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -3398 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895))) |%noBranch|) (-15 -3399 ((-669 (-922 |#1|)) (-751))) (-15 -3400 ((-669 |#1|) (-669 |#1|) (-895))) (-15 -3400 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895))) (-15 -3401 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3401 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3401 ((-669 |#1|) (-669 |#1|))) (-15 -3401 ((-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3402 ((-669 (-538)) (-878 (-538)) (-538))) (-15 -3402 ((-669 (-538)) (-622 (-538)))) (-15 -3402 ((-622 (-669 (-538))) (-622 (-878 (-538))) (-538))) (-15 -3402 ((-622 (-669 (-538))) (-622 (-622 (-538)))))) (-1025)) (T -1005))
-((-3402 (*1 *2 *3) (-12 (-5 *3 (-622 (-622 (-538)))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-1005 *4)) (-4 *4 (-1025)))) (-3402 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-878 (-538)))) (-5 *4 (-538)) (-5 *2 (-622 (-669 *4))) (-5 *1 (-1005 *5)) (-4 *5 (-1025)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1005 *4)) (-4 *4 (-1025)))) (-3402 (*1 *2 *3 *4) (-12 (-5 *3 (-878 (-538))) (-5 *4 (-538)) (-5 *2 (-669 *4)) (-5 *1 (-1005 *5)) (-4 *5 (-1025)))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-622 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) (-3401 (*1 *2 *2 *2) (-12 (-5 *2 (-622 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) (-3401 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) (-3400 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-669 *4))) (-5 *3 (-895)) (-4 *4 (-1025)) (-5 *1 (-1005 *4)))) (-3400 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-895)) (-4 *4 (-1025)) (-5 *1 (-1005 *4)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-669 (-922 *4))) (-5 *1 (-1005 *4)) (-4 *4 (-1025)))) (-3398 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-669 *4))) (-5 *3 (-895)) (|has| *4 (-6 (-4355 "*"))) (-4 *4 (-1025)) (-5 *1 (-1005 *4)))) (-3398 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-895)) (|has| *4 (-6 (-4355 "*"))) (-4 *4 (-1025)) (-5 *1 (-1005 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -3398 ((-669 |#1|) (-669 |#1|) (-895))) |%noBranch|) (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -3398 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895))) |%noBranch|) (-15 -3399 ((-669 (-922 |#1|)) (-751))) (-15 -3400 ((-669 |#1|) (-669 |#1|) (-895))) (-15 -3400 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895))) (-15 -3401 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3401 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3401 ((-669 |#1|) (-669 |#1|))) (-15 -3401 ((-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3402 ((-669 (-538)) (-878 (-538)) (-538))) (-15 -3402 ((-669 (-538)) (-622 (-538)))) (-15 -3402 ((-622 (-669 (-538))) (-622 (-878 (-538))) (-538))) (-15 -3402 ((-622 (-669 (-538))) (-622 (-622 (-538))))))
-((-3406 (((-669 |#1|) (-622 (-669 |#1|)) (-1231 |#1|)) 50 (|has| |#1| (-302)))) (-3777 (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 (-1231 |#1|))) 76 (|has| |#1| (-358))) (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 |#1|)) 79 (|has| |#1| (-358)))) (-3410 (((-1231 |#1|) (-622 (-1231 |#1|)) (-538)) 93 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-3409 (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-895)) 85 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112)) 83 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|))) 82 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112) (-538) (-538)) 81 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-3408 (((-112) (-622 (-669 |#1|))) 71 (|has| |#1| (-358))) (((-112) (-622 (-669 |#1|)) (-538)) 73 (|has| |#1| (-358)))) (-3405 (((-1231 (-1231 |#1|)) (-622 (-669 |#1|)) (-1231 |#1|)) 48 (|has| |#1| (-302)))) (-3404 (((-669 |#1|) (-622 (-669 |#1|)) (-669 |#1|)) 34)) (-3403 (((-669 |#1|) (-1231 (-1231 |#1|))) 31)) (-3407 (((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-538)) 65 (|has| |#1| (-358))) (((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|))) 64 (|has| |#1| (-358))) (((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-112) (-538)) 69 (|has| |#1| (-358)))))
-(((-1006 |#1|) (-10 -7 (-15 -3403 ((-669 |#1|) (-1231 (-1231 |#1|)))) (-15 -3404 ((-669 |#1|) (-622 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -3405 ((-1231 (-1231 |#1|)) (-622 (-669 |#1|)) (-1231 |#1|))) (-15 -3406 ((-669 |#1|) (-622 (-669 |#1|)) (-1231 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-112) (-538))) (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-538))) (-15 -3408 ((-112) (-622 (-669 |#1|)) (-538))) (-15 -3408 ((-112) (-622 (-669 |#1|)))) (-15 -3777 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 |#1|))) (-15 -3777 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 (-1231 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112) (-538) (-538))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-895))) (-15 -3410 ((-1231 |#1|) (-622 (-1231 |#1|)) (-538)))) |%noBranch|) |%noBranch|)) (-1025)) (T -1006))
-((-3410 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-1231 *5))) (-5 *4 (-538)) (-5 *2 (-1231 *5)) (-5 *1 (-1006 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)))) (-3409 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) (-5 *3 (-622 (-669 *5))))) (-3409 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) (-5 *3 (-622 (-669 *5))))) (-3409 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1025)) (-5 *2 (-622 (-622 (-669 *4)))) (-5 *1 (-1006 *4)) (-5 *3 (-622 (-669 *4))))) (-3409 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-538)) (-4 *6 (-358)) (-4 *6 (-363)) (-4 *6 (-1025)) (-5 *2 (-622 (-622 (-669 *6)))) (-5 *1 (-1006 *6)) (-5 *3 (-622 (-669 *6))))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-1231 (-1231 *5))) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) (-5 *3 (-622 (-669 *5))))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) (-5 *3 (-622 (-669 *5))))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-622 (-669 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-1006 *4)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-538)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-112)) (-5 *1 (-1006 *5)))) (-3407 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-538)) (-5 *2 (-669 *5)) (-5 *1 (-1006 *5)) (-4 *5 (-358)) (-4 *5 (-1025)))) (-3407 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-669 *4))) (-5 *2 (-669 *4)) (-5 *1 (-1006 *4)) (-4 *4 (-358)) (-4 *4 (-1025)))) (-3407 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-622 (-669 *6))) (-5 *4 (-112)) (-5 *5 (-538)) (-5 *2 (-669 *6)) (-5 *1 (-1006 *6)) (-4 *6 (-358)) (-4 *6 (-1025)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-1231 *5)) (-4 *5 (-302)) (-4 *5 (-1025)) (-5 *2 (-669 *5)) (-5 *1 (-1006 *5)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-669 *5))) (-4 *5 (-302)) (-4 *5 (-1025)) (-5 *2 (-1231 (-1231 *5))) (-5 *1 (-1006 *5)) (-5 *4 (-1231 *5)))) (-3404 (*1 *2 *3 *2) (-12 (-5 *3 (-622 (-669 *4))) (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1006 *4)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-1231 (-1231 *4))) (-4 *4 (-1025)) (-5 *2 (-669 *4)) (-5 *1 (-1006 *4)))))
-(-10 -7 (-15 -3403 ((-669 |#1|) (-1231 (-1231 |#1|)))) (-15 -3404 ((-669 |#1|) (-622 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -3405 ((-1231 (-1231 |#1|)) (-622 (-669 |#1|)) (-1231 |#1|))) (-15 -3406 ((-669 |#1|) (-622 (-669 |#1|)) (-1231 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-112) (-538))) (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-538))) (-15 -3408 ((-112) (-622 (-669 |#1|)) (-538))) (-15 -3408 ((-112) (-622 (-669 |#1|)))) (-15 -3777 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 |#1|))) (-15 -3777 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 (-1231 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112) (-538) (-538))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-895))) (-15 -3410 ((-1231 |#1|) (-622 (-1231 |#1|)) (-538)))) |%noBranch|) |%noBranch|))
-((-3411 ((|#1| (-895) |#1|) 9)))
-(((-1007 |#1|) (-10 -7 (-15 -3411 (|#1| (-895) |#1|))) (-13 (-1074) (-10 -8 (-15 -4199 ($ $ $))))) (T -1007))
-((-3411 (*1 *2 *3 *2) (-12 (-5 *3 (-895)) (-5 *1 (-1007 *2)) (-4 *2 (-13 (-1074) (-10 -8 (-15 -4199 ($ $ $))))))))
-(-10 -7 (-15 -3411 (|#1| (-895) |#1|)))
-((-3412 ((|#1| |#1| (-895)) 9)))
-(((-1008 |#1|) (-10 -7 (-15 -3412 (|#1| |#1| (-895)))) (-13 (-1074) (-10 -8 (-15 * ($ $ $))))) (T -1008))
-((-3412 (*1 *2 *2 *3) (-12 (-5 *3 (-895)) (-5 *1 (-1008 *2)) (-4 *2 (-13 (-1074) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -3412 (|#1| |#1| (-895))))
-((-4317 ((|#1| (-306)) 11) (((-1237) |#1|) 9)))
-(((-1009 |#1|) (-10 -7 (-15 -4317 ((-1237) |#1|)) (-15 -4317 (|#1| (-306)))) (-1185)) (T -1009))
-((-4317 (*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1009 *2)) (-4 *2 (-1185)))) (-4317 (*1 *2 *3) (-12 (-5 *2 (-1237)) (-5 *1 (-1009 *3)) (-4 *3 (-1185)))))
-(-10 -7 (-15 -4317 ((-1237) |#1|)) (-15 -4317 (|#1| (-306))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4202 (($ |#4|) 25)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3413 ((|#4| $) 27)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 46) (($ (-538)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3461 (((-751)) 43)) (-2991 (($) 21 T CONST)) (-2997 (($) 23 T CONST)) (-3387 (((-112) $ $) 40)) (-4197 (($ $) 31) (($ $ $) NIL)) (-4199 (($ $ $) 29)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1010 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -4202 ($ |#4|)) (-15 -4317 ($ |#4|)) (-15 -3413 (|#4| $)))) (-358) (-773) (-827) (-926 |#1| |#2| |#3|) (-622 |#4|)) (T -1010))
-((-4202 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-926 *3 *4 *5)) (-14 *6 (-622 *2)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-926 *3 *4 *5)) (-14 *6 (-622 *2)))) (-3413 (*1 *2 *1) (-12 (-4 *2 (-926 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-14 *6 (-622 *2)))))
-(-13 (-170) (-38 |#1|) (-10 -8 (-15 -4202 ($ |#4|)) (-15 -4317 ($ |#4|)) (-15 -3413 (|#4| $))))
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-2305 (((-1237) $ (-1149) (-1149)) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-3415 (((-112) (-112)) 39)) (-3414 (((-112) (-112)) 38)) (-4147 (((-51) $ (-1149) (-51)) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 (-51) #1="failed") (-1149) $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-3764 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-51) #1#) (-1149) $) NIL)) (-3765 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-1637 (((-51) $ (-1149) (-51)) NIL (|has| $ (-6 -4354)))) (-3448 (((-51) $ (-1149)) NIL)) (-2068 (((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-1149) $) NIL (|has| (-1149) (-827)))) (-2511 (((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2308 (((-1149) $) NIL (|has| (-1149) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-2744 (((-622 (-1149)) $) 34)) (-2315 (((-112) (-1149) $) NIL)) (-1333 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL)) (-3970 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL)) (-2310 (((-622 (-1149)) $) NIL)) (-2311 (((-112) (-1149) $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-4160 (((-51) $) NIL (|has| (-1149) (-827)))) (-1399 (((-3 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) "failed") (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL)) (-2306 (($ $ (-51)) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-288 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-51)) (-622 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-288 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-622 (-288 (-51)))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2312 (((-622 (-51)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (((-51) $ (-1149)) 35) (((-51) $ (-1149) (-51)) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-751) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074)))) (((-751) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-4317 (((-840) $) 37 (-3891 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-597 (-840))) (|has| (-51) (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1011) (-13 (-1162 (-1149) (-51)) (-10 -7 (-15 -3415 ((-112) (-112))) (-15 -3414 ((-112) (-112))) (-6 -4353)))) (T -1011))
-((-3415 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011)))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011)))))
-(-13 (-1162 (-1149) (-51)) (-10 -7 (-15 -3415 ((-112) (-112))) (-15 -3414 ((-112) (-112))) (-6 -4353)))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 9)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-1012) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $))))) (T -1012))
-((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1012)))))
-(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $))))
-((-3507 ((|#2| $) 10)))
-(((-1013 |#1| |#2|) (-10 -8 (-15 -3507 (|#2| |#1|))) (-1014 |#2|) (-1185)) (T -1013))
-NIL
-(-10 -8 (-15 -3507 (|#2| |#1|)))
-((-3508 (((-3 |#1| "failed") $) 7)) (-3507 ((|#1| $) 8)) (-4317 (($ |#1|) 6)))
-(((-1014 |#1|) (-138) (-1185)) (T -1014))
-((-3507 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1185)))) (-3508 (*1 *2 *1) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1185)))) (-4317 (*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1185)))))
-(-13 (-10 -8 (-15 -4317 ($ |t#1|)) (-15 -3508 ((-3 |t#1| "failed") $)) (-15 -3507 (|t#1| $))))
-((-3416 (((-622 (-622 (-288 (-402 (-922 |#2|))))) (-622 (-922 |#2|)) (-622 (-1149))) 38)))
-(((-1015 |#1| |#2|) (-10 -7 (-15 -3416 ((-622 (-622 (-288 (-402 (-922 |#2|))))) (-622 (-922 |#2|)) (-622 (-1149))))) (-545) (-13 (-545) (-1014 |#1|))) (T -1015))
-((-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) (-4 *6 (-13 (-545) (-1014 *5))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *6)))))) (-5 *1 (-1015 *5 *6)))))
-(-10 -7 (-15 -3416 ((-622 (-622 (-288 (-402 (-922 |#2|))))) (-622 (-922 |#2|)) (-622 (-1149)))))
-((-3417 (((-622 (-1149)) (-402 (-922 |#1|))) 17)) (-3419 (((-402 (-1143 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149)) 24)) (-3420 (((-402 (-922 |#1|)) (-402 (-1143 (-402 (-922 |#1|)))) (-1149)) 26)) (-3418 (((-3 (-1149) "failed") (-402 (-922 |#1|))) 20)) (-4127 (((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-288 (-402 (-922 |#1|))))) 32) (((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|)))) 33) (((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-1149)) (-622 (-402 (-922 |#1|)))) 28) (((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|))) 29)) (-4317 (((-402 (-922 |#1|)) |#1|) 11)))
-(((-1016 |#1|) (-10 -7 (-15 -3417 ((-622 (-1149)) (-402 (-922 |#1|)))) (-15 -3418 ((-3 (-1149) "failed") (-402 (-922 |#1|)))) (-15 -3419 ((-402 (-1143 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149))) (-15 -3420 ((-402 (-922 |#1|)) (-402 (-1143 (-402 (-922 |#1|)))) (-1149))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-1149)) (-622 (-402 (-922 |#1|))))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -4317 ((-402 (-922 |#1|)) |#1|))) (-545)) (T -1016))
-((-4317 (*1 *2 *3) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-1016 *3)) (-4 *3 (-545)))) (-4127 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-288 (-402 (-922 *4))))) (-5 *2 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *1 (-1016 *4)))) (-4127 (*1 *2 *2 *3) (-12 (-5 *3 (-288 (-402 (-922 *4)))) (-5 *2 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *1 (-1016 *4)))) (-4127 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-622 (-1149))) (-5 *4 (-622 (-402 (-922 *5)))) (-5 *2 (-402 (-922 *5))) (-4 *5 (-545)) (-5 *1 (-1016 *5)))) (-4127 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-402 (-922 *4))) (-5 *3 (-1149)) (-4 *4 (-545)) (-5 *1 (-1016 *4)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1143 (-402 (-922 *5))))) (-5 *4 (-1149)) (-5 *2 (-402 (-922 *5))) (-5 *1 (-1016 *5)) (-4 *5 (-545)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-402 (-1143 (-402 (-922 *5))))) (-5 *1 (-1016 *5)) (-5 *3 (-402 (-922 *5))))) (-3418 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-1149)) (-5 *1 (-1016 *4)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-622 (-1149))) (-5 *1 (-1016 *4)))))
-(-10 -7 (-15 -3417 ((-622 (-1149)) (-402 (-922 |#1|)))) (-15 -3418 ((-3 (-1149) "failed") (-402 (-922 |#1|)))) (-15 -3419 ((-402 (-1143 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149))) (-15 -3420 ((-402 (-922 |#1|)) (-402 (-1143 (-402 (-922 |#1|)))) (-1149))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-1149)) (-622 (-402 (-922 |#1|))))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -4317 ((-402 (-922 |#1|)) |#1|)))
-((-3421 (((-373)) 15)) (-3436 (((-1 (-373)) (-373) (-373)) 20)) (-3429 (((-1 (-373)) (-751)) 43)) (-3422 (((-373)) 34)) (-3425 (((-1 (-373)) (-373) (-373)) 35)) (-3423 (((-373)) 26)) (-3426 (((-1 (-373)) (-373)) 27)) (-3424 (((-373) (-751)) 38)) (-3427 (((-1 (-373)) (-751)) 39)) (-3428 (((-1 (-373)) (-751) (-751)) 42)) (-3743 (((-1 (-373)) (-751) (-751)) 40)))
-(((-1017) (-10 -7 (-15 -3421 ((-373))) (-15 -3422 ((-373))) (-15 -3423 ((-373))) (-15 -3424 ((-373) (-751))) (-15 -3436 ((-1 (-373)) (-373) (-373))) (-15 -3425 ((-1 (-373)) (-373) (-373))) (-15 -3426 ((-1 (-373)) (-373))) (-15 -3427 ((-1 (-373)) (-751))) (-15 -3743 ((-1 (-373)) (-751) (-751))) (-15 -3428 ((-1 (-373)) (-751) (-751))) (-15 -3429 ((-1 (-373)) (-751))))) (T -1017))
-((-3429 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))) (-3428 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))) (-3743 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))) (-3426 (*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373)))) (-3425 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373)))) (-3436 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-373)) (-5 *1 (-1017)))) (-3423 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017)))) (-3422 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017)))) (-3421 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017)))))
-(-10 -7 (-15 -3421 ((-373))) (-15 -3422 ((-373))) (-15 -3423 ((-373))) (-15 -3424 ((-373) (-751))) (-15 -3436 ((-1 (-373)) (-373) (-373))) (-15 -3425 ((-1 (-373)) (-373) (-373))) (-15 -3426 ((-1 (-373)) (-373))) (-15 -3427 ((-1 (-373)) (-751))) (-15 -3743 ((-1 (-373)) (-751) (-751))) (-15 -3428 ((-1 (-373)) (-751) (-751))) (-15 -3429 ((-1 (-373)) (-751))))
-((-4092 (((-400 |#1|) |#1|) 33)))
-(((-1018 |#1|) (-10 -7 (-15 -4092 ((-400 |#1|) |#1|))) (-1207 (-402 (-922 (-538))))) (T -1018))
-((-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-1018 *3)) (-4 *3 (-1207 (-402 (-922 (-538))))))))
-(-10 -7 (-15 -4092 ((-400 |#1|) |#1|)))
-((-3430 (((-402 (-400 (-922 |#1|))) (-402 (-922 |#1|))) 14)))
-(((-1019 |#1|) (-10 -7 (-15 -3430 ((-402 (-400 (-922 |#1|))) (-402 (-922 |#1|))))) (-302)) (T -1019))
-((-3430 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-302)) (-5 *2 (-402 (-400 (-922 *4)))) (-5 *1 (-1019 *4)))))
-(-10 -7 (-15 -3430 ((-402 (-400 (-922 |#1|))) (-402 (-922 |#1|)))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3896 (($) 17 T CONST)) (-3434 ((|#1| $) 22)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3433 ((|#1| $) 21)) (-3431 ((|#1|) 19 T CONST)) (-4317 (((-840) $) 11)) (-3432 ((|#1| $) 20)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15)))
+((-3837 (*1 *1 *1) (-4 *1 (-988))) (-1452 (*1 *2 *1) (|partial| -12 (-4 *1 (-988)) (-5 *2 (-839)))) (-1441 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145 *1)) (-4 *1 (-988)))) (-1429 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145 *1)) (-4 *1 (-988)))) (-3588 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1145 *1)) (-5 *3 (-897)) (-5 *4 (-839)) (-4 *1 (-988)))) (-3588 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1145 *1)) (-5 *3 (-897)) (-4 *1 (-988)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-988)) (-5 *2 (-625 *1)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1145 (-402 (-552)))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1145 (-552))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-988)) (-5 *2 (-625 *1)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-928 (-552))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) (-3837 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-897)))) (-3837 (*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-4 *1 (-988)))) (-3837 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-988)))) (-1419 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-839)))) (-1409 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-839)))) (-2874 (*1 *2 *1 *1) (-12 (-4 *1 (-988)) (-5 *2 (-402 (-552))))))
+(-13 (-145) (-825) (-170) (-358) (-406 (-402 (-552))) (-38 (-552)) (-38 (-402 (-552))) (-978) (-10 -8 (-15 -1452 ((-3 (-839) "failed") $)) (-15 -1441 ((-3 (-1145 $) "failed") $)) (-15 -1429 ((-3 (-1145 $) "failed") $)) (-15 -3588 ((-3 $ "failed") (-1145 $) (-897) (-839))) (-15 -3588 ((-3 $ "failed") (-1145 $) (-897))) (-15 -3599 ((-625 $) (-1145 $))) (-15 -3599 ((-625 $) (-1145 (-402 (-552))))) (-15 -3599 ((-625 $) (-1145 (-552)))) (-15 -3599 ((-625 $) (-928 $))) (-15 -3599 ((-625 $) (-928 (-402 (-552))))) (-15 -3599 ((-625 $) (-928 (-552)))) (-15 -3837 ($ $ (-897))) (-15 -3837 ($ $)) (-15 -3837 ($ (-402 (-552)))) (-15 -3837 ($ (-552))) (-15 -1419 ($ $ (-839))) (-15 -1409 ($ $ (-839))) (-15 -2874 ((-402 (-552)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 #1=(-552)) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-839)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-406 (-402 (-552))) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-825) . T) ((-827) . T) ((-896) . T) ((-978) . T) ((-1014 (-402 (-552))) . T) ((-1014 (-552)) |has| (-402 (-552)) (-1014 (-552))) ((-1031 #0#) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T))
+((-1463 (((-2 (|:| |ans| |#2|) (|:| -2303 |#2|) (|:| |sol?| (-112))) (-552) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
+(((-989 |#1| |#2|) (-10 -7 (-15 -1463 ((-2 (|:| |ans| |#2|) (|:| -2303 |#2|) (|:| |sol?| (-112))) (-552) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-27) (-425 |#1|))) (T -989))
+((-1463 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1149)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-625 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1171) (-27) (-425 *8))) (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-552)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2303 *4) (|:| |sol?| (-112)))) (-5 *1 (-989 *8 *4)))))
+(-10 -7 (-15 -1463 ((-2 (|:| |ans| |#2|) (|:| -2303 |#2|) (|:| |sol?| (-112))) (-552) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1475 (((-3 (-625 |#2|) "failed") (-552) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-990 |#1| |#2|) (-10 -7 (-15 -1475 ((-3 (-625 |#2|) "failed") (-552) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-27) (-425 |#1|))) (T -990))
+((-1475 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1149)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-625 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1171) (-27) (-425 *8))) (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-552)) (-5 *2 (-625 *4)) (-5 *1 (-990 *8 *4)))))
+(-10 -7 (-15 -1475 ((-3 (-625 |#2|) "failed") (-552) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1506 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2772 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)) 30)) (-1485 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 58)) (-1495 (((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|)) 63)))
+(((-991 |#1| |#2|) (-10 -7 (-15 -1485 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1495 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -1506 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2772 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)))) (-13 (-358) (-145) (-1014 (-552))) (-1208 |#1|)) (T -991))
+((-1506 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1208 *6)) (-4 *6 (-13 (-358) (-145) (-1014 *4))) (-5 *4 (-552)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2772 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-991 *6 *3)))) (-1495 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112)))) (-5 *1 (-991 *4 *5)) (-5 *3 (-402 *5)))) (-1485 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6)) (|:| -2228 *6))) (-5 *1 (-991 *5 *6)) (-5 *3 (-402 *6)))))
+(-10 -7 (-15 -1485 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1495 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -1506 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2772 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|))))
+((-1519 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 22)) (-1530 (((-3 (-625 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 33)))
+(((-992 |#1| |#2|) (-10 -7 (-15 -1519 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1530 ((-3 (-625 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)))) (-13 (-358) (-145) (-1014 (-552))) (-1208 |#1|)) (T -992))
+((-1530 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-402 *5))) (-5 *1 (-992 *4 *5)) (-5 *3 (-402 *5)))) (-1519 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6) (|:| |c1| (-402 *6)) (|:| |c2| (-402 *6)) (|:| -2228 *6))) (-5 *1 (-992 *5 *6)) (-5 *3 (-402 *6)))))
+(-10 -7 (-15 -1519 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1530 ((-3 (-625 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))))
+((-1541 (((-1 |#1|) (-625 (-2 (|:| -3800 |#1|) (|:| -3469 (-552))))) 37)) (-3888 (((-1 |#1|) (-1075 |#1|)) 45)) (-1552 (((-1 |#1|) (-1232 |#1|) (-1232 (-552)) (-552)) 34)))
+(((-993 |#1|) (-10 -7 (-15 -3888 ((-1 |#1|) (-1075 |#1|))) (-15 -1541 ((-1 |#1|) (-625 (-2 (|:| -3800 |#1|) (|:| -3469 (-552)))))) (-15 -1552 ((-1 |#1|) (-1232 |#1|) (-1232 (-552)) (-552)))) (-1073)) (T -993))
+((-1552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1232 *6)) (-5 *4 (-1232 (-552))) (-5 *5 (-552)) (-4 *6 (-1073)) (-5 *2 (-1 *6)) (-5 *1 (-993 *6)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3800 *4) (|:| -3469 (-552))))) (-4 *4 (-1073)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-1075 *4)) (-4 *4 (-1073)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4)))))
+(-10 -7 (-15 -3888 ((-1 |#1|) (-1075 |#1|))) (-15 -1541 ((-1 |#1|) (-625 (-2 (|:| -3800 |#1|) (|:| -3469 (-552)))))) (-15 -1552 ((-1 |#1|) (-1232 |#1|) (-1232 (-552)) (-552))))
+((-2172 (((-751) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2172 ((-751) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-13 (-363) (-358))) (T -994))
+((-2172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-331 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-4 *4 (-1208 (-402 *7))) (-4 *8 (-337 *6 *7 *4)) (-4 *9 (-13 (-363) (-358))) (-5 *2 (-751)) (-5 *1 (-994 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -2172 ((-751) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-1671 (((-112) $ $) NIL)) (-1563 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 11)) (-2281 (((-112) $ $) NIL)))
+(((-995) (-13 (-1056) (-10 -8 (-15 -1563 ((-1108) $)) (-15 -1300 ((-1108) $))))) (T -995))
+((-1563 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995)))))
+(-13 (-1056) (-10 -8 (-15 -1563 ((-1108) $)) (-15 -1300 ((-1108) $))))
+((-4230 (((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) 31) (((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552))) 28)) (-1596 (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552))) 33) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552))) 29) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) 32) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|) 27)) (-1584 (((-625 (-402 (-552))) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) 19)) (-1573 (((-402 (-552)) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) 16)))
+(((-996 |#1|) (-10 -7 (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|)) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552)))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1573 ((-402 (-552)) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1584 ((-625 (-402 (-552))) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))))) (-1208 (-552))) (T -996))
+((-1584 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *2 (-625 (-402 (-552)))) (-5 *1 (-996 *4)) (-4 *4 (-1208 (-552))))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) (-5 *2 (-402 (-552))) (-5 *1 (-996 *4)) (-4 *4 (-1208 (-552))))) (-4230 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))))) (-4230 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) (-5 *4 (-402 (-552))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))))) (-1596 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-552))) (-5 *2 (-625 (-2 (|:| -2290 *5) (|:| -2303 *5)))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))) (-5 *4 (-2 (|:| -2290 *5) (|:| -2303 *5))))) (-1596 (*1 *2 *3 *4) (-12 (-5 *2 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))) (-5 *4 (-402 (-552))))) (-1596 (*1 *2 *3 *4) (-12 (-5 *2 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))) (-5 *4 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) (-1596 (*1 *2 *3) (-12 (-5 *2 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))))))
+(-10 -7 (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|)) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552)))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1573 ((-402 (-552)) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1584 ((-625 (-402 (-552))) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))))
+((-4230 (((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) 35) (((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552))) 32)) (-1596 (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552))) 30) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552))) 26) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) 28) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|) 24)))
+(((-997 |#1|) (-10 -7 (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|)) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552)))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) (-1208 (-402 (-552)))) (T -997))
+((-4230 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552)))))) (-4230 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) (-5 *4 (-402 (-552))) (-5 *1 (-997 *3)) (-4 *3 (-1208 *4)))) (-1596 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-552))) (-5 *2 (-625 (-2 (|:| -2290 *5) (|:| -2303 *5)))) (-5 *1 (-997 *3)) (-4 *3 (-1208 *5)) (-5 *4 (-2 (|:| -2290 *5) (|:| -2303 *5))))) (-1596 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-552))) (-5 *2 (-625 (-2 (|:| -2290 *4) (|:| -2303 *4)))) (-5 *1 (-997 *3)) (-4 *3 (-1208 *4)))) (-1596 (*1 *2 *3 *4) (-12 (-5 *2 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552)))) (-5 *4 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) (-1596 (*1 *2 *3) (-12 (-5 *2 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552)))))))
+(-10 -7 (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|)) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552)))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))))
+((-2042 (((-221) $) 6) (((-374) $) 9)))
+(((-998) (-138)) (T -998))
+NIL
+(-13 (-598 (-221)) (-598 (-374)))
+(((-598 (-221)) . T) ((-598 (-374)) . T))
+((-1728 (((-625 (-374)) (-928 (-552)) (-374)) 28) (((-625 (-374)) (-928 (-402 (-552))) (-374)) 27)) (-1311 (((-625 (-625 (-374))) (-625 (-928 (-552))) (-625 (-1149)) (-374)) 37)))
+(((-999) (-10 -7 (-15 -1728 ((-625 (-374)) (-928 (-402 (-552))) (-374))) (-15 -1728 ((-625 (-374)) (-928 (-552)) (-374))) (-15 -1311 ((-625 (-625 (-374))) (-625 (-928 (-552))) (-625 (-1149)) (-374))))) (T -999))
+((-1311 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-625 (-1149))) (-5 *2 (-625 (-625 (-374)))) (-5 *1 (-999)) (-5 *5 (-374)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-928 (-552))) (-5 *2 (-625 (-374))) (-5 *1 (-999)) (-5 *4 (-374)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *2 (-625 (-374))) (-5 *1 (-999)) (-5 *4 (-374)))))
+(-10 -7 (-15 -1728 ((-625 (-374)) (-928 (-402 (-552))) (-374))) (-15 -1728 ((-625 (-374)) (-928 (-552)) (-374))) (-15 -1311 ((-625 (-625 (-374))) (-625 (-928 (-552))) (-625 (-1149)) (-374))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 70)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) NIL) (($ $ (-897)) NIL) (($ (-402 (-552))) NIL) (($ (-552)) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) 65)) (-3101 (($) NIL T CONST)) (-3588 (((-3 $ "failed") (-1145 $) (-897) (-839)) NIL) (((-3 $ "failed") (-1145 $) (-897)) 50)) (-1893 (((-3 (-402 (-552)) "failed") $) NIL (|has| (-402 (-552)) (-1014 (-402 (-552))))) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-552) "failed") $) NIL (-1523 (|has| (-402 (-552)) (-1014 (-552))) (|has| |#1| (-1014 (-552)))))) (-1895 (((-402 (-552)) $) 15 (|has| (-402 (-552)) (-1014 (-402 (-552))))) (((-402 (-552)) $) 15) ((|#1| $) 108) (((-552) $) NIL (-1523 (|has| (-402 (-552)) (-1014 (-552))) (|has| |#1| (-1014 (-552)))))) (-1419 (($ $ (-839)) 42)) (-1409 (($ $ (-839)) 43)) (-2851 (($ $ $) NIL)) (-3576 (((-402 (-552)) $ $) 19)) (-4174 (((-3 $ "failed") $) 83)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) 61)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL)) (-3630 (((-112) $) 64)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1429 (((-3 (-1145 $) "failed") $) 78)) (-1452 (((-3 (-839) "failed") $) 77)) (-1441 (((-3 (-1145 $) "failed") $) 75)) (-1607 (((-3 (-1035 $ (-1145 $)) "failed") $) 73)) (-2605 (($ (-625 $)) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 84)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ (-625 $)) NIL) (($ $ $) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1683 (((-839) $) 82) (($ (-552)) NIL) (($ (-402 (-552))) NIL) (($ $) 58) (($ (-402 (-552))) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 110)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2874 (((-402 (-552)) $ $) 25)) (-3599 (((-625 $) (-1145 $)) 56) (((-625 $) (-1145 (-402 (-552)))) NIL) (((-625 $) (-1145 (-552))) NIL) (((-625 $) (-928 $)) NIL) (((-625 $) (-928 (-402 (-552)))) NIL) (((-625 $) (-928 (-552))) NIL)) (-1617 (($ (-1035 $ (-1145 $)) (-839)) 41)) (-1727 (($ $) 20)) (-2089 (($) 29 T CONST)) (-2100 (($) 35 T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 71)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 22)) (-2404 (($ $ $) 33)) (-2393 (($ $) 34) (($ $ $) 69)) (-2382 (($ $ $) 103)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL) (($ $ (-402 (-552))) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 91) (($ $ $) 96) (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL) (($ (-552) $) 91) (($ $ (-552)) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-1000 |#1|) (-13 (-988) (-406 |#1|) (-38 |#1|) (-10 -8 (-15 -1617 ($ (-1035 $ (-1145 $)) (-839))) (-15 -1607 ((-3 (-1035 $ (-1145 $)) "failed") $)) (-15 -3576 ((-402 (-552)) $ $)))) (-13 (-825) (-358) (-998))) (T -1000))
+((-1617 (*1 *1 *2 *3) (-12 (-5 *2 (-1035 (-1000 *4) (-1145 (-1000 *4)))) (-5 *3 (-839)) (-5 *1 (-1000 *4)) (-4 *4 (-13 (-825) (-358) (-998))))) (-1607 (*1 *2 *1) (|partial| -12 (-5 *2 (-1035 (-1000 *3) (-1145 (-1000 *3)))) (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-998))))) (-3576 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-998))))))
+(-13 (-988) (-406 |#1|) (-38 |#1|) (-10 -8 (-15 -1617 ($ (-1035 $ (-1145 $)) (-839))) (-15 -1607 ((-3 (-1035 $ (-1145 $)) "failed") $)) (-15 -3576 ((-402 (-552)) $ $))))
+((-1629 (((-2 (|:| -2772 |#2|) (|:| -3362 (-625 |#1|))) |#2| (-625 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-1001 |#1| |#2|) (-10 -7 (-15 -1629 (|#2| |#2| |#1|)) (-15 -1629 ((-2 (|:| -2772 |#2|) (|:| -3362 (-625 |#1|))) |#2| (-625 |#1|)))) (-358) (-636 |#1|)) (T -1001))
+((-1629 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -2772 *3) (|:| -3362 (-625 *5)))) (-5 *1 (-1001 *5 *3)) (-5 *4 (-625 *5)) (-4 *3 (-636 *5)))) (-1629 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-636 *3)))))
+(-10 -7 (-15 -1629 (|#2| |#2| |#1|)) (-15 -1629 ((-2 (|:| -2772 |#2|) (|:| -3362 (-625 |#1|))) |#2| (-625 |#1|))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1641 ((|#1| $ |#1|) 14)) (-1851 ((|#1| $ |#1|) 12)) (-1663 (($ |#1|) 10)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2154 ((|#1| $) 11)) (-1652 ((|#1| $) 13)) (-1683 (((-839) $) 21 (|has| |#1| (-1073)))) (-2281 (((-112) $ $) 9)))
+(((-1002 |#1|) (-13 (-1186) (-10 -8 (-15 -1663 ($ |#1|)) (-15 -2154 (|#1| $)) (-15 -1851 (|#1| $ |#1|)) (-15 -1652 (|#1| $)) (-15 -1641 (|#1| $ |#1|)) (-15 -2281 ((-112) $ $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|))) (-1186)) (T -1002))
+((-1663 (*1 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) (-2154 (*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) (-1851 (*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) (-1652 (*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) (-1641 (*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) (-2281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1002 *3)) (-4 *3 (-1186)))))
+(-13 (-1186) (-10 -8 (-15 -1663 ($ |#1|)) (-15 -2154 (|#1| $)) (-15 -1851 (|#1| $ |#1|)) (-15 -1652 (|#1| $)) (-15 -1641 (|#1| $ |#1|)) (-15 -2281 ((-112) $ $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|)))
+((-1671 (((-112) $ $) NIL)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) NIL)) (-3690 (((-625 $) (-625 |#4|)) 105) (((-625 $) (-625 |#4|) (-112)) 106) (((-625 $) (-625 |#4|) (-112) (-112)) 104) (((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3982 (((-625 |#3|) $) NIL)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 99)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 54)) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) 26 (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3624 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) NIL)) (-1895 (($ (-625 |#4|)) NIL)) (-2936 (((-3 $ "failed") $) 39)) (-3720 ((|#4| |#4| $) 57)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1416 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3699 ((|#4| |#4| $) NIL)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) NIL)) (-3731 (((-112) |#4| $) NIL)) (-3714 (((-112) |#4| $) NIL)) (-3741 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3975 (((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112)) 119)) (-3799 (((-625 |#4|) $) 16 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3565 ((|#3| $) 33)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#4|) $) 17 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-3683 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 21)) (-2615 (((-625 |#3|) $) NIL)) (-2608 (((-112) |#3| $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) NIL)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 97)) (-1437 (((-3 |#4| "failed") $) 37)) (-3685 (((-625 $) |#4| $) 80)) (-3704 (((-3 (-112) (-625 $)) |#4| $) NIL)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-2860 (((-625 $) |#4| $) 102) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) 103) (((-625 $) |#4| (-625 $)) NIL)) (-3987 (((-625 $) (-625 |#4|) (-112) (-112) (-112)) 114)) (-3999 (($ |#4| $) 70) (($ (-625 |#4|) $) 71) (((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2699 (((-625 |#4|) $) NIL)) (-3777 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3727 ((|#4| |#4| $) NIL)) (-2719 (((-112) $ $) NIL)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3737 ((|#4| |#4| $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-3 |#4| "failed") $) 35)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3657 (((-3 $ "failed") $ |#4|) 48)) (-2147 (($ $ |#4|) NIL) (((-625 $) |#4| $) 82) (((-625 $) |#4| (-625 $)) NIL) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) 77)) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 15)) (-3600 (($) 13)) (-4276 (((-751) $) NIL)) (-2840 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) 12)) (-2042 (((-528) $) NIL (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 20)) (-3718 (($ $ |#3|) 42)) (-2595 (($ $ |#3|) 44)) (-3709 (($ $) NIL)) (-2584 (($ $ |#3|) NIL)) (-1683 (((-839) $) 31) (((-625 |#4|) $) 40)) (-3647 (((-751) $) NIL (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) NIL)) (-3651 (((-625 $) |#4| $) 79) (((-625 $) |#4| (-625 $)) NIL) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) NIL)) (-3724 (((-112) |#4| $) NIL)) (-4168 (((-112) |#3| $) 53)) (-2281 (((-112) $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1003 |#1| |#2| |#3| |#4|) (-13 (-1045 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3999 ((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112))) (-15 -3987 ((-625 $) (-625 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112))))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1003))
+((-3999 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1003 *5 *6 *7 *3))) (-5 *1 (-1003 *5 *6 *7 *3)) (-4 *3 (-1039 *5 *6 *7)))) (-3690 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-3690 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-3987 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-625 *8)) (|:| |towers| (-625 (-1003 *5 *6 *7 *8))))) (-5 *1 (-1003 *5 *6 *7 *8)) (-5 *3 (-625 *8)))))
+(-13 (-1045 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3999 ((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112))) (-15 -3987 ((-625 $) (-625 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112)))))
+((-1783 (((-625 (-669 |#1|)) (-625 (-669 |#1|))) 58) (((-669 |#1|) (-669 |#1|)) 57) (((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-625 (-669 |#1|))) 56) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 53)) (-1772 (((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897)) 52) (((-669 |#1|) (-669 |#1|) (-897)) 51)) (-1795 (((-625 (-669 (-552))) (-625 (-625 (-552)))) 68) (((-625 (-669 (-552))) (-625 (-881 (-552))) (-552)) 67) (((-669 (-552)) (-625 (-552))) 64) (((-669 (-552)) (-881 (-552)) (-552)) 63)) (-1762 (((-669 (-928 |#1|)) (-751)) 81)) (-1752 (((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897)) 37 (|has| |#1| (-6 (-4355 "*")))) (((-669 |#1|) (-669 |#1|) (-897)) 35 (|has| |#1| (-6 (-4355 "*"))))))
+(((-1004 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -1752 ((-669 |#1|) (-669 |#1|) (-897))) |%noBranch|) (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -1752 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897))) |%noBranch|) (-15 -1762 ((-669 (-928 |#1|)) (-751))) (-15 -1772 ((-669 |#1|) (-669 |#1|) (-897))) (-15 -1772 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897))) (-15 -1783 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1783 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1783 ((-669 |#1|) (-669 |#1|))) (-15 -1783 ((-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1795 ((-669 (-552)) (-881 (-552)) (-552))) (-15 -1795 ((-669 (-552)) (-625 (-552)))) (-15 -1795 ((-625 (-669 (-552))) (-625 (-881 (-552))) (-552))) (-15 -1795 ((-625 (-669 (-552))) (-625 (-625 (-552)))))) (-1025)) (T -1004))
+((-1795 (*1 *2 *3) (-12 (-5 *3 (-625 (-625 (-552)))) (-5 *2 (-625 (-669 (-552)))) (-5 *1 (-1004 *4)) (-4 *4 (-1025)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-881 (-552)))) (-5 *4 (-552)) (-5 *2 (-625 (-669 *4))) (-5 *1 (-1004 *5)) (-4 *5 (-1025)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1004 *4)) (-4 *4 (-1025)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-552))) (-5 *4 (-552)) (-5 *2 (-669 *4)) (-5 *1 (-1004 *5)) (-4 *5 (-1025)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-625 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) (-1783 (*1 *2 *2 *2) (-12 (-5 *2 (-625 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) (-1783 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) (-1772 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-669 *4))) (-5 *3 (-897)) (-4 *4 (-1025)) (-5 *1 (-1004 *4)))) (-1772 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-897)) (-4 *4 (-1025)) (-5 *1 (-1004 *4)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-669 (-928 *4))) (-5 *1 (-1004 *4)) (-4 *4 (-1025)))) (-1752 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-669 *4))) (-5 *3 (-897)) (|has| *4 (-6 (-4355 "*"))) (-4 *4 (-1025)) (-5 *1 (-1004 *4)))) (-1752 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-897)) (|has| *4 (-6 (-4355 "*"))) (-4 *4 (-1025)) (-5 *1 (-1004 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -1752 ((-669 |#1|) (-669 |#1|) (-897))) |%noBranch|) (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -1752 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897))) |%noBranch|) (-15 -1762 ((-669 (-928 |#1|)) (-751))) (-15 -1772 ((-669 |#1|) (-669 |#1|) (-897))) (-15 -1772 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897))) (-15 -1783 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1783 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1783 ((-669 |#1|) (-669 |#1|))) (-15 -1783 ((-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1795 ((-669 (-552)) (-881 (-552)) (-552))) (-15 -1795 ((-669 (-552)) (-625 (-552)))) (-15 -1795 ((-625 (-669 (-552))) (-625 (-881 (-552))) (-552))) (-15 -1795 ((-625 (-669 (-552))) (-625 (-625 (-552))))))
+((-1842 (((-669 |#1|) (-625 (-669 |#1|)) (-1232 |#1|)) 50 (|has| |#1| (-302)))) (-3819 (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 (-1232 |#1|))) 76 (|has| |#1| (-358))) (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 |#1|)) 79 (|has| |#1| (-358)))) (-1884 (((-1232 |#1|) (-625 (-1232 |#1|)) (-552)) 93 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-1874 (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-897)) 85 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112)) 83 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|))) 82 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112) (-552) (-552)) 81 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-1863 (((-112) (-625 (-669 |#1|))) 71 (|has| |#1| (-358))) (((-112) (-625 (-669 |#1|)) (-552)) 73 (|has| |#1| (-358)))) (-1829 (((-1232 (-1232 |#1|)) (-625 (-669 |#1|)) (-1232 |#1|)) 48 (|has| |#1| (-302)))) (-1818 (((-669 |#1|) (-625 (-669 |#1|)) (-669 |#1|)) 34)) (-1807 (((-669 |#1|) (-1232 (-1232 |#1|))) 31)) (-1854 (((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-552)) 65 (|has| |#1| (-358))) (((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|))) 64 (|has| |#1| (-358))) (((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-112) (-552)) 69 (|has| |#1| (-358)))))
+(((-1005 |#1|) (-10 -7 (-15 -1807 ((-669 |#1|) (-1232 (-1232 |#1|)))) (-15 -1818 ((-669 |#1|) (-625 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -1829 ((-1232 (-1232 |#1|)) (-625 (-669 |#1|)) (-1232 |#1|))) (-15 -1842 ((-669 |#1|) (-625 (-669 |#1|)) (-1232 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-112) (-552))) (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-552))) (-15 -1863 ((-112) (-625 (-669 |#1|)) (-552))) (-15 -1863 ((-112) (-625 (-669 |#1|)))) (-15 -3819 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 |#1|))) (-15 -3819 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 (-1232 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112) (-552) (-552))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-897))) (-15 -1884 ((-1232 |#1|) (-625 (-1232 |#1|)) (-552)))) |%noBranch|) |%noBranch|)) (-1025)) (T -1005))
+((-1884 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-1232 *5))) (-5 *4 (-552)) (-5 *2 (-1232 *5)) (-5 *1 (-1005 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) (-5 *3 (-625 (-669 *5))))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) (-5 *3 (-625 (-669 *5))))) (-1874 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1025)) (-5 *2 (-625 (-625 (-669 *4)))) (-5 *1 (-1005 *4)) (-5 *3 (-625 (-669 *4))))) (-1874 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-552)) (-4 *6 (-358)) (-4 *6 (-363)) (-4 *6 (-1025)) (-5 *2 (-625 (-625 (-669 *6)))) (-5 *1 (-1005 *6)) (-5 *3 (-625 (-669 *6))))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-1232 (-1232 *5))) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) (-5 *3 (-625 (-669 *5))))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-1232 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) (-5 *3 (-625 (-669 *5))))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-625 (-669 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-1005 *4)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-552)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-112)) (-5 *1 (-1005 *5)))) (-1854 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-552)) (-5 *2 (-669 *5)) (-5 *1 (-1005 *5)) (-4 *5 (-358)) (-4 *5 (-1025)))) (-1854 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-669 *4))) (-5 *2 (-669 *4)) (-5 *1 (-1005 *4)) (-4 *4 (-358)) (-4 *4 (-1025)))) (-1854 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-625 (-669 *6))) (-5 *4 (-112)) (-5 *5 (-552)) (-5 *2 (-669 *6)) (-5 *1 (-1005 *6)) (-4 *6 (-358)) (-4 *6 (-1025)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-1232 *5)) (-4 *5 (-302)) (-4 *5 (-1025)) (-5 *2 (-669 *5)) (-5 *1 (-1005 *5)))) (-1829 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-669 *5))) (-4 *5 (-302)) (-4 *5 (-1025)) (-5 *2 (-1232 (-1232 *5))) (-5 *1 (-1005 *5)) (-5 *4 (-1232 *5)))) (-1818 (*1 *2 *3 *2) (-12 (-5 *3 (-625 (-669 *4))) (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1005 *4)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-1232 (-1232 *4))) (-4 *4 (-1025)) (-5 *2 (-669 *4)) (-5 *1 (-1005 *4)))))
+(-10 -7 (-15 -1807 ((-669 |#1|) (-1232 (-1232 |#1|)))) (-15 -1818 ((-669 |#1|) (-625 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -1829 ((-1232 (-1232 |#1|)) (-625 (-669 |#1|)) (-1232 |#1|))) (-15 -1842 ((-669 |#1|) (-625 (-669 |#1|)) (-1232 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-112) (-552))) (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-552))) (-15 -1863 ((-112) (-625 (-669 |#1|)) (-552))) (-15 -1863 ((-112) (-625 (-669 |#1|)))) (-15 -3819 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 |#1|))) (-15 -3819 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 (-1232 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112) (-552) (-552))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-897))) (-15 -1884 ((-1232 |#1|) (-625 (-1232 |#1|)) (-552)))) |%noBranch|) |%noBranch|))
+((-2596 ((|#1| (-897) |#1|) 9)))
+(((-1006 |#1|) (-10 -7 (-15 -2596 (|#1| (-897) |#1|))) (-13 (-1073) (-10 -8 (-15 -2382 ($ $ $))))) (T -1006))
+((-2596 (*1 *2 *3 *2) (-12 (-5 *3 (-897)) (-5 *1 (-1006 *2)) (-4 *2 (-13 (-1073) (-10 -8 (-15 -2382 ($ $ $))))))))
+(-10 -7 (-15 -2596 (|#1| (-897) |#1|)))
+((-1674 (((-625 (-2 (|:| |radval| (-311 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-625 (-669 (-311 (-552))))))) (-669 (-402 (-928 (-552))))) 59)) (-1686 (((-625 (-669 (-311 (-552)))) (-311 (-552)) (-669 (-402 (-928 (-552))))) 48)) (-1698 (((-625 (-311 (-552))) (-669 (-402 (-928 (-552))))) 41)) (-1742 (((-625 (-669 (-311 (-552)))) (-669 (-402 (-928 (-552))))) 68)) (-1720 (((-669 (-311 (-552))) (-669 (-311 (-552)))) 34)) (-1732 (((-625 (-669 (-311 (-552)))) (-625 (-669 (-311 (-552))))) 62)) (-1708 (((-3 (-669 (-311 (-552))) "failed") (-669 (-402 (-928 (-552))))) 66)))
+(((-1007) (-10 -7 (-15 -1674 ((-625 (-2 (|:| |radval| (-311 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-625 (-669 (-311 (-552))))))) (-669 (-402 (-928 (-552)))))) (-15 -1686 ((-625 (-669 (-311 (-552)))) (-311 (-552)) (-669 (-402 (-928 (-552)))))) (-15 -1698 ((-625 (-311 (-552))) (-669 (-402 (-928 (-552)))))) (-15 -1708 ((-3 (-669 (-311 (-552))) "failed") (-669 (-402 (-928 (-552)))))) (-15 -1720 ((-669 (-311 (-552))) (-669 (-311 (-552))))) (-15 -1732 ((-625 (-669 (-311 (-552)))) (-625 (-669 (-311 (-552)))))) (-15 -1742 ((-625 (-669 (-311 (-552)))) (-669 (-402 (-928 (-552)))))))) (T -1007))
+((-1742 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-928 (-552))))) (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007)))) (-1720 (*1 *2 *2) (-12 (-5 *2 (-669 (-311 (-552)))) (-5 *1 (-1007)))) (-1708 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 (-402 (-928 (-552))))) (-5 *2 (-669 (-311 (-552)))) (-5 *1 (-1007)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-928 (-552))))) (-5 *2 (-625 (-311 (-552)))) (-5 *1 (-1007)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *4 (-669 (-402 (-928 (-552))))) (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007)) (-5 *3 (-311 (-552))))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-928 (-552))))) (-5 *2 (-625 (-2 (|:| |radval| (-311 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-625 (-669 (-311 (-552)))))))) (-5 *1 (-1007)))))
+(-10 -7 (-15 -1674 ((-625 (-2 (|:| |radval| (-311 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-625 (-669 (-311 (-552))))))) (-669 (-402 (-928 (-552)))))) (-15 -1686 ((-625 (-669 (-311 (-552)))) (-311 (-552)) (-669 (-402 (-928 (-552)))))) (-15 -1698 ((-625 (-311 (-552))) (-669 (-402 (-928 (-552)))))) (-15 -1708 ((-3 (-669 (-311 (-552))) "failed") (-669 (-402 (-928 (-552)))))) (-15 -1720 ((-669 (-311 (-552))) (-669 (-311 (-552))))) (-15 -1732 ((-625 (-669 (-311 (-552)))) (-625 (-669 (-311 (-552)))))) (-15 -1742 ((-625 (-669 (-311 (-552)))) (-669 (-402 (-928 (-552)))))))
+((-1894 ((|#1| |#1| (-897)) 9)))
+(((-1008 |#1|) (-10 -7 (-15 -1894 (|#1| |#1| (-897)))) (-13 (-1073) (-10 -8 (-15 * ($ $ $))))) (T -1008))
+((-1894 (*1 *2 *2 *3) (-12 (-5 *3 (-897)) (-5 *1 (-1008 *2)) (-4 *2 (-13 (-1073) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -1894 (|#1| |#1| (-897))))
+((-1683 ((|#1| (-307)) 11) (((-1237) |#1|) 9)))
+(((-1009 |#1|) (-10 -7 (-15 -1683 ((-1237) |#1|)) (-15 -1683 (|#1| (-307)))) (-1186)) (T -1009))
+((-1683 (*1 *2 *3) (-12 (-5 *3 (-307)) (-5 *1 (-1009 *2)) (-4 *2 (-1186)))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-1237)) (-5 *1 (-1009 *3)) (-4 *3 (-1186)))))
+(-10 -7 (-15 -1683 ((-1237) |#1|)) (-15 -1683 (|#1| (-307))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2163 (($ |#4|) 25)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-2148 ((|#4| $) 27)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 46) (($ (-552)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4141 (((-751)) 43)) (-2089 (($) 21 T CONST)) (-2100 (($) 23 T CONST)) (-2281 (((-112) $ $) 40)) (-2393 (($ $) 31) (($ $ $) NIL)) (-2382 (($ $ $) 29)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1010 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -2163 ($ |#4|)) (-15 -1683 ($ |#4|)) (-15 -2148 (|#4| $)))) (-358) (-773) (-827) (-925 |#1| |#2| |#3|) (-625 |#4|)) (T -1010))
+((-2163 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-925 *3 *4 *5)) (-14 *6 (-625 *2)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-925 *3 *4 *5)) (-14 *6 (-625 *2)))) (-2148 (*1 *2 *1) (-12 (-4 *2 (-925 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-14 *6 (-625 *2)))))
+(-13 (-170) (-38 |#1|) (-10 -8 (-15 -2163 ($ |#4|)) (-15 -1683 ($ |#4|)) (-15 -2148 (|#4| $))))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-2509 (((-1237) $ (-1149) (-1149)) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1919 (((-112) (-112)) 39)) (-1908 (((-112) (-112)) 38)) (-1851 (((-52) $ (-1149) (-52)) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 (-52) "failed") (-1149) $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-1938 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-52) "failed") (-1149) $) NIL)) (-1416 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3692 (((-52) $ (-1149) (-52)) NIL (|has| $ (-6 -4354)))) (-3631 (((-52) $ (-1149)) NIL)) (-3799 (((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-1149) $) NIL (|has| (-1149) (-827)))) (-3730 (((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-2537 (((-1149) $) NIL (|has| (-1149) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-3712 (((-625 (-1149)) $) 34)) (-1370 (((-112) (-1149) $) NIL)) (-2953 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL)) (-3966 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL)) (-2554 (((-625 (-1149)) $) NIL)) (-2564 (((-112) (-1149) $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-2924 (((-52) $) NIL (|has| (-1149) (-827)))) (-2380 (((-3 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) "failed") (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL)) (-2518 (($ $ (-52)) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-289 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-52)) (-625 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-625 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-1358 (((-625 (-52)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (((-52) $ (-1149)) 35) (((-52) $ (-1149) (-52)) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-751) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073)))) (((-751) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-1683 (((-839) $) 37 (-1523 (|has| (-52) (-597 (-839))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1011) (-13 (-1162 (-1149) (-52)) (-10 -7 (-15 -1919 ((-112) (-112))) (-15 -1908 ((-112) (-112))) (-6 -4353)))) (T -1011))
+((-1919 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011)))))
+(-13 (-1162 (-1149) (-52)) (-10 -7 (-15 -1919 ((-112) (-112))) (-15 -1908 ((-112) (-112))) (-6 -4353)))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 9)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-1012) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $))))) (T -1012))
+((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1012)))))
+(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $))))
+((-1895 ((|#2| $) 10)))
+(((-1013 |#1| |#2|) (-10 -8 (-15 -1895 (|#2| |#1|))) (-1014 |#2|) (-1186)) (T -1013))
+NIL
+(-10 -8 (-15 -1895 (|#2| |#1|)))
+((-1893 (((-3 |#1| "failed") $) 7)) (-1895 ((|#1| $) 8)) (-1683 (($ |#1|) 6)))
+(((-1014 |#1|) (-138) (-1186)) (T -1014))
+((-1895 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1186)))) (-1893 (*1 *2 *1) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1186)))) (-1683 (*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1186)))))
+(-13 (-10 -8 (-15 -1683 ($ |t#1|)) (-15 -1893 ((-3 |t#1| "failed") $)) (-15 -1895 (|t#1| $))))
+((-1932 (((-625 (-625 (-289 (-402 (-928 |#2|))))) (-625 (-928 |#2|)) (-625 (-1149))) 38)))
+(((-1015 |#1| |#2|) (-10 -7 (-15 -1932 ((-625 (-625 (-289 (-402 (-928 |#2|))))) (-625 (-928 |#2|)) (-625 (-1149))))) (-544) (-13 (-544) (-1014 |#1|))) (T -1015))
+((-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) (-4 *6 (-13 (-544) (-1014 *5))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *6)))))) (-5 *1 (-1015 *5 *6)))))
+(-10 -7 (-15 -1932 ((-625 (-625 (-289 (-402 (-928 |#2|))))) (-625 (-928 |#2|)) (-625 (-1149)))))
+((-1954 (((-374)) 15)) (-3888 (((-1 (-374)) (-374) (-374)) 20)) (-2228 (((-1 (-374)) (-751)) 43)) (-1966 (((-374)) 34)) (-2992 (((-1 (-374)) (-374) (-374)) 35)) (-3772 (((-374)) 26)) (-3792 (((-1 (-374)) (-374)) 27)) (-3782 (((-374) (-751)) 38)) (-3802 (((-1 (-374)) (-751)) 39)) (-3281 (((-1 (-374)) (-751) (-751)) 42)) (-1739 (((-1 (-374)) (-751) (-751)) 40)))
+(((-1016) (-10 -7 (-15 -1954 ((-374))) (-15 -1966 ((-374))) (-15 -3772 ((-374))) (-15 -3782 ((-374) (-751))) (-15 -3888 ((-1 (-374)) (-374) (-374))) (-15 -2992 ((-1 (-374)) (-374) (-374))) (-15 -3792 ((-1 (-374)) (-374))) (-15 -3802 ((-1 (-374)) (-751))) (-15 -1739 ((-1 (-374)) (-751) (-751))) (-15 -3281 ((-1 (-374)) (-751) (-751))) (-15 -2228 ((-1 (-374)) (-751))))) (T -1016))
+((-2228 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))) (-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))) (-1739 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))) (-3792 (*1 *2 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374)))) (-2992 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374)))) (-3888 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-374)) (-5 *1 (-1016)))) (-3772 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016)))) (-1966 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016)))) (-1954 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016)))))
+(-10 -7 (-15 -1954 ((-374))) (-15 -1966 ((-374))) (-15 -3772 ((-374))) (-15 -3782 ((-374) (-751))) (-15 -3888 ((-1 (-374)) (-374) (-374))) (-15 -2992 ((-1 (-374)) (-374) (-374))) (-15 -3792 ((-1 (-374)) (-374))) (-15 -3802 ((-1 (-374)) (-751))) (-15 -1739 ((-1 (-374)) (-751) (-751))) (-15 -3281 ((-1 (-374)) (-751) (-751))) (-15 -2228 ((-1 (-374)) (-751))))
+((-3824 (((-413 |#1|) |#1|) 33)))
+(((-1017 |#1|) (-10 -7 (-15 -3824 ((-413 |#1|) |#1|))) (-1208 (-402 (-928 (-552))))) (T -1017))
+((-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1017 *3)) (-4 *3 (-1208 (-402 (-928 (-552))))))))
+(-10 -7 (-15 -3824 ((-413 |#1|) |#1|)))
+((-3813 (((-402 (-413 (-928 |#1|))) (-402 (-928 |#1|))) 14)))
+(((-1018 |#1|) (-10 -7 (-15 -3813 ((-402 (-413 (-928 |#1|))) (-402 (-928 |#1|))))) (-302)) (T -1018))
+((-3813 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-302)) (-5 *2 (-402 (-413 (-928 *4)))) (-5 *1 (-1018 *4)))))
+(-10 -7 (-15 -3813 ((-402 (-413 (-928 |#1|))) (-402 (-928 |#1|)))))
+((-3982 (((-625 (-1149)) (-402 (-928 |#1|))) 17)) (-3793 (((-402 (-1145 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149)) 24)) (-3970 (((-402 (-928 |#1|)) (-402 (-1145 (-402 (-928 |#1|)))) (-1149)) 26)) (-1942 (((-3 (-1149) "failed") (-402 (-928 |#1|))) 20)) (-4073 (((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-289 (-402 (-928 |#1|))))) 32) (((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|)))) 33) (((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-1149)) (-625 (-402 (-928 |#1|)))) 28) (((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|))) 29)) (-1683 (((-402 (-928 |#1|)) |#1|) 11)))
+(((-1019 |#1|) (-10 -7 (-15 -3982 ((-625 (-1149)) (-402 (-928 |#1|)))) (-15 -1942 ((-3 (-1149) "failed") (-402 (-928 |#1|)))) (-15 -3793 ((-402 (-1145 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149))) (-15 -3970 ((-402 (-928 |#1|)) (-402 (-1145 (-402 (-928 |#1|)))) (-1149))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-1149)) (-625 (-402 (-928 |#1|))))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1683 ((-402 (-928 |#1|)) |#1|))) (-544)) (T -1019))
+((-1683 (*1 *2 *3) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-1019 *3)) (-4 *3 (-544)))) (-4073 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-289 (-402 (-928 *4))))) (-5 *2 (-402 (-928 *4))) (-4 *4 (-544)) (-5 *1 (-1019 *4)))) (-4073 (*1 *2 *2 *3) (-12 (-5 *3 (-289 (-402 (-928 *4)))) (-5 *2 (-402 (-928 *4))) (-4 *4 (-544)) (-5 *1 (-1019 *4)))) (-4073 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-625 (-1149))) (-5 *4 (-625 (-402 (-928 *5)))) (-5 *2 (-402 (-928 *5))) (-4 *5 (-544)) (-5 *1 (-1019 *5)))) (-4073 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-402 (-928 *4))) (-5 *3 (-1149)) (-4 *4 (-544)) (-5 *1 (-1019 *4)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1145 (-402 (-928 *5))))) (-5 *4 (-1149)) (-5 *2 (-402 (-928 *5))) (-5 *1 (-1019 *5)) (-4 *5 (-544)))) (-3793 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-544)) (-5 *2 (-402 (-1145 (-402 (-928 *5))))) (-5 *1 (-1019 *5)) (-5 *3 (-402 (-928 *5))))) (-1942 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-5 *2 (-1149)) (-5 *1 (-1019 *4)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-5 *2 (-625 (-1149))) (-5 *1 (-1019 *4)))))
+(-10 -7 (-15 -3982 ((-625 (-1149)) (-402 (-928 |#1|)))) (-15 -1942 ((-3 (-1149) "failed") (-402 (-928 |#1|)))) (-15 -3793 ((-402 (-1145 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149))) (-15 -3970 ((-402 (-928 |#1|)) (-402 (-1145 (-402 (-928 |#1|)))) (-1149))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-1149)) (-625 (-402 (-928 |#1|))))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1683 ((-402 (-928 |#1|)) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3101 (($) 17 T CONST)) (-3861 ((|#1| $) 22)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3847 ((|#1| $) 21)) (-3822 ((|#1|) 19 T CONST)) (-1683 (((-839) $) 11)) (-3834 ((|#1| $) 20)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15)))
(((-1020 |#1|) (-138) (-23)) (T -1020))
-((-3434 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3431 (*1 *2) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -3434 (|t#1| $)) (-15 -3433 (|t#1| $)) (-15 -3432 (|t#1| $)) (-15 -3431 (|t#1|) -4311)))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3435 (($) 24 T CONST)) (-3896 (($) 17 T CONST)) (-3434 ((|#1| $) 22)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3433 ((|#1| $) 21)) (-3431 ((|#1|) 19 T CONST)) (-4317 (((-840) $) 11)) (-3432 ((|#1| $) 20)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15)))
+((-3861 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3822 (*1 *2) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -3861 (|t#1| $)) (-15 -3847 (|t#1| $)) (-15 -3834 (|t#1| $)) (-15 -3822 (|t#1|) -1426)))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3874 (($) 24 T CONST)) (-3101 (($) 17 T CONST)) (-3861 ((|#1| $) 22)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3847 ((|#1| $) 21)) (-3822 ((|#1|) 19 T CONST)) (-1683 (((-839) $) 11)) (-3834 ((|#1| $) 20)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15)))
(((-1021 |#1|) (-138) (-23)) (T -1021))
-((-3435 (*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-23)))))
-(-13 (-1020 |t#1|) (-10 -8 (-15 -3435 ($) -4311)))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-1020 |#1|) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 (-760 |#1| (-841 |#2|)))))) (-622 (-760 |#1| (-841 |#2|)))) NIL)) (-4045 (((-622 $) (-622 (-760 |#1| (-841 |#2|)))) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-112)) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-112) (-112)) NIL)) (-3417 (((-622 (-841 |#2|)) $) NIL)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-4056 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-4051 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-4134 (((-622 (-2 (|:| |val| (-760 |#1| (-841 |#2|))) (|:| -1660 $))) (-760 |#1| (-841 |#2|)) $) NIL)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ (-841 |#2|)) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 (-760 |#1| (-841 |#2|)) #1="failed") $ (-841 |#2|)) NIL)) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) NIL (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-4052 (((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|))) $ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-3233 (((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|))) $) NIL (|has| |#1| (-545)))) (-3234 (((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|))) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 (-760 |#1| (-841 |#2|)))) NIL)) (-3507 (($ (-622 (-760 |#1| (-841 |#2|)))) NIL)) (-4158 (((-3 $ #1#) $) NIL)) (-4048 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1074))))) (-3765 (($ (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (($ (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-760 |#1| (-841 |#2|))) (|:| |den| |#1|)) (-760 |#1| (-841 |#2|)) $) NIL (|has| |#1| (-545)))) (-4057 (((-112) (-760 |#1| (-841 |#2|)) $ (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-4046 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-4202 (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $ (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $ (-760 |#1| (-841 |#2|))) NIL (|has| $ (-6 -4353))) (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-4059 (((-2 (|:| -4221 (-622 (-760 |#1| (-841 |#2|)))) (|:| -1818 (-622 (-760 |#1| (-841 |#2|))))) $) NIL)) (-3548 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-3546 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-3549 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-2068 (((-622 (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4058 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3531 (((-841 |#2|) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1074))))) (-2072 (($ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL)) (-3247 (((-622 (-841 |#2|)) $) NIL)) (-3246 (((-112) (-841 |#2|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3542 (((-3 (-760 |#1| (-841 |#2|)) (-622 $)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-3541 (((-622 (-2 (|:| |val| (-760 |#1| (-841 |#2|))) (|:| -1660 $))) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-4157 (((-3 (-760 |#1| (-841 |#2|)) #1#) $) NIL)) (-3543 (((-622 $) (-760 |#1| (-841 |#2|)) $) NIL)) (-3545 (((-3 (-112) (-622 $)) (-760 |#1| (-841 |#2|)) $) NIL)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-3589 (((-622 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) $) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-622 $)) NIL) (((-622 $) (-760 |#1| (-841 |#2|)) (-622 $)) NIL)) (-3799 (($ (-760 |#1| (-841 |#2|)) $) NIL) (($ (-622 (-760 |#1| (-841 |#2|))) $) NIL)) (-4060 (((-622 (-760 |#1| (-841 |#2|))) $) NIL)) (-4054 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-4049 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-4062 (((-112) $ $) NIL)) (-3236 (((-2 (|:| |num| (-760 |#1| (-841 |#2|))) (|:| |den| |#1|)) (-760 |#1| (-841 |#2|)) $) NIL (|has| |#1| (-545)))) (-4055 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-4050 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-3 (-760 |#1| (-841 |#2|)) #1#) $) NIL)) (-1399 (((-3 (-760 |#1| (-841 |#2|)) "failed") (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL)) (-4042 (((-3 $ #1#) $ (-760 |#1| (-841 |#2|))) NIL)) (-4128 (($ $ (-760 |#1| (-841 |#2|))) NIL) (((-622 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-622 $) (-760 |#1| (-841 |#2|)) (-622 $)) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) $) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-622 $)) NIL)) (-2070 (((-112) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|)))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (($ $ (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (($ $ (-288 (-760 |#1| (-841 |#2|)))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (($ $ (-622 (-288 (-760 |#1| (-841 |#2|))))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4307 (((-751) $) NIL)) (-2069 (((-751) (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (((-751) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-760 |#1| (-841 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-760 |#1| (-841 |#2|)))) NIL)) (-3243 (($ $ (-841 |#2|)) NIL)) (-3245 (($ $ (-841 |#2|)) NIL)) (-4047 (($ $) NIL)) (-3244 (($ $ (-841 |#2|)) NIL)) (-4317 (((-840) $) NIL) (((-622 (-760 |#1| (-841 |#2|))) $) NIL)) (-4041 (((-751) $) NIL (|has| (-841 |#2|) (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 (-760 |#1| (-841 |#2|))))) #1#) (-622 (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 (-760 |#1| (-841 |#2|))))) #1#) (-622 (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-4053 (((-112) $ (-1 (-112) (-760 |#1| (-841 |#2|)) (-622 (-760 |#1| (-841 |#2|))))) NIL)) (-3540 (((-622 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-622 $) (-760 |#1| (-841 |#2|)) (-622 $)) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) $) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-622 $)) NIL)) (-2071 (((-112) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4043 (((-622 (-841 |#2|)) $) NIL)) (-3547 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-4293 (((-112) (-841 |#2|) $) NIL)) (-3387 (((-112) $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1022 |#1| |#2|) (-13 (-1045 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) (-10 -8 (-15 -4045 ((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-112) (-112))))) (-446) (-622 (-1149))) (T -1022))
-((-4045 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-1022 *5 *6)))))
-(-13 (-1045 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) (-10 -8 (-15 -4045 ((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-112) (-112)))))
-((-3436 (((-1 (-538)) (-1062 (-538))) 33)) (-3440 (((-538) (-538) (-538) (-538) (-538)) 30)) (-3438 (((-1 (-538)) |RationalNumber|) NIL)) (-3439 (((-1 (-538)) |RationalNumber|) NIL)) (-3437 (((-1 (-538)) (-538) |RationalNumber|) NIL)))
-(((-1023) (-10 -7 (-15 -3436 ((-1 (-538)) (-1062 (-538)))) (-15 -3437 ((-1 (-538)) (-538) |RationalNumber|)) (-15 -3438 ((-1 (-538)) |RationalNumber|)) (-15 -3439 ((-1 (-538)) |RationalNumber|)) (-15 -3440 ((-538) (-538) (-538) (-538) (-538))))) (T -1023))
-((-3440 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1023)))) (-3439 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023)))) (-3438 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023)))) (-3437 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023)) (-5 *3 (-538)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-1062 (-538))) (-5 *2 (-1 (-538))) (-5 *1 (-1023)))))
-(-10 -7 (-15 -3436 ((-1 (-538)) (-1062 (-538)))) (-15 -3437 ((-1 (-538)) (-538) |RationalNumber|)) (-15 -3438 ((-1 (-538)) |RationalNumber|)) (-15 -3439 ((-1 (-538)) |RationalNumber|)) (-15 -3440 ((-538) (-538) (-538) (-538) (-538))))
-((-4317 (((-840) $) NIL) (($ (-538)) 10)))
-(((-1024 |#1|) (-10 -8 (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-1025)) (T -1024))
-NIL
-(-10 -8 (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+((-3874 (*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-23)))))
+(-13 (-1020 |t#1|) (-10 -8 (-15 -3874 ($) -1426)))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-1020 |#1|) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 (-760 |#1| (-841 |#2|)))))) (-625 (-760 |#1| (-841 |#2|)))) NIL)) (-3690 (((-625 $) (-625 (-760 |#1| (-841 |#2|)))) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-112)) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-112) (-112)) NIL)) (-3982 (((-625 (-841 |#2|)) $) NIL)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-2656 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3748 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-2194 (((-625 (-2 (|:| |val| (-760 |#1| (-841 |#2|))) (|:| -3715 $))) (-760 |#1| (-841 |#2|)) $) NIL)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ (-841 |#2|)) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 (-760 |#1| (-841 |#2|)) "failed") $ (-841 |#2|)) NIL)) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) NIL (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3757 (((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|))) $ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-3624 (((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|))) $) NIL (|has| |#1| (-544)))) (-3635 (((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|))) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 (-760 |#1| (-841 |#2|)))) NIL)) (-1895 (($ (-625 (-760 |#1| (-841 |#2|)))) NIL)) (-2936 (((-3 $ "failed") $) NIL)) (-3720 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1073))))) (-1416 (($ (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (($ (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-760 |#1| (-841 |#2|))) (|:| |den| |#1|)) (-760 |#1| (-841 |#2|)) $) NIL (|has| |#1| (-544)))) (-2668 (((-112) (-760 |#1| (-841 |#2|)) $ (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-3699 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-2163 (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $ (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $ (-760 |#1| (-841 |#2|))) NIL (|has| $ (-6 -4353))) (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-2689 (((-2 (|:| -1387 (-625 (-760 |#1| (-841 |#2|)))) (|:| -2508 (-625 (-760 |#1| (-841 |#2|))))) $) NIL)) (-3731 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-3714 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-3741 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3799 (((-625 (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2678 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3565 (((-841 |#2|) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1073))))) (-3683 (($ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL)) (-2615 (((-625 (-841 |#2|)) $) NIL)) (-2608 (((-112) (-841 |#2|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3674 (((-3 (-760 |#1| (-841 |#2|)) (-625 $)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-3662 (((-625 (-2 (|:| |val| (-760 |#1| (-841 |#2|))) (|:| -3715 $))) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-1437 (((-3 (-760 |#1| (-841 |#2|)) "failed") $) NIL)) (-3685 (((-625 $) (-760 |#1| (-841 |#2|)) $) NIL)) (-3704 (((-3 (-112) (-625 $)) (-760 |#1| (-841 |#2|)) $) NIL)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-2860 (((-625 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) $) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-625 $)) NIL) (((-625 $) (-760 |#1| (-841 |#2|)) (-625 $)) NIL)) (-3999 (($ (-760 |#1| (-841 |#2|)) $) NIL) (($ (-625 (-760 |#1| (-841 |#2|))) $) NIL)) (-2699 (((-625 (-760 |#1| (-841 |#2|))) $) NIL)) (-3777 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3727 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-2719 (((-112) $ $) NIL)) (-3655 (((-2 (|:| |num| (-760 |#1| (-841 |#2|))) (|:| |den| |#1|)) (-760 |#1| (-841 |#2|)) $) NIL (|has| |#1| (-544)))) (-3788 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3737 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-3 (-760 |#1| (-841 |#2|)) "failed") $) NIL)) (-2380 (((-3 (-760 |#1| (-841 |#2|)) "failed") (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL)) (-3657 (((-3 $ "failed") $ (-760 |#1| (-841 |#2|))) NIL)) (-2147 (($ $ (-760 |#1| (-841 |#2|))) NIL) (((-625 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-625 $) (-760 |#1| (-841 |#2|)) (-625 $)) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) $) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-625 $)) NIL)) (-1888 (((-112) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|)))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (($ $ (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (($ $ (-289 (-760 |#1| (-841 |#2|)))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (($ $ (-625 (-289 (-760 |#1| (-841 |#2|))))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-4276 (((-751) $) NIL)) (-2840 (((-751) (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (((-751) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-760 |#1| (-841 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-760 |#1| (-841 |#2|)))) NIL)) (-3718 (($ $ (-841 |#2|)) NIL)) (-2595 (($ $ (-841 |#2|)) NIL)) (-3709 (($ $) NIL)) (-2584 (($ $ (-841 |#2|)) NIL)) (-1683 (((-839) $) NIL) (((-625 (-760 |#1| (-841 |#2|))) $) NIL)) (-3647 (((-751) $) NIL (|has| (-841 |#2|) (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 (-760 |#1| (-841 |#2|))))) "failed") (-625 (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 (-760 |#1| (-841 |#2|))))) "failed") (-625 (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-3767 (((-112) $ (-1 (-112) (-760 |#1| (-841 |#2|)) (-625 (-760 |#1| (-841 |#2|))))) NIL)) (-3651 (((-625 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-625 $) (-760 |#1| (-841 |#2|)) (-625 $)) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) $) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-625 $)) NIL)) (-1900 (((-112) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3669 (((-625 (-841 |#2|)) $) NIL)) (-3724 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-4168 (((-112) (-841 |#2|) $) NIL)) (-2281 (((-112) $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1022 |#1| |#2|) (-13 (-1045 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) (-10 -8 (-15 -3690 ((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-112) (-112))))) (-446) (-625 (-1149))) (T -1022))
+((-3690 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-1022 *5 *6)))))
+(-13 (-1045 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) (-10 -8 (-15 -3690 ((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-112) (-112)))))
+((-3888 (((-1 (-552)) (-1067 (-552))) 33)) (-3941 (((-552) (-552) (-552) (-552) (-552)) 30)) (-3914 (((-1 (-552)) |RationalNumber|) NIL)) (-3928 (((-1 (-552)) |RationalNumber|) NIL)) (-3901 (((-1 (-552)) (-552) |RationalNumber|) NIL)))
+(((-1023) (-10 -7 (-15 -3888 ((-1 (-552)) (-1067 (-552)))) (-15 -3901 ((-1 (-552)) (-552) |RationalNumber|)) (-15 -3914 ((-1 (-552)) |RationalNumber|)) (-15 -3928 ((-1 (-552)) |RationalNumber|)) (-15 -3941 ((-552) (-552) (-552) (-552) (-552))))) (T -1023))
+((-3941 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1023)))) (-3928 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023)))) (-3914 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023)))) (-3901 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023)) (-5 *3 (-552)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-1067 (-552))) (-5 *2 (-1 (-552))) (-5 *1 (-1023)))))
+(-10 -7 (-15 -3888 ((-1 (-552)) (-1067 (-552)))) (-15 -3901 ((-1 (-552)) (-552) |RationalNumber|)) (-15 -3914 ((-1 (-552)) |RationalNumber|)) (-15 -3928 ((-1 (-552)) |RationalNumber|)) (-15 -3941 ((-552) (-552) (-552) (-552) (-552))))
+((-1683 (((-839) $) NIL) (($ (-552)) 10)))
+(((-1024 |#1|) (-10 -8 (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-1025)) (T -1024))
+NIL
+(-10 -8 (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-1025) (-138)) (T -1025))
-((-3461 (*1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-751)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1025)))))
-(-13 (-1032) (-707) (-628 $) (-10 -8 (-15 -3461 ((-751))) (-15 -4317 ($ (-538))) (-6 -4350)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-3441 (((-402 (-922 |#2|)) (-622 |#2|) (-622 |#2|) (-751) (-751)) 46)))
-(((-1026 |#1| |#2|) (-10 -7 (-15 -3441 ((-402 (-922 |#2|)) (-622 |#2|) (-622 |#2|) (-751) (-751)))) (-1149) (-358)) (T -1026))
-((-3441 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-751)) (-4 *6 (-358)) (-5 *2 (-402 (-922 *6))) (-5 *1 (-1026 *5 *6)) (-14 *5 (-1149)))))
-(-10 -7 (-15 -3441 ((-402 (-922 |#2|)) (-622 |#2|) (-622 |#2|) (-751) (-751))))
-((-3456 (((-112) $) 29)) (-3458 (((-112) $) 16)) (-3450 (((-751) $) 13)) (-3449 (((-751) $) 14)) (-3457 (((-112) $) 26)) (-3455 (((-112) $) 31)))
-(((-1027 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3449 ((-751) |#1|)) (-15 -3450 ((-751) |#1|)) (-15 -3455 ((-112) |#1|)) (-15 -3456 ((-112) |#1|)) (-15 -3457 ((-112) |#1|)) (-15 -3458 ((-112) |#1|))) (-1028 |#2| |#3| |#4| |#5| |#6|) (-751) (-751) (-1025) (-234 |#3| |#4|) (-234 |#2| |#4|)) (T -1027))
-NIL
-(-10 -8 (-15 -3449 ((-751) |#1|)) (-15 -3450 ((-751) |#1|)) (-15 -3455 ((-112) |#1|)) (-15 -3456 ((-112) |#1|)) (-15 -3457 ((-112) |#1|)) (-15 -3458 ((-112) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3456 (((-112) $) 51)) (-1368 (((-3 $ "failed") $ $) 19)) (-3458 (((-112) $) 53)) (-1271 (((-112) $ (-751)) 61)) (-3896 (($) 17 T CONST)) (-3445 (($ $) 34 (|has| |#3| (-302)))) (-3447 ((|#4| $ (-538)) 39)) (-3444 (((-751) $) 33 (|has| |#3| (-545)))) (-3448 ((|#3| $ (-538) (-538)) 41)) (-2068 (((-622 |#3|) $) 68 (|has| $ (-6 -4353)))) (-3443 (((-751) $) 32 (|has| |#3| (-545)))) (-3442 (((-622 |#5|) $) 31 (|has| |#3| (-545)))) (-3450 (((-751) $) 45)) (-3449 (((-751) $) 44)) (-4082 (((-112) $ (-751)) 60)) (-3454 (((-538) $) 49)) (-3452 (((-538) $) 47)) (-2511 (((-622 |#3|) $) 69 (|has| $ (-6 -4353)))) (-3596 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1074)) (|has| $ (-6 -4353))))) (-3453 (((-538) $) 48)) (-3451 (((-538) $) 46)) (-3459 (($ (-622 (-622 |#3|))) 54)) (-2072 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3956 (((-622 (-622 |#3|)) $) 43)) (-4079 (((-112) $ (-751)) 59)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-545)))) (-2070 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#3|) (-622 |#3|)) 75 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-288 |#3|)) 73 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-622 (-288 |#3|))) 72 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))) (-1272 (((-112) $ $) 55)) (-3762 (((-112) $) 58)) (-3928 (($) 57)) (-4159 ((|#3| $ (-538) (-538)) 42) ((|#3| $ (-538) (-538) |#3|) 40)) (-3457 (((-112) $) 52)) (-2069 (((-751) |#3| $) 70 (-12 (|has| |#3| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4353)))) (-3759 (($ $) 56)) (-3446 ((|#5| $ (-538)) 38)) (-4317 (((-840) $) 11)) (-2071 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4353)))) (-3455 (((-112) $) 50)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#3|) 35 (|has| |#3| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4316 (((-751) $) 62 (|has| $ (-6 -4353)))))
+((-4141 (*1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-751)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1025)))))
+(-13 (-1032) (-707) (-628 $) (-10 -8 (-15 -4141 ((-751))) (-15 -1683 ($ (-552))) (-6 -4350)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-3953 (((-402 (-928 |#2|)) (-625 |#2|) (-625 |#2|) (-751) (-751)) 46)))
+(((-1026 |#1| |#2|) (-10 -7 (-15 -3953 ((-402 (-928 |#2|)) (-625 |#2|) (-625 |#2|) (-751) (-751)))) (-1149) (-358)) (T -1026))
+((-3953 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-751)) (-4 *6 (-358)) (-5 *2 (-402 (-928 *6))) (-5 *1 (-1026 *5 *6)) (-14 *5 (-1149)))))
+(-10 -7 (-15 -3953 ((-402 (-928 |#2|)) (-625 |#2|) (-625 |#2|) (-751) (-751))))
+((-4089 (((-112) $) 29)) (-4114 (((-112) $) 16)) (-1773 (((-751) $) 13)) (-1784 (((-751) $) 14)) (-4102 (((-112) $) 26)) (-4077 (((-112) $) 31)))
+(((-1027 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1784 ((-751) |#1|)) (-15 -1773 ((-751) |#1|)) (-15 -4077 ((-112) |#1|)) (-15 -4089 ((-112) |#1|)) (-15 -4102 ((-112) |#1|)) (-15 -4114 ((-112) |#1|))) (-1028 |#2| |#3| |#4| |#5| |#6|) (-751) (-751) (-1025) (-234 |#3| |#4|) (-234 |#2| |#4|)) (T -1027))
+NIL
+(-10 -8 (-15 -1784 ((-751) |#1|)) (-15 -1773 ((-751) |#1|)) (-15 -4077 ((-112) |#1|)) (-15 -4089 ((-112) |#1|)) (-15 -4102 ((-112) |#1|)) (-15 -4114 ((-112) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-4089 (((-112) $) 51)) (-2077 (((-3 $ "failed") $ $) 19)) (-4114 (((-112) $) 53)) (-3495 (((-112) $ (-751)) 61)) (-3101 (($) 17 T CONST)) (-3991 (($ $) 34 (|has| |#3| (-302)))) (-4015 ((|#4| $ (-552)) 39)) (-3442 (((-751) $) 33 (|has| |#3| (-544)))) (-3631 ((|#3| $ (-552) (-552)) 41)) (-3799 (((-625 |#3|) $) 68 (|has| $ (-6 -4353)))) (-3979 (((-751) $) 32 (|has| |#3| (-544)))) (-3967 (((-625 |#5|) $) 31 (|has| |#3| (-544)))) (-1773 (((-751) $) 45)) (-1784 (((-751) $) 44)) (-2909 (((-112) $ (-751)) 60)) (-4063 (((-552) $) 49)) (-4038 (((-552) $) 47)) (-3730 (((-625 |#3|) $) 69 (|has| $ (-6 -4353)))) (-2893 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1073)) (|has| $ (-6 -4353))))) (-4050 (((-552) $) 48)) (-4027 (((-552) $) 46)) (-3907 (($ (-625 (-625 |#3|))) 54)) (-3683 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3803 (((-625 (-625 |#3|)) $) 43)) (-2878 (((-112) $ (-751)) 59)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-544)))) (-1888 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#3|) (-625 |#3|)) 75 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-289 |#3|)) 73 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-625 (-289 |#3|))) 72 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))) (-3504 (((-112) $ $) 55)) (-1916 (((-112) $) 58)) (-3600 (($) 57)) (-2154 ((|#3| $ (-552) (-552)) 42) ((|#3| $ (-552) (-552) |#3|) 40)) (-4102 (((-112) $) 52)) (-2840 (((-751) |#3| $) 70 (-12 (|has| |#3| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4353)))) (-1871 (($ $) 56)) (-4004 ((|#5| $ (-552)) 38)) (-1683 (((-839) $) 11)) (-1900 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4353)))) (-4077 (((-112) $) 50)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#3|) 35 (|has| |#3| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-1471 (((-751) $) 62 (|has| $ (-6 -4353)))))
(((-1028 |#1| |#2| |#3| |#4| |#5|) (-138) (-751) (-751) (-1025) (-234 |t#2| |t#3|) (-234 |t#1| |t#3|)) (T -1028))
-((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *5))) (-4 *5 (-1025)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-622 (-622 *5))))) (-4159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))) (-3448 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))) (-4159 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *2 (-1025)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)))) (-3447 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *6 *2 *7)) (-4 *6 (-1025)) (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *6 *7 *2)) (-4 *6 (-1025)) (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6)))) (-4318 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3820 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-545)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-358)))) (-3445 (*1 *1 *1) (-12 (-4 *1 (-1028 *2 *3 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *2 *4)) (-4 *4 (-302)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-751)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-751)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-622 *7)))))
-(-13 (-111 |t#3| |t#3|) (-483 |t#3|) (-10 -8 (-6 -4353) (IF (|has| |t#3| (-170)) (-6 (-698 |t#3|)) |%noBranch|) (-15 -3459 ($ (-622 (-622 |t#3|)))) (-15 -3458 ((-112) $)) (-15 -3457 ((-112) $)) (-15 -3456 ((-112) $)) (-15 -3455 ((-112) $)) (-15 -3454 ((-538) $)) (-15 -3453 ((-538) $)) (-15 -3452 ((-538) $)) (-15 -3451 ((-538) $)) (-15 -3450 ((-751) $)) (-15 -3449 ((-751) $)) (-15 -3956 ((-622 (-622 |t#3|)) $)) (-15 -4159 (|t#3| $ (-538) (-538))) (-15 -3448 (|t#3| $ (-538) (-538))) (-15 -4159 (|t#3| $ (-538) (-538) |t#3|)) (-15 -3447 (|t#4| $ (-538))) (-15 -3446 (|t#5| $ (-538))) (-15 -4318 ($ (-1 |t#3| |t#3|) $)) (-15 -4318 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-545)) (-15 -3820 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-358)) (-15 -4308 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-302)) (-15 -3445 ($ $)) |%noBranch|) (IF (|has| |t#3| (-545)) (PROGN (-15 -3444 ((-751) $)) (-15 -3443 ((-751) $)) (-15 -3442 ((-622 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-597 (-840)) . T) ((-304 |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))) ((-483 |#3|) . T) ((-507 |#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))) ((-628 |#3|) . T) ((-698 |#3|) |has| |#3| (-170)) ((-1031 |#3|) . T) ((-1074) . T) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3456 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3458 (((-112) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-3445 (($ $) 43 (|has| |#3| (-302)))) (-3447 (((-235 |#2| |#3|) $ (-538)) 32)) (-3460 (($ (-669 |#3|)) 41)) (-3444 (((-751) $) 45 (|has| |#3| (-545)))) (-3448 ((|#3| $ (-538) (-538)) NIL)) (-2068 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3443 (((-751) $) 47 (|has| |#3| (-545)))) (-3442 (((-622 (-235 |#1| |#3|)) $) 51 (|has| |#3| (-545)))) (-3450 (((-751) $) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-3459 (($ (-622 (-622 |#3|))) 27)) (-2072 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3956 (((-622 (-622 |#3|)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-545)))) (-2070 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#3|) (-622 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-622 (-288 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#3| $ (-538) (-538)) NIL) ((|#3| $ (-538) (-538) |#3|) NIL)) (-4271 (((-133)) 54 (|has| |#3| (-358)))) (-3457 (((-112) $) NIL)) (-2069 (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074)))) (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) 63 (|has| |#3| (-598 (-527))))) (-3446 (((-235 |#1| |#3|) $ (-538)) 36)) (-4317 (((-840) $) 16) (((-669 |#3|) $) 38)) (-2071 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-2991 (($) 13 T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1029 |#1| |#2| |#3|) (-13 (-1028 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-597 (-669 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1239 |#3|)) |%noBranch|) (IF (|has| |#3| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (-15 -3460 ($ (-669 |#3|))) (-15 -4317 ((-669 |#3|) $)))) (-751) (-751) (-1025)) (T -1029))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-669 *5)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-1025)))) (-3460 (*1 *1 *2) (-12 (-5 *2 (-669 *5)) (-4 *5 (-1025)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)))))
-(-13 (-1028 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-597 (-669 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1239 |#3|)) |%noBranch|) (IF (|has| |#3| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (-15 -3460 ($ (-669 |#3|))) (-15 -4317 ((-669 |#3|) $))))
-((-4202 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4318 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-1030 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4318 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4202 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-751) (-751) (-1025) (-234 |#2| |#3|) (-234 |#1| |#3|) (-1028 |#1| |#2| |#3| |#4| |#5|) (-1025) (-234 |#2| |#7|) (-234 |#1| |#7|) (-1028 |#1| |#2| |#7| |#8| |#9|)) (T -1030))
-((-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1025)) (-4 *2 (-1025)) (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2)) (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *12 (-1028 *5 *6 *2 *10 *11)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1025)) (-4 *10 (-1025)) (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *2 (-1028 *5 *6 *10 *11 *12)) (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10)) (-4 *12 (-234 *5 *10)))))
-(-10 -7 (-15 -4318 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4202 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ |#1|) 23)))
+((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *5))) (-4 *5 (-1025)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-625 (-625 *5))))) (-2154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))) (-3631 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))) (-2154 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *2 (-1025)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *6 *2 *7)) (-4 *6 (-1025)) (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6)))) (-4004 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *6 *7 *2)) (-4 *6 (-1025)) (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6)))) (-1996 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-2802 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-544)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-358)))) (-3991 (*1 *1 *1) (-12 (-4 *1 (-1028 *2 *3 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *2 *4)) (-4 *4 (-302)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544)) (-5 *2 (-751)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544)) (-5 *2 (-751)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544)) (-5 *2 (-625 *7)))))
+(-13 (-111 |t#3| |t#3|) (-483 |t#3|) (-10 -8 (-6 -4353) (IF (|has| |t#3| (-170)) (-6 (-698 |t#3|)) |%noBranch|) (-15 -3907 ($ (-625 (-625 |t#3|)))) (-15 -4114 ((-112) $)) (-15 -4102 ((-112) $)) (-15 -4089 ((-112) $)) (-15 -4077 ((-112) $)) (-15 -4063 ((-552) $)) (-15 -4050 ((-552) $)) (-15 -4038 ((-552) $)) (-15 -4027 ((-552) $)) (-15 -1773 ((-751) $)) (-15 -1784 ((-751) $)) (-15 -3803 ((-625 (-625 |t#3|)) $)) (-15 -2154 (|t#3| $ (-552) (-552))) (-15 -3631 (|t#3| $ (-552) (-552))) (-15 -2154 (|t#3| $ (-552) (-552) |t#3|)) (-15 -4015 (|t#4| $ (-552))) (-15 -4004 (|t#5| $ (-552))) (-15 -1996 ($ (-1 |t#3| |t#3|) $)) (-15 -1996 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-544)) (-15 -2802 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-358)) (-15 -2404 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-302)) (-15 -3991 ($ $)) |%noBranch|) (IF (|has| |t#3| (-544)) (PROGN (-15 -3442 ((-751) $)) (-15 -3979 ((-751) $)) (-15 -3967 ((-625 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-597 (-839)) . T) ((-304 |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))) ((-483 |#3|) . T) ((-507 |#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))) ((-628 |#3|) . T) ((-698 |#3|) |has| |#3| (-170)) ((-1031 |#3|) . T) ((-1073) . T) ((-1186) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4089 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4114 (((-112) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-3991 (($ $) 43 (|has| |#3| (-302)))) (-4015 (((-236 |#2| |#3|) $ (-552)) 32)) (-4128 (($ (-669 |#3|)) 41)) (-3442 (((-751) $) 45 (|has| |#3| (-544)))) (-3631 ((|#3| $ (-552) (-552)) NIL)) (-3799 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3979 (((-751) $) 47 (|has| |#3| (-544)))) (-3967 (((-625 (-236 |#1| |#3|)) $) 51 (|has| |#3| (-544)))) (-1773 (((-751) $) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3907 (($ (-625 (-625 |#3|))) 27)) (-3683 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3803 (((-625 (-625 |#3|)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-544)))) (-1888 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#3|) (-625 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-625 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#3| $ (-552) (-552)) NIL) ((|#3| $ (-552) (-552) |#3|) NIL)) (-3904 (((-133)) 54 (|has| |#3| (-358)))) (-4102 (((-112) $) NIL)) (-2840 (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073)))) (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) 63 (|has| |#3| (-598 (-528))))) (-4004 (((-236 |#1| |#3|) $ (-552)) 36)) (-1683 (((-839) $) 16) (((-669 |#3|) $) 38)) (-1900 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-2089 (($) 13 T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1029 |#1| |#2| |#3|) (-13 (-1028 |#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) (-597 (-669 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1239 |#3|)) |%noBranch|) (IF (|has| |#3| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (-15 -4128 ($ (-669 |#3|))) (-15 -1683 ((-669 |#3|) $)))) (-751) (-751) (-1025)) (T -1029))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-669 *5)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-1025)))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-669 *5)) (-4 *5 (-1025)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)))))
+(-13 (-1028 |#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) (-597 (-669 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1239 |#3|)) |%noBranch|) (IF (|has| |#3| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (-15 -4128 ($ (-669 |#3|))) (-15 -1683 ((-669 |#3|) $))))
+((-2163 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1996 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-1030 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1996 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2163 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-751) (-751) (-1025) (-234 |#2| |#3|) (-234 |#1| |#3|) (-1028 |#1| |#2| |#3| |#4| |#5|) (-1025) (-234 |#2| |#7|) (-234 |#1| |#7|) (-1028 |#1| |#2| |#7| |#8| |#9|)) (T -1030))
+((-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1025)) (-4 *2 (-1025)) (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2)) (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *12 (-1028 *5 *6 *2 *10 *11)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1025)) (-4 *10 (-1025)) (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *2 (-1028 *5 *6 *10 *11 *12)) (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10)) (-4 *12 (-234 *5 *10)))))
+(-10 -7 (-15 -1996 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2163 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ |#1|) 23)))
(((-1031 |#1|) (-138) (-1032)) (T -1031))
((* (*1 *1 *1 *2) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1032)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-1032) (-138)) (T -1032))
NIL
(-13 (-21) (-1085))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1085) . T) ((-1074) . T))
-((-4130 (($ $) 16)) (-3462 (($ $) 22)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 49)) (-3467 (($ $) 24)) (-3463 (($ $) 11)) (-3465 (($ $) 38)) (-4330 (((-373) $) NIL) (((-221) $) NIL) (((-866 (-373)) $) 33)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) 28) (($ (-538)) NIL) (($ (-402 (-538))) 28)) (-3461 (((-751)) 8)) (-3466 (($ $) 39)))
-(((-1033 |#1|) (-10 -8 (-15 -3462 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -4317 ((-840) |#1|))) (-1034)) (T -1033))
-((-3461 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1033 *3)) (-4 *3 (-1034)))))
-(-10 -8 (-15 -3462 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3464 (((-538) $) 86)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-4130 (($ $) 84)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-3370 (($ $) 94)) (-1705 (((-112) $ $) 57)) (-3986 (((-538) $) 111)) (-3896 (($) 17 T CONST)) (-3462 (($ $) 83)) (-3508 (((-3 (-538) #1="failed") $) 99) (((-3 (-402 (-538)) #1#) $) 96)) (-3507 (((-538) $) 98) (((-402 (-538)) $) 95)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-3537 (((-112) $) 109)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 90)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 93)) (-3467 (($ $) 89)) (-3538 (((-112) $) 110)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 50)) (-3677 (($ $ $) 108)) (-3678 (($ $ $) 107)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3463 (($ $) 85)) (-3465 (($ $) 87)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-4330 (((-373) $) 102) (((-221) $) 101) (((-866 (-373)) $) 91)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ (-538)) 100) (($ (-402 (-538))) 97)) (-3461 (((-751)) 28)) (-3466 (($ $) 88)) (-2177 (((-112) $ $) 37)) (-3742 (($ $) 112)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 105)) (-2897 (((-112) $ $) 104)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 106)) (-3018 (((-112) $ $) 103)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66) (($ $ (-402 (-538))) 92)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1085) . T) ((-1073) . T))
+((-2162 (($ $) 16)) (-4154 (($ $) 22)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 49)) (-4209 (($ $) 24)) (-4166 (($ $) 11)) (-4189 (($ $) 38)) (-2042 (((-374) $) NIL) (((-221) $) NIL) (((-868 (-374)) $) 33)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) 28) (($ (-552)) NIL) (($ (-402 (-552))) 28)) (-4141 (((-751)) 8)) (-4199 (($ $) 39)))
+(((-1033 |#1|) (-10 -8 (-15 -4154 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -4209 (|#1| |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -1683 ((-839) |#1|))) (-1034)) (T -1033))
+((-4141 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1033 *3)) (-4 *3 (-1034)))))
+(-10 -8 (-15 -4154 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -4209 (|#1| |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-4177 (((-552) $) 86)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2162 (($ $) 84)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-3837 (($ $) 94)) (-2408 (((-112) $ $) 57)) (-4127 (((-552) $) 111)) (-3101 (($) 17 T CONST)) (-4154 (($ $) 83)) (-1893 (((-3 (-552) "failed") $) 99) (((-3 (-402 (-552)) "failed") $) 96)) (-1895 (((-552) $) 98) (((-402 (-552)) $) 95)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-3620 (((-112) $) 109)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 90)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 93)) (-4209 (($ $) 89)) (-3630 (((-112) $) 110)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-3658 (($ $ $) 108)) (-3332 (($ $ $) 107)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-4166 (($ $) 85)) (-4189 (($ $) 87)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-2042 (((-374) $) 102) (((-221) $) 101) (((-868 (-374)) $) 91)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ (-552)) 100) (($ (-402 (-552))) 97)) (-4141 (((-751)) 28)) (-4199 (($ $) 88)) (-3518 (((-112) $ $) 37)) (-1727 (($ $) 112)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 105)) (-2320 (((-112) $ $) 104)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 106)) (-2307 (((-112) $ $) 103)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66) (($ $ (-402 (-552))) 92)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64)))
(((-1034) (-138)) (T -1034))
-((-3742 (*1 *1 *1) (-4 *1 (-1034))) (-3467 (*1 *1 *1) (-4 *1 (-1034))) (-3466 (*1 *1 *1) (-4 *1 (-1034))) (-3465 (*1 *1 *1) (-4 *1 (-1034))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-538)))) (-3463 (*1 *1 *1) (-4 *1 (-1034))) (-4130 (*1 *1 *1) (-4 *1 (-1034))) (-3462 (*1 *1 *1) (-4 *1 (-1034))))
-(-13 (-358) (-825) (-996) (-1014 (-538)) (-1014 (-402 (-538))) (-978) (-598 (-866 (-373))) (-862 (-373)) (-145) (-10 -8 (-15 -3467 ($ $)) (-15 -3466 ($ $)) (-15 -3465 ($ $)) (-15 -3464 ((-538) $)) (-15 -3463 ($ $)) (-15 -4130 ($ $)) (-15 -3462 ($ $)) (-15 -3742 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-840)) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-373)) . T) ((-598 (-866 (-373))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-825) . T) ((-827) . T) ((-862 (-373)) . T) ((-897) . T) ((-978) . T) ((-996) . T) ((-1014 (-402 (-538))) . T) ((-1014 (-538)) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) |#2| $) 23)) (-3471 ((|#1| $) 10)) (-3986 (((-538) |#2| $) 88)) (-3534 (((-3 $ #1="failed") |#2| (-895)) 57)) (-3472 ((|#1| $) 28)) (-3533 ((|#1| |#2| $ |#1|) 37)) (-3469 (($ $) 25)) (-3821 (((-3 |#2| #1#) |#2| $) 87)) (-3537 (((-112) |#2| $) NIL)) (-3538 (((-112) |#2| $) NIL)) (-3468 (((-112) |#2| $) 24)) (-3470 ((|#1| $) 89)) (-3473 ((|#1| $) 27)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3536 ((|#2| $) 79)) (-4317 (((-840) $) 70)) (-4129 ((|#1| |#2| $ |#1|) 38)) (-3535 (((-622 $) |#2|) 59)) (-3387 (((-112) $ $) 74)))
-(((-1035 |#1| |#2|) (-13 (-1042 |#1| |#2|) (-10 -8 (-15 -3473 (|#1| $)) (-15 -3472 (|#1| $)) (-15 -3471 (|#1| $)) (-15 -3470 (|#1| $)) (-15 -3469 ($ $)) (-15 -3468 ((-112) |#2| $)) (-15 -3533 (|#1| |#2| $ |#1|)))) (-13 (-825) (-358)) (-1207 |#1|)) (T -1035))
-((-3533 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3473 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3472 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3471 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3470 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3469 (*1 *1 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3468 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-825) (-358))) (-5 *2 (-112)) (-5 *1 (-1035 *4 *3)) (-4 *3 (-1207 *4)))))
-(-13 (-1042 |#1| |#2|) (-10 -8 (-15 -3473 (|#1| $)) (-15 -3472 (|#1| $)) (-15 -3471 (|#1| $)) (-15 -3470 (|#1| $)) (-15 -3469 ($ $)) (-15 -3468 ((-112) |#2| $)) (-15 -3533 (|#1| |#2| $ |#1|))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-2162 (($ $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2157 (($ $ $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL)) (-2690 (($ $ $) NIL)) (-3896 (($) NIL T CONST)) (-3474 (($ (-1149)) 10) (($ (-538)) 7)) (-3508 (((-3 (-538) "failed") $) NIL)) (-3507 (((-538) $) NIL)) (-2894 (($ $ $) NIL)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL)) (-3356 (((-112) $) NIL)) (-3355 (((-402 (-538)) $) NIL)) (-3327 (($) NIL) (($ $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2155 (($ $ $ $) NIL)) (-2163 (($ $ $) NIL)) (-3537 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL)) (-2502 (((-112) $) NIL)) (-3006 (((-112) $) NIL)) (-3803 (((-3 $ "failed") $) NIL)) (-3538 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2156 (($ $ $ $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-2159 (($ $) NIL)) (-4193 (($ $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2154 (($ $ $) NIL)) (-3804 (($) NIL T CONST)) (-2161 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1412 (($ $) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-2160 (($ $) NIL)) (-3759 (($ $) NIL)) (-4330 (((-538) $) 16) (((-527) $) NIL) (((-866 (-538)) $) NIL) (((-373) $) NIL) (((-221) $) NIL) (($ (-1149)) 9)) (-4317 (((-840) $) 20) (($ (-538)) 6) (($ $) NIL) (($ (-538)) 6)) (-3461 (((-751)) NIL)) (-2164 (((-112) $ $) NIL)) (-3437 (($ $ $) NIL)) (-3027 (($) NIL)) (-2177 (((-112) $ $) NIL)) (-2158 (($ $ $ $) NIL)) (-3742 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4197 (($ $) 19) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL)))
-(((-1036) (-13 (-537) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -4330 ($ (-1149))) (-15 -3474 ($ (-1149))) (-15 -3474 ($ (-538)))))) (T -1036))
-((-4330 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1036)))))
-(-13 (-537) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -4330 ($ (-1149))) (-15 -3474 ($ (-1149))) (-15 -3474 ($ (-538)))))
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-2305 (((-1237) $ (-1149) (-1149)) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-3476 (($) 9)) (-4147 (((-51) $ (-1149) (-51)) NIL)) (-3484 (($ $) 30)) (-3487 (($ $) 28)) (-3488 (($ $) 27)) (-3486 (($ $) 29)) (-3483 (($ $) 32)) (-3482 (($ $) 33)) (-3489 (($ $) 26)) (-3485 (($ $) 31)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) 25 (|has| $ (-6 -4353)))) (-2314 (((-3 (-51) #1="failed") (-1149) $) 40)) (-3896 (($) NIL T CONST)) (-3490 (($) 7)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-3764 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) 50 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-51) #1#) (-1149) $) NIL)) (-3765 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-3475 (((-3 (-1131) "failed") $ (-1131) (-538)) 59)) (-1637 (((-51) $ (-1149) (-51)) NIL (|has| $ (-6 -4354)))) (-3448 (((-51) $ (-1149)) NIL)) (-2068 (((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-1149) $) NIL (|has| (-1149) (-827)))) (-2511 (((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) 35 (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2308 (((-1149) $) NIL (|has| (-1149) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-2744 (((-622 (-1149)) $) NIL)) (-2315 (((-112) (-1149) $) NIL)) (-1333 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL)) (-3970 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) 43)) (-2310 (((-622 (-1149)) $) NIL)) (-2311 (((-112) (-1149) $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-3479 (((-373) $ (-1149)) 49)) (-3478 (((-622 (-1131)) $ (-1131)) 60)) (-4160 (((-51) $) NIL (|has| (-1149) (-827)))) (-1399 (((-3 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) "failed") (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL)) (-2306 (($ $ (-51)) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-288 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-51)) (-622 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-288 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-622 (-288 (-51)))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2312 (((-622 (-51)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (((-51) $ (-1149)) NIL) (((-51) $ (-1149) (-51)) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-3477 (($ $ (-1149)) 51)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-751) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074)))) (((-751) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) 37)) (-4161 (($ $ $) 38)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-597 (-840))) (|has| (-51) (-597 (-840)))))) (-3481 (($ $ (-1149) (-373)) 47)) (-3480 (($ $ (-1149) (-373)) 48)) (-1335 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1037) (-13 (-1162 (-1149) (-51)) (-10 -8 (-15 -4161 ($ $ $)) (-15 -3490 ($)) (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3487 ($ $)) (-15 -3486 ($ $)) (-15 -3485 ($ $)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3481 ($ $ (-1149) (-373))) (-15 -3480 ($ $ (-1149) (-373))) (-15 -3479 ((-373) $ (-1149))) (-15 -3478 ((-622 (-1131)) $ (-1131))) (-15 -3477 ($ $ (-1149))) (-15 -3476 ($)) (-15 -3475 ((-3 (-1131) "failed") $ (-1131) (-538))) (-6 -4353)))) (T -1037))
-((-4161 (*1 *1 *1 *1) (-5 *1 (-1037))) (-3490 (*1 *1) (-5 *1 (-1037))) (-3489 (*1 *1 *1) (-5 *1 (-1037))) (-3488 (*1 *1 *1) (-5 *1 (-1037))) (-3487 (*1 *1 *1) (-5 *1 (-1037))) (-3486 (*1 *1 *1) (-5 *1 (-1037))) (-3485 (*1 *1 *1) (-5 *1 (-1037))) (-3484 (*1 *1 *1) (-5 *1 (-1037))) (-3483 (*1 *1 *1) (-5 *1 (-1037))) (-3482 (*1 *1 *1) (-5 *1 (-1037))) (-3481 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-373)) (-5 *1 (-1037)))) (-3480 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-373)) (-5 *1 (-1037)))) (-3479 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-373)) (-5 *1 (-1037)))) (-3478 (*1 *2 *1 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1037)) (-5 *3 (-1131)))) (-3477 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1037)))) (-3476 (*1 *1) (-5 *1 (-1037))) (-3475 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-1037)))))
-(-13 (-1162 (-1149) (-51)) (-10 -8 (-15 -4161 ($ $ $)) (-15 -3490 ($)) (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3487 ($ $)) (-15 -3486 ($ $)) (-15 -3485 ($ $)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3481 ($ $ (-1149) (-373))) (-15 -3480 ($ $ (-1149) (-373))) (-15 -3479 ((-373) $ (-1149))) (-15 -3478 ((-622 (-1131)) $ (-1131))) (-15 -3477 ($ $ (-1149))) (-15 -3476 ($)) (-15 -3475 ((-3 (-1131) "failed") $ (-1131) (-538))) (-6 -4353)))
-((-4156 (($ $) 45)) (-3517 (((-112) $ $) 74)) (-3508 (((-3 |#2| #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 (-538) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-922 (-402 (-538)))) 227) (((-3 $ "failed") (-922 (-538))) 226) (((-3 $ "failed") (-922 |#2|)) 229)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL) (((-538) $) NIL) ((|#4| $) NIL) (($ (-922 (-402 (-538)))) 215) (($ (-922 (-538))) 211) (($ (-922 |#2|)) 231)) (-4319 (($ $) NIL) (($ $ |#4|) 43)) (-4057 (((-112) $ $) 112) (((-112) $ (-622 $)) 113)) (-3523 (((-112) $) 56)) (-4112 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 107)) (-3494 (($ $) 138)) (-3505 (($ $) 134)) (-3506 (($ $) 133)) (-3516 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3515 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4058 (((-112) $ $) 121) (((-112) $ (-622 $)) 122)) (-3531 ((|#4| $) 33)) (-3510 (($ $ $) 110)) (-3524 (((-112) $) 55)) (-3530 (((-751) $) 35)) (-3491 (($ $) 152)) (-3492 (($ $) 149)) (-3519 (((-622 $) $) 68)) (-3522 (($ $) 57)) (-3493 (($ $) 145)) (-3520 (((-622 $) $) 65)) (-3521 (($ $) 59)) (-3525 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3509 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3835 (-751))) $ $) 111)) (-3511 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $) 108) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $ |#4|) 109)) (-3512 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $) 104) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $ |#4|) 105)) (-3514 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3513 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3527 (((-622 $) $) 51)) (-4054 (((-112) $ $) 118) (((-112) $ (-622 $)) 119)) (-4049 (($ $ $) 103)) (-3804 (($ $) 37)) (-4062 (((-112) $ $) 72)) (-4055 (((-112) $ $) 114) (((-112) $ (-622 $)) 116)) (-4050 (($ $ $) 101)) (-3529 (($ $) 40)) (-3495 ((|#2| |#2| $) 142) (($ (-622 $)) NIL) (($ $ $) NIL)) (-3503 (($ $ |#2|) NIL) (($ $ $) 131)) (-3504 (($ $ |#2|) 126) (($ $ $) 129)) (-3528 (($ $) 48)) (-3526 (($ $) 52)) (-4330 (((-866 (-373)) $) NIL) (((-866 (-538)) $) NIL) (((-527) $) NIL) (($ (-922 (-402 (-538)))) 217) (($ (-922 (-538))) 213) (($ (-922 |#2|)) 228) (((-1131) $) 250) (((-922 |#2|) $) 162)) (-4317 (((-840) $) 30) (($ (-538)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-922 |#2|) $) 163) (($ (-402 (-538))) NIL) (($ $) NIL)) (-3518 (((-3 (-112) "failed") $ $) 71)))
-(((-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 ((-922 |#2|) |#1|)) (-15 -4330 ((-922 |#2|) |#1|)) (-15 -4330 ((-1131) |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3495 (|#2| |#2| |#1|)) (-15 -3503 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1| |#1|)) (-15 -3503 (|#1| |#1| |#2|)) (-15 -3504 (|#1| |#1| |#2|)) (-15 -3505 (|#1| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -4330 (|#1| (-922 |#2|))) (-15 -3507 (|#1| (-922 |#2|))) (-15 -3508 ((-3 |#1| "failed") (-922 |#2|))) (-15 -4330 (|#1| (-922 (-538)))) (-15 -3507 (|#1| (-922 (-538)))) (-15 -3508 ((-3 |#1| "failed") (-922 (-538)))) (-15 -4330 (|#1| (-922 (-402 (-538))))) (-15 -3507 (|#1| (-922 (-402 (-538))))) (-15 -3508 ((-3 |#1| "failed") (-922 (-402 (-538))))) (-15 -4049 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#1|)) (-15 -3509 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3835 (-751))) |#1| |#1|)) (-15 -3510 (|#1| |#1| |#1|)) (-15 -4112 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3512 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3512 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3513 (|#1| |#1| |#1| |#4|)) (-15 -3514 (|#1| |#1| |#1| |#4|)) (-15 -3513 (|#1| |#1| |#1|)) (-15 -3514 (|#1| |#1| |#1|)) (-15 -3515 (|#1| |#1| |#1| |#4|)) (-15 -3516 (|#1| |#1| |#1| |#4|)) (-15 -3515 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1| |#1|)) (-15 -4058 ((-112) |#1| (-622 |#1|))) (-15 -4058 ((-112) |#1| |#1|)) (-15 -4054 ((-112) |#1| (-622 |#1|))) (-15 -4054 ((-112) |#1| |#1|)) (-15 -4055 ((-112) |#1| (-622 |#1|))) (-15 -4055 ((-112) |#1| |#1|)) (-15 -4057 ((-112) |#1| (-622 |#1|))) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3517 ((-112) |#1| |#1|)) (-15 -4062 ((-112) |#1| |#1|)) (-15 -3518 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3519 ((-622 |#1|) |#1|)) (-15 -3520 ((-622 |#1|) |#1|)) (-15 -3521 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3523 ((-112) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -4319 (|#1| |#1| |#4|)) (-15 -3525 (|#1| |#1| |#4|)) (-15 -3526 (|#1| |#1|)) (-15 -3527 ((-622 |#1|) |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3530 ((-751) |#1|)) (-15 -3531 (|#4| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -3507 (|#4| |#1|)) (-15 -3508 ((-3 |#4| #1="failed") |#1|)) (-15 -4317 (|#1| |#4|)) (-15 -3525 (|#2| |#1|)) (-15 -4319 (|#1| |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-1039 |#2| |#3| |#4|) (-1025) (-773) (-827)) (T -1038))
-NIL
-(-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 ((-922 |#2|) |#1|)) (-15 -4330 ((-922 |#2|) |#1|)) (-15 -4330 ((-1131) |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3495 (|#2| |#2| |#1|)) (-15 -3503 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1| |#1|)) (-15 -3503 (|#1| |#1| |#2|)) (-15 -3504 (|#1| |#1| |#2|)) (-15 -3505 (|#1| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -4330 (|#1| (-922 |#2|))) (-15 -3507 (|#1| (-922 |#2|))) (-15 -3508 ((-3 |#1| "failed") (-922 |#2|))) (-15 -4330 (|#1| (-922 (-538)))) (-15 -3507 (|#1| (-922 (-538)))) (-15 -3508 ((-3 |#1| "failed") (-922 (-538)))) (-15 -4330 (|#1| (-922 (-402 (-538))))) (-15 -3507 (|#1| (-922 (-402 (-538))))) (-15 -3508 ((-3 |#1| "failed") (-922 (-402 (-538))))) (-15 -4049 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#1|)) (-15 -3509 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3835 (-751))) |#1| |#1|)) (-15 -3510 (|#1| |#1| |#1|)) (-15 -4112 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3512 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3512 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3513 (|#1| |#1| |#1| |#4|)) (-15 -3514 (|#1| |#1| |#1| |#4|)) (-15 -3513 (|#1| |#1| |#1|)) (-15 -3514 (|#1| |#1| |#1|)) (-15 -3515 (|#1| |#1| |#1| |#4|)) (-15 -3516 (|#1| |#1| |#1| |#4|)) (-15 -3515 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1| |#1|)) (-15 -4058 ((-112) |#1| (-622 |#1|))) (-15 -4058 ((-112) |#1| |#1|)) (-15 -4054 ((-112) |#1| (-622 |#1|))) (-15 -4054 ((-112) |#1| |#1|)) (-15 -4055 ((-112) |#1| (-622 |#1|))) (-15 -4055 ((-112) |#1| |#1|)) (-15 -4057 ((-112) |#1| (-622 |#1|))) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3517 ((-112) |#1| |#1|)) (-15 -4062 ((-112) |#1| |#1|)) (-15 -3518 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3519 ((-622 |#1|) |#1|)) (-15 -3520 ((-622 |#1|) |#1|)) (-15 -3521 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3523 ((-112) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -4319 (|#1| |#1| |#4|)) (-15 -3525 (|#1| |#1| |#4|)) (-15 -3526 (|#1| |#1|)) (-15 -3527 ((-622 |#1|) |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3530 ((-751) |#1|)) (-15 -3531 (|#4| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -3507 (|#4| |#1|)) (-15 -3508 ((-3 |#4| #1="failed") |#1|)) (-15 -4317 (|#1| |#4|)) (-15 -3525 (|#2| |#1|)) (-15 -4319 (|#1| |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 |#3|) $) 108)) (-3419 (((-1143 $) $ |#3|) 123) (((-1143 |#1|) $) 122)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-545)))) (-2178 (($ $) 86 (|has| |#1| (-545)))) (-2176 (((-112) $) 88 (|has| |#1| (-545)))) (-3152 (((-751) $) 110) (((-751) $ (-622 |#3|)) 109)) (-4156 (($ $) 269)) (-3517 (((-112) $ $) 255)) (-1368 (((-3 $ "failed") $ $) 19)) (-4115 (($ $ $) 214 (|has| |#1| (-545)))) (-3499 (((-622 $) $ $) 209 (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) 98 (|has| |#1| (-886)))) (-4134 (($ $) 96 (|has| |#1| (-446)))) (-4329 (((-400 $) $) 95 (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 101 (|has| |#1| (-886)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| #2="failed") $) 162) (((-3 (-402 (-538)) #2#) $) 160 (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) 158 (|has| |#1| (-1014 (-538)))) (((-3 |#3| #2#) $) 134) (((-3 $ "failed") (-922 (-402 (-538)))) 229 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149))))) (((-3 $ "failed") (-922 (-538))) 226 (-3891 (-12 (-3676 (|has| |#1| (-38 (-402 (-538))))) (|has| |#1| (-38 (-538))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149)))))) (((-3 $ "failed") (-922 |#1|)) 223 (-3891 (-12 (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-38 (-538)))) (|has| |#3| (-598 (-1149)))) (-12 (-3676 (|has| |#1| (-537))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (|has| |#1| (-38 (-538))) (|has| |#3| (-598 (-1149)))) (-12 (-3676 (|has| |#1| (-967 (-538)))) (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149))))))) (-3507 ((|#1| $) 163) (((-402 (-538)) $) 159 (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) 157 (|has| |#1| (-1014 (-538)))) ((|#3| $) 133) (($ (-922 (-402 (-538)))) 228 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149))))) (($ (-922 (-538))) 225 (-3891 (-12 (-3676 (|has| |#1| (-38 (-402 (-538))))) (|has| |#1| (-38 (-538))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149)))))) (($ (-922 |#1|)) 222 (-3891 (-12 (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-38 (-538)))) (|has| |#3| (-598 (-1149)))) (-12 (-3676 (|has| |#1| (-537))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (|has| |#1| (-38 (-538))) (|has| |#3| (-598 (-1149)))) (-12 (-3676 (|has| |#1| (-967 (-538)))) (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149))))))) (-4116 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-545)))) (-4319 (($ $) 152) (($ $ |#3|) 264)) (-2362 (((-669 (-538)) (-669 $)) 132 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 131 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-4057 (((-112) $ $) 254) (((-112) $ (-622 $)) 253)) (-3821 (((-3 $ "failed") $) 32)) (-3523 (((-112) $) 262)) (-4112 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 234)) (-3494 (($ $) 203 (|has| |#1| (-446)))) (-3857 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-3151 (((-622 $) $) 107)) (-4086 (((-112) $) 94 (|has| |#1| (-886)))) (-3505 (($ $) 219 (|has| |#1| (-545)))) (-3506 (($ $) 220 (|has| |#1| (-545)))) (-3516 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3515 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1721 (($ $ |#1| |#2| $) 170)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 82 (-12 (|has| |#3| (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 81 (-12 (|has| |#3| (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-2502 (((-112) $) 30)) (-2510 (((-751) $) 167)) (-4058 (((-112) $ $) 248) (((-112) $ (-622 $)) 247)) (-3496 (($ $ $ $ $) 205 (|has| |#1| (-545)))) (-3531 ((|#3| $) 273)) (-3420 (($ (-1143 |#1|) |#3|) 115) (($ (-1143 $) |#3|) 114)) (-3154 (((-622 $) $) 124)) (-4297 (((-112) $) 150)) (-3226 (($ |#1| |#2|) 151) (($ $ |#3| (-751)) 117) (($ $ (-622 |#3|) (-622 (-751))) 116)) (-3510 (($ $ $) 233)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#3|) 118)) (-3524 (((-112) $) 263)) (-3153 ((|#2| $) 168) (((-751) $ |#3|) 120) (((-622 (-751)) $ (-622 |#3|)) 119)) (-3677 (($ $ $) 77 (|has| |#1| (-827)))) (-3530 (((-751) $) 272)) (-3678 (($ $ $) 76 (|has| |#1| (-827)))) (-1722 (($ (-1 |#2| |#2|) $) 169)) (-4318 (($ (-1 |#1| |#1|) $) 149)) (-3418 (((-3 |#3| #3="failed") $) 121)) (-3491 (($ $) 200 (|has| |#1| (-446)))) (-3492 (($ $) 201 (|has| |#1| (-446)))) (-3519 (((-622 $) $) 258)) (-3522 (($ $) 261)) (-3493 (($ $) 202 (|has| |#1| (-446)))) (-3520 (((-622 $) $) 259)) (-3521 (($ $) 260)) (-3227 (($ $) 147)) (-3525 ((|#1| $) 146) (($ $ |#3|) 265)) (-2013 (($ (-622 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-3509 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3835 (-751))) $ $) 232)) (-3511 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $) 236) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $ |#3|) 235)) (-3512 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $) 238) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $ |#3|) 237)) (-3514 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3513 (($ $ $) 241) (($ $ $ |#3|) 239)) (-3593 (((-1131) $) 9)) (-3541 (($ $ $) 208 (|has| |#1| (-545)))) (-3527 (((-622 $) $) 267)) (-3156 (((-3 (-622 $) #3#) $) 112)) (-3155 (((-3 (-622 $) #3#) $) 113)) (-3157 (((-3 (-2 (|:| |var| |#3|) (|:| -2493 (-751))) #3#) $) 111)) (-4054 (((-112) $ $) 250) (((-112) $ (-622 $)) 249)) (-4049 (($ $ $) 230)) (-3804 (($ $) 271)) (-4062 (((-112) $ $) 256)) (-4055 (((-112) $ $) 252) (((-112) $ (-622 $)) 251)) (-4050 (($ $ $) 231)) (-3529 (($ $) 270)) (-3594 (((-1093) $) 10)) (-3500 (((-2 (|:| -3495 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-545)))) (-3501 (((-2 (|:| -3495 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-545)))) (-1916 (((-112) $) 164)) (-1915 ((|#1| $) 165)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 93 (|has| |#1| (-446)))) (-3495 ((|#1| |#1| $) 204 (|has| |#1| (-446))) (($ (-622 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 100 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 99 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 97 (|has| |#1| (-886)))) (-3502 (((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-545)))) (-3820 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-3503 (($ $ |#1|) 217 (|has| |#1| (-545))) (($ $ $) 215 (|has| |#1| (-545)))) (-3504 (($ $ |#1|) 218 (|has| |#1| (-545))) (($ $ $) 216 (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-622 $) (-622 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-622 |#3|) (-622 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-622 |#3|) (-622 $)) 136)) (-4117 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4170 (($ $ |#3|) 40) (($ $ (-622 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-622 |#3|) (-622 (-751))) 37)) (-4307 ((|#2| $) 148) (((-751) $ |#3|) 128) (((-622 (-751)) $ (-622 |#3|)) 127)) (-3528 (($ $) 268)) (-3526 (($ $) 266)) (-4330 (((-866 (-373)) $) 80 (-12 (|has| |#3| (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) 79 (-12 (|has| |#3| (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) 78 (-12 (|has| |#3| (-598 (-527))) (|has| |#1| (-598 (-527))))) (($ (-922 (-402 (-538)))) 227 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149))))) (($ (-922 (-538))) 224 (-3891 (-12 (-3676 (|has| |#1| (-38 (-402 (-538))))) (|has| |#1| (-38 (-538))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149)))))) (($ (-922 |#1|)) 221 (|has| |#3| (-598 (-1149)))) (((-1131) $) 199 (-12 (|has| |#1| (-1014 (-538))) (|has| |#3| (-598 (-1149))))) (((-922 |#1|) $) 198 (|has| |#3| (-598 (-1149))))) (-3150 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 102 (-3191 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-922 |#1|) $) 197 (|has| |#3| (-598 (-1149)))) (($ (-402 (-538))) 70 (-3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| |#1| (-38 (-402 (-538)))))) (($ $) 83 (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) 166)) (-4040 ((|#1| $ |#2|) 153) (($ $ |#3| (-751)) 126) (($ $ (-622 |#3|) (-622 (-751))) 125)) (-3035 (((-3 $ #1#) $) 71 (-3891 (-3191 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 28)) (-1720 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 87 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-3518 (((-3 (-112) "failed") $ $) 257)) (-2997 (($) 29 T CONST)) (-3497 (($ $ $ $ (-751)) 206 (|has| |#1| (-545)))) (-3498 (($ $ $ (-751)) 207 (|has| |#1| (-545)))) (-3002 (($ $ |#3|) 36) (($ $ (-622 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-622 |#3|) (-622 (-751))) 33)) (-2896 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 73 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 75 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 72 (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 156 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 155 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+((-1727 (*1 *1 *1) (-4 *1 (-1034))) (-4209 (*1 *1 *1) (-4 *1 (-1034))) (-4199 (*1 *1 *1) (-4 *1 (-1034))) (-4189 (*1 *1 *1) (-4 *1 (-1034))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-552)))) (-4166 (*1 *1 *1) (-4 *1 (-1034))) (-2162 (*1 *1 *1) (-4 *1 (-1034))) (-4154 (*1 *1 *1) (-4 *1 (-1034))))
+(-13 (-358) (-825) (-998) (-1014 (-552)) (-1014 (-402 (-552))) (-978) (-598 (-868 (-374))) (-862 (-374)) (-145) (-10 -8 (-15 -4209 ($ $)) (-15 -4199 ($ $)) (-15 -4189 ($ $)) (-15 -4177 ((-552) $)) (-15 -4166 ($ $)) (-15 -2162 ($ $)) (-15 -4154 ($ $)) (-15 -1727 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-839)) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-374)) . T) ((-598 (-868 (-374))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-825) . T) ((-827) . T) ((-862 (-374)) . T) ((-896) . T) ((-978) . T) ((-998) . T) ((-1014 (-402 (-552))) . T) ((-1014 (-552)) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) |#2| $) 23)) (-2894 ((|#1| $) 10)) (-4127 (((-552) |#2| $) 88)) (-3588 (((-3 $ "failed") |#2| (-897)) 57)) (-2303 ((|#1| $) 28)) (-3576 ((|#1| |#2| $ |#1|) 37)) (-4230 (($ $) 25)) (-4174 (((-3 |#2| "failed") |#2| $) 87)) (-3620 (((-112) |#2| $) NIL)) (-3630 (((-112) |#2| $) NIL)) (-4220 (((-112) |#2| $) 24)) (-4242 ((|#1| $) 89)) (-2290 ((|#1| $) 27)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3610 ((|#2| $) 79)) (-1683 (((-839) $) 70)) (-2874 ((|#1| |#2| $ |#1|) 38)) (-3599 (((-625 $) |#2|) 59)) (-2281 (((-112) $ $) 74)))
+(((-1035 |#1| |#2|) (-13 (-1042 |#1| |#2|) (-10 -8 (-15 -2290 (|#1| $)) (-15 -2303 (|#1| $)) (-15 -2894 (|#1| $)) (-15 -4242 (|#1| $)) (-15 -4230 ($ $)) (-15 -4220 ((-112) |#2| $)) (-15 -3576 (|#1| |#2| $ |#1|)))) (-13 (-825) (-358)) (-1208 |#1|)) (T -1035))
+((-3576 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-2290 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-2303 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-2894 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-4242 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-4230 (*1 *1 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-4220 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-825) (-358))) (-5 *2 (-112)) (-5 *1 (-1035 *4 *3)) (-4 *3 (-1208 *4)))))
+(-13 (-1042 |#1| |#2|) (-10 -8 (-15 -2290 (|#1| $)) (-15 -2303 (|#1| $)) (-15 -2894 (|#1| $)) (-15 -4242 (|#1| $)) (-15 -4230 ($ $)) (-15 -4220 ((-112) |#2| $)) (-15 -3576 (|#1| |#2| $ |#1|))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-3364 (($ $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3346 (($ $ $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL)) (-3420 (($ $ $) NIL)) (-3101 (($) NIL T CONST)) (-4252 (($ (-1149)) 10) (($ (-552)) 7)) (-1893 (((-3 (-552) "failed") $) NIL)) (-1895 (((-552) $) NIL)) (-2851 (($ $ $) NIL)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL)) (-2546 (((-112) $) NIL)) (-2538 (((-402 (-552)) $) NIL)) (-3702 (($) NIL) (($ $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3327 (($ $ $ $) NIL)) (-3372 (($ $ $) NIL)) (-3620 (((-112) $) NIL)) (-1302 (($ $ $) NIL)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL)) (-3650 (((-112) $) NIL)) (-3932 (((-112) $) NIL)) (-4034 (((-3 $ "failed") $) NIL)) (-3630 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3336 (($ $ $ $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2059 (($ $) NIL)) (-3456 (($ $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-3317 (($ $ $) NIL)) (-2071 (($) NIL T CONST)) (-1971 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-1279 (($ $) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-2715 (($ $) NIL)) (-1871 (($ $) NIL)) (-2042 (((-552) $) 16) (((-528) $) NIL) (((-868 (-552)) $) NIL) (((-374) $) NIL) (((-221) $) NIL) (($ (-1149)) 9)) (-1683 (((-839) $) 20) (($ (-552)) 6) (($ $) NIL) (($ (-552)) 6)) (-4141 (((-751)) NIL)) (-3383 (((-112) $ $) NIL)) (-3901 (($ $ $) NIL)) (-3929 (($) NIL)) (-3518 (((-112) $ $) NIL)) (-3355 (($ $ $ $) NIL)) (-1727 (($ $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2393 (($ $) 19) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL)))
+(((-1036) (-13 (-537) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -2042 ($ (-1149))) (-15 -4252 ($ (-1149))) (-15 -4252 ($ (-552)))))) (T -1036))
+((-2042 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))) (-4252 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))) (-4252 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1036)))))
+(-13 (-537) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -2042 ($ (-1149))) (-15 -4252 ($ (-1149))) (-15 -4252 ($ (-552)))))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-2509 (((-1237) $ (-1149) (-1149)) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-4274 (($) 9)) (-1851 (((-52) $ (-1149) (-52)) NIL)) (-1287 (($ $) 30)) (-1317 (($ $) 28)) (-1328 (($ $) 27)) (-1309 (($ $) 29)) (-1276 (($ $) 32)) (-1266 (($ $) 33)) (-1338 (($ $) 26)) (-1299 (($ $) 31)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) 25 (|has| $ (-6 -4353)))) (-3128 (((-3 (-52) "failed") (-1149) $) 40)) (-3101 (($) NIL T CONST)) (-3201 (($) 7)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-1938 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) 50 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-52) "failed") (-1149) $) NIL)) (-1416 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-4263 (((-3 (-1131) "failed") $ (-1131) (-552)) 59)) (-3692 (((-52) $ (-1149) (-52)) NIL (|has| $ (-6 -4354)))) (-3631 (((-52) $ (-1149)) NIL)) (-3799 (((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-1149) $) NIL (|has| (-1149) (-827)))) (-3730 (((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) 35 (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-2537 (((-1149) $) NIL (|has| (-1149) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-3712 (((-625 (-1149)) $) NIL)) (-1370 (((-112) (-1149) $) NIL)) (-2953 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL)) (-3966 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) 43)) (-2554 (((-625 (-1149)) $) NIL)) (-2564 (((-112) (-1149) $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-4305 (((-374) $ (-1149)) 49)) (-4295 (((-625 (-1131)) $ (-1131)) 60)) (-2924 (((-52) $) NIL (|has| (-1149) (-827)))) (-2380 (((-3 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) "failed") (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL)) (-2518 (($ $ (-52)) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-289 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-52)) (-625 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-625 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-1358 (((-625 (-52)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (((-52) $ (-1149)) NIL) (((-52) $ (-1149) (-52)) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-4285 (($ $ (-1149)) 51)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-751) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073)))) (((-751) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) 37)) (-3402 (($ $ $) 38)) (-1683 (((-839) $) NIL (-1523 (|has| (-52) (-597 (-839))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-597 (-839)))))) (-4324 (($ $ (-1149) (-374)) 47)) (-4314 (($ $ (-1149) (-374)) 48)) (-2977 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1037) (-13 (-1162 (-1149) (-52)) (-10 -8 (-15 -3402 ($ $ $)) (-15 -3201 ($)) (-15 -1338 ($ $)) (-15 -1328 ($ $)) (-15 -1317 ($ $)) (-15 -1309 ($ $)) (-15 -1299 ($ $)) (-15 -1287 ($ $)) (-15 -1276 ($ $)) (-15 -1266 ($ $)) (-15 -4324 ($ $ (-1149) (-374))) (-15 -4314 ($ $ (-1149) (-374))) (-15 -4305 ((-374) $ (-1149))) (-15 -4295 ((-625 (-1131)) $ (-1131))) (-15 -4285 ($ $ (-1149))) (-15 -4274 ($)) (-15 -4263 ((-3 (-1131) "failed") $ (-1131) (-552))) (-6 -4353)))) (T -1037))
+((-3402 (*1 *1 *1 *1) (-5 *1 (-1037))) (-3201 (*1 *1) (-5 *1 (-1037))) (-1338 (*1 *1 *1) (-5 *1 (-1037))) (-1328 (*1 *1 *1) (-5 *1 (-1037))) (-1317 (*1 *1 *1) (-5 *1 (-1037))) (-1309 (*1 *1 *1) (-5 *1 (-1037))) (-1299 (*1 *1 *1) (-5 *1 (-1037))) (-1287 (*1 *1 *1) (-5 *1 (-1037))) (-1276 (*1 *1 *1) (-5 *1 (-1037))) (-1266 (*1 *1 *1) (-5 *1 (-1037))) (-4324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-374)) (-5 *1 (-1037)))) (-4314 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-374)) (-5 *1 (-1037)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-374)) (-5 *1 (-1037)))) (-4295 (*1 *2 *1 *3) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1037)) (-5 *3 (-1131)))) (-4285 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1037)))) (-4274 (*1 *1) (-5 *1 (-1037))) (-4263 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-1037)))))
+(-13 (-1162 (-1149) (-52)) (-10 -8 (-15 -3402 ($ $ $)) (-15 -3201 ($)) (-15 -1338 ($ $)) (-15 -1328 ($ $)) (-15 -1317 ($ $)) (-15 -1309 ($ $)) (-15 -1299 ($ $)) (-15 -1287 ($ $)) (-15 -1276 ($ $)) (-15 -1266 ($ $)) (-15 -4324 ($ $ (-1149) (-374))) (-15 -4314 ($ $ (-1149) (-374))) (-15 -4305 ((-374) $ (-1149))) (-15 -4295 ((-625 (-1131)) $ (-1131))) (-15 -4285 ($ $ (-1149))) (-15 -4274 ($)) (-15 -4263 ((-3 (-1131) "failed") $ (-1131) (-552))) (-6 -4353)))
+((-2101 (($ $) 45)) (-3431 (((-112) $ $) 74)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-928 (-402 (-552)))) 227) (((-3 $ "failed") (-928 (-552))) 226) (((-3 $ "failed") (-928 |#2|)) 229)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL) (((-552) $) NIL) ((|#4| $) NIL) (($ (-928 (-402 (-552)))) 215) (($ (-928 (-552))) 211) (($ (-928 |#2|)) 231)) (-4169 (($ $) NIL) (($ $ |#4|) 43)) (-2668 (((-112) $ $) 112) (((-112) $ (-625 $)) 113)) (-3498 (((-112) $) 56)) (-3173 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 107)) (-3239 (($ $) 138)) (-3334 (($ $) 134)) (-3343 (($ $) 133)) (-3418 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3410 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2678 (((-112) $ $) 121) (((-112) $ (-625 $)) 122)) (-3565 ((|#4| $) 33)) (-3361 (($ $ $) 110)) (-3507 (((-112) $) 55)) (-3556 (((-751) $) 35)) (-3211 (($ $) 152)) (-3222 (($ $) 149)) (-3454 (((-625 $) $) 68)) (-3487 (($ $) 57)) (-3230 (($ $) 145)) (-3466 (((-625 $) $) 65)) (-3477 (($ $) 59)) (-4144 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3352 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4321 (-751))) $ $) 111)) (-3370 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $) 108) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $ |#4|) 109)) (-3380 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $) 104) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $ |#4|) 105)) (-3401 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3390 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3525 (((-625 $) $) 51)) (-3777 (((-112) $ $) 118) (((-112) $ (-625 $)) 119)) (-3727 (($ $ $) 103)) (-2071 (($ $) 37)) (-2719 (((-112) $ $) 72)) (-3788 (((-112) $ $) 114) (((-112) $ (-625 $)) 116)) (-3737 (($ $ $) 101)) (-3545 (($ $) 40)) (-2633 ((|#2| |#2| $) 142) (($ (-625 $)) NIL) (($ $ $) NIL)) (-3314 (($ $ |#2|) NIL) (($ $ $) 131)) (-3325 (($ $ |#2|) 126) (($ $ $) 129)) (-3535 (($ $) 48)) (-3516 (($ $) 52)) (-2042 (((-868 (-374)) $) NIL) (((-868 (-552)) $) NIL) (((-528) $) NIL) (($ (-928 (-402 (-552)))) 217) (($ (-928 (-552))) 213) (($ (-928 |#2|)) 228) (((-1131) $) 250) (((-928 |#2|) $) 162)) (-1683 (((-839) $) 30) (($ (-552)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-928 |#2|) $) 163) (($ (-402 (-552))) NIL) (($ $) NIL)) (-3441 (((-3 (-112) "failed") $ $) 71)))
+(((-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 ((-928 |#2|) |#1|)) (-15 -2042 ((-928 |#2|) |#1|)) (-15 -2042 ((-1131) |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -3230 (|#1| |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -2633 (|#2| |#2| |#1|)) (-15 -3314 (|#1| |#1| |#1|)) (-15 -3325 (|#1| |#1| |#1|)) (-15 -3314 (|#1| |#1| |#2|)) (-15 -3325 (|#1| |#1| |#2|)) (-15 -3334 (|#1| |#1|)) (-15 -3343 (|#1| |#1|)) (-15 -2042 (|#1| (-928 |#2|))) (-15 -1895 (|#1| (-928 |#2|))) (-15 -1893 ((-3 |#1| "failed") (-928 |#2|))) (-15 -2042 (|#1| (-928 (-552)))) (-15 -1895 (|#1| (-928 (-552)))) (-15 -1893 ((-3 |#1| "failed") (-928 (-552)))) (-15 -2042 (|#1| (-928 (-402 (-552))))) (-15 -1895 (|#1| (-928 (-402 (-552))))) (-15 -1893 ((-3 |#1| "failed") (-928 (-402 (-552))))) (-15 -3727 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -3352 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4321 (-751))) |#1| |#1|)) (-15 -3361 (|#1| |#1| |#1|)) (-15 -3173 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3380 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -3380 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3390 (|#1| |#1| |#1| |#4|)) (-15 -3401 (|#1| |#1| |#1| |#4|)) (-15 -3390 (|#1| |#1| |#1|)) (-15 -3401 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1| |#1| |#4|)) (-15 -3418 (|#1| |#1| |#1| |#4|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -2678 ((-112) |#1| (-625 |#1|))) (-15 -2678 ((-112) |#1| |#1|)) (-15 -3777 ((-112) |#1| (-625 |#1|))) (-15 -3777 ((-112) |#1| |#1|)) (-15 -3788 ((-112) |#1| (-625 |#1|))) (-15 -3788 ((-112) |#1| |#1|)) (-15 -2668 ((-112) |#1| (-625 |#1|))) (-15 -2668 ((-112) |#1| |#1|)) (-15 -3431 ((-112) |#1| |#1|)) (-15 -2719 ((-112) |#1| |#1|)) (-15 -3441 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3454 ((-625 |#1|) |#1|)) (-15 -3466 ((-625 |#1|) |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -4169 (|#1| |#1| |#4|)) (-15 -4144 (|#1| |#1| |#4|)) (-15 -3516 (|#1| |#1|)) (-15 -3525 ((-625 |#1|) |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -3545 (|#1| |#1|)) (-15 -2071 (|#1| |#1|)) (-15 -3556 ((-751) |#1|)) (-15 -3565 (|#4| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -1895 (|#4| |#1|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -1683 (|#1| |#4|)) (-15 -4144 (|#2| |#1|)) (-15 -4169 (|#1| |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-1039 |#2| |#3| |#4|) (-1025) (-773) (-827)) (T -1038))
+NIL
+(-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 ((-928 |#2|) |#1|)) (-15 -2042 ((-928 |#2|) |#1|)) (-15 -2042 ((-1131) |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -3230 (|#1| |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -2633 (|#2| |#2| |#1|)) (-15 -3314 (|#1| |#1| |#1|)) (-15 -3325 (|#1| |#1| |#1|)) (-15 -3314 (|#1| |#1| |#2|)) (-15 -3325 (|#1| |#1| |#2|)) (-15 -3334 (|#1| |#1|)) (-15 -3343 (|#1| |#1|)) (-15 -2042 (|#1| (-928 |#2|))) (-15 -1895 (|#1| (-928 |#2|))) (-15 -1893 ((-3 |#1| "failed") (-928 |#2|))) (-15 -2042 (|#1| (-928 (-552)))) (-15 -1895 (|#1| (-928 (-552)))) (-15 -1893 ((-3 |#1| "failed") (-928 (-552)))) (-15 -2042 (|#1| (-928 (-402 (-552))))) (-15 -1895 (|#1| (-928 (-402 (-552))))) (-15 -1893 ((-3 |#1| "failed") (-928 (-402 (-552))))) (-15 -3727 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -3352 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4321 (-751))) |#1| |#1|)) (-15 -3361 (|#1| |#1| |#1|)) (-15 -3173 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3380 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -3380 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3390 (|#1| |#1| |#1| |#4|)) (-15 -3401 (|#1| |#1| |#1| |#4|)) (-15 -3390 (|#1| |#1| |#1|)) (-15 -3401 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1| |#1| |#4|)) (-15 -3418 (|#1| |#1| |#1| |#4|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -2678 ((-112) |#1| (-625 |#1|))) (-15 -2678 ((-112) |#1| |#1|)) (-15 -3777 ((-112) |#1| (-625 |#1|))) (-15 -3777 ((-112) |#1| |#1|)) (-15 -3788 ((-112) |#1| (-625 |#1|))) (-15 -3788 ((-112) |#1| |#1|)) (-15 -2668 ((-112) |#1| (-625 |#1|))) (-15 -2668 ((-112) |#1| |#1|)) (-15 -3431 ((-112) |#1| |#1|)) (-15 -2719 ((-112) |#1| |#1|)) (-15 -3441 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3454 ((-625 |#1|) |#1|)) (-15 -3466 ((-625 |#1|) |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -4169 (|#1| |#1| |#4|)) (-15 -4144 (|#1| |#1| |#4|)) (-15 -3516 (|#1| |#1|)) (-15 -3525 ((-625 |#1|) |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -3545 (|#1| |#1|)) (-15 -2071 (|#1| |#1|)) (-15 -3556 ((-751) |#1|)) (-15 -3565 (|#4| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -1895 (|#4| |#1|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -1683 (|#1| |#4|)) (-15 -4144 (|#2| |#1|)) (-15 -4169 (|#1| |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 |#3|) $) 108)) (-3793 (((-1145 $) $ |#3|) 123) (((-1145 |#1|) $) 122)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3528 (($ $) 86 (|has| |#1| (-544)))) (-3509 (((-112) $) 88 (|has| |#1| (-544)))) (-4121 (((-751) $) 110) (((-751) $ (-625 |#3|)) 109)) (-2101 (($ $) 269)) (-3431 (((-112) $ $) 255)) (-2077 (((-3 $ "failed") $ $) 19)) (-3197 (($ $ $) 214 (|has| |#1| (-544)))) (-3275 (((-625 $) $ $) 209 (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) 98 (|has| |#1| (-885)))) (-2194 (($ $) 96 (|has| |#1| (-446)))) (-1330 (((-413 $) $) 95 (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 101 (|has| |#1| (-885)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 162) (((-3 (-402 (-552)) "failed") $) 160 (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1014 (-552)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-928 (-402 (-552)))) 229 (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149))))) (((-3 $ "failed") (-928 (-552))) 226 (-1523 (-12 (-2960 (|has| |#1| (-38 (-402 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149)))))) (((-3 $ "failed") (-928 |#1|)) 223 (-1523 (-12 (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-38 (-552)))) (|has| |#3| (-598 (-1149)))) (-12 (-2960 (|has| |#1| (-537))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-598 (-1149)))) (-12 (-2960 (|has| |#1| (-968 (-552)))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149))))))) (-1895 ((|#1| $) 163) (((-402 (-552)) $) 159 (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) 157 (|has| |#1| (-1014 (-552)))) ((|#3| $) 133) (($ (-928 (-402 (-552)))) 228 (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149))))) (($ (-928 (-552))) 225 (-1523 (-12 (-2960 (|has| |#1| (-38 (-402 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149)))))) (($ (-928 |#1|)) 222 (-1523 (-12 (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-38 (-552)))) (|has| |#3| (-598 (-1149)))) (-12 (-2960 (|has| |#1| (-537))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-598 (-1149)))) (-12 (-2960 (|has| |#1| (-968 (-552)))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149))))))) (-3207 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-544)))) (-4169 (($ $) 152) (($ $ |#3|) 264)) (-1794 (((-669 (-552)) (-669 $)) 132 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 131 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-2668 (((-112) $ $) 254) (((-112) $ (-625 $)) 253)) (-4174 (((-3 $ "failed") $) 32)) (-3498 (((-112) $) 262)) (-3173 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 234)) (-3239 (($ $) 203 (|has| |#1| (-446)))) (-1294 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-4157 (((-625 $) $) 107)) (-2951 (((-112) $) 94 (|has| |#1| (-885)))) (-3334 (($ $) 219 (|has| |#1| (-544)))) (-3343 (($ $) 220 (|has| |#1| (-544)))) (-3418 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3410 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1347 (($ $ |#1| |#2| $) 170)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 82 (-12 (|has| |#3| (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 81 (-12 (|has| |#3| (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-3650 (((-112) $) 30)) (-3723 (((-751) $) 167)) (-2678 (((-112) $ $) 248) (((-112) $ (-625 $)) 247)) (-3248 (($ $ $ $ $) 205 (|has| |#1| (-544)))) (-3565 ((|#3| $) 273)) (-3970 (($ (-1145 |#1|) |#3|) 115) (($ (-1145 $) |#3|) 114)) (-4148 (((-625 $) $) 124)) (-4201 (((-112) $) 150)) (-3957 (($ |#1| |#2|) 151) (($ $ |#3| (-751)) 117) (($ $ (-625 |#3|) (-625 (-751))) 116)) (-3361 (($ $ $) 233)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#3|) 118)) (-3507 (((-112) $) 263)) (-4134 ((|#2| $) 168) (((-751) $ |#3|) 120) (((-625 (-751)) $ (-625 |#3|)) 119)) (-3658 (($ $ $) 77 (|has| |#1| (-827)))) (-3556 (((-751) $) 272)) (-3332 (($ $ $) 76 (|has| |#1| (-827)))) (-1357 (($ (-1 |#2| |#2|) $) 169)) (-1996 (($ (-1 |#1| |#1|) $) 149)) (-1942 (((-3 |#3| "failed") $) 121)) (-3211 (($ $) 200 (|has| |#1| (-446)))) (-3222 (($ $) 201 (|has| |#1| (-446)))) (-3454 (((-625 $) $) 258)) (-3487 (($ $) 261)) (-3230 (($ $) 202 (|has| |#1| (-446)))) (-3466 (((-625 $) $) 259)) (-3477 (($ $) 260)) (-4131 (($ $) 147)) (-4144 ((|#1| $) 146) (($ $ |#3|) 265)) (-2605 (($ (-625 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-3352 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4321 (-751))) $ $) 232)) (-3370 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $) 236) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $ |#3|) 235)) (-3380 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $) 238) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $ |#3|) 237)) (-3401 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3390 (($ $ $) 241) (($ $ $ |#3|) 239)) (-2883 (((-1131) $) 9)) (-3662 (($ $ $) 208 (|has| |#1| (-544)))) (-3525 (((-625 $) $) 267)) (-4172 (((-3 (-625 $) "failed") $) 112)) (-4160 (((-3 (-625 $) "failed") $) 113)) (-4182 (((-3 (-2 (|:| |var| |#3|) (|:| -3564 (-751))) "failed") $) 111)) (-3777 (((-112) $ $) 250) (((-112) $ (-625 $)) 249)) (-3727 (($ $ $) 230)) (-2071 (($ $) 271)) (-2719 (((-112) $ $) 256)) (-3788 (((-112) $ $) 252) (((-112) $ (-625 $)) 251)) (-3737 (($ $ $) 231)) (-3545 (($ $) 270)) (-2831 (((-1093) $) 10)) (-3285 (((-2 (|:| -2633 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-544)))) (-3294 (((-2 (|:| -2633 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-544)))) (-4105 (((-112) $) 164)) (-4117 ((|#1| $) 165)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 93 (|has| |#1| (-446)))) (-2633 ((|#1| |#1| $) 204 (|has| |#1| (-446))) (($ (-625 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 100 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 99 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 97 (|has| |#1| (-885)))) (-3304 (((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-544)))) (-2802 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3314 (($ $ |#1|) 217 (|has| |#1| (-544))) (($ $ $) 215 (|has| |#1| (-544)))) (-3325 (($ $ |#1|) 218 (|has| |#1| (-544))) (($ $ $) 216 (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) 143) (($ $ (-289 $)) 142) (($ $ $ $) 141) (($ $ (-625 $) (-625 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-625 |#3|) (-625 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-625 |#3|) (-625 $)) 136)) (-3217 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3072 (($ $ |#3|) 40) (($ $ (-625 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-625 |#3|) (-625 (-751))) 37)) (-4276 ((|#2| $) 148) (((-751) $ |#3|) 128) (((-625 (-751)) $ (-625 |#3|)) 127)) (-3535 (($ $) 268)) (-3516 (($ $) 266)) (-2042 (((-868 (-374)) $) 80 (-12 (|has| |#3| (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) 79 (-12 (|has| |#3| (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-598 (-528))) (|has| |#1| (-598 (-528))))) (($ (-928 (-402 (-552)))) 227 (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149))))) (($ (-928 (-552))) 224 (-1523 (-12 (-2960 (|has| |#1| (-38 (-402 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149)))))) (($ (-928 |#1|)) 221 (|has| |#3| (-598 (-1149)))) (((-1131) $) 199 (-12 (|has| |#1| (-1014 (-552))) (|has| |#3| (-598 (-1149))))) (((-928 |#1|) $) 198 (|has| |#3| (-598 (-1149))))) (-4108 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 102 (-3743 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-928 |#1|) $) 197 (|has| |#3| (-598 (-1149)))) (($ (-402 (-552))) 70 (-1523 (|has| |#1| (-1014 (-402 (-552)))) (|has| |#1| (-38 (-402 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) 166)) (-3637 ((|#1| $ |#2|) 153) (($ $ |#3| (-751)) 126) (($ $ (-625 |#3|) (-625 (-751))) 125)) (-4243 (((-3 $ "failed") $) 71 (-1523 (-3743 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 28)) (-1336 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 87 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-3441 (((-3 (-112) "failed") $ $) 257)) (-2100 (($) 29 T CONST)) (-3257 (($ $ $ $ (-751)) 206 (|has| |#1| (-544)))) (-3266 (($ $ $ (-751)) 207 (|has| |#1| (-544)))) (-3768 (($ $ |#3|) 36) (($ $ (-625 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-625 |#3|) (-625 (-751))) 33)) (-2346 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 73 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 75 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 72 (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 156 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 155 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
(((-1039 |#1| |#2| |#3|) (-138) (-1025) (-773) (-827)) (T -1039))
-((-3531 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-751)))) (-3804 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3529 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3528 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3527 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3526 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3525 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-4319 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3521 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3520 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3519 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3518 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4062 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3517 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4057 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4057 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-4055 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4055 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-4054 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4054 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-4058 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4058 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-3516 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3515 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3516 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3515 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3514 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3513 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3514 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3513 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3512 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -3235 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3512 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -3235 *1))) (-4 *1 (-1039 *4 *5 *3)))) (-3511 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3511 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1039 *4 *5 *3)))) (-4112 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3510 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3509 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3835 (-751)))) (-4 *1 (-1039 *3 *4 *5)))) (-4050 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-4049 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-3508 (*1 *1 *2) (|partial| -3891 (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-3507 (*1 *1 *2) (-3891 (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-4330 (*1 *1 *2) (-3891 (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-3508 (*1 *1 *2) (|partial| -3891 (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-3676 (-4 *3 (-38 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-537))) (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-967 (-538)))) (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))))) (-3507 (*1 *1 *2) (-3891 (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-3676 (-4 *3 (-38 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-537))) (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-967 (-538)))) (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *5 (-598 (-1149))) (-4 *4 (-773)) (-4 *5 (-827)))) (-3506 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3503 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3504 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3503 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-4115 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3502 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3501 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3500 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3495 *1) (|:| |coef2| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3499 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3541 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3498 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-545)))) (-3497 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-545)))) (-3496 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3495 (*1 *2 *2 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3494 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3493 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3492 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3491 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))))
-(-13 (-926 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3531 (|t#3| $)) (-15 -3530 ((-751) $)) (-15 -3804 ($ $)) (-15 -3529 ($ $)) (-15 -4156 ($ $)) (-15 -3528 ($ $)) (-15 -3527 ((-622 $) $)) (-15 -3526 ($ $)) (-15 -3525 ($ $ |t#3|)) (-15 -4319 ($ $ |t#3|)) (-15 -3524 ((-112) $)) (-15 -3523 ((-112) $)) (-15 -3522 ($ $)) (-15 -3521 ($ $)) (-15 -3520 ((-622 $) $)) (-15 -3519 ((-622 $) $)) (-15 -3518 ((-3 (-112) "failed") $ $)) (-15 -4062 ((-112) $ $)) (-15 -3517 ((-112) $ $)) (-15 -4057 ((-112) $ $)) (-15 -4057 ((-112) $ (-622 $))) (-15 -4055 ((-112) $ $)) (-15 -4055 ((-112) $ (-622 $))) (-15 -4054 ((-112) $ $)) (-15 -4054 ((-112) $ (-622 $))) (-15 -4058 ((-112) $ $)) (-15 -4058 ((-112) $ (-622 $))) (-15 -3516 ($ $ $)) (-15 -3515 ($ $ $)) (-15 -3516 ($ $ $ |t#3|)) (-15 -3515 ($ $ $ |t#3|)) (-15 -3514 ($ $ $)) (-15 -3513 ($ $ $)) (-15 -3514 ($ $ $ |t#3|)) (-15 -3513 ($ $ $ |t#3|)) (-15 -3512 ((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $)) (-15 -3512 ((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $ |t#3|)) (-15 -3511 ((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -3511 ((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $ |t#3|)) (-15 -4112 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -3510 ($ $ $)) (-15 -3509 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3835 (-751))) $ $)) (-15 -4050 ($ $ $)) (-15 -4049 ($ $ $)) (IF (|has| |t#3| (-598 (-1149))) (PROGN (-6 (-597 (-922 |t#1|))) (-6 (-598 (-922 |t#1|))) (IF (|has| |t#1| (-38 (-402 (-538)))) (PROGN (-15 -3508 ((-3 $ "failed") (-922 (-402 (-538))))) (-15 -3507 ($ (-922 (-402 (-538))))) (-15 -4330 ($ (-922 (-402 (-538))))) (-15 -3508 ((-3 $ "failed") (-922 (-538)))) (-15 -3507 ($ (-922 (-538)))) (-15 -4330 ($ (-922 (-538)))) (IF (|has| |t#1| (-967 (-538))) |%noBranch| (PROGN (-15 -3508 ((-3 $ "failed") (-922 |t#1|))) (-15 -3507 ($ (-922 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-538))) (IF (|has| |t#1| (-38 (-402 (-538)))) |%noBranch| (PROGN (-15 -3508 ((-3 $ "failed") (-922 (-538)))) (-15 -3507 ($ (-922 (-538)))) (-15 -4330 ($ (-922 (-538)))) (IF (|has| |t#1| (-537)) |%noBranch| (PROGN (-15 -3508 ((-3 $ "failed") (-922 |t#1|))) (-15 -3507 ($ (-922 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-538))) |%noBranch| (IF (|has| |t#1| (-38 (-402 (-538)))) |%noBranch| (PROGN (-15 -3508 ((-3 $ "failed") (-922 |t#1|))) (-15 -3507 ($ (-922 |t#1|)))))) (-15 -4330 ($ (-922 |t#1|))) (IF (|has| |t#1| (-1014 (-538))) (-6 (-598 (-1131))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3506 ($ $)) (-15 -3505 ($ $)) (-15 -3504 ($ $ |t#1|)) (-15 -3503 ($ $ |t#1|)) (-15 -3504 ($ $ $)) (-15 -3503 ($ $ $)) (-15 -4115 ($ $ $)) (-15 -3502 ((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3501 ((-2 (|:| -3495 $) (|:| |coef1| $)) $ $)) (-15 -3500 ((-2 (|:| -3495 $) (|:| |coef2| $)) $ $)) (-15 -4116 ($ $ $)) (-15 -3499 ((-622 $) $ $)) (-15 -3541 ($ $ $)) (-15 -3498 ($ $ $ (-751))) (-15 -3497 ($ $ $ $ (-751))) (-15 -3496 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -3495 (|t#1| |t#1| $)) (-15 -3494 ($ $)) (-15 -3493 ($ $)) (-15 -3492 ($ $)) (-15 -3491 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-597 (-922 |#1|)) |has| |#3| (-598 (-1149))) ((-170) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#3| (-598 (-527)))) ((-598 (-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#3| (-598 (-866 (-373))))) ((-598 (-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#3| (-598 (-866 (-538))))) ((-598 (-922 |#1|)) |has| |#3| (-598 (-1149))) ((-598 (-1131)) -12 (|has| |#1| (-1014 (-538))) (|has| |#3| (-598 (-1149)))) ((-285) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-886)) (|has| |#1| (-446))) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-545) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 |#3|) . T) ((-862 (-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#3| (-862 (-373)))) ((-862 (-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#3| (-862 (-538)))) ((-926 |#1| |#2| |#3|) . T) ((-886) |has| |#1| (-886)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1014 |#3|) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) |has| |#1| (-886)))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3532 (((-622 (-1108)) $) 13)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 24) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 15)) (-3387 (((-112) $ $) NIL)))
-(((-1040) (-13 (-1056) (-10 -8 (-15 -3532 ((-622 (-1108)) $)) (-15 -3584 ((-1108) $))))) (T -1040))
-((-3532 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1040)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1040)))))
-(-13 (-1056) (-10 -8 (-15 -3532 ((-622 (-1108)) $)) (-15 -3584 ((-1108) $))))
-((-3539 (((-112) |#3| $) 13)) (-3534 (((-3 $ "failed") |#3| (-895)) 23)) (-3821 (((-3 |#3| "failed") |#3| $) 38)) (-3537 (((-112) |#3| $) 16)) (-3538 (((-112) |#3| $) 14)))
-(((-1041 |#1| |#2| |#3|) (-10 -8 (-15 -3534 ((-3 |#1| "failed") |#3| (-895))) (-15 -3821 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3537 ((-112) |#3| |#1|)) (-15 -3538 ((-112) |#3| |#1|)) (-15 -3539 ((-112) |#3| |#1|))) (-1042 |#2| |#3|) (-13 (-825) (-358)) (-1207 |#2|)) (T -1041))
-NIL
-(-10 -8 (-15 -3534 ((-3 |#1| "failed") |#3| (-895))) (-15 -3821 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3537 ((-112) |#3| |#1|)) (-15 -3538 ((-112) |#3| |#1|)) (-15 -3539 ((-112) |#3| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) |#2| $) 21)) (-3986 (((-538) |#2| $) 22)) (-3534 (((-3 $ "failed") |#2| (-895)) 15)) (-3533 ((|#1| |#2| $ |#1|) 13)) (-3821 (((-3 |#2| "failed") |#2| $) 18)) (-3537 (((-112) |#2| $) 19)) (-3538 (((-112) |#2| $) 20)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3536 ((|#2| $) 17)) (-4317 (((-840) $) 11)) (-4129 ((|#1| |#2| $ |#1|) 14)) (-3535 (((-622 $) |#2|) 16)) (-3387 (((-112) $ $) 6)))
-(((-1042 |#1| |#2|) (-138) (-13 (-825) (-358)) (-1207 |t#1|)) (T -1042))
-((-3986 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-538)))) (-3539 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-112)))) (-3538 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-112)))) (-3537 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-112)))) (-3821 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) (-4 *2 (-1207 *3)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) (-4 *2 (-1207 *3)))) (-3535 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-622 *1)) (-4 *1 (-1042 *4 *3)))) (-3534 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-895)) (-4 *4 (-13 (-825) (-358))) (-4 *1 (-1042 *4 *2)) (-4 *2 (-1207 *4)))) (-4129 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1207 *2)))) (-3533 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1207 *2)))))
-(-13 (-1074) (-10 -8 (-15 -3986 ((-538) |t#2| $)) (-15 -3539 ((-112) |t#2| $)) (-15 -3538 ((-112) |t#2| $)) (-15 -3537 ((-112) |t#2| $)) (-15 -3821 ((-3 |t#2| "failed") |t#2| $)) (-15 -3536 (|t#2| $)) (-15 -3535 ((-622 $) |t#2|)) (-15 -3534 ((-3 $ "failed") |t#2| (-895))) (-15 -4129 (|t#1| |t#2| $ |t#1|)) (-15 -3533 (|t#1| |t#2| $ |t#1|))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-3795 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751)) 96)) (-3792 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751)) 56)) (-3796 (((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751)) 87)) (-3790 (((-751) (-622 |#4|) (-622 |#5|)) 27)) (-3793 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751)) 58) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112)) 60)) (-3794 (((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112)) 79)) (-4330 (((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) 82)) (-3791 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-112)) 55)) (-3789 (((-751) (-622 |#4|) (-622 |#5|)) 19)))
-(((-1043 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3789 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3790 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3791 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-112))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3795 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751))) (-15 -4330 ((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3796 ((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1043))
-((-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) (-5 *1 (-1043 *4 *5 *6 *7 *8)))) (-3795 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-622 *11)) (|:| |todo| (-622 (-2 (|:| |val| *3) (|:| -1660 *11)))))) (-5 *6 (-751)) (-5 *2 (-622 (-2 (|:| |val| (-622 *10)) (|:| -1660 *11)))) (-5 *3 (-622 *10)) (-5 *4 (-622 *11)) (-4 *10 (-1039 *7 *8 *9)) (-4 *11 (-1045 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-5 *1 (-1043 *7 *8 *9 *10 *11)))) (-3794 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3794 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3793 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3793 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3793 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1045 *7 *8 *9 *3)))) (-3792 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3792 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3789 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3790 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3791 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-112))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3795 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751))) (-15 -4330 ((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3796 ((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751))))
-((-3548 (((-112) |#5| $) 21)) (-3546 (((-112) |#5| $) 24)) (-3549 (((-112) |#5| $) 16) (((-112) $) 45)) (-3589 (((-622 $) |#5| $) NIL) (((-622 $) (-622 |#5|) $) 77) (((-622 $) (-622 |#5|) (-622 $)) 75) (((-622 $) |#5| (-622 $)) 78)) (-4128 (($ $ |#5|) NIL) (((-622 $) |#5| $) NIL) (((-622 $) |#5| (-622 $)) 60) (((-622 $) (-622 |#5|) $) 62) (((-622 $) (-622 |#5|) (-622 $)) 64)) (-3540 (((-622 $) |#5| $) NIL) (((-622 $) |#5| (-622 $)) 54) (((-622 $) (-622 |#5|) $) 56) (((-622 $) (-622 |#5|) (-622 $)) 58)) (-3547 (((-112) |#5| $) 27)))
-(((-1044 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4128 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -4128 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -4128 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -4128 ((-622 |#1|) |#5| |#1|)) (-15 -3540 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -3540 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -3540 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -3540 ((-622 |#1|) |#5| |#1|)) (-15 -3589 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -3589 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -3589 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -3589 ((-622 |#1|) |#5| |#1|)) (-15 -3546 ((-112) |#5| |#1|)) (-15 -3549 ((-112) |#1|)) (-15 -3547 ((-112) |#5| |#1|)) (-15 -3548 ((-112) |#5| |#1|)) (-15 -3549 ((-112) |#5| |#1|)) (-15 -4128 (|#1| |#1| |#5|))) (-1045 |#2| |#3| |#4| |#5|) (-446) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -1044))
-NIL
-(-10 -8 (-15 -4128 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -4128 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -4128 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -4128 ((-622 |#1|) |#5| |#1|)) (-15 -3540 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -3540 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -3540 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -3540 ((-622 |#1|) |#5| |#1|)) (-15 -3589 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -3589 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -3589 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -3589 ((-622 |#1|) |#5| |#1|)) (-15 -3546 ((-112) |#5| |#1|)) (-15 -3549 ((-112) |#1|)) (-15 -3547 ((-112) |#5| |#1|)) (-15 -3548 ((-112) |#5| |#1|)) (-15 -3549 ((-112) |#5| |#1|)) (-15 -4128 (|#1| |#1| |#5|)))
-((-2898 (((-112) $ $) 7)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) 85)) (-4045 (((-622 $) (-622 |#4|)) 86) (((-622 $) (-622 |#4|) (-112)) 111)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) 101) (((-112) $) 97)) (-4051 ((|#4| |#4| $) 92)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 126)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-4158 (((-3 $ #1#) $) 82)) (-4048 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4046 ((|#4| |#4| $) 87)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) 105)) (-3548 (((-112) |#4| $) 136)) (-3546 (((-112) |#4| $) 133)) (-3549 (((-112) |#4| $) 137) (((-112) $) 134)) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) 104) (((-112) $) 103)) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) 128)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 127)) (-4157 (((-3 |#4| #1#) $) 83)) (-3543 (((-622 $) |#4| $) 129)) (-3545 (((-3 (-112) (-622 $)) |#4| $) 132)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3589 (((-622 $) |#4| $) 125) (((-622 $) (-622 |#4|) $) 124) (((-622 $) (-622 |#4|) (-622 $)) 123) (((-622 $) |#4| (-622 $)) 122)) (-3799 (($ |#4| $) 117) (($ (-622 |#4|) $) 116)) (-4060 (((-622 |#4|) $) 107)) (-4054 (((-112) |#4| $) 99) (((-112) $) 95)) (-4049 ((|#4| |#4| $) 90)) (-4062 (((-112) $ $) 110)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) 100) (((-112) $) 96)) (-4050 ((|#4| |#4| $) 91)) (-3594 (((-1093) $) 10)) (-4160 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4042 (((-3 $ #1#) $ |#4|) 78)) (-4128 (($ $ |#4|) 77) (((-622 $) |#4| $) 115) (((-622 $) |#4| (-622 $)) 114) (((-622 $) (-622 |#4|) $) 113) (((-622 $) (-622 |#4|) (-622 $)) 112)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-4307 (((-751) $) 106)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-4047 (($ $) 88)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-4041 (((-751) $) 76 (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) 98)) (-3540 (((-622 $) |#4| $) 121) (((-622 $) |#4| (-622 $)) 120) (((-622 $) (-622 |#4|) $) 119) (((-622 $) (-622 |#4|) (-622 $)) 118)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) 81)) (-3547 (((-112) |#4| $) 135)) (-4293 (((-112) |#3| $) 80)) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353)))))
+((-3565 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-751)))) (-2071 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3545 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-2101 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3535 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3525 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3516 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-4144 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-4169 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3487 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3477 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3466 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3454 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3441 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-2719 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3431 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-2668 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-2668 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-3788 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3788 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-3777 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-2678 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-2678 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-3418 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3410 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3418 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3410 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3401 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3390 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3401 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3390 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3380 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3645 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3380 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3645 *1))) (-4 *1 (-1039 *4 *5 *3)))) (-3370 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3370 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1039 *4 *5 *3)))) (-3173 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3361 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3352 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4321 (-751)))) (-4 *1 (-1039 *3 *4 *5)))) (-3737 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3727 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-1893 (*1 *1 *2) (|partial| -1523 (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-1895 (*1 *1 *2) (-1523 (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-2042 (*1 *1 *2) (-1523 (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-1893 (*1 *1 *2) (|partial| -1523 (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-2960 (-4 *3 (-38 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-537))) (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-968 (-552)))) (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))))) (-1895 (*1 *1 *2) (-1523 (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-2960 (-4 *3 (-38 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-537))) (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-968 (-552)))) (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *5 (-598 (-1149))) (-4 *4 (-773)) (-4 *5 (-827)))) (-3343 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3334 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3325 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3314 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3325 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3314 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3197 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3304 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -2633 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3294 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -2633 *1) (|:| |coef1| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3285 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -2633 *1) (|:| |coef2| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3207 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3275 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3662 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3266 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-544)))) (-3257 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-544)))) (-3248 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-2633 (*1 *2 *2 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3239 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3230 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3222 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3211 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))))
+(-13 (-925 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3565 (|t#3| $)) (-15 -3556 ((-751) $)) (-15 -2071 ($ $)) (-15 -3545 ($ $)) (-15 -2101 ($ $)) (-15 -3535 ($ $)) (-15 -3525 ((-625 $) $)) (-15 -3516 ($ $)) (-15 -4144 ($ $ |t#3|)) (-15 -4169 ($ $ |t#3|)) (-15 -3507 ((-112) $)) (-15 -3498 ((-112) $)) (-15 -3487 ($ $)) (-15 -3477 ($ $)) (-15 -3466 ((-625 $) $)) (-15 -3454 ((-625 $) $)) (-15 -3441 ((-3 (-112) "failed") $ $)) (-15 -2719 ((-112) $ $)) (-15 -3431 ((-112) $ $)) (-15 -2668 ((-112) $ $)) (-15 -2668 ((-112) $ (-625 $))) (-15 -3788 ((-112) $ $)) (-15 -3788 ((-112) $ (-625 $))) (-15 -3777 ((-112) $ $)) (-15 -3777 ((-112) $ (-625 $))) (-15 -2678 ((-112) $ $)) (-15 -2678 ((-112) $ (-625 $))) (-15 -3418 ($ $ $)) (-15 -3410 ($ $ $)) (-15 -3418 ($ $ $ |t#3|)) (-15 -3410 ($ $ $ |t#3|)) (-15 -3401 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3401 ($ $ $ |t#3|)) (-15 -3390 ($ $ $ |t#3|)) (-15 -3380 ((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $)) (-15 -3380 ((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $ |t#3|)) (-15 -3370 ((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -3370 ((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $ |t#3|)) (-15 -3173 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -3361 ($ $ $)) (-15 -3352 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4321 (-751))) $ $)) (-15 -3737 ($ $ $)) (-15 -3727 ($ $ $)) (IF (|has| |t#3| (-598 (-1149))) (PROGN (-6 (-597 (-928 |t#1|))) (-6 (-598 (-928 |t#1|))) (IF (|has| |t#1| (-38 (-402 (-552)))) (PROGN (-15 -1893 ((-3 $ "failed") (-928 (-402 (-552))))) (-15 -1895 ($ (-928 (-402 (-552))))) (-15 -2042 ($ (-928 (-402 (-552))))) (-15 -1893 ((-3 $ "failed") (-928 (-552)))) (-15 -1895 ($ (-928 (-552)))) (-15 -2042 ($ (-928 (-552)))) (IF (|has| |t#1| (-968 (-552))) |%noBranch| (PROGN (-15 -1893 ((-3 $ "failed") (-928 |t#1|))) (-15 -1895 ($ (-928 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-552))) (IF (|has| |t#1| (-38 (-402 (-552)))) |%noBranch| (PROGN (-15 -1893 ((-3 $ "failed") (-928 (-552)))) (-15 -1895 ($ (-928 (-552)))) (-15 -2042 ($ (-928 (-552)))) (IF (|has| |t#1| (-537)) |%noBranch| (PROGN (-15 -1893 ((-3 $ "failed") (-928 |t#1|))) (-15 -1895 ($ (-928 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-552))) |%noBranch| (IF (|has| |t#1| (-38 (-402 (-552)))) |%noBranch| (PROGN (-15 -1893 ((-3 $ "failed") (-928 |t#1|))) (-15 -1895 ($ (-928 |t#1|)))))) (-15 -2042 ($ (-928 |t#1|))) (IF (|has| |t#1| (-1014 (-552))) (-6 (-598 (-1131))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3343 ($ $)) (-15 -3334 ($ $)) (-15 -3325 ($ $ |t#1|)) (-15 -3314 ($ $ |t#1|)) (-15 -3325 ($ $ $)) (-15 -3314 ($ $ $)) (-15 -3197 ($ $ $)) (-15 -3304 ((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3294 ((-2 (|:| -2633 $) (|:| |coef1| $)) $ $)) (-15 -3285 ((-2 (|:| -2633 $) (|:| |coef2| $)) $ $)) (-15 -3207 ($ $ $)) (-15 -3275 ((-625 $) $ $)) (-15 -3662 ($ $ $)) (-15 -3266 ($ $ $ (-751))) (-15 -3257 ($ $ $ $ (-751))) (-15 -3248 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -2633 (|t#1| |t#1| $)) (-15 -3239 ($ $)) (-15 -3230 ($ $)) (-15 -3222 ($ $)) (-15 -3211 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-597 (-928 |#1|)) |has| |#3| (-598 (-1149))) ((-170) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#3| (-598 (-528)))) ((-598 (-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#3| (-598 (-868 (-374))))) ((-598 (-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#3| (-598 (-868 (-552))))) ((-598 (-928 |#1|)) |has| |#3| (-598 (-1149))) ((-598 (-1131)) -12 (|has| |#1| (-1014 (-552))) (|has| |#3| (-598 (-1149)))) ((-285) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-885)) (|has| |#1| (-446))) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-544) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 |#3|) . T) ((-862 (-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#3| (-862 (-374)))) ((-862 (-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#3| (-862 (-552)))) ((-925 |#1| |#2| |#3|) . T) ((-885) |has| |#1| (-885)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1014 |#3|) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) |has| |#1| (-885)))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2206 (((-625 (-1108)) $) 13)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 24) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 15)) (-2281 (((-112) $ $) NIL)))
+(((-1040) (-13 (-1056) (-10 -8 (-15 -2206 ((-625 (-1108)) $)) (-15 -1300 ((-1108) $))))) (T -1040))
+((-2206 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1040)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1040)))))
+(-13 (-1056) (-10 -8 (-15 -2206 ((-625 (-1108)) $)) (-15 -1300 ((-1108) $))))
+((-3641 (((-112) |#3| $) 13)) (-3588 (((-3 $ "failed") |#3| (-897)) 23)) (-4174 (((-3 |#3| "failed") |#3| $) 38)) (-3620 (((-112) |#3| $) 16)) (-3630 (((-112) |#3| $) 14)))
+(((-1041 |#1| |#2| |#3|) (-10 -8 (-15 -3588 ((-3 |#1| "failed") |#3| (-897))) (-15 -4174 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3620 ((-112) |#3| |#1|)) (-15 -3630 ((-112) |#3| |#1|)) (-15 -3641 ((-112) |#3| |#1|))) (-1042 |#2| |#3|) (-13 (-825) (-358)) (-1208 |#2|)) (T -1041))
+NIL
+(-10 -8 (-15 -3588 ((-3 |#1| "failed") |#3| (-897))) (-15 -4174 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3620 ((-112) |#3| |#1|)) (-15 -3630 ((-112) |#3| |#1|)) (-15 -3641 ((-112) |#3| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) |#2| $) 21)) (-4127 (((-552) |#2| $) 22)) (-3588 (((-3 $ "failed") |#2| (-897)) 15)) (-3576 ((|#1| |#2| $ |#1|) 13)) (-4174 (((-3 |#2| "failed") |#2| $) 18)) (-3620 (((-112) |#2| $) 19)) (-3630 (((-112) |#2| $) 20)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3610 ((|#2| $) 17)) (-1683 (((-839) $) 11)) (-2874 ((|#1| |#2| $ |#1|) 14)) (-3599 (((-625 $) |#2|) 16)) (-2281 (((-112) $ $) 6)))
+(((-1042 |#1| |#2|) (-138) (-13 (-825) (-358)) (-1208 |t#1|)) (T -1042))
+((-4127 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-552)))) (-3641 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-112)))) (-3630 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-112)))) (-3620 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-112)))) (-4174 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) (-4 *2 (-1208 *3)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) (-4 *2 (-1208 *3)))) (-3599 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-625 *1)) (-4 *1 (-1042 *4 *3)))) (-3588 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-897)) (-4 *4 (-13 (-825) (-358))) (-4 *1 (-1042 *4 *2)) (-4 *2 (-1208 *4)))) (-2874 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1208 *2)))) (-3576 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1208 *2)))))
+(-13 (-1073) (-10 -8 (-15 -4127 ((-552) |t#2| $)) (-15 -3641 ((-112) |t#2| $)) (-15 -3630 ((-112) |t#2| $)) (-15 -3620 ((-112) |t#2| $)) (-15 -4174 ((-3 |t#2| "failed") |t#2| $)) (-15 -3610 (|t#2| $)) (-15 -3599 ((-625 $) |t#2|)) (-15 -3588 ((-3 $ "failed") |t#2| (-897))) (-15 -2874 (|t#1| |t#2| $ |t#1|)) (-15 -3576 (|t#1| |t#2| $ |t#1|))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-3963 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751)) 96)) (-3924 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751)) 56)) (-2125 (((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751)) 87)) (-3896 (((-751) (-625 |#4|) (-625 |#5|)) 27)) (-3938 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751)) 58) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112)) 60)) (-3950 (((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112)) 79)) (-2042 (((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) 82)) (-3911 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-112)) 55)) (-3883 (((-751) (-625 |#4|) (-625 |#5|)) 19)))
+(((-1043 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3883 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3896 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3911 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-112))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3963 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751))) (-15 -2042 ((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -2125 ((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1043))
+((-2125 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) (-5 *1 (-1043 *4 *5 *6 *7 *8)))) (-3963 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-625 *11)) (|:| |todo| (-625 (-2 (|:| |val| *3) (|:| -3715 *11)))))) (-5 *6 (-751)) (-5 *2 (-625 (-2 (|:| |val| (-625 *10)) (|:| -3715 *11)))) (-5 *3 (-625 *10)) (-5 *4 (-625 *11)) (-4 *10 (-1039 *7 *8 *9)) (-4 *11 (-1045 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-5 *1 (-1043 *7 *8 *9 *10 *11)))) (-3950 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3950 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3938 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3938 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3938 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1045 *7 *8 *9 *3)))) (-3924 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3924 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3911 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3883 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3896 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3911 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-112))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3963 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751))) (-15 -2042 ((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -2125 ((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751))))
+((-3731 (((-112) |#5| $) 21)) (-3714 (((-112) |#5| $) 24)) (-3741 (((-112) |#5| $) 16) (((-112) $) 45)) (-2860 (((-625 $) |#5| $) NIL) (((-625 $) (-625 |#5|) $) 77) (((-625 $) (-625 |#5|) (-625 $)) 75) (((-625 $) |#5| (-625 $)) 78)) (-2147 (($ $ |#5|) NIL) (((-625 $) |#5| $) NIL) (((-625 $) |#5| (-625 $)) 60) (((-625 $) (-625 |#5|) $) 62) (((-625 $) (-625 |#5|) (-625 $)) 64)) (-3651 (((-625 $) |#5| $) NIL) (((-625 $) |#5| (-625 $)) 54) (((-625 $) (-625 |#5|) $) 56) (((-625 $) (-625 |#5|) (-625 $)) 58)) (-3724 (((-112) |#5| $) 27)))
+(((-1044 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2147 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -2147 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -2147 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -2147 ((-625 |#1|) |#5| |#1|)) (-15 -3651 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -3651 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -3651 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -3651 ((-625 |#1|) |#5| |#1|)) (-15 -2860 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -2860 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -2860 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -2860 ((-625 |#1|) |#5| |#1|)) (-15 -3714 ((-112) |#5| |#1|)) (-15 -3741 ((-112) |#1|)) (-15 -3724 ((-112) |#5| |#1|)) (-15 -3731 ((-112) |#5| |#1|)) (-15 -3741 ((-112) |#5| |#1|)) (-15 -2147 (|#1| |#1| |#5|))) (-1045 |#2| |#3| |#4| |#5|) (-446) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -1044))
+NIL
+(-10 -8 (-15 -2147 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -2147 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -2147 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -2147 ((-625 |#1|) |#5| |#1|)) (-15 -3651 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -3651 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -3651 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -3651 ((-625 |#1|) |#5| |#1|)) (-15 -2860 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -2860 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -2860 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -2860 ((-625 |#1|) |#5| |#1|)) (-15 -3714 ((-112) |#5| |#1|)) (-15 -3741 ((-112) |#1|)) (-15 -3724 ((-112) |#5| |#1|)) (-15 -3731 ((-112) |#5| |#1|)) (-15 -3741 ((-112) |#5| |#1|)) (-15 -2147 (|#1| |#1| |#5|)))
+((-1671 (((-112) $ $) 7)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) 85)) (-3690 (((-625 $) (-625 |#4|)) 86) (((-625 $) (-625 |#4|) (-112)) 111)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 126)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2936 (((-3 $ "failed") $) 82)) (-3720 ((|#4| |#4| $) 89)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3699 ((|#4| |#4| $) 87)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) 105)) (-3731 (((-112) |#4| $) 136)) (-3714 (((-112) |#4| $) 133)) (-3741 (((-112) |#4| $) 137) (((-112) $) 134)) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) 104) (((-112) $) 103)) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) 128)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 127)) (-1437 (((-3 |#4| "failed") $) 83)) (-3685 (((-625 $) |#4| $) 129)) (-3704 (((-3 (-112) (-625 $)) |#4| $) 132)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2860 (((-625 $) |#4| $) 125) (((-625 $) (-625 |#4|) $) 124) (((-625 $) (-625 |#4|) (-625 $)) 123) (((-625 $) |#4| (-625 $)) 122)) (-3999 (($ |#4| $) 117) (($ (-625 |#4|) $) 116)) (-2699 (((-625 |#4|) $) 107)) (-3777 (((-112) |#4| $) 99) (((-112) $) 95)) (-3727 ((|#4| |#4| $) 90)) (-2719 (((-112) $ $) 110)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) 100) (((-112) $) 96)) (-3737 ((|#4| |#4| $) 91)) (-2831 (((-1093) $) 10)) (-2924 (((-3 |#4| "failed") $) 84)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3657 (((-3 $ "failed") $ |#4|) 78)) (-2147 (($ $ |#4|) 77) (((-625 $) |#4| $) 115) (((-625 $) |#4| (-625 $)) 114) (((-625 $) (-625 |#4|) $) 113) (((-625 $) (-625 |#4|) (-625 $)) 112)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-4276 (((-751) $) 106)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-3709 (($ $) 88)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-3647 (((-751) $) 76 (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) 98)) (-3651 (((-625 $) |#4| $) 121) (((-625 $) |#4| (-625 $)) 120) (((-625 $) (-625 |#4|) $) 119) (((-625 $) (-625 |#4|) (-625 $)) 118)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) 81)) (-3724 (((-112) |#4| $) 135)) (-4168 (((-112) |#3| $) 80)) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353)))))
(((-1045 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1045))
-((-3549 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3548 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3547 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3546 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3545 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 (-112) (-622 *1))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3544 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3544 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3543 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3542 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 *3 (-622 *1))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3541 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-4134 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3589 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3589 (*1 *2 *3 *1) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-3589 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-3589 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-3540 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3540 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-3540 (*1 *2 *3 *1) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-3540 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-3799 (*1 *1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3799 (*1 *1 *2 *1) (-12 (-5 *2 (-622 *6)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)))) (-4128 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-4128 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-4128 (*1 *2 *3 *1) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-4128 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *5 *6 *7 *8)))))
-(-13 (-1180 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3549 ((-112) |t#4| $)) (-15 -3548 ((-112) |t#4| $)) (-15 -3547 ((-112) |t#4| $)) (-15 -3549 ((-112) $)) (-15 -3546 ((-112) |t#4| $)) (-15 -3545 ((-3 (-112) (-622 $)) |t#4| $)) (-15 -3544 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |t#4| $)) (-15 -3544 ((-112) |t#4| $)) (-15 -3543 ((-622 $) |t#4| $)) (-15 -3542 ((-3 |t#4| (-622 $)) |t#4| |t#4| $)) (-15 -3541 ((-622 (-2 (|:| |val| |t#4|) (|:| -1660 $))) |t#4| |t#4| $)) (-15 -4134 ((-622 (-2 (|:| |val| |t#4|) (|:| -1660 $))) |t#4| $)) (-15 -3589 ((-622 $) |t#4| $)) (-15 -3589 ((-622 $) (-622 |t#4|) $)) (-15 -3589 ((-622 $) (-622 |t#4|) (-622 $))) (-15 -3589 ((-622 $) |t#4| (-622 $))) (-15 -3540 ((-622 $) |t#4| $)) (-15 -3540 ((-622 $) |t#4| (-622 $))) (-15 -3540 ((-622 $) (-622 |t#4|) $)) (-15 -3540 ((-622 $) (-622 |t#4|) (-622 $))) (-15 -3799 ($ |t#4| $)) (-15 -3799 ($ (-622 |t#4|) $)) (-15 -4128 ((-622 $) |t#4| $)) (-15 -4128 ((-622 $) |t#4| (-622 $))) (-15 -4128 ((-622 $) (-622 |t#4|) $)) (-15 -4128 ((-622 $) (-622 |t#4|) (-622 $))) (-15 -4045 ((-622 $) (-622 |t#4|) (-112)))))
-(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1074) . T) ((-1180 |#1| |#2| |#3| |#4|) . T) ((-1185) . T))
-((-3556 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|) 81)) (-3553 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|) 113)) (-3555 (((-622 |#5|) |#4| |#5|) 70)) (-3554 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3638 (((-1237)) 37)) (-3636 (((-1237)) 26)) (-3637 (((-1237) (-1131) (-1131) (-1131)) 33)) (-3635 (((-1237) (-1131) (-1131) (-1131)) 22)) (-3550 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|) 96)) (-3551 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112)) 107) (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3552 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|) 102)))
-(((-1046 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3635 ((-1237) (-1131) (-1131) (-1131))) (-15 -3636 ((-1237))) (-15 -3637 ((-1237) (-1131) (-1131) (-1131))) (-15 -3638 ((-1237))) (-15 -3550 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3551 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3551 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112))) (-15 -3552 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3553 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3554 ((-112) |#4| |#5|)) (-15 -3554 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3555 ((-622 |#5|) |#4| |#5|)) (-15 -3556 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1046))
-((-3556 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3555 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 *4)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3554 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3554 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3553 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3552 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827)) (-5 *2 (-622 (-2 (|:| |val| *8) (|:| -1660 *9)))) (-5 *1 (-1046 *6 *7 *4 *8 *9)))) (-3551 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3550 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3638 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3637 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3636 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3635 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3635 ((-1237) (-1131) (-1131) (-1131))) (-15 -3636 ((-1237))) (-15 -3637 ((-1237) (-1131) (-1131) (-1131))) (-15 -3638 ((-1237))) (-15 -3550 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3551 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3551 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112))) (-15 -3552 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3553 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3554 ((-112) |#4| |#5|)) (-15 -3554 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3555 ((-622 |#5|) |#4| |#5|)) (-15 -3556 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|)))
-((-2898 (((-112) $ $) NIL)) (-3669 (((-1186) $) 13)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 10)) (-4317 (((-840) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-1047) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $))))) (T -1047))
-((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1047)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1047)))))
-(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $))))
-((-2898 (((-112) $ $) NIL)) (-3560 (($ $ (-622 (-1149)) (-1 (-112) (-622 |#3|))) 33)) (-3561 (($ |#3| |#3|) 22) (($ |#3| |#3| (-622 (-1149))) 20)) (-3882 ((|#3| $) 13)) (-3508 (((-3 (-288 |#3|) "failed") $) 58)) (-3507 (((-288 |#3|) $) NIL)) (-3558 (((-622 (-1149)) $) 16)) (-3559 (((-866 |#1|) $) 11)) (-3883 ((|#3| $) 12)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4159 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-895)) 39)) (-4317 (((-840) $) 86) (($ (-288 |#3|)) 21)) (-3387 (((-112) $ $) 36)))
-(((-1048 |#1| |#2| |#3|) (-13 (-1074) (-281 |#3| |#3|) (-1014 (-288 |#3|)) (-10 -8 (-15 -3561 ($ |#3| |#3|)) (-15 -3561 ($ |#3| |#3| (-622 (-1149)))) (-15 -3560 ($ $ (-622 (-1149)) (-1 (-112) (-622 |#3|)))) (-15 -3559 ((-866 |#1|) $)) (-15 -3883 (|#3| $)) (-15 -3882 (|#3| $)) (-15 -4159 (|#3| $ |#3| (-895))) (-15 -3558 ((-622 (-1149)) $)))) (-1074) (-13 (-1025) (-862 |#1|) (-827) (-598 (-866 |#1|))) (-13 (-416 |#2|) (-862 |#1|) (-598 (-866 |#1|)))) (T -1048))
-((-3561 (*1 *1 *2 *2) (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) (-5 *1 (-1048 *3 *4 *2)) (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))))) (-3561 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-1048 *4 *5 *2)) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))) (-3560 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-1 (-112) (-622 *6))) (-4 *6 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-1048 *4 *5 *6)))) (-3559 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 *2))) (-5 *2 (-866 *3)) (-5 *1 (-1048 *3 *4 *5)) (-4 *5 (-13 (-416 *4) (-862 *3) (-598 *2))))) (-3883 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))) (-5 *1 (-1048 *3 *4 *2)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))))) (-3882 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))) (-5 *1 (-1048 *3 *4 *2)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))))) (-4159 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-895)) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-1048 *4 *5 *2)) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))) (-3558 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) (-5 *2 (-622 (-1149))) (-5 *1 (-1048 *3 *4 *5)) (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))))))
-(-13 (-1074) (-281 |#3| |#3|) (-1014 (-288 |#3|)) (-10 -8 (-15 -3561 ($ |#3| |#3|)) (-15 -3561 ($ |#3| |#3| (-622 (-1149)))) (-15 -3560 ($ $ (-622 (-1149)) (-1 (-112) (-622 |#3|)))) (-15 -3559 ((-866 |#1|) $)) (-15 -3883 (|#3| $)) (-15 -3882 (|#3| $)) (-15 -4159 (|#3| $ |#3| (-895))) (-15 -3558 ((-622 (-1149)) $))))
-((-2898 (((-112) $ $) NIL)) (-3905 (((-1149) $) 8)) (-3593 (((-1131) $) 16)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 13)))
-(((-1049 |#1|) (-13 (-1074) (-10 -8 (-15 -3905 ((-1149) $)))) (-1149)) (T -1049))
-((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1049 *3)) (-14 *3 *2))))
-(-13 (-1074) (-10 -8 (-15 -3905 ((-1149) $))))
-((-2898 (((-112) $ $) NIL)) (-3563 (($ (-622 (-1048 |#1| |#2| |#3|))) 13)) (-3562 (((-622 (-1048 |#1| |#2| |#3|)) $) 20)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4159 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-895)) 26)) (-4317 (((-840) $) 16)) (-3387 (((-112) $ $) 19)))
-(((-1050 |#1| |#2| |#3|) (-13 (-1074) (-281 |#3| |#3|) (-10 -8 (-15 -3563 ($ (-622 (-1048 |#1| |#2| |#3|)))) (-15 -3562 ((-622 (-1048 |#1| |#2| |#3|)) $)) (-15 -4159 (|#3| $ |#3| (-895))))) (-1074) (-13 (-1025) (-862 |#1|) (-827) (-598 (-866 |#1|))) (-13 (-416 |#2|) (-862 |#1|) (-598 (-866 |#1|)))) (T -1050))
-((-3563 (*1 *1 *2) (-12 (-5 *2 (-622 (-1048 *3 *4 *5))) (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))) (-5 *1 (-1050 *3 *4 *5)))) (-3562 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) (-5 *2 (-622 (-1048 *3 *4 *5))) (-5 *1 (-1050 *3 *4 *5)) (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))))) (-4159 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-895)) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-1050 *4 *5 *2)) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))))
-(-13 (-1074) (-281 |#3| |#3|) (-10 -8 (-15 -3563 ($ (-622 (-1048 |#1| |#2| |#3|)))) (-15 -3562 ((-622 (-1048 |#1| |#2| |#3|)) $)) (-15 -4159 (|#3| $ |#3| (-895)))))
-((-3564 (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112)) 75) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|))) 77) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112)) 76)))
-(((-1051 |#1| |#2|) (-10 -7 (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112))) (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112)))) (-13 (-302) (-145)) (-622 (-1149))) (T -1051))
-((-3564 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) (-5 *1 (-1051 *5 *6)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))))) (-3564 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4)))))) (-5 *1 (-1051 *4 *5)) (-5 *3 (-622 (-922 *4))) (-14 *5 (-622 (-1149))))) (-3564 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) (-5 *1 (-1051 *5 *6)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))))))
-(-10 -7 (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112))) (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 126)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-358)))) (-2178 (($ $) NIL (|has| |#1| (-358)))) (-2176 (((-112) $) NIL (|has| |#1| (-358)))) (-1901 (((-669 |#1|) (-1231 $)) NIL) (((-669 |#1|)) 115)) (-3689 ((|#1| $) 119)) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| |#1| (-345)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3471 (((-751)) 40 (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-1911 (($ (-1231 |#1|) (-1231 $)) NIL) (($ (-1231 |#1|)) 43)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-345)))) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-1900 (((-669 |#1|) $ (-1231 $)) NIL) (((-669 |#1|) $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 106) (((-669 |#1|) (-669 $)) 101)) (-4202 (($ |#2|) 61) (((-3 $ "failed") (-402 |#2|)) NIL (|has| |#1| (-358)))) (-3821 (((-3 $ "failed") $) NIL)) (-3444 (((-895)) 77)) (-3327 (($) 44 (|has| |#1| (-363)))) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-3166 (($) NIL (|has| |#1| (-345)))) (-1796 (((-112) $) NIL (|has| |#1| (-345)))) (-1886 (($ $ (-751)) NIL (|has| |#1| (-345))) (($ $) NIL (|has| |#1| (-345)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-4131 (((-895) $) NIL (|has| |#1| (-345))) (((-812 (-895)) $) NIL (|has| |#1| (-345)))) (-2502 (((-112) $) NIL)) (-3467 ((|#1| $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-2130 ((|#2| $) 84 (|has| |#1| (-358)))) (-2126 (((-895) $) 131 (|has| |#1| (-363)))) (-3413 ((|#2| $) 58)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-3804 (($) NIL (|has| |#1| (-345)) CONST)) (-2492 (($ (-895)) 125 (|has| |#1| (-363)))) (-3594 (((-1093) $) NIL)) (-2501 (($) 121)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| |#1| (-345)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4117 ((|#1| (-1231 $)) NIL) ((|#1|) 109)) (-1887 (((-751) $) NIL (|has| |#1| (-345))) (((-3 (-751) "failed") $ $) NIL (|has| |#1| (-345)))) (-4170 (($ $) NIL (-3891 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-751)) NIL (-3891 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1 |#1| |#1|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-2500 (((-669 |#1|) (-1231 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3536 ((|#2|) 73)) (-1790 (($) NIL (|has| |#1| (-345)))) (-3575 (((-1231 |#1|) $ (-1231 $)) 89) (((-669 |#1|) (-1231 $) (-1231 $)) NIL) (((-1231 |#1|) $) 71) (((-669 |#1|) (-1231 $)) 85)) (-4330 (((-1231 |#1|) $) NIL) (($ (-1231 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-345)))) (-4317 (((-840) $) 57) (($ (-538)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-358))) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538))))))) (-3035 (($ $) NIL (|has| |#1| (-345))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2698 ((|#2| $) 82)) (-3461 (((-751)) 75)) (-2128 (((-1231 $)) 81)) (-2177 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2991 (($) 30 T CONST)) (-2997 (($) 19 T CONST)) (-3002 (($ $) NIL (-3891 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-751)) NIL (-3891 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1 |#1| |#1|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3387 (((-112) $ $) 63)) (-4308 (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) 67) (($ $ $) NIL)) (-4199 (($ $ $) 65)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-402 (-538)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-538))) NIL (|has| |#1| (-358)))))
-(((-1052 |#1| |#2| |#3|) (-705 |#1| |#2|) (-170) (-1207 |#1|) |#2|) (T -1052))
+((-3741 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3731 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3724 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3714 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3704 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 (-112) (-625 *1))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3685 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3674 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 *3 (-625 *1))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3662 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-2194 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-2860 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-2860 (*1 *2 *3 *1) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-2860 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-2860 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-3651 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3651 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-3651 (*1 *2 *3 *1) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-3651 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-3999 (*1 *1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-625 *6)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)))) (-2147 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-2147 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-2147 (*1 *2 *3 *1) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-2147 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *5 *6 *7 *8)))))
+(-13 (-1179 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3741 ((-112) |t#4| $)) (-15 -3731 ((-112) |t#4| $)) (-15 -3724 ((-112) |t#4| $)) (-15 -3741 ((-112) $)) (-15 -3714 ((-112) |t#4| $)) (-15 -3704 ((-3 (-112) (-625 $)) |t#4| $)) (-15 -3694 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |t#4| $)) (-15 -3694 ((-112) |t#4| $)) (-15 -3685 ((-625 $) |t#4| $)) (-15 -3674 ((-3 |t#4| (-625 $)) |t#4| |t#4| $)) (-15 -3662 ((-625 (-2 (|:| |val| |t#4|) (|:| -3715 $))) |t#4| |t#4| $)) (-15 -2194 ((-625 (-2 (|:| |val| |t#4|) (|:| -3715 $))) |t#4| $)) (-15 -2860 ((-625 $) |t#4| $)) (-15 -2860 ((-625 $) (-625 |t#4|) $)) (-15 -2860 ((-625 $) (-625 |t#4|) (-625 $))) (-15 -2860 ((-625 $) |t#4| (-625 $))) (-15 -3651 ((-625 $) |t#4| $)) (-15 -3651 ((-625 $) |t#4| (-625 $))) (-15 -3651 ((-625 $) (-625 |t#4|) $)) (-15 -3651 ((-625 $) (-625 |t#4|) (-625 $))) (-15 -3999 ($ |t#4| $)) (-15 -3999 ($ (-625 |t#4|) $)) (-15 -2147 ((-625 $) |t#4| $)) (-15 -2147 ((-625 $) |t#4| (-625 $))) (-15 -2147 ((-625 $) (-625 |t#4|) $)) (-15 -2147 ((-625 $) (-625 |t#4|) (-625 $))) (-15 -3690 ((-625 $) (-625 |t#4|) (-112)))))
+(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1073) . T) ((-1179 |#1| |#2| |#3| |#4|) . T) ((-1186) . T))
+((-2672 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|) 81)) (-2642 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|) 113)) (-2660 (((-625 |#5|) |#4| |#5|) 70)) (-2650 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2046 (((-1237)) 37)) (-2028 (((-1237)) 26)) (-2037 (((-1237) (-1131) (-1131) (-1131)) 33)) (-2019 (((-1237) (-1131) (-1131) (-1131)) 22)) (-3752 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|) 96)) (-2621 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112)) 107) (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2632 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|) 102)))
+(((-1046 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2019 ((-1237) (-1131) (-1131) (-1131))) (-15 -2028 ((-1237))) (-15 -2037 ((-1237) (-1131) (-1131) (-1131))) (-15 -2046 ((-1237))) (-15 -3752 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2621 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2621 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112))) (-15 -2632 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2642 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2650 ((-112) |#4| |#5|)) (-15 -2650 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2660 ((-625 |#5|) |#4| |#5|)) (-15 -2672 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1046))
+((-2672 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2660 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2650 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2650 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2642 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2632 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2621 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827)) (-5 *2 (-625 (-2 (|:| |val| *8) (|:| -3715 *9)))) (-5 *1 (-1046 *6 *7 *4 *8 *9)))) (-2621 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3752 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2046 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-2037 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-2028 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-2019 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2019 ((-1237) (-1131) (-1131) (-1131))) (-15 -2028 ((-1237))) (-15 -2037 ((-1237) (-1131) (-1131) (-1131))) (-15 -2046 ((-1237))) (-15 -3752 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2621 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2621 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112))) (-15 -2632 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2642 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2650 ((-112) |#4| |#5|)) (-15 -2650 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2660 ((-625 |#5|) |#4| |#5|)) (-15 -2672 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|)))
+((-1671 (((-112) $ $) NIL)) (-1711 (((-1185) $) 13)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 10)) (-1683 (((-839) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-1047) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $))))) (T -1047))
+((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1047)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1047)))))
+(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $))))
+((-1671 (((-112) $ $) NIL)) (-1288 (((-1149) $) 8)) (-2883 (((-1131) $) 16)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 13)))
+(((-1048 |#1|) (-13 (-1073) (-10 -8 (-15 -1288 ((-1149) $)))) (-1149)) (T -1048))
+((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1048 *3)) (-14 *3 *2))))
+(-13 (-1073) (-10 -8 (-15 -1288 ((-1149) $))))
+((-1671 (((-112) $ $) NIL)) (-3925 (($ $ (-625 (-1149)) (-1 (-112) (-625 |#3|))) 33)) (-2925 (($ |#3| |#3|) 22) (($ |#3| |#3| (-625 (-1149))) 20)) (-2662 ((|#3| $) 13)) (-1893 (((-3 (-289 |#3|) "failed") $) 58)) (-1895 (((-289 |#3|) $) NIL)) (-2684 (((-625 (-1149)) $) 16)) (-2092 (((-868 |#1|) $) 11)) (-2651 ((|#3| $) 12)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2154 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-897)) 39)) (-1683 (((-839) $) 86) (($ (-289 |#3|)) 21)) (-2281 (((-112) $ $) 36)))
+(((-1049 |#1| |#2| |#3|) (-13 (-1073) (-281 |#3| |#3|) (-1014 (-289 |#3|)) (-10 -8 (-15 -2925 ($ |#3| |#3|)) (-15 -2925 ($ |#3| |#3| (-625 (-1149)))) (-15 -3925 ($ $ (-625 (-1149)) (-1 (-112) (-625 |#3|)))) (-15 -2092 ((-868 |#1|) $)) (-15 -2651 (|#3| $)) (-15 -2662 (|#3| $)) (-15 -2154 (|#3| $ |#3| (-897))) (-15 -2684 ((-625 (-1149)) $)))) (-1073) (-13 (-1025) (-862 |#1|) (-827) (-598 (-868 |#1|))) (-13 (-425 |#2|) (-862 |#1|) (-598 (-868 |#1|)))) (T -1049))
+((-2925 (*1 *1 *2 *2) (-12 (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) (-5 *1 (-1049 *3 *4 *2)) (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))))) (-2925 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-5 *1 (-1049 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))) (-3925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-1 (-112) (-625 *6))) (-4 *6 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-5 *1 (-1049 *4 *5 *6)))) (-2092 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 *2))) (-5 *2 (-868 *3)) (-5 *1 (-1049 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-862 *3) (-598 *2))))) (-2651 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))) (-5 *1 (-1049 *3 *4 *2)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))))) (-2662 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))) (-5 *1 (-1049 *3 *4 *2)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))))) (-2154 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-897)) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-5 *1 (-1049 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))) (-2684 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) (-5 *2 (-625 (-1149))) (-5 *1 (-1049 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))))))
+(-13 (-1073) (-281 |#3| |#3|) (-1014 (-289 |#3|)) (-10 -8 (-15 -2925 ($ |#3| |#3|)) (-15 -2925 ($ |#3| |#3| (-625 (-1149)))) (-15 -3925 ($ $ (-625 (-1149)) (-1 (-112) (-625 |#3|)))) (-15 -2092 ((-868 |#1|) $)) (-15 -2651 (|#3| $)) (-15 -2662 (|#3| $)) (-15 -2154 (|#3| $ |#3| (-897))) (-15 -2684 ((-625 (-1149)) $))))
+((-1671 (((-112) $ $) NIL)) (-3884 (($ (-625 (-1049 |#1| |#2| |#3|))) 13)) (-3542 (((-625 (-1049 |#1| |#2| |#3|)) $) 20)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2154 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-897)) 26)) (-1683 (((-839) $) 16)) (-2281 (((-112) $ $) 19)))
+(((-1050 |#1| |#2| |#3|) (-13 (-1073) (-281 |#3| |#3|) (-10 -8 (-15 -3884 ($ (-625 (-1049 |#1| |#2| |#3|)))) (-15 -3542 ((-625 (-1049 |#1| |#2| |#3|)) $)) (-15 -2154 (|#3| $ |#3| (-897))))) (-1073) (-13 (-1025) (-862 |#1|) (-827) (-598 (-868 |#1|))) (-13 (-425 |#2|) (-862 |#1|) (-598 (-868 |#1|)))) (T -1050))
+((-3884 (*1 *1 *2) (-12 (-5 *2 (-625 (-1049 *3 *4 *5))) (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))) (-5 *1 (-1050 *3 *4 *5)))) (-3542 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) (-5 *2 (-625 (-1049 *3 *4 *5))) (-5 *1 (-1050 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))))) (-2154 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-897)) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-5 *1 (-1050 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))))
+(-13 (-1073) (-281 |#3| |#3|) (-10 -8 (-15 -3884 ($ (-625 (-1049 |#1| |#2| |#3|)))) (-15 -3542 ((-625 (-1049 |#1| |#2| |#3|)) $)) (-15 -2154 (|#3| $ |#3| (-897)))))
+((-2694 (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112)) 75) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|))) 77) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112)) 76)))
+(((-1051 |#1| |#2|) (-10 -7 (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112))) (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112)))) (-13 (-302) (-145)) (-625 (-1149))) (T -1051))
+((-2694 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) (-5 *1 (-1051 *5 *6)) (-5 *3 (-625 (-928 *5))) (-14 *6 (-625 (-1149))))) (-2694 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4)))))) (-5 *1 (-1051 *4 *5)) (-5 *3 (-625 (-928 *4))) (-14 *5 (-625 (-1149))))) (-2694 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) (-5 *1 (-1051 *5 *6)) (-5 *3 (-625 (-928 *5))) (-14 *6 (-625 (-1149))))))
+(-10 -7 (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112))) (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112))))
+((-3824 (((-413 |#3|) |#3|) 18)))
+(((-1052 |#1| |#2| |#3|) (-10 -7 (-15 -3824 ((-413 |#3|) |#3|))) (-1208 (-402 (-552))) (-13 (-358) (-145) (-705 (-402 (-552)) |#1|)) (-1208 |#2|)) (T -1052))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-13 (-358) (-145) (-705 (-402 (-552)) *4))) (-5 *2 (-413 *3)) (-5 *1 (-1052 *4 *5 *3)) (-4 *3 (-1208 *5)))))
+(-10 -7 (-15 -3824 ((-413 |#3|) |#3|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 126)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-358)))) (-3528 (($ $) NIL (|has| |#1| (-358)))) (-3509 (((-112) $) NIL (|has| |#1| (-358)))) (-2570 (((-669 |#1|) (-1232 $)) NIL) (((-669 |#1|)) 115)) (-1650 ((|#1| $) 119)) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| |#1| (-344)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2894 (((-751)) 40 (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-2670 (($ (-1232 |#1|) (-1232 $)) NIL) (($ (-1232 |#1|)) 43)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-2559 (((-669 |#1|) $ (-1232 $)) NIL) (((-669 |#1|) $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 106) (((-669 |#1|) (-669 $)) 101)) (-2163 (($ |#2|) 61) (((-3 $ "failed") (-402 |#2|)) NIL (|has| |#1| (-358)))) (-4174 (((-3 $ "failed") $) NIL)) (-3442 (((-897)) 77)) (-3702 (($) 44 (|has| |#1| (-363)))) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-4279 (($) NIL (|has| |#1| (-344)))) (-3872 (((-112) $) NIL (|has| |#1| (-344)))) (-3554 (($ $ (-751)) NIL (|has| |#1| (-344))) (($ $) NIL (|has| |#1| (-344)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-2172 (((-897) $) NIL (|has| |#1| (-344))) (((-813 (-897)) $) NIL (|has| |#1| (-344)))) (-3650 (((-112) $) NIL)) (-4209 ((|#1| $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-1291 ((|#2| $) 84 (|has| |#1| (-358)))) (-4318 (((-897) $) 131 (|has| |#1| (-363)))) (-2148 ((|#2| $) 58)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2071 (($) NIL (|has| |#1| (-344)) CONST)) (-3123 (($ (-897)) 125 (|has| |#1| (-363)))) (-2831 (((-1093) $) NIL)) (-3212 (($) 121)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| |#1| (-344)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3217 ((|#1| (-1232 $)) NIL) ((|#1|) 109)) (-3563 (((-751) $) NIL (|has| |#1| (-344))) (((-3 (-751) "failed") $ $) NIL (|has| |#1| (-344)))) (-3072 (($ $) NIL (-1523 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-751)) NIL (-1523 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1 |#1| |#1|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3640 (((-669 |#1|) (-1232 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3610 ((|#2|) 73)) (-3798 (($) NIL (|has| |#1| (-344)))) (-2780 (((-1232 |#1|) $ (-1232 $)) 89) (((-669 |#1|) (-1232 $) (-1232 $)) NIL) (((-1232 |#1|) $) 71) (((-669 |#1|) (-1232 $)) 85)) (-2042 (((-1232 |#1|) $) NIL) (($ (-1232 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-344)))) (-1683 (((-839) $) 57) (($ (-552)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-358))) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552))))))) (-4243 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3974 ((|#2| $) 82)) (-4141 (((-751)) 75)) (-1270 (((-1232 $)) 81)) (-3518 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2089 (($) 30 T CONST)) (-2100 (($) 19 T CONST)) (-3768 (($ $) NIL (-1523 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-751)) NIL (-1523 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1 |#1| |#1|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-2281 (((-112) $ $) 63)) (-2404 (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) 67) (($ $ $) NIL)) (-2382 (($ $ $) 65)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-402 (-552)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-552))) NIL (|has| |#1| (-358)))))
+(((-1053 |#1| |#2| |#3|) (-705 |#1| |#2|) (-170) (-1208 |#1|) |#2|) (T -1053))
NIL
(-705 |#1| |#2|)
-((-4092 (((-400 |#3|) |#3|) 18)))
-(((-1053 |#1| |#2| |#3|) (-10 -7 (-15 -4092 ((-400 |#3|) |#3|))) (-1207 (-402 (-538))) (-13 (-358) (-145) (-705 (-402 (-538)) |#1|)) (-1207 |#2|)) (T -1053))
-((-4092 (*1 *2 *3) (-12 (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-13 (-358) (-145) (-705 (-402 (-538)) *4))) (-5 *2 (-400 *3)) (-5 *1 (-1053 *4 *5 *3)) (-4 *3 (-1207 *5)))))
-(-10 -7 (-15 -4092 ((-400 |#3|) |#3|)))
-((-4092 (((-400 |#3|) |#3|) 19)))
-(((-1054 |#1| |#2| |#3|) (-10 -7 (-15 -4092 ((-400 |#3|) |#3|))) (-1207 (-402 (-922 (-538)))) (-13 (-358) (-145) (-705 (-402 (-922 (-538))) |#1|)) (-1207 |#2|)) (T -1054))
-((-4092 (*1 *2 *3) (-12 (-4 *4 (-1207 (-402 (-922 (-538))))) (-4 *5 (-13 (-358) (-145) (-705 (-402 (-922 (-538))) *4))) (-5 *2 (-400 *3)) (-5 *1 (-1054 *4 *5 *3)) (-4 *3 (-1207 *5)))))
-(-10 -7 (-15 -4092 ((-400 |#3|) |#3|)))
-((-2898 (((-112) $ $) NIL)) (-3677 (($ $ $) 14)) (-3678 (($ $ $) 15)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3565 (($) 6)) (-4330 (((-1149) $) 18)) (-4317 (((-840) $) 12)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 13)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 8)))
-(((-1055) (-13 (-827) (-10 -8 (-15 -3565 ($)) (-15 -4330 ((-1149) $))))) (T -1055))
-((-3565 (*1 *1) (-5 *1 (-1055))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1055)))))
-(-13 (-827) (-10 -8 (-15 -3565 ($)) (-15 -4330 ((-1149) $))))
-((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-3387 (((-112) $ $) 6)))
+((-3824 (((-413 |#3|) |#3|) 19)))
+(((-1054 |#1| |#2| |#3|) (-10 -7 (-15 -3824 ((-413 |#3|) |#3|))) (-1208 (-402 (-928 (-552)))) (-13 (-358) (-145) (-705 (-402 (-928 (-552))) |#1|)) (-1208 |#2|)) (T -1054))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-1208 (-402 (-928 (-552))))) (-4 *5 (-13 (-358) (-145) (-705 (-402 (-928 (-552))) *4))) (-5 *2 (-413 *3)) (-5 *1 (-1054 *4 *5 *3)) (-4 *3 (-1208 *5)))))
+(-10 -7 (-15 -3824 ((-413 |#3|) |#3|)))
+((-1671 (((-112) $ $) NIL)) (-3658 (($ $ $) 14)) (-3332 (($ $ $) 15)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2704 (($) 6)) (-2042 (((-1149) $) 18)) (-1683 (((-839) $) 12)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 13)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 8)))
+(((-1055) (-13 (-827) (-10 -8 (-15 -2704 ($)) (-15 -2042 ((-1149) $))))) (T -1055))
+((-2704 (*1 *1) (-5 *1 (-1055))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1055)))))
+(-13 (-827) (-10 -8 (-15 -2704 ($)) (-15 -2042 ((-1149) $))))
+((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-2281 (((-112) $ $) 6)))
(((-1056) (-138)) (T -1056))
NIL
(-13 (-92))
-(((-92) . T) ((-101) . T) ((-597 (-840)) . T) ((-597 (-1154)) . T) ((-1074) . T))
-((-3568 ((|#1| |#1| (-1 (-538) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-3566 (((-1237)) 15)) (-3567 (((-622 |#1|)) 9)))
-(((-1057 |#1|) (-10 -7 (-15 -3566 ((-1237))) (-15 -3567 ((-622 |#1|))) (-15 -3568 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3568 (|#1| |#1| (-1 (-538) |#1| |#1|)))) (-131)) (T -1057))
-((-3568 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-538) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))) (-3568 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))) (-3567 (*1 *2) (-12 (-5 *2 (-622 *3)) (-5 *1 (-1057 *3)) (-4 *3 (-131)))) (-3566 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1057 *3)) (-4 *3 (-131)))))
-(-10 -7 (-15 -3566 ((-1237))) (-15 -3567 ((-622 |#1|))) (-15 -3568 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3568 (|#1| |#1| (-1 (-538) |#1| |#1|))))
-((-3571 (($ (-108) $) 16)) (-3572 (((-3 (-108) "failed") (-1149) $) 15)) (-3928 (($) 7)) (-3570 (($) 17)) (-3569 (($) 18)) (-3573 (((-622 (-173)) $) 10)) (-4317 (((-840) $) 21)))
-(((-1058) (-13 (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -3573 ((-622 (-173)) $)) (-15 -3572 ((-3 (-108) "failed") (-1149) $)) (-15 -3571 ($ (-108) $)) (-15 -3570 ($)) (-15 -3569 ($))))) (T -1058))
-((-3928 (*1 *1) (-5 *1 (-1058))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-622 (-173))) (-5 *1 (-1058)))) (-3572 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-1058)))) (-3571 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1058)))) (-3570 (*1 *1) (-5 *1 (-1058))) (-3569 (*1 *1) (-5 *1 (-1058))))
-(-13 (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -3573 ((-622 (-173)) $)) (-15 -3572 ((-3 (-108) "failed") (-1149) $)) (-15 -3571 ($ (-108) $)) (-15 -3570 ($)) (-15 -3569 ($))))
-((-3574 (((-1231 (-669 |#1|)) (-622 (-669 |#1|))) 42) (((-1231 (-669 (-922 |#1|))) (-622 (-1149)) (-669 (-922 |#1|))) 63) (((-1231 (-669 (-402 (-922 |#1|)))) (-622 (-1149)) (-669 (-402 (-922 |#1|)))) 79)) (-3575 (((-1231 |#1|) (-669 |#1|) (-622 (-669 |#1|))) 36)))
-(((-1059 |#1|) (-10 -7 (-15 -3574 ((-1231 (-669 (-402 (-922 |#1|)))) (-622 (-1149)) (-669 (-402 (-922 |#1|))))) (-15 -3574 ((-1231 (-669 (-922 |#1|))) (-622 (-1149)) (-669 (-922 |#1|)))) (-15 -3574 ((-1231 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3575 ((-1231 |#1|) (-669 |#1|) (-622 (-669 |#1|))))) (-358)) (T -1059))
-((-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-669 *5))) (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-1231 *5)) (-5 *1 (-1059 *5)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-622 (-669 *4))) (-4 *4 (-358)) (-5 *2 (-1231 (-669 *4))) (-5 *1 (-1059 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-1149))) (-4 *5 (-358)) (-5 *2 (-1231 (-669 (-922 *5)))) (-5 *1 (-1059 *5)) (-5 *4 (-669 (-922 *5))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-1149))) (-4 *5 (-358)) (-5 *2 (-1231 (-669 (-402 (-922 *5))))) (-5 *1 (-1059 *5)) (-5 *4 (-669 (-402 (-922 *5)))))))
-(-10 -7 (-15 -3574 ((-1231 (-669 (-402 (-922 |#1|)))) (-622 (-1149)) (-669 (-402 (-922 |#1|))))) (-15 -3574 ((-1231 (-669 (-922 |#1|))) (-622 (-1149)) (-669 (-922 |#1|)))) (-15 -3574 ((-1231 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3575 ((-1231 |#1|) (-669 |#1|) (-622 (-669 |#1|)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1543 (((-622 (-751)) $) NIL) (((-622 (-751)) $ (-1149)) NIL)) (-1577 (((-751) $) NIL) (((-751) $ (-1149)) NIL)) (-3417 (((-622 (-1061 (-1149))) $) NIL)) (-3419 (((-1143 $) $ (-1061 (-1149))) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1061 (-1149)))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1539 (($ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-1061 (-1149)) #2#) $) NIL) (((-3 (-1149) #2#) $) NIL) (((-3 (-1098 |#1| (-1149)) #2#) $) NIL)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-1061 (-1149)) $) NIL) (((-1149) $) NIL) (((-1098 |#1| (-1149)) $) NIL)) (-4116 (($ $ $ (-1061 (-1149))) NIL (|has| |#1| (-170)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1061 (-1149))) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-524 (-1061 (-1149))) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1061 (-1149)) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1061 (-1149)) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ (-1149)) NIL) (((-751) $) NIL)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#1|) (-1061 (-1149))) NIL) (($ (-1143 $) (-1061 (-1149))) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-524 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-622 (-1061 (-1149))) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1061 (-1149))) NIL)) (-3153 (((-524 (-1061 (-1149))) $) NIL) (((-751) $ (-1061 (-1149))) NIL) (((-622 (-751)) $ (-622 (-1061 (-1149)))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 (-1061 (-1149))) (-524 (-1061 (-1149)))) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1 $ (-751)) (-1149)) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-3418 (((-3 (-1061 (-1149)) #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-1541 (((-1061 (-1149)) $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-1542 (((-112) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1061 (-1149))) (|:| -2493 (-751))) #3#) $) NIL)) (-1540 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1061 (-1149)) |#1|) NIL) (($ $ (-622 (-1061 (-1149))) (-622 |#1|)) NIL) (($ $ (-1061 (-1149)) $) NIL) (($ $ (-622 (-1061 (-1149))) (-622 $)) NIL) (($ $ (-1149) $) NIL (|has| |#1| (-229))) (($ $ (-622 (-1149)) (-622 $)) NIL (|has| |#1| (-229))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-229))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-229)))) (-4117 (($ $ (-1061 (-1149))) NIL (|has| |#1| (-170)))) (-4170 (($ $ (-1061 (-1149))) NIL) (($ $ (-622 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-622 (-1061 (-1149))) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1544 (((-622 (-1149)) $) NIL)) (-4307 (((-524 (-1061 (-1149))) $) NIL) (((-751) $ (-1061 (-1149))) NIL) (((-622 (-751)) $ (-622 (-1061 (-1149)))) NIL) (((-751) $ (-1149)) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1061 (-1149))) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-1061 (-1149))) NIL) (($ (-1149)) NIL) (($ (-1098 |#1| (-1149))) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-524 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-622 (-1061 (-1149))) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1061 (-1149))) NIL) (($ $ (-622 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-622 (-1061 (-1149))) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-92) . T) ((-101) . T) ((-597 (-839)) . T) ((-597 (-1154)) . T) ((-1073) . T))
+((-2713 ((|#1| |#1| (-1 (-552) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-1837 (((-1237)) 15)) (-3398 (((-625 |#1|)) 9)))
+(((-1057 |#1|) (-10 -7 (-15 -1837 ((-1237))) (-15 -3398 ((-625 |#1|))) (-15 -2713 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2713 (|#1| |#1| (-1 (-552) |#1| |#1|)))) (-131)) (T -1057))
+((-2713 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-552) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))) (-2713 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))) (-3398 (*1 *2) (-12 (-5 *2 (-625 *3)) (-5 *1 (-1057 *3)) (-4 *3 (-131)))) (-1837 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1057 *3)) (-4 *3 (-131)))))
+(-10 -7 (-15 -1837 ((-1237))) (-15 -3398 ((-625 |#1|))) (-15 -2713 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2713 (|#1| |#1| (-1 (-552) |#1| |#1|))))
+((-2742 (($ (-108) $) 16)) (-2751 (((-3 (-108) "failed") (-1149) $) 15)) (-3600 (($) 7)) (-2732 (($) 17)) (-2723 (($) 18)) (-2760 (((-625 (-173)) $) 10)) (-1683 (((-839) $) 21)))
+(((-1058) (-13 (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2760 ((-625 (-173)) $)) (-15 -2751 ((-3 (-108) "failed") (-1149) $)) (-15 -2742 ($ (-108) $)) (-15 -2732 ($)) (-15 -2723 ($))))) (T -1058))
+((-3600 (*1 *1) (-5 *1 (-1058))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-625 (-173))) (-5 *1 (-1058)))) (-2751 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-1058)))) (-2742 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1058)))) (-2732 (*1 *1) (-5 *1 (-1058))) (-2723 (*1 *1) (-5 *1 (-1058))))
+(-13 (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2760 ((-625 (-173)) $)) (-15 -2751 ((-3 (-108) "failed") (-1149) $)) (-15 -2742 ($ (-108) $)) (-15 -2732 ($)) (-15 -2723 ($))))
+((-2770 (((-1232 (-669 |#1|)) (-625 (-669 |#1|))) 42) (((-1232 (-669 (-928 |#1|))) (-625 (-1149)) (-669 (-928 |#1|))) 63) (((-1232 (-669 (-402 (-928 |#1|)))) (-625 (-1149)) (-669 (-402 (-928 |#1|)))) 79)) (-2780 (((-1232 |#1|) (-669 |#1|) (-625 (-669 |#1|))) 36)))
+(((-1059 |#1|) (-10 -7 (-15 -2770 ((-1232 (-669 (-402 (-928 |#1|)))) (-625 (-1149)) (-669 (-402 (-928 |#1|))))) (-15 -2770 ((-1232 (-669 (-928 |#1|))) (-625 (-1149)) (-669 (-928 |#1|)))) (-15 -2770 ((-1232 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -2780 ((-1232 |#1|) (-669 |#1|) (-625 (-669 |#1|))))) (-358)) (T -1059))
+((-2780 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-669 *5))) (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-1232 *5)) (-5 *1 (-1059 *5)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-625 (-669 *4))) (-4 *4 (-358)) (-5 *2 (-1232 (-669 *4))) (-5 *1 (-1059 *4)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-1149))) (-4 *5 (-358)) (-5 *2 (-1232 (-669 (-928 *5)))) (-5 *1 (-1059 *5)) (-5 *4 (-669 (-928 *5))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-1149))) (-4 *5 (-358)) (-5 *2 (-1232 (-669 (-402 (-928 *5))))) (-5 *1 (-1059 *5)) (-5 *4 (-669 (-402 (-928 *5)))))))
+(-10 -7 (-15 -2770 ((-1232 (-669 (-402 (-928 |#1|)))) (-625 (-1149)) (-669 (-402 (-928 |#1|))))) (-15 -2770 ((-1232 (-669 (-928 |#1|))) (-625 (-1149)) (-669 (-928 |#1|)))) (-15 -2770 ((-1232 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -2780 ((-1232 |#1|) (-669 |#1|) (-625 (-669 |#1|)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3169 (((-625 (-751)) $) NIL) (((-625 (-751)) $ (-1149)) NIL)) (-3469 (((-751) $) NIL) (((-751) $ (-1149)) NIL)) (-3982 (((-625 (-1061 (-1149))) $) NIL)) (-3793 (((-1145 $) $ (-1061 (-1149))) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1061 (-1149)))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3153 (($ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-1061 (-1149)) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL) (((-3 (-1098 |#1| (-1149)) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-1061 (-1149)) $) NIL) (((-1149) $) NIL) (((-1098 |#1| (-1149)) $) NIL)) (-3207 (($ $ $ (-1061 (-1149))) NIL (|has| |#1| (-170)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1061 (-1149))) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-524 (-1061 (-1149))) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1061 (-1149)) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1061 (-1149)) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ (-1149)) NIL) (((-751) $) NIL)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#1|) (-1061 (-1149))) NIL) (($ (-1145 $) (-1061 (-1149))) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-524 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-625 (-1061 (-1149))) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1061 (-1149))) NIL)) (-4134 (((-524 (-1061 (-1149))) $) NIL) (((-751) $ (-1061 (-1149))) NIL) (((-625 (-751)) $ (-625 (-1061 (-1149)))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 (-1061 (-1149))) (-524 (-1061 (-1149)))) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3479 (((-1 $ (-751)) (-1149)) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-1942 (((-3 (-1061 (-1149)) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2578 (((-1061 (-1149)) $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-3162 (((-112) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1061 (-1149))) (|:| -3564 (-751))) "failed") $) NIL)) (-4186 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1061 (-1149)) |#1|) NIL) (($ $ (-625 (-1061 (-1149))) (-625 |#1|)) NIL) (($ $ (-1061 (-1149)) $) NIL) (($ $ (-625 (-1061 (-1149))) (-625 $)) NIL) (($ $ (-1149) $) NIL (|has| |#1| (-229))) (($ $ (-625 (-1149)) (-625 $)) NIL (|has| |#1| (-229))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-229))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-229)))) (-3217 (($ $ (-1061 (-1149))) NIL (|has| |#1| (-170)))) (-3072 (($ $ (-1061 (-1149))) NIL) (($ $ (-625 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-625 (-1061 (-1149))) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3177 (((-625 (-1149)) $) NIL)) (-4276 (((-524 (-1061 (-1149))) $) NIL) (((-751) $ (-1061 (-1149))) NIL) (((-625 (-751)) $ (-625 (-1061 (-1149)))) NIL) (((-751) $ (-1149)) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1061 (-1149))) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1061 (-1149))) NIL) (($ (-1149)) NIL) (($ (-1098 |#1| (-1149))) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-524 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-625 (-1061 (-1149))) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1061 (-1149))) NIL) (($ $ (-625 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-625 (-1061 (-1149))) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-1060 |#1|) (-13 (-248 |#1| (-1149) (-1061 (-1149)) (-524 (-1061 (-1149)))) (-1014 (-1098 |#1| (-1149)))) (-1025)) (T -1060))
NIL
(-13 (-248 |#1| (-1149) (-1061 (-1149)) (-524 (-1061 (-1149)))) (-1014 (-1098 |#1| (-1149))))
-((-2898 (((-112) $ $) NIL)) (-1577 (((-751) $) NIL)) (-4191 ((|#1| $) 10)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-4131 (((-751) $) 11)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-1578 (($ |#1| (-751)) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4170 (($ $) NIL) (($ $ (-751)) NIL)) (-4317 (((-840) $) NIL) (($ |#1|) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 15)))
+((-1671 (((-112) $ $) NIL)) (-3469 (((-751) $) NIL)) (-2195 ((|#1| $) 10)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2172 (((-751) $) 11)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-3479 (($ |#1| (-751)) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3072 (($ $) NIL) (($ $ (-751)) NIL)) (-1683 (((-839) $) NIL) (($ |#1|) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 15)))
(((-1061 |#1|) (-261 |#1|) (-827)) (T -1061))
NIL
(-261 |#1|)
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4096 (($ |#1| |#1|) 15)) (-4318 (((-622 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-825)))) (-3580 ((|#1| $) 10)) (-3582 ((|#1| $) 9)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3578 (((-538) $) 14)) (-3579 ((|#1| $) 12)) (-3581 ((|#1| $) 11)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4323 (((-622 |#1|) $) 36 (|has| |#1| (-825))) (((-622 |#1|) (-622 $)) 35 (|has| |#1| (-825)))) (-4330 (($ |#1|) 26)) (-4317 (((-840) $) 25 (|has| |#1| (-1074)))) (-4097 (($ |#1| |#1|) 8)) (-3583 (($ $ (-538)) 16)) (-3387 (((-112) $ $) 19 (|has| |#1| (-1074)))))
-(((-1062 |#1|) (-13 (-1067 |#1|) (-10 -7 (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-622 |#1|))) |%noBranch|))) (-1185)) (T -1062))
-NIL
-(-13 (-1067 |#1|) (-10 -7 (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-622 |#1|))) |%noBranch|)))
-((-4318 (((-622 |#2|) (-1 |#2| |#1|) (-1062 |#1|)) 24 (|has| |#1| (-825))) (((-1062 |#2|) (-1 |#2| |#1|) (-1062 |#1|)) 14)))
-(((-1063 |#1| |#2|) (-10 -7 (-15 -4318 ((-1062 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) (IF (|has| |#1| (-825)) (-15 -4318 ((-622 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) |%noBranch|)) (-1185) (-1185)) (T -1063))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-825)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-622 *6)) (-5 *1 (-1063 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1062 *6)) (-5 *1 (-1063 *5 *6)))))
-(-10 -7 (-15 -4318 ((-1062 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) (IF (|has| |#1| (-825)) (-15 -4318 ((-622 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3576 (((-622 (-1108)) $) 9)) (-3387 (((-112) $ $) NIL)))
-(((-1064) (-13 (-1056) (-10 -8 (-15 -3576 ((-622 (-1108)) $))))) (T -1064))
-((-3576 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1064)))))
-(-13 (-1056) (-10 -8 (-15 -3576 ((-622 (-1108)) $))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4191 (((-1149) $) 11)) (-4096 (((-1062 |#1|) $) 12)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-3577 (($ (-1149) (-1062 |#1|)) 10)) (-4317 (((-840) $) 20 (|has| |#1| (-1074)))) (-3387 (((-112) $ $) 15 (|has| |#1| (-1074)))))
-(((-1065 |#1|) (-13 (-1185) (-10 -8 (-15 -3577 ($ (-1149) (-1062 |#1|))) (-15 -4191 ((-1149) $)) (-15 -4096 ((-1062 |#1|) $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|))) (-1185)) (T -1065))
-((-3577 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1062 *4)) (-4 *4 (-1185)) (-5 *1 (-1065 *4)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1065 *3)) (-4 *3 (-1185)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1062 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-1185)))))
-(-13 (-1185) (-10 -8 (-15 -3577 ($ (-1149) (-1062 |#1|))) (-15 -4191 ((-1149) $)) (-15 -4096 ((-1062 |#1|) $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|)))
-((-4318 (((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)) 19)))
-(((-1066 |#1| |#2|) (-10 -7 (-15 -4318 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)))) (-1185) (-1185)) (T -1066))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1065 *6)) (-5 *1 (-1066 *5 *6)))))
-(-10 -7 (-15 -4318 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|))))
-((-4096 (($ |#1| |#1|) 7)) (-3580 ((|#1| $) 10)) (-3582 ((|#1| $) 12)) (-3578 (((-538) $) 8)) (-3579 ((|#1| $) 9)) (-3581 ((|#1| $) 11)) (-4330 (($ |#1|) 6)) (-4097 (($ |#1| |#1|) 14)) (-3583 (($ $ (-538)) 13)))
-(((-1067 |#1|) (-138) (-1185)) (T -1067))
-((-4097 (*1 *1 *2 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1067 *3)) (-4 *3 (-1185)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1185)) (-5 *2 (-538)))) (-4096 (*1 *1 *2 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))))
-(-13 (-1185) (-10 -8 (-15 -4097 ($ |t#1| |t#1|)) (-15 -3583 ($ $ (-538))) (-15 -3582 (|t#1| $)) (-15 -3581 (|t#1| $)) (-15 -3580 (|t#1| $)) (-15 -3579 (|t#1| $)) (-15 -3578 ((-538) $)) (-15 -4096 ($ |t#1| |t#1|)) (-15 -4330 ($ |t#1|))))
-(((-1185) . T))
-((-4096 (($ |#1| |#1|) 7)) (-4318 ((|#2| (-1 |#1| |#1|) $) 16)) (-3580 ((|#1| $) 10)) (-3582 ((|#1| $) 12)) (-3578 (((-538) $) 8)) (-3579 ((|#1| $) 9)) (-3581 ((|#1| $) 11)) (-4323 ((|#2| (-622 $)) 18) ((|#2| $) 17)) (-4330 (($ |#1|) 6)) (-4097 (($ |#1| |#1|) 14)) (-3583 (($ $ (-538)) 13)))
+((-1996 (((-625 |#2|) (-1 |#2| |#1|) (-1067 |#1|)) 24 (|has| |#1| (-825))) (((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|)) 14)))
+(((-1062 |#1| |#2|) (-10 -7 (-15 -1996 ((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) (IF (|has| |#1| (-825)) (-15 -1996 ((-625 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) |%noBranch|)) (-1186) (-1186)) (T -1062))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-825)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-625 *6)) (-5 *1 (-1062 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1067 *6)) (-5 *1 (-1062 *5 *6)))))
+(-10 -7 (-15 -1996 ((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) (IF (|has| |#1| (-825)) (-15 -1996 ((-625 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) |%noBranch|))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2791 (((-625 (-1108)) $) 9)) (-2281 (((-112) $ $) NIL)))
+(((-1063) (-13 (-1056) (-10 -8 (-15 -2791 ((-625 (-1108)) $))))) (T -1063))
+((-2791 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1063)))))
+(-13 (-1056) (-10 -8 (-15 -2791 ((-625 (-1108)) $))))
+((-1996 (((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)) 19)))
+(((-1064 |#1| |#2|) (-10 -7 (-15 -1996 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)))) (-1186) (-1186)) (T -1064))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1065 *6)) (-5 *1 (-1064 *5 *6)))))
+(-10 -7 (-15 -1996 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2195 (((-1149) $) 11)) (-2735 (((-1067 |#1|) $) 12)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2438 (($ (-1149) (-1067 |#1|)) 10)) (-1683 (((-839) $) 20 (|has| |#1| (-1073)))) (-2281 (((-112) $ $) 15 (|has| |#1| (-1073)))))
+(((-1065 |#1|) (-13 (-1186) (-10 -8 (-15 -2438 ($ (-1149) (-1067 |#1|))) (-15 -2195 ((-1149) $)) (-15 -2735 ((-1067 |#1|) $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|))) (-1186)) (T -1065))
+((-2438 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1067 *4)) (-4 *4 (-1186)) (-5 *1 (-1065 *4)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1065 *3)) (-4 *3 (-1186)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-1186)))))
+(-13 (-1186) (-10 -8 (-15 -2438 ($ (-1149) (-1067 |#1|))) (-15 -2195 ((-1149) $)) (-15 -2735 ((-1067 |#1|) $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|)))
+((-2735 (($ |#1| |#1|) 7)) (-2811 ((|#1| $) 10)) (-3286 ((|#1| $) 12)) (-3295 (((-552) $) 8)) (-2800 ((|#1| $) 9)) (-3305 ((|#1| $) 11)) (-2042 (($ |#1|) 6)) (-1504 (($ |#1| |#1|) 14)) (-2060 (($ $ (-552)) 13)))
+(((-1066 |#1|) (-138) (-1186)) (T -1066))
+((-1504 (*1 *1 *2 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1066 *3)) (-4 *3 (-1186)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1186)) (-5 *2 (-552)))) (-2735 (*1 *1 *2 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))))
+(-13 (-1186) (-10 -8 (-15 -1504 ($ |t#1| |t#1|)) (-15 -2060 ($ $ (-552))) (-15 -3286 (|t#1| $)) (-15 -3305 (|t#1| $)) (-15 -2811 (|t#1| $)) (-15 -2800 (|t#1| $)) (-15 -3295 ((-552) $)) (-15 -2735 ($ |t#1| |t#1|)) (-15 -2042 ($ |t#1|))))
+(((-1186) . T))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2735 (($ |#1| |#1|) 15)) (-1996 (((-625 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-825)))) (-2811 ((|#1| $) 10)) (-3286 ((|#1| $) 9)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3295 (((-552) $) 14)) (-2800 ((|#1| $) 12)) (-3305 ((|#1| $) 11)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-3455 (((-625 |#1|) $) 36 (|has| |#1| (-825))) (((-625 |#1|) (-625 $)) 35 (|has| |#1| (-825)))) (-2042 (($ |#1|) 26)) (-1683 (((-839) $) 25 (|has| |#1| (-1073)))) (-1504 (($ |#1| |#1|) 8)) (-2060 (($ $ (-552)) 16)) (-2281 (((-112) $ $) 19 (|has| |#1| (-1073)))))
+(((-1067 |#1|) (-13 (-1066 |#1|) (-10 -7 (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-625 |#1|))) |%noBranch|))) (-1186)) (T -1067))
+NIL
+(-13 (-1066 |#1|) (-10 -7 (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-625 |#1|))) |%noBranch|)))
+((-2735 (($ |#1| |#1|) 7)) (-1996 ((|#2| (-1 |#1| |#1|) $) 16)) (-2811 ((|#1| $) 10)) (-3286 ((|#1| $) 12)) (-3295 (((-552) $) 8)) (-2800 ((|#1| $) 9)) (-3305 ((|#1| $) 11)) (-3455 ((|#2| (-625 $)) 18) ((|#2| $) 17)) (-2042 (($ |#1|) 6)) (-1504 (($ |#1| |#1|) 14)) (-2060 (($ $ (-552)) 13)))
(((-1068 |#1| |#2|) (-138) (-825) (-1122 |t#1|)) (T -1068))
-((-4323 (*1 *2 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1122 *4)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1122 *3)))) (-4318 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1122 *4)))))
-(-13 (-1067 |t#1|) (-10 -8 (-15 -4323 (|t#2| (-622 $))) (-15 -4323 (|t#2| $)) (-15 -4318 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-1067 |#1|) . T) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-4157 (((-1108) $) 12)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-622 (-1108)) $) 10)) (-3387 (((-112) $ $) NIL)))
-(((-1069) (-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $)) (-15 -4157 ((-1108) $))))) (T -1069))
-((-3584 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1069)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1069)))))
-(-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $)) (-15 -4157 ((-1108) $))))
-((-2898 (((-112) $ $) NIL)) (-1921 (($) NIL (|has| |#1| (-363)))) (-3585 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3587 (($ $ $) 72)) (-3586 (((-112) $ $) 73)) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3590 (($ (-622 |#1|)) NIL) (($) 13)) (-1631 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) 67 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4353)))) (-3327 (($) NIL (|has| |#1| (-363)))) (-2068 (((-622 |#1|) $) 19 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3677 ((|#1| $) 57 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3678 ((|#1| $) 55 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 34)) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3589 (($ $ $) 70)) (-1333 ((|#1| $) 25)) (-3970 (($ |#1| $) 65)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-3594 (((-1093) $) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1334 ((|#1| $) 27)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 21)) (-3928 (($) 11)) (-3588 (($ $ |#1|) NIL) (($ $ $) 71)) (-1523 (($) NIL) (($ (-622 |#1|)) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 16)) (-4330 (((-527) $) 52 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 61)) (-1922 (($ $) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) NIL)) (-1923 (((-751) $) NIL)) (-3591 (($ (-622 |#1|)) NIL) (($) 12)) (-1335 (($ (-622 |#1|)) NIL)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 54)) (-4316 (((-751) $) 10 (|has| $ (-6 -4353)))))
-(((-1070 |#1|) (-421 |#1|) (-1074)) (T -1070))
-NIL
-(-421 |#1|)
-((-3585 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3587 (($ $ $) 10)) (-3588 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1071 |#1| |#2|) (-10 -8 (-15 -3585 (|#1| |#2| |#1|)) (-15 -3585 (|#1| |#1| |#2|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#2|)) (-15 -3588 (|#1| |#1| |#1|))) (-1072 |#2|) (-1074)) (T -1071))
-NIL
-(-10 -8 (-15 -3585 (|#1| |#2| |#1|)) (-15 -3585 (|#1| |#1| |#2|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#2|)) (-15 -3588 (|#1| |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3585 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3587 (($ $ $) 20)) (-3586 (((-112) $ $) 19)) (-1271 (((-112) $ (-751)) 35)) (-3590 (($) 25) (($ (-622 |#1|)) 24)) (-4073 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4353)))) (-3896 (($) 36 T CONST)) (-1398 (($ $) 59 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 43 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) 28)) (-4082 (((-112) $ (-751)) 34)) (-2511 (((-622 |#1|) $) 44 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 38)) (-4079 (((-112) $ (-751)) 33)) (-3593 (((-1131) $) 9)) (-3589 (($ $ $) 23)) (-3594 (((-1093) $) 10)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2070 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) 50 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 48 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 (-288 |#1|))) 47 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 29)) (-3762 (((-112) $) 32)) (-3928 (($) 31)) (-3588 (($ $ $) 22) (($ $ |#1|) 21)) (-2069 (((-751) |#1| $) 45 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4353)))) (-3759 (($ $) 30)) (-4330 (((-527) $) 60 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 51)) (-4317 (((-840) $) 11)) (-3591 (($) 27) (($ (-622 |#1|)) 26)) (-2071 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 37 (|has| $ (-6 -4353)))))
-(((-1072 |#1|) (-138) (-1074)) (T -1072))
-((-3592 (*1 *2 *1 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3591 (*1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-1072 *3)))) (-3590 (*1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-1072 *3)))) (-3589 (*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3588 (*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3588 (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3587 (*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3586 (*1 *2 *1 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3585 (*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3585 (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3585 (*1 *1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))))
-(-13 (-1074) (-149 |t#1|) (-10 -8 (-6 -4343) (-15 -3592 ((-112) $ $)) (-15 -3591 ($)) (-15 -3591 ($ (-622 |t#1|))) (-15 -3590 ($)) (-15 -3590 ($ (-622 |t#1|))) (-15 -3589 ($ $ $)) (-15 -3588 ($ $ $)) (-15 -3588 ($ $ |t#1|)) (-15 -3587 ($ $ $)) (-15 -3586 ((-112) $ $)) (-15 -3585 ($ $ $)) (-15 -3585 ($ $ |t#1|)) (-15 -3585 ($ |t#1| $))))
-(((-34) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) . T) ((-1185) . T))
-((-3593 (((-1131) $) 10)) (-3594 (((-1093) $) 8)))
-(((-1073 |#1|) (-10 -8 (-15 -3593 ((-1131) |#1|)) (-15 -3594 ((-1093) |#1|))) (-1074)) (T -1073))
-NIL
-(-10 -8 (-15 -3593 ((-1131) |#1|)) (-15 -3594 ((-1093) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)))
-(((-1074) (-138)) (T -1074))
-((-3594 (*1 *2 *1) (-12 (-4 *1 (-1074)) (-5 *2 (-1093)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1074)) (-5 *2 (-1131)))))
-(-13 (-101) (-597 (-840)) (-10 -8 (-15 -3594 ((-1093) $)) (-15 -3593 ((-1131) $))))
-(((-101) . T) ((-597 (-840)) . T))
-((-2898 (((-112) $ $) NIL)) (-3471 (((-751)) 30)) (-3598 (($ (-622 (-895))) 52)) (-3600 (((-3 $ #1="failed") $ (-895) (-895)) 58)) (-3327 (($) 32)) (-3596 (((-112) (-895) $) 35)) (-2126 (((-895) $) 50)) (-3593 (((-1131) $) NIL)) (-2492 (($ (-895)) 31)) (-3601 (((-3 $ #1#) $ (-895)) 55)) (-3594 (((-1093) $) NIL)) (-3597 (((-1231 $)) 40)) (-3599 (((-622 (-895)) $) 24)) (-3595 (((-751) $ (-895) (-895)) 56)) (-4317 (((-840) $) 29)) (-3387 (((-112) $ $) 21)))
-(((-1075 |#1| |#2|) (-13 (-363) (-10 -8 (-15 -3601 ((-3 $ #1="failed") $ (-895))) (-15 -3600 ((-3 $ #1#) $ (-895) (-895))) (-15 -3599 ((-622 (-895)) $)) (-15 -3598 ($ (-622 (-895)))) (-15 -3597 ((-1231 $))) (-15 -3596 ((-112) (-895) $)) (-15 -3595 ((-751) $ (-895) (-895))))) (-895) (-895)) (T -1075))
-((-3601 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1075 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3600 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1075 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-3598 (*1 *1 *2) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-3597 (*1 *2) (-12 (-5 *2 (-1231 (-1075 *3 *4))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-3596 (*1 *2 *3 *1) (-12 (-5 *3 (-895)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-751)) (-5 *1 (-1075 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-363) (-10 -8 (-15 -3601 ((-3 $ #1="failed") $ (-895))) (-15 -3600 ((-3 $ #1#) $ (-895) (-895))) (-15 -3599 ((-622 (-895)) $)) (-15 -3598 ($ (-622 (-895)))) (-15 -3597 ((-1231 $))) (-15 -3596 ((-112) (-895) $)) (-15 -3595 ((-751) $ (-895) (-895)))))
-((-2898 (((-112) $ $) NIL)) (-3611 (((-112) $) NIL)) (-3607 (((-1149) $) NIL)) (-3612 (((-112) $) NIL)) (-3898 (((-1131) $) NIL)) (-3614 (((-112) $) NIL)) (-3616 (((-112) $) NIL)) (-3613 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-3610 (((-112) $) NIL)) (-3606 (((-538) $) NIL)) (-3594 (((-1093) $) NIL)) (-3609 (((-112) $) NIL)) (-3605 (((-221) $) NIL)) (-3604 (((-840) $) NIL)) (-3617 (((-112) $ $) NIL)) (-4159 (($ $ (-538)) NIL) (($ $ (-622 (-538))) NIL)) (-3608 (((-622 $) $) NIL)) (-4330 (($ (-622 $)) NIL) (($ (-1131)) NIL) (($ (-1149)) NIL) (($ (-538)) NIL) (($ (-221)) NIL) (($ (-840)) NIL)) (-4317 (((-840) $) NIL)) (-3602 (($ $) NIL)) (-3603 (($ $) NIL)) (-3615 (((-112) $) NIL)) (-3387 (((-112) $ $) NIL)) (-4316 (((-538) $) NIL)))
-(((-1076) (-1077 (-1131) (-1149) (-538) (-221) (-840))) (T -1076))
-NIL
-(-1077 (-1131) (-1149) (-538) (-221) (-840))
-((-2898 (((-112) $ $) 7)) (-3611 (((-112) $) 32)) (-3607 ((|#2| $) 27)) (-3612 (((-112) $) 33)) (-3898 ((|#1| $) 28)) (-3614 (((-112) $) 35)) (-3616 (((-112) $) 37)) (-3613 (((-112) $) 34)) (-3593 (((-1131) $) 9)) (-3610 (((-112) $) 31)) (-3606 ((|#3| $) 26)) (-3594 (((-1093) $) 10)) (-3609 (((-112) $) 30)) (-3605 ((|#4| $) 25)) (-3604 ((|#5| $) 24)) (-3617 (((-112) $ $) 38)) (-4159 (($ $ (-538)) 14) (($ $ (-622 (-538))) 13)) (-3608 (((-622 $) $) 29)) (-4330 (($ (-622 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4317 (((-840) $) 11)) (-3602 (($ $) 16)) (-3603 (($ $) 17)) (-3615 (((-112) $) 36)) (-3387 (((-112) $ $) 6)) (-4316 (((-538) $) 15)))
-(((-1077 |#1| |#2| |#3| |#4| |#5|) (-138) (-1074) (-1074) (-1074) (-1074) (-1074)) (T -1077))
-((-3617 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3608 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-622 *1)) (-4 *1 (-1077 *3 *4 *5 *6 *7)))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *2 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *2 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *2 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *2)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1077 *3 *2 *4 *5 *6)) (-4 *3 (-1074)) (-4 *2 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *2 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *5 *2 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *2 (-1074)) (-4 *6 (-1074)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *2)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-3603 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) (-3602 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-538)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)))))
-(-13 (-1074) (-10 -8 (-15 -3617 ((-112) $ $)) (-15 -3616 ((-112) $)) (-15 -3615 ((-112) $)) (-15 -3614 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -3612 ((-112) $)) (-15 -3611 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -3609 ((-112) $)) (-15 -3608 ((-622 $) $)) (-15 -3898 (|t#1| $)) (-15 -3607 (|t#2| $)) (-15 -3606 (|t#3| $)) (-15 -3605 (|t#4| $)) (-15 -3604 (|t#5| $)) (-15 -4330 ($ (-622 $))) (-15 -4330 ($ |t#1|)) (-15 -4330 ($ |t#2|)) (-15 -4330 ($ |t#3|)) (-15 -4330 ($ |t#4|)) (-15 -4330 ($ |t#5|)) (-15 -3603 ($ $)) (-15 -3602 ($ $)) (-15 -4316 ((-538) $)) (-15 -4159 ($ $ (-538))) (-15 -4159 ($ $ (-622 (-538))))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3611 (((-112) $) 38)) (-3607 ((|#2| $) 42)) (-3612 (((-112) $) 37)) (-3898 ((|#1| $) 41)) (-3614 (((-112) $) 35)) (-3616 (((-112) $) 14)) (-3613 (((-112) $) 36)) (-3593 (((-1131) $) NIL)) (-3610 (((-112) $) 39)) (-3606 ((|#3| $) 44)) (-3594 (((-1093) $) NIL)) (-3609 (((-112) $) 40)) (-3605 ((|#4| $) 43)) (-3604 ((|#5| $) 45)) (-3617 (((-112) $ $) 34)) (-4159 (($ $ (-538)) 56) (($ $ (-622 (-538))) 58)) (-3608 (((-622 $) $) 22)) (-4330 (($ (-622 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4317 (((-840) $) 23)) (-3602 (($ $) 21)) (-3603 (($ $) 52)) (-3615 (((-112) $) 18)) (-3387 (((-112) $ $) 33)) (-4316 (((-538) $) 54)))
-(((-1078 |#1| |#2| |#3| |#4| |#5|) (-1077 |#1| |#2| |#3| |#4| |#5|) (-1074) (-1074) (-1074) (-1074) (-1074)) (T -1078))
-NIL
-(-1077 |#1| |#2| |#3| |#4| |#5|)
-((-3739 (((-1237) $) 23)) (-3618 (($ (-1149) (-429) |#2|) 11)) (-4317 (((-840) $) 16)))
-(((-1079 |#1| |#2|) (-13 (-391) (-10 -8 (-15 -3618 ($ (-1149) (-429) |#2|)))) (-827) (-416 |#1|)) (T -1079))
-((-3618 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-429)) (-4 *5 (-827)) (-5 *1 (-1079 *5 *4)) (-4 *4 (-416 *5)))))
-(-13 (-391) (-10 -8 (-15 -3618 ($ (-1149) (-429) |#2|))))
-((-3621 (((-112) |#5| |#5|) 38)) (-3624 (((-112) |#5| |#5|) 52)) (-3629 (((-112) |#5| (-622 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3625 (((-112) (-622 |#4|) (-622 |#4|)) 58)) (-3631 (((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) 63)) (-3620 (((-1237)) 33)) (-3619 (((-1237) (-1131) (-1131) (-1131)) 29)) (-3630 (((-622 |#5|) (-622 |#5|)) 82)) (-3632 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) 80)) (-3633 (((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112)) 102)) (-3623 (((-112) |#5| |#5|) 47)) (-3628 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3626 (((-112) (-622 |#4|) (-622 |#4|)) 57)) (-3627 (((-112) (-622 |#4|) (-622 |#4|)) 59)) (-4062 (((-112) (-622 |#4|) (-622 |#4|)) 60)) (-3634 (((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3622 (((-622 |#5|) (-622 |#5|)) 43)))
-(((-1080 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3619 ((-1237) (-1131) (-1131) (-1131))) (-15 -3620 ((-1237))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3622 ((-622 |#5|) (-622 |#5|))) (-15 -3623 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3625 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3626 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3627 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -4062 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3628 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3629 ((-112) |#5| |#5|)) (-15 -3629 ((-112) |#5| (-622 |#5|))) (-15 -3630 ((-622 |#5|) (-622 |#5|))) (-15 -3631 ((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3632 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-15 -3633 ((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3634 ((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1080))
-((-3634 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *4) (|:| |ineq| (-622 *9)))) (-5 *1 (-1080 *6 *7 *8 *9 *4)) (-5 *3 (-622 *9)) (-4 *4 (-1045 *6 *7 *8 *9)))) (-3633 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-622 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *10) (|:| |ineq| (-622 *9))))) (-5 *1 (-1080 *6 *7 *8 *9 *10)) (-5 *3 (-622 *9)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-622 (-2 (|:| |val| (-622 *6)) (|:| -1660 *7)))) (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3631 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1080 *5 *6 *7 *8 *3)))) (-3629 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3628 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-4062 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3627 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3626 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3623 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3620 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3619 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3619 ((-1237) (-1131) (-1131) (-1131))) (-15 -3620 ((-1237))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3622 ((-622 |#5|) (-622 |#5|))) (-15 -3623 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3625 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3626 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3627 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -4062 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3628 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3629 ((-112) |#5| |#5|)) (-15 -3629 ((-112) |#5| (-622 |#5|))) (-15 -3630 ((-622 |#5|) (-622 |#5|))) (-15 -3631 ((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3632 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-15 -3633 ((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3634 ((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3649 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|) 96)) (-3639 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|) 72)) (-3642 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|) 91)) (-3644 (((-622 |#5|) |#4| |#5|) 110)) (-3646 (((-622 |#5|) |#4| |#5|) 117)) (-3648 (((-622 |#5|) |#4| |#5|) 118)) (-3643 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|) 97)) (-3645 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|) 116)) (-3647 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3640 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112)) 84) (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3641 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|) 79)) (-3638 (((-1237)) 37)) (-3636 (((-1237)) 26)) (-3637 (((-1237) (-1131) (-1131) (-1131)) 33)) (-3635 (((-1237) (-1131) (-1131) (-1131)) 22)))
-(((-1081 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3635 ((-1237) (-1131) (-1131) (-1131))) (-15 -3636 ((-1237))) (-15 -3637 ((-1237) (-1131) (-1131) (-1131))) (-15 -3638 ((-1237))) (-15 -3639 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3640 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3640 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112))) (-15 -3641 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3642 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3647 ((-112) |#4| |#5|)) (-15 -3643 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3644 ((-622 |#5|) |#4| |#5|)) (-15 -3645 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3646 ((-622 |#5|) |#4| |#5|)) (-15 -3647 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3648 ((-622 |#5|) |#4| |#5|)) (-15 -3649 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1081))
-((-3649 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3648 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3647 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3646 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3645 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3644 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3643 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3647 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3642 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3641 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3640 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827)) (-5 *2 (-622 (-2 (|:| |val| *8) (|:| -1660 *9)))) (-5 *1 (-1081 *6 *7 *4 *8 *9)))) (-3640 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3639 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3638 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3637 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3636 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3635 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3635 ((-1237) (-1131) (-1131) (-1131))) (-15 -3636 ((-1237))) (-15 -3637 ((-1237) (-1131) (-1131) (-1131))) (-15 -3638 ((-1237))) (-15 -3639 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3640 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3640 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112))) (-15 -3641 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3642 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3647 ((-112) |#4| |#5|)) (-15 -3643 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3644 ((-622 |#5|) |#4| |#5|)) (-15 -3645 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3646 ((-622 |#5|) |#4| |#5|)) (-15 -3647 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3648 ((-622 |#5|) |#4| |#5|)) (-15 -3649 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|)))
-((-2898 (((-112) $ $) 7)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) 85)) (-4045 (((-622 $) (-622 |#4|)) 86) (((-622 $) (-622 |#4|) (-112)) 111)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) 101) (((-112) $) 97)) (-4051 ((|#4| |#4| $) 92)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 126)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-4158 (((-3 $ #1#) $) 82)) (-4048 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4046 ((|#4| |#4| $) 87)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) 105)) (-3548 (((-112) |#4| $) 136)) (-3546 (((-112) |#4| $) 133)) (-3549 (((-112) |#4| $) 137) (((-112) $) 134)) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) 104) (((-112) $) 103)) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) 128)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 127)) (-4157 (((-3 |#4| #1#) $) 83)) (-3543 (((-622 $) |#4| $) 129)) (-3545 (((-3 (-112) (-622 $)) |#4| $) 132)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3589 (((-622 $) |#4| $) 125) (((-622 $) (-622 |#4|) $) 124) (((-622 $) (-622 |#4|) (-622 $)) 123) (((-622 $) |#4| (-622 $)) 122)) (-3799 (($ |#4| $) 117) (($ (-622 |#4|) $) 116)) (-4060 (((-622 |#4|) $) 107)) (-4054 (((-112) |#4| $) 99) (((-112) $) 95)) (-4049 ((|#4| |#4| $) 90)) (-4062 (((-112) $ $) 110)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) 100) (((-112) $) 96)) (-4050 ((|#4| |#4| $) 91)) (-3594 (((-1093) $) 10)) (-4160 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4042 (((-3 $ #1#) $ |#4|) 78)) (-4128 (($ $ |#4|) 77) (((-622 $) |#4| $) 115) (((-622 $) |#4| (-622 $)) 114) (((-622 $) (-622 |#4|) $) 113) (((-622 $) (-622 |#4|) (-622 $)) 112)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-4307 (((-751) $) 106)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-4047 (($ $) 88)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-4041 (((-751) $) 76 (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) 98)) (-3540 (((-622 $) |#4| $) 121) (((-622 $) |#4| (-622 $)) 120) (((-622 $) (-622 |#4|) $) 119) (((-622 $) (-622 |#4|) (-622 $)) 118)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) 81)) (-3547 (((-112) |#4| $) 135)) (-4293 (((-112) |#3| $) 80)) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353)))))
+((-3455 (*1 *2 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1122 *4)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1122 *3)))) (-1996 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1122 *4)))))
+(-13 (-1066 |t#1|) (-10 -8 (-15 -3455 (|t#2| (-625 $))) (-15 -3455 (|t#2| $)) (-15 -1996 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-1066 |#1|) . T) ((-1186) . T))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-1437 (((-1108) $) 12)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-625 (-1108)) $) 10)) (-2281 (((-112) $ $) NIL)))
+(((-1069) (-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $)) (-15 -1437 ((-1108) $))))) (T -1069))
+((-1300 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1069)))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1069)))))
+(-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $)) (-15 -1437 ((-1108) $))))
+((-3419 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2837 (($ $ $) 10)) (-2849 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1070 |#1| |#2|) (-10 -8 (-15 -3419 (|#1| |#2| |#1|)) (-15 -3419 (|#1| |#1| |#2|)) (-15 -3419 (|#1| |#1| |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2849 (|#1| |#1| |#1|))) (-1071 |#2|) (-1073)) (T -1070))
+NIL
+(-10 -8 (-15 -3419 (|#1| |#2| |#1|)) (-15 -3419 (|#1| |#1| |#2|)) (-15 -3419 (|#1| |#1| |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2849 (|#1| |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3419 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2837 (($ $ $) 20)) (-2823 (((-112) $ $) 19)) (-3495 (((-112) $ (-751)) 35)) (-1517 (($) 25) (($ (-625 |#1|)) 24)) (-3488 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4353)))) (-3101 (($) 36 T CONST)) (-2959 (($ $) 59 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 43 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) 28)) (-2909 (((-112) $ (-751)) 34)) (-3730 (((-625 |#1|) $) 44 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 38)) (-2878 (((-112) $ (-751)) 33)) (-2883 (((-1131) $) 9)) (-2860 (($ $ $) 23)) (-2831 (((-1093) $) 10)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1888 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) 50 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 48 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 (-289 |#1|))) 47 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 29)) (-1916 (((-112) $) 32)) (-3600 (($) 31)) (-2849 (($ $ $) 22) (($ $ |#1|) 21)) (-2840 (((-751) |#1| $) 45 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4353)))) (-1871 (($ $) 30)) (-2042 (((-528) $) 60 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 51)) (-1683 (((-839) $) 11)) (-3761 (($) 27) (($ (-625 |#1|)) 26)) (-1900 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 37 (|has| $ (-6 -4353)))))
+(((-1071 |#1|) (-138) (-1073)) (T -1071))
+((-2871 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))) (-3761 (*1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-3761 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-1071 *3)))) (-1517 (*1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-1071 *3)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-2849 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-2849 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-2837 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-2823 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))) (-3419 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-3419 (*1 *1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))))
+(-13 (-1073) (-149 |t#1|) (-10 -8 (-6 -4343) (-15 -2871 ((-112) $ $)) (-15 -3761 ($)) (-15 -3761 ($ (-625 |t#1|))) (-15 -1517 ($)) (-15 -1517 ($ (-625 |t#1|))) (-15 -2860 ($ $ $)) (-15 -2849 ($ $ $)) (-15 -2849 ($ $ |t#1|)) (-15 -2837 ($ $ $)) (-15 -2823 ((-112) $ $)) (-15 -3419 ($ $ $)) (-15 -3419 ($ $ |t#1|)) (-15 -3419 ($ |t#1| $))))
+(((-34) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) . T) ((-1186) . T))
+((-2883 (((-1131) $) 10)) (-2831 (((-1093) $) 8)))
+(((-1072 |#1|) (-10 -8 (-15 -2883 ((-1131) |#1|)) (-15 -2831 ((-1093) |#1|))) (-1073)) (T -1072))
+NIL
+(-10 -8 (-15 -2883 ((-1131) |#1|)) (-15 -2831 ((-1093) |#1|)))
+((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)))
+(((-1073) (-138)) (T -1073))
+((-2831 (*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-1093)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-1131)))))
+(-13 (-101) (-597 (-839)) (-10 -8 (-15 -2831 ((-1093) $)) (-15 -2883 ((-1131) $))))
+(((-101) . T) ((-597 (-839)) . T))
+((-1671 (((-112) $ $) NIL)) (-2894 (((-751)) 30)) (-2913 (($ (-625 (-897))) 52)) (-2935 (((-3 $ "failed") $ (-897) (-897)) 58)) (-3702 (($) 32)) (-2893 (((-112) (-897) $) 35)) (-4318 (((-897) $) 50)) (-2883 (((-1131) $) NIL)) (-3123 (($ (-897)) 31)) (-2945 (((-3 $ "failed") $ (-897)) 55)) (-2831 (((-1093) $) NIL)) (-2903 (((-1232 $)) 40)) (-2923 (((-625 (-897)) $) 24)) (-4057 (((-751) $ (-897) (-897)) 56)) (-1683 (((-839) $) 29)) (-2281 (((-112) $ $) 21)))
+(((-1074 |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2945 ((-3 $ "failed") $ (-897))) (-15 -2935 ((-3 $ "failed") $ (-897) (-897))) (-15 -2923 ((-625 (-897)) $)) (-15 -2913 ($ (-625 (-897)))) (-15 -2903 ((-1232 $))) (-15 -2893 ((-112) (-897) $)) (-15 -4057 ((-751) $ (-897) (-897))))) (-897) (-897)) (T -1074))
+((-2945 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-897)) (-5 *1 (-1074 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2935 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-897)) (-5 *1 (-1074 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) (-2903 (*1 *2) (-12 (-5 *2 (-1232 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) (-2893 (*1 *2 *3 *1) (-12 (-5 *3 (-897)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-4057 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-751)) (-5 *1 (-1074 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-363) (-10 -8 (-15 -2945 ((-3 $ "failed") $ (-897))) (-15 -2935 ((-3 $ "failed") $ (-897) (-897))) (-15 -2923 ((-625 (-897)) $)) (-15 -2913 ($ (-625 (-897)))) (-15 -2903 ((-1232 $))) (-15 -2893 ((-112) (-897) $)) (-15 -4057 ((-751) $ (-897) (-897)))))
+((-1671 (((-112) $ $) NIL)) (-2740 (($) NIL (|has| |#1| (-363)))) (-3419 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2837 (($ $ $) 72)) (-2823 (((-112) $ $) 73)) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-1517 (($ (-625 |#1|)) NIL) (($) 13)) (-2873 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) 67 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4353)))) (-3702 (($) NIL (|has| |#1| (-363)))) (-3799 (((-625 |#1|) $) 19 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-3658 ((|#1| $) 57 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3332 ((|#1| $) 55 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 34)) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2860 (($ $ $) 70)) (-2953 ((|#1| $) 25)) (-3966 (($ |#1| $) 65)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-2831 (((-1093) $) NIL)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2966 ((|#1| $) 27)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 21)) (-3600 (($) 11)) (-2849 (($ $ |#1|) NIL) (($ $ $) 71)) (-4255 (($) NIL) (($ (-625 |#1|)) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 16)) (-2042 (((-528) $) 52 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 61)) (-2749 (($ $) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) NIL)) (-2758 (((-751) $) NIL)) (-3761 (($ (-625 |#1|)) NIL) (($) 12)) (-2977 (($ (-625 |#1|)) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 54)) (-1471 (((-751) $) 10 (|has| $ (-6 -4353)))))
+(((-1075 |#1|) (-420 |#1|) (-1073)) (T -1075))
+NIL
+(-420 |#1|)
+((-1671 (((-112) $ $) 7)) (-2981 (((-112) $) 32)) (-3621 ((|#2| $) 27)) (-2993 (((-112) $) 33)) (-4265 ((|#1| $) 28)) (-3016 (((-112) $) 35)) (-3039 (((-112) $) 37)) (-3004 (((-112) $) 34)) (-2883 (((-1131) $) 9)) (-2970 (((-112) $) 31)) (-3642 ((|#3| $) 26)) (-2831 (((-1093) $) 10)) (-2958 (((-112) $) 30)) (-2189 ((|#4| $) 25)) (-2149 ((|#5| $) 24)) (-2772 (((-112) $ $) 38)) (-2154 (($ $ (-552)) 14) (($ $ (-625 (-552))) 13)) (-3905 (((-625 $) $) 29)) (-2042 (($ (-625 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1683 (((-839) $) 11)) (-2825 (($ $) 16)) (-2812 (($ $) 17)) (-3028 (((-112) $) 36)) (-2281 (((-112) $ $) 6)) (-1471 (((-552) $) 15)))
+(((-1076 |#1| |#2| |#3| |#4| |#5|) (-138) (-1073) (-1073) (-1073) (-1073) (-1073)) (T -1076))
+((-2772 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-3905 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-625 *1)) (-4 *1 (-1076 *3 *4 *5 *6 *7)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-3621 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *2 *4 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *2 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *2 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *2)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1076 *3 *2 *4 *5 *6)) (-4 *3 (-1073)) (-4 *2 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *2 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *5 *2 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *2 (-1073)) (-4 *6 (-1073)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *2)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-2812 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) (-2825 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-552)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)))))
+(-13 (-1073) (-10 -8 (-15 -2772 ((-112) $ $)) (-15 -3039 ((-112) $)) (-15 -3028 ((-112) $)) (-15 -3016 ((-112) $)) (-15 -3004 ((-112) $)) (-15 -2993 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -2970 ((-112) $)) (-15 -2958 ((-112) $)) (-15 -3905 ((-625 $) $)) (-15 -4265 (|t#1| $)) (-15 -3621 (|t#2| $)) (-15 -3642 (|t#3| $)) (-15 -2189 (|t#4| $)) (-15 -2149 (|t#5| $)) (-15 -2042 ($ (-625 $))) (-15 -2042 ($ |t#1|)) (-15 -2042 ($ |t#2|)) (-15 -2042 ($ |t#3|)) (-15 -2042 ($ |t#4|)) (-15 -2042 ($ |t#5|)) (-15 -2812 ($ $)) (-15 -2825 ($ $)) (-15 -1471 ((-552) $)) (-15 -2154 ($ $ (-552))) (-15 -2154 ($ $ (-625 (-552))))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-2981 (((-112) $) NIL)) (-3621 (((-1149) $) NIL)) (-2993 (((-112) $) NIL)) (-4265 (((-1131) $) NIL)) (-3016 (((-112) $) NIL)) (-3039 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-2970 (((-112) $) NIL)) (-3642 (((-552) $) NIL)) (-2831 (((-1093) $) NIL)) (-2958 (((-112) $) NIL)) (-2189 (((-221) $) NIL)) (-2149 (((-839) $) NIL)) (-2772 (((-112) $ $) NIL)) (-2154 (($ $ (-552)) NIL) (($ $ (-625 (-552))) NIL)) (-3905 (((-625 $) $) NIL)) (-2042 (($ (-625 $)) NIL) (($ (-1131)) NIL) (($ (-1149)) NIL) (($ (-552)) NIL) (($ (-221)) NIL) (($ (-839)) NIL)) (-1683 (((-839) $) NIL)) (-2825 (($ $) NIL)) (-2812 (($ $) NIL)) (-3028 (((-112) $) NIL)) (-2281 (((-112) $ $) NIL)) (-1471 (((-552) $) NIL)))
+(((-1077) (-1076 (-1131) (-1149) (-552) (-221) (-839))) (T -1077))
+NIL
+(-1076 (-1131) (-1149) (-552) (-221) (-839))
+((-1671 (((-112) $ $) NIL)) (-2981 (((-112) $) 38)) (-3621 ((|#2| $) 42)) (-2993 (((-112) $) 37)) (-4265 ((|#1| $) 41)) (-3016 (((-112) $) 35)) (-3039 (((-112) $) 14)) (-3004 (((-112) $) 36)) (-2883 (((-1131) $) NIL)) (-2970 (((-112) $) 39)) (-3642 ((|#3| $) 44)) (-2831 (((-1093) $) NIL)) (-2958 (((-112) $) 40)) (-2189 ((|#4| $) 43)) (-2149 ((|#5| $) 45)) (-2772 (((-112) $ $) 34)) (-2154 (($ $ (-552)) 56) (($ $ (-625 (-552))) 58)) (-3905 (((-625 $) $) 22)) (-2042 (($ (-625 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1683 (((-839) $) 23)) (-2825 (($ $) 21)) (-2812 (($ $) 52)) (-3028 (((-112) $) 18)) (-2281 (((-112) $ $) 33)) (-1471 (((-552) $) 54)))
+(((-1078 |#1| |#2| |#3| |#4| |#5|) (-1076 |#1| |#2| |#3| |#4| |#5|) (-1073) (-1073) (-1073) (-1073) (-1073)) (T -1078))
+NIL
+(-1076 |#1| |#2| |#3| |#4| |#5|)
+((-2927 (((-1237) $) 23)) (-2452 (($ (-1149) (-429) |#2|) 11)) (-1683 (((-839) $) 16)))
+(((-1079 |#1| |#2|) (-13 (-390) (-10 -8 (-15 -2452 ($ (-1149) (-429) |#2|)))) (-827) (-425 |#1|)) (T -1079))
+((-2452 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-429)) (-4 *5 (-827)) (-5 *1 (-1079 *5 *4)) (-4 *4 (-425 *5)))))
+(-13 (-390) (-10 -8 (-15 -2452 ($ (-1149) (-429) |#2|))))
+((-3070 (((-112) |#5| |#5|) 38)) (-3095 (((-112) |#5| |#5|) 52)) (-3140 (((-112) |#5| (-625 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3104 (((-112) (-625 |#4|) (-625 |#4|)) 58)) (-3161 (((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) 63)) (-3060 (((-1237)) 33)) (-3049 (((-1237) (-1131) (-1131) (-1131)) 29)) (-3151 (((-625 |#5|) (-625 |#5|)) 82)) (-3168 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) 80)) (-3176 (((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112)) 102)) (-3087 (((-112) |#5| |#5|) 47)) (-3130 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3112 (((-112) (-625 |#4|) (-625 |#4|)) 57)) (-3121 (((-112) (-625 |#4|) (-625 |#4|)) 59)) (-2719 (((-112) (-625 |#4|) (-625 |#4|)) 60)) (-3185 (((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3079 (((-625 |#5|) (-625 |#5|)) 43)))
+(((-1080 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3049 ((-1237) (-1131) (-1131) (-1131))) (-15 -3060 ((-1237))) (-15 -3070 ((-112) |#5| |#5|)) (-15 -3079 ((-625 |#5|) (-625 |#5|))) (-15 -3087 ((-112) |#5| |#5|)) (-15 -3095 ((-112) |#5| |#5|)) (-15 -3104 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3112 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3121 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2719 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3130 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3140 ((-112) |#5| |#5|)) (-15 -3140 ((-112) |#5| (-625 |#5|))) (-15 -3151 ((-625 |#5|) (-625 |#5|))) (-15 -3161 ((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -3168 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-15 -3176 ((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3185 ((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1080))
+((-3185 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| -2772 (-625 *9)) (|:| -3715 *4) (|:| |ineq| (-625 *9)))) (-5 *1 (-1080 *6 *7 *8 *9 *4)) (-5 *3 (-625 *9)) (-4 *4 (-1045 *6 *7 *8 *9)))) (-3176 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-625 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-625 (-2 (|:| -2772 (-625 *9)) (|:| -3715 *10) (|:| |ineq| (-625 *9))))) (-5 *1 (-1080 *6 *7 *8 *9 *10)) (-5 *3 (-625 *9)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-625 (-2 (|:| |val| (-625 *6)) (|:| -3715 *7)))) (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3161 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)))) (-3151 (*1 *2 *2) (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3140 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1080 *5 *6 *7 *8 *3)))) (-3140 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3130 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-2719 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3121 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3112 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3095 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3087 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3070 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3060 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3049 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3049 ((-1237) (-1131) (-1131) (-1131))) (-15 -3060 ((-1237))) (-15 -3070 ((-112) |#5| |#5|)) (-15 -3079 ((-625 |#5|) (-625 |#5|))) (-15 -3087 ((-112) |#5| |#5|)) (-15 -3095 ((-112) |#5| |#5|)) (-15 -3104 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3112 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3121 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2719 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3130 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3140 ((-112) |#5| |#5|)) (-15 -3140 ((-112) |#5| (-625 |#5|))) (-15 -3151 ((-625 |#5|) (-625 |#5|))) (-15 -3161 ((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -3168 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-15 -3176 ((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3185 ((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2167 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|) 96)) (-2058 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|) 72)) (-2091 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|) 91)) (-2112 (((-625 |#5|) |#4| |#5|) 110)) (-2131 (((-625 |#5|) |#4| |#5|) 117)) (-2156 (((-625 |#5|) |#4| |#5|) 118)) (-2103 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|) 97)) (-2121 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|) 116)) (-2142 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2070 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112)) 84) (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2081 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|) 79)) (-2046 (((-1237)) 37)) (-2028 (((-1237)) 26)) (-2037 (((-1237) (-1131) (-1131) (-1131)) 33)) (-2019 (((-1237) (-1131) (-1131) (-1131)) 22)))
+(((-1081 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2019 ((-1237) (-1131) (-1131) (-1131))) (-15 -2028 ((-1237))) (-15 -2037 ((-1237) (-1131) (-1131) (-1131))) (-15 -2046 ((-1237))) (-15 -2058 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2070 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2070 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112))) (-15 -2081 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2091 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2142 ((-112) |#4| |#5|)) (-15 -2103 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2112 ((-625 |#5|) |#4| |#5|)) (-15 -2121 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2131 ((-625 |#5|) |#4| |#5|)) (-15 -2142 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2156 ((-625 |#5|) |#4| |#5|)) (-15 -2167 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1081))
+((-2167 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2156 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2142 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2131 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2121 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2112 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2103 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2142 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2091 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2081 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827)) (-5 *2 (-625 (-2 (|:| |val| *8) (|:| -3715 *9)))) (-5 *1 (-1081 *6 *7 *4 *8 *9)))) (-2070 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-2058 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2046 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-2037 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-2028 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-2019 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2019 ((-1237) (-1131) (-1131) (-1131))) (-15 -2028 ((-1237))) (-15 -2037 ((-1237) (-1131) (-1131) (-1131))) (-15 -2046 ((-1237))) (-15 -2058 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2070 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2070 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112))) (-15 -2081 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2091 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2142 ((-112) |#4| |#5|)) (-15 -2103 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2112 ((-625 |#5|) |#4| |#5|)) (-15 -2121 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2131 ((-625 |#5|) |#4| |#5|)) (-15 -2142 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2156 ((-625 |#5|) |#4| |#5|)) (-15 -2167 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|)))
+((-1671 (((-112) $ $) 7)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) 85)) (-3690 (((-625 $) (-625 |#4|)) 86) (((-625 $) (-625 |#4|) (-112)) 111)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 126)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2936 (((-3 $ "failed") $) 82)) (-3720 ((|#4| |#4| $) 89)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3699 ((|#4| |#4| $) 87)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) 105)) (-3731 (((-112) |#4| $) 136)) (-3714 (((-112) |#4| $) 133)) (-3741 (((-112) |#4| $) 137) (((-112) $) 134)) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) 104) (((-112) $) 103)) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) 128)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 127)) (-1437 (((-3 |#4| "failed") $) 83)) (-3685 (((-625 $) |#4| $) 129)) (-3704 (((-3 (-112) (-625 $)) |#4| $) 132)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2860 (((-625 $) |#4| $) 125) (((-625 $) (-625 |#4|) $) 124) (((-625 $) (-625 |#4|) (-625 $)) 123) (((-625 $) |#4| (-625 $)) 122)) (-3999 (($ |#4| $) 117) (($ (-625 |#4|) $) 116)) (-2699 (((-625 |#4|) $) 107)) (-3777 (((-112) |#4| $) 99) (((-112) $) 95)) (-3727 ((|#4| |#4| $) 90)) (-2719 (((-112) $ $) 110)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) 100) (((-112) $) 96)) (-3737 ((|#4| |#4| $) 91)) (-2831 (((-1093) $) 10)) (-2924 (((-3 |#4| "failed") $) 84)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3657 (((-3 $ "failed") $ |#4|) 78)) (-2147 (($ $ |#4|) 77) (((-625 $) |#4| $) 115) (((-625 $) |#4| (-625 $)) 114) (((-625 $) (-625 |#4|) $) 113) (((-625 $) (-625 |#4|) (-625 $)) 112)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-4276 (((-751) $) 106)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-3709 (($ $) 88)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-3647 (((-751) $) 76 (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) 98)) (-3651 (((-625 $) |#4| $) 121) (((-625 $) |#4| (-625 $)) 120) (((-625 $) (-625 |#4|) $) 119) (((-625 $) (-625 |#4|) (-625 $)) 118)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) 81)) (-3724 (((-112) |#4| $) 135)) (-4168 (((-112) |#3| $) 80)) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353)))))
(((-1082 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1082))
NIL
(-13 (-1045 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1074) . T) ((-1180 |#1| |#2| |#3| |#4|) . T) ((-1185) . T))
-((-3660 (((-622 (-538)) (-538) (-538) (-538)) 22)) (-3659 (((-622 (-538)) (-538) (-538) (-538)) 12)) (-3658 (((-622 (-538)) (-538) (-538) (-538)) 18)) (-3657 (((-538) (-538) (-538)) 9)) (-3656 (((-1231 (-538)) (-622 (-538)) (-1231 (-538)) (-538)) 46) (((-1231 (-538)) (-1231 (-538)) (-1231 (-538)) (-538)) 41)) (-3655 (((-622 (-538)) (-622 (-538)) (-622 (-538)) (-112)) 28)) (-3654 (((-669 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538))) 45)) (-3653 (((-669 (-538)) (-622 (-538)) (-622 (-538))) 33)) (-3652 (((-622 (-669 (-538))) (-622 (-538))) 35)) (-3651 (((-622 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538))) 49)) (-3650 (((-669 (-538)) (-622 (-538)) (-622 (-538)) (-622 (-538))) 57)))
-(((-1083) (-10 -7 (-15 -3650 ((-669 (-538)) (-622 (-538)) (-622 (-538)) (-622 (-538)))) (-15 -3651 ((-622 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538)))) (-15 -3652 ((-622 (-669 (-538))) (-622 (-538)))) (-15 -3653 ((-669 (-538)) (-622 (-538)) (-622 (-538)))) (-15 -3654 ((-669 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538)))) (-15 -3655 ((-622 (-538)) (-622 (-538)) (-622 (-538)) (-112))) (-15 -3656 ((-1231 (-538)) (-1231 (-538)) (-1231 (-538)) (-538))) (-15 -3656 ((-1231 (-538)) (-622 (-538)) (-1231 (-538)) (-538))) (-15 -3657 ((-538) (-538) (-538))) (-15 -3658 ((-622 (-538)) (-538) (-538) (-538))) (-15 -3659 ((-622 (-538)) (-538) (-538) (-538))) (-15 -3660 ((-622 (-538)) (-538) (-538) (-538))))) (T -1083))
-((-3660 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538)))) (-3659 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538)))) (-3658 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538)))) (-3657 (*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1083)))) (-3656 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1231 (-538))) (-5 *3 (-622 (-538))) (-5 *4 (-538)) (-5 *1 (-1083)))) (-3656 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1231 (-538))) (-5 *3 (-538)) (-5 *1 (-1083)))) (-3655 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *3 (-112)) (-5 *1 (-1083)))) (-3654 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-669 (-538))) (-5 *3 (-622 (-538))) (-5 *1 (-1083)))) (-3653 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1083)))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-1083)))) (-3651 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *3 (-669 (-538))) (-5 *1 (-1083)))) (-3650 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1083)))))
-(-10 -7 (-15 -3650 ((-669 (-538)) (-622 (-538)) (-622 (-538)) (-622 (-538)))) (-15 -3651 ((-622 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538)))) (-15 -3652 ((-622 (-669 (-538))) (-622 (-538)))) (-15 -3653 ((-669 (-538)) (-622 (-538)) (-622 (-538)))) (-15 -3654 ((-669 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538)))) (-15 -3655 ((-622 (-538)) (-622 (-538)) (-622 (-538)) (-112))) (-15 -3656 ((-1231 (-538)) (-1231 (-538)) (-1231 (-538)) (-538))) (-15 -3656 ((-1231 (-538)) (-622 (-538)) (-1231 (-538)) (-538))) (-15 -3657 ((-538) (-538) (-538))) (-15 -3658 ((-622 (-538)) (-538) (-538) (-538))) (-15 -3659 ((-622 (-538)) (-538) (-538) (-538))) (-15 -3660 ((-622 (-538)) (-538) (-538) (-538))))
-((** (($ $ (-895)) 10)))
-(((-1084 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-895)))) (-1085)) (T -1084))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-895))))
-((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)) (** (($ $ (-895)) 13)) (* (($ $ $) 14)))
+(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1073) . T) ((-1179 |#1| |#2| |#3| |#4|) . T) ((-1186) . T))
+((-2283 (((-625 (-552)) (-552) (-552) (-552)) 22)) (-2271 (((-625 (-552)) (-552) (-552) (-552)) 12)) (-2262 (((-625 (-552)) (-552) (-552) (-552)) 18)) (-2253 (((-552) (-552) (-552)) 9)) (-2242 (((-1232 (-552)) (-625 (-552)) (-1232 (-552)) (-552)) 46) (((-1232 (-552)) (-1232 (-552)) (-1232 (-552)) (-552)) 41)) (-2233 (((-625 (-552)) (-625 (-552)) (-625 (-552)) (-112)) 28)) (-2220 (((-669 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552))) 45)) (-2211 (((-669 (-552)) (-625 (-552)) (-625 (-552))) 33)) (-2199 (((-625 (-669 (-552))) (-625 (-552))) 35)) (-2188 (((-625 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552))) 49)) (-2177 (((-669 (-552)) (-625 (-552)) (-625 (-552)) (-625 (-552))) 57)))
+(((-1083) (-10 -7 (-15 -2177 ((-669 (-552)) (-625 (-552)) (-625 (-552)) (-625 (-552)))) (-15 -2188 ((-625 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552)))) (-15 -2199 ((-625 (-669 (-552))) (-625 (-552)))) (-15 -2211 ((-669 (-552)) (-625 (-552)) (-625 (-552)))) (-15 -2220 ((-669 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552)))) (-15 -2233 ((-625 (-552)) (-625 (-552)) (-625 (-552)) (-112))) (-15 -2242 ((-1232 (-552)) (-1232 (-552)) (-1232 (-552)) (-552))) (-15 -2242 ((-1232 (-552)) (-625 (-552)) (-1232 (-552)) (-552))) (-15 -2253 ((-552) (-552) (-552))) (-15 -2262 ((-625 (-552)) (-552) (-552) (-552))) (-15 -2271 ((-625 (-552)) (-552) (-552) (-552))) (-15 -2283 ((-625 (-552)) (-552) (-552) (-552))))) (T -1083))
+((-2283 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552)))) (-2271 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552)))) (-2262 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552)))) (-2253 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1083)))) (-2242 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1232 (-552))) (-5 *3 (-625 (-552))) (-5 *4 (-552)) (-5 *1 (-1083)))) (-2242 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1232 (-552))) (-5 *3 (-552)) (-5 *1 (-1083)))) (-2233 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *3 (-112)) (-5 *1 (-1083)))) (-2220 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-669 (-552))) (-5 *3 (-625 (-552))) (-5 *1 (-1083)))) (-2211 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1083)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-625 (-669 (-552)))) (-5 *1 (-1083)))) (-2188 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *3 (-669 (-552))) (-5 *1 (-1083)))) (-2177 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1083)))))
+(-10 -7 (-15 -2177 ((-669 (-552)) (-625 (-552)) (-625 (-552)) (-625 (-552)))) (-15 -2188 ((-625 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552)))) (-15 -2199 ((-625 (-669 (-552))) (-625 (-552)))) (-15 -2211 ((-669 (-552)) (-625 (-552)) (-625 (-552)))) (-15 -2220 ((-669 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552)))) (-15 -2233 ((-625 (-552)) (-625 (-552)) (-625 (-552)) (-112))) (-15 -2242 ((-1232 (-552)) (-1232 (-552)) (-1232 (-552)) (-552))) (-15 -2242 ((-1232 (-552)) (-625 (-552)) (-1232 (-552)) (-552))) (-15 -2253 ((-552) (-552) (-552))) (-15 -2262 ((-625 (-552)) (-552) (-552) (-552))) (-15 -2271 ((-625 (-552)) (-552) (-552) (-552))) (-15 -2283 ((-625 (-552)) (-552) (-552) (-552))))
+((** (($ $ (-897)) 10)))
+(((-1084 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-897)))) (-1085)) (T -1084))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-897))))
+((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)) (** (($ $ (-897)) 13)) (* (($ $ $) 14)))
(((-1085) (-138)) (T -1085))
-((* (*1 *1 *1 *1) (-4 *1 (-1085))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1085)) (-5 *2 (-895)))))
-(-13 (-1074) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-895)))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL (|has| |#3| (-1074)))) (-3539 (((-112) $) NIL (|has| |#3| (-130)))) (-4070 (($ (-895)) NIL (|has| |#3| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) NIL (|has| |#3| (-773)))) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#3| (-363)))) (-3986 (((-538) $) NIL (|has| |#3| (-825)))) (-4147 ((|#3| $ (-538) |#3|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1074)))) (-3507 (((-538) $) NIL (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074)))) ((|#3| $) NIL (|has| |#3| (-1074)))) (-2362 (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025)))) (((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 $) (-1231 $)) NIL (|has| |#3| (-1025))) (((-669 |#3|) (-669 $)) NIL (|has| |#3| (-1025)))) (-3821 (((-3 $ "failed") $) NIL (|has| |#3| (-707)))) (-3327 (($) NIL (|has| |#3| (-363)))) (-1637 ((|#3| $ (-538) |#3|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#3| $ (-538)) 12)) (-3537 (((-112) $) NIL (|has| |#3| (-825)))) (-2068 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (|has| |#3| (-707)))) (-3538 (((-112) $) NIL (|has| |#3| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2511 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2072 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#3| |#3|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#3| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#3| (-1074)))) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#3| (-363)))) (-3594 (((-1093) $) NIL (|has| |#3| (-1074)))) (-4160 ((|#3| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#3|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-622 |#3|) (-622 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-2312 (((-622 |#3|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#3| $ (-538) |#3|) NIL) ((|#3| $ (-538)) NIL)) (-4196 ((|#3| $ $) NIL (|has| |#3| (-1025)))) (-1525 (($ (-1231 |#3|)) NIL)) (-4271 (((-133)) NIL (|has| |#3| (-358)))) (-4170 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025)))) (-2069 (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353))) (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#3|) $) NIL) (($ (-538)) NIL (-3891 (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074))) (|has| |#3| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074)))) (($ |#3|) NIL (|has| |#3| (-1074))) (((-840) $) NIL (|has| |#3| (-597 (-840))))) (-3461 (((-751)) NIL (|has| |#3| (-1025)))) (-2071 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#3| (-825)))) (-2991 (($) NIL (|has| |#3| (-130)) CONST)) (-2997 (($) NIL (|has| |#3| (-707)) CONST)) (-3002 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025)))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3387 (((-112) $ $) NIL (|has| |#3| (-1074)))) (-3017 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3018 (((-112) $ $) 17 (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-4308 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-4197 (($ $ $) NIL (|has| |#3| (-1025))) (($ $) NIL (|has| |#3| (-1025)))) (-4199 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-751)) NIL (|has| |#3| (-707))) (($ $ (-895)) NIL (|has| |#3| (-707)))) (* (($ (-538) $) NIL (|has| |#3| (-1025))) (($ $ $) NIL (|has| |#3| (-707))) (($ $ |#3|) NIL (|has| |#3| (-707))) (($ |#3| $) NIL (|has| |#3| (-707))) (($ (-751) $) NIL (|has| |#3| (-130))) (($ (-895) $) NIL (|has| |#3| (-25)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
+((* (*1 *1 *1 *1) (-4 *1 (-1085))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1085)) (-5 *2 (-897)))))
+(-13 (-1073) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-897)))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL (|has| |#3| (-1073)))) (-3641 (((-112) $) NIL (|has| |#3| (-130)))) (-2787 (($ (-897)) NIL (|has| |#3| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) NIL (|has| |#3| (-773)))) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#3| (-363)))) (-4127 (((-552) $) NIL (|has| |#3| (-825)))) (-1851 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1073)))) (-1895 (((-552) $) NIL (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073)))) ((|#3| $) NIL (|has| |#3| (-1073)))) (-1794 (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025)))) (((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 $) (-1232 $)) NIL (|has| |#3| (-1025))) (((-669 |#3|) (-669 $)) NIL (|has| |#3| (-1025)))) (-4174 (((-3 $ "failed") $) NIL (|has| |#3| (-707)))) (-3702 (($) NIL (|has| |#3| (-363)))) (-3692 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#3| $ (-552)) 12)) (-3620 (((-112) $) NIL (|has| |#3| (-825)))) (-3799 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (|has| |#3| (-707)))) (-3630 (((-112) $) NIL (|has| |#3| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3730 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3683 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#3| |#3|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#3| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#3| (-1073)))) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#3| (-363)))) (-2831 (((-1093) $) NIL (|has| |#3| (-1073)))) (-2924 ((|#3| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#3|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-625 |#3|) (-625 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-1358 (((-625 |#3|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#3| $ (-552) |#3|) NIL) ((|#3| $ (-552)) NIL)) (-1443 ((|#3| $ $) NIL (|has| |#3| (-1025)))) (-3878 (($ (-1232 |#3|)) NIL)) (-3904 (((-133)) NIL (|has| |#3| (-358)))) (-3072 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025)))) (-2840 (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353))) (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#3|) $) NIL) (($ (-552)) NIL (-1523 (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073))) (|has| |#3| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073)))) (($ |#3|) NIL (|has| |#3| (-1073))) (((-839) $) NIL (|has| |#3| (-597 (-839))))) (-4141 (((-751)) NIL (|has| |#3| (-1025)))) (-1900 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#3| (-825)))) (-2089 (($) NIL (|has| |#3| (-130)) CONST)) (-2100 (($) NIL (|has| |#3| (-707)) CONST)) (-3768 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025)))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2281 (((-112) $ $) NIL (|has| |#3| (-1073)))) (-2334 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2307 (((-112) $ $) 17 (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2404 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-2393 (($ $ $) NIL (|has| |#3| (-1025))) (($ $) NIL (|has| |#3| (-1025)))) (-2382 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-751)) NIL (|has| |#3| (-707))) (($ $ (-897)) NIL (|has| |#3| (-707)))) (* (($ (-552) $) NIL (|has| |#3| (-1025))) (($ $ $) NIL (|has| |#3| (-707))) (($ $ |#3|) NIL (|has| |#3| (-707))) (($ |#3| $) NIL (|has| |#3| (-707))) (($ (-751) $) NIL (|has| |#3| (-130))) (($ (-897) $) NIL (|has| |#3| (-25)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
(((-1086 |#1| |#2| |#3|) (-234 |#1| |#3|) (-751) (-751) (-773)) (T -1086))
NIL
(-234 |#1| |#3|)
-((-3661 (((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 37)) (-3667 (((-538) (-1200 |#2| |#1|)) 69 (|has| |#1| (-446)))) (-3665 (((-538) (-1200 |#2| |#1|)) 54)) (-3662 (((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 45)) (-3666 (((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 68 (|has| |#1| (-446)))) (-3663 (((-622 |#1|) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 48)) (-3664 (((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 53)))
-(((-1087 |#1| |#2|) (-10 -7 (-15 -3661 ((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3662 ((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3663 ((-622 |#1|) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3664 ((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3665 ((-538) (-1200 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3666 ((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3667 ((-538) (-1200 |#2| |#1|)))) |%noBranch|)) (-800) (-1149)) (T -1087))
-((-3667 (*1 *2 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538)) (-5 *1 (-1087 *4 *5)))) (-3666 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538)) (-5 *1 (-1087 *4 *5)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538)) (-5 *1 (-1087 *4 *5)))) (-3664 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538)) (-5 *1 (-1087 *4 *5)))) (-3663 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 *4)) (-5 *1 (-1087 *4 *5)))) (-3662 (*1 *2 *3 *3) (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 (-1200 *5 *4))) (-5 *1 (-1087 *4 *5)) (-5 *3 (-1200 *5 *4)))) (-3661 (*1 *2 *3 *3) (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 (-1200 *5 *4))) (-5 *1 (-1087 *4 *5)) (-5 *3 (-1200 *5 *4)))))
-(-10 -7 (-15 -3661 ((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3662 ((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3663 ((-622 |#1|) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3664 ((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3665 ((-538) (-1200 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3666 ((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3667 ((-538) (-1200 |#2| |#1|)))) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-3669 (((-1154) $) 10)) (-3668 (((-622 (-1154)) $) 11)) (-3670 (($ (-622 (-1154)) (-1154)) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20)) (-3387 (((-112) $ $) 14)))
-(((-1088) (-13 (-1074) (-10 -8 (-15 -3670 ($ (-622 (-1154)) (-1154))) (-15 -3669 ((-1154) $)) (-15 -3668 ((-622 (-1154)) $))))) (T -1088))
-((-3670 (*1 *1 *2 *3) (-12 (-5 *2 (-622 (-1154))) (-5 *3 (-1154)) (-5 *1 (-1088)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1088)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1088)))))
-(-13 (-1074) (-10 -8 (-15 -3670 ($ (-622 (-1154)) (-1154))) (-15 -3669 ((-1154) $)) (-15 -3668 ((-622 (-1154)) $))))
-((-2898 (((-112) $ $) NIL)) (-3671 (($ (-499) (-1088)) 14)) (-3670 (((-1088) $) 20)) (-3905 (((-499) $) 17)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 28) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-1089) (-13 (-1056) (-10 -8 (-15 -3671 ($ (-499) (-1088))) (-15 -3905 ((-499) $)) (-15 -3670 ((-1088) $))))) (T -1089))
-((-3671 (*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-1088)) (-5 *1 (-1089)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1089)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1089)))))
-(-13 (-1056) (-10 -8 (-15 -3671 ($ (-499) (-1088))) (-15 -3905 ((-499) $)) (-15 -3670 ((-1088) $))))
-((-3986 (((-3 (-538) #1="failed") |#2| (-1149) |#2| (-1131)) 17) (((-3 (-538) #1#) |#2| (-1149) (-819 |#2|)) 15) (((-3 (-538) #1#) |#2|) 54)))
-(((-1090 |#1| |#2|) (-10 -7 (-15 -3986 ((-3 (-538) #1="failed") |#2|)) (-15 -3986 ((-3 (-538) #1#) |#2| (-1149) (-819 |#2|))) (-15 -3986 ((-3 (-538) #1#) |#2| (-1149) |#2| (-1131)))) (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)) (-446)) (-13 (-27) (-1171) (-416 |#1|))) (T -1090))
-((-3986 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-1131)) (-4 *6 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-538)) (-5 *1 (-1090 *6 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))))) (-3986 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-819 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-538)) (-5 *1 (-1090 *6 *3)))) (-3986 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-538)) (-5 *1 (-1090 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))))
-(-10 -7 (-15 -3986 ((-3 (-538) #1="failed") |#2|)) (-15 -3986 ((-3 (-538) #1#) |#2| (-1149) (-819 |#2|))) (-15 -3986 ((-3 (-538) #1#) |#2| (-1149) |#2| (-1131))))
-((-3986 (((-3 (-538) #1="failed") (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)) (-1131)) 35) (((-3 (-538) #1#) (-402 (-922 |#1|)) (-1149) (-819 (-402 (-922 |#1|)))) 30) (((-3 (-538) #1#) (-402 (-922 |#1|))) 13)))
-(((-1091 |#1|) (-10 -7 (-15 -3986 ((-3 (-538) #1="failed") (-402 (-922 |#1|)))) (-15 -3986 ((-3 (-538) #1#) (-402 (-922 |#1|)) (-1149) (-819 (-402 (-922 |#1|))))) (-15 -3986 ((-3 (-538) #1#) (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)) (-1131)))) (-446)) (T -1091))
-((-3986 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-402 (-922 *6))) (-5 *4 (-1149)) (-5 *5 (-1131)) (-4 *6 (-446)) (-5 *2 (-538)) (-5 *1 (-1091 *6)))) (-3986 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-819 (-402 (-922 *6)))) (-5 *3 (-402 (-922 *6))) (-4 *6 (-446)) (-5 *2 (-538)) (-5 *1 (-1091 *6)))) (-3986 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-446)) (-5 *2 (-538)) (-5 *1 (-1091 *4)))))
-(-10 -7 (-15 -3986 ((-3 (-538) #1="failed") (-402 (-922 |#1|)))) (-15 -3986 ((-3 (-538) #1#) (-402 (-922 |#1|)) (-1149) (-819 (-402 (-922 |#1|))))) (-15 -3986 ((-3 (-538) #1#) (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)) (-1131))))
-((-4012 (((-309 (-538)) (-48)) 12)))
-(((-1092) (-10 -7 (-15 -4012 ((-309 (-538)) (-48))))) (T -1092))
-((-4012 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-538))) (-5 *1 (-1092)))))
-(-10 -7 (-15 -4012 ((-309 (-538)) (-48))))
-((-2898 (((-112) $ $) NIL)) (-3679 (($ $) 41)) (-3539 (((-112) $) 65)) (-3675 (($ $ $) 48)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 86)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-2162 (($ $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2157 (($ $ $ $) 75)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL)) (-2690 (($ $ $) 72)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) "failed") $) NIL)) (-3507 (((-538) $) NIL)) (-2894 (($ $ $) 59)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 80) (((-669 (-538)) (-669 $)) 28)) (-3821 (((-3 $ "failed") $) NIL)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL)) (-3356 (((-112) $) NIL)) (-3355 (((-402 (-538)) $) NIL)) (-3327 (($) 83) (($ $) 84)) (-2893 (($ $ $) 58)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2155 (($ $ $ $) NIL)) (-2163 (($ $ $) 81)) (-3537 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL)) (-2502 (((-112) $) 66)) (-3006 (((-112) $) 64)) (-3676 (($ $) 42)) (-3803 (((-3 $ "failed") $) NIL)) (-3538 (((-112) $) 76)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2156 (($ $ $ $) 73)) (-3677 (($ $ $) 68) (($) 39)) (-3678 (($ $ $) 67) (($) 38)) (-2159 (($ $) NIL)) (-4193 (($ $) 71)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2154 (($ $ $) NIL)) (-3804 (($) NIL T CONST)) (-2161 (($ $) 50)) (-3594 (((-1093) $) 70)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) 62) (($ (-622 $)) NIL)) (-1412 (($ $) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 61)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-2160 (($ $) 51)) (-3759 (($ $) NIL)) (-4330 (((-538) $) 32) (((-527) $) NIL) (((-866 (-538)) $) NIL) (((-373) $) NIL) (((-221) $) NIL)) (-4317 (((-840) $) 31) (($ (-538)) 82) (($ $) NIL) (($ (-538)) 82)) (-3461 (((-751)) NIL)) (-2164 (((-112) $ $) NIL)) (-3437 (($ $ $) NIL)) (-3027 (($) 37)) (-2177 (((-112) $ $) NIL)) (-2158 (($ $ $ $) 74)) (-3742 (($ $) 63)) (-3681 (($ $ $) 44)) (-2991 (($) 35 T CONST)) (-3672 (($ $ $) 47)) (-2997 (($) 36 T CONST)) (-2834 (((-1131) $) 21) (((-1131) $ (-112)) 23) (((-1237) (-803) $) 24) (((-1237) (-803) $ (-112)) 25)) (-3674 (($ $) 45)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-3673 (($ $ $) 46)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 40)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 49)) (-3680 (($ $ $) 43)) (-4197 (($ $) 52) (($ $ $) 54)) (-4199 (($ $ $) 53)) (** (($ $ (-895)) NIL) (($ $ (-751)) 57)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 34) (($ $ $) 55)))
-(((-1093) (-13 (-537) (-642) (-801) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -3678 ($)) (-15 -3677 ($)) (-15 -3676 ($ $)) (-15 -3679 ($ $)) (-15 -3680 ($ $ $)) (-15 -3681 ($ $ $)) (-15 -3675 ($ $ $)) (-15 -3674 ($ $)) (-15 -3673 ($ $ $)) (-15 -3672 ($ $ $))))) (T -1093))
-((-3681 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3680 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3679 (*1 *1 *1) (-5 *1 (-1093))) (-3678 (*1 *1) (-5 *1 (-1093))) (-3677 (*1 *1) (-5 *1 (-1093))) (-3676 (*1 *1 *1) (-5 *1 (-1093))) (-3675 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3674 (*1 *1 *1) (-5 *1 (-1093))) (-3673 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3672 (*1 *1 *1 *1) (-5 *1 (-1093))))
-(-13 (-537) (-642) (-801) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -3678 ($)) (-15 -3677 ($)) (-15 -3676 ($ $)) (-15 -3679 ($ $)) (-15 -3680 ($ $ $)) (-15 -3681 ($ $ $)) (-15 -3675 ($ $ $)) (-15 -3674 ($ $)) (-15 -3673 ($ $ $)) (-15 -3672 ($ $ $))))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3683 ((|#1| $) 44)) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-3685 ((|#1| |#1| $) 46)) (-3684 ((|#1| $) 45)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-3682 (((-751) $) 43)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-1094 |#1|) (-138) (-1185)) (T -1094))
-((-3685 (*1 *2 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1094 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))))
-(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -3685 (|t#1| |t#1| $)) (-15 -3684 (|t#1| $)) (-15 -3683 (|t#1| $)) (-15 -3682 ((-751) $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-3689 ((|#3| $) 76)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL) ((|#3| $) 37)) (-2362 (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 $) (-1231 $)) 73) (((-669 |#3|) (-669 $)) 65)) (-4170 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-3688 ((|#3| $) 78)) (-3690 ((|#4| $) 32)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL) (($ |#3|) 16)) (** (($ $ (-895)) NIL) (($ $ (-751)) 15) (($ $ (-538)) 82)))
-(((-1095 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-538))) (-15 -3688 (|#3| |#1|)) (-15 -3689 (|#3| |#1|)) (-15 -3690 (|#4| |#1|)) (-15 -2362 ((-669 |#3|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| #1="failed") |#1|)) (-15 -4317 (|#1| |#3|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4317 (|#1| (-538))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895))) (-15 -4317 ((-840) |#1|))) (-1096 |#2| |#3| |#4| |#5|) (-751) (-1025) (-234 |#2| |#3|) (-234 |#2| |#3|)) (T -1095))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-538))) (-15 -3688 (|#3| |#1|)) (-15 -3689 (|#3| |#1|)) (-15 -3690 (|#4| |#1|)) (-15 -2362 ((-669 |#3|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| #1="failed") |#1|)) (-15 -4317 (|#1| |#3|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4317 (|#1| (-538))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3689 ((|#2| $) 70)) (-3456 (((-112) $) 110)) (-1368 (((-3 $ "failed") $ $) 19)) (-3458 (((-112) $) 108)) (-1271 (((-112) $ (-751)) 100)) (-3692 (($ |#2|) 73)) (-3896 (($) 17 T CONST)) (-3445 (($ $) 127 (|has| |#2| (-302)))) (-3447 ((|#3| $ (-538)) 122)) (-3508 (((-3 (-538) #1="failed") $) 84 (|has| |#2| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 82 (|has| |#2| (-1014 (-402 (-538))))) (((-3 |#2| #1#) $) 79)) (-3507 (((-538) $) 85 (|has| |#2| (-1014 (-538)))) (((-402 (-538)) $) 83 (|has| |#2| (-1014 (-402 (-538))))) ((|#2| $) 78)) (-2362 (((-669 (-538)) (-669 $)) 77 (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 76 (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 75) (((-669 |#2|) (-669 $)) 74)) (-3821 (((-3 $ "failed") $) 32)) (-3444 (((-751) $) 128 (|has| |#2| (-545)))) (-3448 ((|#2| $ (-538) (-538)) 120)) (-2068 (((-622 |#2|) $) 93 (|has| $ (-6 -4353)))) (-2502 (((-112) $) 30)) (-3443 (((-751) $) 129 (|has| |#2| (-545)))) (-3442 (((-622 |#4|) $) 130 (|has| |#2| (-545)))) (-3450 (((-751) $) 116)) (-3449 (((-751) $) 117)) (-4082 (((-112) $ (-751)) 101)) (-3686 ((|#2| $) 65 (|has| |#2| (-6 (-4355 #2="*"))))) (-3454 (((-538) $) 112)) (-3452 (((-538) $) 114)) (-2511 (((-622 |#2|) $) 92 (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-3453 (((-538) $) 113)) (-3451 (((-538) $) 115)) (-3459 (($ (-622 (-622 |#2|))) 107)) (-2072 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3956 (((-622 (-622 |#2|)) $) 118)) (-4079 (((-112) $ (-751)) 102)) (-3593 (((-1131) $) 9)) (-3952 (((-3 $ "failed") $) 64 (|has| |#2| (-358)))) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-545)))) (-2070 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) 89 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) 88 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) 106)) (-3762 (((-112) $) 103)) (-3928 (($) 104)) (-4159 ((|#2| $ (-538) (-538) |#2|) 121) ((|#2| $ (-538) (-538)) 119)) (-4170 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-751)) 49) (($ $ (-622 (-1149)) (-622 (-751))) 42 (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) 41 (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) 40 (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) 39 (|has| |#2| (-876 (-1149)))) (($ $ (-751)) 37 (|has| |#2| (-229))) (($ $) 35 (|has| |#2| (-229)))) (-3688 ((|#2| $) 69)) (-3691 (($ (-622 |#2|)) 72)) (-3457 (((-112) $) 109)) (-3690 ((|#3| $) 71)) (-3687 ((|#2| $) 66 (|has| |#2| (-6 (-4355 #2#))))) (-2069 (((-751) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4353))) (((-751) |#2| $) 91 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 105)) (-3446 ((|#4| $ (-538)) 123)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 81 (|has| |#2| (-1014 (-402 (-538))))) (($ |#2|) 80)) (-3461 (((-751)) 28)) (-2071 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4353)))) (-3455 (((-112) $) 111)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-751)) 47) (($ $ (-622 (-1149)) (-622 (-751))) 46 (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) 45 (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) 44 (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) 43 (|has| |#2| (-876 (-1149)))) (($ $ (-751)) 38 (|has| |#2| (-229))) (($ $) 36 (|has| |#2| (-229)))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#2|) 126 (|has| |#2| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 63 (|has| |#2| (-358)))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-4316 (((-751) $) 99 (|has| $ (-6 -4353)))))
+((-2295 (((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|)) 37)) (-2373 (((-552) (-1205 |#2| |#1|)) 69 (|has| |#1| (-446)))) (-2348 (((-552) (-1205 |#2| |#1|)) 54)) (-2309 (((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|)) 45)) (-2362 (((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|)) 68 (|has| |#1| (-446)))) (-2322 (((-625 |#1|) (-1205 |#2| |#1|) (-1205 |#2| |#1|)) 48)) (-2336 (((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|)) 53)))
+(((-1087 |#1| |#2|) (-10 -7 (-15 -2295 ((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2309 ((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2322 ((-625 |#1|) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2336 ((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2348 ((-552) (-1205 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2362 ((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2373 ((-552) (-1205 |#2| |#1|)))) |%noBranch|)) (-800) (-1149)) (T -1087))
+((-2373 (*1 *2 *3) (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))) (-2362 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))) (-2336 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))) (-2322 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-625 *4)) (-5 *1 (-1087 *4 *5)))) (-2309 (*1 *2 *3 *3) (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-625 (-1205 *5 *4))) (-5 *1 (-1087 *4 *5)) (-5 *3 (-1205 *5 *4)))) (-2295 (*1 *2 *3 *3) (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-625 (-1205 *5 *4))) (-5 *1 (-1087 *4 *5)) (-5 *3 (-1205 *5 *4)))))
+(-10 -7 (-15 -2295 ((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2309 ((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2322 ((-625 |#1|) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2336 ((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2348 ((-552) (-1205 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2362 ((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2373 ((-552) (-1205 |#2| |#1|)))) |%noBranch|))
+((-1671 (((-112) $ $) NIL)) (-2384 (($ (-499) (-1091)) 14)) (-2055 (((-1091) $) 20)) (-1288 (((-499) $) 17)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 28) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-1088) (-13 (-1056) (-10 -8 (-15 -2384 ($ (-499) (-1091))) (-15 -1288 ((-499) $)) (-15 -2055 ((-1091) $))))) (T -1088))
+((-2384 (*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-1091)) (-5 *1 (-1088)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1088)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1088)))))
+(-13 (-1056) (-10 -8 (-15 -2384 ($ (-499) (-1091))) (-15 -1288 ((-499) $)) (-15 -2055 ((-1091) $))))
+((-4127 (((-3 (-552) "failed") |#2| (-1149) |#2| (-1131)) 17) (((-3 (-552) "failed") |#2| (-1149) (-820 |#2|)) 15) (((-3 (-552) "failed") |#2|) 54)))
+(((-1089 |#1| |#2|) (-10 -7 (-15 -4127 ((-3 (-552) "failed") |#2|)) (-15 -4127 ((-3 (-552) "failed") |#2| (-1149) (-820 |#2|))) (-15 -4127 ((-3 (-552) "failed") |#2| (-1149) |#2| (-1131)))) (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)) (-446)) (-13 (-27) (-1171) (-425 |#1|))) (T -1089))
+((-4127 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-1131)) (-4 *6 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-552)) (-5 *1 (-1089 *6 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))))) (-4127 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-820 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-552)) (-5 *1 (-1089 *6 *3)))) (-4127 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-552)) (-5 *1 (-1089 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))))
+(-10 -7 (-15 -4127 ((-3 (-552) "failed") |#2|)) (-15 -4127 ((-3 (-552) "failed") |#2| (-1149) (-820 |#2|))) (-15 -4127 ((-3 (-552) "failed") |#2| (-1149) |#2| (-1131))))
+((-4127 (((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)) (-1131)) 35) (((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-820 (-402 (-928 |#1|)))) 30) (((-3 (-552) "failed") (-402 (-928 |#1|))) 13)))
+(((-1090 |#1|) (-10 -7 (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)))) (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-820 (-402 (-928 |#1|))))) (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)) (-1131)))) (-446)) (T -1090))
+((-4127 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-402 (-928 *6))) (-5 *4 (-1149)) (-5 *5 (-1131)) (-4 *6 (-446)) (-5 *2 (-552)) (-5 *1 (-1090 *6)))) (-4127 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-820 (-402 (-928 *6)))) (-5 *3 (-402 (-928 *6))) (-4 *6 (-446)) (-5 *2 (-552)) (-5 *1 (-1090 *6)))) (-4127 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-446)) (-5 *2 (-552)) (-5 *1 (-1090 *4)))))
+(-10 -7 (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)))) (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-820 (-402 (-928 |#1|))))) (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)) (-1131))))
+((-1671 (((-112) $ $) NIL)) (-1711 (((-1154) $) 10)) (-1655 (((-625 (-1154)) $) 11)) (-2055 (($ (-625 (-1154)) (-1154)) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20)) (-2281 (((-112) $ $) 14)))
+(((-1091) (-13 (-1073) (-10 -8 (-15 -2055 ($ (-625 (-1154)) (-1154))) (-15 -1711 ((-1154) $)) (-15 -1655 ((-625 (-1154)) $))))) (T -1091))
+((-2055 (*1 *1 *2 *3) (-12 (-5 *2 (-625 (-1154))) (-5 *3 (-1154)) (-5 *1 (-1091)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1091)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1091)))))
+(-13 (-1073) (-10 -8 (-15 -2055 ($ (-625 (-1154)) (-1154))) (-15 -1711 ((-1154) $)) (-15 -1655 ((-625 (-1154)) $))))
+((-1933 (((-311 (-552)) (-48)) 12)))
+(((-1092) (-10 -7 (-15 -1933 ((-311 (-552)) (-48))))) (T -1092))
+((-1933 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-311 (-552))) (-5 *1 (-1092)))))
+(-10 -7 (-15 -1933 ((-311 (-552)) (-48))))
+((-1671 (((-112) $ $) NIL)) (-2488 (($ $) 41)) (-3641 (((-112) $) 65)) (-2244 (($ $ $) 48)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 86)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-3364 (($ $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3346 (($ $ $ $) 75)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL)) (-3420 (($ $ $) 72)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL)) (-1895 (((-552) $) NIL)) (-2851 (($ $ $) 59)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 80) (((-669 (-552)) (-669 $)) 28)) (-4174 (((-3 $ "failed") $) NIL)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL)) (-2546 (((-112) $) NIL)) (-2538 (((-402 (-552)) $) NIL)) (-3702 (($) 83) (($ $) 84)) (-2826 (($ $ $) 58)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3327 (($ $ $ $) NIL)) (-3372 (($ $ $) 81)) (-3620 (((-112) $) NIL)) (-1302 (($ $ $) NIL)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL)) (-3650 (((-112) $) 66)) (-3932 (((-112) $) 64)) (-2960 (($ $) 42)) (-4034 (((-3 $ "failed") $) NIL)) (-3630 (((-112) $) 76)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3336 (($ $ $ $) 73)) (-3658 (($ $ $) 68) (($) 39)) (-3332 (($ $ $) 67) (($) 38)) (-2059 (($ $) NIL)) (-3456 (($ $) 71)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-3317 (($ $ $) NIL)) (-2071 (($) NIL T CONST)) (-1971 (($ $) 50)) (-2831 (((-1093) $) 70)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) 62) (($ (-625 $)) NIL)) (-1279 (($ $) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 61)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-2715 (($ $) 51)) (-1871 (($ $) NIL)) (-2042 (((-552) $) 32) (((-528) $) NIL) (((-868 (-552)) $) NIL) (((-374) $) NIL) (((-221) $) NIL)) (-1683 (((-839) $) 31) (($ (-552)) 82) (($ $) NIL) (($ (-552)) 82)) (-4141 (((-751)) NIL)) (-3383 (((-112) $ $) NIL)) (-3901 (($ $ $) NIL)) (-3929 (($) 37)) (-3518 (((-112) $ $) NIL)) (-3355 (($ $ $ $) 74)) (-1727 (($ $) 63)) (-2827 (($ $ $) 44)) (-2089 (($) 35 T CONST)) (-3019 (($ $ $) 47)) (-2100 (($) 36 T CONST)) (-3010 (((-1131) $) 21) (((-1131) $ (-112)) 23) (((-1237) (-802) $) 24) (((-1237) (-802) $ (-112)) 25)) (-3030 (($ $) 45)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-3007 (($ $ $) 46)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 40)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 49)) (-2814 (($ $ $) 43)) (-2393 (($ $) 52) (($ $ $) 54)) (-2382 (($ $ $) 53)) (** (($ $ (-897)) NIL) (($ $ (-751)) 57)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 34) (($ $ $) 55)))
+(((-1093) (-13 (-537) (-641) (-808) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -3332 ($)) (-15 -3658 ($)) (-15 -2960 ($ $)) (-15 -2488 ($ $)) (-15 -2814 ($ $ $)) (-15 -2827 ($ $ $)) (-15 -2244 ($ $ $)) (-15 -3030 ($ $)) (-15 -3007 ($ $ $)) (-15 -3019 ($ $ $))))) (T -1093))
+((-2827 (*1 *1 *1 *1) (-5 *1 (-1093))) (-2814 (*1 *1 *1 *1) (-5 *1 (-1093))) (-2488 (*1 *1 *1) (-5 *1 (-1093))) (-3332 (*1 *1) (-5 *1 (-1093))) (-3658 (*1 *1) (-5 *1 (-1093))) (-2960 (*1 *1 *1) (-5 *1 (-1093))) (-2244 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3030 (*1 *1 *1) (-5 *1 (-1093))) (-3007 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3019 (*1 *1 *1 *1) (-5 *1 (-1093))))
+(-13 (-537) (-641) (-808) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -3332 ($)) (-15 -3658 ($)) (-15 -2960 ($ $)) (-15 -2488 ($ $)) (-15 -2814 ($ $ $)) (-15 -2827 ($ $ $)) (-15 -2244 ($ $ $)) (-15 -3030 ($ $)) (-15 -3007 ($ $ $)) (-15 -3019 ($ $ $))))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-1549 ((|#1| $) 44)) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-2406 ((|#1| |#1| $) 46)) (-2395 ((|#1| $) 45)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2389 (((-751) $) 43)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-1094 |#1|) (-138) (-1186)) (T -1094))
+((-2406 (*1 *2 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-1094 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))))
+(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -2406 (|t#1| |t#1| $)) (-15 -2395 (|t#1| $)) (-15 -1549 (|t#1| $)) (-15 -2389 ((-751) $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-1650 ((|#3| $) 76)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL) ((|#3| $) 37)) (-1794 (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 $) (-1232 $)) 73) (((-669 |#3|) (-669 $)) 65)) (-3072 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-2435 ((|#3| $) 78)) (-2446 ((|#4| $) 32)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL) (($ |#3|) 16)) (** (($ $ (-897)) NIL) (($ $ (-751)) 15) (($ $ (-552)) 82)))
+(((-1095 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 -2435 (|#3| |#1|)) (-15 -1650 (|#3| |#1|)) (-15 -2446 (|#4| |#1|)) (-15 -1794 ((-669 |#3|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -1683 (|#1| |#3|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1683 (|#1| (-552))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897))) (-15 -1683 ((-839) |#1|))) (-1096 |#2| |#3| |#4| |#5|) (-751) (-1025) (-234 |#2| |#3|) (-234 |#2| |#3|)) (T -1095))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 -2435 (|#3| |#1|)) (-15 -1650 (|#3| |#1|)) (-15 -2446 (|#4| |#1|)) (-15 -1794 ((-669 |#3|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -1683 (|#1| |#3|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1683 (|#1| (-552))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-1650 ((|#2| $) 70)) (-4089 (((-112) $) 110)) (-2077 (((-3 $ "failed") $ $) 19)) (-4114 (((-112) $) 108)) (-3495 (((-112) $ (-751)) 100)) (-2467 (($ |#2|) 73)) (-3101 (($) 17 T CONST)) (-3991 (($ $) 127 (|has| |#2| (-302)))) (-4015 ((|#3| $ (-552)) 122)) (-1893 (((-3 (-552) "failed") $) 84 (|has| |#2| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 82 (|has| |#2| (-1014 (-402 (-552))))) (((-3 |#2| "failed") $) 79)) (-1895 (((-552) $) 85 (|has| |#2| (-1014 (-552)))) (((-402 (-552)) $) 83 (|has| |#2| (-1014 (-402 (-552))))) ((|#2| $) 78)) (-1794 (((-669 (-552)) (-669 $)) 77 (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 76 (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 75) (((-669 |#2|) (-669 $)) 74)) (-4174 (((-3 $ "failed") $) 32)) (-3442 (((-751) $) 128 (|has| |#2| (-544)))) (-3631 ((|#2| $ (-552) (-552)) 120)) (-3799 (((-625 |#2|) $) 93 (|has| $ (-6 -4353)))) (-3650 (((-112) $) 30)) (-3979 (((-751) $) 129 (|has| |#2| (-544)))) (-3967 (((-625 |#4|) $) 130 (|has| |#2| (-544)))) (-1773 (((-751) $) 116)) (-1784 (((-751) $) 117)) (-2909 (((-112) $ (-751)) 101)) (-2416 ((|#2| $) 65 (|has| |#2| (-6 (-4355 "*"))))) (-4063 (((-552) $) 112)) (-4038 (((-552) $) 114)) (-3730 (((-625 |#2|) $) 92 (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-4050 (((-552) $) 113)) (-4027 (((-552) $) 115)) (-3907 (($ (-625 (-625 |#2|))) 107)) (-3683 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3803 (((-625 (-625 |#2|)) $) 118)) (-2878 (((-112) $ (-751)) 102)) (-2883 (((-1131) $) 9)) (-3150 (((-3 $ "failed") $) 64 (|has| |#2| (-358)))) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-544)))) (-1888 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) 89 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) 88 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) 106)) (-1916 (((-112) $) 103)) (-3600 (($) 104)) (-2154 ((|#2| $ (-552) (-552) |#2|) 121) ((|#2| $ (-552) (-552)) 119)) (-3072 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-751)) 49) (($ $ (-625 (-1149)) (-625 (-751))) 42 (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) 41 (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) 40 (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) 39 (|has| |#2| (-876 (-1149)))) (($ $ (-751)) 37 (|has| |#2| (-229))) (($ $) 35 (|has| |#2| (-229)))) (-2435 ((|#2| $) 69)) (-2457 (($ (-625 |#2|)) 72)) (-4102 (((-112) $) 109)) (-2446 ((|#3| $) 71)) (-2426 ((|#2| $) 66 (|has| |#2| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4353))) (((-751) |#2| $) 91 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 105)) (-4004 ((|#4| $ (-552)) 123)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 81 (|has| |#2| (-1014 (-402 (-552))))) (($ |#2|) 80)) (-4141 (((-751)) 28)) (-1900 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4353)))) (-4077 (((-112) $) 111)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-751)) 47) (($ $ (-625 (-1149)) (-625 (-751))) 46 (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) 45 (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) 44 (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) 43 (|has| |#2| (-876 (-1149)))) (($ $ (-751)) 38 (|has| |#2| (-229))) (($ $) 36 (|has| |#2| (-229)))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#2|) 126 (|has| |#2| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 63 (|has| |#2| (-358)))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-1471 (((-751) $) 99 (|has| $ (-6 -4353)))))
(((-1096 |#1| |#2| |#3| |#4|) (-138) (-751) (-1025) (-234 |t#1| |t#2|) (-234 |t#1| |t#2|)) (T -1096))
-((-3692 (*1 *1 *2) (-12 (-4 *2 (-1025)) (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-622 *4)) (-4 *4 (-1025)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1025)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1025)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *2 (-234 *3 *4)) (-4 *5 (-234 *3 *4)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 #1="*"))) (-4 *2 (-1025)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 #1#))) (-4 *2 (-1025)))) (-3952 (*1 *1 *1) (|partial| -12 (-4 *1 (-1096 *2 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358)))))
-(-13 (-227 |t#2|) (-111 |t#2| |t#2|) (-1028 |t#1| |t#1| |t#2| |t#3| |t#4|) (-407 |t#2|) (-372 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-698 |t#2|)) |%noBranch|) (-15 -3692 ($ |t#2|)) (-15 -3691 ($ (-622 |t#2|))) (-15 -3690 (|t#3| $)) (-15 -3689 (|t#2| $)) (-15 -3688 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4355 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3687 (|t#2| $)) (-15 -3686 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-358)) (PROGN (-15 -3952 ((-3 $ "failed") $)) (-15 ** ($ $ (-538)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4355 #1="*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-840)) . T) ((-227 |#2|) . T) ((-229) |has| |#2| (-229)) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-372 |#2|) . T) ((-407 |#2|) . T) ((-483 |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-628 |#2|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#2| (-621 (-538))) ((-621 |#2|) . T) ((-698 |#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-6 (-4355 #1#)))) ((-707) . T) ((-876 (-1149)) |has| |#2| (-876 (-1149))) ((-1028 |#1| |#1| |#2| |#3| |#4|) . T) ((-1014 (-402 (-538))) |has| |#2| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#2| (-1014 (-538))) ((-1014 |#2|) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1185) . T))
-((-3695 ((|#4| |#4|) 70)) (-3693 ((|#4| |#4|) 65)) (-3697 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2128 (-622 |#3|))) |#4| |#3|) 78)) (-3696 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3694 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1097 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3693 (|#4| |#4|)) (-15 -3694 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3695 (|#4| |#4|)) (-15 -3696 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3697 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2128 (-622 |#3|))) |#4| |#3|))) (-302) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|)) (T -1097))
-((-3697 (*1 *2 *3 *4) (-12 (-4 *5 (-302)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2128 (-622 *4)))) (-5 *1 (-1097 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-3694 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))))
-(-10 -7 (-15 -3693 (|#4| |#4|)) (-15 -3694 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3695 (|#4| |#4|)) (-15 -3696 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3697 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2128 (-622 |#3|))) |#4| |#3|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 17)) (-3417 (((-622 |#2|) $) 159)) (-3419 (((-1143 $) $ |#2|) 54) (((-1143 |#1|) $) 43)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 108 (|has| |#1| (-545)))) (-2178 (($ $) 110 (|has| |#1| (-545)))) (-2176 (((-112) $) 112 (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 |#2|)) 192)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) 156) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 |#2| #2#) $) NIL)) (-3507 ((|#1| $) 154) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) ((|#2| $) NIL)) (-4116 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-4319 (($ $) 196)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) 82)) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-524 |#2|) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| |#1| (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| |#1| (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) 19)) (-2510 (((-751) $) 26)) (-3420 (($ (-1143 |#1|) |#2|) 48) (($ (-1143 $) |#2|) 64)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) 32)) (-3226 (($ |#1| (-524 |#2|)) 71) (($ $ |#2| (-751)) 52) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#2|) NIL)) (-3153 (((-524 |#2|) $) 186) (((-751) $ |#2|) 187) (((-622 (-751)) $ (-622 |#2|)) 188)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 |#2|) (-524 |#2|)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) 120)) (-3418 (((-3 |#2| #3="failed") $) 161)) (-3227 (($ $) 195)) (-3525 ((|#1| $) 37)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| |#2|) (|:| -2493 (-751))) #3#) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) 33)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 138 (|has| |#1| (-446)))) (-3495 (($ (-622 $)) 143 (|has| |#1| (-446))) (($ $ $) 130 (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-622 |#2|) (-622 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-622 |#2|) (-622 $)) 176)) (-4117 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4170 (($ $ |#2|) 194) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-4307 (((-524 |#2|) $) 182) (((-751) $ |#2|) 178) (((-622 (-751)) $ (-622 |#2|)) 180)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| |#1| (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#1| $) 126 (|has| |#1| (-446))) (($ $ |#2|) 129 (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 149) (($ (-538)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-545))) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-4177 (((-622 |#1|) $) 152)) (-4040 ((|#1| $ (-524 |#2|)) 73) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-3035 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 79)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) 115 (|has| |#1| (-545)))) (-2991 (($) 12 T CONST)) (-2997 (($) 14 T CONST)) (-3002 (($ $ |#2|) NIL) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 97)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 124 (|has| |#1| (-358)))) (-4197 (($ $) 85) (($ $ $) 95)) (-4199 (($ $ $) 49)) (** (($ $ (-895)) 102) (($ $ (-751)) 100)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 88) (($ $ $) 65) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
-(((-1098 |#1| |#2|) (-926 |#1| (-524 |#2|) |#2|) (-1025) (-827)) (T -1098))
-NIL
-(-926 |#1| (-524 |#2|) |#2|)
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 |#2|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3846 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 113 (|has| |#1| (-38 (-402 (-538)))))) (-3848 (($ $) 145 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4174 (((-922 |#1|) $ (-751)) NIL) (((-922 |#1|) $ (-751) (-751)) NIL)) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $ |#2|) NIL) (((-751) $ |#2| (-751)) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4297 (((-112) $) NIL)) (-3226 (($ $ (-622 |#2|) (-622 (-524 |#2|))) NIL) (($ $ |#2| (-524 |#2|)) NIL) (($ |#1| (-524 |#2|)) NIL) (($ $ |#2| (-751)) 56) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) 111 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-4172 (($ $ |#2|) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-4039 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-402 (-538)))))) (-4128 (($ $ (-751)) 13)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4303 (($ $) 109 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (($ $ |#2| $) 95) (($ $ (-622 |#2|) (-622 $)) 88) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL)) (-4170 (($ $ |#2|) 98) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-4307 (((-524 |#2|) $) NIL)) (-3698 (((-1 (-1126 |#3|) |#3|) (-622 |#2|) (-622 (-1126 |#3|))) 77)) (-3849 (($ $) 147 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 143 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 15)) (-4317 (((-840) $) 180) (($ (-538)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-545))) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#2|) 63) (($ |#3|) 61)) (-4040 ((|#1| $ (-524 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL) ((|#3| $ (-751)) 38)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-3852 (($ $) 153 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) 149 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 157 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-3855 (($ $) 159 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 155 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 151 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 47 T CONST)) (-2997 (($) 55 T CONST)) (-3002 (($ $ |#2|) NIL) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) 182 (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 59)) (** (($ $ (-895)) NIL) (($ $ (-751)) 68) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 101 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 58) (($ $ (-402 (-538))) 106 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 104 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
-(((-1099 |#1| |#2| |#3|) (-13 (-721 |#1| |#2|) (-10 -8 (-15 -4040 (|#3| $ (-751))) (-15 -4317 ($ |#2|)) (-15 -4317 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3698 ((-1 (-1126 |#3|) |#3|) (-622 |#2|) (-622 (-1126 |#3|)))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $ |#2| |#1|)) (-15 -4039 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1025) (-827) (-926 |#1| (-524 |#2|) |#2|)) (T -1099))
-((-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *2 (-926 *4 (-524 *5) *5)) (-5 *1 (-1099 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-926 *3 (-524 *2) *2)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) (-4 *2 (-926 *3 (-524 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) (-4 *2 (-926 *3 (-524 *4) *4)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-1126 *7))) (-4 *6 (-827)) (-4 *7 (-926 *5 (-524 *6) *6)) (-4 *5 (-1025)) (-5 *2 (-1 (-1126 *7) *7)) (-5 *1 (-1099 *5 *6 *7)))) (-4172 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-926 *3 (-524 *2) *2)))) (-4039 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1099 *4 *3 *5))) (-4 *4 (-38 (-402 (-538)))) (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *1 (-1099 *4 *3 *5)) (-4 *5 (-926 *4 (-524 *3) *3)))))
-(-13 (-721 |#1| |#2|) (-10 -8 (-15 -4040 (|#3| $ (-751))) (-15 -4317 ($ |#2|)) (-15 -4317 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3698 ((-1 (-1126 |#3|) |#3|) (-622 |#2|) (-622 (-1126 |#3|)))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $ |#2| |#1|)) (-15 -4039 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2898 (((-112) $ $) 7)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) 85)) (-4045 (((-622 $) (-622 |#4|)) 86) (((-622 $) (-622 |#4|) (-112)) 111)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) 101) (((-112) $) 97)) (-4051 ((|#4| |#4| $) 92)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 126)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-4158 (((-3 $ #1#) $) 82)) (-4048 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4046 ((|#4| |#4| $) 87)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) 105)) (-3548 (((-112) |#4| $) 136)) (-3546 (((-112) |#4| $) 133)) (-3549 (((-112) |#4| $) 137) (((-112) $) 134)) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) 104) (((-112) $) 103)) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) 128)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 127)) (-4157 (((-3 |#4| #1#) $) 83)) (-3543 (((-622 $) |#4| $) 129)) (-3545 (((-3 (-112) (-622 $)) |#4| $) 132)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3589 (((-622 $) |#4| $) 125) (((-622 $) (-622 |#4|) $) 124) (((-622 $) (-622 |#4|) (-622 $)) 123) (((-622 $) |#4| (-622 $)) 122)) (-3799 (($ |#4| $) 117) (($ (-622 |#4|) $) 116)) (-4060 (((-622 |#4|) $) 107)) (-4054 (((-112) |#4| $) 99) (((-112) $) 95)) (-4049 ((|#4| |#4| $) 90)) (-4062 (((-112) $ $) 110)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) 100) (((-112) $) 96)) (-4050 ((|#4| |#4| $) 91)) (-3594 (((-1093) $) 10)) (-4160 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4042 (((-3 $ #1#) $ |#4|) 78)) (-4128 (($ $ |#4|) 77) (((-622 $) |#4| $) 115) (((-622 $) |#4| (-622 $)) 114) (((-622 $) (-622 |#4|) $) 113) (((-622 $) (-622 |#4|) (-622 $)) 112)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-4307 (((-751) $) 106)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-4047 (($ $) 88)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-4041 (((-751) $) 76 (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) 98)) (-3540 (((-622 $) |#4| $) 121) (((-622 $) |#4| (-622 $)) 120) (((-622 $) (-622 |#4|) $) 119) (((-622 $) (-622 |#4|) (-622 $)) 118)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) 81)) (-3547 (((-112) |#4| $) 135)) (-4293 (((-112) |#3| $) 80)) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353)))))
+((-2467 (*1 *1 *2) (-12 (-4 *2 (-1025)) (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-625 *4)) (-4 *4 (-1025)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1025)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1025)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *2 (-234 *3 *4)) (-4 *5 (-234 *3 *4)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) (-3150 (*1 *1 *1) (|partial| -12 (-4 *1 (-1096 *2 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358)))))
+(-13 (-227 |t#2|) (-111 |t#2| |t#2|) (-1028 |t#1| |t#1| |t#2| |t#3| |t#4|) (-406 |t#2|) (-372 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-698 |t#2|)) |%noBranch|) (-15 -2467 ($ |t#2|)) (-15 -2457 ($ (-625 |t#2|))) (-15 -2446 (|t#3| $)) (-15 -1650 (|t#2| $)) (-15 -2435 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4355 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2426 (|t#2| $)) (-15 -2416 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-358)) (PROGN (-15 -3150 ((-3 $ "failed") $)) (-15 ** ($ $ (-552)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4355 "*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-839)) . T) ((-227 |#2|) . T) ((-229) |has| |#2| (-229)) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-372 |#2|) . T) ((-406 |#2|) . T) ((-483 |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-628 |#2|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#2| (-621 (-552))) ((-621 |#2|) . T) ((-698 |#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-6 (-4355 "*")))) ((-707) . T) ((-876 (-1149)) |has| |#2| (-876 (-1149))) ((-1028 |#1| |#1| |#2| |#3| |#4|) . T) ((-1014 (-402 (-552))) |has| |#2| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#2| (-1014 (-552))) ((-1014 |#2|) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1186) . T))
+((-2497 ((|#4| |#4|) 70)) (-2475 ((|#4| |#4|) 65)) (-2516 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|) 78)) (-2507 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2486 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1097 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2475 (|#4| |#4|)) (-15 -2486 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2497 (|#4| |#4|)) (-15 -2507 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2516 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|))) (-302) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|)) (T -1097))
+((-2516 (*1 *2 *3 *4) (-12 (-4 *5 (-302)) (-4 *6 (-368 *5)) (-4 *4 (-368 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-1097 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))) (-2507 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-2497 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-2486 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))))
+(-10 -7 (-15 -2475 (|#4| |#4|)) (-15 -2486 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2497 (|#4| |#4|)) (-15 -2507 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2516 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 17)) (-3982 (((-625 |#2|) $) 159)) (-3793 (((-1145 $) $ |#2|) 54) (((-1145 |#1|) $) 43)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 108 (|has| |#1| (-544)))) (-3528 (($ $) 110 (|has| |#1| (-544)))) (-3509 (((-112) $) 112 (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 |#2|)) 192)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 156) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 |#2| "failed") $) NIL)) (-1895 ((|#1| $) 154) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) ((|#2| $) NIL)) (-3207 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-4169 (($ $) 196)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) 82)) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-524 |#2|) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| |#1| (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| |#1| (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) 19)) (-3723 (((-751) $) 26)) (-3970 (($ (-1145 |#1|) |#2|) 48) (($ (-1145 $) |#2|) 64)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) 32)) (-3957 (($ |#1| (-524 |#2|)) 71) (($ $ |#2| (-751)) 52) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#2|) NIL)) (-4134 (((-524 |#2|) $) 186) (((-751) $ |#2|) 187) (((-625 (-751)) $ (-625 |#2|)) 188)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 |#2|) (-524 |#2|)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) 120)) (-1942 (((-3 |#2| "failed") $) 161)) (-4131 (($ $) 195)) (-4144 ((|#1| $) 37)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| |#2|) (|:| -3564 (-751))) "failed") $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) 33)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 138 (|has| |#1| (-446)))) (-2633 (($ (-625 $)) 143 (|has| |#1| (-446))) (($ $ $) 130 (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-625 |#2|) (-625 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-625 |#2|) (-625 $)) 176)) (-3217 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-3072 (($ $ |#2|) 194) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-4276 (((-524 |#2|) $) 182) (((-751) $ |#2|) 178) (((-625 (-751)) $ (-625 |#2|)) 180)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#1| $) 126 (|has| |#1| (-446))) (($ $ |#2|) 129 (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 149) (($ (-552)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-544))) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-2512 (((-625 |#1|) $) 152)) (-3637 ((|#1| $ (-524 |#2|)) 73) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 79)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) 115 (|has| |#1| (-544)))) (-2089 (($) 12 T CONST)) (-2100 (($) 14 T CONST)) (-3768 (($ $ |#2|) NIL) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 97)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 124 (|has| |#1| (-358)))) (-2393 (($ $) 85) (($ $ $) 95)) (-2382 (($ $ $) 49)) (** (($ $ (-897)) 102) (($ $ (-751)) 100)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 88) (($ $ $) 65) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+(((-1098 |#1| |#2|) (-925 |#1| (-524 |#2|) |#2|) (-1025) (-827)) (T -1098))
+NIL
+(-925 |#1| (-524 |#2|) |#2|)
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 |#2|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-3728 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 113 (|has| |#1| (-38 (-402 (-552)))))) (-3749 (($ $) 145 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-4098 (((-928 |#1|) $ (-751)) NIL) (((-928 |#1|) $ (-751) (-751)) NIL)) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $ |#2|) NIL) (((-751) $ |#2| (-751)) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4201 (((-112) $) NIL)) (-3957 (($ $ (-625 |#2|) (-625 (-524 |#2|))) NIL) (($ $ |#2| (-524 |#2|)) NIL) (($ |#1| (-524 |#2|)) NIL) (($ $ |#2| (-751)) 56) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) 111 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2481 (($ $ |#2|) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-3626 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-402 (-552)))))) (-2147 (($ $ (-751)) 13)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2863 (($ $) 109 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (($ $ |#2| $) 95) (($ $ (-625 |#2|) (-625 $)) 88) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL)) (-3072 (($ $ |#2|) 98) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-4276 (((-524 |#2|) $) NIL)) (-2525 (((-1 (-1129 |#3|) |#3|) (-625 |#2|) (-625 (-1129 |#3|))) 77)) (-3759 (($ $) 147 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 143 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 15)) (-1683 (((-839) $) 180) (($ (-552)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-544))) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#2|) 63) (($ |#3|) 61)) (-3637 ((|#1| $ (-524 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL) ((|#3| $ (-751)) 38)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-3789 (($ $) 153 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) 149 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 157 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3742 (($ $) 159 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 155 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 151 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 47 T CONST)) (-2100 (($) 55 T CONST)) (-3768 (($ $ |#2|) NIL) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) 182 (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 59)) (** (($ $ (-897)) NIL) (($ $ (-751)) 68) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 101 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 58) (($ $ (-402 (-552))) 106 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 104 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
+(((-1099 |#1| |#2| |#3|) (-13 (-721 |#1| |#2|) (-10 -8 (-15 -3637 (|#3| $ (-751))) (-15 -1683 ($ |#2|)) (-15 -1683 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2525 ((-1 (-1129 |#3|) |#3|) (-625 |#2|) (-625 (-1129 |#3|)))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $ |#2| |#1|)) (-15 -3626 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1025) (-827) (-925 |#1| (-524 |#2|) |#2|)) (T -1099))
+((-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *2 (-925 *4 (-524 *5) *5)) (-5 *1 (-1099 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-925 *3 (-524 *2) *2)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) (-4 *2 (-925 *3 (-524 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) (-4 *2 (-925 *3 (-524 *4) *4)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-1129 *7))) (-4 *6 (-827)) (-4 *7 (-925 *5 (-524 *6) *6)) (-4 *5 (-1025)) (-5 *2 (-1 (-1129 *7) *7)) (-5 *1 (-1099 *5 *6 *7)))) (-2481 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-925 *3 (-524 *2) *2)))) (-3626 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1099 *4 *3 *5))) (-4 *4 (-38 (-402 (-552)))) (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *1 (-1099 *4 *3 *5)) (-4 *5 (-925 *4 (-524 *3) *3)))))
+(-13 (-721 |#1| |#2|) (-10 -8 (-15 -3637 (|#3| $ (-751))) (-15 -1683 ($ |#2|)) (-15 -1683 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2525 ((-1 (-1129 |#3|) |#3|) (-625 |#2|) (-625 (-1129 |#3|)))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $ |#2| |#1|)) (-15 -3626 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-1671 (((-112) $ $) 7)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) 85)) (-3690 (((-625 $) (-625 |#4|)) 86) (((-625 $) (-625 |#4|) (-112)) 111)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 126)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2936 (((-3 $ "failed") $) 82)) (-3720 ((|#4| |#4| $) 89)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3699 ((|#4| |#4| $) 87)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) 105)) (-3731 (((-112) |#4| $) 136)) (-3714 (((-112) |#4| $) 133)) (-3741 (((-112) |#4| $) 137) (((-112) $) 134)) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) 104) (((-112) $) 103)) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) 128)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 127)) (-1437 (((-3 |#4| "failed") $) 83)) (-3685 (((-625 $) |#4| $) 129)) (-3704 (((-3 (-112) (-625 $)) |#4| $) 132)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2860 (((-625 $) |#4| $) 125) (((-625 $) (-625 |#4|) $) 124) (((-625 $) (-625 |#4|) (-625 $)) 123) (((-625 $) |#4| (-625 $)) 122)) (-3999 (($ |#4| $) 117) (($ (-625 |#4|) $) 116)) (-2699 (((-625 |#4|) $) 107)) (-3777 (((-112) |#4| $) 99) (((-112) $) 95)) (-3727 ((|#4| |#4| $) 90)) (-2719 (((-112) $ $) 110)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) 100) (((-112) $) 96)) (-3737 ((|#4| |#4| $) 91)) (-2831 (((-1093) $) 10)) (-2924 (((-3 |#4| "failed") $) 84)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3657 (((-3 $ "failed") $ |#4|) 78)) (-2147 (($ $ |#4|) 77) (((-625 $) |#4| $) 115) (((-625 $) |#4| (-625 $)) 114) (((-625 $) (-625 |#4|) $) 113) (((-625 $) (-625 |#4|) (-625 $)) 112)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-4276 (((-751) $) 106)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-3709 (($ $) 88)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-3647 (((-751) $) 76 (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) 98)) (-3651 (((-625 $) |#4| $) 121) (((-625 $) |#4| (-625 $)) 120) (((-625 $) (-625 |#4|) $) 119) (((-625 $) (-625 |#4|) (-625 $)) 118)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) 81)) (-3724 (((-112) |#4| $) 135)) (-4168 (((-112) |#3| $) 80)) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353)))))
(((-1100 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1100))
NIL
(-13 (-1082 |t#1| |t#2| |t#3| |t#4|) (-764 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-764 |#1| |#2| |#3| |#4|) . T) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1074) . T) ((-1082 |#1| |#2| |#3| |#4|) . T) ((-1180 |#1| |#2| |#3| |#4|) . T) ((-1185) . T))
-((-3936 (((-622 |#2|) |#1|) 12)) (-3704 (((-622 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-622 |#2|) |#1|) 52)) (-3702 (((-622 |#2|) |#2| |#2| |#2|) 39) (((-622 |#2|) |#1|) 50)) (-3699 ((|#2| |#1|) 46)) (-3700 (((-2 (|:| |solns| (-622 |#2|)) (|:| |maps| (-622 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3701 (((-622 |#2|) |#2| |#2|) 38) (((-622 |#2|) |#1|) 49)) (-3703 (((-622 |#2|) |#2| |#2| |#2| |#2|) 40) (((-622 |#2|) |#1|) 51)) (-3708 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3706 ((|#2| |#2| |#2| |#2|) 43)) (-3705 ((|#2| |#2| |#2|) 42)) (-3707 ((|#2| |#2| |#2| |#2| |#2|) 44)))
-(((-1101 |#1| |#2|) (-10 -7 (-15 -3936 ((-622 |#2|) |#1|)) (-15 -3699 (|#2| |#1|)) (-15 -3700 ((-2 (|:| |solns| (-622 |#2|)) (|:| |maps| (-622 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3701 ((-622 |#2|) |#1|)) (-15 -3702 ((-622 |#2|) |#1|)) (-15 -3703 ((-622 |#2|) |#1|)) (-15 -3704 ((-622 |#2|) |#1|)) (-15 -3701 ((-622 |#2|) |#2| |#2|)) (-15 -3702 ((-622 |#2|) |#2| |#2| |#2|)) (-15 -3703 ((-622 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3704 ((-622 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3706 (|#2| |#2| |#2| |#2|)) (-15 -3707 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3708 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1207 |#2|) (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (T -1101))
-((-3708 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))) (-3707 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))) (-3706 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))) (-3705 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))) (-3704 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))) (-3703 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))) (-3702 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))) (-3704 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) (-3703 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) (-3702 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) (-3701 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) (-3700 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-2 (|:| |solns| (-622 *5)) (|:| |maps| (-622 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1101 *3 *5)) (-4 *3 (-1207 *5)))) (-3699 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))))
-(-10 -7 (-15 -3936 ((-622 |#2|) |#1|)) (-15 -3699 (|#2| |#1|)) (-15 -3700 ((-2 (|:| |solns| (-622 |#2|)) (|:| |maps| (-622 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3701 ((-622 |#2|) |#1|)) (-15 -3702 ((-622 |#2|) |#1|)) (-15 -3703 ((-622 |#2|) |#1|)) (-15 -3704 ((-622 |#2|) |#1|)) (-15 -3701 ((-622 |#2|) |#2| |#2|)) (-15 -3702 ((-622 |#2|) |#2| |#2| |#2|)) (-15 -3703 ((-622 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3704 ((-622 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3706 (|#2| |#2| |#2| |#2|)) (-15 -3707 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3708 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-3709 (((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|))))) 95) (((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149))) 94) (((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|)))) 92) (((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|))) (-622 (-1149))) 90) (((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|)))) 75) (((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|))) (-1149)) 76) (((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|))) 70) (((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|)) (-1149)) 59)) (-3710 (((-622 (-622 (-309 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149))) 88) (((-622 (-309 |#1|)) (-402 (-922 |#1|)) (-1149)) 43)) (-3711 (((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-402 (-922 |#1|)) (-1149)) 98) (((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149)) 97)))
-(((-1102 |#1|) (-10 -7 (-15 -3709 ((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|)))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|))))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|))))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149)))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -3710 ((-622 (-309 |#1|)) (-402 (-922 |#1|)) (-1149))) (-15 -3710 ((-622 (-622 (-309 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3711 ((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3711 ((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-402 (-922 |#1|)) (-1149)))) (-13 (-302) (-827) (-145))) (T -1102))
-((-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-1138 (-622 (-309 *5)) (-622 (-288 (-309 *5))))) (-5 *1 (-1102 *5)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-402 (-922 *5)))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-1138 (-622 (-309 *5)) (-622 (-288 (-309 *5))))) (-5 *1 (-1102 *5)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-309 *5)))) (-5 *1 (-1102 *5)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-309 *5))) (-5 *1 (-1102 *5)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-622 (-288 (-402 (-922 *4))))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *4))))) (-5 *1 (-1102 *4)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-288 (-402 (-922 *5))))) (-5 *4 (-622 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *5))))) (-5 *1 (-1102 *5)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-622 (-402 (-922 *4)))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *4))))) (-5 *1 (-1102 *4)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *5))))) (-5 *1 (-1102 *5)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-288 (-402 (-922 *4)))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1102 *4)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-402 (-922 *5)))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1102 *5)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1102 *4)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1102 *5)))))
-(-10 -7 (-15 -3709 ((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|)))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|))))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|))))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149)))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -3710 ((-622 (-309 |#1|)) (-402 (-922 |#1|)) (-1149))) (-15 -3710 ((-622 (-622 (-309 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3711 ((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3711 ((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-402 (-922 |#1|)) (-1149))))
-((-3713 (((-402 (-1143 (-309 |#1|))) (-1231 (-309 |#1|)) (-402 (-1143 (-309 |#1|))) (-538)) 29)) (-3712 (((-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|)))) 40)))
-(((-1103 |#1|) (-10 -7 (-15 -3712 ((-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))))) (-15 -3713 ((-402 (-1143 (-309 |#1|))) (-1231 (-309 |#1|)) (-402 (-1143 (-309 |#1|))) (-538)))) (-13 (-545) (-827))) (T -1103))
-((-3713 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-402 (-1143 (-309 *5)))) (-5 *3 (-1231 (-309 *5))) (-5 *4 (-538)) (-4 *5 (-13 (-545) (-827))) (-5 *1 (-1103 *5)))) (-3712 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-402 (-1143 (-309 *3)))) (-4 *3 (-13 (-545) (-827))) (-5 *1 (-1103 *3)))))
-(-10 -7 (-15 -3712 ((-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))))) (-15 -3713 ((-402 (-1143 (-309 |#1|))) (-1231 (-309 |#1|)) (-402 (-1143 (-309 |#1|))) (-538))))
-((-3936 (((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-309 |#1|))) (-622 (-1149))) 224) (((-622 (-288 (-309 |#1|))) (-309 |#1|) (-1149)) 20) (((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|)) (-1149)) 26) (((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|))) 25) (((-622 (-288 (-309 |#1|))) (-309 |#1|)) 21)))
-(((-1104 |#1|) (-10 -7 (-15 -3936 ((-622 (-288 (-309 |#1|))) (-309 |#1|))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|)))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|)) (-1149))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-309 |#1|) (-1149))) (-15 -3936 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-309 |#1|))) (-622 (-1149))))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (T -1104))
-((-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-1149))) (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *5))))) (-5 *1 (-1104 *5)) (-5 *3 (-622 (-288 (-309 *5)))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1104 *5)) (-5 *3 (-309 *5)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1104 *5)) (-5 *3 (-288 (-309 *5))))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-288 (-309 *4))))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-309 *4)))))
-(-10 -7 (-15 -3936 ((-622 (-288 (-309 |#1|))) (-309 |#1|))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|)))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|)) (-1149))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-309 |#1|) (-1149))) (-15 -3936 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-309 |#1|))) (-622 (-1149)))))
-((-3715 ((|#2| |#2|) 20 (|has| |#1| (-827))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3714 ((|#2| |#2|) 19 (|has| |#1| (-827))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
-(((-1105 |#1| |#2|) (-10 -7 (-15 -3714 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3715 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-827)) (PROGN (-15 -3714 (|#2| |#2|)) (-15 -3715 (|#2| |#2|))) |%noBranch|)) (-1185) (-13 (-588 (-538) |#1|) (-10 -7 (-6 -4353) (-6 -4354)))) (T -1105))
-((-3715 (*1 *2 *2) (-12 (-4 *3 (-827)) (-4 *3 (-1185)) (-5 *1 (-1105 *3 *2)) (-4 *2 (-13 (-588 (-538) *3) (-10 -7 (-6 -4353) (-6 -4354)))))) (-3714 (*1 *2 *2) (-12 (-4 *3 (-827)) (-4 *3 (-1185)) (-5 *1 (-1105 *3 *2)) (-4 *2 (-13 (-588 (-538) *3) (-10 -7 (-6 -4353) (-6 -4354)))))) (-3715 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-1105 *4 *2)) (-4 *2 (-13 (-588 (-538) *4) (-10 -7 (-6 -4353) (-6 -4354)))))) (-3714 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-1105 *4 *2)) (-4 *2 (-13 (-588 (-538) *4) (-10 -7 (-6 -4353) (-6 -4354)))))))
-(-10 -7 (-15 -3714 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3715 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-827)) (PROGN (-15 -3714 (|#2| |#2|)) (-15 -3715 (|#2| |#2|))) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-4248 (((-1137 3 |#1|) $) 107)) (-3725 (((-112) $) 72)) (-3726 (($ $ (-622 (-919 |#1|))) 20) (($ $ (-622 (-622 |#1|))) 75) (($ (-622 (-919 |#1|))) 74) (((-622 (-919 |#1|)) $) 73)) (-3731 (((-112) $) 41)) (-4069 (($ $ (-919 |#1|)) 46) (($ $ (-622 |#1|)) 51) (($ $ (-751)) 53) (($ (-919 |#1|)) 47) (((-919 |#1|) $) 45)) (-3717 (((-2 (|:| -4210 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $) 105)) (-3735 (((-751) $) 26)) (-3736 (((-751) $) 25)) (-4247 (($ $ (-751) (-919 |#1|)) 39)) (-3723 (((-112) $) 82)) (-3724 (($ $ (-622 (-622 (-919 |#1|))) (-622 (-169)) (-169)) 89) (($ $ (-622 (-622 (-622 |#1|))) (-622 (-169)) (-169)) 91) (($ $ (-622 (-622 (-919 |#1|))) (-112) (-112)) 85) (($ $ (-622 (-622 (-622 |#1|))) (-112) (-112)) 93) (($ (-622 (-622 (-919 |#1|)))) 86) (($ (-622 (-622 (-919 |#1|))) (-112) (-112)) 87) (((-622 (-622 (-919 |#1|))) $) 84)) (-3872 (($ (-622 $)) 28) (($ $ $) 29)) (-3718 (((-622 (-169)) $) 102)) (-3722 (((-622 (-919 |#1|)) $) 96)) (-3719 (((-622 (-622 (-169))) $) 101)) (-3720 (((-622 (-622 (-622 (-919 |#1|)))) $) NIL)) (-3721 (((-622 (-622 (-622 (-751)))) $) 99)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3732 (((-751) $ (-622 (-919 |#1|))) 37)) (-3729 (((-112) $) 54)) (-3730 (($ $ (-622 (-919 |#1|))) 56) (($ $ (-622 (-622 |#1|))) 62) (($ (-622 (-919 |#1|))) 57) (((-622 (-919 |#1|)) $) 55)) (-3737 (($) 23) (($ (-1137 3 |#1|)) 24)) (-3759 (($ $) 35)) (-3733 (((-622 $) $) 34)) (-4114 (($ (-622 $)) 31)) (-3734 (((-622 $) $) 33)) (-4317 (((-840) $) 111)) (-3727 (((-112) $) 64)) (-3728 (($ $ (-622 (-919 |#1|))) 66) (($ $ (-622 (-622 |#1|))) 69) (($ (-622 (-919 |#1|))) 67) (((-622 (-919 |#1|)) $) 65)) (-3716 (($ $) 106)) (-3387 (((-112) $ $) NIL)))
+(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-764 |#1| |#2| |#3| |#4|) . T) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1073) . T) ((-1082 |#1| |#2| |#3| |#4|) . T) ((-1179 |#1| |#2| |#3| |#4|) . T) ((-1186) . T))
+((-1728 (((-625 |#2|) |#1|) 12)) (-2572 (((-625 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-625 |#2|) |#1|) 52)) (-2552 (((-625 |#2|) |#2| |#2| |#2|) 39) (((-625 |#2|) |#1|) 50)) (-2535 ((|#2| |#1|) 46)) (-2543 (((-2 (|:| |solns| (-625 |#2|)) (|:| |maps| (-625 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-4072 (((-625 |#2|) |#2| |#2|) 38) (((-625 |#2|) |#1|) 49)) (-2561 (((-625 |#2|) |#2| |#2| |#2| |#2|) 40) (((-625 |#2|) |#1|) 51)) (-1395 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-2591 ((|#2| |#2| |#2| |#2|) 43)) (-2581 ((|#2| |#2| |#2|) 42)) (-2604 ((|#2| |#2| |#2| |#2| |#2|) 44)))
+(((-1101 |#1| |#2|) (-10 -7 (-15 -1728 ((-625 |#2|) |#1|)) (-15 -2535 (|#2| |#1|)) (-15 -2543 ((-2 (|:| |solns| (-625 |#2|)) (|:| |maps| (-625 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4072 ((-625 |#2|) |#1|)) (-15 -2552 ((-625 |#2|) |#1|)) (-15 -2561 ((-625 |#2|) |#1|)) (-15 -2572 ((-625 |#2|) |#1|)) (-15 -4072 ((-625 |#2|) |#2| |#2|)) (-15 -2552 ((-625 |#2|) |#2| |#2| |#2|)) (-15 -2561 ((-625 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2572 ((-625 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2581 (|#2| |#2| |#2|)) (-15 -2591 (|#2| |#2| |#2| |#2|)) (-15 -2604 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1395 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1208 |#2|) (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (T -1101))
+((-1395 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))) (-2604 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))) (-2591 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))) (-2581 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))) (-2572 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))) (-2561 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))) (-2552 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))) (-4072 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))) (-2572 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) (-2561 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) (-4072 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-2 (|:| |solns| (-625 *5)) (|:| |maps| (-625 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1101 *3 *5)) (-4 *3 (-1208 *5)))) (-2535 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))))
+(-10 -7 (-15 -1728 ((-625 |#2|) |#1|)) (-15 -2535 (|#2| |#1|)) (-15 -2543 ((-2 (|:| |solns| (-625 |#2|)) (|:| |maps| (-625 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4072 ((-625 |#2|) |#1|)) (-15 -2552 ((-625 |#2|) |#1|)) (-15 -2561 ((-625 |#2|) |#1|)) (-15 -2572 ((-625 |#2|) |#1|)) (-15 -4072 ((-625 |#2|) |#2| |#2|)) (-15 -2552 ((-625 |#2|) |#2| |#2| |#2|)) (-15 -2561 ((-625 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2572 ((-625 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2581 (|#2| |#2| |#2|)) (-15 -2591 (|#2| |#2| |#2| |#2|)) (-15 -2604 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1395 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-1405 (((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|))))) 95) (((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149))) 94) (((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|)))) 92) (((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|))) (-625 (-1149))) 90) (((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|)))) 75) (((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|))) (-1149)) 76) (((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|))) 70) (((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|)) (-1149)) 59)) (-1415 (((-625 (-625 (-311 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149))) 88) (((-625 (-311 |#1|)) (-402 (-928 |#1|)) (-1149)) 43)) (-1424 (((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-402 (-928 |#1|)) (-1149)) 98) (((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149)) 97)))
+(((-1102 |#1|) (-10 -7 (-15 -1405 ((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|)))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|))))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|))))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149)))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1415 ((-625 (-311 |#1|)) (-402 (-928 |#1|)) (-1149))) (-15 -1415 ((-625 (-625 (-311 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1424 ((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1424 ((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-402 (-928 |#1|)) (-1149)))) (-13 (-302) (-827) (-145))) (T -1102))
+((-1424 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-1138 (-625 (-311 *5)) (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5)))) (-1424 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-928 *5)))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-1138 (-625 (-311 *5)) (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5)))) (-1415 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-311 *5)))) (-5 *1 (-1102 *5)))) (-1415 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-311 *5))) (-5 *1 (-1102 *5)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-625 (-289 (-402 (-928 *4))))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-289 (-311 *4))))) (-5 *1 (-1102 *4)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-289 (-402 (-928 *5))))) (-5 *4 (-625 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-625 (-402 (-928 *4)))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-289 (-311 *4))))) (-5 *1 (-1102 *4)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-289 (-402 (-928 *4)))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1102 *4)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-928 *5)))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1102 *5)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1102 *4)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1102 *5)))))
+(-10 -7 (-15 -1405 ((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|)))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|))))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|))))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149)))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1415 ((-625 (-311 |#1|)) (-402 (-928 |#1|)) (-1149))) (-15 -1415 ((-625 (-625 (-311 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1424 ((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1424 ((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-402 (-928 |#1|)) (-1149))))
+((-1449 (((-402 (-1145 (-311 |#1|))) (-1232 (-311 |#1|)) (-402 (-1145 (-311 |#1|))) (-552)) 29)) (-1436 (((-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|)))) 40)))
+(((-1103 |#1|) (-10 -7 (-15 -1436 ((-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))))) (-15 -1449 ((-402 (-1145 (-311 |#1|))) (-1232 (-311 |#1|)) (-402 (-1145 (-311 |#1|))) (-552)))) (-13 (-544) (-827))) (T -1103))
+((-1449 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-402 (-1145 (-311 *5)))) (-5 *3 (-1232 (-311 *5))) (-5 *4 (-552)) (-4 *5 (-13 (-544) (-827))) (-5 *1 (-1103 *5)))) (-1436 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-402 (-1145 (-311 *3)))) (-4 *3 (-13 (-544) (-827))) (-5 *1 (-1103 *3)))))
+(-10 -7 (-15 -1436 ((-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))))) (-15 -1449 ((-402 (-1145 (-311 |#1|))) (-1232 (-311 |#1|)) (-402 (-1145 (-311 |#1|))) (-552))))
+((-1728 (((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-311 |#1|))) (-625 (-1149))) 224) (((-625 (-289 (-311 |#1|))) (-311 |#1|) (-1149)) 20) (((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1149)) 26) (((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|))) 25) (((-625 (-289 (-311 |#1|))) (-311 |#1|)) 21)))
+(((-1104 |#1|) (-10 -7 (-15 -1728 ((-625 (-289 (-311 |#1|))) (-311 |#1|))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|)))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1149))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-311 |#1|) (-1149))) (-15 -1728 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-311 |#1|))) (-625 (-1149))))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (T -1104))
+((-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-1149))) (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1104 *5)) (-5 *3 (-625 (-289 (-311 *5)))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1104 *5)) (-5 *3 (-311 *5)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1104 *5)) (-5 *3 (-289 (-311 *5))))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-289 (-311 *4))))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-311 *4)))))
+(-10 -7 (-15 -1728 ((-625 (-289 (-311 |#1|))) (-311 |#1|))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|)))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1149))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-311 |#1|) (-1149))) (-15 -1728 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-311 |#1|))) (-625 (-1149)))))
+((-1470 ((|#2| |#2|) 20 (|has| |#1| (-827))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-1459 ((|#2| |#2|) 19 (|has| |#1| (-827))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
+(((-1105 |#1| |#2|) (-10 -7 (-15 -1459 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1470 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-827)) (PROGN (-15 -1459 (|#2| |#2|)) (-15 -1470 (|#2| |#2|))) |%noBranch|)) (-1186) (-13 (-588 (-552) |#1|) (-10 -7 (-6 -4353) (-6 -4354)))) (T -1105))
+((-1470 (*1 *2 *2) (-12 (-4 *3 (-827)) (-4 *3 (-1186)) (-5 *1 (-1105 *3 *2)) (-4 *2 (-13 (-588 (-552) *3) (-10 -7 (-6 -4353) (-6 -4354)))))) (-1459 (*1 *2 *2) (-12 (-4 *3 (-827)) (-4 *3 (-1186)) (-5 *1 (-1105 *3 *2)) (-4 *2 (-13 (-588 (-552) *3) (-10 -7 (-6 -4353) (-6 -4354)))))) (-1470 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-1105 *4 *2)) (-4 *2 (-13 (-588 (-552) *4) (-10 -7 (-6 -4353) (-6 -4354)))))) (-1459 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-1105 *4 *2)) (-4 *2 (-13 (-588 (-552) *4) (-10 -7 (-6 -4353) (-6 -4354)))))))
+(-10 -7 (-15 -1459 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1470 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-827)) (PROGN (-15 -1459 (|#2| |#2|)) (-15 -1470 (|#2| |#2|))) |%noBranch|))
+((-1671 (((-112) $ $) NIL)) (-1856 (((-1137 3 |#1|) $) 107)) (-1559 (((-112) $) 72)) (-1570 (($ $ (-625 (-919 |#1|))) 20) (($ $ (-625 (-625 |#1|))) 75) (($ (-625 (-919 |#1|))) 74) (((-625 (-919 |#1|)) $) 73)) (-1625 (((-112) $) 41)) (-3582 (($ $ (-919 |#1|)) 46) (($ $ (-625 |#1|)) 51) (($ $ (-751)) 53) (($ (-919 |#1|)) 47) (((-919 |#1|) $) 45)) (-3915 (((-2 (|:| -1521 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $) 105)) (-1670 (((-751) $) 26)) (-1682 (((-751) $) 25)) (-1844 (($ $ (-751) (-919 |#1|)) 39)) (-1538 (((-112) $) 82)) (-1548 (($ $ (-625 (-625 (-919 |#1|))) (-625 (-169)) (-169)) 89) (($ $ (-625 (-625 (-625 |#1|))) (-625 (-169)) (-169)) 91) (($ $ (-625 (-625 (-919 |#1|))) (-112) (-112)) 85) (($ $ (-625 (-625 (-625 |#1|))) (-112) (-112)) 93) (($ (-625 (-625 (-919 |#1|)))) 86) (($ (-625 (-625 (-919 |#1|))) (-112) (-112)) 87) (((-625 (-625 (-919 |#1|))) $) 84)) (-3280 (($ (-625 $)) 28) (($ $ $) 29)) (-1492 (((-625 (-169)) $) 102)) (-2952 (((-625 (-919 |#1|)) $) 96)) (-1502 (((-625 (-625 (-169))) $) 101)) (-1515 (((-625 (-625 (-625 (-919 |#1|)))) $) NIL)) (-1527 (((-625 (-625 (-625 (-751)))) $) 99)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1637 (((-751) $ (-625 (-919 |#1|))) 37)) (-1603 (((-112) $) 54)) (-1614 (($ $ (-625 (-919 |#1|))) 56) (($ $ (-625 (-625 |#1|))) 62) (($ (-625 (-919 |#1|))) 57) (((-625 (-919 |#1|)) $) 55)) (-1694 (($) 23) (($ (-1137 3 |#1|)) 24)) (-1871 (($ $) 35)) (-1648 (((-625 $) $) 34)) (-3190 (($ (-625 $)) 31)) (-1660 (((-625 $) $) 33)) (-1683 (((-839) $) 111)) (-1580 (((-112) $) 64)) (-1592 (($ $ (-625 (-919 |#1|))) 66) (($ $ (-625 (-625 |#1|))) 69) (($ (-625 (-919 |#1|))) 67) (((-625 (-919 |#1|)) $) 65)) (-1482 (($ $) 106)) (-2281 (((-112) $ $) NIL)))
(((-1106 |#1|) (-1107 |#1|) (-1025)) (T -1106))
NIL
(-1107 |#1|)
-((-2898 (((-112) $ $) 7)) (-4248 (((-1137 3 |#1|) $) 13)) (-3725 (((-112) $) 29)) (-3726 (($ $ (-622 (-919 |#1|))) 33) (($ $ (-622 (-622 |#1|))) 32) (($ (-622 (-919 |#1|))) 31) (((-622 (-919 |#1|)) $) 30)) (-3731 (((-112) $) 44)) (-4069 (($ $ (-919 |#1|)) 49) (($ $ (-622 |#1|)) 48) (($ $ (-751)) 47) (($ (-919 |#1|)) 46) (((-919 |#1|) $) 45)) (-3717 (((-2 (|:| -4210 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $) 15)) (-3735 (((-751) $) 58)) (-3736 (((-751) $) 59)) (-4247 (($ $ (-751) (-919 |#1|)) 50)) (-3723 (((-112) $) 21)) (-3724 (($ $ (-622 (-622 (-919 |#1|))) (-622 (-169)) (-169)) 28) (($ $ (-622 (-622 (-622 |#1|))) (-622 (-169)) (-169)) 27) (($ $ (-622 (-622 (-919 |#1|))) (-112) (-112)) 26) (($ $ (-622 (-622 (-622 |#1|))) (-112) (-112)) 25) (($ (-622 (-622 (-919 |#1|)))) 24) (($ (-622 (-622 (-919 |#1|))) (-112) (-112)) 23) (((-622 (-622 (-919 |#1|))) $) 22)) (-3872 (($ (-622 $)) 57) (($ $ $) 56)) (-3718 (((-622 (-169)) $) 16)) (-3722 (((-622 (-919 |#1|)) $) 20)) (-3719 (((-622 (-622 (-169))) $) 17)) (-3720 (((-622 (-622 (-622 (-919 |#1|)))) $) 18)) (-3721 (((-622 (-622 (-622 (-751)))) $) 19)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3732 (((-751) $ (-622 (-919 |#1|))) 51)) (-3729 (((-112) $) 39)) (-3730 (($ $ (-622 (-919 |#1|))) 43) (($ $ (-622 (-622 |#1|))) 42) (($ (-622 (-919 |#1|))) 41) (((-622 (-919 |#1|)) $) 40)) (-3737 (($) 61) (($ (-1137 3 |#1|)) 60)) (-3759 (($ $) 52)) (-3733 (((-622 $) $) 53)) (-4114 (($ (-622 $)) 55)) (-3734 (((-622 $) $) 54)) (-4317 (((-840) $) 11)) (-3727 (((-112) $) 34)) (-3728 (($ $ (-622 (-919 |#1|))) 38) (($ $ (-622 (-622 |#1|))) 37) (($ (-622 (-919 |#1|))) 36) (((-622 (-919 |#1|)) $) 35)) (-3716 (($ $) 14)) (-3387 (((-112) $ $) 6)))
+((-1671 (((-112) $ $) 7)) (-1856 (((-1137 3 |#1|) $) 13)) (-1559 (((-112) $) 29)) (-1570 (($ $ (-625 (-919 |#1|))) 33) (($ $ (-625 (-625 |#1|))) 32) (($ (-625 (-919 |#1|))) 31) (((-625 (-919 |#1|)) $) 30)) (-1625 (((-112) $) 44)) (-3582 (($ $ (-919 |#1|)) 49) (($ $ (-625 |#1|)) 48) (($ $ (-751)) 47) (($ (-919 |#1|)) 46) (((-919 |#1|) $) 45)) (-3915 (((-2 (|:| -1521 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $) 15)) (-1670 (((-751) $) 58)) (-1682 (((-751) $) 59)) (-1844 (($ $ (-751) (-919 |#1|)) 50)) (-1538 (((-112) $) 21)) (-1548 (($ $ (-625 (-625 (-919 |#1|))) (-625 (-169)) (-169)) 28) (($ $ (-625 (-625 (-625 |#1|))) (-625 (-169)) (-169)) 27) (($ $ (-625 (-625 (-919 |#1|))) (-112) (-112)) 26) (($ $ (-625 (-625 (-625 |#1|))) (-112) (-112)) 25) (($ (-625 (-625 (-919 |#1|)))) 24) (($ (-625 (-625 (-919 |#1|))) (-112) (-112)) 23) (((-625 (-625 (-919 |#1|))) $) 22)) (-3280 (($ (-625 $)) 57) (($ $ $) 56)) (-1492 (((-625 (-169)) $) 16)) (-2952 (((-625 (-919 |#1|)) $) 20)) (-1502 (((-625 (-625 (-169))) $) 17)) (-1515 (((-625 (-625 (-625 (-919 |#1|)))) $) 18)) (-1527 (((-625 (-625 (-625 (-751)))) $) 19)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1637 (((-751) $ (-625 (-919 |#1|))) 51)) (-1603 (((-112) $) 39)) (-1614 (($ $ (-625 (-919 |#1|))) 43) (($ $ (-625 (-625 |#1|))) 42) (($ (-625 (-919 |#1|))) 41) (((-625 (-919 |#1|)) $) 40)) (-1694 (($) 61) (($ (-1137 3 |#1|)) 60)) (-1871 (($ $) 52)) (-1648 (((-625 $) $) 53)) (-3190 (($ (-625 $)) 55)) (-1660 (((-625 $) $) 54)) (-1683 (((-839) $) 11)) (-1580 (((-112) $) 34)) (-1592 (($ $ (-625 (-919 |#1|))) 38) (($ $ (-625 (-625 |#1|))) 37) (($ (-625 (-919 |#1|))) 36) (((-625 (-919 |#1|)) $) 35)) (-1482 (($ $) 14)) (-2281 (((-112) $ $) 6)))
(((-1107 |#1|) (-138) (-1025)) (T -1107))
-((-4317 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-840)))) (-3737 (*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-3737 (*1 *1 *2) (-12 (-5 *2 (-1137 3 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3872 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3734 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)))) (-3733 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)))) (-3759 (*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-3732 (*1 *2 *1 *3) (-12 (-5 *3 (-622 (-919 *4))) (-4 *1 (-1107 *4)) (-4 *4 (-1025)) (-5 *2 (-751)))) (-4247 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-919 *4)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-4069 (*1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-4069 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-919 *3)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-3730 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3730 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3730 (*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3728 (*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-3726 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3726 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3726 (*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-3724 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-622 (-622 (-919 *5)))) (-5 *3 (-622 (-169))) (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025)))) (-3724 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-622 (-622 (-622 *5)))) (-5 *3 (-622 (-169))) (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025)))) (-3724 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-622 (-622 (-919 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-3724 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-622 (-622 (-622 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-3724 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-919 *3)))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3724 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-622 (-622 (-919 *4)))) (-5 *3 (-112)) (-4 *4 (-1025)) (-4 *1 (-1107 *4)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-919 *3)))))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-622 (-751))))))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-622 (-919 *3))))))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-169)))))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-169))))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -4210 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751)))))) (-3716 (*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-1137 3 *3)))))
-(-13 (-1074) (-10 -8 (-15 -3737 ($)) (-15 -3737 ($ (-1137 3 |t#1|))) (-15 -3736 ((-751) $)) (-15 -3735 ((-751) $)) (-15 -3872 ($ (-622 $))) (-15 -3872 ($ $ $)) (-15 -4114 ($ (-622 $))) (-15 -3734 ((-622 $) $)) (-15 -3733 ((-622 $) $)) (-15 -3759 ($ $)) (-15 -3732 ((-751) $ (-622 (-919 |t#1|)))) (-15 -4247 ($ $ (-751) (-919 |t#1|))) (-15 -4069 ($ $ (-919 |t#1|))) (-15 -4069 ($ $ (-622 |t#1|))) (-15 -4069 ($ $ (-751))) (-15 -4069 ($ (-919 |t#1|))) (-15 -4069 ((-919 |t#1|) $)) (-15 -3731 ((-112) $)) (-15 -3730 ($ $ (-622 (-919 |t#1|)))) (-15 -3730 ($ $ (-622 (-622 |t#1|)))) (-15 -3730 ($ (-622 (-919 |t#1|)))) (-15 -3730 ((-622 (-919 |t#1|)) $)) (-15 -3729 ((-112) $)) (-15 -3728 ($ $ (-622 (-919 |t#1|)))) (-15 -3728 ($ $ (-622 (-622 |t#1|)))) (-15 -3728 ($ (-622 (-919 |t#1|)))) (-15 -3728 ((-622 (-919 |t#1|)) $)) (-15 -3727 ((-112) $)) (-15 -3726 ($ $ (-622 (-919 |t#1|)))) (-15 -3726 ($ $ (-622 (-622 |t#1|)))) (-15 -3726 ($ (-622 (-919 |t#1|)))) (-15 -3726 ((-622 (-919 |t#1|)) $)) (-15 -3725 ((-112) $)) (-15 -3724 ($ $ (-622 (-622 (-919 |t#1|))) (-622 (-169)) (-169))) (-15 -3724 ($ $ (-622 (-622 (-622 |t#1|))) (-622 (-169)) (-169))) (-15 -3724 ($ $ (-622 (-622 (-919 |t#1|))) (-112) (-112))) (-15 -3724 ($ $ (-622 (-622 (-622 |t#1|))) (-112) (-112))) (-15 -3724 ($ (-622 (-622 (-919 |t#1|))))) (-15 -3724 ($ (-622 (-622 (-919 |t#1|))) (-112) (-112))) (-15 -3724 ((-622 (-622 (-919 |t#1|))) $)) (-15 -3723 ((-112) $)) (-15 -3722 ((-622 (-919 |t#1|)) $)) (-15 -3721 ((-622 (-622 (-622 (-751)))) $)) (-15 -3720 ((-622 (-622 (-622 (-919 |t#1|)))) $)) (-15 -3719 ((-622 (-622 (-169))) $)) (-15 -3718 ((-622 (-169)) $)) (-15 -3717 ((-2 (|:| -4210 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $)) (-15 -3716 ($ $)) (-15 -4248 ((-1137 3 |t#1|) $)) (-15 -4317 ((-840) $))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 176) (((-1154) $) 7) (($ (-1154)) NIL)) (-3929 (((-112) $ (|[\|\|]| (-517))) 17) (((-112) $ (|[\|\|]| (-214))) 21) (((-112) $ (|[\|\|]| (-656))) 25) (((-112) $ (|[\|\|]| (-1242))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1089))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-661))) 49) (((-112) $ (|[\|\|]| (-510))) 53) (((-112) $ (|[\|\|]| (-1040))) 57) (((-112) $ (|[\|\|]| (-1243))) 61) (((-112) $ (|[\|\|]| (-518))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-651))) 73) (((-112) $ (|[\|\|]| (-307))) 77) (((-112) $ (|[\|\|]| (-1012))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-946))) 89) (((-112) $ (|[\|\|]| (-1047))) 93) (((-112) $ (|[\|\|]| (-1064))) 97) (((-112) $ (|[\|\|]| (-1069))) 101) (((-112) $ (|[\|\|]| (-608))) 105) (((-112) $ (|[\|\|]| (-1139))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-472))) 121) (((-112) $ (|[\|\|]| (-577))) 125) (((-112) $ (|[\|\|]| (-499))) 131) (((-112) $ (|[\|\|]| (-1131))) 135) (((-112) $ (|[\|\|]| (-538))) 139)) (-3935 (((-517) $) 18) (((-214) $) 22) (((-656) $) 26) (((-1242) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1089) $) 42) (((-95) $) 46) (((-661) $) 50) (((-510) $) 54) (((-1040) $) 58) (((-1243) $) 62) (((-518) $) 66) (((-152) $) 70) (((-651) $) 74) (((-307) $) 78) (((-1012) $) 82) (((-178) $) 86) (((-946) $) 90) (((-1047) $) 94) (((-1064) $) 98) (((-1069) $) 102) (((-608) $) 106) (((-1139) $) 110) (((-154) $) 114) (((-136) $) 118) (((-472) $) 122) (((-577) $) 126) (((-499) $) 132) (((-1131) $) 136) (((-538) $) 140)) (-3387 (((-112) $ $) NIL)))
+((-1683 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-839)))) (-1694 (*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-1694 (*1 *1 *2) (-12 (-5 *2 (-1137 3 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3280 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3280 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-3190 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1660 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)))) (-1648 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)))) (-1871 (*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-1637 (*1 *2 *1 *3) (-12 (-5 *3 (-625 (-919 *4))) (-4 *1 (-1107 *4)) (-4 *4 (-1025)) (-5 *2 (-751)))) (-1844 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-919 *4)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-3582 (*1 *1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3582 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3582 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-919 *3)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) (-1580 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1570 (*1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) (-1559 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-1548 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-625 (-625 (-919 *5)))) (-5 *3 (-625 (-169))) (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025)))) (-1548 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-625 (-625 (-625 *5)))) (-5 *3 (-625 (-169))) (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025)))) (-1548 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-625 (-625 (-919 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-1548 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-625 (-625 (-625 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-1548 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-919 *3)))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-1548 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-625 (-625 (-919 *4)))) (-5 *3 (-112)) (-4 *4 (-1025)) (-4 *1 (-1107 *4)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-625 (-919 *3)))))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-625 (-625 (-751))))))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-625 (-625 (-919 *3))))))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-625 (-169)))))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-169))))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -1521 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751)))))) (-1482 (*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-1137 3 *3)))))
+(-13 (-1073) (-10 -8 (-15 -1694 ($)) (-15 -1694 ($ (-1137 3 |t#1|))) (-15 -1682 ((-751) $)) (-15 -1670 ((-751) $)) (-15 -3280 ($ (-625 $))) (-15 -3280 ($ $ $)) (-15 -3190 ($ (-625 $))) (-15 -1660 ((-625 $) $)) (-15 -1648 ((-625 $) $)) (-15 -1871 ($ $)) (-15 -1637 ((-751) $ (-625 (-919 |t#1|)))) (-15 -1844 ($ $ (-751) (-919 |t#1|))) (-15 -3582 ($ $ (-919 |t#1|))) (-15 -3582 ($ $ (-625 |t#1|))) (-15 -3582 ($ $ (-751))) (-15 -3582 ($ (-919 |t#1|))) (-15 -3582 ((-919 |t#1|) $)) (-15 -1625 ((-112) $)) (-15 -1614 ($ $ (-625 (-919 |t#1|)))) (-15 -1614 ($ $ (-625 (-625 |t#1|)))) (-15 -1614 ($ (-625 (-919 |t#1|)))) (-15 -1614 ((-625 (-919 |t#1|)) $)) (-15 -1603 ((-112) $)) (-15 -1592 ($ $ (-625 (-919 |t#1|)))) (-15 -1592 ($ $ (-625 (-625 |t#1|)))) (-15 -1592 ($ (-625 (-919 |t#1|)))) (-15 -1592 ((-625 (-919 |t#1|)) $)) (-15 -1580 ((-112) $)) (-15 -1570 ($ $ (-625 (-919 |t#1|)))) (-15 -1570 ($ $ (-625 (-625 |t#1|)))) (-15 -1570 ($ (-625 (-919 |t#1|)))) (-15 -1570 ((-625 (-919 |t#1|)) $)) (-15 -1559 ((-112) $)) (-15 -1548 ($ $ (-625 (-625 (-919 |t#1|))) (-625 (-169)) (-169))) (-15 -1548 ($ $ (-625 (-625 (-625 |t#1|))) (-625 (-169)) (-169))) (-15 -1548 ($ $ (-625 (-625 (-919 |t#1|))) (-112) (-112))) (-15 -1548 ($ $ (-625 (-625 (-625 |t#1|))) (-112) (-112))) (-15 -1548 ($ (-625 (-625 (-919 |t#1|))))) (-15 -1548 ($ (-625 (-625 (-919 |t#1|))) (-112) (-112))) (-15 -1548 ((-625 (-625 (-919 |t#1|))) $)) (-15 -1538 ((-112) $)) (-15 -2952 ((-625 (-919 |t#1|)) $)) (-15 -1527 ((-625 (-625 (-625 (-751)))) $)) (-15 -1515 ((-625 (-625 (-625 (-919 |t#1|)))) $)) (-15 -1502 ((-625 (-625 (-169))) $)) (-15 -1492 ((-625 (-169)) $)) (-15 -3915 ((-2 (|:| -1521 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $)) (-15 -1482 ($ $)) (-15 -1856 ((-1137 3 |t#1|) $)) (-15 -1683 ((-839) $))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 176) (((-1154) $) 7) (($ (-1154)) NIL)) (-2079 (((-112) $ (|[\|\|]| (-517))) 17) (((-112) $ (|[\|\|]| (-214))) 21) (((-112) $ (|[\|\|]| (-656))) 25) (((-112) $ (|[\|\|]| (-1242))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1088))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-661))) 49) (((-112) $ (|[\|\|]| (-510))) 53) (((-112) $ (|[\|\|]| (-1040))) 57) (((-112) $ (|[\|\|]| (-1243))) 61) (((-112) $ (|[\|\|]| (-518))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-651))) 73) (((-112) $ (|[\|\|]| (-306))) 77) (((-112) $ (|[\|\|]| (-1012))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-946))) 89) (((-112) $ (|[\|\|]| (-1047))) 93) (((-112) $ (|[\|\|]| (-1063))) 97) (((-112) $ (|[\|\|]| (-1069))) 101) (((-112) $ (|[\|\|]| (-608))) 105) (((-112) $ (|[\|\|]| (-1139))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-472))) 121) (((-112) $ (|[\|\|]| (-577))) 125) (((-112) $ (|[\|\|]| (-499))) 131) (((-112) $ (|[\|\|]| (-1131))) 135) (((-112) $ (|[\|\|]| (-552))) 139)) (-1905 (((-517) $) 18) (((-214) $) 22) (((-656) $) 26) (((-1242) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1088) $) 42) (((-95) $) 46) (((-661) $) 50) (((-510) $) 54) (((-1040) $) 58) (((-1243) $) 62) (((-518) $) 66) (((-152) $) 70) (((-651) $) 74) (((-306) $) 78) (((-1012) $) 82) (((-178) $) 86) (((-946) $) 90) (((-1047) $) 94) (((-1063) $) 98) (((-1069) $) 102) (((-608) $) 106) (((-1139) $) 110) (((-154) $) 114) (((-136) $) 118) (((-472) $) 122) (((-577) $) 126) (((-499) $) 132) (((-1131) $) 136) (((-552) $) 140)) (-2281 (((-112) $ $) NIL)))
(((-1108) (-1110)) (T -1108))
NIL
(-1110)
-((-3738 (((-622 (-1154)) (-1131)) 9)))
-(((-1109) (-10 -7 (-15 -3738 ((-622 (-1154)) (-1131))))) (T -1109))
-((-3738 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-622 (-1154))) (-5 *1 (-1109)))))
-(-10 -7 (-15 -3738 ((-622 (-1154)) (-1131))))
-((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-3929 (((-112) $ (|[\|\|]| (-517))) 80) (((-112) $ (|[\|\|]| (-214))) 78) (((-112) $ (|[\|\|]| (-656))) 76) (((-112) $ (|[\|\|]| (-1242))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1089))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-661))) 64) (((-112) $ (|[\|\|]| (-510))) 62) (((-112) $ (|[\|\|]| (-1040))) 60) (((-112) $ (|[\|\|]| (-1243))) 58) (((-112) $ (|[\|\|]| (-518))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-651))) 52) (((-112) $ (|[\|\|]| (-307))) 50) (((-112) $ (|[\|\|]| (-1012))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-946))) 44) (((-112) $ (|[\|\|]| (-1047))) 42) (((-112) $ (|[\|\|]| (-1064))) 40) (((-112) $ (|[\|\|]| (-1069))) 38) (((-112) $ (|[\|\|]| (-608))) 36) (((-112) $ (|[\|\|]| (-1139))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-472))) 28) (((-112) $ (|[\|\|]| (-577))) 26) (((-112) $ (|[\|\|]| (-499))) 24) (((-112) $ (|[\|\|]| (-1131))) 22) (((-112) $ (|[\|\|]| (-538))) 20)) (-3935 (((-517) $) 79) (((-214) $) 77) (((-656) $) 75) (((-1242) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1089) $) 67) (((-95) $) 65) (((-661) $) 63) (((-510) $) 61) (((-1040) $) 59) (((-1243) $) 57) (((-518) $) 55) (((-152) $) 53) (((-651) $) 51) (((-307) $) 49) (((-1012) $) 47) (((-178) $) 45) (((-946) $) 43) (((-1047) $) 41) (((-1064) $) 39) (((-1069) $) 37) (((-608) $) 35) (((-1139) $) 33) (((-154) $) 31) (((-136) $) 29) (((-472) $) 27) (((-577) $) 25) (((-499) $) 23) (((-1131) $) 21) (((-538) $) 19)) (-3387 (((-112) $ $) 6)))
+((-3017 (((-625 (-1154)) (-1131)) 9)))
+(((-1109) (-10 -7 (-15 -3017 ((-625 (-1154)) (-1131))))) (T -1109))
+((-3017 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-625 (-1154))) (-5 *1 (-1109)))))
+(-10 -7 (-15 -3017 ((-625 (-1154)) (-1131))))
+((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-2079 (((-112) $ (|[\|\|]| (-517))) 80) (((-112) $ (|[\|\|]| (-214))) 78) (((-112) $ (|[\|\|]| (-656))) 76) (((-112) $ (|[\|\|]| (-1242))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1088))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-661))) 64) (((-112) $ (|[\|\|]| (-510))) 62) (((-112) $ (|[\|\|]| (-1040))) 60) (((-112) $ (|[\|\|]| (-1243))) 58) (((-112) $ (|[\|\|]| (-518))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-651))) 52) (((-112) $ (|[\|\|]| (-306))) 50) (((-112) $ (|[\|\|]| (-1012))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-946))) 44) (((-112) $ (|[\|\|]| (-1047))) 42) (((-112) $ (|[\|\|]| (-1063))) 40) (((-112) $ (|[\|\|]| (-1069))) 38) (((-112) $ (|[\|\|]| (-608))) 36) (((-112) $ (|[\|\|]| (-1139))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-472))) 28) (((-112) $ (|[\|\|]| (-577))) 26) (((-112) $ (|[\|\|]| (-499))) 24) (((-112) $ (|[\|\|]| (-1131))) 22) (((-112) $ (|[\|\|]| (-552))) 20)) (-1905 (((-517) $) 79) (((-214) $) 77) (((-656) $) 75) (((-1242) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1088) $) 67) (((-95) $) 65) (((-661) $) 63) (((-510) $) 61) (((-1040) $) 59) (((-1243) $) 57) (((-518) $) 55) (((-152) $) 53) (((-651) $) 51) (((-306) $) 49) (((-1012) $) 47) (((-178) $) 45) (((-946) $) 43) (((-1047) $) 41) (((-1063) $) 39) (((-1069) $) 37) (((-608) $) 35) (((-1139) $) 33) (((-154) $) 31) (((-136) $) 29) (((-472) $) 27) (((-577) $) 25) (((-499) $) 23) (((-1131) $) 21) (((-552) $) 19)) (-2281 (((-112) $ $) 6)))
(((-1110) (-138)) (T -1110))
-((-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-517)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-214)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-656))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-656)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1242))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1242)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-137)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-132)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1089)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-95)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-661)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-510)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1040)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1243))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1243)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-518)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-152)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-651))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-651)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-307))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-307)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1012))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1012)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-178)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-946))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-946)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1047)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1064)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1069)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-608)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1139))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1139)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-154)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-136)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-472)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-577)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-499)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1131)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-538)))))
-(-13 (-1056) (-1227) (-10 -8 (-15 -3929 ((-112) $ (|[\|\|]| (-517)))) (-15 -3935 ((-517) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-214)))) (-15 -3935 ((-214) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-656)))) (-15 -3935 ((-656) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1242)))) (-15 -3935 ((-1242) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-137)))) (-15 -3935 ((-137) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-132)))) (-15 -3935 ((-132) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1089)))) (-15 -3935 ((-1089) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-95)))) (-15 -3935 ((-95) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-661)))) (-15 -3935 ((-661) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-510)))) (-15 -3935 ((-510) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1040)))) (-15 -3935 ((-1040) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1243)))) (-15 -3935 ((-1243) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-518)))) (-15 -3935 ((-518) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-152)))) (-15 -3935 ((-152) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-651)))) (-15 -3935 ((-651) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-307)))) (-15 -3935 ((-307) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1012)))) (-15 -3935 ((-1012) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-178)))) (-15 -3935 ((-178) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-946)))) (-15 -3935 ((-946) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1047)))) (-15 -3935 ((-1047) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1064)))) (-15 -3935 ((-1064) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1069)))) (-15 -3935 ((-1069) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-608)))) (-15 -3935 ((-608) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1139)))) (-15 -3935 ((-1139) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-154)))) (-15 -3935 ((-154) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-136)))) (-15 -3935 ((-136) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-472)))) (-15 -3935 ((-472) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-577)))) (-15 -3935 ((-577) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-499)))) (-15 -3935 ((-499) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1131)))) (-15 -3935 ((-1131) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-538)))) (-15 -3935 ((-538) $))))
-(((-92) . T) ((-101) . T) ((-597 (-840)) . T) ((-597 (-1154)) . T) ((-1074) . T) ((-1056) . T) ((-1227) . T))
-((-3741 (((-1237) (-622 (-840))) 23) (((-1237) (-840)) 22)) (-3740 (((-1237) (-622 (-840))) 21) (((-1237) (-840)) 20)) (-3739 (((-1237) (-622 (-840))) 19) (((-1237) (-840)) 11) (((-1237) (-1131) (-840)) 17)))
-(((-1111) (-10 -7 (-15 -3739 ((-1237) (-1131) (-840))) (-15 -3739 ((-1237) (-840))) (-15 -3740 ((-1237) (-840))) (-15 -3741 ((-1237) (-840))) (-15 -3739 ((-1237) (-622 (-840)))) (-15 -3740 ((-1237) (-622 (-840)))) (-15 -3741 ((-1237) (-622 (-840)))))) (T -1111))
-((-3741 (*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))))
-(-10 -7 (-15 -3739 ((-1237) (-1131) (-840))) (-15 -3739 ((-1237) (-840))) (-15 -3740 ((-1237) (-840))) (-15 -3741 ((-1237) (-840))) (-15 -3739 ((-1237) (-622 (-840)))) (-15 -3740 ((-1237) (-622 (-840)))) (-15 -3741 ((-1237) (-622 (-840)))))
-((-3745 (($ $ $) 10)) (-3744 (($ $) 9)) (-3748 (($ $ $) 13)) (-3750 (($ $ $) 15)) (-3747 (($ $ $) 12)) (-3749 (($ $ $) 14)) (-3752 (($ $) 17)) (-3751 (($ $) 16)) (-3742 (($ $) 6)) (-3746 (($ $ $) 11) (($ $) 7)) (-3743 (($ $ $) 8)))
+((-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-517)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-214)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-656))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-656)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1242))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1242)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-137)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-132)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1088)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-95)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-661)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-510)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1040)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1243))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1243)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-518)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-152)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-651))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-651)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-306))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-306)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1012))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1012)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-178)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-946))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-946)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1047)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1063)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1069)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-608)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1139))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1139)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-154)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-136)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-472)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-577)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-499)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1131)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-552)))))
+(-13 (-1056) (-1227) (-10 -8 (-15 -2079 ((-112) $ (|[\|\|]| (-517)))) (-15 -1905 ((-517) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-214)))) (-15 -1905 ((-214) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-656)))) (-15 -1905 ((-656) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1242)))) (-15 -1905 ((-1242) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-137)))) (-15 -1905 ((-137) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-132)))) (-15 -1905 ((-132) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1088)))) (-15 -1905 ((-1088) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-95)))) (-15 -1905 ((-95) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-661)))) (-15 -1905 ((-661) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-510)))) (-15 -1905 ((-510) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1040)))) (-15 -1905 ((-1040) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1243)))) (-15 -1905 ((-1243) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-518)))) (-15 -1905 ((-518) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-152)))) (-15 -1905 ((-152) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-651)))) (-15 -1905 ((-651) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-306)))) (-15 -1905 ((-306) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1012)))) (-15 -1905 ((-1012) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-178)))) (-15 -1905 ((-178) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-946)))) (-15 -1905 ((-946) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1047)))) (-15 -1905 ((-1047) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1063)))) (-15 -1905 ((-1063) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1069)))) (-15 -1905 ((-1069) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-608)))) (-15 -1905 ((-608) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1139)))) (-15 -1905 ((-1139) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-154)))) (-15 -1905 ((-154) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-136)))) (-15 -1905 ((-136) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-472)))) (-15 -1905 ((-472) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-577)))) (-15 -1905 ((-577) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-499)))) (-15 -1905 ((-499) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1131)))) (-15 -1905 ((-1131) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-552)))) (-15 -1905 ((-552) $))))
+(((-92) . T) ((-101) . T) ((-597 (-839)) . T) ((-597 (-1154)) . T) ((-1073) . T) ((-1056) . T) ((-1227) . T))
+((-1716 (((-1237) (-625 (-839))) 23) (((-1237) (-839)) 22)) (-1705 (((-1237) (-625 (-839))) 21) (((-1237) (-839)) 20)) (-2927 (((-1237) (-625 (-839))) 19) (((-1237) (-839)) 11) (((-1237) (-1131) (-839)) 17)))
+(((-1111) (-10 -7 (-15 -2927 ((-1237) (-1131) (-839))) (-15 -2927 ((-1237) (-839))) (-15 -1705 ((-1237) (-839))) (-15 -1716 ((-1237) (-839))) (-15 -2927 ((-1237) (-625 (-839)))) (-15 -1705 ((-1237) (-625 (-839)))) (-15 -1716 ((-1237) (-625 (-839)))))) (T -1111))
+((-1716 (*1 *2 *3) (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))))
+(-10 -7 (-15 -2927 ((-1237) (-1131) (-839))) (-15 -2927 ((-1237) (-839))) (-15 -1705 ((-1237) (-839))) (-15 -1716 ((-1237) (-839))) (-15 -2927 ((-1237) (-625 (-839)))) (-15 -1705 ((-1237) (-625 (-839)))) (-15 -1716 ((-1237) (-625 (-839)))))
+((-1759 (($ $ $) 10)) (-1749 (($ $) 9)) (-1792 (($ $ $) 13)) (-1815 (($ $ $) 15)) (-1780 (($ $ $) 12)) (-1804 (($ $ $) 14)) (-1836 (($ $) 17)) (-1825 (($ $) 16)) (-1727 (($ $) 6)) (-1769 (($ $ $) 11) (($ $) 7)) (-1739 (($ $ $) 8)))
(((-1112) (-138)) (T -1112))
-((-3752 (*1 *1 *1) (-4 *1 (-1112))) (-3751 (*1 *1 *1) (-4 *1 (-1112))) (-3750 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3749 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3748 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3747 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3746 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3745 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3744 (*1 *1 *1) (-4 *1 (-1112))) (-3743 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3746 (*1 *1 *1) (-4 *1 (-1112))) (-3742 (*1 *1 *1) (-4 *1 (-1112))))
-(-13 (-10 -8 (-15 -3742 ($ $)) (-15 -3746 ($ $)) (-15 -3743 ($ $ $)) (-15 -3744 ($ $)) (-15 -3745 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -3747 ($ $ $)) (-15 -3748 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -3750 ($ $ $)) (-15 -3751 ($ $)) (-15 -3752 ($ $))))
-((-2898 (((-112) $ $) 41)) (-3761 ((|#1| $) 15)) (-3753 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-3760 (((-112) $) 17)) (-3758 (($ $ |#1|) 28)) (-3756 (($ $ (-112)) 30)) (-3755 (($ $) 31)) (-3757 (($ $ |#2|) 29)) (-3593 (((-1131) $) NIL)) (-3754 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3594 (((-1093) $) NIL)) (-3762 (((-112) $) 14)) (-3928 (($) 10)) (-3759 (($ $) 27)) (-3884 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1660 |#2|))) 21) (((-622 $) (-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|)))) 24) (((-622 $) |#1| (-622 |#2|)) 26)) (-4282 ((|#2| $) 16)) (-4317 (((-840) $) 50)) (-3387 (((-112) $ $) 39)))
-(((-1113 |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -3928 ($)) (-15 -3762 ((-112) $)) (-15 -3761 (|#1| $)) (-15 -4282 (|#2| $)) (-15 -3760 ((-112) $)) (-15 -3884 ($ |#1| |#2| (-112))) (-15 -3884 ($ |#1| |#2|)) (-15 -3884 ($ (-2 (|:| |val| |#1|) (|:| -1660 |#2|)))) (-15 -3884 ((-622 $) (-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|))))) (-15 -3884 ((-622 $) |#1| (-622 |#2|))) (-15 -3759 ($ $)) (-15 -3758 ($ $ |#1|)) (-15 -3757 ($ $ |#2|)) (-15 -3756 ($ $ (-112))) (-15 -3755 ($ $)) (-15 -3754 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3753 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1074) (-34)) (-13 (-1074) (-34))) (T -1113))
-((-3928 (*1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))) (-3761 (*1 *2 *1) (-12 (-4 *2 (-13 (-1074) (-34))) (-5 *1 (-1113 *2 *3)) (-4 *3 (-13 (-1074) (-34))))) (-4282 (*1 *2 *1) (-12 (-4 *2 (-13 (-1074) (-34))) (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1074) (-34))))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))) (-3884 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3884 (*1 *1 *2 *3) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1660 *4))) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1113 *3 *4)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| |val| *4) (|:| -1660 *5)))) (-4 *4 (-13 (-1074) (-34))) (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-622 (-1113 *4 *5))) (-5 *1 (-1113 *4 *5)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *5)) (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-622 (-1113 *3 *5))) (-5 *1 (-1113 *3 *5)) (-4 *3 (-13 (-1074) (-34))))) (-3759 (*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3758 (*1 *1 *1 *2) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3757 (*1 *1 *1 *2) (-12 (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1074) (-34))) (-4 *2 (-13 (-1074) (-34))))) (-3756 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))) (-3755 (*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3754 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1074) (-34))) (-4 *6 (-13 (-1074) (-34))) (-5 *2 (-112)) (-5 *1 (-1113 *5 *6)))) (-3753 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-13 (-1074) (-34))))))
-(-13 (-1074) (-10 -8 (-15 -3928 ($)) (-15 -3762 ((-112) $)) (-15 -3761 (|#1| $)) (-15 -4282 (|#2| $)) (-15 -3760 ((-112) $)) (-15 -3884 ($ |#1| |#2| (-112))) (-15 -3884 ($ |#1| |#2|)) (-15 -3884 ($ (-2 (|:| |val| |#1|) (|:| -1660 |#2|)))) (-15 -3884 ((-622 $) (-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|))))) (-15 -3884 ((-622 $) |#1| (-622 |#2|))) (-15 -3759 ($ $)) (-15 -3758 ($ $ |#1|)) (-15 -3757 ($ $ |#2|)) (-15 -3756 ($ $ (-112))) (-15 -3755 ($ $)) (-15 -3754 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3753 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-2898 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1074)))) (-3761 (((-1113 |#1| |#2|) $) 25)) (-3770 (($ $) 76)) (-3766 (((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3763 (($ $ $ (-622 (-1113 |#1| |#2|))) 90) (($ $ $ (-622 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1271 (((-112) $ (-751)) NIL)) (-3358 (((-1113 |#1| |#2|) $ (-1113 |#1| |#2|)) 43 (|has| $ (-6 -4354)))) (-4147 (((-1113 |#1| |#2|) $ #1="value" (-1113 |#1| |#2|)) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3768 (((-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|))) $) 80)) (-3764 (($ (-1113 |#1| |#2|) $) 39)) (-3765 (($ (-1113 |#1| |#2|) $) 31)) (-2068 (((-622 (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 51)) (-3767 (((-112) (-1113 |#1| |#2|) $) 82)) (-3360 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1074)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 (-1113 |#1| |#2|)) $) 55 (|has| $ (-6 -4353)))) (-3596 (((-112) (-1113 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-1113 |#1| |#2|) (-1074))))) (-2072 (($ (-1 (-1113 |#1| |#2|) (-1113 |#1| |#2|)) $) 47 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-1113 |#1| |#2|) (-1113 |#1| |#2|)) $) 46)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 (-1113 |#1| |#2|)) $) 53)) (-3881 (((-112) $) 42)) (-3593 (((-1131) $) NIL (|has| (-1113 |#1| |#2|) (-1074)))) (-3594 (((-1093) $) NIL (|has| (-1113 |#1| |#2|) (-1074)))) (-3771 (((-3 $ "failed") $) 75)) (-2070 (((-112) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-1113 |#1| |#2|)))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1074)))) (($ $ (-288 (-1113 |#1| |#2|))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1074)))) (($ $ (-1113 |#1| |#2|) (-1113 |#1| |#2|)) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1074)))) (($ $ (-622 (-1113 |#1| |#2|)) (-622 (-1113 |#1| |#2|))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1074))))) (-1272 (((-112) $ $) 50)) (-3762 (((-112) $) 22)) (-3928 (($) 24)) (-4159 (((-1113 |#1| |#2|) $ #1#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) 44)) (-2069 (((-751) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353))) (((-751) (-1113 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-1113 |#1| |#2|) (-1074))))) (-3759 (($ $) 49)) (-3884 (($ (-1113 |#1| |#2|)) 9) (($ |#1| |#2| (-622 $)) 12) (($ |#1| |#2| (-622 (-1113 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-622 |#2|)) 17)) (-3769 (((-622 |#2|) $) 81)) (-4317 (((-840) $) 73 (|has| (-1113 |#1| |#2|) (-597 (-840))))) (-3876 (((-622 $) $) 28)) (-3361 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1074)))) (-2071 (((-112) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 64 (|has| (-1113 |#1| |#2|) (-1074)))) (-4316 (((-751) $) 58 (|has| $ (-6 -4353)))))
-(((-1114 |#1| |#2|) (-13 (-986 (-1113 |#1| |#2|)) (-10 -8 (-6 -4354) (-6 -4353) (-15 -3771 ((-3 $ "failed") $)) (-15 -3770 ($ $)) (-15 -3884 ($ (-1113 |#1| |#2|))) (-15 -3884 ($ |#1| |#2| (-622 $))) (-15 -3884 ($ |#1| |#2| (-622 (-1113 |#1| |#2|)))) (-15 -3884 ($ |#1| |#2| |#1| (-622 |#2|))) (-15 -3769 ((-622 |#2|) $)) (-15 -3768 ((-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|))) $)) (-15 -3767 ((-112) (-1113 |#1| |#2|) $)) (-15 -3766 ((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3765 ($ (-1113 |#1| |#2|) $)) (-15 -3764 ($ (-1113 |#1| |#2|) $)) (-15 -3763 ($ $ $ (-622 (-1113 |#1| |#2|)))) (-15 -3763 ($ $ $ (-622 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1074) (-34)) (-13 (-1074) (-34))) (T -1114))
-((-3771 (*1 *1 *1) (|partial| -12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3770 (*1 *1 *1) (-12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))) (-3884 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-622 (-1114 *2 *3))) (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3884 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-622 (-1113 *2 *3))) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))) (-5 *1 (-1114 *2 *3)))) (-3884 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-1074) (-34))) (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34))))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-622 *4)) (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))) (-3767 (*1 *2 *3 *1) (-12 (-5 *3 (-1113 *4 *5)) (-4 *4 (-13 (-1074) (-34))) (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5)))) (-3766 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1113 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1074) (-34))) (-4 *6 (-13 (-1074) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *5 *6)))) (-3765 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))) (-3764 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))) (-3763 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-622 (-1113 *3 *4))) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))) (-3763 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1113 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1074) (-34))) (-4 *5 (-13 (-1074) (-34))) (-5 *1 (-1114 *4 *5)))))
-(-13 (-986 (-1113 |#1| |#2|)) (-10 -8 (-6 -4354) (-6 -4353) (-15 -3771 ((-3 $ "failed") $)) (-15 -3770 ($ $)) (-15 -3884 ($ (-1113 |#1| |#2|))) (-15 -3884 ($ |#1| |#2| (-622 $))) (-15 -3884 ($ |#1| |#2| (-622 (-1113 |#1| |#2|)))) (-15 -3884 ($ |#1| |#2| |#1| (-622 |#2|))) (-15 -3769 ((-622 |#2|) $)) (-15 -3768 ((-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|))) $)) (-15 -3767 ((-112) (-1113 |#1| |#2|) $)) (-15 -3766 ((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3765 ($ (-1113 |#1| |#2|) $)) (-15 -3764 ($ (-1113 |#1| |#2|) $)) (-15 -3763 ($ $ $ (-622 (-1113 |#1| |#2|)))) (-15 -3763 ($ $ $ (-622 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3773 (($ $) NIL)) (-3689 ((|#2| $) NIL)) (-3456 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3772 (($ (-669 |#2|)) 50)) (-3458 (((-112) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3692 (($ |#2|) 10)) (-3896 (($) NIL T CONST)) (-3445 (($ $) 63 (|has| |#2| (-302)))) (-3447 (((-235 |#1| |#2|) $ (-538)) 36)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 |#2| #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) ((|#2| $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) 77)) (-3444 (((-751) $) 65 (|has| |#2| (-545)))) (-3448 ((|#2| $ (-538) (-538)) NIL)) (-2068 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL)) (-3443 (((-751) $) 67 (|has| |#2| (-545)))) (-3442 (((-622 (-235 |#1| |#2|)) $) 71 (|has| |#2| (-545)))) (-3450 (((-751) $) NIL)) (-3977 (($ |#2|) 20)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3686 ((|#2| $) 61 (|has| |#2| (-6 (-4355 #2="*"))))) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-3459 (($ (-622 (-622 |#2|))) 31)) (-2072 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3956 (((-622 (-622 |#2|)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3952 (((-3 $ "failed") $) 74 (|has| |#2| (-358)))) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545)))) (-2070 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ (-538) (-538) |#2|) NIL) ((|#2| $ (-538) (-538)) NIL)) (-4170 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3688 ((|#2| $) NIL)) (-3691 (($ (-622 |#2|)) 44)) (-3457 (((-112) $) NIL)) (-3690 (((-235 |#1| |#2|) $) NIL)) (-3687 ((|#2| $) 59 (|has| |#2| (-6 (-4355 #2#))))) (-2069 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3759 (($ $) NIL)) (-4330 (((-527) $) 86 (|has| |#2| (-598 (-527))))) (-3446 (((-235 |#1| |#2|) $ (-538)) 38)) (-4317 (((-840) $) 41) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#2| (-1014 (-402 (-538))))) (($ |#2|) NIL) (((-669 |#2|) $) 46)) (-3461 (((-751)) 18)) (-2071 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-2991 (($) 12 T CONST)) (-2997 (($) 15 T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) 57) (($ $ (-538)) 76 (|has| |#2| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) 53) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) 55)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1115 |#1| |#2|) (-13 (-1096 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-597 (-669 |#2|)) (-10 -8 (-15 -3977 ($ |#2|)) (-15 -3773 ($ $)) (-15 -3772 ($ (-669 |#2|))) (IF (|has| |#2| (-6 (-4355 "*"))) (-6 -4342) |%noBranch|) (IF (|has| |#2| (-6 (-4355 "*"))) (IF (|has| |#2| (-6 -4350)) (-6 -4350) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|))) (-751) (-1025)) (T -1115))
-((-3977 (*1 *1 *2) (-12 (-5 *1 (-1115 *3 *2)) (-14 *3 (-751)) (-4 *2 (-1025)))) (-3773 (*1 *1 *1) (-12 (-5 *1 (-1115 *2 *3)) (-14 *2 (-751)) (-4 *3 (-1025)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1115 *3 *4)) (-14 *3 (-751)))))
-(-13 (-1096 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-597 (-669 |#2|)) (-10 -8 (-15 -3977 ($ |#2|)) (-15 -3773 ($ $)) (-15 -3772 ($ (-669 |#2|))) (IF (|has| |#2| (-6 (-4355 "*"))) (-6 -4342) |%noBranch|) (IF (|has| |#2| (-6 (-4355 "*"))) (IF (|has| |#2| (-6 -4350)) (-6 -4350) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|)))
-((-3786 (($ $) 19)) (-3776 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-3784 (((-112) $ $) 24)) (-3788 (($ $) 17)) (-4159 (((-142) $ (-538) (-142)) NIL) (((-142) $ (-538)) NIL) (($ $ (-1198 (-538))) NIL) (($ $ $) 29)) (-4317 (($ (-142)) 27) (((-840) $) NIL)))
-(((-1116 |#1|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -3776 (|#1| |#1| (-139))) (-15 -3776 (|#1| |#1| (-142))) (-15 -4317 (|#1| (-142))) (-15 -3784 ((-112) |#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4159 ((-142) |#1| (-538))) (-15 -4159 ((-142) |#1| (-538) (-142)))) (-1117)) (T -1116))
-NIL
-(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -3776 (|#1| |#1| (-139))) (-15 -3776 (|#1| |#1| (-142))) (-15 -4317 (|#1| (-142))) (-15 -3784 ((-112) |#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4159 ((-142) |#1| (-538))) (-15 -4159 ((-142) |#1| (-538) (-142))))
-((-2898 (((-112) $ $) 19 (|has| (-142) (-1074)))) (-3785 (($ $) 120)) (-3786 (($ $) 121)) (-3776 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-3783 (((-112) $ $) 118)) (-3782 (((-112) $ $ (-538)) 117)) (-3777 (((-622 $) $ (-142)) 110) (((-622 $) $ (-139)) 109)) (-1848 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-827)))) (-1846 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| (-142) (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 (((-142) $ (-538) (-142)) 52 (|has| $ (-6 -4354))) (((-142) $ (-1198 (-538)) (-142)) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-3774 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-3779 (($ $ (-1198 (-538)) $) 114)) (-1398 (($ $) 78 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ (-142) $) 77 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4353)))) (-4202 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4353)))) (-1637 (((-142) $ (-538) (-142)) 53 (|has| $ (-6 -4354)))) (-3448 (((-142) $ (-538)) 51)) (-3784 (((-112) $ $) 119)) (-3778 (((-538) (-1 (-112) (-142)) $) 97) (((-538) (-142) $) 96 (|has| (-142) (-1074))) (((-538) (-142) $ (-538)) 95 (|has| (-142) (-1074))) (((-538) $ $ (-538)) 113) (((-538) (-139) $ (-538)) 112)) (-2068 (((-622 (-142)) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) (-142)) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| (-142) (-827)))) (-3872 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-827)))) (-2511 (((-622 (-142)) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| (-142) (-827)))) (-3780 (((-112) $ $ (-142)) 115)) (-3781 (((-751) $ $ (-142)) 116)) (-2072 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3787 (($ $) 122)) (-3788 (($ $) 123)) (-4079 (((-112) $ (-751)) 10)) (-3775 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3593 (((-1131) $) 22 (|has| (-142) (-1074)))) (-2382 (($ (-142) $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| (-142) (-1074)))) (-4160 (((-142) $) 42 (|has| (-538) (-827)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2306 (($ $ (-142)) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-288 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-622 (-142)) (-622 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2312 (((-622 (-142)) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 (((-142) $ (-538) (-142)) 50) (((-142) $ (-538)) 49) (($ $ (-1198 (-538))) 63) (($ $ $) 102)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4353))) (((-751) (-142) $) 28 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| (-142) (-598 (-527))))) (-3884 (($ (-622 (-142))) 70)) (-4161 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (($ (-142)) 111) (((-840) $) 18 (|has| (-142) (-597 (-840))))) (-2071 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 84 (|has| (-142) (-827)))) (-2897 (((-112) $ $) 83 (|has| (-142) (-827)))) (-3387 (((-112) $ $) 20 (|has| (-142) (-1074)))) (-3017 (((-112) $ $) 85 (|has| (-142) (-827)))) (-3018 (((-112) $ $) 82 (|has| (-142) (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
+((-1836 (*1 *1 *1) (-4 *1 (-1112))) (-1825 (*1 *1 *1) (-4 *1 (-1112))) (-1815 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1804 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1792 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1780 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1769 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1759 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1749 (*1 *1 *1) (-4 *1 (-1112))) (-1739 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1769 (*1 *1 *1) (-4 *1 (-1112))) (-1727 (*1 *1 *1) (-4 *1 (-1112))))
+(-13 (-10 -8 (-15 -1727 ($ $)) (-15 -1769 ($ $)) (-15 -1739 ($ $ $)) (-15 -1749 ($ $)) (-15 -1759 ($ $ $)) (-15 -1769 ($ $ $)) (-15 -1780 ($ $ $)) (-15 -1792 ($ $ $)) (-15 -1804 ($ $ $)) (-15 -1815 ($ $ $)) (-15 -1825 ($ $)) (-15 -1836 ($ $))))
+((-1671 (((-112) $ $) 41)) (-3800 ((|#1| $) 15)) (-1849 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-2229 (((-112) $) 17)) (-1903 (($ $ |#1|) 28)) (-1881 (($ $ (-112)) 30)) (-1870 (($ $) 31)) (-1891 (($ $ |#2|) 29)) (-2883 (((-1131) $) NIL)) (-1860 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-2831 (((-1093) $) NIL)) (-1916 (((-112) $) 14)) (-3600 (($) 10)) (-1871 (($ $) 27)) (-1695 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3715 |#2|))) 21) (((-625 $) (-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|)))) 24) (((-625 $) |#1| (-625 |#2|)) 26)) (-3848 ((|#2| $) 16)) (-1683 (((-839) $) 50)) (-2281 (((-112) $ $) 39)))
+(((-1113 |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -3600 ($)) (-15 -1916 ((-112) $)) (-15 -3800 (|#1| $)) (-15 -3848 (|#2| $)) (-15 -2229 ((-112) $)) (-15 -1695 ($ |#1| |#2| (-112))) (-15 -1695 ($ |#1| |#2|)) (-15 -1695 ($ (-2 (|:| |val| |#1|) (|:| -3715 |#2|)))) (-15 -1695 ((-625 $) (-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|))))) (-15 -1695 ((-625 $) |#1| (-625 |#2|))) (-15 -1871 ($ $)) (-15 -1903 ($ $ |#1|)) (-15 -1891 ($ $ |#2|)) (-15 -1881 ($ $ (-112))) (-15 -1870 ($ $)) (-15 -1860 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1849 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1073) (-34)) (-13 (-1073) (-34))) (T -1113))
+((-3600 (*1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))) (-3800 (*1 *2 *1) (-12 (-4 *2 (-13 (-1073) (-34))) (-5 *1 (-1113 *2 *3)) (-4 *3 (-13 (-1073) (-34))))) (-3848 (*1 *2 *1) (-12 (-4 *2 (-13 (-1073) (-34))) (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1073) (-34))))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))) (-1695 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1695 (*1 *1 *2 *3) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3715 *4))) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1113 *3 *4)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| |val| *4) (|:| -3715 *5)))) (-4 *4 (-13 (-1073) (-34))) (-4 *5 (-13 (-1073) (-34))) (-5 *2 (-625 (-1113 *4 *5))) (-5 *1 (-1113 *4 *5)))) (-1695 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *5)) (-4 *5 (-13 (-1073) (-34))) (-5 *2 (-625 (-1113 *3 *5))) (-5 *1 (-1113 *3 *5)) (-4 *3 (-13 (-1073) (-34))))) (-1871 (*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1903 (*1 *1 *1 *2) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1891 (*1 *1 *1 *2) (-12 (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1073) (-34))) (-4 *2 (-13 (-1073) (-34))))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1860 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1073) (-34))) (-4 *6 (-13 (-1073) (-34))) (-5 *2 (-112)) (-5 *1 (-1113 *5 *6)))) (-1849 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1073) (-34))) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-13 (-1073) (-34))))))
+(-13 (-1073) (-10 -8 (-15 -3600 ($)) (-15 -1916 ((-112) $)) (-15 -3800 (|#1| $)) (-15 -3848 (|#2| $)) (-15 -2229 ((-112) $)) (-15 -1695 ($ |#1| |#2| (-112))) (-15 -1695 ($ |#1| |#2|)) (-15 -1695 ($ (-2 (|:| |val| |#1|) (|:| -3715 |#2|)))) (-15 -1695 ((-625 $) (-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|))))) (-15 -1695 ((-625 $) |#1| (-625 |#2|))) (-15 -1871 ($ $)) (-15 -1903 ($ $ |#1|)) (-15 -1891 ($ $ |#2|)) (-15 -1881 ($ $ (-112))) (-15 -1870 ($ $)) (-15 -1860 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1849 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-1671 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1073)))) (-3800 (((-1113 |#1| |#2|) $) 25)) (-1974 (($ $) 76)) (-1949 (((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-1928 (($ $ $ (-625 (-1113 |#1| |#2|))) 90) (($ $ $ (-625 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-3495 (((-112) $ (-751)) NIL)) (-2565 (((-1113 |#1| |#2|) $ (-1113 |#1| |#2|)) 43 (|has| $ (-6 -4354)))) (-1851 (((-1113 |#1| |#2|) $ "value" (-1113 |#1| |#2|)) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-3448 (((-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|))) $) 80)) (-1938 (($ (-1113 |#1| |#2|) $) 39)) (-1416 (($ (-1113 |#1| |#2|) $) 31)) (-3799 (((-625 (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 51)) (-1962 (((-112) (-1113 |#1| |#2|) $) 82)) (-1371 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1073)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 (-1113 |#1| |#2|)) $) 55 (|has| $ (-6 -4353)))) (-2893 (((-112) (-1113 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-1113 |#1| |#2|) (-1073))))) (-3683 (($ (-1 (-1113 |#1| |#2|) (-1113 |#1| |#2|)) $) 47 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-1113 |#1| |#2|) (-1113 |#1| |#2|)) $) 46)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 (-1113 |#1| |#2|)) $) 53)) (-3367 (((-112) $) 42)) (-2883 (((-1131) $) NIL (|has| (-1113 |#1| |#2|) (-1073)))) (-2831 (((-1093) $) NIL (|has| (-1113 |#1| |#2|) (-1073)))) (-1982 (((-3 $ "failed") $) 75)) (-1888 (((-112) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-1113 |#1| |#2|)))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1073)))) (($ $ (-289 (-1113 |#1| |#2|))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1073)))) (($ $ (-1113 |#1| |#2|) (-1113 |#1| |#2|)) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1073)))) (($ $ (-625 (-1113 |#1| |#2|)) (-625 (-1113 |#1| |#2|))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1073))))) (-3504 (((-112) $ $) 50)) (-1916 (((-112) $) 22)) (-3600 (($) 24)) (-2154 (((-1113 |#1| |#2|) $ "value") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) 44)) (-2840 (((-751) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353))) (((-751) (-1113 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-1113 |#1| |#2|) (-1073))))) (-1871 (($ $) 49)) (-1695 (($ (-1113 |#1| |#2|)) 9) (($ |#1| |#2| (-625 $)) 12) (($ |#1| |#2| (-625 (-1113 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-625 |#2|)) 17)) (-2332 (((-625 |#2|) $) 81)) (-1683 (((-839) $) 73 (|has| (-1113 |#1| |#2|) (-597 (-839))))) (-3320 (((-625 $) $) 28)) (-1380 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1073)))) (-1900 (((-112) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 64 (|has| (-1113 |#1| |#2|) (-1073)))) (-1471 (((-751) $) 58 (|has| $ (-6 -4353)))))
+(((-1114 |#1| |#2|) (-13 (-986 (-1113 |#1| |#2|)) (-10 -8 (-6 -4354) (-6 -4353) (-15 -1982 ((-3 $ "failed") $)) (-15 -1974 ($ $)) (-15 -1695 ($ (-1113 |#1| |#2|))) (-15 -1695 ($ |#1| |#2| (-625 $))) (-15 -1695 ($ |#1| |#2| (-625 (-1113 |#1| |#2|)))) (-15 -1695 ($ |#1| |#2| |#1| (-625 |#2|))) (-15 -2332 ((-625 |#2|) $)) (-15 -3448 ((-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|))) $)) (-15 -1962 ((-112) (-1113 |#1| |#2|) $)) (-15 -1949 ((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1416 ($ (-1113 |#1| |#2|) $)) (-15 -1938 ($ (-1113 |#1| |#2|) $)) (-15 -1928 ($ $ $ (-625 (-1113 |#1| |#2|)))) (-15 -1928 ($ $ $ (-625 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1073) (-34)) (-13 (-1073) (-34))) (T -1114))
+((-1982 (*1 *1 *1) (|partial| -12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1974 (*1 *1 *1) (-12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))) (-1695 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-625 (-1114 *2 *3))) (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1695 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-625 (-1113 *2 *3))) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))) (-5 *1 (-1114 *2 *3)))) (-1695 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-1073) (-34))) (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-625 *4)) (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))) (-1962 (*1 *2 *3 *1) (-12 (-5 *3 (-1113 *4 *5)) (-4 *4 (-13 (-1073) (-34))) (-4 *5 (-13 (-1073) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5)))) (-1949 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1113 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1073) (-34))) (-4 *6 (-13 (-1073) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *5 *6)))) (-1416 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))) (-1938 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))) (-1928 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-625 (-1113 *3 *4))) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))) (-1928 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1113 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1073) (-34))) (-4 *5 (-13 (-1073) (-34))) (-5 *1 (-1114 *4 *5)))))
+(-13 (-986 (-1113 |#1| |#2|)) (-10 -8 (-6 -4354) (-6 -4353) (-15 -1982 ((-3 $ "failed") $)) (-15 -1974 ($ $)) (-15 -1695 ($ (-1113 |#1| |#2|))) (-15 -1695 ($ |#1| |#2| (-625 $))) (-15 -1695 ($ |#1| |#2| (-625 (-1113 |#1| |#2|)))) (-15 -1695 ($ |#1| |#2| |#1| (-625 |#2|))) (-15 -2332 ((-625 |#2|) $)) (-15 -3448 ((-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|))) $)) (-15 -1962 ((-112) (-1113 |#1| |#2|) $)) (-15 -1949 ((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1416 ($ (-1113 |#1| |#2|) $)) (-15 -1938 ($ (-1113 |#1| |#2|) $)) (-15 -1928 ($ $ $ (-625 (-1113 |#1| |#2|)))) (-15 -1928 ($ $ $ (-625 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2003 (($ $) NIL)) (-1650 ((|#2| $) NIL)) (-4089 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-1991 (($ (-669 |#2|)) 50)) (-4114 (((-112) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2467 (($ |#2|) 10)) (-3101 (($) NIL T CONST)) (-3991 (($ $) 63 (|has| |#2| (-302)))) (-4015 (((-236 |#1| |#2|) $ (-552)) 36)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) ((|#2| $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) 77)) (-3442 (((-751) $) 65 (|has| |#2| (-544)))) (-3631 ((|#2| $ (-552) (-552)) NIL)) (-3799 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL)) (-3979 (((-751) $) 67 (|has| |#2| (-544)))) (-3967 (((-625 (-236 |#1| |#2|)) $) 71 (|has| |#2| (-544)))) (-1773 (((-751) $) NIL)) (-2183 (($ |#2|) 20)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2416 ((|#2| $) 61 (|has| |#2| (-6 (-4355 "*"))))) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3907 (($ (-625 (-625 |#2|))) 31)) (-3683 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3803 (((-625 (-625 |#2|)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3150 (((-3 $ "failed") $) 74 (|has| |#2| (-358)))) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-1888 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ (-552) (-552) |#2|) NIL) ((|#2| $ (-552) (-552)) NIL)) (-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-2435 ((|#2| $) NIL)) (-2457 (($ (-625 |#2|)) 44)) (-4102 (((-112) $) NIL)) (-2446 (((-236 |#1| |#2|) $) NIL)) (-2426 ((|#2| $) 59 (|has| |#2| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1871 (($ $) NIL)) (-2042 (((-528) $) 86 (|has| |#2| (-598 (-528))))) (-4004 (((-236 |#1| |#2|) $ (-552)) 38)) (-1683 (((-839) $) 41) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#2| (-1014 (-402 (-552))))) (($ |#2|) NIL) (((-669 |#2|) $) 46)) (-4141 (((-751)) 18)) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-2089 (($) 12 T CONST)) (-2100 (($) 15 T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) 57) (($ $ (-552)) 76 (|has| |#2| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-236 |#1| |#2|) $ (-236 |#1| |#2|)) 53) (((-236 |#1| |#2|) (-236 |#1| |#2|) $) 55)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1115 |#1| |#2|) (-13 (-1096 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-597 (-669 |#2|)) (-10 -8 (-15 -2183 ($ |#2|)) (-15 -2003 ($ $)) (-15 -1991 ($ (-669 |#2|))) (IF (|has| |#2| (-6 (-4355 "*"))) (-6 -4342) |%noBranch|) (IF (|has| |#2| (-6 (-4355 "*"))) (IF (|has| |#2| (-6 -4350)) (-6 -4350) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|))) (-751) (-1025)) (T -1115))
+((-2183 (*1 *1 *2) (-12 (-5 *1 (-1115 *3 *2)) (-14 *3 (-751)) (-4 *2 (-1025)))) (-2003 (*1 *1 *1) (-12 (-5 *1 (-1115 *2 *3)) (-14 *2 (-751)) (-4 *3 (-1025)))) (-1991 (*1 *1 *2) (-12 (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1115 *3 *4)) (-14 *3 (-751)))))
+(-13 (-1096 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-597 (-669 |#2|)) (-10 -8 (-15 -2183 ($ |#2|)) (-15 -2003 ($ $)) (-15 -1991 ($ (-669 |#2|))) (IF (|has| |#2| (-6 (-4355 "*"))) (-6 -4342) |%noBranch|) (IF (|has| |#2| (-6 (-4355 "*"))) (IF (|has| |#2| (-6 -4350)) (-6 -4350) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|)))
+((-3843 (($ $) 19)) (-3808 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-1992 (((-112) $ $) 24)) (-3870 (($ $) 17)) (-2154 (((-142) $ (-552) (-142)) NIL) (((-142) $ (-552)) NIL) (($ $ (-1199 (-552))) NIL) (($ $ $) 29)) (-1683 (($ (-142)) 27) (((-839) $) NIL)))
+(((-1116 |#1|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -3808 (|#1| |#1| (-139))) (-15 -3808 (|#1| |#1| (-142))) (-15 -1683 (|#1| (-142))) (-15 -1992 ((-112) |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3870 (|#1| |#1|)) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -2154 ((-142) |#1| (-552))) (-15 -2154 ((-142) |#1| (-552) (-142)))) (-1117)) (T -1116))
+NIL
+(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -3808 (|#1| |#1| (-139))) (-15 -3808 (|#1| |#1| (-142))) (-15 -1683 (|#1| (-142))) (-15 -1992 ((-112) |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3870 (|#1| |#1|)) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -2154 ((-142) |#1| (-552))) (-15 -2154 ((-142) |#1| (-552) (-142))))
+((-1671 (((-112) $ $) 19 (|has| (-142) (-1073)))) (-3829 (($ $) 120)) (-3843 (($ $) 121)) (-3808 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-1975 (((-112) $ $) 118)) (-1951 (((-112) $ $ (-552)) 117)) (-3819 (((-625 $) $ (-142)) 110) (((-625 $) $ (-139)) 109)) (-3237 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-827)))) (-3218 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| (-142) (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 (((-142) $ (-552) (-142)) 52 (|has| $ (-6 -4354))) (((-142) $ (-1199 (-552)) (-142)) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3209 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-1353 (($ $ (-1199 (-552)) $) 114)) (-2959 (($ $) 78 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ (-142) $) 77 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4353)))) (-2163 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4353)))) (-3692 (((-142) $ (-552) (-142)) 53 (|has| $ (-6 -4354)))) (-3631 (((-142) $ (-552)) 51)) (-1992 (((-112) $ $) 119)) (-2483 (((-552) (-1 (-112) (-142)) $) 97) (((-552) (-142) $) 96 (|has| (-142) (-1073))) (((-552) (-142) $ (-552)) 95 (|has| (-142) (-1073))) (((-552) $ $ (-552)) 113) (((-552) (-139) $ (-552)) 112)) (-3799 (((-625 (-142)) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) (-142)) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| (-142) (-827)))) (-3280 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-827)))) (-3730 (((-625 (-142)) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| (-142) (-827)))) (-1899 (((-112) $ $ (-142)) 115)) (-2344 (((-751) $ $ (-142)) 116)) (-3683 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3857 (($ $) 122)) (-3870 (($ $) 123)) (-2878 (((-112) $ (-751)) 10)) (-3221 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2883 (((-1131) $) 22 (|has| (-142) (-1073)))) (-3994 (($ (-142) $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| (-142) (-1073)))) (-2924 (((-142) $) 42 (|has| (-552) (-827)))) (-2380 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2518 (($ $ (-142)) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-289 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-625 (-142)) (-625 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1358 (((-625 (-142)) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 (((-142) $ (-552) (-142)) 50) (((-142) $ (-552)) 49) (($ $ (-1199 (-552))) 63) (($ $ $) 102)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4353))) (((-751) (-142) $) 28 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| (-142) (-598 (-528))))) (-1695 (($ (-625 (-142))) 70)) (-3402 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (($ (-142)) 111) (((-839) $) 18 (|has| (-142) (-597 (-839))))) (-1900 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 84 (|has| (-142) (-827)))) (-2320 (((-112) $ $) 83 (|has| (-142) (-827)))) (-2281 (((-112) $ $) 20 (|has| (-142) (-1073)))) (-2334 (((-112) $ $) 85 (|has| (-142) (-827)))) (-2307 (((-112) $ $) 82 (|has| (-142) (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
(((-1117) (-138)) (T -1117))
-((-3788 (*1 *1 *1) (-4 *1 (-1117))) (-3787 (*1 *1 *1) (-4 *1 (-1117))) (-3786 (*1 *1 *1) (-4 *1 (-1117))) (-3785 (*1 *1 *1) (-4 *1 (-1117))) (-3784 (*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))) (-3783 (*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))) (-3782 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-538)) (-5 *2 (-112)))) (-3781 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-751)))) (-3780 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-112)))) (-3779 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1198 (-538))))) (-3778 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-538)))) (-3778 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-538)) (-5 *3 (-139)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1117)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-622 *1)) (-4 *1 (-1117)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-622 *1)) (-4 *1 (-1117)))) (-3776 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3776 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-3775 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3775 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-3774 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3774 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-4159 (*1 *1 *1 *1) (-4 *1 (-1117))))
-(-13 (-19 (-142)) (-10 -8 (-15 -3788 ($ $)) (-15 -3787 ($ $)) (-15 -3786 ($ $)) (-15 -3785 ($ $)) (-15 -3784 ((-112) $ $)) (-15 -3783 ((-112) $ $)) (-15 -3782 ((-112) $ $ (-538))) (-15 -3781 ((-751) $ $ (-142))) (-15 -3780 ((-112) $ $ (-142))) (-15 -3779 ($ $ (-1198 (-538)) $)) (-15 -3778 ((-538) $ $ (-538))) (-15 -3778 ((-538) (-139) $ (-538))) (-15 -4317 ($ (-142))) (-15 -3777 ((-622 $) $ (-142))) (-15 -3777 ((-622 $) $ (-139))) (-15 -3776 ($ $ (-142))) (-15 -3776 ($ $ (-139))) (-15 -3775 ($ $ (-142))) (-15 -3775 ($ $ (-139))) (-15 -3774 ($ $ (-142))) (-15 -3774 ($ $ (-139))) (-15 -4159 ($ $ $))))
-(((-34) . T) ((-101) -3891 (|has| (-142) (-1074)) (|has| (-142) (-827))) ((-597 (-840)) -3891 (|has| (-142) (-1074)) (|has| (-142) (-827)) (|has| (-142) (-597 (-840)))) ((-149 #1=(-142)) . T) ((-598 (-527)) |has| (-142) (-598 (-527))) ((-281 #2=(-538) #1#) . T) ((-283 #2# #1#) . T) ((-304 #1#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))) ((-367 #1#) . T) ((-483 #1#) . T) ((-588 #2# #1#) . T) ((-507 #1# #1#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))) ((-631 #1#) . T) ((-19 #1#) . T) ((-827) |has| (-142) (-827)) ((-1074) -3891 (|has| (-142) (-1074)) (|has| (-142) (-827))) ((-1185) . T))
-((-3795 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751)) 94)) (-3792 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751)) 54)) (-3796 (((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751)) 85)) (-3790 (((-751) (-622 |#4|) (-622 |#5|)) 27)) (-3793 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751)) 56) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112)) 58)) (-3794 (((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112)) 77)) (-4330 (((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) 80)) (-3791 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|) 53)) (-3789 (((-751) (-622 |#4|) (-622 |#5|)) 19)))
-(((-1118 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3789 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3790 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3791 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3795 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751))) (-15 -4330 ((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3796 ((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1118))
-((-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) (-5 *1 (-1118 *4 *5 *6 *7 *8)))) (-3795 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-622 *11)) (|:| |todo| (-622 (-2 (|:| |val| *3) (|:| -1660 *11)))))) (-5 *6 (-751)) (-5 *2 (-622 (-2 (|:| |val| (-622 *10)) (|:| -1660 *11)))) (-5 *3 (-622 *10)) (-5 *4 (-622 *11)) (-4 *10 (-1039 *7 *8 *9)) (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-5 *1 (-1118 *7 *8 *9 *10 *11)))) (-3794 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3794 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3793 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3793 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3793 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3)))) (-3792 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3792 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3791 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3789 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3790 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3791 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3795 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751))) (-15 -4330 ((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3796 ((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751))))
-((-2898 (((-112) $ $) NIL)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) NIL)) (-4045 (((-622 $) (-622 |#4|)) 110) (((-622 $) (-622 |#4|) (-112)) 111) (((-622 $) (-622 |#4|) (-112) (-112)) 109) (((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3417 (((-622 |#3|) $) NIL)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4051 ((|#4| |#4| $) NIL)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 84)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) 26 (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3233 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) NIL)) (-3507 (($ (-622 |#4|)) NIL)) (-4158 (((-3 $ #1#) $) 39)) (-4048 ((|#4| |#4| $) 65)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3765 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) NIL)) (-3548 (((-112) |#4| $) NIL)) (-3546 (((-112) |#4| $) NIL)) (-3549 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3797 (((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112)) 124)) (-2068 (((-622 |#4|) $) 16 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3531 ((|#3| $) 33)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#4|) $) 17 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2072 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 21)) (-3247 (((-622 |#3|) $) NIL)) (-3246 (((-112) |#3| $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) NIL)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 103)) (-4157 (((-3 |#4| #1#) $) 37)) (-3543 (((-622 $) |#4| $) 88)) (-3545 (((-3 (-112) (-622 $)) |#4| $) NIL)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3589 (((-622 $) |#4| $) 107) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) 108) (((-622 $) |#4| (-622 $)) NIL)) (-3798 (((-622 $) (-622 |#4|) (-112) (-112) (-112)) 119)) (-3799 (($ |#4| $) 75) (($ (-622 |#4|) $) 76) (((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-4060 (((-622 |#4|) $) NIL)) (-4054 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-4062 (((-112) $ $) NIL)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4050 ((|#4| |#4| $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4042 (((-3 $ #1#) $ |#4|) 48)) (-4128 (($ $ |#4|) NIL) (((-622 $) |#4| $) 90) (((-622 $) |#4| (-622 $)) NIL) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) 86)) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 15)) (-3928 (($) 13)) (-4307 (((-751) $) NIL)) (-2069 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) 12)) (-4330 (((-527) $) NIL (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 20)) (-3243 (($ $ |#3|) 42)) (-3245 (($ $ |#3|) 44)) (-4047 (($ $) NIL)) (-3244 (($ $ |#3|) NIL)) (-4317 (((-840) $) 31) (((-622 |#4|) $) 40)) (-4041 (((-751) $) NIL (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) NIL)) (-3540 (((-622 $) |#4| $) 54) (((-622 $) |#4| (-622 $)) NIL) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) NIL)) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) NIL)) (-3547 (((-112) |#4| $) NIL)) (-4293 (((-112) |#3| $) 61)) (-3387 (((-112) $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1119 |#1| |#2| |#3| |#4|) (-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3799 ((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112))) (-15 -3798 ((-622 $) (-622 |#4|) (-112) (-112) (-112))) (-15 -3797 ((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112))))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1119))
-((-3799 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *3))) (-5 *1 (-1119 *5 *6 *7 *3)) (-4 *3 (-1039 *5 *6 *7)))) (-4045 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-4045 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-3798 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-3797 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-622 *8)) (|:| |towers| (-622 (-1119 *5 *6 *7 *8))))) (-5 *1 (-1119 *5 *6 *7 *8)) (-5 *3 (-622 *8)))))
-(-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3799 ((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112))) (-15 -3798 ((-622 $) (-622 |#4|) (-112) (-112) (-112))) (-15 -3797 ((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112)))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3683 ((|#1| $) 34)) (-3800 (($ (-622 |#1|)) 39)) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-3685 ((|#1| |#1| $) 36)) (-3684 ((|#1| $) 32)) (-2068 (((-622 |#1|) $) 18 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 22)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) 35)) (-3970 (($ |#1| $) 37)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-1334 ((|#1| $) 33)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 31)) (-3928 (($) 38)) (-3682 (((-751) $) 29)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 27)) (-4317 (((-840) $) 14 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) NIL)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 17 (|has| |#1| (-1074)))) (-4316 (((-751) $) 30 (|has| $ (-6 -4353)))))
-(((-1120 |#1|) (-13 (-1094 |#1|) (-10 -8 (-15 -3800 ($ (-622 |#1|))))) (-1185)) (T -1120))
-((-3800 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1120 *3)))))
-(-13 (-1094 |#1|) (-10 -8 (-15 -3800 ($ (-622 |#1|)))))
-((-4147 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1198 (-538)) |#2|) 44) ((|#2| $ (-538) |#2|) 41)) (-3801 (((-112) $) 12)) (-2072 (($ (-1 |#2| |#2|) $) 39)) (-4160 ((|#2| $) NIL) (($ $ (-751)) 17)) (-2306 (($ $ |#2|) 40)) (-3802 (((-112) $) 11)) (-4159 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1198 (-538))) 31) ((|#2| $ (-538)) 23) ((|#2| $ (-538) |#2|) NIL)) (-4150 (($ $ $) 47) (($ $ |#2|) NIL)) (-4161 (($ $ $) 33) (($ |#2| $) NIL) (($ (-622 $)) 36) (($ $ |#2|) NIL)))
-(((-1121 |#1| |#2|) (-10 -8 (-15 -3801 ((-112) |#1|)) (-15 -3802 ((-112) |#1|)) (-15 -4147 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -2306 (|#1| |#1| |#2|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4147 (|#2| |#1| (-1198 (-538)) |#2|)) (-15 -4147 (|#2| |#1| #1="last" |#2|)) (-15 -4147 (|#1| |#1| #2="rest" |#1|)) (-15 -4147 (|#2| |#1| #3="first" |#2|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -4159 (|#1| |#1| #2#)) (-15 -4160 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| #3#)) (-15 -4160 (|#2| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4147 (|#2| |#1| #4="value" |#2|)) (-15 -4159 (|#2| |#1| #4#)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|))) (-1122 |#2|) (-1185)) (T -1121))
-NIL
-(-10 -8 (-15 -3801 ((-112) |#1|)) (-15 -3802 ((-112) |#1|)) (-15 -4147 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -2306 (|#1| |#1| |#2|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4147 (|#2| |#1| (-1198 (-538)) |#2|)) (-15 -4147 (|#2| |#1| #1="last" |#2|)) (-15 -4147 (|#1| |#1| #2="rest" |#1|)) (-15 -4147 (|#2| |#1| #3="first" |#2|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -4159 (|#1| |#1| #2#)) (-15 -4160 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| #3#)) (-15 -4160 (|#2| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4147 (|#2| |#1| #4="value" |#2|)) (-15 -4159 (|#2| |#1| #4#)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-4154 ((|#1| $) 65)) (-4156 (($ $) 67)) (-2305 (((-1237) $ (-538) (-538)) 97 (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 52 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-4146 (($ $ $) 56 (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) 86 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4353)))) (-4155 ((|#1| $) 66)) (-3896 (($) 7 T CONST)) (-4158 (($ $) 73) (($ $ (-751)) 71)) (-1398 (($ $) 99 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4353))) (($ |#1| $) 100 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1637 ((|#1| $ (-538) |#1|) 85 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 87)) (-3801 (((-112) $) 83)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) 108)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 95 (|has| (-538) (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 94 (|has| (-538) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-4157 ((|#1| $) 70) (($ $ (-751)) 68)) (-2382 (($ $ $ (-538)) 116) (($ |#1| $ (-538)) 115)) (-2310 (((-622 (-538)) $) 92)) (-2311 (((-112) (-538) $) 91)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 76) (($ $ (-751)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2306 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-3802 (((-112) $) 84)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 90)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1198 (-538))) 112) ((|#1| $ (-538)) 89) ((|#1| $ (-538) |#1|) 88)) (-3362 (((-538) $ $) 44)) (-2383 (($ $ (-1198 (-538))) 114) (($ $ (-538)) 113)) (-3996 (((-112) $) 46)) (-4151 (($ $) 62)) (-4149 (($ $) 59 (|has| $ (-6 -4354)))) (-4152 (((-751) $) 63)) (-4153 (($ $) 64)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 98 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 107)) (-4150 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-4161 (($ $ $) 78) (($ |#1| $) 77) (($ (-622 $)) 110) (($ $ |#1|) 109)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-1122 |#1|) (-138) (-1185)) (T -1122))
-((-3802 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))))
-(-13 (-1220 |t#1|) (-631 |t#1|) (-10 -8 (-15 -3802 ((-112) $)) (-15 -3801 ((-112) $))))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T) ((-1220 |#1|) . T))
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) NIL)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) NIL)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1123 |#1| |#2| |#3|) (-1162 |#1| |#2|) (-1074) (-1074) |#2|) (T -1123))
+((-3870 (*1 *1 *1) (-4 *1 (-1117))) (-3857 (*1 *1 *1) (-4 *1 (-1117))) (-3843 (*1 *1 *1) (-4 *1 (-1117))) (-3829 (*1 *1 *1) (-4 *1 (-1117))) (-1992 (*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))) (-1975 (*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))) (-1951 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-552)) (-5 *2 (-112)))) (-2344 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-751)))) (-1899 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-112)))) (-1353 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1199 (-552))))) (-2483 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-552)))) (-2483 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-552)) (-5 *3 (-139)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1117)))) (-3819 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-625 *1)) (-4 *1 (-1117)))) (-3819 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-625 *1)) (-4 *1 (-1117)))) (-3808 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3808 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-3221 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3221 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-3209 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3209 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-2154 (*1 *1 *1 *1) (-4 *1 (-1117))))
+(-13 (-19 (-142)) (-10 -8 (-15 -3870 ($ $)) (-15 -3857 ($ $)) (-15 -3843 ($ $)) (-15 -3829 ($ $)) (-15 -1992 ((-112) $ $)) (-15 -1975 ((-112) $ $)) (-15 -1951 ((-112) $ $ (-552))) (-15 -2344 ((-751) $ $ (-142))) (-15 -1899 ((-112) $ $ (-142))) (-15 -1353 ($ $ (-1199 (-552)) $)) (-15 -2483 ((-552) $ $ (-552))) (-15 -2483 ((-552) (-139) $ (-552))) (-15 -1683 ($ (-142))) (-15 -3819 ((-625 $) $ (-142))) (-15 -3819 ((-625 $) $ (-139))) (-15 -3808 ($ $ (-142))) (-15 -3808 ($ $ (-139))) (-15 -3221 ($ $ (-142))) (-15 -3221 ($ $ (-139))) (-15 -3209 ($ $ (-142))) (-15 -3209 ($ $ (-139))) (-15 -2154 ($ $ $))))
+(((-34) . T) ((-101) -1523 (|has| (-142) (-1073)) (|has| (-142) (-827))) ((-597 (-839)) -1523 (|has| (-142) (-1073)) (|has| (-142) (-827)) (|has| (-142) (-597 (-839)))) ((-149 #0=(-142)) . T) ((-598 (-528)) |has| (-142) (-598 (-528))) ((-281 #1=(-552) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))) ((-368 #0#) . T) ((-483 #0#) . T) ((-588 #1# #0#) . T) ((-507 #0# #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))) ((-631 #0#) . T) ((-19 #0#) . T) ((-827) |has| (-142) (-827)) ((-1073) -1523 (|has| (-142) (-1073)) (|has| (-142) (-827))) ((-1186) . T))
+((-3963 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751)) 94)) (-3924 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751)) 54)) (-2125 (((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751)) 85)) (-3896 (((-751) (-625 |#4|) (-625 |#5|)) 27)) (-3938 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751)) 56) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112)) 58)) (-3950 (((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112)) 77)) (-2042 (((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) 80)) (-3911 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|) 53)) (-3883 (((-751) (-625 |#4|) (-625 |#5|)) 19)))
+(((-1118 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3883 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3896 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3911 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3963 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751))) (-15 -2042 ((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -2125 ((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1118))
+((-2125 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) (-5 *1 (-1118 *4 *5 *6 *7 *8)))) (-3963 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-625 *11)) (|:| |todo| (-625 (-2 (|:| |val| *3) (|:| -3715 *11)))))) (-5 *6 (-751)) (-5 *2 (-625 (-2 (|:| |val| (-625 *10)) (|:| -3715 *11)))) (-5 *3 (-625 *10)) (-5 *4 (-625 *11)) (-4 *10 (-1039 *7 *8 *9)) (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-5 *1 (-1118 *7 *8 *9 *10 *11)))) (-3950 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3950 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3938 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3938 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3938 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3)))) (-3924 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3924 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3911 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3883 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3896 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3911 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3963 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751))) (-15 -2042 ((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -2125 ((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751))))
+((-1671 (((-112) $ $) NIL)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) NIL)) (-3690 (((-625 $) (-625 |#4|)) 110) (((-625 $) (-625 |#4|) (-112)) 111) (((-625 $) (-625 |#4|) (-112) (-112)) 109) (((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3982 (((-625 |#3|) $) NIL)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 84)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 62)) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) 26 (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3624 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) NIL)) (-1895 (($ (-625 |#4|)) NIL)) (-2936 (((-3 $ "failed") $) 39)) (-3720 ((|#4| |#4| $) 65)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1416 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3699 ((|#4| |#4| $) NIL)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) NIL)) (-3731 (((-112) |#4| $) NIL)) (-3714 (((-112) |#4| $) NIL)) (-3741 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3975 (((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112)) 124)) (-3799 (((-625 |#4|) $) 16 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3565 ((|#3| $) 33)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#4|) $) 17 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-3683 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 21)) (-2615 (((-625 |#3|) $) NIL)) (-2608 (((-112) |#3| $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) NIL)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 103)) (-1437 (((-3 |#4| "failed") $) 37)) (-3685 (((-625 $) |#4| $) 88)) (-3704 (((-3 (-112) (-625 $)) |#4| $) NIL)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-2860 (((-625 $) |#4| $) 107) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) 108) (((-625 $) |#4| (-625 $)) NIL)) (-3987 (((-625 $) (-625 |#4|) (-112) (-112) (-112)) 119)) (-3999 (($ |#4| $) 75) (($ (-625 |#4|) $) 76) (((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2699 (((-625 |#4|) $) NIL)) (-3777 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3727 ((|#4| |#4| $) NIL)) (-2719 (((-112) $ $) NIL)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3737 ((|#4| |#4| $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-3 |#4| "failed") $) 35)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3657 (((-3 $ "failed") $ |#4|) 48)) (-2147 (($ $ |#4|) NIL) (((-625 $) |#4| $) 90) (((-625 $) |#4| (-625 $)) NIL) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) 86)) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 15)) (-3600 (($) 13)) (-4276 (((-751) $) NIL)) (-2840 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) 12)) (-2042 (((-528) $) NIL (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 20)) (-3718 (($ $ |#3|) 42)) (-2595 (($ $ |#3|) 44)) (-3709 (($ $) NIL)) (-2584 (($ $ |#3|) NIL)) (-1683 (((-839) $) 31) (((-625 |#4|) $) 40)) (-3647 (((-751) $) NIL (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) NIL)) (-3651 (((-625 $) |#4| $) 54) (((-625 $) |#4| (-625 $)) NIL) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) NIL)) (-3724 (((-112) |#4| $) NIL)) (-4168 (((-112) |#3| $) 61)) (-2281 (((-112) $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1119 |#1| |#2| |#3| |#4|) (-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3999 ((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112))) (-15 -3987 ((-625 $) (-625 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112))))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1119))
+((-3999 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1119 *5 *6 *7 *3))) (-5 *1 (-1119 *5 *6 *7 *3)) (-4 *3 (-1039 *5 *6 *7)))) (-3690 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-3690 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-3987 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-625 *8)) (|:| |towers| (-625 (-1119 *5 *6 *7 *8))))) (-5 *1 (-1119 *5 *6 *7 *8)) (-5 *3 (-625 *8)))))
+(-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3999 ((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112))) (-15 -3987 ((-625 $) (-625 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112)))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1549 ((|#1| $) 34)) (-2532 (($ (-625 |#1|)) 39)) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-2406 ((|#1| |#1| $) 36)) (-2395 ((|#1| $) 32)) (-3799 (((-625 |#1|) $) 18 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 22)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) 35)) (-3966 (($ |#1| $) 37)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2966 ((|#1| $) 33)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 31)) (-3600 (($) 38)) (-2389 (((-751) $) 29)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 27)) (-1683 (((-839) $) 14 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 17 (|has| |#1| (-1073)))) (-1471 (((-751) $) 30 (|has| $ (-6 -4353)))))
+(((-1120 |#1|) (-13 (-1094 |#1|) (-10 -8 (-15 -2532 ($ (-625 |#1|))))) (-1186)) (T -1120))
+((-2532 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1120 *3)))))
+(-13 (-1094 |#1|) (-10 -8 (-15 -2532 ($ (-625 |#1|)))))
+((-1851 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1199 (-552)) |#2|) 44) ((|#2| $ (-552) |#2|) 41)) (-4011 (((-112) $) 12)) (-3683 (($ (-1 |#2| |#2|) $) 39)) (-2924 ((|#2| $) NIL) (($ $ (-751)) 17)) (-2518 (($ $ |#2|) 40)) (-4022 (((-112) $) 11)) (-2154 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1199 (-552))) 31) ((|#2| $ (-552)) 23) ((|#2| $ (-552) |#2|) NIL)) (-2342 (($ $ $) 47) (($ $ |#2|) NIL)) (-3402 (($ $ $) 33) (($ |#2| $) NIL) (($ (-625 $)) 36) (($ $ |#2|) NIL)))
+(((-1121 |#1| |#2|) (-10 -8 (-15 -4011 ((-112) |#1|)) (-15 -4022 ((-112) |#1|)) (-15 -1851 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -2518 (|#1| |#1| |#2|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -3402 (|#1| (-625 |#1|))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -1851 (|#2| |#1| (-1199 (-552)) |#2|)) (-15 -1851 (|#2| |#1| "last" |#2|)) (-15 -1851 (|#1| |#1| "rest" |#1|)) (-15 -1851 (|#2| |#1| "first" |#2|)) (-15 -2342 (|#1| |#1| |#2|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -2154 (|#2| |#1| "last")) (-15 -2154 (|#1| |#1| "rest")) (-15 -2924 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#1|)) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|))) (-1122 |#2|) (-1186)) (T -1121))
+NIL
+(-10 -8 (-15 -4011 ((-112) |#1|)) (-15 -4022 ((-112) |#1|)) (-15 -1851 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -2518 (|#1| |#1| |#2|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -3402 (|#1| (-625 |#1|))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -1851 (|#2| |#1| (-1199 (-552)) |#2|)) (-15 -1851 (|#2| |#1| "last" |#2|)) (-15 -1851 (|#1| |#1| "rest" |#1|)) (-15 -1851 (|#2| |#1| "first" |#2|)) (-15 -2342 (|#1| |#1| |#2|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -2154 (|#2| |#1| "last")) (-15 -2154 (|#1| |#1| "rest")) (-15 -2924 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#1|)) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3897 ((|#1| $) 65)) (-2101 (($ $) 67)) (-2509 (((-1237) $ (-552) (-552)) 97 (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 52 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-2301 (($ $ $) 56 (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ "rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4353)))) (-2673 ((|#1| $) 66)) (-3101 (($) 7 T CONST)) (-2936 (($ $) 73) (($ $ (-751)) 71)) (-2959 (($ $) 99 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4353))) (($ |#1| $) 100 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3692 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 87)) (-4011 (((-112) $) 83)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) 108)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 95 (|has| (-552) (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 94 (|has| (-552) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-1437 ((|#1| $) 70) (($ $ (-751)) 68)) (-3994 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-2554 (((-625 (-552)) $) 92)) (-2564 (((-112) (-552) $) 91)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 76) (($ $ (-751)) 74)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2518 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-4022 (((-112) $) 84)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 90)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1199 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1389 (((-552) $ $) 44)) (-4001 (($ $ (-1199 (-552))) 114) (($ $ (-552)) 113)) (-2316 (((-112) $) 46)) (-2356 (($ $) 62)) (-2330 (($ $) 59 (|has| $ (-6 -4354)))) (-2368 (((-751) $) 63)) (-2379 (($ $) 64)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 98 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 107)) (-2342 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-3402 (($ $ $) 78) (($ |#1| $) 77) (($ (-625 $)) 110) (($ $ |#1|) 109)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-1122 |#1|) (-138) (-1186)) (T -1122))
+((-4022 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-4011 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))))
+(-13 (-1220 |t#1|) (-631 |t#1|) (-10 -8 (-15 -4022 ((-112) $)) (-15 -4011 ((-112) $))))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T) ((-1220 |#1|) . T))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) NIL)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1123 |#1| |#2| |#3|) (-1162 |#1| |#2|) (-1073) (-1073) |#2|) (T -1123))
NIL
(-1162 |#1| |#2|)
-((-2898 (((-112) $ $) 7)) (-3803 (((-3 $ "failed") $) 13)) (-3593 (((-1131) $) 9)) (-3804 (($) 14 T CONST)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)))
+((-1671 (((-112) $ $) 7)) (-4034 (((-3 $ "failed") $) 13)) (-2883 (((-1131) $) 9)) (-2071 (($) 14 T CONST)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)))
(((-1124) (-138)) (T -1124))
-((-3804 (*1 *1) (-4 *1 (-1124))) (-3803 (*1 *1 *1) (|partial| -4 *1 (-1124))))
-(-13 (-1074) (-10 -8 (-15 -3804 ($) -4311) (-15 -3803 ((-3 $ "failed") $))))
-(((-101) . T) ((-597 (-840)) . T) ((-1074) . T))
-((-3807 (((-1126 |#1|) (-1126 |#1|)) 17)) (-3805 (((-1126 |#1|) (-1126 |#1|)) 13)) (-3808 (((-1126 |#1|) (-1126 |#1|) (-538) (-538)) 20)) (-3806 (((-1126 |#1|) (-1126 |#1|)) 15)))
-(((-1125 |#1|) (-10 -7 (-15 -3805 ((-1126 |#1|) (-1126 |#1|))) (-15 -3806 ((-1126 |#1|) (-1126 |#1|))) (-15 -3807 ((-1126 |#1|) (-1126 |#1|))) (-15 -3808 ((-1126 |#1|) (-1126 |#1|) (-538) (-538)))) (-13 (-545) (-145))) (T -1125))
-((-3808 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-13 (-545) (-145))) (-5 *1 (-1125 *4)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3)))))
-(-10 -7 (-15 -3805 ((-1126 |#1|) (-1126 |#1|))) (-15 -3806 ((-1126 |#1|) (-1126 |#1|))) (-15 -3807 ((-1126 |#1|) (-1126 |#1|))) (-15 -3808 ((-1126 |#1|) (-1126 |#1|) (-538) (-538))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) NIL)) (-4154 ((|#1| $) NIL)) (-4156 (($ $) 52)) (-2305 (((-1237) $ (-538) (-538)) 77 (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 111 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-3813 (((-840) $) 41 (|has| |#1| (-1074)))) (-3812 (((-112)) 40 (|has| |#1| (-1074)))) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4146 (($ $ $) 99 (|has| $ (-6 -4354))) (($ $ (-538) $) 123)) (-4145 ((|#1| $ |#1|) 108 (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 103 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) 105 (|has| $ (-6 -4354))) (($ $ #3="rest" $) 107 (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) 110 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 90 (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) 56 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 59)) (-4155 ((|#1| $) NIL)) (-3896 (($) NIL T CONST)) (-2398 (($ $) 14)) (-4158 (($ $) 29) (($ $ (-751)) 89)) (-3818 (((-112) (-622 |#1|) $) 117 (|has| |#1| (-1074)))) (-3819 (($ (-622 |#1|)) 113)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) 58)) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3801 (((-112) $) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3814 (((-1237) (-538) $) 122 (|has| |#1| (-1074)))) (-2397 (((-751) $) 119)) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-2400 (($ $) 91)) (-2401 (((-112) $) 13)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-4157 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) 75)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-3811 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-2399 ((|#1| $) 10)) (-4160 ((|#1| $) 28) (($ $ (-751)) 50)) (-3817 (((-2 (|:| |cycle?| (-112)) (|:| -2925 (-751)) (|:| |period| (-751))) (-751) $) 25)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3810 (($ (-1 (-112) |#1|) $) 127)) (-3809 (($ (-1 (-112) |#1|) $) 128)) (-2306 (($ $ |#1|) 69 (|has| $ (-6 -4354)))) (-4128 (($ $ (-538)) 32)) (-3802 (((-112) $) 73)) (-2402 (((-112) $) 12)) (-2403 (((-112) $) 118)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 20)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) 15)) (-3928 (($) 45)) (-4159 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1198 (-538))) NIL) ((|#1| $ (-538)) 55) ((|#1| $ (-538) |#1|) NIL)) (-3362 (((-538) $ $) 49)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-3816 (($ (-1 $)) 48)) (-3996 (((-112) $) 70)) (-4151 (($ $) 71)) (-4149 (($ $) 100 (|has| $ (-6 -4354)))) (-4152 (((-751) $) NIL)) (-4153 (($ $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 44)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 54)) (-3815 (($ |#1| $) 98)) (-4150 (($ $ $) 101 (|has| $ (-6 -4354))) (($ $ |#1|) 102 (|has| $ (-6 -4354)))) (-4161 (($ $ $) 79) (($ |#1| $) 46) (($ (-622 $)) 84) (($ $ |#1|) 78)) (-3224 (($ $) 51)) (-4317 (($ (-622 |#1|)) 112) (((-840) $) 42 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 115 (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1126 |#1|) (-13 (-654 |#1|) (-10 -8 (-6 -4354) (-15 -4317 ($ (-622 |#1|))) (-15 -3819 ($ (-622 |#1|))) (IF (|has| |#1| (-1074)) (-15 -3818 ((-112) (-622 |#1|) $)) |%noBranch|) (-15 -3817 ((-2 (|:| |cycle?| (-112)) (|:| -2925 (-751)) (|:| |period| (-751))) (-751) $)) (-15 -3816 ($ (-1 $))) (-15 -3815 ($ |#1| $)) (IF (|has| |#1| (-1074)) (PROGN (-15 -3814 ((-1237) (-538) $)) (-15 -3813 ((-840) $)) (-15 -3812 ((-112)))) |%noBranch|) (-15 -4146 ($ $ (-538) $)) (-15 -3811 ($ (-1 |#1|))) (-15 -3811 ($ (-1 |#1| |#1|) |#1|)) (-15 -3810 ($ (-1 (-112) |#1|) $)) (-15 -3809 ($ (-1 (-112) |#1|) $)))) (-1185)) (T -1126))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) (-3818 (*1 *2 *3 *1) (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-4 *4 (-1185)) (-5 *2 (-112)) (-5 *1 (-1126 *4)))) (-3817 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2925 (-751)) (|:| |period| (-751)))) (-5 *1 (-1126 *4)) (-4 *4 (-1185)) (-5 *3 (-751)))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-1 (-1126 *3))) (-5 *1 (-1126 *3)) (-4 *3 (-1185)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-1185)))) (-3814 (*1 *2 *3 *1) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1126 *4)) (-4 *4 (-1074)) (-4 *4 (-1185)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1126 *3)) (-4 *3 (-1074)) (-4 *3 (-1185)))) (-3812 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1126 *3)) (-4 *3 (-1074)) (-4 *3 (-1185)))) (-4146 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1126 *3)) (-4 *3 (-1185)))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) (-3811 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))))
-(-13 (-654 |#1|) (-10 -8 (-6 -4354) (-15 -4317 ($ (-622 |#1|))) (-15 -3819 ($ (-622 |#1|))) (IF (|has| |#1| (-1074)) (-15 -3818 ((-112) (-622 |#1|) $)) |%noBranch|) (-15 -3817 ((-2 (|:| |cycle?| (-112)) (|:| -2925 (-751)) (|:| |period| (-751))) (-751) $)) (-15 -3816 ($ (-1 $))) (-15 -3815 ($ |#1| $)) (IF (|has| |#1| (-1074)) (PROGN (-15 -3814 ((-1237) (-538) $)) (-15 -3813 ((-840) $)) (-15 -3812 ((-112)))) |%noBranch|) (-15 -4146 ($ $ (-538) $)) (-15 -3811 ($ (-1 |#1|))) (-15 -3811 ($ (-1 |#1| |#1|) |#1|)) (-15 -3810 ($ (-1 (-112) |#1|) $)) (-15 -3809 ($ (-1 (-112) |#1|) $))))
-((-4161 (((-1126 |#1|) (-1126 (-1126 |#1|))) 15)))
-(((-1127 |#1|) (-10 -7 (-15 -4161 ((-1126 |#1|) (-1126 (-1126 |#1|))))) (-1185)) (T -1127))
-((-4161 (*1 *2 *3) (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1127 *4)) (-4 *4 (-1185)))))
-(-10 -7 (-15 -4161 ((-1126 |#1|) (-1126 (-1126 |#1|)))))
-((-4201 (((-1126 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|)) 25)) (-4202 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|)) 26)) (-4318 (((-1126 |#2|) (-1 |#2| |#1|) (-1126 |#1|)) 16)))
-(((-1128 |#1| |#2|) (-10 -7 (-15 -4318 ((-1126 |#2|) (-1 |#2| |#1|) (-1126 |#1|))) (-15 -4201 ((-1126 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|))) (-15 -4202 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|)))) (-1185) (-1185)) (T -1128))
-((-4202 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1126 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-1128 *5 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1126 *6)) (-4 *6 (-1185)) (-4 *3 (-1185)) (-5 *2 (-1126 *3)) (-5 *1 (-1128 *6 *3)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1126 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1126 *6)) (-5 *1 (-1128 *5 *6)))))
-(-10 -7 (-15 -4318 ((-1126 |#2|) (-1 |#2| |#1|) (-1126 |#1|))) (-15 -4201 ((-1126 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|))) (-15 -4202 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|))))
-((-4318 (((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-1126 |#2|)) 21)))
-(((-1129 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-1126 |#2|)))) (-1185) (-1185) (-1185)) (T -1129))
-((-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1126 *6)) (-5 *5 (-1126 *7)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8)) (-5 *1 (-1129 *6 *7 *8)))))
-(-10 -7 (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-1126 |#2|))))
-((-2898 (((-112) $ $) 19)) (-3785 (($ $) 120)) (-3786 (($ $) 121)) (-3776 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-3783 (((-112) $ $) 118)) (-3782 (((-112) $ $ (-538)) 117)) (-3898 (($ (-538)) 127)) (-3777 (((-622 $) $ (-142)) 110) (((-622 $) $ (-139)) 109)) (-1848 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-827)))) (-1846 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| (-142) (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 (((-142) $ (-538) (-142)) 52 (|has| $ (-6 -4354))) (((-142) $ (-1198 (-538)) (-142)) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-3774 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-3779 (($ $ (-1198 (-538)) $) 114)) (-1398 (($ $) 78 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ (-142) $) 77 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4353)))) (-4202 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4353)))) (-1637 (((-142) $ (-538) (-142)) 53 (|has| $ (-6 -4354)))) (-3448 (((-142) $ (-538)) 51)) (-3784 (((-112) $ $) 119)) (-3778 (((-538) (-1 (-112) (-142)) $) 97) (((-538) (-142) $) 96 (|has| (-142) (-1074))) (((-538) (-142) $ (-538)) 95 (|has| (-142) (-1074))) (((-538) $ $ (-538)) 113) (((-538) (-139) $ (-538)) 112)) (-2068 (((-622 (-142)) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) (-142)) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| (-142) (-827)))) (-3872 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-827)))) (-2511 (((-622 (-142)) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| (-142) (-827)))) (-3780 (((-112) $ $ (-142)) 115)) (-3781 (((-751) $ $ (-142)) 116)) (-2072 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3787 (($ $) 122)) (-3788 (($ $) 123)) (-4079 (((-112) $ (-751)) 10)) (-3775 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3593 (((-1131) $) 22)) (-2382 (($ (-142) $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21)) (-4160 (((-142) $) 42 (|has| (-538) (-827)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2306 (($ $ (-142)) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-288 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-622 (-142)) (-622 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2312 (((-622 (-142)) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 (((-142) $ (-538) (-142)) 50) (((-142) $ (-538)) 49) (($ $ (-1198 (-538))) 63) (($ $ $) 102)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4353))) (((-751) (-142) $) 28 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| (-142) (-598 (-527))))) (-3884 (($ (-622 (-142))) 70)) (-4161 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (($ (-142)) 111) (((-840) $) 18)) (-2071 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4353)))) (-2834 (((-1131) $) 131) (((-1131) $ (-112)) 130) (((-1237) (-803) $) 129) (((-1237) (-803) $ (-112)) 128)) (-2896 (((-112) $ $) 84 (|has| (-142) (-827)))) (-2897 (((-112) $ $) 83 (|has| (-142) (-827)))) (-3387 (((-112) $ $) 20)) (-3017 (((-112) $ $) 85 (|has| (-142) (-827)))) (-3018 (((-112) $ $) 82 (|has| (-142) (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
+((-2071 (*1 *1) (-4 *1 (-1124))) (-4034 (*1 *1 *1) (|partial| -4 *1 (-1124))))
+(-13 (-1073) (-10 -8 (-15 -2071 ($) -1426) (-15 -4034 ((-3 $ "failed") $))))
+(((-101) . T) ((-597 (-839)) . T) ((-1073) . T))
+((-4071 (((-1129 |#1|) (-1129 |#1|)) 17)) (-4046 (((-1129 |#1|) (-1129 |#1|)) 13)) (-4084 (((-1129 |#1|) (-1129 |#1|) (-552) (-552)) 20)) (-4059 (((-1129 |#1|) (-1129 |#1|)) 15)))
+(((-1125 |#1|) (-10 -7 (-15 -4046 ((-1129 |#1|) (-1129 |#1|))) (-15 -4059 ((-1129 |#1|) (-1129 |#1|))) (-15 -4071 ((-1129 |#1|) (-1129 |#1|))) (-15 -4084 ((-1129 |#1|) (-1129 |#1|) (-552) (-552)))) (-13 (-544) (-145))) (T -1125))
+((-4084 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-13 (-544) (-145))) (-5 *1 (-1125 *4)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145))) (-5 *1 (-1125 *3)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145))) (-5 *1 (-1125 *3)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145))) (-5 *1 (-1125 *3)))))
+(-10 -7 (-15 -4046 ((-1129 |#1|) (-1129 |#1|))) (-15 -4059 ((-1129 |#1|) (-1129 |#1|))) (-15 -4071 ((-1129 |#1|) (-1129 |#1|))) (-15 -4084 ((-1129 |#1|) (-1129 |#1|) (-552) (-552))))
+((-3402 (((-1129 |#1|) (-1129 (-1129 |#1|))) 15)))
+(((-1126 |#1|) (-10 -7 (-15 -3402 ((-1129 |#1|) (-1129 (-1129 |#1|))))) (-1186)) (T -1126))
+((-3402 (*1 *2 *3) (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-1186)))))
+(-10 -7 (-15 -3402 ((-1129 |#1|) (-1129 (-1129 |#1|)))))
+((-1454 (((-1129 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|)) 25)) (-2163 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|)) 26)) (-1996 (((-1129 |#2|) (-1 |#2| |#1|) (-1129 |#1|)) 16)))
+(((-1127 |#1| |#2|) (-10 -7 (-15 -1996 ((-1129 |#2|) (-1 |#2| |#1|) (-1129 |#1|))) (-15 -1454 ((-1129 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|))) (-15 -2163 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|)))) (-1186) (-1186)) (T -1127))
+((-2163 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1129 *5)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-1127 *5 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1129 *6)) (-4 *6 (-1186)) (-4 *3 (-1186)) (-5 *2 (-1129 *3)) (-5 *1 (-1127 *6 *3)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1129 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1129 *6)) (-5 *1 (-1127 *5 *6)))))
+(-10 -7 (-15 -1996 ((-1129 |#2|) (-1 |#2| |#1|) (-1129 |#1|))) (-15 -1454 ((-1129 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|))) (-15 -2163 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|))))
+((-1996 (((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-1129 |#2|)) 21)))
+(((-1128 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-1129 |#2|)))) (-1186) (-1186) (-1186)) (T -1128))
+((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1129 *6)) (-5 *5 (-1129 *7)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8)) (-5 *1 (-1128 *6 *7 *8)))))
+(-10 -7 (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-1129 |#2|))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) NIL)) (-3897 ((|#1| $) NIL)) (-2101 (($ $) 52)) (-2509 (((-1237) $ (-552) (-552)) 77 (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 111 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-4110 (((-839) $) 41 (|has| |#1| (-1073)))) (-4097 (((-112)) 40 (|has| |#1| (-1073)))) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2301 (($ $ $) 99 (|has| $ (-6 -4354))) (($ $ (-552) $) 123)) (-2289 ((|#1| $ |#1|) 108 (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 103 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4354))) (($ $ "rest" $) 107 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 90 (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) 56 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 59)) (-2673 ((|#1| $) NIL)) (-3101 (($) NIL T CONST)) (-3887 (($ $) 14)) (-2936 (($ $) 29) (($ $ (-751)) 89)) (-4150 (((-112) (-625 |#1|) $) 117 (|has| |#1| (-1073)))) (-4162 (($ (-625 |#1|)) 113)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) 58)) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-4011 (((-112) $) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4213 (((-1237) (-552) $) 122 (|has| |#1| (-1073)))) (-3873 (((-751) $) 119)) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-3913 (($ $) 91)) (-3927 (((-112) $) 13)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-1437 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) 75)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-3421 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-3900 ((|#1| $) 10)) (-2924 ((|#1| $) 28) (($ $ (-751)) 50)) (-4136 (((-2 (|:| |cycle?| (-112)) (|:| -2667 (-751)) (|:| |period| (-751))) (-751) $) 25)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3467 (($ (-1 (-112) |#1|) $) 127)) (-3478 (($ (-1 (-112) |#1|) $) 128)) (-2518 (($ $ |#1|) 69 (|has| $ (-6 -4354)))) (-2147 (($ $ (-552)) 32)) (-4022 (((-112) $) 73)) (-3940 (((-112) $) 12)) (-3952 (((-112) $) 118)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 20)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) 15)) (-3600 (($) 45)) (-2154 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1199 (-552))) NIL) ((|#1| $ (-552)) 55) ((|#1| $ (-552) |#1|) NIL)) (-1389 (((-552) $ $) 49)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-4123 (($ (-1 $)) 48)) (-2316 (((-112) $) 70)) (-2356 (($ $) 71)) (-2330 (($ $) 100 (|has| $ (-6 -4354)))) (-2368 (((-751) $) NIL)) (-2379 (($ $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 44)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 54)) (-1587 (($ |#1| $) 98)) (-2342 (($ $ $) 101 (|has| $ (-6 -4354))) (($ $ |#1|) 102 (|has| $ (-6 -4354)))) (-3402 (($ $ $) 79) (($ |#1| $) 46) (($ (-625 $)) 84) (($ $ |#1|) 78)) (-3580 (($ $) 51)) (-1683 (($ (-625 |#1|)) 112) (((-839) $) 42 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 115 (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1129 |#1|) (-13 (-654 |#1|) (-10 -8 (-6 -4354) (-15 -1683 ($ (-625 |#1|))) (-15 -4162 ($ (-625 |#1|))) (IF (|has| |#1| (-1073)) (-15 -4150 ((-112) (-625 |#1|) $)) |%noBranch|) (-15 -4136 ((-2 (|:| |cycle?| (-112)) (|:| -2667 (-751)) (|:| |period| (-751))) (-751) $)) (-15 -4123 ($ (-1 $))) (-15 -1587 ($ |#1| $)) (IF (|has| |#1| (-1073)) (PROGN (-15 -4213 ((-1237) (-552) $)) (-15 -4110 ((-839) $)) (-15 -4097 ((-112)))) |%noBranch|) (-15 -2301 ($ $ (-552) $)) (-15 -3421 ($ (-1 |#1|))) (-15 -3421 ($ (-1 |#1| |#1|) |#1|)) (-15 -3467 ($ (-1 (-112) |#1|) $)) (-15 -3478 ($ (-1 (-112) |#1|) $)))) (-1186)) (T -1129))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) (-4150 (*1 *2 *3 *1) (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-4 *4 (-1186)) (-5 *2 (-112)) (-5 *1 (-1129 *4)))) (-4136 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2667 (-751)) (|:| |period| (-751)))) (-5 *1 (-1129 *4)) (-4 *4 (-1186)) (-5 *3 (-751)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-1 (-1129 *3))) (-5 *1 (-1129 *3)) (-4 *3 (-1186)))) (-1587 (*1 *1 *2 *1) (-12 (-5 *1 (-1129 *2)) (-4 *2 (-1186)))) (-4213 (*1 *2 *3 *1) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1129 *4)) (-4 *4 (-1073)) (-4 *4 (-1186)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1129 *3)) (-4 *3 (-1073)) (-4 *3 (-1186)))) (-4097 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1129 *3)) (-4 *3 (-1073)) (-4 *3 (-1186)))) (-2301 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1129 *3)) (-4 *3 (-1186)))) (-3421 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) (-3421 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) (-3467 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) (-3478 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))))
+(-13 (-654 |#1|) (-10 -8 (-6 -4354) (-15 -1683 ($ (-625 |#1|))) (-15 -4162 ($ (-625 |#1|))) (IF (|has| |#1| (-1073)) (-15 -4150 ((-112) (-625 |#1|) $)) |%noBranch|) (-15 -4136 ((-2 (|:| |cycle?| (-112)) (|:| -2667 (-751)) (|:| |period| (-751))) (-751) $)) (-15 -4123 ($ (-1 $))) (-15 -1587 ($ |#1| $)) (IF (|has| |#1| (-1073)) (PROGN (-15 -4213 ((-1237) (-552) $)) (-15 -4110 ((-839) $)) (-15 -4097 ((-112)))) |%noBranch|) (-15 -2301 ($ $ (-552) $)) (-15 -3421 ($ (-1 |#1|))) (-15 -3421 ($ (-1 |#1| |#1|) |#1|)) (-15 -3467 ($ (-1 (-112) |#1|) $)) (-15 -3478 ($ (-1 (-112) |#1|) $))))
+((-1671 (((-112) $ $) 19)) (-3829 (($ $) 120)) (-3843 (($ $) 121)) (-3808 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-1975 (((-112) $ $) 118)) (-1951 (((-112) $ $ (-552)) 117)) (-4265 (($ (-552)) 127)) (-3819 (((-625 $) $ (-142)) 110) (((-625 $) $ (-139)) 109)) (-3237 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-827)))) (-3218 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| (-142) (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 (((-142) $ (-552) (-142)) 52 (|has| $ (-6 -4354))) (((-142) $ (-1199 (-552)) (-142)) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3209 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-1353 (($ $ (-1199 (-552)) $) 114)) (-2959 (($ $) 78 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ (-142) $) 77 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4353)))) (-2163 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4353)))) (-3692 (((-142) $ (-552) (-142)) 53 (|has| $ (-6 -4354)))) (-3631 (((-142) $ (-552)) 51)) (-1992 (((-112) $ $) 119)) (-2483 (((-552) (-1 (-112) (-142)) $) 97) (((-552) (-142) $) 96 (|has| (-142) (-1073))) (((-552) (-142) $ (-552)) 95 (|has| (-142) (-1073))) (((-552) $ $ (-552)) 113) (((-552) (-139) $ (-552)) 112)) (-3799 (((-625 (-142)) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) (-142)) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| (-142) (-827)))) (-3280 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-827)))) (-3730 (((-625 (-142)) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| (-142) (-827)))) (-1899 (((-112) $ $ (-142)) 115)) (-2344 (((-751) $ $ (-142)) 116)) (-3683 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3857 (($ $) 122)) (-3870 (($ $) 123)) (-2878 (((-112) $ (-751)) 10)) (-3221 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2883 (((-1131) $) 22)) (-3994 (($ (-142) $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21)) (-2924 (((-142) $) 42 (|has| (-552) (-827)))) (-2380 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2518 (($ $ (-142)) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-289 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-625 (-142)) (-625 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1358 (((-625 (-142)) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 (((-142) $ (-552) (-142)) 50) (((-142) $ (-552)) 49) (($ $ (-1199 (-552))) 63) (($ $ $) 102)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4353))) (((-751) (-142) $) 28 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| (-142) (-598 (-528))))) (-1695 (($ (-625 (-142))) 70)) (-3402 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (($ (-142)) 111) (((-839) $) 18)) (-1900 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4353)))) (-3010 (((-1131) $) 131) (((-1131) $ (-112)) 130) (((-1237) (-802) $) 129) (((-1237) (-802) $ (-112)) 128)) (-2346 (((-112) $ $) 84 (|has| (-142) (-827)))) (-2320 (((-112) $ $) 83 (|has| (-142) (-827)))) (-2281 (((-112) $ $) 20)) (-2334 (((-112) $ $) 85 (|has| (-142) (-827)))) (-2307 (((-112) $ $) 82 (|has| (-142) (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
(((-1130) (-138)) (T -1130))
-((-3898 (*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1130)))))
-(-13 (-1117) (-1074) (-801) (-10 -8 (-15 -3898 ($ (-538)))))
-(((-34) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 #1=(-142)) . T) ((-598 (-527)) |has| (-142) (-598 (-527))) ((-281 #2=(-538) #1#) . T) ((-283 #2# #1#) . T) ((-304 #1#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))) ((-367 #1#) . T) ((-483 #1#) . T) ((-588 #2# #1#) . T) ((-507 #1# #1#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))) ((-631 #1#) . T) ((-19 #1#) . T) ((-801) . T) ((-827) |has| (-142) (-827)) ((-1074) . T) ((-1117) . T) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-3785 (($ $) NIL)) (-3786 (($ $) NIL)) (-3776 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-3783 (((-112) $ $) NIL)) (-3782 (((-112) $ $ (-538)) NIL)) (-3898 (($ (-538)) 7)) (-3777 (((-622 $) $ (-142)) NIL) (((-622 $) $ (-139)) NIL)) (-1848 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-827)))) (-1846 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-142) (-827))))) (-3242 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-142) $ (-538) (-142)) NIL (|has| $ (-6 -4354))) (((-142) $ (-1198 (-538)) (-142)) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-3774 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-3779 (($ $ (-1198 (-538)) $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-3765 (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353)))) (-1637 (((-142) $ (-538) (-142)) NIL (|has| $ (-6 -4354)))) (-3448 (((-142) $ (-538)) NIL)) (-3784 (((-112) $ $) NIL)) (-3778 (((-538) (-1 (-112) (-142)) $) NIL) (((-538) (-142) $) NIL (|has| (-142) (-1074))) (((-538) (-142) $ (-538)) NIL (|has| (-142) (-1074))) (((-538) $ $ (-538)) NIL) (((-538) (-139) $ (-538)) NIL)) (-2068 (((-622 (-142)) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) (-142)) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| (-142) (-827)))) (-3872 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-827)))) (-2511 (((-622 (-142)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-142) (-827)))) (-3780 (((-112) $ $ (-142)) NIL)) (-3781 (((-751) $ $ (-142)) NIL)) (-2072 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3787 (($ $) NIL)) (-3788 (($ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3775 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3593 (((-1131) $) NIL)) (-2382 (($ (-142) $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-142) $) NIL (|has| (-538) (-827)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2306 (($ $ (-142)) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-288 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-622 (-142)) (-622 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2312 (((-622 (-142)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (((-142) $ (-538) (-142)) NIL) (((-142) $ (-538)) NIL) (($ $ (-1198 (-538))) NIL) (($ $ $) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-142) (-598 (-527))))) (-3884 (($ (-622 (-142))) NIL)) (-4161 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (($ (-142)) NIL) (((-840) $) NIL)) (-2071 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2834 (((-1131) $) 18) (((-1131) $ (-112)) 20) (((-1237) (-803) $) 21) (((-1237) (-803) $ (-112)) 22)) (-2896 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-142) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-142) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-142) (-827)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
+((-4265 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1130)))))
+(-13 (-1117) (-1073) (-808) (-10 -8 (-15 -4265 ($ (-552)))))
+(((-34) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 #0=(-142)) . T) ((-598 (-528)) |has| (-142) (-598 (-528))) ((-281 #1=(-552) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))) ((-368 #0#) . T) ((-483 #0#) . T) ((-588 #1# #0#) . T) ((-507 #0# #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))) ((-631 #0#) . T) ((-19 #0#) . T) ((-808) . T) ((-827) |has| (-142) (-827)) ((-1073) . T) ((-1117) . T) ((-1186) . T))
+((-1671 (((-112) $ $) NIL)) (-3829 (($ $) NIL)) (-3843 (($ $) NIL)) (-3808 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1975 (((-112) $ $) NIL)) (-1951 (((-112) $ $ (-552)) NIL)) (-4265 (($ (-552)) 7)) (-3819 (((-625 $) $ (-142)) NIL) (((-625 $) $ (-139)) NIL)) (-3237 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-827)))) (-3218 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-142) (-827))))) (-1800 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-142) $ (-552) (-142)) NIL (|has| $ (-6 -4354))) (((-142) $ (-1199 (-552)) (-142)) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-3209 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-1353 (($ $ (-1199 (-552)) $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1416 (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3692 (((-142) $ (-552) (-142)) NIL (|has| $ (-6 -4354)))) (-3631 (((-142) $ (-552)) NIL)) (-1992 (((-112) $ $) NIL)) (-2483 (((-552) (-1 (-112) (-142)) $) NIL) (((-552) (-142) $) NIL (|has| (-142) (-1073))) (((-552) (-142) $ (-552)) NIL (|has| (-142) (-1073))) (((-552) $ $ (-552)) NIL) (((-552) (-139) $ (-552)) NIL)) (-3799 (((-625 (-142)) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) (-142)) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| (-142) (-827)))) (-3280 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-827)))) (-3730 (((-625 (-142)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-142) (-827)))) (-1899 (((-112) $ $ (-142)) NIL)) (-2344 (((-751) $ $ (-142)) NIL)) (-3683 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3857 (($ $) NIL)) (-3870 (($ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3221 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2883 (((-1131) $) NIL)) (-3994 (($ (-142) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-142) $) NIL (|has| (-552) (-827)))) (-2380 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2518 (($ $ (-142)) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-625 (-142)) (-625 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1358 (((-625 (-142)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (((-142) $ (-552) (-142)) NIL) (((-142) $ (-552)) NIL) (($ $ (-1199 (-552))) NIL) (($ $ $) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-142) (-598 (-528))))) (-1695 (($ (-625 (-142))) NIL)) (-3402 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (($ (-142)) NIL) (((-839) $) NIL)) (-1900 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3010 (((-1131) $) 18) (((-1131) $ (-112)) 20) (((-1237) (-802) $) 21) (((-1237) (-802) $ (-112)) 22)) (-2346 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-142) (-827)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
(((-1131) (-1130)) (T -1131))
NIL
(-1130)
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)) (|has| |#1| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-2305 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-1131) |#1|) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#1| #1="failed") (-1131) $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#1| #1#) (-1131) $) NIL)) (-3765 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-1131) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-1131)) NIL)) (-2068 (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2511 (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)) (|has| |#1| (-1074))))) (-2744 (((-622 (-1131)) $) NIL)) (-2315 (((-112) (-1131) $) NIL)) (-1333 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-2310 (((-622 (-1131)) $) NIL)) (-2311 (((-112) (-1131) $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)) (|has| |#1| (-1074))))) (-4160 ((|#1| $) NIL (|has| (-1131) (-827)))) (-1399 (((-3 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) "failed") (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-1131)) NIL) ((|#1| $ (-1131) |#1|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-597 (-840))) (|has| |#1| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)) (|has| |#1| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1132 |#1|) (-13 (-1162 (-1131) |#1|) (-10 -7 (-6 -4353))) (-1074)) (T -1132))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)) (|has| |#1| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-2509 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-1131) |#1|) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#1| "failed") (-1131) $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#1| "failed") (-1131) $) NIL)) (-1416 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-1131) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-1131)) NIL)) (-3799 (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3730 (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)) (|has| |#1| (-1073))))) (-3712 (((-625 (-1131)) $) NIL)) (-1370 (((-112) (-1131) $) NIL)) (-2953 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-2554 (((-625 (-1131)) $) NIL)) (-2564 (((-112) (-1131) $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)) (|has| |#1| (-1073))))) (-2924 ((|#1| $) NIL (|has| (-1131) (-827)))) (-2380 (((-3 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) "failed") (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-1131)) NIL) ((|#1| $ (-1131) |#1|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-597 (-839))) (|has| |#1| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)) (|has| |#1| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1132 |#1|) (-13 (-1162 (-1131) |#1|) (-10 -7 (-6 -4353))) (-1073)) (T -1132))
NIL
(-13 (-1162 (-1131) |#1|) (-10 -7 (-6 -4353)))
-((-4164 (((-1126 |#1|) (-1126 |#1|)) 77)) (-3821 (((-3 (-1126 |#1|) "failed") (-1126 |#1|)) 37)) (-3832 (((-1126 |#1|) (-402 (-538)) (-1126 |#1|)) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3835 (((-1126 |#1|) |#1| (-1126 |#1|)) 127 (|has| |#1| (-358)))) (-4167 (((-1126 |#1|) (-1126 |#1|)) 90)) (-3823 (((-1126 (-538)) (-538)) 57)) (-3831 (((-1126 |#1|) (-1126 (-1126 |#1|))) 109 (|has| |#1| (-38 (-402 (-538)))))) (-4163 (((-1126 |#1|) (-538) (-538) (-1126 |#1|)) 95)) (-4298 (((-1126 |#1|) |#1| (-538)) 45)) (-3825 (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 60)) (-3833 (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 124 (|has| |#1| (-358)))) (-3830 (((-1126 |#1|) |#1| (-1 (-1126 |#1|))) 108 (|has| |#1| (-38 (-402 (-538)))))) (-3834 (((-1126 |#1|) (-1 |#1| (-538)) |#1| (-1 (-1126 |#1|))) 125 (|has| |#1| (-358)))) (-4168 (((-1126 |#1|) (-1126 |#1|)) 89)) (-4169 (((-1126 |#1|) (-1126 |#1|)) 76)) (-4162 (((-1126 |#1|) (-538) (-538) (-1126 |#1|)) 96)) (-4172 (((-1126 |#1|) |#1| (-1126 |#1|)) 105 (|has| |#1| (-38 (-402 (-538)))))) (-3822 (((-1126 (-538)) (-538)) 56)) (-3824 (((-1126 |#1|) |#1|) 59)) (-4165 (((-1126 |#1|) (-1126 |#1|) (-538) (-538)) 92)) (-3827 (((-1126 |#1|) (-1 |#1| (-538)) (-1126 |#1|)) 66)) (-3820 (((-3 (-1126 |#1|) "failed") (-1126 |#1|) (-1126 |#1|)) 35)) (-4166 (((-1126 |#1|) (-1126 |#1|)) 91)) (-4127 (((-1126 |#1|) (-1126 |#1|) |#1|) 71)) (-3826 (((-1126 |#1|) (-1126 |#1|)) 62)) (-3828 (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 72)) (-4317 (((-1126 |#1|) |#1|) 67)) (-3829 (((-1126 |#1|) (-1126 (-1126 |#1|))) 82)) (-4308 (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 36)) (-4197 (((-1126 |#1|) (-1126 |#1|)) 21) (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 23)) (-4199 (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 17)) (* (((-1126 |#1|) (-1126 |#1|) |#1|) 29) (((-1126 |#1|) |#1| (-1126 |#1|)) 26) (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 27)))
-(((-1133 |#1|) (-10 -7 (-15 -4199 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4197 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4197 ((-1126 |#1|) (-1126 |#1|))) (-15 * ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 * ((-1126 |#1|) |#1| (-1126 |#1|))) (-15 * ((-1126 |#1|) (-1126 |#1|) |#1|)) (-15 -3820 ((-3 (-1126 |#1|) "failed") (-1126 |#1|) (-1126 |#1|))) (-15 -4308 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3821 ((-3 (-1126 |#1|) "failed") (-1126 |#1|))) (-15 -4298 ((-1126 |#1|) |#1| (-538))) (-15 -3822 ((-1126 (-538)) (-538))) (-15 -3823 ((-1126 (-538)) (-538))) (-15 -3824 ((-1126 |#1|) |#1|)) (-15 -3825 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3826 ((-1126 |#1|) (-1126 |#1|))) (-15 -3827 ((-1126 |#1|) (-1 |#1| (-538)) (-1126 |#1|))) (-15 -4317 ((-1126 |#1|) |#1|)) (-15 -4127 ((-1126 |#1|) (-1126 |#1|) |#1|)) (-15 -3828 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4169 ((-1126 |#1|) (-1126 |#1|))) (-15 -4164 ((-1126 |#1|) (-1126 |#1|))) (-15 -3829 ((-1126 |#1|) (-1126 (-1126 |#1|)))) (-15 -4168 ((-1126 |#1|) (-1126 |#1|))) (-15 -4167 ((-1126 |#1|) (-1126 |#1|))) (-15 -4166 ((-1126 |#1|) (-1126 |#1|))) (-15 -4165 ((-1126 |#1|) (-1126 |#1|) (-538) (-538))) (-15 -4163 ((-1126 |#1|) (-538) (-538) (-1126 |#1|))) (-15 -4162 ((-1126 |#1|) (-538) (-538) (-1126 |#1|))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ((-1126 |#1|) |#1| (-1126 |#1|))) (-15 -3830 ((-1126 |#1|) |#1| (-1 (-1126 |#1|)))) (-15 -3831 ((-1126 |#1|) (-1126 (-1126 |#1|)))) (-15 -3832 ((-1126 |#1|) (-402 (-538)) (-1126 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -3833 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3834 ((-1126 |#1|) (-1 |#1| (-538)) |#1| (-1 (-1126 |#1|)))) (-15 -3835 ((-1126 |#1|) |#1| (-1126 |#1|)))) |%noBranch|)) (-1025)) (T -1133))
-((-3835 (*1 *2 *3 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-538))) (-5 *5 (-1 (-1126 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3832 (*1 *2 *3 *2) (-12 (-5 *2 (-1126 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1025)) (-5 *3 (-402 (-538))) (-5 *1 (-1133 *4)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4)) (-4 *4 (-38 (-402 (-538)))) (-4 *4 (-1025)))) (-3830 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1126 *3))) (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)))) (-4172 (*1 *2 *3 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4162 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-4163 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-4165 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4167 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4168 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4)) (-4 *4 (-1025)))) (-4164 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4169 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3828 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4127 (*1 *2 *2 *3) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4317 (*1 *2 *3) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-3827 (*1 *2 *3 *2) (-12 (-5 *2 (-1126 *4)) (-5 *3 (-1 *4 (-538))) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3825 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-3823 (*1 *2 *3) (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) (-5 *3 (-538)))) (-3822 (*1 *2 *3) (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) (-5 *3 (-538)))) (-4298 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-3821 (*1 *2 *2) (|partial| -12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4308 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3820 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4197 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4197 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
-(-10 -7 (-15 -4199 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4197 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4197 ((-1126 |#1|) (-1126 |#1|))) (-15 * ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 * ((-1126 |#1|) |#1| (-1126 |#1|))) (-15 * ((-1126 |#1|) (-1126 |#1|) |#1|)) (-15 -3820 ((-3 (-1126 |#1|) "failed") (-1126 |#1|) (-1126 |#1|))) (-15 -4308 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3821 ((-3 (-1126 |#1|) "failed") (-1126 |#1|))) (-15 -4298 ((-1126 |#1|) |#1| (-538))) (-15 -3822 ((-1126 (-538)) (-538))) (-15 -3823 ((-1126 (-538)) (-538))) (-15 -3824 ((-1126 |#1|) |#1|)) (-15 -3825 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3826 ((-1126 |#1|) (-1126 |#1|))) (-15 -3827 ((-1126 |#1|) (-1 |#1| (-538)) (-1126 |#1|))) (-15 -4317 ((-1126 |#1|) |#1|)) (-15 -4127 ((-1126 |#1|) (-1126 |#1|) |#1|)) (-15 -3828 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4169 ((-1126 |#1|) (-1126 |#1|))) (-15 -4164 ((-1126 |#1|) (-1126 |#1|))) (-15 -3829 ((-1126 |#1|) (-1126 (-1126 |#1|)))) (-15 -4168 ((-1126 |#1|) (-1126 |#1|))) (-15 -4167 ((-1126 |#1|) (-1126 |#1|))) (-15 -4166 ((-1126 |#1|) (-1126 |#1|))) (-15 -4165 ((-1126 |#1|) (-1126 |#1|) (-538) (-538))) (-15 -4163 ((-1126 |#1|) (-538) (-538) (-1126 |#1|))) (-15 -4162 ((-1126 |#1|) (-538) (-538) (-1126 |#1|))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ((-1126 |#1|) |#1| (-1126 |#1|))) (-15 -3830 ((-1126 |#1|) |#1| (-1 (-1126 |#1|)))) (-15 -3831 ((-1126 |#1|) (-1126 (-1126 |#1|)))) (-15 -3832 ((-1126 |#1|) (-402 (-538)) (-1126 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -3833 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3834 ((-1126 |#1|) (-1 |#1| (-538)) |#1| (-1 (-1126 |#1|)))) (-15 -3835 ((-1126 |#1|) |#1| (-1126 |#1|)))) |%noBranch|))
-((-3846 (((-1126 |#1|) (-1126 |#1|)) 100)) (-4002 (((-1126 |#1|) (-1126 |#1|)) 64)) (-3837 (((-2 (|:| -3844 (-1126 |#1|)) (|:| -3845 (-1126 |#1|))) (-1126 |#1|)) 96)) (-3844 (((-1126 |#1|) (-1126 |#1|)) 97)) (-3836 (((-2 (|:| -4001 (-1126 |#1|)) (|:| -3997 (-1126 |#1|))) (-1126 |#1|)) 53)) (-4001 (((-1126 |#1|) (-1126 |#1|)) 54)) (-3848 (((-1126 |#1|) (-1126 |#1|)) 102)) (-4000 (((-1126 |#1|) (-1126 |#1|)) 71)) (-4302 (((-1126 |#1|) (-1126 |#1|)) 39)) (-4303 (((-1126 |#1|) (-1126 |#1|)) 36)) (-3849 (((-1126 |#1|) (-1126 |#1|)) 103)) (-3999 (((-1126 |#1|) (-1126 |#1|)) 72)) (-3847 (((-1126 |#1|) (-1126 |#1|)) 101)) (-3998 (((-1126 |#1|) (-1126 |#1|)) 67)) (-3845 (((-1126 |#1|) (-1126 |#1|)) 98)) (-3997 (((-1126 |#1|) (-1126 |#1|)) 55)) (-3852 (((-1126 |#1|) (-1126 |#1|)) 111)) (-3840 (((-1126 |#1|) (-1126 |#1|)) 86)) (-3850 (((-1126 |#1|) (-1126 |#1|)) 105)) (-3838 (((-1126 |#1|) (-1126 |#1|)) 82)) (-3854 (((-1126 |#1|) (-1126 |#1|)) 115)) (-3842 (((-1126 |#1|) (-1126 |#1|)) 90)) (-3855 (((-1126 |#1|) (-1126 |#1|)) 117)) (-3843 (((-1126 |#1|) (-1126 |#1|)) 92)) (-3853 (((-1126 |#1|) (-1126 |#1|)) 113)) (-3841 (((-1126 |#1|) (-1126 |#1|)) 88)) (-3851 (((-1126 |#1|) (-1126 |#1|)) 107)) (-3839 (((-1126 |#1|) (-1126 |#1|)) 84)) (** (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 40)))
-(((-1134 |#1|) (-10 -7 (-15 -4303 ((-1126 |#1|) (-1126 |#1|))) (-15 -4302 ((-1126 |#1|) (-1126 |#1|))) (-15 ** ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3836 ((-2 (|:| -4001 (-1126 |#1|)) (|:| -3997 (-1126 |#1|))) (-1126 |#1|))) (-15 -4001 ((-1126 |#1|) (-1126 |#1|))) (-15 -3997 ((-1126 |#1|) (-1126 |#1|))) (-15 -4002 ((-1126 |#1|) (-1126 |#1|))) (-15 -3998 ((-1126 |#1|) (-1126 |#1|))) (-15 -4000 ((-1126 |#1|) (-1126 |#1|))) (-15 -3999 ((-1126 |#1|) (-1126 |#1|))) (-15 -3838 ((-1126 |#1|) (-1126 |#1|))) (-15 -3839 ((-1126 |#1|) (-1126 |#1|))) (-15 -3840 ((-1126 |#1|) (-1126 |#1|))) (-15 -3841 ((-1126 |#1|) (-1126 |#1|))) (-15 -3842 ((-1126 |#1|) (-1126 |#1|))) (-15 -3843 ((-1126 |#1|) (-1126 |#1|))) (-15 -3837 ((-2 (|:| -3844 (-1126 |#1|)) (|:| -3845 (-1126 |#1|))) (-1126 |#1|))) (-15 -3844 ((-1126 |#1|) (-1126 |#1|))) (-15 -3845 ((-1126 |#1|) (-1126 |#1|))) (-15 -3846 ((-1126 |#1|) (-1126 |#1|))) (-15 -3847 ((-1126 |#1|) (-1126 |#1|))) (-15 -3848 ((-1126 |#1|) (-1126 |#1|))) (-15 -3849 ((-1126 |#1|) (-1126 |#1|))) (-15 -3850 ((-1126 |#1|) (-1126 |#1|))) (-15 -3851 ((-1126 |#1|) (-1126 |#1|))) (-15 -3852 ((-1126 |#1|) (-1126 |#1|))) (-15 -3853 ((-1126 |#1|) (-1126 |#1|))) (-15 -3854 ((-1126 |#1|) (-1126 |#1|))) (-15 -3855 ((-1126 |#1|) (-1126 |#1|)))) (-38 (-402 (-538)))) (T -1134))
-((-3855 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3850 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3837 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-538)))) (-5 *2 (-2 (|:| -3844 (-1126 *4)) (|:| -3845 (-1126 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-1126 *4)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-4000 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3998 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-538)))) (-5 *2 (-2 (|:| -4001 (-1126 *4)) (|:| -3997 (-1126 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-1126 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-4303 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))))
-(-10 -7 (-15 -4303 ((-1126 |#1|) (-1126 |#1|))) (-15 -4302 ((-1126 |#1|) (-1126 |#1|))) (-15 ** ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3836 ((-2 (|:| -4001 (-1126 |#1|)) (|:| -3997 (-1126 |#1|))) (-1126 |#1|))) (-15 -4001 ((-1126 |#1|) (-1126 |#1|))) (-15 -3997 ((-1126 |#1|) (-1126 |#1|))) (-15 -4002 ((-1126 |#1|) (-1126 |#1|))) (-15 -3998 ((-1126 |#1|) (-1126 |#1|))) (-15 -4000 ((-1126 |#1|) (-1126 |#1|))) (-15 -3999 ((-1126 |#1|) (-1126 |#1|))) (-15 -3838 ((-1126 |#1|) (-1126 |#1|))) (-15 -3839 ((-1126 |#1|) (-1126 |#1|))) (-15 -3840 ((-1126 |#1|) (-1126 |#1|))) (-15 -3841 ((-1126 |#1|) (-1126 |#1|))) (-15 -3842 ((-1126 |#1|) (-1126 |#1|))) (-15 -3843 ((-1126 |#1|) (-1126 |#1|))) (-15 -3837 ((-2 (|:| -3844 (-1126 |#1|)) (|:| -3845 (-1126 |#1|))) (-1126 |#1|))) (-15 -3844 ((-1126 |#1|) (-1126 |#1|))) (-15 -3845 ((-1126 |#1|) (-1126 |#1|))) (-15 -3846 ((-1126 |#1|) (-1126 |#1|))) (-15 -3847 ((-1126 |#1|) (-1126 |#1|))) (-15 -3848 ((-1126 |#1|) (-1126 |#1|))) (-15 -3849 ((-1126 |#1|) (-1126 |#1|))) (-15 -3850 ((-1126 |#1|) (-1126 |#1|))) (-15 -3851 ((-1126 |#1|) (-1126 |#1|))) (-15 -3852 ((-1126 |#1|) (-1126 |#1|))) (-15 -3853 ((-1126 |#1|) (-1126 |#1|))) (-15 -3854 ((-1126 |#1|) (-1126 |#1|))) (-15 -3855 ((-1126 |#1|) (-1126 |#1|))))
-((-3846 (((-1126 |#1|) (-1126 |#1|)) 57)) (-4002 (((-1126 |#1|) (-1126 |#1|)) 39)) (-3844 (((-1126 |#1|) (-1126 |#1|)) 53)) (-4001 (((-1126 |#1|) (-1126 |#1|)) 35)) (-3848 (((-1126 |#1|) (-1126 |#1|)) 60)) (-4000 (((-1126 |#1|) (-1126 |#1|)) 42)) (-4302 (((-1126 |#1|) (-1126 |#1|)) 31)) (-4303 (((-1126 |#1|) (-1126 |#1|)) 27)) (-3849 (((-1126 |#1|) (-1126 |#1|)) 61)) (-3999 (((-1126 |#1|) (-1126 |#1|)) 43)) (-3847 (((-1126 |#1|) (-1126 |#1|)) 58)) (-3998 (((-1126 |#1|) (-1126 |#1|)) 40)) (-3845 (((-1126 |#1|) (-1126 |#1|)) 55)) (-3997 (((-1126 |#1|) (-1126 |#1|)) 37)) (-3852 (((-1126 |#1|) (-1126 |#1|)) 65)) (-3840 (((-1126 |#1|) (-1126 |#1|)) 47)) (-3850 (((-1126 |#1|) (-1126 |#1|)) 63)) (-3838 (((-1126 |#1|) (-1126 |#1|)) 45)) (-3854 (((-1126 |#1|) (-1126 |#1|)) 68)) (-3842 (((-1126 |#1|) (-1126 |#1|)) 50)) (-3855 (((-1126 |#1|) (-1126 |#1|)) 69)) (-3843 (((-1126 |#1|) (-1126 |#1|)) 51)) (-3853 (((-1126 |#1|) (-1126 |#1|)) 67)) (-3841 (((-1126 |#1|) (-1126 |#1|)) 49)) (-3851 (((-1126 |#1|) (-1126 |#1|)) 66)) (-3839 (((-1126 |#1|) (-1126 |#1|)) 48)) (** (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 33)))
-(((-1135 |#1|) (-10 -7 (-15 -4303 ((-1126 |#1|) (-1126 |#1|))) (-15 -4302 ((-1126 |#1|) (-1126 |#1|))) (-15 ** ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4001 ((-1126 |#1|) (-1126 |#1|))) (-15 -3997 ((-1126 |#1|) (-1126 |#1|))) (-15 -4002 ((-1126 |#1|) (-1126 |#1|))) (-15 -3998 ((-1126 |#1|) (-1126 |#1|))) (-15 -4000 ((-1126 |#1|) (-1126 |#1|))) (-15 -3999 ((-1126 |#1|) (-1126 |#1|))) (-15 -3838 ((-1126 |#1|) (-1126 |#1|))) (-15 -3839 ((-1126 |#1|) (-1126 |#1|))) (-15 -3840 ((-1126 |#1|) (-1126 |#1|))) (-15 -3841 ((-1126 |#1|) (-1126 |#1|))) (-15 -3842 ((-1126 |#1|) (-1126 |#1|))) (-15 -3843 ((-1126 |#1|) (-1126 |#1|))) (-15 -3844 ((-1126 |#1|) (-1126 |#1|))) (-15 -3845 ((-1126 |#1|) (-1126 |#1|))) (-15 -3846 ((-1126 |#1|) (-1126 |#1|))) (-15 -3847 ((-1126 |#1|) (-1126 |#1|))) (-15 -3848 ((-1126 |#1|) (-1126 |#1|))) (-15 -3849 ((-1126 |#1|) (-1126 |#1|))) (-15 -3850 ((-1126 |#1|) (-1126 |#1|))) (-15 -3851 ((-1126 |#1|) (-1126 |#1|))) (-15 -3852 ((-1126 |#1|) (-1126 |#1|))) (-15 -3853 ((-1126 |#1|) (-1126 |#1|))) (-15 -3854 ((-1126 |#1|) (-1126 |#1|))) (-15 -3855 ((-1126 |#1|) (-1126 |#1|)))) (-38 (-402 (-538)))) (T -1135))
-((-3855 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3850 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-4000 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3998 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-4303 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
-(-10 -7 (-15 -4303 ((-1126 |#1|) (-1126 |#1|))) (-15 -4302 ((-1126 |#1|) (-1126 |#1|))) (-15 ** ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4001 ((-1126 |#1|) (-1126 |#1|))) (-15 -3997 ((-1126 |#1|) (-1126 |#1|))) (-15 -4002 ((-1126 |#1|) (-1126 |#1|))) (-15 -3998 ((-1126 |#1|) (-1126 |#1|))) (-15 -4000 ((-1126 |#1|) (-1126 |#1|))) (-15 -3999 ((-1126 |#1|) (-1126 |#1|))) (-15 -3838 ((-1126 |#1|) (-1126 |#1|))) (-15 -3839 ((-1126 |#1|) (-1126 |#1|))) (-15 -3840 ((-1126 |#1|) (-1126 |#1|))) (-15 -3841 ((-1126 |#1|) (-1126 |#1|))) (-15 -3842 ((-1126 |#1|) (-1126 |#1|))) (-15 -3843 ((-1126 |#1|) (-1126 |#1|))) (-15 -3844 ((-1126 |#1|) (-1126 |#1|))) (-15 -3845 ((-1126 |#1|) (-1126 |#1|))) (-15 -3846 ((-1126 |#1|) (-1126 |#1|))) (-15 -3847 ((-1126 |#1|) (-1126 |#1|))) (-15 -3848 ((-1126 |#1|) (-1126 |#1|))) (-15 -3849 ((-1126 |#1|) (-1126 |#1|))) (-15 -3850 ((-1126 |#1|) (-1126 |#1|))) (-15 -3851 ((-1126 |#1|) (-1126 |#1|))) (-15 -3852 ((-1126 |#1|) (-1126 |#1|))) (-15 -3853 ((-1126 |#1|) (-1126 |#1|))) (-15 -3854 ((-1126 |#1|) (-1126 |#1|))) (-15 -3855 ((-1126 |#1|) (-1126 |#1|))))
-((-3856 (((-934 |#2|) |#2| |#2|) 35)) (-3857 ((|#2| |#2| |#1|) 19 (|has| |#1| (-302)))))
-(((-1136 |#1| |#2|) (-10 -7 (-15 -3856 ((-934 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -3857 (|#2| |#2| |#1|)) |%noBranch|)) (-545) (-1207 |#1|)) (T -1136))
-((-3857 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-4 *3 (-545)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1207 *3)))) (-3856 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-934 *3)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1207 *4)))))
-(-10 -7 (-15 -3856 ((-934 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -3857 (|#2| |#2| |#1|)) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-3865 (($ $ (-622 (-751))) 67)) (-4248 (($) 26)) (-3874 (($ $) 42)) (-4111 (((-622 $) $) 51)) (-3880 (((-112) $) 16)) (-3858 (((-622 (-919 |#2|)) $) 74)) (-3859 (($ $) 68)) (-3875 (((-751) $) 37)) (-3977 (($) 25)) (-3868 (($ $ (-622 (-751)) (-919 |#2|)) 60) (($ $ (-622 (-751)) (-751)) 61) (($ $ (-751) (-919 |#2|)) 63)) (-3872 (($ $ $) 48) (($ (-622 $)) 50)) (-3860 (((-751) $) 75)) (-3881 (((-112) $) 15)) (-3593 (((-1131) $) NIL)) (-3879 (((-112) $) 18)) (-3594 (((-1093) $) NIL)) (-3861 (((-169) $) 73)) (-3864 (((-919 |#2|) $) 69)) (-3863 (((-751) $) 70)) (-3862 (((-112) $) 72)) (-3866 (($ $ (-622 (-751)) (-169)) 66)) (-3873 (($ $) 43)) (-4317 (((-840) $) 86)) (-3867 (($ $ (-622 (-751)) (-112)) 65)) (-3876 (((-622 $) $) 11)) (-3877 (($ $ (-751)) 36)) (-3878 (($ $) 32)) (-3869 (($ $ $ (-919 |#2|) (-751)) 56)) (-3870 (($ $ (-919 |#2|)) 55)) (-3871 (($ $ (-622 (-751)) (-919 |#2|)) 54) (($ $ (-622 (-751)) (-751)) 58) (((-751) $ (-919 |#2|)) 59)) (-3387 (((-112) $ $) 80)))
-(((-1137 |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -3881 ((-112) $)) (-15 -3880 ((-112) $)) (-15 -3879 ((-112) $)) (-15 -3977 ($)) (-15 -4248 ($)) (-15 -3878 ($ $)) (-15 -3877 ($ $ (-751))) (-15 -3876 ((-622 $) $)) (-15 -3875 ((-751) $)) (-15 -3874 ($ $)) (-15 -3873 ($ $)) (-15 -3872 ($ $ $)) (-15 -3872 ($ (-622 $))) (-15 -4111 ((-622 $) $)) (-15 -3871 ($ $ (-622 (-751)) (-919 |#2|))) (-15 -3870 ($ $ (-919 |#2|))) (-15 -3869 ($ $ $ (-919 |#2|) (-751))) (-15 -3868 ($ $ (-622 (-751)) (-919 |#2|))) (-15 -3871 ($ $ (-622 (-751)) (-751))) (-15 -3868 ($ $ (-622 (-751)) (-751))) (-15 -3871 ((-751) $ (-919 |#2|))) (-15 -3868 ($ $ (-751) (-919 |#2|))) (-15 -3867 ($ $ (-622 (-751)) (-112))) (-15 -3866 ($ $ (-622 (-751)) (-169))) (-15 -3865 ($ $ (-622 (-751)))) (-15 -3864 ((-919 |#2|) $)) (-15 -3863 ((-751) $)) (-15 -3862 ((-112) $)) (-15 -3861 ((-169) $)) (-15 -3860 ((-751) $)) (-15 -3859 ($ $)) (-15 -3858 ((-622 (-919 |#2|)) $)))) (-895) (-1025)) (T -1137))
-((-3881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3977 (*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-4248 (*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3878 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3877 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3874 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3873 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3872 (*1 *1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3871 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-919 *4)) (-4 *4 (-1025)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)))) (-3869 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-919 *5)) (-5 *3 (-751)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))) (-3868 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))) (-3871 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1025)))) (-3868 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1025)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *2 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))) (-3868 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))) (-3867 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-112)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1025)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-169)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1025)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-919 *4)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3859 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-622 (-919 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))))
-(-13 (-1074) (-10 -8 (-15 -3881 ((-112) $)) (-15 -3880 ((-112) $)) (-15 -3879 ((-112) $)) (-15 -3977 ($)) (-15 -4248 ($)) (-15 -3878 ($ $)) (-15 -3877 ($ $ (-751))) (-15 -3876 ((-622 $) $)) (-15 -3875 ((-751) $)) (-15 -3874 ($ $)) (-15 -3873 ($ $)) (-15 -3872 ($ $ $)) (-15 -3872 ($ (-622 $))) (-15 -4111 ((-622 $) $)) (-15 -3871 ($ $ (-622 (-751)) (-919 |#2|))) (-15 -3870 ($ $ (-919 |#2|))) (-15 -3869 ($ $ $ (-919 |#2|) (-751))) (-15 -3868 ($ $ (-622 (-751)) (-919 |#2|))) (-15 -3871 ($ $ (-622 (-751)) (-751))) (-15 -3868 ($ $ (-622 (-751)) (-751))) (-15 -3871 ((-751) $ (-919 |#2|))) (-15 -3868 ($ $ (-751) (-919 |#2|))) (-15 -3867 ($ $ (-622 (-751)) (-112))) (-15 -3866 ($ $ (-622 (-751)) (-169))) (-15 -3865 ($ $ (-622 (-751)))) (-15 -3864 ((-919 |#2|) $)) (-15 -3863 ((-751) $)) (-15 -3862 ((-112) $)) (-15 -3861 ((-169) $)) (-15 -3860 ((-751) $)) (-15 -3859 ($ $)) (-15 -3858 ((-622 (-919 |#2|)) $))))
-((-2898 (((-112) $ $) NIL)) (-3882 ((|#2| $) 11)) (-3883 ((|#1| $) 10)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3884 (($ |#1| |#2|) 9)) (-4317 (((-840) $) 16)) (-3387 (((-112) $ $) NIL)))
-(((-1138 |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -3884 ($ |#1| |#2|)) (-15 -3883 (|#1| $)) (-15 -3882 (|#2| $)))) (-1074) (-1074)) (T -1138))
-((-3884 (*1 *1 *2 *3) (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3883 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-1138 *2 *3)) (-4 *3 (-1074)))) (-3882 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-1138 *3 *2)) (-4 *3 (-1074)))))
-(-13 (-1074) (-10 -8 (-15 -3884 ($ |#1| |#2|)) (-15 -3883 (|#1| $)) (-15 -3882 (|#2| $))))
-((-2898 (((-112) $ $) NIL)) (-3885 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-1139) (-13 (-1056) (-10 -8 (-15 -3885 ((-1108) $))))) (T -1139))
-((-3885 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1139)))))
-(-13 (-1056) (-10 -8 (-15 -3885 ((-1108) $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 11)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-2178 (($ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-2176 (((-112) $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-4130 (($ $ (-538)) NIL) (($ $ (-538) (-538)) 66)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) NIL)) (-4091 (((-1147 |#1| |#2| |#3|) $) 36)) (-4088 (((-3 (-1147 |#1| |#2| |#3|) "failed") $) 29)) (-4089 (((-1147 |#1| |#2| |#3|) $) 30)) (-3846 (($ $) 107 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 83 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) 103 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 79 (|has| |#1| (-38 (-402 (-538)))))) (-3986 (((-538) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) 111 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 87 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-1147 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1149) #2#) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-3 (-402 (-538)) #2#) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358)))) (((-3 (-538) #2#) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))))) (-3507 (((-1147 |#1| |#2| |#3|) $) 131) (((-1149) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-402 (-538)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358)))) (((-538) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))))) (-4090 (($ $) 34) (($ (-538) $) 35)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-1147 |#1| |#2| |#3|)) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-1147 |#1| |#2| |#3|))) (|:| |vec| (-1231 (-1147 |#1| |#2| |#3|)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-621 (-538))) (|has| |#1| (-358)))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-621 (-538))) (|has| |#1| (-358))))) (-3821 (((-3 $ "failed") $) 48)) (-4087 (((-402 (-922 |#1|)) $ (-538)) 65 (|has| |#1| (-545))) (((-402 (-922 |#1|)) $ (-538) (-538)) 67 (|has| |#1| (-545)))) (-3327 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3537 (((-112) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3225 (((-112) $) 25)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-862 (-538))) (|has| |#1| (-358)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-862 (-373))) (|has| |#1| (-358))))) (-4131 (((-538) $) NIL) (((-538) $ (-538)) 24)) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL (|has| |#1| (-358)))) (-3331 (((-1147 |#1| |#2| |#3|) $) 38 (|has| |#1| (-358)))) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3803 (((-3 $ "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))))) (-3538 (((-112) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-4136 (($ $ (-895)) NIL)) (-4175 (($ (-1 |#1| (-538)) $) NIL)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-538)) 18) (($ $ (-1055) (-538)) NIL) (($ $ (-622 (-1055)) (-622 (-538))) NIL)) (-3677 (($ $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3678 (($ $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-4302 (($ $) 72 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4138 (($ (-538) (-1147 |#1| |#2| |#3|)) 33)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) 70 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 71 (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3463 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3465 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-538)) 145)) (-3820 (((-3 $ "failed") $ $) 49 (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) 73 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-538))))) (($ $ (-1149) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-1149)) (-622 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-288 (-1147 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-288 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-1147 |#1| |#2| |#3|)) (-622 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-538)) NIL) (($ $ $) 54 (|has| (-538) (-1085))) (($ $ (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-281 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1228 |#2|)) 51) (($ $ (-751)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) 50 (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-3328 (($ $) NIL (|has| |#1| (-358)))) (-3330 (((-1147 |#1| |#2| |#3|) $) 41 (|has| |#1| (-358)))) (-4307 (((-538) $) 37)) (-3849 (($ $) 113 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 89 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 109 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 85 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 105 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 81 (|has| |#1| (-38 (-402 (-538)))))) (-4330 (((-527) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-527))) (|has| |#1| (-358)))) (((-373) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-996)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-996)) (|has| |#1| (-358)))) (((-866 (-373)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-866 (-373)))) (|has| |#1| (-358)))) (((-866 (-538)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-866 (-538)))) (|has| |#1| (-358))))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) 149) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1147 |#1| |#2| |#3|)) 27) (($ (-1228 |#2|)) 23) (($ (-1149)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (($ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545)))) (($ (-402 (-538))) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-538))))))) (-4040 ((|#1| $ (-538)) 68)) (-3035 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 12)) (-3466 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3852 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 95 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-3850 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 91 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 99 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-538)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 101 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 97 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 93 (|has| |#1| (-38 (-402 (-538)))))) (-3742 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2991 (($) 20 T CONST)) (-2997 (($) 16 T CONST)) (-3002 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-2896 (((-112) $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2897 (((-112) $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3018 (((-112) $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 44 (|has| |#1| (-358))) (($ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) 45 (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 21)) (** (($ $ (-895)) NIL) (($ $ (-751)) 53) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) 74 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 128 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1147 |#1| |#2| |#3|)) 43 (|has| |#1| (-358))) (($ (-1147 |#1| |#2| |#3|) $) 42 (|has| |#1| (-358))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-1140 |#1| |#2| |#3|) (-13 (-1195 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1140))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))))
-(-13 (-1195 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|)))
-((-3886 ((|#2| |#2| (-1065 |#2|)) 26) ((|#2| |#2| (-1149)) 28)))
-(((-1141 |#1| |#2|) (-10 -7 (-15 -3886 (|#2| |#2| (-1149))) (-15 -3886 (|#2| |#2| (-1065 |#2|)))) (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-416 |#1|) (-158) (-27) (-1171))) (T -1141))
-((-3886 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-416 *4) (-158) (-27) (-1171))) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1141 *4 *2)))) (-3886 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-416 *4) (-158) (-27) (-1171))))))
-(-10 -7 (-15 -3886 (|#2| |#2| (-1149))) (-15 -3886 (|#2| |#2| (-1065 |#2|))))
-((-3886 (((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1065 (-402 (-922 |#1|)))) 31) (((-402 (-922 |#1|)) (-922 |#1|) (-1065 (-922 |#1|))) 44) (((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1149)) 33) (((-402 (-922 |#1|)) (-922 |#1|) (-1149)) 36)))
-(((-1142 |#1|) (-10 -7 (-15 -3886 ((-402 (-922 |#1|)) (-922 |#1|) (-1149))) (-15 -3886 ((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1149))) (-15 -3886 ((-402 (-922 |#1|)) (-922 |#1|) (-1065 (-922 |#1|)))) (-15 -3886 ((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1065 (-402 (-922 |#1|)))))) (-13 (-545) (-827) (-1014 (-538)))) (T -1142))
-((-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-3 *3 (-309 *5))) (-5 *1 (-1142 *5)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-922 *5))) (-5 *3 (-922 *5)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-402 *3)) (-5 *1 (-1142 *5)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-3 (-402 (-922 *5)) (-309 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-402 (-922 *5))))) (-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-402 (-922 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-922 *5)))))
-(-10 -7 (-15 -3886 ((-402 (-922 |#1|)) (-922 |#1|) (-1149))) (-15 -3886 ((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1149))) (-15 -3886 ((-402 (-922 |#1|)) (-922 |#1|) (-1065 (-922 |#1|)))) (-15 -3886 ((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1065 (-402 (-922 |#1|))))))
-((-2898 (((-112) $ $) 137)) (-3539 (((-112) $) 27)) (-4126 (((-1231 |#1|) $ (-751)) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4124 (($ (-1143 |#1|)) NIL)) (-3419 (((-1143 $) $ (-1055)) 58) (((-1143 |#1|) $) 47)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) 132 (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1055))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4115 (($ $ $) 126 (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) 71 (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 91 (|has| |#1| (-886)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-4120 (($ $ (-751)) 39)) (-4119 (($ $ (-751)) 40)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-1055) #2#) $) NIL)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-1055) $) NIL)) (-4116 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) 56)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4118 (($ $ $) 104)) (-4113 (($ $ $) NIL (|has| |#1| (-545)))) (-4112 (((-2 (|:| -4313 |#1|) (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-3857 (($ $) 133 (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-751) $) 45)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1055) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1055) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-3887 (((-840) $ (-840)) 117)) (-4131 (((-751) $ $) NIL (|has| |#1| (-545)))) (-2502 (((-112) $) 30)) (-2510 (((-751) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3420 (($ (-1143 |#1|) (-1055)) 49) (($ (-1143 $) (-1055)) 65)) (-4136 (($ $ (-751)) 32)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) 63) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1055)) NIL) (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 121)) (-3153 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-751) (-751)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4125 (((-1143 |#1|) $) NIL)) (-3418 (((-3 (-1055) #4="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) 52)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) 38)) (-3156 (((-3 (-622 $) #4#) $) NIL)) (-3155 (((-3 (-622 $) #4#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1055)) (|:| -2493 (-751))) #4#) $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) NIL (|has| |#1| (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) 31)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 79 (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) 135 (|has| |#1| (-446)))) (-4098 (($ $ (-751) |#1| $) 99)) (-3038 (((-400 (-1143 $)) (-1143 $)) 77 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 76 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 84 (|has| |#1| (-886)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-622 (-1055)) (-622 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-622 (-1055)) (-622 $)) NIL)) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-545))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-545)))) (-4123 (((-3 $ #5="failed") $ (-751)) 35)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 138 (|has| |#1| (-358)))) (-4117 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-4170 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4307 (((-751) $) 54) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1055) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) 130 (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4114 (((-3 $ #5#) $ $) NIL (|has| |#1| (-545))) (((-3 (-402 $) #5#) (-402 $) $) NIL (|has| |#1| (-545)))) (-4317 (((-840) $) 118) (($ (-538)) NIL) (($ |#1|) 53) (($ (-1055)) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) 25 (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 15 T CONST)) (-2997 (($) 16 T CONST)) (-3002 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 96)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 139 (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 66)) (** (($ $ (-895)) 14) (($ $ (-751)) 12)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 24) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1143 |#1|) (-13 (-1207 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-840))) (-15 -4098 ($ $ (-751) |#1| $)))) (-1025)) (T -1143))
-((-3887 (*1 *2 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-1143 *3)) (-4 *3 (-1025)))) (-4098 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1143 *3)) (-4 *3 (-1025)))))
-(-13 (-1207 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-840))) (-15 -4098 ($ $ (-751) |#1| $))))
-((-4318 (((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|)) 13)))
-(((-1144 |#1| |#2|) (-10 -7 (-15 -4318 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|)))) (-1025) (-1025)) (T -1144))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-1143 *6)) (-5 *1 (-1144 *5 *6)))))
-(-10 -7 (-15 -4318 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|))))
-((-4329 (((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|))) 51)) (-4092 (((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|))) 52)))
-(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|)))) (-15 -4329 ((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|))))) (-773) (-827) (-446) (-926 |#3| |#1| |#2|)) (T -1145))
-((-4329 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-400 (-1143 (-402 *7)))) (-5 *1 (-1145 *4 *5 *6 *7)) (-5 *3 (-1143 (-402 *7))))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-400 (-1143 (-402 *7)))) (-5 *1 (-1145 *4 *5 *6 *7)) (-5 *3 (-1143 (-402 *7))))))
-(-10 -7 (-15 -4092 ((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|)))) (-15 -4329 ((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|)))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 11)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) NIL) (($ $ (-402 (-538)) (-402 (-538))) NIL)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) NIL)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-1140 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1147 |#1| |#2| |#3|) #1#) $) 36)) (-3507 (((-1140 |#1| |#2| |#3|) $) NIL) (((-1147 |#1| |#2| |#3|) $) NIL)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4140 (((-402 (-538)) $) 55)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4141 (($ (-402 (-538)) (-1140 |#1| |#2| |#3|)) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) NIL) (((-402 (-538)) $ (-402 (-538))) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) NIL) (($ $ (-402 (-538))) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-402 (-538))) 20) (($ $ (-1055) (-402 (-538))) NIL) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4139 (((-1140 |#1| |#2| |#3|) $) 41)) (-4137 (((-3 (-1140 |#1| |#2| |#3|) "failed") $) NIL)) (-4138 (((-1140 |#1| |#2| |#3|) $) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) 39 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 40 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) NIL) (($ $ $) NIL (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $ (-1228 |#2|)) 38)) (-4307 (((-402 (-538)) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) 58) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1140 |#1| |#2| |#3|)) 30) (($ (-1147 |#1| |#2| |#3|)) 31) (($ (-1228 |#2|)) 26) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 12)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 22 T CONST)) (-2997 (($) 16 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 24)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-1146 |#1| |#2| |#3|) (-13 (-1216 |#1| (-1140 |#1| |#2| |#3|)) (-1014 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1146))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))))
-(-13 (-1216 |#1| (-1140 |#1| |#2| |#3|)) (-1014 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 125)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 116)) (-4171 (((-1200 |#2| |#1|) $ (-751)) 63)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-751)) 79) (($ $ (-751) (-751)) 76)) (-4133 (((-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 102)) (-3846 (($ $) 169 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 145 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) 165 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 115) (($ (-1126 |#1|)) 110)) (-3848 (($ $) 173 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 149 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) 23)) (-4176 (($ $) 26)) (-4174 (((-922 |#1|) $ (-751)) 75) (((-922 |#1|) $ (-751) (-751)) 77)) (-3225 (((-112) $) 120)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $) 122) (((-751) $ (-751)) 124)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) NIL)) (-4175 (($ (-1 |#1| (-538)) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) 13) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-4172 (($ $) 129 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-4128 (($ $ (-751)) 15)) (-3820 (((-3 $ "failed") $ $) 24 (|has| |#1| (-545)))) (-4303 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-4159 ((|#1| $ (-751)) 119) (($ $ $) 128 (|has| (-751) (-1085)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $ (-1228 |#2|)) 29)) (-4307 (((-751) $) NIL)) (-3849 (($ $) 175 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 151 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 171 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 147 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 167 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 143 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) 201) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1200 |#2| |#1|)) 51) (($ (-1228 |#2|)) 32)) (-4177 (((-1126 |#1|) $) 98)) (-4040 ((|#1| $ (-751)) 118)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 54)) (-3852 (($ $) 181 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 157 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) 177 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 153 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 185 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 161 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-751)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 187 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 163 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 183 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 159 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 179 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 155 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 17 T CONST)) (-2997 (($) 19 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) 194)) (-4199 (($ $ $) 31)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ |#1|) 198 (|has| |#1| (-358))) (($ $ $) 134 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 137 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-1147 |#1| |#2| |#3|) (-13 (-1224 |#1|) (-10 -8 (-15 -4317 ($ (-1200 |#2| |#1|))) (-15 -4171 ((-1200 |#2| |#1|) $ (-751))) (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1147))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-1147 *3 *4 *5)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1147 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))))
-(-13 (-1224 |#1|) (-10 -8 (-15 -4317 ($ (-1200 |#2| |#1|))) (-15 -4171 ((-1200 |#2| |#1|) $ (-751))) (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|)))
-((-4317 (((-840) $) 27) (($ (-1149)) 29)) (-3891 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 40)) (-3888 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 33) (($ $) 34)) (-3895 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 35)) (-3893 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 37)) (-3894 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 36)) (-3892 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 38)) (-3890 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 39)))
-(((-1148) (-13 (-597 (-840)) (-10 -8 (-15 -4317 ($ (-1149))) (-15 -3895 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3894 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3893 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3892 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3891 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3890 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3888 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3888 ($ $))))) (T -1148))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1148)))) (-3895 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3894 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3893 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3892 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3891 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3890 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3888 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3888 (*1 *1 *1) (-5 *1 (-1148))))
-(-13 (-597 (-840)) (-10 -8 (-15 -4317 ($ (-1149))) (-15 -3895 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3894 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3893 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3892 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3891 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3890 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3888 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3888 ($ $))))
-((-2898 (((-112) $ $) NIL)) (-3900 (($ $ (-622 (-840))) 59)) (-3901 (($ $ (-622 (-840))) 57)) (-3898 (((-1131) $) 84)) (-3903 (((-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840)))) $) 87)) (-3904 (((-112) $) 22)) (-3902 (($ $ (-622 (-622 (-840)))) 56) (($ $ (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840))))) 82)) (-3896 (($) 124 T CONST)) (-3906 (((-1237)) 106)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 66) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 73)) (-3977 (($) 95) (($ $) 101)) (-3905 (($ $) 83)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3897 (((-622 $) $) 107)) (-3593 (((-1131) $) 90)) (-3594 (((-1093) $) NIL)) (-4159 (($ $ (-622 (-840))) 58)) (-4330 (((-527) $) 46) (((-1149) $) 47) (((-866 (-538)) $) 77) (((-866 (-373)) $) 75)) (-4317 (((-840) $) 53) (($ (-1131)) 48)) (-3899 (($ $ (-622 (-840))) 60)) (-2834 (((-1131) $) 33) (((-1131) $ (-112)) 34) (((-1237) (-803) $) 35) (((-1237) (-803) $ (-112)) 36)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 49)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 50)))
-(((-1149) (-13 (-827) (-598 (-527)) (-801) (-598 (-1149)) (-598 (-866 (-538))) (-598 (-866 (-373))) (-862 (-538)) (-862 (-373)) (-10 -8 (-15 -3977 ($)) (-15 -3977 ($ $)) (-15 -3906 ((-1237))) (-15 -4317 ($ (-1131))) (-15 -3905 ($ $)) (-15 -3904 ((-112) $)) (-15 -3903 ((-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840)))) $)) (-15 -3902 ($ $ (-622 (-622 (-840))))) (-15 -3902 ($ $ (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840)))))) (-15 -3901 ($ $ (-622 (-840)))) (-15 -3900 ($ $ (-622 (-840)))) (-15 -3899 ($ $ (-622 (-840)))) (-15 -4159 ($ $ (-622 (-840)))) (-15 -3898 ((-1131) $)) (-15 -3897 ((-622 $) $)) (-15 -3896 ($) -4311)))) (T -1149))
-((-3977 (*1 *1) (-5 *1 (-1149))) (-3977 (*1 *1 *1) (-5 *1 (-1149))) (-3906 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1149)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))) (-3905 (*1 *1 *1) (-5 *1 (-1149))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840))))) (-5 *1 (-1149)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-622 (-840)))) (-5 *1 (-1149)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840))))) (-5 *1 (-1149)))) (-3901 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))) (-3900 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))) (-3899 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1149)))) (-3896 (*1 *1) (-5 *1 (-1149))))
-(-13 (-827) (-598 (-527)) (-801) (-598 (-1149)) (-598 (-866 (-538))) (-598 (-866 (-373))) (-862 (-538)) (-862 (-373)) (-10 -8 (-15 -3977 ($)) (-15 -3977 ($ $)) (-15 -3906 ((-1237))) (-15 -4317 ($ (-1131))) (-15 -3905 ($ $)) (-15 -3904 ((-112) $)) (-15 -3903 ((-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840)))) $)) (-15 -3902 ($ $ (-622 (-622 (-840))))) (-15 -3902 ($ $ (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840)))))) (-15 -3901 ($ $ (-622 (-840)))) (-15 -3900 ($ $ (-622 (-840)))) (-15 -3899 ($ $ (-622 (-840)))) (-15 -4159 ($ $ (-622 (-840)))) (-15 -3898 ((-1131) $)) (-15 -3897 ((-622 $) $)) (-15 -3896 ($) -4311)))
-((-3907 (((-1231 |#1|) |#1| (-895)) 16) (((-1231 |#1|) (-622 |#1|)) 20)))
-(((-1150 |#1|) (-10 -7 (-15 -3907 ((-1231 |#1|) (-622 |#1|))) (-15 -3907 ((-1231 |#1|) |#1| (-895)))) (-1025)) (T -1150))
-((-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-1231 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1025)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-1025)) (-5 *2 (-1231 *4)) (-5 *1 (-1150 *4)))))
-(-10 -7 (-15 -3907 ((-1231 |#1|) (-622 |#1|))) (-15 -3907 ((-1231 |#1|) |#1| (-895))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-1721 (($ $ |#1| (-947) $) NIL)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-947)) NIL)) (-3153 (((-947) $) NIL)) (-1722 (($ (-1 (-947) (-947)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-4098 (($ $ (-947) |#1| $) NIL (-12 (|has| (-947) (-130)) (|has| |#1| (-545))))) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545)))) (-4307 (((-947) $) NIL)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-947)) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 9 T CONST)) (-2997 (($) 14 T CONST)) (-3387 (((-112) $ $) 16)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 19)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-1151 |#1|) (-13 (-321 |#1| (-947)) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| (-947) (-130)) (-15 -4098 ($ $ (-947) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025)) (T -1151))
-((-4098 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-947)) (-4 *2 (-130)) (-5 *1 (-1151 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))))
-(-13 (-321 |#1| #1=(-947)) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| #1# (-130)) (-15 -4098 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|)))
-((-3908 (((-1153) (-1149) $) 25)) (-3918 (($) 29)) (-3910 (((-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) (-1149) $) 22)) (-3912 (((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) $) 41) (((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) 42) (((-1237) (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) 43)) (-3920 (((-1237) (-1149)) 58)) (-3911 (((-1237) (-1149) $) 55) (((-1237) (-1149)) 56) (((-1237)) 57)) (-3916 (((-1237) (-1149)) 37)) (-3914 (((-1149)) 36)) (-3928 (($) 34)) (-3927 (((-431) (-1149) (-431) (-1149) $) 45) (((-431) (-622 (-1149)) (-431) (-1149) $) 49) (((-431) (-1149) (-431)) 46) (((-431) (-1149) (-431) (-1149)) 50)) (-3915 (((-1149)) 35)) (-4317 (((-840) $) 28)) (-3917 (((-1237)) 30) (((-1237) (-1149)) 33)) (-3909 (((-622 (-1149)) (-1149) $) 24)) (-3913 (((-1237) (-1149) (-622 (-1149)) $) 38) (((-1237) (-1149) (-622 (-1149))) 39) (((-1237) (-622 (-1149))) 40)))
-(((-1152) (-13 (-597 (-840)) (-10 -8 (-15 -3918 ($)) (-15 -3917 ((-1237))) (-15 -3917 ((-1237) (-1149))) (-15 -3927 ((-431) (-1149) (-431) (-1149) $)) (-15 -3927 ((-431) (-622 (-1149)) (-431) (-1149) $)) (-15 -3927 ((-431) (-1149) (-431))) (-15 -3927 ((-431) (-1149) (-431) (-1149))) (-15 -3916 ((-1237) (-1149))) (-15 -3915 ((-1149))) (-15 -3914 ((-1149))) (-15 -3913 ((-1237) (-1149) (-622 (-1149)) $)) (-15 -3913 ((-1237) (-1149) (-622 (-1149)))) (-15 -3913 ((-1237) (-622 (-1149)))) (-15 -3912 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) $)) (-15 -3912 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1#)))) (-15 -3912 ((-1237) (-3 (|:| |fst| (-429)) (|:| -4270 #1#)))) (-15 -3911 ((-1237) (-1149) $)) (-15 -3911 ((-1237) (-1149))) (-15 -3911 ((-1237))) (-15 -3920 ((-1237) (-1149))) (-15 -3928 ($)) (-15 -3910 ((-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-1149) $)) (-15 -3909 ((-622 (-1149)) (-1149) $)) (-15 -3908 ((-1153) (-1149) $))))) (T -1152))
-((-3918 (*1 *1) (-5 *1 (-1152))) (-3917 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3927 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-3927 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-431)) (-5 *3 (-622 (-1149))) (-5 *4 (-1149)) (-5 *1 (-1152)))) (-3927 (*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-3927 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3915 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))) (-3914 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))) (-3913 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3912 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void"))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3911 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3911 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3928 (*1 *1) (-5 *1 (-1152))) (-3910 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *1 (-1152)))) (-3909 (*1 *2 *3 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1152)) (-5 *3 (-1149)))) (-3908 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1153)) (-5 *1 (-1152)))))
-(-13 (-597 (-840)) (-10 -8 (-15 -3918 ($)) (-15 -3917 ((-1237))) (-15 -3917 ((-1237) (-1149))) (-15 -3927 ((-431) (-1149) (-431) (-1149) $)) (-15 -3927 ((-431) (-622 (-1149)) (-431) (-1149) $)) (-15 -3927 ((-431) (-1149) (-431))) (-15 -3927 ((-431) (-1149) (-431) (-1149))) (-15 -3916 ((-1237) (-1149))) (-15 -3915 ((-1149))) (-15 -3914 ((-1149))) (-15 -3913 ((-1237) (-1149) (-622 (-1149)) $)) (-15 -3913 ((-1237) (-1149) (-622 (-1149)))) (-15 -3913 ((-1237) (-622 (-1149)))) (-15 -3912 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) $)) (-15 -3912 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1#)))) (-15 -3912 ((-1237) (-3 (|:| |fst| (-429)) (|:| -4270 #1#)))) (-15 -3911 ((-1237) (-1149) $)) (-15 -3911 ((-1237) (-1149))) (-15 -3911 ((-1237))) (-15 -3920 ((-1237) (-1149))) (-15 -3928 ($)) (-15 -3910 ((-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-1149) $)) (-15 -3909 ((-622 (-1149)) (-1149) $)) (-15 -3908 ((-1153) (-1149) $))))
-((-3922 (((-622 (-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538))))))))) $) 59)) (-3924 (((-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538)))))))) (-429) $) 43)) (-3919 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-431))))) 17)) (-3920 (((-1237) $) 67)) (-3925 (((-622 (-1149)) $) 22)) (-3921 (((-1076) $) 55)) (-3926 (((-431) (-1149) $) 27)) (-3923 (((-622 (-1149)) $) 30)) (-3928 (($) 19)) (-3927 (((-431) (-622 (-1149)) (-431) $) 25) (((-431) (-1149) (-431) $) 24)) (-4317 (((-840) $) 9) (((-1158 (-1149) (-431)) $) 13)))
-(((-1153) (-13 (-597 (-840)) (-10 -8 (-15 -4317 ((-1158 (-1149) (-431)) $)) (-15 -3928 ($)) (-15 -3927 ((-431) (-622 (-1149)) (-431) $)) (-15 -3927 ((-431) (-1149) (-431) $)) (-15 -3926 ((-431) (-1149) $)) (-15 -3925 ((-622 (-1149)) $)) (-15 -3924 ((-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538)))))))) (-429) $)) (-15 -3923 ((-622 (-1149)) $)) (-15 -3922 ((-622 (-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538))))))))) $)) (-15 -3921 ((-1076) $)) (-15 -3920 ((-1237) $)) (-15 -3919 ($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-431))))))))) (T -1153))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-1158 (-1149) (-431))) (-5 *1 (-1153)))) (-3928 (*1 *1) (-5 *1 (-1153))) (-3927 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-622 (-1149))) (-5 *1 (-1153)))) (-3927 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1153)))) (-3926 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-431)) (-5 *1 (-1153)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1153)))) (-3924 (*1 *2 *3 *1) (-12 (-5 *3 (-429)) (-5 *2 (-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538))))))))) (-5 *1 (-1153)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1153)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538)))))))))) (-5 *1 (-1153)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1153)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1153)))) (-3919 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-431))))) (-5 *1 (-1153)))))
-(-13 (-597 (-840)) (-10 -8 (-15 -4317 ((-1158 (-1149) (-431)) $)) (-15 -3928 ($)) (-15 -3927 ((-431) (-622 (-1149)) (-431) $)) (-15 -3927 ((-431) (-1149) (-431) $)) (-15 -3926 ((-431) (-1149) $)) (-15 -3925 ((-622 (-1149)) $)) (-15 -3924 ((-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538)))))))) (-429) $)) (-15 -3923 ((-622 (-1149)) $)) (-15 -3922 ((-622 (-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538))))))))) $)) (-15 -3921 ((-1076) $)) (-15 -3920 ((-1237) $)) (-15 -3919 ($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-431))))))))
-((-2898 (((-112) $ $) NIL)) (-3933 (((-112) $) 48)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3932 (((-3 (-538) (-221) (-1149) (-1131) $) $) 56)) (-3931 (((-622 $) $) 61)) (-4330 (((-1076) $) 30) (($ (-1076)) 31)) (-3930 (((-112) $) 58)) (-4317 (((-840) $) 29) (($ (-538)) 32) (((-538) $) 34) (($ (-221)) 35) (((-221) $) 37) (($ (-1149)) 38) (((-1149) $) 40) (($ (-1131)) 41) (((-1131) $) 43)) (-3929 (((-112) $ (|[\|\|]| (-538))) 13) (((-112) $ (|[\|\|]| (-221))) 17) (((-112) $ (|[\|\|]| (-1149))) 25) (((-112) $ (|[\|\|]| (-1131))) 21)) (-3934 (($ (-1149) (-622 $)) 45) (($ $ (-622 $)) 46)) (-3935 (((-538) $) 33) (((-221) $) 36) (((-1149) $) 39) (((-1131) $) 42)) (-3387 (((-112) $ $) 8)))
-(((-1154) (-13 (-1227) (-1074) (-10 -8 (-15 -4330 ((-1076) $)) (-15 -4330 ($ (-1076))) (-15 -4317 ($ (-538))) (-15 -4317 ((-538) $)) (-15 -3935 ((-538) $)) (-15 -4317 ($ (-221))) (-15 -4317 ((-221) $)) (-15 -3935 ((-221) $)) (-15 -4317 ($ (-1149))) (-15 -4317 ((-1149) $)) (-15 -3935 ((-1149) $)) (-15 -4317 ($ (-1131))) (-15 -4317 ((-1131) $)) (-15 -3935 ((-1131) $)) (-15 -3934 ($ (-1149) (-622 $))) (-15 -3934 ($ $ (-622 $))) (-15 -3933 ((-112) $)) (-15 -3932 ((-3 (-538) (-221) (-1149) (-1131) $) $)) (-15 -3931 ((-622 $) $)) (-15 -3930 ((-112) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-538)))) (-15 -3929 ((-112) $ (|[\|\|]| (-221)))) (-15 -3929 ((-112) $ (|[\|\|]| (-1149)))) (-15 -3929 ((-112) $ (|[\|\|]| (-1131))))))) (T -1154))
-((-4330 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1154)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1154)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1154)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1154)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1154)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-3934 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-1154))) (-5 *1 (-1154)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1154)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-3 (-538) (-221) (-1149) (-1131) (-1154))) (-5 *1 (-1154)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1154)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1149))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)) (-5 *1 (-1154)))))
-(-13 (-1227) (-1074) (-10 -8 (-15 -4330 ((-1076) $)) (-15 -4330 ($ (-1076))) (-15 -4317 ($ (-538))) (-15 -4317 ((-538) $)) (-15 -3935 ((-538) $)) (-15 -4317 ($ (-221))) (-15 -4317 ((-221) $)) (-15 -3935 ((-221) $)) (-15 -4317 ($ (-1149))) (-15 -4317 ((-1149) $)) (-15 -3935 ((-1149) $)) (-15 -4317 ($ (-1131))) (-15 -4317 ((-1131) $)) (-15 -3935 ((-1131) $)) (-15 -3934 ($ (-1149) (-622 $))) (-15 -3934 ($ $ (-622 $))) (-15 -3933 ((-112) $)) (-15 -3932 ((-3 (-538) (-221) (-1149) (-1131) $) $)) (-15 -3931 ((-622 $) $)) (-15 -3930 ((-112) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-538)))) (-15 -3929 ((-112) $ (|[\|\|]| (-221)))) (-15 -3929 ((-112) $ (|[\|\|]| (-1149)))) (-15 -3929 ((-112) $ (|[\|\|]| (-1131))))))
-((-3937 (((-622 (-622 (-922 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149))) 57)) (-3936 (((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|)))) 69) (((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|))) 65) (((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149)) 70) (((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149)) 64) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|))))) 93) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|)))) 92) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149))) 94) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|))) (-622 (-1149))) 91)))
-(((-1155 |#1|) (-10 -7 (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|))))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|)))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|))))) (-15 -3937 ((-622 (-622 (-922 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149))))) (-545)) (T -1155))
-((-3937 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-922 *5)))) (-5 *1 (-1155 *5)))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *4))))) (-5 *1 (-1155 *4)) (-5 *3 (-288 (-402 (-922 *4)))))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *4))))) (-5 *1 (-1155 *4)) (-5 *3 (-402 (-922 *4))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *5))))) (-5 *1 (-1155 *5)) (-5 *3 (-288 (-402 (-922 *5)))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *5))))) (-5 *1 (-1155 *5)) (-5 *3 (-402 (-922 *5))))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-1155 *4)) (-5 *3 (-622 (-288 (-402 (-922 *4))))))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-622 (-402 (-922 *4)))) (-4 *4 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-1155 *4)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-1149))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-1155 *5)) (-5 *3 (-622 (-288 (-402 (-922 *5))))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-1155 *5)))))
-(-10 -7 (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|))))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|)))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|))))) (-15 -3937 ((-622 (-622 (-922 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))))
-((-3938 (((-1131)) 7)) (-3940 (((-1131)) 9)) (-3941 (((-1237) (-1131)) 11)) (-3939 (((-1131)) 8)))
-(((-1156) (-10 -7 (-15 -3938 ((-1131))) (-15 -3939 ((-1131))) (-15 -3940 ((-1131))) (-15 -3941 ((-1237) (-1131))))) (T -1156))
-((-3941 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1156)))) (-3940 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))) (-3939 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))) (-3938 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))))
-(-10 -7 (-15 -3938 ((-1131))) (-15 -3939 ((-1131))) (-15 -3940 ((-1131))) (-15 -3941 ((-1237) (-1131))))
-((-3945 (((-622 (-622 |#1|)) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|)))) 38)) (-3948 (((-622 (-622 (-622 |#1|))) (-622 (-622 |#1|))) 24)) (-3949 (((-1159 (-622 |#1|)) (-622 |#1|)) 34)) (-3951 (((-622 (-622 |#1|)) (-622 |#1|)) 30)) (-3954 (((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 (-622 (-622 |#1|)))) 37)) (-3953 (((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 |#1|) (-622 (-622 (-622 |#1|))) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|)))) 36)) (-3950 (((-622 (-622 |#1|)) (-622 (-622 |#1|))) 28)) (-3952 (((-622 |#1|) (-622 |#1|)) 31)) (-3944 (((-622 (-622 (-622 |#1|))) (-622 |#1|) (-622 (-622 (-622 |#1|)))) 18)) (-3943 (((-622 (-622 (-622 |#1|))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 (-622 |#1|)))) 16)) (-3942 (((-2 (|:| |fs| (-112)) (|:| |sd| (-622 |#1|)) (|:| |td| (-622 (-622 |#1|)))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 |#1|))) 14)) (-3946 (((-622 (-622 |#1|)) (-622 (-622 (-622 |#1|)))) 39)) (-3947 (((-622 (-622 |#1|)) (-1159 (-622 |#1|))) 41)))
-(((-1157 |#1|) (-10 -7 (-15 -3942 ((-2 (|:| |fs| (-112)) (|:| |sd| (-622 |#1|)) (|:| |td| (-622 (-622 |#1|)))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 |#1|)))) (-15 -3943 ((-622 (-622 (-622 |#1|))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 (-622 |#1|))))) (-15 -3944 ((-622 (-622 (-622 |#1|))) (-622 |#1|) (-622 (-622 (-622 |#1|))))) (-15 -3945 ((-622 (-622 |#1|)) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))))) (-15 -3946 ((-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))))) (-15 -3947 ((-622 (-622 |#1|)) (-1159 (-622 |#1|)))) (-15 -3948 ((-622 (-622 (-622 |#1|))) (-622 (-622 |#1|)))) (-15 -3949 ((-1159 (-622 |#1|)) (-622 |#1|))) (-15 -3950 ((-622 (-622 |#1|)) (-622 (-622 |#1|)))) (-15 -3951 ((-622 (-622 |#1|)) (-622 |#1|))) (-15 -3952 ((-622 |#1|) (-622 |#1|))) (-15 -3953 ((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 |#1|) (-622 (-622 (-622 |#1|))) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|))))) (-15 -3954 ((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 (-622 (-622 |#1|)))))) (-827)) (T -1157))
-((-3954 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-2 (|:| |f1| (-622 *4)) (|:| |f2| (-622 (-622 (-622 *4)))) (|:| |f3| (-622 (-622 *4))) (|:| |f4| (-622 (-622 (-622 *4)))))) (-5 *1 (-1157 *4)) (-5 *3 (-622 (-622 (-622 *4)))))) (-3953 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-827)) (-5 *3 (-622 *6)) (-5 *5 (-622 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-622 *5)) (|:| |f3| *5) (|:| |f4| (-622 *5)))) (-5 *1 (-1157 *6)) (-5 *4 (-622 *5)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-1157 *3)))) (-3951 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-622 (-622 *4))) (-5 *1 (-1157 *4)) (-5 *3 (-622 *4)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-827)) (-5 *1 (-1157 *3)))) (-3949 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-1159 (-622 *4))) (-5 *1 (-1157 *4)) (-5 *3 (-622 *4)))) (-3948 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-622 (-622 (-622 *4)))) (-5 *1 (-1157 *4)) (-5 *3 (-622 (-622 *4))))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-1159 (-622 *4))) (-4 *4 (-827)) (-5 *2 (-622 (-622 *4))) (-5 *1 (-1157 *4)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-622 (-622 (-622 *4)))) (-5 *2 (-622 (-622 *4))) (-5 *1 (-1157 *4)) (-4 *4 (-827)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-622 (-622 *4)))) (-5 *2 (-622 (-622 *4))) (-4 *4 (-827)) (-5 *1 (-1157 *4)))) (-3944 (*1 *2 *3 *2) (-12 (-5 *2 (-622 (-622 (-622 *4)))) (-5 *3 (-622 *4)) (-4 *4 (-827)) (-5 *1 (-1157 *4)))) (-3943 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-622 (-622 (-622 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-622 *5)) (-4 *5 (-827)) (-5 *1 (-1157 *5)))) (-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-827)) (-5 *4 (-622 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-622 *4)))) (-5 *1 (-1157 *6)) (-5 *5 (-622 *4)))))
-(-10 -7 (-15 -3942 ((-2 (|:| |fs| (-112)) (|:| |sd| (-622 |#1|)) (|:| |td| (-622 (-622 |#1|)))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 |#1|)))) (-15 -3943 ((-622 (-622 (-622 |#1|))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 (-622 |#1|))))) (-15 -3944 ((-622 (-622 (-622 |#1|))) (-622 |#1|) (-622 (-622 (-622 |#1|))))) (-15 -3945 ((-622 (-622 |#1|)) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))))) (-15 -3946 ((-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))))) (-15 -3947 ((-622 (-622 |#1|)) (-1159 (-622 |#1|)))) (-15 -3948 ((-622 (-622 (-622 |#1|))) (-622 (-622 |#1|)))) (-15 -3949 ((-1159 (-622 |#1|)) (-622 |#1|))) (-15 -3950 ((-622 (-622 |#1|)) (-622 (-622 |#1|)))) (-15 -3951 ((-622 (-622 |#1|)) (-622 |#1|))) (-15 -3952 ((-622 |#1|) (-622 |#1|))) (-15 -3953 ((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 |#1|) (-622 (-622 (-622 |#1|))) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|))))) (-15 -3954 ((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 (-622 (-622 |#1|))))))
-((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) NIL)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) NIL)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1158 |#1| |#2|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1074) (-1074)) (T -1158))
+((-2412 (((-1129 |#1|) (-1129 |#1|)) 77)) (-4174 (((-3 (-1129 |#1|) "failed") (-1129 |#1|)) 37)) (-4292 (((-1129 |#1|) (-402 (-552)) (-1129 |#1|)) 121 (|has| |#1| (-38 (-402 (-552)))))) (-4321 (((-1129 |#1|) |#1| (-1129 |#1|)) 127 (|has| |#1| (-358)))) (-2441 (((-1129 |#1|) (-1129 |#1|)) 90)) (-4196 (((-1129 (-552)) (-552)) 57)) (-4281 (((-1129 |#1|) (-1129 (-1129 |#1|))) 109 (|has| |#1| (-38 (-402 (-552)))))) (-2401 (((-1129 |#1|) (-552) (-552) (-1129 |#1|)) 95)) (-2243 (((-1129 |#1|) |#1| (-552)) 45)) (-4217 (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 60)) (-4302 (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 124 (|has| |#1| (-358)))) (-4271 (((-1129 |#1|) |#1| (-1 (-1129 |#1|))) 108 (|has| |#1| (-38 (-402 (-552)))))) (-4311 (((-1129 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1129 |#1|))) 125 (|has| |#1| (-358)))) (-2451 (((-1129 |#1|) (-1129 |#1|)) 89)) (-2463 (((-1129 |#1|) (-1129 |#1|)) 76)) (-2390 (((-1129 |#1|) (-552) (-552) (-1129 |#1|)) 96)) (-2481 (((-1129 |#1|) |#1| (-1129 |#1|)) 105 (|has| |#1| (-38 (-402 (-552)))))) (-4184 (((-1129 (-552)) (-552)) 56)) (-4206 (((-1129 |#1|) |#1|) 59)) (-2421 (((-1129 |#1|) (-1129 |#1|) (-552) (-552)) 92)) (-4238 (((-1129 |#1|) (-1 |#1| (-552)) (-1129 |#1|)) 66)) (-2802 (((-3 (-1129 |#1|) "failed") (-1129 |#1|) (-1129 |#1|)) 35)) (-2431 (((-1129 |#1|) (-1129 |#1|)) 91)) (-4073 (((-1129 |#1|) (-1129 |#1|) |#1|) 71)) (-4227 (((-1129 |#1|) (-1129 |#1|)) 62)) (-4249 (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 72)) (-1683 (((-1129 |#1|) |#1|) 67)) (-4259 (((-1129 |#1|) (-1129 (-1129 |#1|))) 82)) (-2404 (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 36)) (-2393 (((-1129 |#1|) (-1129 |#1|)) 21) (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 23)) (-2382 (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 17)) (* (((-1129 |#1|) (-1129 |#1|) |#1|) 29) (((-1129 |#1|) |#1| (-1129 |#1|)) 26) (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 27)))
+(((-1133 |#1|) (-10 -7 (-15 -2382 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2393 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2393 ((-1129 |#1|) (-1129 |#1|))) (-15 * ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 * ((-1129 |#1|) |#1| (-1129 |#1|))) (-15 * ((-1129 |#1|) (-1129 |#1|) |#1|)) (-15 -2802 ((-3 (-1129 |#1|) "failed") (-1129 |#1|) (-1129 |#1|))) (-15 -2404 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4174 ((-3 (-1129 |#1|) "failed") (-1129 |#1|))) (-15 -2243 ((-1129 |#1|) |#1| (-552))) (-15 -4184 ((-1129 (-552)) (-552))) (-15 -4196 ((-1129 (-552)) (-552))) (-15 -4206 ((-1129 |#1|) |#1|)) (-15 -4217 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4227 ((-1129 |#1|) (-1129 |#1|))) (-15 -4238 ((-1129 |#1|) (-1 |#1| (-552)) (-1129 |#1|))) (-15 -1683 ((-1129 |#1|) |#1|)) (-15 -4073 ((-1129 |#1|) (-1129 |#1|) |#1|)) (-15 -4249 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2463 ((-1129 |#1|) (-1129 |#1|))) (-15 -2412 ((-1129 |#1|) (-1129 |#1|))) (-15 -4259 ((-1129 |#1|) (-1129 (-1129 |#1|)))) (-15 -2451 ((-1129 |#1|) (-1129 |#1|))) (-15 -2441 ((-1129 |#1|) (-1129 |#1|))) (-15 -2431 ((-1129 |#1|) (-1129 |#1|))) (-15 -2421 ((-1129 |#1|) (-1129 |#1|) (-552) (-552))) (-15 -2401 ((-1129 |#1|) (-552) (-552) (-1129 |#1|))) (-15 -2390 ((-1129 |#1|) (-552) (-552) (-1129 |#1|))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ((-1129 |#1|) |#1| (-1129 |#1|))) (-15 -4271 ((-1129 |#1|) |#1| (-1 (-1129 |#1|)))) (-15 -4281 ((-1129 |#1|) (-1129 (-1129 |#1|)))) (-15 -4292 ((-1129 |#1|) (-402 (-552)) (-1129 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4302 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4311 ((-1129 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1129 |#1|)))) (-15 -4321 ((-1129 |#1|) |#1| (-1129 |#1|)))) |%noBranch|)) (-1025)) (T -1133))
+((-4321 (*1 *2 *3 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4311 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-552))) (-5 *5 (-1 (-1129 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4)))) (-4302 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4292 (*1 *2 *3 *2) (-12 (-5 *2 (-1129 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1025)) (-5 *3 (-402 (-552))) (-5 *1 (-1133 *4)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4)) (-4 *4 (-38 (-402 (-552)))) (-4 *4 (-1025)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1129 *3))) (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)))) (-2481 (*1 *2 *3 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2390 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-2401 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-2421 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-2431 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2441 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2451 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4)) (-4 *4 (-1025)))) (-2412 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2463 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4249 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4073 (*1 *2 *2 *3) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-4238 (*1 *2 *3 *2) (-12 (-5 *2 (-1129 *4)) (-5 *3 (-1 *4 (-552))) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-4227 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4217 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4206 (*1 *2 *3) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-4196 (*1 *2 *3) (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) (-5 *3 (-552)))) (-4184 (*1 *2 *3) (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) (-5 *3 (-552)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-4174 (*1 *2 *2) (|partial| -12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2404 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2802 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2393 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2393 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2382 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
+(-10 -7 (-15 -2382 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2393 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2393 ((-1129 |#1|) (-1129 |#1|))) (-15 * ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 * ((-1129 |#1|) |#1| (-1129 |#1|))) (-15 * ((-1129 |#1|) (-1129 |#1|) |#1|)) (-15 -2802 ((-3 (-1129 |#1|) "failed") (-1129 |#1|) (-1129 |#1|))) (-15 -2404 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4174 ((-3 (-1129 |#1|) "failed") (-1129 |#1|))) (-15 -2243 ((-1129 |#1|) |#1| (-552))) (-15 -4184 ((-1129 (-552)) (-552))) (-15 -4196 ((-1129 (-552)) (-552))) (-15 -4206 ((-1129 |#1|) |#1|)) (-15 -4217 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4227 ((-1129 |#1|) (-1129 |#1|))) (-15 -4238 ((-1129 |#1|) (-1 |#1| (-552)) (-1129 |#1|))) (-15 -1683 ((-1129 |#1|) |#1|)) (-15 -4073 ((-1129 |#1|) (-1129 |#1|) |#1|)) (-15 -4249 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2463 ((-1129 |#1|) (-1129 |#1|))) (-15 -2412 ((-1129 |#1|) (-1129 |#1|))) (-15 -4259 ((-1129 |#1|) (-1129 (-1129 |#1|)))) (-15 -2451 ((-1129 |#1|) (-1129 |#1|))) (-15 -2441 ((-1129 |#1|) (-1129 |#1|))) (-15 -2431 ((-1129 |#1|) (-1129 |#1|))) (-15 -2421 ((-1129 |#1|) (-1129 |#1|) (-552) (-552))) (-15 -2401 ((-1129 |#1|) (-552) (-552) (-1129 |#1|))) (-15 -2390 ((-1129 |#1|) (-552) (-552) (-1129 |#1|))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ((-1129 |#1|) |#1| (-1129 |#1|))) (-15 -4271 ((-1129 |#1|) |#1| (-1 (-1129 |#1|)))) (-15 -4281 ((-1129 |#1|) (-1129 (-1129 |#1|)))) (-15 -4292 ((-1129 |#1|) (-402 (-552)) (-1129 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4302 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4311 ((-1129 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1129 |#1|)))) (-15 -4321 ((-1129 |#1|) |#1| (-1129 |#1|)))) |%noBranch|))
+((-3728 (((-1129 |#1|) (-1129 |#1|)) 57)) (-3604 (((-1129 |#1|) (-1129 |#1|)) 39)) (-3710 (((-1129 |#1|) (-1129 |#1|)) 53)) (-3581 (((-1129 |#1|) (-1129 |#1|)) 35)) (-3749 (((-1129 |#1|) (-1129 |#1|)) 60)) (-3627 (((-1129 |#1|) (-1129 |#1|)) 42)) (-2458 (((-1129 |#1|) (-1129 |#1|)) 31)) (-2863 (((-1129 |#1|) (-1129 |#1|)) 27)) (-3759 (((-1129 |#1|) (-1129 |#1|)) 61)) (-3638 (((-1129 |#1|) (-1129 |#1|)) 43)) (-3738 (((-1129 |#1|) (-1129 |#1|)) 58)) (-3614 (((-1129 |#1|) (-1129 |#1|)) 40)) (-3721 (((-1129 |#1|) (-1129 |#1|)) 55)) (-3593 (((-1129 |#1|) (-1129 |#1|)) 37)) (-3789 (((-1129 |#1|) (-1129 |#1|)) 65)) (-3670 (((-1129 |#1|) (-1129 |#1|)) 47)) (-3769 (((-1129 |#1|) (-1129 |#1|)) 63)) (-3648 (((-1129 |#1|) (-1129 |#1|)) 45)) (-3809 (((-1129 |#1|) (-1129 |#1|)) 68)) (-3691 (((-1129 |#1|) (-1129 |#1|)) 50)) (-3742 (((-1129 |#1|) (-1129 |#1|)) 69)) (-3700 (((-1129 |#1|) (-1129 |#1|)) 51)) (-3797 (((-1129 |#1|) (-1129 |#1|)) 67)) (-3681 (((-1129 |#1|) (-1129 |#1|)) 49)) (-3778 (((-1129 |#1|) (-1129 |#1|)) 66)) (-3659 (((-1129 |#1|) (-1129 |#1|)) 48)) (** (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 33)))
+(((-1134 |#1|) (-10 -7 (-15 -2863 ((-1129 |#1|) (-1129 |#1|))) (-15 -2458 ((-1129 |#1|) (-1129 |#1|))) (-15 ** ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -3581 ((-1129 |#1|) (-1129 |#1|))) (-15 -3593 ((-1129 |#1|) (-1129 |#1|))) (-15 -3604 ((-1129 |#1|) (-1129 |#1|))) (-15 -3614 ((-1129 |#1|) (-1129 |#1|))) (-15 -3627 ((-1129 |#1|) (-1129 |#1|))) (-15 -3638 ((-1129 |#1|) (-1129 |#1|))) (-15 -3648 ((-1129 |#1|) (-1129 |#1|))) (-15 -3659 ((-1129 |#1|) (-1129 |#1|))) (-15 -3670 ((-1129 |#1|) (-1129 |#1|))) (-15 -3681 ((-1129 |#1|) (-1129 |#1|))) (-15 -3691 ((-1129 |#1|) (-1129 |#1|))) (-15 -3700 ((-1129 |#1|) (-1129 |#1|))) (-15 -3710 ((-1129 |#1|) (-1129 |#1|))) (-15 -3721 ((-1129 |#1|) (-1129 |#1|))) (-15 -3728 ((-1129 |#1|) (-1129 |#1|))) (-15 -3738 ((-1129 |#1|) (-1129 |#1|))) (-15 -3749 ((-1129 |#1|) (-1129 |#1|))) (-15 -3759 ((-1129 |#1|) (-1129 |#1|))) (-15 -3769 ((-1129 |#1|) (-1129 |#1|))) (-15 -3778 ((-1129 |#1|) (-1129 |#1|))) (-15 -3789 ((-1129 |#1|) (-1129 |#1|))) (-15 -3797 ((-1129 |#1|) (-1129 |#1|))) (-15 -3809 ((-1129 |#1|) (-1129 |#1|))) (-15 -3742 ((-1129 |#1|) (-1129 |#1|)))) (-38 (-402 (-552)))) (T -1134))
+((-3742 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3778 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3769 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3749 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3728 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3721 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3681 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3581 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-2863 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))))
+(-10 -7 (-15 -2863 ((-1129 |#1|) (-1129 |#1|))) (-15 -2458 ((-1129 |#1|) (-1129 |#1|))) (-15 ** ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -3581 ((-1129 |#1|) (-1129 |#1|))) (-15 -3593 ((-1129 |#1|) (-1129 |#1|))) (-15 -3604 ((-1129 |#1|) (-1129 |#1|))) (-15 -3614 ((-1129 |#1|) (-1129 |#1|))) (-15 -3627 ((-1129 |#1|) (-1129 |#1|))) (-15 -3638 ((-1129 |#1|) (-1129 |#1|))) (-15 -3648 ((-1129 |#1|) (-1129 |#1|))) (-15 -3659 ((-1129 |#1|) (-1129 |#1|))) (-15 -3670 ((-1129 |#1|) (-1129 |#1|))) (-15 -3681 ((-1129 |#1|) (-1129 |#1|))) (-15 -3691 ((-1129 |#1|) (-1129 |#1|))) (-15 -3700 ((-1129 |#1|) (-1129 |#1|))) (-15 -3710 ((-1129 |#1|) (-1129 |#1|))) (-15 -3721 ((-1129 |#1|) (-1129 |#1|))) (-15 -3728 ((-1129 |#1|) (-1129 |#1|))) (-15 -3738 ((-1129 |#1|) (-1129 |#1|))) (-15 -3749 ((-1129 |#1|) (-1129 |#1|))) (-15 -3759 ((-1129 |#1|) (-1129 |#1|))) (-15 -3769 ((-1129 |#1|) (-1129 |#1|))) (-15 -3778 ((-1129 |#1|) (-1129 |#1|))) (-15 -3789 ((-1129 |#1|) (-1129 |#1|))) (-15 -3797 ((-1129 |#1|) (-1129 |#1|))) (-15 -3809 ((-1129 |#1|) (-1129 |#1|))) (-15 -3742 ((-1129 |#1|) (-1129 |#1|))))
+((-3728 (((-1129 |#1|) (-1129 |#1|)) 100)) (-3604 (((-1129 |#1|) (-1129 |#1|)) 64)) (-1273 (((-2 (|:| -3710 (-1129 |#1|)) (|:| -3721 (-1129 |#1|))) (-1129 |#1|)) 96)) (-3710 (((-1129 |#1|) (-1129 |#1|)) 97)) (-4331 (((-2 (|:| -3581 (-1129 |#1|)) (|:| -3593 (-1129 |#1|))) (-1129 |#1|)) 53)) (-3581 (((-1129 |#1|) (-1129 |#1|)) 54)) (-3749 (((-1129 |#1|) (-1129 |#1|)) 102)) (-3627 (((-1129 |#1|) (-1129 |#1|)) 71)) (-2458 (((-1129 |#1|) (-1129 |#1|)) 39)) (-2863 (((-1129 |#1|) (-1129 |#1|)) 36)) (-3759 (((-1129 |#1|) (-1129 |#1|)) 103)) (-3638 (((-1129 |#1|) (-1129 |#1|)) 72)) (-3738 (((-1129 |#1|) (-1129 |#1|)) 101)) (-3614 (((-1129 |#1|) (-1129 |#1|)) 67)) (-3721 (((-1129 |#1|) (-1129 |#1|)) 98)) (-3593 (((-1129 |#1|) (-1129 |#1|)) 55)) (-3789 (((-1129 |#1|) (-1129 |#1|)) 111)) (-3670 (((-1129 |#1|) (-1129 |#1|)) 86)) (-3769 (((-1129 |#1|) (-1129 |#1|)) 105)) (-3648 (((-1129 |#1|) (-1129 |#1|)) 82)) (-3809 (((-1129 |#1|) (-1129 |#1|)) 115)) (-3691 (((-1129 |#1|) (-1129 |#1|)) 90)) (-3742 (((-1129 |#1|) (-1129 |#1|)) 117)) (-3700 (((-1129 |#1|) (-1129 |#1|)) 92)) (-3797 (((-1129 |#1|) (-1129 |#1|)) 113)) (-3681 (((-1129 |#1|) (-1129 |#1|)) 88)) (-3778 (((-1129 |#1|) (-1129 |#1|)) 107)) (-3659 (((-1129 |#1|) (-1129 |#1|)) 84)) (** (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 40)))
+(((-1135 |#1|) (-10 -7 (-15 -2863 ((-1129 |#1|) (-1129 |#1|))) (-15 -2458 ((-1129 |#1|) (-1129 |#1|))) (-15 ** ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4331 ((-2 (|:| -3581 (-1129 |#1|)) (|:| -3593 (-1129 |#1|))) (-1129 |#1|))) (-15 -3581 ((-1129 |#1|) (-1129 |#1|))) (-15 -3593 ((-1129 |#1|) (-1129 |#1|))) (-15 -3604 ((-1129 |#1|) (-1129 |#1|))) (-15 -3614 ((-1129 |#1|) (-1129 |#1|))) (-15 -3627 ((-1129 |#1|) (-1129 |#1|))) (-15 -3638 ((-1129 |#1|) (-1129 |#1|))) (-15 -3648 ((-1129 |#1|) (-1129 |#1|))) (-15 -3659 ((-1129 |#1|) (-1129 |#1|))) (-15 -3670 ((-1129 |#1|) (-1129 |#1|))) (-15 -3681 ((-1129 |#1|) (-1129 |#1|))) (-15 -3691 ((-1129 |#1|) (-1129 |#1|))) (-15 -3700 ((-1129 |#1|) (-1129 |#1|))) (-15 -1273 ((-2 (|:| -3710 (-1129 |#1|)) (|:| -3721 (-1129 |#1|))) (-1129 |#1|))) (-15 -3710 ((-1129 |#1|) (-1129 |#1|))) (-15 -3721 ((-1129 |#1|) (-1129 |#1|))) (-15 -3728 ((-1129 |#1|) (-1129 |#1|))) (-15 -3738 ((-1129 |#1|) (-1129 |#1|))) (-15 -3749 ((-1129 |#1|) (-1129 |#1|))) (-15 -3759 ((-1129 |#1|) (-1129 |#1|))) (-15 -3769 ((-1129 |#1|) (-1129 |#1|))) (-15 -3778 ((-1129 |#1|) (-1129 |#1|))) (-15 -3789 ((-1129 |#1|) (-1129 |#1|))) (-15 -3797 ((-1129 |#1|) (-1129 |#1|))) (-15 -3809 ((-1129 |#1|) (-1129 |#1|))) (-15 -3742 ((-1129 |#1|) (-1129 |#1|)))) (-38 (-402 (-552)))) (T -1135))
+((-3742 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3778 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3769 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3749 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3728 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3721 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-1273 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-2 (|:| -3710 (-1129 *4)) (|:| -3721 (-1129 *4)))) (-5 *1 (-1135 *4)) (-5 *3 (-1129 *4)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3681 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3581 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-4331 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-2 (|:| -3581 (-1129 *4)) (|:| -3593 (-1129 *4)))) (-5 *1 (-1135 *4)) (-5 *3 (-1129 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-2863 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))))
+(-10 -7 (-15 -2863 ((-1129 |#1|) (-1129 |#1|))) (-15 -2458 ((-1129 |#1|) (-1129 |#1|))) (-15 ** ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4331 ((-2 (|:| -3581 (-1129 |#1|)) (|:| -3593 (-1129 |#1|))) (-1129 |#1|))) (-15 -3581 ((-1129 |#1|) (-1129 |#1|))) (-15 -3593 ((-1129 |#1|) (-1129 |#1|))) (-15 -3604 ((-1129 |#1|) (-1129 |#1|))) (-15 -3614 ((-1129 |#1|) (-1129 |#1|))) (-15 -3627 ((-1129 |#1|) (-1129 |#1|))) (-15 -3638 ((-1129 |#1|) (-1129 |#1|))) (-15 -3648 ((-1129 |#1|) (-1129 |#1|))) (-15 -3659 ((-1129 |#1|) (-1129 |#1|))) (-15 -3670 ((-1129 |#1|) (-1129 |#1|))) (-15 -3681 ((-1129 |#1|) (-1129 |#1|))) (-15 -3691 ((-1129 |#1|) (-1129 |#1|))) (-15 -3700 ((-1129 |#1|) (-1129 |#1|))) (-15 -1273 ((-2 (|:| -3710 (-1129 |#1|)) (|:| -3721 (-1129 |#1|))) (-1129 |#1|))) (-15 -3710 ((-1129 |#1|) (-1129 |#1|))) (-15 -3721 ((-1129 |#1|) (-1129 |#1|))) (-15 -3728 ((-1129 |#1|) (-1129 |#1|))) (-15 -3738 ((-1129 |#1|) (-1129 |#1|))) (-15 -3749 ((-1129 |#1|) (-1129 |#1|))) (-15 -3759 ((-1129 |#1|) (-1129 |#1|))) (-15 -3769 ((-1129 |#1|) (-1129 |#1|))) (-15 -3778 ((-1129 |#1|) (-1129 |#1|))) (-15 -3789 ((-1129 |#1|) (-1129 |#1|))) (-15 -3797 ((-1129 |#1|) (-1129 |#1|))) (-15 -3809 ((-1129 |#1|) (-1129 |#1|))) (-15 -3742 ((-1129 |#1|) (-1129 |#1|))))
+((-1283 (((-934 |#2|) |#2| |#2|) 35)) (-1294 ((|#2| |#2| |#1|) 19 (|has| |#1| (-302)))))
+(((-1136 |#1| |#2|) (-10 -7 (-15 -1283 ((-934 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -1294 (|#2| |#2| |#1|)) |%noBranch|)) (-544) (-1208 |#1|)) (T -1136))
+((-1294 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-4 *3 (-544)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1208 *3)))) (-1283 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-934 *3)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1208 *4)))))
+(-10 -7 (-15 -1283 ((-934 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -1294 (|#2| |#2| |#1|)) |%noBranch|))
+((-1671 (((-112) $ $) NIL)) (-1366 (($ $ (-625 (-751))) 67)) (-1856 (($) 26)) (-3300 (($ $) 42)) (-3165 (((-625 $) $) 51)) (-3358 (((-112) $) 16)) (-1306 (((-625 (-919 |#2|)) $) 74)) (-1314 (($ $) 68)) (-3310 (((-751) $) 37)) (-2183 (($) 25)) (-3244 (($ $ (-625 (-751)) (-919 |#2|)) 60) (($ $ (-625 (-751)) (-751)) 61) (($ $ (-751) (-919 |#2|)) 63)) (-3280 (($ $ $) 48) (($ (-625 $)) 50)) (-3671 (((-751) $) 75)) (-3367 (((-112) $) 15)) (-2883 (((-1131) $) NIL)) (-3349 (((-112) $) 18)) (-2831 (((-1093) $) NIL)) (-1325 (((-169) $) 73)) (-1355 (((-919 |#2|) $) 69)) (-1346 (((-751) $) 70)) (-1335 (((-112) $) 72)) (-1377 (($ $ (-625 (-751)) (-169)) 66)) (-3291 (($ $) 43)) (-1683 (((-839) $) 86)) (-3235 (($ $ (-625 (-751)) (-112)) 65)) (-3320 (((-625 $) $) 11)) (-3330 (($ $ (-751)) 36)) (-3339 (($ $) 32)) (-3253 (($ $ $ (-919 |#2|) (-751)) 56)) (-3262 (($ $ (-919 |#2|)) 55)) (-3271 (($ $ (-625 (-751)) (-919 |#2|)) 54) (($ $ (-625 (-751)) (-751)) 58) (((-751) $ (-919 |#2|)) 59)) (-2281 (((-112) $ $) 80)))
+(((-1137 |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -3367 ((-112) $)) (-15 -3358 ((-112) $)) (-15 -3349 ((-112) $)) (-15 -2183 ($)) (-15 -1856 ($)) (-15 -3339 ($ $)) (-15 -3330 ($ $ (-751))) (-15 -3320 ((-625 $) $)) (-15 -3310 ((-751) $)) (-15 -3300 ($ $)) (-15 -3291 ($ $)) (-15 -3280 ($ $ $)) (-15 -3280 ($ (-625 $))) (-15 -3165 ((-625 $) $)) (-15 -3271 ($ $ (-625 (-751)) (-919 |#2|))) (-15 -3262 ($ $ (-919 |#2|))) (-15 -3253 ($ $ $ (-919 |#2|) (-751))) (-15 -3244 ($ $ (-625 (-751)) (-919 |#2|))) (-15 -3271 ($ $ (-625 (-751)) (-751))) (-15 -3244 ($ $ (-625 (-751)) (-751))) (-15 -3271 ((-751) $ (-919 |#2|))) (-15 -3244 ($ $ (-751) (-919 |#2|))) (-15 -3235 ($ $ (-625 (-751)) (-112))) (-15 -1377 ($ $ (-625 (-751)) (-169))) (-15 -1366 ($ $ (-625 (-751)))) (-15 -1355 ((-919 |#2|) $)) (-15 -1346 ((-751) $)) (-15 -1335 ((-112) $)) (-15 -1325 ((-169) $)) (-15 -3671 ((-751) $)) (-15 -1314 ($ $)) (-15 -1306 ((-625 (-919 |#2|)) $)))) (-897) (-1025)) (T -1137))
+((-3367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-2183 (*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-1856 (*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-3339 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3310 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3300 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-3291 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-3280 (*1 *1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-3280 (*1 *1 *2) (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) (-3262 (*1 *1 *1 *2) (-12 (-5 *2 (-919 *4)) (-4 *4 (-1025)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)))) (-3253 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-919 *5)) (-5 *3 (-751)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) (-3244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)) (-4 *5 (-1025)))) (-3244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)) (-4 *5 (-1025)))) (-3271 (*1 *2 *1 *3) (-12 (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *2 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) (-3244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) (-3235 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-112)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)) (-4 *5 (-1025)))) (-1377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-169)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)) (-4 *5 (-1025)))) (-1366 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-919 *4)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-1314 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-625 (-919 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))))
+(-13 (-1073) (-10 -8 (-15 -3367 ((-112) $)) (-15 -3358 ((-112) $)) (-15 -3349 ((-112) $)) (-15 -2183 ($)) (-15 -1856 ($)) (-15 -3339 ($ $)) (-15 -3330 ($ $ (-751))) (-15 -3320 ((-625 $) $)) (-15 -3310 ((-751) $)) (-15 -3300 ($ $)) (-15 -3291 ($ $)) (-15 -3280 ($ $ $)) (-15 -3280 ($ (-625 $))) (-15 -3165 ((-625 $) $)) (-15 -3271 ($ $ (-625 (-751)) (-919 |#2|))) (-15 -3262 ($ $ (-919 |#2|))) (-15 -3253 ($ $ $ (-919 |#2|) (-751))) (-15 -3244 ($ $ (-625 (-751)) (-919 |#2|))) (-15 -3271 ($ $ (-625 (-751)) (-751))) (-15 -3244 ($ $ (-625 (-751)) (-751))) (-15 -3271 ((-751) $ (-919 |#2|))) (-15 -3244 ($ $ (-751) (-919 |#2|))) (-15 -3235 ($ $ (-625 (-751)) (-112))) (-15 -1377 ($ $ (-625 (-751)) (-169))) (-15 -1366 ($ $ (-625 (-751)))) (-15 -1355 ((-919 |#2|) $)) (-15 -1346 ((-751) $)) (-15 -1335 ((-112) $)) (-15 -1325 ((-169) $)) (-15 -3671 ((-751) $)) (-15 -1314 ($ $)) (-15 -1306 ((-625 (-919 |#2|)) $))))
+((-1671 (((-112) $ $) NIL)) (-2662 ((|#2| $) 11)) (-2651 ((|#1| $) 10)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1695 (($ |#1| |#2|) 9)) (-1683 (((-839) $) 16)) (-2281 (((-112) $ $) NIL)))
+(((-1138 |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -1695 ($ |#1| |#2|)) (-15 -2651 (|#1| $)) (-15 -2662 (|#2| $)))) (-1073) (-1073)) (T -1138))
+((-1695 (*1 *1 *2 *3) (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-2651 (*1 *2 *1) (-12 (-4 *2 (-1073)) (-5 *1 (-1138 *2 *3)) (-4 *3 (-1073)))) (-2662 (*1 *2 *1) (-12 (-4 *2 (-1073)) (-5 *1 (-1138 *3 *2)) (-4 *3 (-1073)))))
+(-13 (-1073) (-10 -8 (-15 -1695 ($ |#1| |#2|)) (-15 -2651 (|#1| $)) (-15 -2662 (|#2| $))))
+((-1671 (((-112) $ $) NIL)) (-3321 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-1139) (-13 (-1056) (-10 -8 (-15 -3321 ((-1108) $))))) (T -1139))
+((-3321 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1139)))))
+(-13 (-1056) (-10 -8 (-15 -3321 ((-1108) $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 11)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3528 (($ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3509 (((-112) $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-2162 (($ $ (-552)) NIL) (($ $ (-552) (-552)) 66)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) NIL)) (-2999 (((-1147 |#1| |#2| |#3|) $) 36)) (-2976 (((-3 (-1147 |#1| |#2| |#3|) "failed") $) 29)) (-4041 (((-1147 |#1| |#2| |#3|) $) 30)) (-3728 (($ $) 107 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 83 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) 103 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 79 (|has| |#1| (-38 (-402 (-552)))))) (-4127 (((-552) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) 111 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 87 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-1147 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1149) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-552) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))))) (-1895 (((-1147 |#1| |#2| |#3|) $) 131) (((-1149) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-402 (-552)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358)))) (((-552) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))))) (-2987 (($ $) 34) (($ (-552) $) 35)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-1147 |#1| |#2| |#3|)) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-1147 |#1| |#2| |#3|))) (|:| |vec| (-1232 (-1147 |#1| |#2| |#3|)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-621 (-552))) (|has| |#1| (-358)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-621 (-552))) (|has| |#1| (-358))))) (-4174 (((-3 $ "failed") $) 48)) (-2965 (((-402 (-928 |#1|)) $ (-552)) 65 (|has| |#1| (-544))) (((-402 (-928 |#1|)) $ (-552) (-552)) 67 (|has| |#1| (-544)))) (-3702 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3620 (((-112) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3592 (((-112) $) 25)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-862 (-552))) (|has| |#1| (-358)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-862 (-374))) (|has| |#1| (-358))))) (-2172 (((-552) $) NIL) (((-552) $ (-552)) 24)) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-358)))) (-1356 (((-1147 |#1| |#2| |#3|) $) 38 (|has| |#1| (-358)))) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4034 (((-3 $ "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))))) (-3630 (((-112) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2216 (($ $ (-897)) NIL)) (-2493 (($ (-1 |#1| (-552)) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-552)) 18) (($ $ (-1055) (-552)) NIL) (($ $ (-625 (-1055)) (-625 (-552))) NIL)) (-3658 (($ $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3332 (($ $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-2458 (($ $) 72 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4053 (($ (-552) (-1147 |#1| |#2| |#3|)) 33)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) 70 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 71 (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4166 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-4189 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-552)) 145)) (-2802 (((-3 $ "failed") $ $) 49 (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) 73 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1149) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-289 (-1147 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-289 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-1147 |#1| |#2| |#3|)) (-625 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-552)) NIL) (($ $ $) 54 (|has| (-552) (-1085))) (($ $ (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-281 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1228 |#2|)) 51) (($ $ (-751)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 50 (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2265 (($ $) NIL (|has| |#1| (-358)))) (-1368 (((-1147 |#1| |#2| |#3|) $) 41 (|has| |#1| (-358)))) (-4276 (((-552) $) 37)) (-3759 (($ $) 113 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 89 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 109 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 85 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 105 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 81 (|has| |#1| (-38 (-402 (-552)))))) (-2042 (((-528) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-528))) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-998)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-998)) (|has| |#1| (-358)))) (((-868 (-374)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-868 (-374)))) (|has| |#1| (-358)))) (((-868 (-552)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-868 (-552)))) (|has| |#1| (-358))))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) 149) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1147 |#1| |#2| |#3|)) 27) (($ (-1228 |#2|)) 23) (($ (-1149)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (($ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544)))) (($ (-402 (-552))) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-552))))))) (-3637 ((|#1| $ (-552)) 68)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 12)) (-4199 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3789 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 95 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3769 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 91 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 99 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 101 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 97 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 93 (|has| |#1| (-38 (-402 (-552)))))) (-1727 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2089 (($) 20 T CONST)) (-2100 (($) 16 T CONST)) (-3768 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2346 (((-112) $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2320 (((-112) $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2307 (((-112) $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 44 (|has| |#1| (-358))) (($ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) 45 (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 21)) (** (($ $ (-897)) NIL) (($ $ (-751)) 53) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) 74 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 128 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1147 |#1| |#2| |#3|)) 43 (|has| |#1| (-358))) (($ (-1147 |#1| |#2| |#3|) $) 42 (|has| |#1| (-358))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-1140 |#1| |#2| |#3|) (-13 (-1194 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1140))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))))
+(-13 (-1194 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|)))
+((-1791 ((|#2| |#2| (-1065 |#2|)) 26) ((|#2| |#2| (-1149)) 28)))
+(((-1141 |#1| |#2|) (-10 -7 (-15 -1791 (|#2| |#2| (-1149))) (-15 -1791 (|#2| |#2| (-1065 |#2|)))) (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-425 |#1|) (-158) (-27) (-1171))) (T -1141))
+((-1791 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1171))) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1141 *4 *2)))) (-1791 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1171))))))
+(-10 -7 (-15 -1791 (|#2| |#2| (-1149))) (-15 -1791 (|#2| |#2| (-1065 |#2|))))
+((-1791 (((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1065 (-402 (-928 |#1|)))) 31) (((-402 (-928 |#1|)) (-928 |#1|) (-1065 (-928 |#1|))) 44) (((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1149)) 33) (((-402 (-928 |#1|)) (-928 |#1|) (-1149)) 36)))
+(((-1142 |#1|) (-10 -7 (-15 -1791 ((-402 (-928 |#1|)) (-928 |#1|) (-1149))) (-15 -1791 ((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1149))) (-15 -1791 ((-402 (-928 |#1|)) (-928 |#1|) (-1065 (-928 |#1|)))) (-15 -1791 ((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1065 (-402 (-928 |#1|)))))) (-13 (-544) (-827) (-1014 (-552)))) (T -1142))
+((-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5))) (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-3 *3 (-311 *5))) (-5 *1 (-1142 *5)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-928 *5))) (-5 *3 (-928 *5)) (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-402 *3)) (-5 *1 (-1142 *5)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-3 (-402 (-928 *5)) (-311 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-402 (-928 *5))))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-402 (-928 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-928 *5)))))
+(-10 -7 (-15 -1791 ((-402 (-928 |#1|)) (-928 |#1|) (-1149))) (-15 -1791 ((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1149))) (-15 -1791 ((-402 (-928 |#1|)) (-928 |#1|) (-1065 (-928 |#1|)))) (-15 -1791 ((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1065 (-402 (-928 |#1|))))))
+((-1996 (((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|)) 13)))
+(((-1143 |#1| |#2|) (-10 -7 (-15 -1996 ((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|)))) (-1025) (-1025)) (T -1143))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-1145 *6)) (-5 *1 (-1143 *5 *6)))))
+(-10 -7 (-15 -1996 ((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|))))
+((-1330 (((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|))) 51)) (-3824 (((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|))) 52)))
+(((-1144 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|)))) (-15 -1330 ((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|))))) (-773) (-827) (-446) (-925 |#3| |#1| |#2|)) (T -1144))
+((-1330 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 (-402 *7)))) (-5 *1 (-1144 *4 *5 *6 *7)) (-5 *3 (-1145 (-402 *7))))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 (-402 *7)))) (-5 *1 (-1144 *4 *5 *6 *7)) (-5 *3 (-1145 (-402 *7))))))
+(-10 -7 (-15 -3824 ((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|)))) (-15 -1330 ((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|)))))
+((-1671 (((-112) $ $) 137)) (-3641 (((-112) $) 27)) (-2138 (((-1232 |#1|) $ (-751)) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2117 (($ (-1145 |#1|)) NIL)) (-3793 (((-1145 $) $ (-1055)) 58) (((-1145 |#1|) $) 47)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) 132 (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1055))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3197 (($ $ $) 126 (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) 71 (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 91 (|has| |#1| (-885)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2076 (($ $ (-751)) 39)) (-2065 (($ $ (-751)) 40)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-1055) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-1055) $) NIL)) (-3207 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) 56)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-2052 (($ $ $) 104)) (-3181 (($ $ $) NIL (|has| |#1| (-544)))) (-3173 (((-2 (|:| -3340 |#1|) (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-1294 (($ $) 133 (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-751) $) 45)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1055) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1055) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-3375 (((-839) $ (-839)) 117)) (-2172 (((-751) $ $) NIL (|has| |#1| (-544)))) (-3650 (((-112) $) 30)) (-3723 (((-751) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3970 (($ (-1145 |#1|) (-1055)) 49) (($ (-1145 $) (-1055)) 65)) (-2216 (($ $ (-751)) 32)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) 63) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1055)) NIL) (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 121)) (-4134 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-751) (-751)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2127 (((-1145 |#1|) $) NIL)) (-1942 (((-3 (-1055) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) 52)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) 38)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1055)) (|:| -3564 (-751))) "failed") $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) NIL (|has| |#1| (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) 31)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 79 (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) 135 (|has| |#1| (-446)))) (-3044 (($ $ (-751) |#1| $) 99)) (-4275 (((-413 (-1145 $)) (-1145 $)) 77 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 76 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 84 (|has| |#1| (-885)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-625 (-1055)) (-625 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-625 (-1055)) (-625 $)) NIL)) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-544))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-544)))) (-2108 (((-3 $ "failed") $ (-751)) 35)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 138 (|has| |#1| (-358)))) (-3217 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-3072 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4276 (((-751) $) 54) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1055) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) 130 (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-3190 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-544)))) (-1683 (((-839) $) 118) (($ (-552)) NIL) (($ |#1|) 53) (($ (-1055)) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) 25 (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 15 T CONST)) (-2100 (($) 16 T CONST)) (-3768 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 96)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 139 (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 66)) (** (($ $ (-897)) 14) (($ $ (-751)) 12)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 24) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1145 |#1|) (-13 (-1208 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-839))) (-15 -3044 ($ $ (-751) |#1| $)))) (-1025)) (T -1145))
+((-3375 (*1 *2 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1145 *3)) (-4 *3 (-1025)))) (-3044 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1145 *3)) (-4 *3 (-1025)))))
+(-13 (-1208 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-839))) (-15 -3044 ($ $ (-751) |#1| $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 11)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) NIL) (($ $ (-402 (-552)) (-402 (-552))) NIL)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-1140 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1147 |#1| |#2| |#3|) "failed") $) 36)) (-1895 (((-1140 |#1| |#2| |#3|) $) NIL) (((-1147 |#1| |#2| |#3|) $) NIL)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2249 (((-402 (-552)) $) 55)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-4066 (($ (-402 (-552)) (-1140 |#1| |#2| |#3|)) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) NIL) (((-402 (-552)) $ (-402 (-552))) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) NIL) (($ $ (-402 (-552))) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-402 (-552))) 20) (($ $ (-1055) (-402 (-552))) NIL) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2238 (((-1140 |#1| |#2| |#3|) $) 41)) (-2226 (((-3 (-1140 |#1| |#2| |#3|) "failed") $) NIL)) (-4053 (((-1140 |#1| |#2| |#3|) $) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) 39 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 40 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) NIL) (($ $ $) NIL (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $ (-1228 |#2|)) 38)) (-4276 (((-402 (-552)) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) 58) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1140 |#1| |#2| |#3|)) 30) (($ (-1147 |#1| |#2| |#3|)) 31) (($ (-1228 |#2|)) 26) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 12)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 22 T CONST)) (-2100 (($) 16 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 24)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-1146 |#1| |#2| |#3|) (-13 (-1215 |#1| (-1140 |#1| |#2| |#3|)) (-1014 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1146))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))))
+(-13 (-1215 |#1| (-1140 |#1| |#2| |#3|)) (-1014 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 125)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 116)) (-2472 (((-1205 |#2| |#1|) $ (-751)) 63)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-751)) 79) (($ $ (-751) (-751)) 76)) (-2182 (((-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 102)) (-3728 (($ $) 169 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 145 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) 165 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 115) (($ (-1129 |#1|)) 110)) (-3749 (($ $) 173 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 149 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) 23)) (-2502 (($ $) 26)) (-4098 (((-928 |#1|) $ (-751)) 75) (((-928 |#1|) $ (-751) (-751)) 77)) (-3592 (((-112) $) 120)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $) 122) (((-751) $ (-751)) 124)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) NIL)) (-2493 (($ (-1 |#1| (-552)) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) 13) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2481 (($ $) 129 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 130 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-2147 (($ $ (-751)) 15)) (-2802 (((-3 $ "failed") $ $) 24 (|has| |#1| (-544)))) (-2863 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-2154 ((|#1| $ (-751)) 119) (($ $ $) 128 (|has| (-751) (-1085)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $ (-1228 |#2|)) 29)) (-4276 (((-751) $) NIL)) (-3759 (($ $) 175 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 151 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 171 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 147 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 167 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 143 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) 201) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1205 |#2| |#1|)) 51) (($ (-1228 |#2|)) 32)) (-2512 (((-1129 |#1|) $) 98)) (-3637 ((|#1| $ (-751)) 118)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 54)) (-3789 (($ $) 181 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 157 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) 177 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 153 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 185 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 161 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-751)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 187 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 163 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 183 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 159 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 179 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 155 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 17 T CONST)) (-2100 (($) 19 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) 194)) (-2382 (($ $ $) 31)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ |#1|) 198 (|has| |#1| (-358))) (($ $ $) 134 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 137 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-1147 |#1| |#2| |#3|) (-13 (-1223 |#1|) (-10 -8 (-15 -1683 ($ (-1205 |#2| |#1|))) (-15 -2472 ((-1205 |#2| |#1|) $ (-751))) (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1147))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1205 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-1147 *3 *4 *5)))) (-2472 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1205 *5 *4)) (-5 *1 (-1147 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))))
+(-13 (-1223 |#1|) (-10 -8 (-15 -1683 ($ (-1205 |#2| |#1|))) (-15 -2472 ((-1205 |#2| |#1|) $ (-751))) (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|)))
+((-1683 (((-839) $) 27) (($ (-1149)) 29)) (-1523 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 40)) (-1511 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 33) (($ $) 34)) (-2310 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 35)) (-2296 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 37)) (-2284 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 36)) (-2273 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 38)) (-3839 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 39)))
+(((-1148) (-13 (-597 (-839)) (-10 -8 (-15 -1683 ($ (-1149))) (-15 -2310 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2284 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2296 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2273 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1523 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3839 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1511 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1511 ($ $))))) (T -1148))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1148)))) (-2310 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-2284 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-2296 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-2273 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-1523 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3839 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-1511 (*1 *1 *1) (-5 *1 (-1148))))
+(-13 (-597 (-839)) (-10 -8 (-15 -1683 ($ (-1149))) (-15 -2310 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2284 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2296 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2273 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1523 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3839 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1511 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1511 ($ $))))
+((-1671 (((-112) $ $) NIL)) (-3136 (($ $ (-625 (-839))) 59)) (-3147 (($ $ (-625 (-839))) 57)) (-4265 (((-1131) $) 84)) (-3468 (((-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839)))) $) 87)) (-3219 (((-112) $) 22)) (-2569 (($ $ (-625 (-625 (-839)))) 56) (($ $ (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839))))) 82)) (-3101 (($) 124 T CONST)) (-3227 (((-1237)) 106)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 66) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 73)) (-2183 (($) 95) (($ $) 101)) (-1288 (($ $) 83)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2801 (((-625 $) $) 107)) (-2883 (((-1131) $) 90)) (-2831 (((-1093) $) NIL)) (-2154 (($ $ (-625 (-839))) 58)) (-2042 (((-528) $) 46) (((-1149) $) 47) (((-868 (-552)) $) 77) (((-868 (-374)) $) 75)) (-1683 (((-839) $) 53) (($ (-1131)) 48)) (-3118 (($ $ (-625 (-839))) 60)) (-3010 (((-1131) $) 33) (((-1131) $ (-112)) 34) (((-1237) (-802) $) 35) (((-1237) (-802) $ (-112)) 36)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 49)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 50)))
+(((-1149) (-13 (-827) (-598 (-528)) (-808) (-598 (-1149)) (-598 (-868 (-552))) (-598 (-868 (-374))) (-862 (-552)) (-862 (-374)) (-10 -8 (-15 -2183 ($)) (-15 -2183 ($ $)) (-15 -3227 ((-1237))) (-15 -1683 ($ (-1131))) (-15 -1288 ($ $)) (-15 -3219 ((-112) $)) (-15 -3468 ((-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839)))) $)) (-15 -2569 ($ $ (-625 (-625 (-839))))) (-15 -2569 ($ $ (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839)))))) (-15 -3147 ($ $ (-625 (-839)))) (-15 -3136 ($ $ (-625 (-839)))) (-15 -3118 ($ $ (-625 (-839)))) (-15 -2154 ($ $ (-625 (-839)))) (-15 -4265 ((-1131) $)) (-15 -2801 ((-625 $) $)) (-15 -3101 ($) -1426)))) (T -1149))
+((-2183 (*1 *1) (-5 *1 (-1149))) (-2183 (*1 *1 *1) (-5 *1 (-1149))) (-3227 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1149)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))) (-1288 (*1 *1 *1) (-5 *1 (-1149))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839))))) (-5 *1 (-1149)))) (-2569 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-625 (-839)))) (-5 *1 (-1149)))) (-2569 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839))))) (-5 *1 (-1149)))) (-3147 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1149)))) (-3101 (*1 *1) (-5 *1 (-1149))))
+(-13 (-827) (-598 (-528)) (-808) (-598 (-1149)) (-598 (-868 (-552))) (-598 (-868 (-374))) (-862 (-552)) (-862 (-374)) (-10 -8 (-15 -2183 ($)) (-15 -2183 ($ $)) (-15 -3227 ((-1237))) (-15 -1683 ($ (-1131))) (-15 -1288 ($ $)) (-15 -3219 ((-112) $)) (-15 -3468 ((-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839)))) $)) (-15 -2569 ($ $ (-625 (-625 (-839))))) (-15 -2569 ($ $ (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839)))))) (-15 -3147 ($ $ (-625 (-839)))) (-15 -3136 ($ $ (-625 (-839)))) (-15 -3118 ($ $ (-625 (-839)))) (-15 -2154 ($ $ (-625 (-839)))) (-15 -4265 ((-1131) $)) (-15 -2801 ((-625 $) $)) (-15 -3101 ($) -1426)))
+((-3236 (((-1232 |#1|) |#1| (-897)) 16) (((-1232 |#1|) (-625 |#1|)) 20)))
+(((-1150 |#1|) (-10 -7 (-15 -3236 ((-1232 |#1|) (-625 |#1|))) (-15 -3236 ((-1232 |#1|) |#1| (-897)))) (-1025)) (T -1150))
+((-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-5 *2 (-1232 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1025)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-1025)) (-5 *2 (-1232 *4)) (-5 *1 (-1150 *4)))))
+(-10 -7 (-15 -3236 ((-1232 |#1|) (-625 |#1|))) (-15 -3236 ((-1232 |#1|) |#1| (-897))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-1347 (($ $ |#1| (-947) $) NIL)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-947)) NIL)) (-4134 (((-947) $) NIL)) (-1357 (($ (-1 (-947) (-947)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-3044 (($ $ (-947) |#1| $) NIL (-12 (|has| (-947) (-130)) (|has| |#1| (-544))))) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-4276 (((-947) $) NIL)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-947)) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 9 T CONST)) (-2100 (($) 14 T CONST)) (-2281 (((-112) $ $) 16)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 19)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-1151 |#1|) (-13 (-321 |#1| (-947)) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| (-947) (-130)) (-15 -3044 ($ $ (-947) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025)) (T -1151))
+((-3044 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-947)) (-4 *2 (-130)) (-5 *1 (-1151 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))))
+(-13 (-321 |#1| (-947)) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| (-947) (-130)) (-15 -3044 ($ $ (-947) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|)))
+((-3245 (((-1153) (-1149) $) 25)) (-2350 (($) 29)) (-3263 (((-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-1149) $) 22)) (-3282 (((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")) $) 41) (((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) 42) (((-1237) (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) 43)) (-2363 (((-1237) (-1149)) 58)) (-3272 (((-1237) (-1149) $) 55) (((-1237) (-1149)) 56) (((-1237)) 57)) (-2324 (((-1237) (-1149)) 37)) (-3898 (((-1149)) 36)) (-3600 (($) 34)) (-2665 (((-432) (-1149) (-432) (-1149) $) 45) (((-432) (-625 (-1149)) (-432) (-1149) $) 49) (((-432) (-1149) (-432)) 46) (((-432) (-1149) (-432) (-1149)) 50)) (-2311 (((-1149)) 35)) (-1683 (((-839) $) 28)) (-2337 (((-1237)) 30) (((-1237) (-1149)) 33)) (-3254 (((-625 (-1149)) (-1149) $) 24)) (-3885 (((-1237) (-1149) (-625 (-1149)) $) 38) (((-1237) (-1149) (-625 (-1149))) 39) (((-1237) (-625 (-1149))) 40)))
+(((-1152) (-13 (-597 (-839)) (-10 -8 (-15 -2350 ($)) (-15 -2337 ((-1237))) (-15 -2337 ((-1237) (-1149))) (-15 -2665 ((-432) (-1149) (-432) (-1149) $)) (-15 -2665 ((-432) (-625 (-1149)) (-432) (-1149) $)) (-15 -2665 ((-432) (-1149) (-432))) (-15 -2665 ((-432) (-1149) (-432) (-1149))) (-15 -2324 ((-1237) (-1149))) (-15 -2311 ((-1149))) (-15 -3898 ((-1149))) (-15 -3885 ((-1237) (-1149) (-625 (-1149)) $)) (-15 -3885 ((-1237) (-1149) (-625 (-1149)))) (-15 -3885 ((-1237) (-625 (-1149)))) (-15 -3282 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")) $)) (-15 -3282 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")))) (-15 -3282 ((-1237) (-3 (|:| |fst| (-429)) (|:| -2781 "void")))) (-15 -3272 ((-1237) (-1149) $)) (-15 -3272 ((-1237) (-1149))) (-15 -3272 ((-1237))) (-15 -2363 ((-1237) (-1149))) (-15 -3600 ($)) (-15 -3263 ((-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-1149) $)) (-15 -3254 ((-625 (-1149)) (-1149) $)) (-15 -3245 ((-1153) (-1149) $))))) (T -1152))
+((-2350 (*1 *1) (-5 *1 (-1152))) (-2337 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-2665 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-2665 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-432)) (-5 *3 (-625 (-1149))) (-5 *4 (-1149)) (-5 *1 (-1152)))) (-2665 (*1 *2 *3 *2) (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-2665 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-2311 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))) (-3898 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))) (-3885 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3885 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3282 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3282 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3272 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3272 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3600 (*1 *1) (-5 *1 (-1152))) (-3263 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *1 (-1152)))) (-3254 (*1 *2 *3 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1152)) (-5 *3 (-1149)))) (-3245 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1153)) (-5 *1 (-1152)))))
+(-13 (-597 (-839)) (-10 -8 (-15 -2350 ($)) (-15 -2337 ((-1237))) (-15 -2337 ((-1237) (-1149))) (-15 -2665 ((-432) (-1149) (-432) (-1149) $)) (-15 -2665 ((-432) (-625 (-1149)) (-432) (-1149) $)) (-15 -2665 ((-432) (-1149) (-432))) (-15 -2665 ((-432) (-1149) (-432) (-1149))) (-15 -2324 ((-1237) (-1149))) (-15 -2311 ((-1149))) (-15 -3898 ((-1149))) (-15 -3885 ((-1237) (-1149) (-625 (-1149)) $)) (-15 -3885 ((-1237) (-1149) (-625 (-1149)))) (-15 -3885 ((-1237) (-625 (-1149)))) (-15 -3282 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")) $)) (-15 -3282 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")))) (-15 -3282 ((-1237) (-3 (|:| |fst| (-429)) (|:| -2781 "void")))) (-15 -3272 ((-1237) (-1149) $)) (-15 -3272 ((-1237) (-1149))) (-15 -3272 ((-1237))) (-15 -2363 ((-1237) (-1149))) (-15 -3600 ($)) (-15 -3263 ((-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-1149) $)) (-15 -3254 ((-625 (-1149)) (-1149) $)) (-15 -3245 ((-1153) (-1149) $))))
+((-2396 (((-625 (-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552))))))))) $) 59)) (-3566 (((-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552)))))))) (-429) $) 43)) (-2885 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-432))))) 17)) (-2363 (((-1237) $) 67)) (-3578 (((-625 (-1149)) $) 22)) (-2374 (((-1077) $) 55)) (-3589 (((-432) (-1149) $) 27)) (-2407 (((-625 (-1149)) $) 30)) (-3600 (($) 19)) (-2665 (((-432) (-625 (-1149)) (-432) $) 25) (((-432) (-1149) (-432) $) 24)) (-1683 (((-839) $) 9) (((-1159 (-1149) (-432)) $) 13)))
+(((-1153) (-13 (-597 (-839)) (-10 -8 (-15 -1683 ((-1159 (-1149) (-432)) $)) (-15 -3600 ($)) (-15 -2665 ((-432) (-625 (-1149)) (-432) $)) (-15 -2665 ((-432) (-1149) (-432) $)) (-15 -3589 ((-432) (-1149) $)) (-15 -3578 ((-625 (-1149)) $)) (-15 -3566 ((-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552)))))))) (-429) $)) (-15 -2407 ((-625 (-1149)) $)) (-15 -2396 ((-625 (-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552))))))))) $)) (-15 -2374 ((-1077) $)) (-15 -2363 ((-1237) $)) (-15 -2885 ($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-432))))))))) (T -1153))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-1159 (-1149) (-432))) (-5 *1 (-1153)))) (-3600 (*1 *1) (-5 *1 (-1153))) (-2665 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-432)) (-5 *3 (-625 (-1149))) (-5 *1 (-1153)))) (-2665 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1153)))) (-3589 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-432)) (-5 *1 (-1153)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1153)))) (-3566 (*1 *2 *3 *1) (-12 (-5 *3 (-429)) (-5 *2 (-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552))))))))) (-5 *1 (-1153)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1153)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552)))))))))) (-5 *1 (-1153)))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1153)))) (-2363 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1153)))) (-2885 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-432))))) (-5 *1 (-1153)))))
+(-13 (-597 (-839)) (-10 -8 (-15 -1683 ((-1159 (-1149) (-432)) $)) (-15 -3600 ($)) (-15 -2665 ((-432) (-625 (-1149)) (-432) $)) (-15 -2665 ((-432) (-1149) (-432) $)) (-15 -3589 ((-432) (-1149) $)) (-15 -3578 ((-625 (-1149)) $)) (-15 -3566 ((-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552)))))))) (-429) $)) (-15 -2407 ((-625 (-1149)) $)) (-15 -2396 ((-625 (-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552))))))))) $)) (-15 -2374 ((-1077) $)) (-15 -2363 ((-1237) $)) (-15 -2885 ($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-432))))))))
+((-1671 (((-112) $ $) NIL)) (-2453 (((-112) $) 48)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2442 (((-3 (-552) (-221) (-1149) (-1131) $) $) 56)) (-1810 (((-625 $) $) 61)) (-2042 (((-1077) $) 30) (($ (-1077)) 31)) (-1798 (((-112) $) 58)) (-1683 (((-839) $) 29) (($ (-552)) 32) (((-552) $) 34) (($ (-221)) 35) (((-221) $) 37) (($ (-1149)) 38) (((-1149) $) 40) (($ (-1131)) 41) (((-1131) $) 43)) (-2079 (((-112) $ (|[\|\|]| (-552))) 13) (((-112) $ (|[\|\|]| (-221))) 17) (((-112) $ (|[\|\|]| (-1149))) 25) (((-112) $ (|[\|\|]| (-1131))) 21)) (-1717 (($ (-1149) (-625 $)) 45) (($ $ (-625 $)) 46)) (-1905 (((-552) $) 33) (((-221) $) 36) (((-1149) $) 39) (((-1131) $) 42)) (-2281 (((-112) $ $) 8)))
+(((-1154) (-13 (-1227) (-1073) (-10 -8 (-15 -2042 ((-1077) $)) (-15 -2042 ($ (-1077))) (-15 -1683 ($ (-552))) (-15 -1683 ((-552) $)) (-15 -1905 ((-552) $)) (-15 -1683 ($ (-221))) (-15 -1683 ((-221) $)) (-15 -1905 ((-221) $)) (-15 -1683 ($ (-1149))) (-15 -1683 ((-1149) $)) (-15 -1905 ((-1149) $)) (-15 -1683 ($ (-1131))) (-15 -1683 ((-1131) $)) (-15 -1905 ((-1131) $)) (-15 -1717 ($ (-1149) (-625 $))) (-15 -1717 ($ $ (-625 $))) (-15 -2453 ((-112) $)) (-15 -2442 ((-3 (-552) (-221) (-1149) (-1131) $) $)) (-15 -1810 ((-625 $) $)) (-15 -1798 ((-112) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-552)))) (-15 -2079 ((-112) $ (|[\|\|]| (-221)))) (-15 -2079 ((-112) $ (|[\|\|]| (-1149)))) (-15 -2079 ((-112) $ (|[\|\|]| (-1131))))))) (T -1154))
+((-2042 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1154)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1154)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1154)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1154)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1154)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-1717 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-1154))) (-5 *1 (-1154)))) (-1717 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1154)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-3 (-552) (-221) (-1149) (-1131) (-1154))) (-5 *1 (-1154)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1154)))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1149))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)) (-5 *1 (-1154)))))
+(-13 (-1227) (-1073) (-10 -8 (-15 -2042 ((-1077) $)) (-15 -2042 ($ (-1077))) (-15 -1683 ($ (-552))) (-15 -1683 ((-552) $)) (-15 -1905 ((-552) $)) (-15 -1683 ($ (-221))) (-15 -1683 ((-221) $)) (-15 -1905 ((-221) $)) (-15 -1683 ($ (-1149))) (-15 -1683 ((-1149) $)) (-15 -1905 ((-1149) $)) (-15 -1683 ($ (-1131))) (-15 -1683 ((-1131) $)) (-15 -1905 ((-1131) $)) (-15 -1717 ($ (-1149) (-625 $))) (-15 -1717 ($ $ (-625 $))) (-15 -2453 ((-112) $)) (-15 -2442 ((-3 (-552) (-221) (-1149) (-1131) $) $)) (-15 -1810 ((-625 $) $)) (-15 -1798 ((-112) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-552)))) (-15 -2079 ((-112) $ (|[\|\|]| (-221)))) (-15 -2079 ((-112) $ (|[\|\|]| (-1149)))) (-15 -2079 ((-112) $ (|[\|\|]| (-1131))))))
+((-1838 (((-625 (-625 (-928 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149))) 57)) (-1728 (((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|)))) 69) (((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|))) 65) (((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149)) 70) (((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149)) 64) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|))))) 93) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|)))) 92) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149))) 94) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|))) (-625 (-1149))) 91)))
+(((-1155 |#1|) (-10 -7 (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|))))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|)))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|))))) (-15 -1838 ((-625 (-625 (-928 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149))))) (-544)) (T -1155))
+((-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-928 *5)))) (-5 *1 (-1155 *5)))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *4))))) (-5 *1 (-1155 *4)) (-5 *3 (-289 (-402 (-928 *4)))))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *4))))) (-5 *1 (-1155 *4)) (-5 *3 (-402 (-928 *4))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *5))))) (-5 *1 (-1155 *5)) (-5 *3 (-289 (-402 (-928 *5)))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *5))))) (-5 *1 (-1155 *5)) (-5 *3 (-402 (-928 *5))))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-1155 *4)) (-5 *3 (-625 (-289 (-402 (-928 *4))))))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-625 (-402 (-928 *4)))) (-4 *4 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-1155 *4)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-1149))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-1155 *5)) (-5 *3 (-625 (-289 (-402 (-928 *5))))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-1155 *5)))))
+(-10 -7 (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|))))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|)))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|))))) (-15 -1838 ((-625 (-625 (-928 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))))
+((-1850 (((-1131)) 7)) (-2969 (((-1131)) 9)) (-2357 (((-1237) (-1131)) 11)) (-2957 (((-1131)) 8)))
+(((-1156) (-10 -7 (-15 -1850 ((-1131))) (-15 -2957 ((-1131))) (-15 -2969 ((-1131))) (-15 -2357 ((-1237) (-1131))))) (T -1156))
+((-2357 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1156)))) (-2969 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))) (-2957 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))) (-1850 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))))
+(-10 -7 (-15 -1850 ((-1131))) (-15 -2957 ((-1131))) (-15 -2969 ((-1131))) (-15 -2357 ((-1237) (-1131))))
+((-3015 (((-625 (-625 |#1|)) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|)))) 38)) (-3048 (((-625 (-625 (-625 |#1|))) (-625 (-625 |#1|))) 24)) (-3059 (((-1158 (-625 |#1|)) (-625 |#1|)) 34)) (-3139 (((-625 (-625 |#1|)) (-625 |#1|)) 30)) (-1678 (((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 (-625 (-625 |#1|)))) 37)) (-3381 (((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 |#1|) (-625 (-625 (-625 |#1|))) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|)))) 36)) (-3069 (((-625 (-625 |#1|)) (-625 (-625 |#1|))) 28)) (-3150 (((-625 |#1|) (-625 |#1|)) 31)) (-3003 (((-625 (-625 (-625 |#1|))) (-625 |#1|) (-625 (-625 (-625 |#1|)))) 18)) (-2991 (((-625 (-625 (-625 |#1|))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 (-625 |#1|)))) 16)) (-2980 (((-2 (|:| |fs| (-112)) (|:| |sd| (-625 |#1|)) (|:| |td| (-625 (-625 |#1|)))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 |#1|))) 14)) (-3027 (((-625 (-625 |#1|)) (-625 (-625 (-625 |#1|)))) 39)) (-3038 (((-625 (-625 |#1|)) (-1158 (-625 |#1|))) 41)))
+(((-1157 |#1|) (-10 -7 (-15 -2980 ((-2 (|:| |fs| (-112)) (|:| |sd| (-625 |#1|)) (|:| |td| (-625 (-625 |#1|)))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 |#1|)))) (-15 -2991 ((-625 (-625 (-625 |#1|))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 (-625 |#1|))))) (-15 -3003 ((-625 (-625 (-625 |#1|))) (-625 |#1|) (-625 (-625 (-625 |#1|))))) (-15 -3015 ((-625 (-625 |#1|)) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))))) (-15 -3027 ((-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))))) (-15 -3038 ((-625 (-625 |#1|)) (-1158 (-625 |#1|)))) (-15 -3048 ((-625 (-625 (-625 |#1|))) (-625 (-625 |#1|)))) (-15 -3059 ((-1158 (-625 |#1|)) (-625 |#1|))) (-15 -3069 ((-625 (-625 |#1|)) (-625 (-625 |#1|)))) (-15 -3139 ((-625 (-625 |#1|)) (-625 |#1|))) (-15 -3150 ((-625 |#1|) (-625 |#1|))) (-15 -3381 ((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 |#1|) (-625 (-625 (-625 |#1|))) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|))))) (-15 -1678 ((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 (-625 (-625 |#1|)))))) (-827)) (T -1157))
+((-1678 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-2 (|:| |f1| (-625 *4)) (|:| |f2| (-625 (-625 (-625 *4)))) (|:| |f3| (-625 (-625 *4))) (|:| |f4| (-625 (-625 (-625 *4)))))) (-5 *1 (-1157 *4)) (-5 *3 (-625 (-625 (-625 *4)))))) (-3381 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-827)) (-5 *3 (-625 *6)) (-5 *5 (-625 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-625 *5)) (|:| |f3| *5) (|:| |f4| (-625 *5)))) (-5 *1 (-1157 *6)) (-5 *4 (-625 *5)))) (-3150 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-1157 *3)))) (-3139 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-625 (-625 *4))) (-5 *1 (-1157 *4)) (-5 *3 (-625 *4)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-827)) (-5 *1 (-1157 *3)))) (-3059 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-1158 (-625 *4))) (-5 *1 (-1157 *4)) (-5 *3 (-625 *4)))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-625 (-625 (-625 *4)))) (-5 *1 (-1157 *4)) (-5 *3 (-625 (-625 *4))))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-1158 (-625 *4))) (-4 *4 (-827)) (-5 *2 (-625 (-625 *4))) (-5 *1 (-1157 *4)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-625 (-625 (-625 *4)))) (-5 *2 (-625 (-625 *4))) (-5 *1 (-1157 *4)) (-4 *4 (-827)))) (-3015 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-625 (-625 *4)))) (-5 *2 (-625 (-625 *4))) (-4 *4 (-827)) (-5 *1 (-1157 *4)))) (-3003 (*1 *2 *3 *2) (-12 (-5 *2 (-625 (-625 (-625 *4)))) (-5 *3 (-625 *4)) (-4 *4 (-827)) (-5 *1 (-1157 *4)))) (-2991 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-625 (-625 (-625 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-625 *5)) (-4 *5 (-827)) (-5 *1 (-1157 *5)))) (-2980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-827)) (-5 *4 (-625 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-625 *4)))) (-5 *1 (-1157 *6)) (-5 *5 (-625 *4)))))
+(-10 -7 (-15 -2980 ((-2 (|:| |fs| (-112)) (|:| |sd| (-625 |#1|)) (|:| |td| (-625 (-625 |#1|)))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 |#1|)))) (-15 -2991 ((-625 (-625 (-625 |#1|))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 (-625 |#1|))))) (-15 -3003 ((-625 (-625 (-625 |#1|))) (-625 |#1|) (-625 (-625 (-625 |#1|))))) (-15 -3015 ((-625 (-625 |#1|)) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))))) (-15 -3027 ((-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))))) (-15 -3038 ((-625 (-625 |#1|)) (-1158 (-625 |#1|)))) (-15 -3048 ((-625 (-625 (-625 |#1|))) (-625 (-625 |#1|)))) (-15 -3059 ((-1158 (-625 |#1|)) (-625 |#1|))) (-15 -3069 ((-625 (-625 |#1|)) (-625 (-625 |#1|)))) (-15 -3139 ((-625 (-625 |#1|)) (-625 |#1|))) (-15 -3150 ((-625 |#1|) (-625 |#1|))) (-15 -3381 ((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 |#1|) (-625 (-625 (-625 |#1|))) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|))))) (-15 -1678 ((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 (-625 (-625 |#1|))))))
+((-3391 (($ (-625 (-625 |#1|))) 10)) (-3803 (((-625 (-625 |#1|)) $) 11)) (-1683 (((-839) $) 26)))
+(((-1158 |#1|) (-10 -8 (-15 -3391 ($ (-625 (-625 |#1|)))) (-15 -3803 ((-625 (-625 |#1|)) $)) (-15 -1683 ((-839) $))) (-1073)) (T -1158))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1158 *3)) (-4 *3 (-1073)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1073)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-1158 *3)))))
+(-10 -8 (-15 -3391 ($ (-625 (-625 |#1|)))) (-15 -3803 ((-625 (-625 |#1|)) $)) (-15 -1683 ((-839) $)))
+((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) NIL)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1159 |#1| |#2|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1073) (-1073)) (T -1159))
NIL
(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353)))
-((-3955 (($ (-622 (-622 |#1|))) 10)) (-3956 (((-622 (-622 |#1|)) $) 11)) (-4317 (((-840) $) 26)))
-(((-1159 |#1|) (-10 -8 (-15 -3955 ($ (-622 (-622 |#1|)))) (-15 -3956 ((-622 (-622 |#1|)) $)) (-15 -4317 ((-840) $))) (-1074)) (T -1159))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-1159 *3)))))
-(-10 -8 (-15 -3955 ($ (-622 (-622 |#1|)))) (-15 -3956 ((-622 (-622 |#1|)) $)) (-15 -4317 ((-840) $)))
-((-3957 ((|#1| (-622 |#1|)) 32)) (-3959 ((|#1| |#1| (-538)) 18)) (-3958 (((-1143 |#1|) |#1| (-895)) 15)))
-(((-1160 |#1|) (-10 -7 (-15 -3957 (|#1| (-622 |#1|))) (-15 -3958 ((-1143 |#1|) |#1| (-895))) (-15 -3959 (|#1| |#1| (-538)))) (-358)) (T -1160))
-((-3959 (*1 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-1160 *2)) (-4 *2 (-358)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-1143 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-358)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-1160 *2)) (-4 *2 (-358)))))
-(-10 -7 (-15 -3957 (|#1| (-622 |#1|))) (-15 -3958 ((-1143 |#1|) |#1| (-895))) (-15 -3959 (|#1| |#1| (-538))))
-((-3960 (($) 10) (($ (-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)))) 14)) (-3764 (($ (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) 39) (((-622 |#3|) $) 41)) (-2072 (($ (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4318 (($ (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1333 (((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) 54)) (-3970 (($ (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) 16)) (-2310 (((-622 |#2|) $) 19)) (-2311 (((-112) |#2| $) 59)) (-1399 (((-3 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) "failed") (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) 58)) (-1334 (((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) 63)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2312 (((-622 |#3|) $) 43)) (-4159 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) NIL) (((-751) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) NIL) (((-751) |#3| $) NIL) (((-751) (-1 (-112) |#3|) $) 68)) (-4317 (((-840) $) 27)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-3387 (((-112) $ $) 49)))
-(((-1161 |#1| |#2| |#3|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3960 (|#1| (-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))))) (-15 -3960 (|#1|)) (-15 -4318 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2072 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#3|) |#1|)) (-15 -2068 ((-622 |#3|) |#1|)) (-15 -2069 ((-751) |#3| |#1|)) (-15 -4159 (|#3| |#1| |#2| |#3|)) (-15 -4159 (|#3| |#1| |#2|)) (-15 -2312 ((-622 |#3|) |#1|)) (-15 -2311 ((-112) |#2| |#1|)) (-15 -2310 ((-622 |#2|) |#1|)) (-15 -3764 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3764 (|#1| (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -3764 (|#1| (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -1399 ((-3 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) "failed") (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -1333 ((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -3970 (|#1| (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -1334 ((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -2069 ((-751) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -2068 ((-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2069 ((-751) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2070 ((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2071 ((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2072 (|#1| (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -4318 (|#1| (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|))) (-1162 |#2| |#3|) (-1074) (-1074)) (T -1161))
-NIL
-(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3960 (|#1| (-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))))) (-15 -3960 (|#1|)) (-15 -4318 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2072 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#3|) |#1|)) (-15 -2068 ((-622 |#3|) |#1|)) (-15 -2069 ((-751) |#3| |#1|)) (-15 -4159 (|#3| |#1| |#2| |#3|)) (-15 -4159 (|#3| |#1| |#2|)) (-15 -2312 ((-622 |#3|) |#1|)) (-15 -2311 ((-112) |#2| |#1|)) (-15 -2310 ((-622 |#2|) |#1|)) (-15 -3764 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3764 (|#1| (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -3764 (|#1| (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -1399 ((-3 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) "failed") (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -1333 ((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -3970 (|#1| (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -1334 ((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -2069 ((-751) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -2068 ((-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2069 ((-751) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2070 ((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2071 ((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2072 (|#1| (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -4318 (|#1| (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)))
-((-2898 (((-112) $ $) 19 (-3891 (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3960 (($) 72) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 71)) (-2305 (((-1237) $ |#1| |#1|) 99 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#2| $ |#1| |#2|) 73)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 55 (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) 61)) (-3896 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) 62)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 54 (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 56 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 52 (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) 88)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 30 (|has| $ (-6 -4353))) (((-622 |#2|) $) 79 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2307 ((|#1| $) 96 (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 29 (|has| $ (-6 -4353))) (((-622 |#2|) $) 80 (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-2308 ((|#1| $) 95 (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 34 (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (-3891 (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-2744 (((-622 |#1|) $) 63)) (-2315 (((-112) |#1| $) 64)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 39)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 40)) (-2310 (((-622 |#1|) $) 93)) (-2311 (((-112) |#1| $) 92)) (-3594 (((-1093) $) 21 (-3891 (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-4160 ((|#2| $) 97 (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 51)) (-2306 (($ $ |#2|) 98 (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 41)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 32 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) 26 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 25 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 24 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 23 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) 91)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1523 (($) 49) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 48)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-751) |#2| $) 81 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4353)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 50)) (-4317 (((-840) $) 18 (-3891 (|has| |#2| (-597 (-840))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 42)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 33 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (-3891 (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-1162 |#1| |#2|) (-138) (-1074) (-1074)) (T -1162))
-((-4147 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))) (-3960 (*1 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4220 *3) (|:| -2191 *4)))) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *1 (-1162 *3 *4)))) (-4318 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
-(-13 (-594 |t#1| |t#2|) (-588 |t#1| |t#2|) (-10 -8 (-15 -4147 (|t#2| $ |t#1| |t#2|)) (-15 -3960 ($)) (-15 -3960 ($ (-622 (-2 (|:| -4220 |t#1|) (|:| -2191 |t#2|))))) (-15 -4318 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-106 #1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((-101) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))) ((-597 (-840)) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-1074)) (|has| |#2| (-597 (-840)))) ((-149 #1#) . T) ((-598 (-527)) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))) ((-225 #1#) . T) ((-231 #1#) . T) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 #1#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-483 #1#) . T) ((-483 |#2|) . T) ((-588 |#1| |#2|) . T) ((-507 #1# #1#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-594 |#1| |#2|) . T) ((-1074) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))) ((-1185) . T))
-((-3966 (((-112)) 24)) (-3963 (((-1237) (-1131)) 26)) (-3967 (((-112)) 36)) (-3964 (((-1237)) 34)) (-3962 (((-1237) (-1131) (-1131)) 25)) (-3968 (((-112)) 37)) (-3970 (((-1237) |#1| |#2|) 44)) (-3961 (((-1237)) 20)) (-3969 (((-3 |#2| "failed") |#1|) 42)) (-3965 (((-1237)) 35)))
-(((-1163 |#1| |#2|) (-10 -7 (-15 -3961 ((-1237))) (-15 -3962 ((-1237) (-1131) (-1131))) (-15 -3963 ((-1237) (-1131))) (-15 -3964 ((-1237))) (-15 -3965 ((-1237))) (-15 -3966 ((-112))) (-15 -3967 ((-112))) (-15 -3968 ((-112))) (-15 -3969 ((-3 |#2| "failed") |#1|)) (-15 -3970 ((-1237) |#1| |#2|))) (-1074) (-1074)) (T -1163))
-((-3970 (*1 *2 *3 *4) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3969 (*1 *2 *3) (|partial| -12 (-4 *2 (-1074)) (-5 *1 (-1163 *3 *2)) (-4 *3 (-1074)))) (-3968 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3967 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3966 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3965 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3964 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)))) (-3962 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)))) (-3961 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
-(-10 -7 (-15 -3961 ((-1237))) (-15 -3962 ((-1237) (-1131) (-1131))) (-15 -3963 ((-1237) (-1131))) (-15 -3964 ((-1237))) (-15 -3965 ((-1237))) (-15 -3966 ((-112))) (-15 -3967 ((-112))) (-15 -3968 ((-112))) (-15 -3969 ((-3 |#2| "failed") |#1|)) (-15 -3970 ((-1237) |#1| |#2|)))
-((-3972 (((-1131) (-1131)) 18)) (-3971 (((-51) (-1131)) 21)))
-(((-1164) (-10 -7 (-15 -3971 ((-51) (-1131))) (-15 -3972 ((-1131) (-1131))))) (T -1164))
-((-3972 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1164)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-1164)))))
-(-10 -7 (-15 -3971 ((-51) (-1131))) (-15 -3972 ((-1131) (-1131))))
-((-2898 (((-112) $ $) NIL)) (-3978 (((-622 (-1131)) $) 34)) (-3974 (((-622 (-1131)) $ (-622 (-1131))) 37)) (-3973 (((-622 (-1131)) $ (-622 (-1131))) 36)) (-3975 (((-622 (-1131)) $ (-622 (-1131))) 38)) (-3976 (((-622 (-1131)) $) 33)) (-3977 (($) 22)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3979 (((-622 (-1131)) $) 35)) (-3980 (((-1237) $ (-538)) 29) (((-1237) $) 30)) (-4330 (($ (-840) (-538)) 26) (($ (-840) (-538) (-840)) NIL)) (-4317 (((-840) $) 40) (($ (-840)) 24)) (-3387 (((-112) $ $) NIL)))
-(((-1165) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-840))) (-15 -4330 ($ (-840) (-538))) (-15 -4330 ($ (-840) (-538) (-840))) (-15 -3980 ((-1237) $ (-538))) (-15 -3980 ((-1237) $)) (-15 -3979 ((-622 (-1131)) $)) (-15 -3978 ((-622 (-1131)) $)) (-15 -3977 ($)) (-15 -3976 ((-622 (-1131)) $)) (-15 -3975 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3974 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3973 ((-622 (-1131)) $ (-622 (-1131))))))) (T -1165))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-1165)))) (-4330 (*1 *1 *2 *3) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-1165)))) (-4330 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-1165)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1165)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1165)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))) (-3978 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))) (-3977 (*1 *1) (-5 *1 (-1165))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))) (-3975 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))) (-3974 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))) (-3973 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))))
-(-13 (-1074) (-10 -8 (-15 -4317 ($ (-840))) (-15 -4330 ($ (-840) (-538))) (-15 -4330 ($ (-840) (-538) (-840))) (-15 -3980 ((-1237) $ (-538))) (-15 -3980 ((-1237) $)) (-15 -3979 ((-622 (-1131)) $)) (-15 -3978 ((-622 (-1131)) $)) (-15 -3977 ($)) (-15 -3976 ((-622 (-1131)) $)) (-15 -3975 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3974 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3973 ((-622 (-1131)) $ (-622 (-1131))))))
-((-4317 (((-1165) |#1|) 11)))
-(((-1166 |#1|) (-10 -7 (-15 -4317 ((-1165) |#1|))) (-1074)) (T -1166))
-((-4317 (*1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *1 (-1166 *3)) (-4 *3 (-1074)))))
-(-10 -7 (-15 -4317 ((-1165) |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3985 (((-1131) $ (-1131)) 17) (((-1131) $) 16)) (-1813 (((-1131) $ (-1131)) 15)) (-1817 (($ $ (-1131)) NIL)) (-3983 (((-3 (-1131) "failed") $) 11)) (-3984 (((-1131) $) 8)) (-3982 (((-3 (-1131) "failed") $) 12)) (-1814 (((-1131) $) 9)) (-1818 (($ (-383)) NIL) (($ (-383) (-1131)) NIL)) (-3905 (((-383) $) NIL)) (-3593 (((-1131) $) NIL)) (-1815 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3981 (((-112) $) 18)) (-4317 (((-840) $) NIL)) (-1816 (($ $) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-1167) (-13 (-360 (-383) (-1131)) (-10 -8 (-15 -3985 ((-1131) $ (-1131))) (-15 -3985 ((-1131) $)) (-15 -3984 ((-1131) $)) (-15 -3983 ((-3 (-1131) "failed") $)) (-15 -3982 ((-3 (-1131) "failed") $)) (-15 -3981 ((-112) $))))) (T -1167))
-((-3985 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-3983 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-3982 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167)))))
-(-13 (-360 (-383) (-1131)) (-10 -8 (-15 -3985 ((-1131) $ (-1131))) (-15 -3985 ((-1131) $)) (-15 -3984 ((-1131) $)) (-15 -3983 ((-3 (-1131) "failed") $)) (-15 -3982 ((-3 (-1131) "failed") $)) (-15 -3981 ((-112) $))))
-((-3986 (((-3 (-538) "failed") |#1|) 19)) (-3987 (((-3 (-538) "failed") |#1|) 14)) (-3988 (((-538) (-1131)) 28)))
-(((-1168 |#1|) (-10 -7 (-15 -3986 ((-3 (-538) "failed") |#1|)) (-15 -3987 ((-3 (-538) "failed") |#1|)) (-15 -3988 ((-538) (-1131)))) (-1025)) (T -1168))
-((-3988 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-538)) (-5 *1 (-1168 *4)) (-4 *4 (-1025)))) (-3987 (*1 *2 *3) (|partial| -12 (-5 *2 (-538)) (-5 *1 (-1168 *3)) (-4 *3 (-1025)))) (-3986 (*1 *2 *3) (|partial| -12 (-5 *2 (-538)) (-5 *1 (-1168 *3)) (-4 *3 (-1025)))))
-(-10 -7 (-15 -3986 ((-3 (-538) "failed") |#1|)) (-15 -3987 ((-3 (-538) "failed") |#1|)) (-15 -3988 ((-538) (-1131))))
-((-3989 (((-1106 (-221))) 9)))
-(((-1169) (-10 -7 (-15 -3989 ((-1106 (-221)))))) (T -1169))
-((-3989 (*1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1169)))))
-(-10 -7 (-15 -3989 ((-1106 (-221)))))
-((-3990 (($) 11)) (-3852 (($ $) 35)) (-3850 (($ $) 33)) (-3838 (($ $) 25)) (-3854 (($ $) 17)) (-3855 (($ $) 15)) (-3853 (($ $) 19)) (-3841 (($ $) 30)) (-3851 (($ $) 34)) (-3839 (($ $) 29)))
-(((-1170 |#1|) (-10 -8 (-15 -3990 (|#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3839 (|#1| |#1|))) (-1171)) (T -1170))
-NIL
-(-10 -8 (-15 -3990 (|#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)))
-((-3846 (($ $) 26)) (-4002 (($ $) 11)) (-3844 (($ $) 27)) (-4001 (($ $) 10)) (-3848 (($ $) 28)) (-4000 (($ $) 9)) (-3990 (($) 16)) (-4302 (($ $) 19)) (-4303 (($ $) 18)) (-3849 (($ $) 29)) (-3999 (($ $) 8)) (-3847 (($ $) 30)) (-3998 (($ $) 7)) (-3845 (($ $) 31)) (-3997 (($ $) 6)) (-3852 (($ $) 20)) (-3840 (($ $) 32)) (-3850 (($ $) 21)) (-3838 (($ $) 33)) (-3854 (($ $) 22)) (-3842 (($ $) 34)) (-3855 (($ $) 23)) (-3843 (($ $) 35)) (-3853 (($ $) 24)) (-3841 (($ $) 36)) (-3851 (($ $) 25)) (-3839 (($ $) 37)) (** (($ $ $) 17)))
+((-3814 ((|#1| (-625 |#1|)) 32)) (-3835 ((|#1| |#1| (-552)) 18)) (-3823 (((-1145 |#1|) |#1| (-897)) 15)))
+(((-1160 |#1|) (-10 -7 (-15 -3814 (|#1| (-625 |#1|))) (-15 -3823 ((-1145 |#1|) |#1| (-897))) (-15 -3835 (|#1| |#1| (-552)))) (-358)) (T -1160))
+((-3835 (*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-1160 *2)) (-4 *2 (-358)))) (-3823 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-5 *2 (-1145 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-358)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-5 *1 (-1160 *2)) (-4 *2 (-358)))))
+(-10 -7 (-15 -3814 (|#1| (-625 |#1|))) (-15 -3823 ((-1145 |#1|) |#1| (-897))) (-15 -3835 (|#1| |#1| (-552))))
+((-2173 (($) 10) (($ (-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)))) 14)) (-1938 (($ (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) 39) (((-625 |#3|) $) 41)) (-3683 (($ (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-1996 (($ (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2953 (((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) 54)) (-3966 (($ (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) 16)) (-2554 (((-625 |#2|) $) 19)) (-2564 (((-112) |#2| $) 59)) (-2380 (((-3 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) "failed") (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) 58)) (-2966 (((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) 63)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-1358 (((-625 |#3|) $) 43)) (-2154 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) NIL) (((-751) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) NIL) (((-751) |#3| $) NIL) (((-751) (-1 (-112) |#3|) $) 68)) (-1683 (((-839) $) 27)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-2281 (((-112) $ $) 49)))
+(((-1161 |#1| |#2| |#3|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2173 (|#1| (-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))))) (-15 -2173 (|#1|)) (-15 -1996 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3683 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#3|) |#1|)) (-15 -3799 ((-625 |#3|) |#1|)) (-15 -2840 ((-751) |#3| |#1|)) (-15 -2154 (|#3| |#1| |#2| |#3|)) (-15 -2154 (|#3| |#1| |#2|)) (-15 -1358 ((-625 |#3|) |#1|)) (-15 -2564 ((-112) |#2| |#1|)) (-15 -2554 ((-625 |#2|) |#1|)) (-15 -1938 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1938 (|#1| (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1938 (|#1| (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2380 ((-3 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) "failed") (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -2953 ((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -3966 (|#1| (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2966 ((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2840 ((-751) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -3799 ((-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -2840 ((-751) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1888 ((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1900 ((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -3683 (|#1| (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1996 (|#1| (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|))) (-1162 |#2| |#3|) (-1073) (-1073)) (T -1161))
+NIL
+(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2173 (|#1| (-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))))) (-15 -2173 (|#1|)) (-15 -1996 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3683 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#3|) |#1|)) (-15 -3799 ((-625 |#3|) |#1|)) (-15 -2840 ((-751) |#3| |#1|)) (-15 -2154 (|#3| |#1| |#2| |#3|)) (-15 -2154 (|#3| |#1| |#2|)) (-15 -1358 ((-625 |#3|) |#1|)) (-15 -2564 ((-112) |#2| |#1|)) (-15 -2554 ((-625 |#2|) |#1|)) (-15 -1938 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1938 (|#1| (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1938 (|#1| (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2380 ((-3 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) "failed") (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -2953 ((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -3966 (|#1| (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2966 ((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2840 ((-751) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -3799 ((-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -2840 ((-751) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1888 ((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1900 ((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -3683 (|#1| (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1996 (|#1| (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)))
+((-1671 (((-112) $ $) 19 (-1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-2173 (($) 72) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 71)) (-2509 (((-1237) $ |#1| |#1|) 99 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#2| $ |#1| |#2|) 73)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 55 (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) 61)) (-3101 (($) 7 T CONST)) (-2959 (($ $) 58 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 62)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 54 (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 56 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 52 (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) 88)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 30 (|has| $ (-6 -4353))) (((-625 |#2|) $) 79 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-2527 ((|#1| $) 96 (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 29 (|has| $ (-6 -4353))) (((-625 |#2|) $) 80 (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-2537 ((|#1| $) 95 (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 34 (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (-1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-3712 (((-625 |#1|) $) 63)) (-1370 (((-112) |#1| $) 64)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 39)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 40)) (-2554 (((-625 |#1|) $) 93)) (-2564 (((-112) |#1| $) 92)) (-2831 (((-1093) $) 21 (-1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-2924 ((|#2| $) 97 (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 51)) (-2518 (($ $ |#2|) 98 (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 41)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 32 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) 26 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 25 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 24 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 23 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) 91)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-4255 (($) 49) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 48)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-751) |#2| $) 81 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4353)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 50)) (-1683 (((-839) $) 18 (-1523 (|has| |#2| (-597 (-839))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 42)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 33 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (-1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-1162 |#1| |#2|) (-138) (-1073) (-1073)) (T -1162))
+((-1851 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))) (-2173 (*1 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-2173 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -2971 *3) (|:| -4120 *4)))) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *1 (-1162 *3 *4)))) (-1996 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))))
+(-13 (-594 |t#1| |t#2|) (-588 |t#1| |t#2|) (-10 -8 (-15 -1851 (|t#2| $ |t#1| |t#2|)) (-15 -2173 ($)) (-15 -2173 ($ (-625 (-2 (|:| -2971 |t#1|) (|:| -4120 |t#2|))))) (-15 -1996 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-106 #0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((-101) -1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-597 (-839)) -1523 (|has| |#2| (-1073)) (|has| |#2| (-597 (-839))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839)))) ((-149 #0#) . T) ((-598 (-528)) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))) ((-225 #0#) . T) ((-231 #0#) . T) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 #0#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-483 #0#) . T) ((-483 |#2|) . T) ((-588 |#1| |#2|) . T) ((-507 #0# #0#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-594 |#1| |#2|) . T) ((-1073) -1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-1186) . T))
+((-3916 (((-112)) 24)) (-3875 (((-1237) (-1131)) 26)) (-3930 (((-112)) 36)) (-3889 (((-1237)) 34)) (-3862 (((-1237) (-1131) (-1131)) 25)) (-3942 (((-112)) 37)) (-3966 (((-1237) |#1| |#2|) 44)) (-3849 (((-1237)) 20)) (-3954 (((-3 |#2| "failed") |#1|) 42)) (-3902 (((-1237)) 35)))
+(((-1163 |#1| |#2|) (-10 -7 (-15 -3849 ((-1237))) (-15 -3862 ((-1237) (-1131) (-1131))) (-15 -3875 ((-1237) (-1131))) (-15 -3889 ((-1237))) (-15 -3902 ((-1237))) (-15 -3916 ((-112))) (-15 -3930 ((-112))) (-15 -3942 ((-112))) (-15 -3954 ((-3 |#2| "failed") |#1|)) (-15 -3966 ((-1237) |#1| |#2|))) (-1073) (-1073)) (T -1163))
+((-3966 (*1 *2 *3 *4) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3954 (*1 *2 *3) (|partial| -12 (-4 *2 (-1073)) (-5 *1 (-1163 *3 *2)) (-4 *3 (-1073)))) (-3942 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3930 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3916 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3902 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3889 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073)))) (-3862 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073)))) (-3849 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))))
+(-10 -7 (-15 -3849 ((-1237))) (-15 -3862 ((-1237) (-1131) (-1131))) (-15 -3875 ((-1237) (-1131))) (-15 -3889 ((-1237))) (-15 -3902 ((-1237))) (-15 -3916 ((-112))) (-15 -3930 ((-112))) (-15 -3942 ((-112))) (-15 -3954 ((-3 |#2| "failed") |#1|)) (-15 -3966 ((-1237) |#1| |#2|)))
+((-3990 (((-1131) (-1131)) 18)) (-3978 (((-52) (-1131)) 21)))
+(((-1164) (-10 -7 (-15 -3978 ((-52) (-1131))) (-15 -3990 ((-1131) (-1131))))) (T -1164))
+((-3990 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1164)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-1164)))))
+(-10 -7 (-15 -3978 ((-52) (-1131))) (-15 -3990 ((-1131) (-1131))))
+((-1683 (((-1166) |#1|) 11)))
+(((-1165 |#1|) (-10 -7 (-15 -1683 ((-1166) |#1|))) (-1073)) (T -1165))
+((-1683 (*1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *1 (-1165 *3)) (-4 *3 (-1073)))))
+(-10 -7 (-15 -1683 ((-1166) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-2601 (((-625 (-1131)) $) 34)) (-4014 (((-625 (-1131)) $ (-625 (-1131))) 37)) (-4003 (((-625 (-1131)) $ (-625 (-1131))) 36)) (-4026 (((-625 (-1131)) $ (-625 (-1131))) 38)) (-4037 (((-625 (-1131)) $) 33)) (-2183 (($) 22)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4049 (((-625 (-1131)) $) 35)) (-1407 (((-1237) $ (-552)) 29) (((-1237) $) 30)) (-2042 (($ (-839) (-552)) 26) (($ (-839) (-552) (-839)) NIL)) (-1683 (((-839) $) 40) (($ (-839)) 24)) (-2281 (((-112) $ $) NIL)))
+(((-1166) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-839))) (-15 -2042 ($ (-839) (-552))) (-15 -2042 ($ (-839) (-552) (-839))) (-15 -1407 ((-1237) $ (-552))) (-15 -1407 ((-1237) $)) (-15 -4049 ((-625 (-1131)) $)) (-15 -2601 ((-625 (-1131)) $)) (-15 -2183 ($)) (-15 -4037 ((-625 (-1131)) $)) (-15 -4026 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4014 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4003 ((-625 (-1131)) $ (-625 (-1131))))))) (T -1166))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1166)))) (-2042 (*1 *1 *2 *3) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-1166)))) (-2042 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-1166)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1166)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1166)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))) (-2183 (*1 *1) (-5 *1 (-1166))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))) (-4026 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))) (-4014 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))) (-4003 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))))
+(-13 (-1073) (-10 -8 (-15 -1683 ($ (-839))) (-15 -2042 ($ (-839) (-552))) (-15 -2042 ($ (-839) (-552) (-839))) (-15 -1407 ((-1237) $ (-552))) (-15 -1407 ((-1237) $)) (-15 -4049 ((-625 (-1131)) $)) (-15 -2601 ((-625 (-1131)) $)) (-15 -2183 ($)) (-15 -4037 ((-625 (-1131)) $)) (-15 -4026 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4014 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4003 ((-625 (-1131)) $ (-625 (-1131))))))
+((-1671 (((-112) $ $) NIL)) (-4113 (((-1131) $ (-1131)) 17) (((-1131) $) 16)) (-4086 (((-1131) $ (-1131)) 15)) (-4137 (($ $ (-1131)) NIL)) (-4088 (((-3 (-1131) "failed") $) 11)) (-4101 (((-1131) $) 8)) (-4076 (((-3 (-1131) "failed") $) 12)) (-4099 (((-1131) $) 9)) (-2508 (($ (-383)) NIL) (($ (-383) (-1131)) NIL)) (-1288 (((-383) $) NIL)) (-2883 (((-1131) $) NIL)) (-4111 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4062 (((-112) $) 18)) (-1683 (((-839) $) NIL)) (-4125 (($ $) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-1167) (-13 (-359 (-383) (-1131)) (-10 -8 (-15 -4113 ((-1131) $ (-1131))) (-15 -4113 ((-1131) $)) (-15 -4101 ((-1131) $)) (-15 -4088 ((-3 (-1131) "failed") $)) (-15 -4076 ((-3 (-1131) "failed") $)) (-15 -4062 ((-112) $))))) (T -1167))
+((-4113 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-4088 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-4076 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167)))))
+(-13 (-359 (-383) (-1131)) (-10 -8 (-15 -4113 ((-1131) $ (-1131))) (-15 -4113 ((-1131) $)) (-15 -4101 ((-1131) $)) (-15 -4088 ((-3 (-1131) "failed") $)) (-15 -4076 ((-3 (-1131) "failed") $)) (-15 -4062 ((-112) $))))
+((-4127 (((-3 (-552) "failed") |#1|) 19)) (-4140 (((-3 (-552) "failed") |#1|) 14)) (-1586 (((-552) (-1131)) 28)))
+(((-1168 |#1|) (-10 -7 (-15 -4127 ((-3 (-552) "failed") |#1|)) (-15 -4140 ((-3 (-552) "failed") |#1|)) (-15 -1586 ((-552) (-1131)))) (-1025)) (T -1168))
+((-1586 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-552)) (-5 *1 (-1168 *4)) (-4 *4 (-1025)))) (-4140 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1168 *3)) (-4 *3 (-1025)))) (-4127 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1168 *3)) (-4 *3 (-1025)))))
+(-10 -7 (-15 -4127 ((-3 (-552) "failed") |#1|)) (-15 -4140 ((-3 (-552) "failed") |#1|)) (-15 -1586 ((-552) (-1131))))
+((-1598 (((-1106 (-221))) 9)))
+(((-1169) (-10 -7 (-15 -1598 ((-1106 (-221)))))) (T -1169))
+((-1598 (*1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1169)))))
+(-10 -7 (-15 -1598 ((-1106 (-221)))))
+((-1385 (($) 11)) (-3789 (($ $) 35)) (-3769 (($ $) 33)) (-3648 (($ $) 25)) (-3809 (($ $) 17)) (-3742 (($ $) 15)) (-3797 (($ $) 19)) (-3681 (($ $) 30)) (-3778 (($ $) 34)) (-3659 (($ $) 29)))
+(((-1170 |#1|) (-10 -8 (-15 -1385 (|#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -3659 (|#1| |#1|))) (-1171)) (T -1170))
+NIL
+(-10 -8 (-15 -1385 (|#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)))
+((-3728 (($ $) 26)) (-3604 (($ $) 11)) (-3710 (($ $) 27)) (-3581 (($ $) 10)) (-3749 (($ $) 28)) (-3627 (($ $) 9)) (-1385 (($) 16)) (-2458 (($ $) 19)) (-2863 (($ $) 18)) (-3759 (($ $) 29)) (-3638 (($ $) 8)) (-3738 (($ $) 30)) (-3614 (($ $) 7)) (-3721 (($ $) 31)) (-3593 (($ $) 6)) (-3789 (($ $) 20)) (-3670 (($ $) 32)) (-3769 (($ $) 21)) (-3648 (($ $) 33)) (-3809 (($ $) 22)) (-3691 (($ $) 34)) (-3742 (($ $) 23)) (-3700 (($ $) 35)) (-3797 (($ $) 24)) (-3681 (($ $) 36)) (-3778 (($ $) 25)) (-3659 (($ $) 37)) (** (($ $ $) 17)))
(((-1171) (-138)) (T -1171))
-((-3990 (*1 *1) (-4 *1 (-1171))))
-(-13 (-1174) (-94) (-486) (-35) (-279) (-10 -8 (-15 -3990 ($))))
+((-1385 (*1 *1) (-4 *1 (-1171))))
+(-13 (-1174) (-94) (-486) (-35) (-279) (-10 -8 (-15 -1385 ($))))
(((-35) . T) ((-94) . T) ((-279) . T) ((-486) . T) ((-1174) . T))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) 17)) (-3995 (($ |#1| (-622 $)) 23) (($ (-622 |#1|)) 27) (($ |#1|) 25)) (-1271 (((-112) $ (-751)) 48)) (-3358 ((|#1| $ |#1|) 14 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 13 (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-2068 (((-622 |#1|) $) 52 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 43)) (-3360 (((-112) $ $) 33 (|has| |#1| (-1074)))) (-4082 (((-112) $ (-751)) 41)) (-2511 (((-622 |#1|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 22)) (-4079 (((-112) $ (-751)) 40)) (-3363 (((-622 |#1|) $) 37)) (-3881 (((-112) $) 36)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 74)) (-3762 (((-112) $) 9)) (-3928 (($) 10)) (-4159 ((|#1| $ #1#) NIL)) (-3362 (((-538) $ $) 32)) (-3991 (((-622 $) $) 59)) (-3992 (((-112) $ $) 77)) (-3993 (((-622 $) $) 72)) (-3994 (($ $) 73)) (-3996 (((-112) $) 56)) (-2069 (((-751) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4353))) (((-751) |#1| $) 16 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 58)) (-4317 (((-840) $) 61 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 12)) (-3361 (((-112) $ $) 29 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 28 (|has| |#1| (-1074)))) (-4316 (((-751) $) 39 (|has| $ (-6 -4353)))))
-(((-1172 |#1|) (-13 (-986 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -3995 ($ |#1| (-622 $))) (-15 -3995 ($ (-622 |#1|))) (-15 -3995 ($ |#1|)) (-15 -3996 ((-112) $)) (-15 -3994 ($ $)) (-15 -3993 ((-622 $) $)) (-15 -3992 ((-112) $ $)) (-15 -3991 ((-622 $) $)))) (-1074)) (T -1172))
-((-3996 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))) (-3995 (*1 *1 *2 *3) (-12 (-5 *3 (-622 (-1172 *2))) (-5 *1 (-1172 *2)) (-4 *2 (-1074)))) (-3995 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-1172 *3)))) (-3995 (*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1074)))) (-3994 (*1 *1 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1074)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-622 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))) (-3992 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-622 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))))
-(-13 (-986 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -3995 ($ |#1| (-622 $))) (-15 -3995 ($ (-622 |#1|))) (-15 -3995 ($ |#1|)) (-15 -3996 ((-112) $)) (-15 -3994 ($ $)) (-15 -3993 ((-622 $) $)) (-15 -3992 ((-112) $ $)) (-15 -3991 ((-622 $) $))))
-((-4002 (($ $) 15)) (-4000 (($ $) 12)) (-3999 (($ $) 10)) (-3998 (($ $) 17)))
-(((-1173 |#1|) (-10 -8 (-15 -3998 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -4002 (|#1| |#1|))) (-1174)) (T -1173))
-NIL
-(-10 -8 (-15 -3998 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)))
-((-4002 (($ $) 11)) (-4001 (($ $) 10)) (-4000 (($ $) 9)) (-3999 (($ $) 8)) (-3998 (($ $) 7)) (-3997 (($ $) 6)))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) 17)) (-2227 (($ |#1| (-625 $)) 23) (($ (-625 |#1|)) 27) (($ |#1|) 25)) (-3495 (((-112) $ (-751)) 48)) (-2565 ((|#1| $ |#1|) 14 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 13 (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-3799 (((-625 |#1|) $) 52 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 43)) (-1371 (((-112) $ $) 33 (|has| |#1| (-1073)))) (-2909 (((-112) $ (-751)) 41)) (-3730 (((-625 |#1|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 22)) (-2878 (((-112) $ (-751)) 40)) (-3183 (((-625 |#1|) $) 37)) (-3367 (((-112) $) 36)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 74)) (-1916 (((-112) $) 9)) (-3600 (($) 10)) (-2154 ((|#1| $ "value") NIL)) (-1389 (((-552) $ $) 32)) (-2690 (((-625 $) $) 59)) (-2700 (((-112) $ $) 77)) (-3949 (((-625 $) $) 72)) (-3962 (($ $) 73)) (-2316 (((-112) $) 56)) (-2840 (((-751) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4353))) (((-751) |#1| $) 16 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 58)) (-1683 (((-839) $) 61 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 12)) (-1380 (((-112) $ $) 29 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 28 (|has| |#1| (-1073)))) (-1471 (((-751) $) 39 (|has| $ (-6 -4353)))))
+(((-1172 |#1|) (-13 (-986 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2227 ($ |#1| (-625 $))) (-15 -2227 ($ (-625 |#1|))) (-15 -2227 ($ |#1|)) (-15 -2316 ((-112) $)) (-15 -3962 ($ $)) (-15 -3949 ((-625 $) $)) (-15 -2700 ((-112) $ $)) (-15 -2690 ((-625 $) $)))) (-1073)) (T -1172))
+((-2316 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))) (-2227 (*1 *1 *2 *3) (-12 (-5 *3 (-625 (-1172 *2))) (-5 *1 (-1172 *2)) (-4 *2 (-1073)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-1172 *3)))) (-2227 (*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1073)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1073)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-625 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))) (-2700 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-625 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))))
+(-13 (-986 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2227 ($ |#1| (-625 $))) (-15 -2227 ($ (-625 |#1|))) (-15 -2227 ($ |#1|)) (-15 -2316 ((-112) $)) (-15 -3962 ($ $)) (-15 -3949 ((-625 $) $)) (-15 -2700 ((-112) $ $)) (-15 -2690 ((-625 $) $))))
+((-3604 (($ $) 15)) (-3627 (($ $) 12)) (-3638 (($ $) 10)) (-3614 (($ $) 17)))
+(((-1173 |#1|) (-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3604 (|#1| |#1|))) (-1174)) (T -1173))
+NIL
+(-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3604 (|#1| |#1|)))
+((-3604 (($ $) 11)) (-3581 (($ $) 10)) (-3627 (($ $) 9)) (-3638 (($ $) 8)) (-3614 (($ $) 7)) (-3593 (($ $) 6)))
(((-1174) (-138)) (T -1174))
-((-4002 (*1 *1 *1) (-4 *1 (-1174))) (-4001 (*1 *1 *1) (-4 *1 (-1174))) (-4000 (*1 *1 *1) (-4 *1 (-1174))) (-3999 (*1 *1 *1) (-4 *1 (-1174))) (-3998 (*1 *1 *1) (-4 *1 (-1174))) (-3997 (*1 *1 *1) (-4 *1 (-1174))))
-(-13 (-10 -8 (-15 -3997 ($ $)) (-15 -3998 ($ $)) (-15 -3999 ($ $)) (-15 -4000 ($ $)) (-15 -4001 ($ $)) (-15 -4002 ($ $))))
-((-4005 ((|#2| |#2|) 88)) (-4008 (((-112) |#2|) 26)) (-4006 ((|#2| |#2|) 30)) (-4007 ((|#2| |#2|) 32)) (-4003 ((|#2| |#2| (-1149)) 83) ((|#2| |#2|) 84)) (-4009 (((-166 |#2|) |#2|) 28)) (-4004 ((|#2| |#2| (-1149)) 85) ((|#2| |#2|) 86)))
-(((-1175 |#1| |#2|) (-10 -7 (-15 -4003 (|#2| |#2|)) (-15 -4003 (|#2| |#2| (-1149))) (-15 -4004 (|#2| |#2|)) (-15 -4004 (|#2| |#2| (-1149))) (-15 -4005 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 ((-112) |#2|)) (-15 -4009 ((-166 |#2|) |#2|))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -1175))
-((-4009 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-166 *3)) (-5 *1 (-1175 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4008 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-112)) (-5 *1 (-1175 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) (-4004 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) (-4003 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))))
-(-10 -7 (-15 -4003 (|#2| |#2|)) (-15 -4003 (|#2| |#2| (-1149))) (-15 -4004 (|#2| |#2|)) (-15 -4004 (|#2| |#2| (-1149))) (-15 -4005 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 ((-112) |#2|)) (-15 -4009 ((-166 |#2|) |#2|)))
-((-4010 ((|#4| |#4| |#1|) 27)) (-4011 ((|#4| |#4| |#1|) 28)))
-(((-1176 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4010 (|#4| |#4| |#1|)) (-15 -4011 (|#4| |#4| |#1|))) (-545) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|)) (T -1176))
-((-4011 (*1 *2 *2 *3) (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-4010 (*1 *2 *2 *3) (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))))
-(-10 -7 (-15 -4010 (|#4| |#4| |#1|)) (-15 -4011 (|#4| |#4| |#1|)))
-((-4029 ((|#2| |#2|) 133)) (-4031 ((|#2| |#2|) 130)) (-4028 ((|#2| |#2|) 121)) (-4030 ((|#2| |#2|) 118)) (-4027 ((|#2| |#2|) 126)) (-4026 ((|#2| |#2|) 114)) (-4015 ((|#2| |#2|) 43)) (-4014 ((|#2| |#2|) 94)) (-4012 ((|#2| |#2|) 74)) (-4025 ((|#2| |#2|) 128)) (-4024 ((|#2| |#2|) 116)) (-4037 ((|#2| |#2|) 138)) (-4035 ((|#2| |#2|) 136)) (-4036 ((|#2| |#2|) 137)) (-4034 ((|#2| |#2|) 135)) (-4013 ((|#2| |#2|) 148)) (-4038 ((|#2| |#2|) 30 (-12 (|has| |#2| (-598 (-866 |#1|))) (|has| |#2| (-862 |#1|)) (|has| |#1| (-598 (-866 |#1|))) (|has| |#1| (-862 |#1|))))) (-4016 ((|#2| |#2|) 75)) (-4017 ((|#2| |#2|) 139)) (-4323 ((|#2| |#2|) 140)) (-4023 ((|#2| |#2|) 127)) (-4022 ((|#2| |#2|) 115)) (-4021 ((|#2| |#2|) 134)) (-4033 ((|#2| |#2|) 132)) (-4020 ((|#2| |#2|) 122)) (-4032 ((|#2| |#2|) 120)) (-4019 ((|#2| |#2|) 124)) (-4018 ((|#2| |#2|) 112)))
-(((-1177 |#1| |#2|) (-10 -7 (-15 -4323 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -4030 (|#2| |#2|)) (-15 -4031 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (-15 -4033 (|#2| |#2|)) (-15 -4034 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -4037 (|#2| |#2|)) (IF (|has| |#1| (-862 |#1|)) (IF (|has| |#1| (-598 (-866 |#1|))) (IF (|has| |#2| (-598 (-866 |#1|))) (IF (|has| |#2| (-862 |#1|)) (-15 -4038 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-827) (-446)) (-13 (-416 |#1|) (-1171))) (T -1177))
-((-4038 (*1 *2 *2) (-12 (-4 *3 (-598 (-866 *3))) (-4 *3 (-862 *3)) (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-598 (-866 *3))) (-4 *2 (-862 *3)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4037 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4034 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4033 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4031 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4030 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4029 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4028 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4027 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4022 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4021 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4019 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4017 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4016 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4015 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4012 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4323 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))))
-(-10 -7 (-15 -4323 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -4030 (|#2| |#2|)) (-15 -4031 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (-15 -4033 (|#2| |#2|)) (-15 -4034 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -4037 (|#2| |#2|)) (IF (|has| |#1| (-862 |#1|)) (IF (|has| |#1| (-598 (-866 |#1|))) (IF (|has| |#2| (-598 (-866 |#1|))) (IF (|has| |#2| (-862 |#1|)) (-15 -4038 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1149)) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4174 (((-922 |#1|) $ (-751)) 17) (((-922 |#1|) $ (-751) (-751)) NIL)) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $ (-1149)) NIL) (((-751) $ (-1149) (-751)) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4297 (((-112) $) NIL)) (-3226 (($ $ (-622 (-1149)) (-622 (-524 (-1149)))) NIL) (($ $ (-1149) (-524 (-1149))) NIL) (($ |#1| (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-4172 (($ $ (-1149)) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-4039 (($ (-1 $) (-1149) |#1|) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4128 (($ $ (-751)) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (($ $ (-1149) $) NIL) (($ $ (-622 (-1149)) (-622 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL)) (-4170 (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-4307 (((-524 (-1149)) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-545))) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-1149)) NIL) (($ (-922 |#1|)) NIL)) (-4040 ((|#1| $ (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (((-922 |#1|) $ (-751)) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1178 |#1|) (-13 (-721 |#1| (-1149)) (-10 -8 (-15 -4040 ((-922 |#1|) $ (-751))) (-15 -4317 ($ (-1149))) (-15 -4317 ($ (-922 |#1|))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $ (-1149) |#1|)) (-15 -4039 ($ (-1 $) (-1149) |#1|))) |%noBranch|))) (-1025)) (T -1178))
-((-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-922 *4)) (-5 *1 (-1178 *4)) (-4 *4 (-1025)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1178 *3)) (-4 *3 (-1025)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-5 *1 (-1178 *3)))) (-4172 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *1 (-1178 *3)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)))) (-4039 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1178 *4))) (-5 *3 (-1149)) (-5 *1 (-1178 *4)) (-4 *4 (-38 (-402 (-538)))) (-4 *4 (-1025)))))
-(-13 (-721 |#1| (-1149)) (-10 -8 (-15 -4040 ((-922 |#1|) $ (-751))) (-15 -4317 ($ (-1149))) (-15 -4317 ($ (-922 |#1|))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $ (-1149) |#1|)) (-15 -4039 ($ (-1 $) (-1149) |#1|))) |%noBranch|)))
-((-4056 (((-112) |#5| $) 60) (((-112) $) 102)) (-4051 ((|#5| |#5| $) 75)) (-4073 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4052 (((-622 |#5|) (-622 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-3508 (((-3 $ "failed") (-622 |#5|)) 126)) (-4158 (((-3 $ "failed") $) 112)) (-4048 ((|#5| |#5| $) 94)) (-4057 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-4046 ((|#5| |#5| $) 98)) (-4202 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-4059 (((-2 (|:| -4221 (-622 |#5|)) (|:| -1818 (-622 |#5|))) $) 55)) (-4058 (((-112) |#5| $) 58) (((-112) $) 103)) (-3531 ((|#4| $) 108)) (-4157 (((-3 |#5| "failed") $) 110)) (-4060 (((-622 |#5|) $) 49)) (-4054 (((-112) |#5| $) 67) (((-112) $) 107)) (-4049 ((|#5| |#5| $) 81)) (-4062 (((-112) $ $) 27)) (-4055 (((-112) |#5| $) 63) (((-112) $) 105)) (-4050 ((|#5| |#5| $) 78)) (-4160 (((-3 |#5| "failed") $) 109)) (-4128 (($ $ |#5|) 127)) (-4307 (((-751) $) 52)) (-3884 (($ (-622 |#5|)) 124)) (-3243 (($ $ |#4|) 122)) (-3245 (($ $ |#4|) 121)) (-4047 (($ $) 120)) (-4317 (((-840) $) NIL) (((-622 |#5|) $) 113)) (-4041 (((-751) $) 130)) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-4053 (((-112) $ (-1 (-112) |#5| (-622 |#5|))) 100)) (-4043 (((-622 |#4|) $) 115)) (-4293 (((-112) |#4| $) 118)) (-3387 (((-112) $ $) 19)))
-(((-1179 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4041 ((-751) |#1|)) (-15 -4128 (|#1| |#1| |#5|)) (-15 -4073 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4293 ((-112) |#4| |#1|)) (-15 -4043 ((-622 |#4|) |#1|)) (-15 -4158 ((-3 |#1| "failed") |#1|)) (-15 -4157 ((-3 |#5| "failed") |#1|)) (-15 -4160 ((-3 |#5| "failed") |#1|)) (-15 -4046 (|#5| |#5| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 -4048 (|#5| |#5| |#1|)) (-15 -4049 (|#5| |#5| |#1|)) (-15 -4050 (|#5| |#5| |#1|)) (-15 -4051 (|#5| |#5| |#1|)) (-15 -4052 ((-622 |#5|) (-622 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4202 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4054 ((-112) |#1|)) (-15 -4055 ((-112) |#1|)) (-15 -4056 ((-112) |#1|)) (-15 -4053 ((-112) |#1| (-1 (-112) |#5| (-622 |#5|)))) (-15 -4054 ((-112) |#5| |#1|)) (-15 -4055 ((-112) |#5| |#1|)) (-15 -4056 ((-112) |#5| |#1|)) (-15 -4057 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4058 ((-112) |#1|)) (-15 -4058 ((-112) |#5| |#1|)) (-15 -4059 ((-2 (|:| -4221 (-622 |#5|)) (|:| -1818 (-622 |#5|))) |#1|)) (-15 -4307 ((-751) |#1|)) (-15 -4060 ((-622 |#5|) |#1|)) (-15 -4061 ((-3 (-2 (|:| |bas| |#1|) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4061 ((-3 (-2 (|:| |bas| |#1|) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4062 ((-112) |#1| |#1|)) (-15 -3243 (|#1| |#1| |#4|)) (-15 -3245 (|#1| |#1| |#4|)) (-15 -3531 (|#4| |#1|)) (-15 -3508 ((-3 |#1| "failed") (-622 |#5|))) (-15 -4317 ((-622 |#5|) |#1|)) (-15 -3884 (|#1| (-622 |#5|))) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4073 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-1180 |#2| |#3| |#4| |#5|) (-545) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -1179))
-NIL
-(-10 -8 (-15 -4041 ((-751) |#1|)) (-15 -4128 (|#1| |#1| |#5|)) (-15 -4073 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4293 ((-112) |#4| |#1|)) (-15 -4043 ((-622 |#4|) |#1|)) (-15 -4158 ((-3 |#1| "failed") |#1|)) (-15 -4157 ((-3 |#5| "failed") |#1|)) (-15 -4160 ((-3 |#5| "failed") |#1|)) (-15 -4046 (|#5| |#5| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 -4048 (|#5| |#5| |#1|)) (-15 -4049 (|#5| |#5| |#1|)) (-15 -4050 (|#5| |#5| |#1|)) (-15 -4051 (|#5| |#5| |#1|)) (-15 -4052 ((-622 |#5|) (-622 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4202 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4054 ((-112) |#1|)) (-15 -4055 ((-112) |#1|)) (-15 -4056 ((-112) |#1|)) (-15 -4053 ((-112) |#1| (-1 (-112) |#5| (-622 |#5|)))) (-15 -4054 ((-112) |#5| |#1|)) (-15 -4055 ((-112) |#5| |#1|)) (-15 -4056 ((-112) |#5| |#1|)) (-15 -4057 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4058 ((-112) |#1|)) (-15 -4058 ((-112) |#5| |#1|)) (-15 -4059 ((-2 (|:| -4221 (-622 |#5|)) (|:| -1818 (-622 |#5|))) |#1|)) (-15 -4307 ((-751) |#1|)) (-15 -4060 ((-622 |#5|) |#1|)) (-15 -4061 ((-3 (-2 (|:| |bas| |#1|) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4061 ((-3 (-2 (|:| |bas| |#1|) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4062 ((-112) |#1| |#1|)) (-15 -3243 (|#1| |#1| |#4|)) (-15 -3245 (|#1| |#1| |#4|)) (-15 -3531 (|#4| |#1|)) (-15 -3508 ((-3 |#1| "failed") (-622 |#5|))) (-15 -4317 ((-622 |#5|) |#1|)) (-15 -3884 (|#1| (-622 |#5|))) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4073 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)))
-((-2898 (((-112) $ $) 7)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) 85)) (-4045 (((-622 $) (-622 |#4|)) 86)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) 101) (((-112) $) 97)) (-4051 ((|#4| |#4| $) 92)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-4158 (((-3 $ "failed") $) 82)) (-4048 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4046 ((|#4| |#4| $) 87)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) 105)) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) 104) (((-112) $) 103)) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-4157 (((-3 |#4| "failed") $) 83)) (-4060 (((-622 |#4|) $) 107)) (-4054 (((-112) |#4| $) 99) (((-112) $) 95)) (-4049 ((|#4| |#4| $) 90)) (-4062 (((-112) $ $) 110)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) 100) (((-112) $) 96)) (-4050 ((|#4| |#4| $) 91)) (-3594 (((-1093) $) 10)) (-4160 (((-3 |#4| "failed") $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4042 (((-3 $ "failed") $ |#4|) 78)) (-4128 (($ $ |#4|) 77)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-4307 (((-751) $) 106)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-4047 (($ $) 88)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-4041 (((-751) $) 76 (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) "failed") (-622 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) "failed") (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) 98)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) 81)) (-4293 (((-112) |#3| $) 80)) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353)))))
-(((-1180 |#1| |#2| |#3| |#4|) (-138) (-545) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1180))
-((-4062 (*1 *2 *1 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-4061 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3683 (-622 *8)))) (-5 *3 (-622 *8)) (-4 *1 (-1180 *5 *6 *7 *8)))) (-4061 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3683 (-622 *9)))) (-5 *3 (-622 *9)) (-4 *1 (-1180 *6 *7 *8 *9)))) (-4060 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *6)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-751)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-2 (|:| -4221 (-622 *6)) (|:| -1818 (-622 *6)))))) (-4058 (*1 *2 *3 *1) (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-4057 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1180 *5 *6 *7 *3)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)))) (-4056 (*1 *2 *3 *1) (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-4055 (*1 *2 *3 *1) (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-4054 (*1 *2 *3 *1) (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-4053 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-622 *7))) (-4 *1 (-1180 *4 *5 *6 *7)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-4056 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-4202 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1180 *5 *6 *7 *2)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *2 (-1039 *5 *6 *7)))) (-4052 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-622 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1180 *5 *6 *7 *8)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)))) (-4051 (*1 *2 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4050 (*1 *2 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4049 (*1 *2 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4048 (*1 *2 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4047 (*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))) (-4046 (*1 *2 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1180 *4 *5 *6 *7)))) (-4044 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-622 (-2 (|:| -4221 *1) (|:| -1818 (-622 *7))))) (-5 *3 (-622 *7)) (-4 *1 (-1180 *4 *5 *6 *7)))) (-4160 (*1 *2 *1) (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4157 (*1 *2 *1) (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4158 (*1 *1 *1) (|partial| -12 (-4 *1 (-1180 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5)))) (-4293 (*1 *2 *3 *1) (-12 (-4 *1 (-1180 *4 *5 *3 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))) (-4073 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1180 *4 *5 *3 *2)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *2 (-1039 *4 *5 *3)))) (-4042 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4128 (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *5 (-363)) (-5 *2 (-751)))))
-(-13 (-952 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -4062 ((-112) $ $)) (-15 -4061 ((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |t#4|))) "failed") (-622 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4061 ((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |t#4|))) "failed") (-622 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4060 ((-622 |t#4|) $)) (-15 -4307 ((-751) $)) (-15 -4059 ((-2 (|:| -4221 (-622 |t#4|)) (|:| -1818 (-622 |t#4|))) $)) (-15 -4058 ((-112) |t#4| $)) (-15 -4058 ((-112) $)) (-15 -4057 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4056 ((-112) |t#4| $)) (-15 -4055 ((-112) |t#4| $)) (-15 -4054 ((-112) |t#4| $)) (-15 -4053 ((-112) $ (-1 (-112) |t#4| (-622 |t#4|)))) (-15 -4056 ((-112) $)) (-15 -4055 ((-112) $)) (-15 -4054 ((-112) $)) (-15 -4202 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4052 ((-622 |t#4|) (-622 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4051 (|t#4| |t#4| $)) (-15 -4050 (|t#4| |t#4| $)) (-15 -4049 (|t#4| |t#4| $)) (-15 -4048 (|t#4| |t#4| $)) (-15 -4047 ($ $)) (-15 -4046 (|t#4| |t#4| $)) (-15 -4045 ((-622 $) (-622 |t#4|))) (-15 -4044 ((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |t#4|)))) (-622 |t#4|))) (-15 -4160 ((-3 |t#4| "failed") $)) (-15 -4157 ((-3 |t#4| "failed") $)) (-15 -4158 ((-3 $ "failed") $)) (-15 -4043 ((-622 |t#3|) $)) (-15 -4293 ((-112) |t#3| $)) (-15 -4073 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4042 ((-3 $ "failed") $ |t#4|)) (-15 -4128 ($ $ |t#4|)) (IF (|has| |t#3| (-363)) (-15 -4041 ((-751) $)) |%noBranch|)))
-(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1074) . T) ((-1185) . T))
-((-4068 (($ |#1| (-622 (-622 (-919 (-221)))) (-112)) 19)) (-4067 (((-112) $ (-112)) 18)) (-4066 (((-112) $) 17)) (-4064 (((-622 (-622 (-919 (-221)))) $) 13)) (-4063 ((|#1| $) 8)) (-4065 (((-112) $) 15)))
-(((-1181 |#1|) (-10 -8 (-15 -4063 (|#1| $)) (-15 -4064 ((-622 (-622 (-919 (-221)))) $)) (-15 -4065 ((-112) $)) (-15 -4066 ((-112) $)) (-15 -4067 ((-112) $ (-112))) (-15 -4068 ($ |#1| (-622 (-622 (-919 (-221)))) (-112)))) (-950)) (T -1181))
-((-4068 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-112)) (-5 *1 (-1181 *2)) (-4 *2 (-950)))) (-4067 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-4063 (*1 *2 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-950)))))
-(-10 -8 (-15 -4063 (|#1| $)) (-15 -4064 ((-622 (-622 (-919 (-221)))) $)) (-15 -4065 ((-112) $)) (-15 -4066 ((-112) $)) (-15 -4067 ((-112) $ (-112))) (-15 -4068 ($ |#1| (-622 (-622 (-919 (-221)))) (-112))))
-((-4070 (((-919 (-221)) (-919 (-221))) 25)) (-4069 (((-919 (-221)) (-221) (-221) (-221) (-221)) 10)) (-4072 (((-622 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-622 (-622 (-221)))) 37)) (-4196 (((-221) (-919 (-221)) (-919 (-221))) 21)) (-4194 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 22)) (-4071 (((-622 (-622 (-221))) (-538)) 31)) (-4197 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 20)) (-4199 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 19)) (* (((-919 (-221)) (-221) (-919 (-221))) 18)))
-(((-1182) (-10 -7 (-15 -4069 ((-919 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-919 (-221)) (-221) (-919 (-221)))) (-15 -4199 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4197 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4196 ((-221) (-919 (-221)) (-919 (-221)))) (-15 -4194 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4070 ((-919 (-221)) (-919 (-221)))) (-15 -4071 ((-622 (-622 (-221))) (-538))) (-15 -4072 ((-622 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-622 (-622 (-221))))))) (T -1182))
-((-4072 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-622 (-622 (-221)))) (-5 *4 (-221)) (-5 *2 (-622 (-919 *4))) (-5 *1 (-1182)) (-5 *3 (-919 *4)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *2 (-622 (-622 (-221)))) (-5 *1 (-1182)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-4194 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-4196 (*1 *2 *3 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-221)) (-5 *1 (-1182)))) (-4197 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-919 (-221))) (-5 *3 (-221)) (-5 *1 (-1182)))) (-4069 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)) (-5 *3 (-221)))))
-(-10 -7 (-15 -4069 ((-919 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-919 (-221)) (-221) (-919 (-221)))) (-15 -4199 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4197 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4196 ((-221) (-919 (-221)) (-919 (-221)))) (-15 -4194 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4070 ((-919 (-221)) (-919 (-221)))) (-15 -4071 ((-622 (-622 (-221))) (-538))) (-15 -4072 ((-622 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-622 (-622 (-221))))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4073 ((|#1| $ (-751)) 13)) (-4193 (((-751) $) 12)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4317 (((-934 |#1|) $) 10) (($ (-934 |#1|)) 9) (((-840) $) 23 (|has| |#1| (-597 (-840))))) (-3387 (((-112) $ $) 16 (|has| |#1| (-1074)))))
-(((-1183 |#1|) (-13 (-597 (-934 |#1|)) (-10 -8 (-15 -4317 ($ (-934 |#1|))) (-15 -4073 (|#1| $ (-751))) (-15 -4193 ((-751) $)) (IF (|has| |#1| (-597 (-840))) (-6 (-597 (-840))) |%noBranch|) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|))) (-1185)) (T -1183))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-934 *3)) (-4 *3 (-1185)) (-5 *1 (-1183 *3)))) (-4073 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-1183 *2)) (-4 *2 (-1185)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1183 *3)) (-4 *3 (-1185)))))
-(-13 (-597 (-934 |#1|)) (-10 -8 (-15 -4317 ($ (-934 |#1|))) (-15 -4073 (|#1| $ (-751))) (-15 -4193 ((-751) $)) (IF (|has| |#1| (-597 (-840))) (-6 (-597 (-840))) |%noBranch|) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|)))
-((-4076 (((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)) (-538)) 80)) (-4074 (((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|))) 74)) (-4075 (((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|))) 59)))
-(((-1184 |#1|) (-10 -7 (-15 -4074 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)))) (-15 -4075 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)))) (-15 -4076 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)) (-538)))) (-345)) (T -1184))
-((-4076 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-4 *5 (-345)) (-5 *2 (-400 (-1143 (-1143 *5)))) (-5 *1 (-1184 *5)) (-5 *3 (-1143 (-1143 *5))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-400 (-1143 (-1143 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1143 (-1143 *4))))) (-4074 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-400 (-1143 (-1143 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1143 (-1143 *4))))))
-(-10 -7 (-15 -4074 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)))) (-15 -4075 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)))) (-15 -4076 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)) (-538))))
-NIL
-(((-1185) (-138)) (T -1185))
-NIL
-(-13 (-10 -7 (-6 -2368)))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 9) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-1186) (-1056)) (T -1186))
+((-3604 (*1 *1 *1) (-4 *1 (-1174))) (-3581 (*1 *1 *1) (-4 *1 (-1174))) (-3627 (*1 *1 *1) (-4 *1 (-1174))) (-3638 (*1 *1 *1) (-4 *1 (-1174))) (-3614 (*1 *1 *1) (-4 *1 (-1174))) (-3593 (*1 *1 *1) (-4 *1 (-1174))))
+(-13 (-10 -8 (-15 -3593 ($ $)) (-15 -3614 ($ $)) (-15 -3638 ($ $)) (-15 -3627 ($ $)) (-15 -3581 ($ $)) (-15 -3604 ($ $))))
+((-2598 ((|#2| |#2|) 88)) (-3301 (((-112) |#2|) 26)) (-3852 ((|#2| |#2|) 30)) (-3865 ((|#2| |#2|) 32)) (-2329 ((|#2| |#2| (-1149)) 83) ((|#2| |#2|) 84)) (-3311 (((-167 |#2|) |#2|) 28)) (-2586 ((|#2| |#2| (-1149)) 85) ((|#2| |#2|) 86)))
+(((-1175 |#1| |#2|) (-10 -7 (-15 -2329 (|#2| |#2|)) (-15 -2329 (|#2| |#2| (-1149))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1149))) (-15 -2598 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3865 (|#2| |#2|)) (-15 -3301 ((-112) |#2|)) (-15 -3311 ((-167 |#2|) |#2|))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -1175))
+((-3311 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-167 *3)) (-5 *1 (-1175 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-3301 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-112)) (-5 *1 (-1175 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-3865 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) (-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) (-2329 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))))
+(-10 -7 (-15 -2329 (|#2| |#2|)) (-15 -2329 (|#2| |#2| (-1149))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1149))) (-15 -2598 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3865 (|#2| |#2|)) (-15 -3301 ((-112) |#2|)) (-15 -3311 ((-167 |#2|) |#2|)))
+((-3344 ((|#4| |#4| |#1|) 27)) (-3919 ((|#4| |#4| |#1|) 28)))
+(((-1176 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3344 (|#4| |#4| |#1|)) (-15 -3919 (|#4| |#4| |#1|))) (-544) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|)) (T -1176))
+((-3919 (*1 *2 *2 *3) (-12 (-4 *3 (-544)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-3344 (*1 *2 *2 *3) (-12 (-4 *3 (-544)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))))
+(-10 -7 (-15 -3344 (|#4| |#4| |#1|)) (-15 -3919 (|#4| |#4| |#1|)))
+((-3521 ((|#2| |#2|) 133)) (-3540 ((|#2| |#2|) 130)) (-3512 ((|#2| |#2|) 121)) (-3531 ((|#2| |#2|) 118)) (-3503 ((|#2| |#2|) 126)) (-3493 ((|#2| |#2|) 114)) (-1967 ((|#2| |#2|) 43)) (-1955 ((|#2| |#2|) 94)) (-1933 ((|#2| |#2|) 74)) (-3483 ((|#2| |#2|) 128)) (-3473 ((|#2| |#2|) 116)) (-3606 ((|#2| |#2|) 138)) (-3584 ((|#2| |#2|) 136)) (-3595 ((|#2| |#2|) 137)) (-3572 ((|#2| |#2|) 135)) (-1943 ((|#2| |#2|) 148)) (-3617 ((|#2| |#2|) 30 (-12 (|has| |#2| (-598 (-868 |#1|))) (|has| |#2| (-862 |#1|)) (|has| |#1| (-598 (-868 |#1|))) (|has| |#1| (-862 |#1|))))) (-3386 ((|#2| |#2|) 75)) (-3397 ((|#2| |#2|) 139)) (-3455 ((|#2| |#2|) 140)) (-3462 ((|#2| |#2|) 127)) (-3450 ((|#2| |#2|) 115)) (-3437 ((|#2| |#2|) 134)) (-3561 ((|#2| |#2|) 132)) (-3427 ((|#2| |#2|) 122)) (-3552 ((|#2| |#2|) 120)) (-3415 ((|#2| |#2|) 124)) (-3407 ((|#2| |#2|) 112)))
+(((-1177 |#1| |#2|) (-10 -7 (-15 -3455 (|#2| |#2|)) (-15 -1933 (|#2| |#2|)) (-15 -1943 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -1967 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3397 (|#2| |#2|)) (-15 -3407 (|#2| |#2|)) (-15 -3415 (|#2| |#2|)) (-15 -3427 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -3462 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -3521 (|#2| |#2|)) (-15 -3531 (|#2| |#2|)) (-15 -3540 (|#2| |#2|)) (-15 -3552 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -3572 (|#2| |#2|)) (-15 -3584 (|#2| |#2|)) (-15 -3595 (|#2| |#2|)) (-15 -3606 (|#2| |#2|)) (IF (|has| |#1| (-862 |#1|)) (IF (|has| |#1| (-598 (-868 |#1|))) (IF (|has| |#2| (-598 (-868 |#1|))) (IF (|has| |#2| (-862 |#1|)) (-15 -3617 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-827) (-446)) (-13 (-425 |#1|) (-1171))) (T -1177))
+((-3617 (*1 *2 *2) (-12 (-4 *3 (-598 (-868 *3))) (-4 *3 (-862 *3)) (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-598 (-868 *3))) (-4 *2 (-862 *3)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3606 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3595 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3584 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3572 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3561 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3552 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3540 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3531 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3521 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3512 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3427 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3415 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3407 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3397 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-1967 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-1955 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-1943 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))))
+(-10 -7 (-15 -3455 (|#2| |#2|)) (-15 -1933 (|#2| |#2|)) (-15 -1943 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -1967 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3397 (|#2| |#2|)) (-15 -3407 (|#2| |#2|)) (-15 -3415 (|#2| |#2|)) (-15 -3427 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -3462 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -3521 (|#2| |#2|)) (-15 -3531 (|#2| |#2|)) (-15 -3540 (|#2| |#2|)) (-15 -3552 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -3572 (|#2| |#2|)) (-15 -3584 (|#2| |#2|)) (-15 -3595 (|#2| |#2|)) (-15 -3606 (|#2| |#2|)) (IF (|has| |#1| (-862 |#1|)) (IF (|has| |#1| (-598 (-868 |#1|))) (IF (|has| |#2| (-598 (-868 |#1|))) (IF (|has| |#2| (-862 |#1|)) (-15 -3617 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2656 (((-112) |#5| $) 60) (((-112) $) 102)) (-3748 ((|#5| |#5| $) 75)) (-3488 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3757 (((-625 |#5|) (-625 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-1893 (((-3 $ "failed") (-625 |#5|)) 126)) (-2936 (((-3 $ "failed") $) 112)) (-3720 ((|#5| |#5| $) 94)) (-2668 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-3699 ((|#5| |#5| $) 98)) (-2163 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-2689 (((-2 (|:| -1387 (-625 |#5|)) (|:| -2508 (-625 |#5|))) $) 55)) (-2678 (((-112) |#5| $) 58) (((-112) $) 103)) (-3565 ((|#4| $) 108)) (-1437 (((-3 |#5| "failed") $) 110)) (-2699 (((-625 |#5|) $) 49)) (-3777 (((-112) |#5| $) 67) (((-112) $) 107)) (-3727 ((|#5| |#5| $) 81)) (-2719 (((-112) $ $) 27)) (-3788 (((-112) |#5| $) 63) (((-112) $) 105)) (-3737 ((|#5| |#5| $) 78)) (-2924 (((-3 |#5| "failed") $) 109)) (-2147 (($ $ |#5|) 127)) (-4276 (((-751) $) 52)) (-1695 (($ (-625 |#5|)) 124)) (-3718 (($ $ |#4|) 122)) (-2595 (($ $ |#4|) 121)) (-3709 (($ $) 120)) (-1683 (((-839) $) NIL) (((-625 |#5|) $) 113)) (-3647 (((-751) $) 130)) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-3767 (((-112) $ (-1 (-112) |#5| (-625 |#5|))) 100)) (-3669 (((-625 |#4|) $) 115)) (-4168 (((-112) |#4| $) 118)) (-2281 (((-112) $ $) 19)))
+(((-1178 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3647 ((-751) |#1|)) (-15 -2147 (|#1| |#1| |#5|)) (-15 -3488 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4168 ((-112) |#4| |#1|)) (-15 -3669 ((-625 |#4|) |#1|)) (-15 -2936 ((-3 |#1| "failed") |#1|)) (-15 -1437 ((-3 |#5| "failed") |#1|)) (-15 -2924 ((-3 |#5| "failed") |#1|)) (-15 -3699 (|#5| |#5| |#1|)) (-15 -3709 (|#1| |#1|)) (-15 -3720 (|#5| |#5| |#1|)) (-15 -3727 (|#5| |#5| |#1|)) (-15 -3737 (|#5| |#5| |#1|)) (-15 -3748 (|#5| |#5| |#1|)) (-15 -3757 ((-625 |#5|) (-625 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2163 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3777 ((-112) |#1|)) (-15 -3788 ((-112) |#1|)) (-15 -2656 ((-112) |#1|)) (-15 -3767 ((-112) |#1| (-1 (-112) |#5| (-625 |#5|)))) (-15 -3777 ((-112) |#5| |#1|)) (-15 -3788 ((-112) |#5| |#1|)) (-15 -2656 ((-112) |#5| |#1|)) (-15 -2668 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2678 ((-112) |#1|)) (-15 -2678 ((-112) |#5| |#1|)) (-15 -2689 ((-2 (|:| -1387 (-625 |#5|)) (|:| -2508 (-625 |#5|))) |#1|)) (-15 -4276 ((-751) |#1|)) (-15 -2699 ((-625 |#5|) |#1|)) (-15 -2709 ((-3 (-2 (|:| |bas| |#1|) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2709 ((-3 (-2 (|:| |bas| |#1|) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2719 ((-112) |#1| |#1|)) (-15 -3718 (|#1| |#1| |#4|)) (-15 -2595 (|#1| |#1| |#4|)) (-15 -3565 (|#4| |#1|)) (-15 -1893 ((-3 |#1| "failed") (-625 |#5|))) (-15 -1683 ((-625 |#5|) |#1|)) (-15 -1695 (|#1| (-625 |#5|))) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3488 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-1179 |#2| |#3| |#4| |#5|) (-544) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -1178))
+NIL
+(-10 -8 (-15 -3647 ((-751) |#1|)) (-15 -2147 (|#1| |#1| |#5|)) (-15 -3488 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4168 ((-112) |#4| |#1|)) (-15 -3669 ((-625 |#4|) |#1|)) (-15 -2936 ((-3 |#1| "failed") |#1|)) (-15 -1437 ((-3 |#5| "failed") |#1|)) (-15 -2924 ((-3 |#5| "failed") |#1|)) (-15 -3699 (|#5| |#5| |#1|)) (-15 -3709 (|#1| |#1|)) (-15 -3720 (|#5| |#5| |#1|)) (-15 -3727 (|#5| |#5| |#1|)) (-15 -3737 (|#5| |#5| |#1|)) (-15 -3748 (|#5| |#5| |#1|)) (-15 -3757 ((-625 |#5|) (-625 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2163 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3777 ((-112) |#1|)) (-15 -3788 ((-112) |#1|)) (-15 -2656 ((-112) |#1|)) (-15 -3767 ((-112) |#1| (-1 (-112) |#5| (-625 |#5|)))) (-15 -3777 ((-112) |#5| |#1|)) (-15 -3788 ((-112) |#5| |#1|)) (-15 -2656 ((-112) |#5| |#1|)) (-15 -2668 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2678 ((-112) |#1|)) (-15 -2678 ((-112) |#5| |#1|)) (-15 -2689 ((-2 (|:| -1387 (-625 |#5|)) (|:| -2508 (-625 |#5|))) |#1|)) (-15 -4276 ((-751) |#1|)) (-15 -2699 ((-625 |#5|) |#1|)) (-15 -2709 ((-3 (-2 (|:| |bas| |#1|) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2709 ((-3 (-2 (|:| |bas| |#1|) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2719 ((-112) |#1| |#1|)) (-15 -3718 (|#1| |#1| |#4|)) (-15 -2595 (|#1| |#1| |#4|)) (-15 -3565 (|#4| |#1|)) (-15 -1893 ((-3 |#1| "failed") (-625 |#5|))) (-15 -1683 ((-625 |#5|) |#1|)) (-15 -1695 (|#1| (-625 |#5|))) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3488 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) 85)) (-3690 (((-625 $) (-625 |#4|)) 86)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2936 (((-3 $ "failed") $) 82)) (-3720 ((|#4| |#4| $) 89)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3699 ((|#4| |#4| $) 87)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) 105)) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) 104) (((-112) $) 103)) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-1437 (((-3 |#4| "failed") $) 83)) (-2699 (((-625 |#4|) $) 107)) (-3777 (((-112) |#4| $) 99) (((-112) $) 95)) (-3727 ((|#4| |#4| $) 90)) (-2719 (((-112) $ $) 110)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) 100) (((-112) $) 96)) (-3737 ((|#4| |#4| $) 91)) (-2831 (((-1093) $) 10)) (-2924 (((-3 |#4| "failed") $) 84)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3657 (((-3 $ "failed") $ |#4|) 78)) (-2147 (($ $ |#4|) 77)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-4276 (((-751) $) 106)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-3709 (($ $) 88)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-3647 (((-751) $) 76 (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) 98)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) 81)) (-4168 (((-112) |#3| $) 80)) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353)))))
+(((-1179 |#1| |#2| |#3| |#4|) (-138) (-544) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1179))
+((-2719 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-2709 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1549 (-625 *8)))) (-5 *3 (-625 *8)) (-4 *1 (-1179 *5 *6 *7 *8)))) (-2709 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1549 (-625 *9)))) (-5 *3 (-625 *9)) (-4 *1 (-1179 *6 *7 *8 *9)))) (-2699 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *6)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-751)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-2 (|:| -1387 (-625 *6)) (|:| -2508 (-625 *6)))))) (-2678 (*1 *2 *3 *1) (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-2678 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-2668 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1179 *5 *6 *7 *3)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)))) (-2656 (*1 *2 *3 *1) (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3788 (*1 *2 *3 *1) (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3777 (*1 *2 *3 *1) (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3767 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-625 *7))) (-4 *1 (-1179 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-2163 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1179 *5 *6 *7 *2)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *2 (-1039 *5 *6 *7)))) (-3757 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-625 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1179 *5 *6 *7 *8)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)))) (-3748 (*1 *2 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3737 (*1 *2 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3727 (*1 *2 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3720 (*1 *2 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3709 (*1 *1 *1) (-12 (-4 *1 (-1179 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))) (-3699 (*1 *2 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1179 *4 *5 *6 *7)))) (-3680 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-625 (-2 (|:| -1387 *1) (|:| -2508 (-625 *7))))) (-5 *3 (-625 *7)) (-4 *1 (-1179 *4 *5 *6 *7)))) (-2924 (*1 *2 *1) (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-1437 (*1 *2 *1) (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-2936 (*1 *1 *1) (|partial| -12 (-4 *1 (-1179 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5)))) (-4168 (*1 *2 *3 *1) (-12 (-4 *1 (-1179 *4 *5 *3 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))) (-3488 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1179 *4 *5 *3 *2)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *2 (-1039 *4 *5 *3)))) (-3657 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *5 (-363)) (-5 *2 (-751)))))
+(-13 (-952 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2719 ((-112) $ $)) (-15 -2709 ((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |t#4|))) "failed") (-625 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2709 ((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |t#4|))) "failed") (-625 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2699 ((-625 |t#4|) $)) (-15 -4276 ((-751) $)) (-15 -2689 ((-2 (|:| -1387 (-625 |t#4|)) (|:| -2508 (-625 |t#4|))) $)) (-15 -2678 ((-112) |t#4| $)) (-15 -2678 ((-112) $)) (-15 -2668 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2656 ((-112) |t#4| $)) (-15 -3788 ((-112) |t#4| $)) (-15 -3777 ((-112) |t#4| $)) (-15 -3767 ((-112) $ (-1 (-112) |t#4| (-625 |t#4|)))) (-15 -2656 ((-112) $)) (-15 -3788 ((-112) $)) (-15 -3777 ((-112) $)) (-15 -2163 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3757 ((-625 |t#4|) (-625 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3748 (|t#4| |t#4| $)) (-15 -3737 (|t#4| |t#4| $)) (-15 -3727 (|t#4| |t#4| $)) (-15 -3720 (|t#4| |t#4| $)) (-15 -3709 ($ $)) (-15 -3699 (|t#4| |t#4| $)) (-15 -3690 ((-625 $) (-625 |t#4|))) (-15 -3680 ((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |t#4|)))) (-625 |t#4|))) (-15 -2924 ((-3 |t#4| "failed") $)) (-15 -1437 ((-3 |t#4| "failed") $)) (-15 -2936 ((-3 $ "failed") $)) (-15 -3669 ((-625 |t#3|) $)) (-15 -4168 ((-112) |t#3| $)) (-15 -3488 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3657 ((-3 $ "failed") $ |t#4|)) (-15 -2147 ($ $ |t#4|)) (IF (|has| |t#3| (-363)) (-15 -3647 ((-751) $)) |%noBranch|)))
+(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1073) . T) ((-1186) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1149)) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-4098 (((-928 |#1|) $ (-751)) 17) (((-928 |#1|) $ (-751) (-751)) NIL)) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $ (-1149)) NIL) (((-751) $ (-1149) (-751)) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4201 (((-112) $) NIL)) (-3957 (($ $ (-625 (-1149)) (-625 (-524 (-1149)))) NIL) (($ $ (-1149) (-524 (-1149))) NIL) (($ |#1| (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2481 (($ $ (-1149)) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-3626 (($ (-1 $) (-1149) |#1|) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2147 (($ $ (-751)) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (($ $ (-1149) $) NIL) (($ $ (-625 (-1149)) (-625 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL)) (-3072 (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-4276 (((-524 (-1149)) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-544))) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-1149)) NIL) (($ (-928 |#1|)) NIL)) (-3637 ((|#1| $ (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (((-928 |#1|) $ (-751)) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1180 |#1|) (-13 (-721 |#1| (-1149)) (-10 -8 (-15 -3637 ((-928 |#1|) $ (-751))) (-15 -1683 ($ (-1149))) (-15 -1683 ($ (-928 |#1|))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $ (-1149) |#1|)) (-15 -3626 ($ (-1 $) (-1149) |#1|))) |%noBranch|))) (-1025)) (T -1180))
+((-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-928 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-1025)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1180 *3)) (-4 *3 (-1025)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-5 *1 (-1180 *3)))) (-2481 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *1 (-1180 *3)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)))) (-3626 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1180 *4))) (-5 *3 (-1149)) (-5 *1 (-1180 *4)) (-4 *4 (-38 (-402 (-552)))) (-4 *4 (-1025)))))
+(-13 (-721 |#1| (-1149)) (-10 -8 (-15 -3637 ((-928 |#1|) $ (-751))) (-15 -1683 ($ (-1149))) (-15 -1683 ($ (-928 |#1|))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $ (-1149) |#1|)) (-15 -3626 ($ (-1 $) (-1149) |#1|))) |%noBranch|)))
+((-2776 (($ |#1| (-625 (-625 (-919 (-221)))) (-112)) 19)) (-2766 (((-112) $ (-112)) 18)) (-2756 (((-112) $) 17)) (-2738 (((-625 (-625 (-919 (-221)))) $) 13)) (-2728 ((|#1| $) 8)) (-2747 (((-112) $) 15)))
+(((-1181 |#1|) (-10 -8 (-15 -2728 (|#1| $)) (-15 -2738 ((-625 (-625 (-919 (-221)))) $)) (-15 -2747 ((-112) $)) (-15 -2756 ((-112) $)) (-15 -2766 ((-112) $ (-112))) (-15 -2776 ($ |#1| (-625 (-625 (-919 (-221)))) (-112)))) (-950)) (T -1181))
+((-2776 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-112)) (-5 *1 (-1181 *2)) (-4 *2 (-950)))) (-2766 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-2738 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-2728 (*1 *2 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-950)))))
+(-10 -8 (-15 -2728 (|#1| $)) (-15 -2738 ((-625 (-625 (-919 (-221)))) $)) (-15 -2747 ((-112) $)) (-15 -2756 ((-112) $)) (-15 -2766 ((-112) $ (-112))) (-15 -2776 ($ |#1| (-625 (-625 (-919 (-221)))) (-112))))
+((-2787 (((-919 (-221)) (-919 (-221))) 25)) (-3582 (((-919 (-221)) (-221) (-221) (-221) (-221)) 10)) (-2807 (((-625 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-625 (-625 (-221)))) 37)) (-1443 (((-221) (-919 (-221)) (-919 (-221))) 21)) (-1431 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 22)) (-2796 (((-625 (-625 (-221))) (-552)) 31)) (-2393 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 20)) (-2382 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 19)) (* (((-919 (-221)) (-221) (-919 (-221))) 18)))
+(((-1182) (-10 -7 (-15 -3582 ((-919 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-919 (-221)) (-221) (-919 (-221)))) (-15 -2382 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -2393 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -1443 ((-221) (-919 (-221)) (-919 (-221)))) (-15 -1431 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -2787 ((-919 (-221)) (-919 (-221)))) (-15 -2796 ((-625 (-625 (-221))) (-552))) (-15 -2807 ((-625 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-625 (-625 (-221))))))) (T -1182))
+((-2807 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-625 (-625 (-221)))) (-5 *4 (-221)) (-5 *2 (-625 (-919 *4))) (-5 *1 (-1182)) (-5 *3 (-919 *4)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-625 (-625 (-221)))) (-5 *1 (-1182)))) (-2787 (*1 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-1431 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-1443 (*1 *2 *3 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-221)) (-5 *1 (-1182)))) (-2393 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-2382 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-919 (-221))) (-5 *3 (-221)) (-5 *1 (-1182)))) (-3582 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)) (-5 *3 (-221)))))
+(-10 -7 (-15 -3582 ((-919 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-919 (-221)) (-221) (-919 (-221)))) (-15 -2382 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -2393 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -1443 ((-221) (-919 (-221)) (-919 (-221)))) (-15 -1431 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -2787 ((-919 (-221)) (-919 (-221)))) (-15 -2796 ((-625 (-625 (-221))) (-552))) (-15 -2807 ((-625 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-625 (-625 (-221))))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3488 ((|#1| $ (-751)) 13)) (-3456 (((-751) $) 12)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1683 (((-934 |#1|) $) 10) (($ (-934 |#1|)) 9) (((-839) $) 23 (|has| |#1| (-597 (-839))))) (-2281 (((-112) $ $) 16 (|has| |#1| (-1073)))))
+(((-1183 |#1|) (-13 (-597 (-934 |#1|)) (-10 -8 (-15 -1683 ($ (-934 |#1|))) (-15 -3488 (|#1| $ (-751))) (-15 -3456 ((-751) $)) (IF (|has| |#1| (-597 (-839))) (-6 (-597 (-839))) |%noBranch|) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|))) (-1186)) (T -1183))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-934 *3)) (-4 *3 (-1186)) (-5 *1 (-1183 *3)))) (-3488 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-1183 *2)) (-4 *2 (-1186)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1183 *3)) (-4 *3 (-1186)))))
+(-13 (-597 (-934 |#1|)) (-10 -8 (-15 -1683 ($ (-934 |#1|))) (-15 -3488 (|#1| $ (-751))) (-15 -3456 ((-751) $)) (IF (|has| |#1| (-597 (-839))) (-6 (-597 (-839))) |%noBranch|) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|)))
+((-2844 (((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)) (-552)) 80)) (-2819 (((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|))) 74)) (-2833 (((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|))) 59)))
+(((-1184 |#1|) (-10 -7 (-15 -2819 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)))) (-15 -2833 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)))) (-15 -2844 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)) (-552)))) (-344)) (T -1184))
+((-2844 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *5 (-344)) (-5 *2 (-413 (-1145 (-1145 *5)))) (-5 *1 (-1184 *5)) (-5 *3 (-1145 (-1145 *5))))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1145 (-1145 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1145 (-1145 *4))))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1145 (-1145 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1145 (-1145 *4))))))
+(-10 -7 (-15 -2819 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)))) (-15 -2833 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)))) (-15 -2844 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)) (-552))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 9) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-1185) (-1056)) (T -1185))
NIL
(-1056)
-((-4080 (((-112)) 15)) (-4077 (((-1237) (-622 |#1|) (-622 |#1|)) 19) (((-1237) (-622 |#1|)) 20)) (-4082 (((-112) |#1| |#1|) 32 (|has| |#1| (-827)))) (-4079 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-4081 ((|#1| (-622 |#1|)) 33 (|has| |#1| (-827))) ((|#1| (-622 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-4078 (((-2 (|:| -3580 (-622 |#1|)) (|:| -3579 (-622 |#1|)))) 17)))
-(((-1187 |#1|) (-10 -7 (-15 -4077 ((-1237) (-622 |#1|))) (-15 -4077 ((-1237) (-622 |#1|) (-622 |#1|))) (-15 -4078 ((-2 (|:| -3580 (-622 |#1|)) (|:| -3579 (-622 |#1|))))) (-15 -4079 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4079 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4081 (|#1| (-622 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4080 ((-112))) (IF (|has| |#1| (-827)) (PROGN (-15 -4081 (|#1| (-622 |#1|))) (-15 -4082 ((-112) |#1| |#1|))) |%noBranch|)) (-1074)) (T -1187))
-((-4082 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-827)) (-4 *3 (-1074)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-827)) (-5 *1 (-1187 *2)))) (-4080 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1074)))) (-4081 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1187 *2)) (-4 *2 (-1074)))) (-4079 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1074)) (-5 *2 (-112)) (-5 *1 (-1187 *3)))) (-4079 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1074)))) (-4078 (*1 *2) (-12 (-5 *2 (-2 (|:| -3580 (-622 *3)) (|:| -3579 (-622 *3)))) (-5 *1 (-1187 *3)) (-4 *3 (-1074)))) (-4077 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-5 *2 (-1237)) (-5 *1 (-1187 *4)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-5 *2 (-1237)) (-5 *1 (-1187 *4)))))
-(-10 -7 (-15 -4077 ((-1237) (-622 |#1|))) (-15 -4077 ((-1237) (-622 |#1|) (-622 |#1|))) (-15 -4078 ((-2 (|:| -3580 (-622 |#1|)) (|:| -3579 (-622 |#1|))))) (-15 -4079 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4079 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4081 (|#1| (-622 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4080 ((-112))) (IF (|has| |#1| (-827)) (PROGN (-15 -4081 (|#1| (-622 |#1|))) (-15 -4082 ((-112) |#1| |#1|))) |%noBranch|))
-((-4083 (((-1237) (-622 (-1149)) (-622 (-1149))) 13) (((-1237) (-622 (-1149))) 11)) (-4085 (((-1237)) 14)) (-4084 (((-2 (|:| -3579 (-622 (-1149))) (|:| -3580 (-622 (-1149))))) 18)))
-(((-1188) (-10 -7 (-15 -4083 ((-1237) (-622 (-1149)))) (-15 -4083 ((-1237) (-622 (-1149)) (-622 (-1149)))) (-15 -4084 ((-2 (|:| -3579 (-622 (-1149))) (|:| -3580 (-622 (-1149)))))) (-15 -4085 ((-1237))))) (T -1188))
-((-4085 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1188)))) (-4084 (*1 *2) (-12 (-5 *2 (-2 (|:| -3579 (-622 (-1149))) (|:| -3580 (-622 (-1149))))) (-5 *1 (-1188)))) (-4083 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188)))))
-(-10 -7 (-15 -4083 ((-1237) (-622 (-1149)))) (-15 -4083 ((-1237) (-622 (-1149)) (-622 (-1149)))) (-15 -4084 ((-2 (|:| -3579 (-622 (-1149))) (|:| -3580 (-622 (-1149)))))) (-15 -4085 ((-1237))))
-((-4134 (($ $) 17)) (-4086 (((-112) $) 24)))
-(((-1189 |#1|) (-10 -8 (-15 -4134 (|#1| |#1|)) (-15 -4086 ((-112) |#1|))) (-1190)) (T -1189))
-NIL
-(-10 -8 (-15 -4134 (|#1| |#1|)) (-15 -4086 ((-112) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 49)) (-4329 (((-400 $) $) 50)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-4086 (((-112) $) 51)) (-2502 (((-112) $) 30)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-4092 (((-400 $) $) 48)) (-3820 (((-3 $ "failed") $ $) 40)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24)))
+NIL
+(((-1186) (-138)) (T -1186))
+NIL
+(-13 (-10 -7 (-6 -3526)))
+((-2889 (((-112)) 15)) (-2856 (((-1237) (-625 |#1|) (-625 |#1|)) 19) (((-1237) (-625 |#1|)) 20)) (-2909 (((-112) |#1| |#1|) 32 (|has| |#1| (-827)))) (-2878 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-2899 ((|#1| (-625 |#1|)) 33 (|has| |#1| (-827))) ((|#1| (-625 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-2867 (((-2 (|:| -2811 (-625 |#1|)) (|:| -2800 (-625 |#1|)))) 17)))
+(((-1187 |#1|) (-10 -7 (-15 -2856 ((-1237) (-625 |#1|))) (-15 -2856 ((-1237) (-625 |#1|) (-625 |#1|))) (-15 -2867 ((-2 (|:| -2811 (-625 |#1|)) (|:| -2800 (-625 |#1|))))) (-15 -2878 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2878 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2899 (|#1| (-625 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2889 ((-112))) (IF (|has| |#1| (-827)) (PROGN (-15 -2899 (|#1| (-625 |#1|))) (-15 -2909 ((-112) |#1| |#1|))) |%noBranch|)) (-1073)) (T -1187))
+((-2909 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-827)) (-4 *3 (-1073)))) (-2899 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-827)) (-5 *1 (-1187 *2)))) (-2889 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1073)))) (-2899 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1187 *2)) (-4 *2 (-1073)))) (-2878 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1073)) (-5 *2 (-112)) (-5 *1 (-1187 *3)))) (-2878 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1073)))) (-2867 (*1 *2) (-12 (-5 *2 (-2 (|:| -2811 (-625 *3)) (|:| -2800 (-625 *3)))) (-5 *1 (-1187 *3)) (-4 *3 (-1073)))) (-2856 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-5 *2 (-1237)) (-5 *1 (-1187 *4)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-5 *2 (-1237)) (-5 *1 (-1187 *4)))))
+(-10 -7 (-15 -2856 ((-1237) (-625 |#1|))) (-15 -2856 ((-1237) (-625 |#1|) (-625 |#1|))) (-15 -2867 ((-2 (|:| -2811 (-625 |#1|)) (|:| -2800 (-625 |#1|))))) (-15 -2878 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2878 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2899 (|#1| (-625 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2889 ((-112))) (IF (|has| |#1| (-827)) (PROGN (-15 -2899 (|#1| (-625 |#1|))) (-15 -2909 ((-112) |#1| |#1|))) |%noBranch|))
+((-2919 (((-1237) (-625 (-1149)) (-625 (-1149))) 13) (((-1237) (-625 (-1149))) 11)) (-2941 (((-1237)) 14)) (-2931 (((-2 (|:| -2800 (-625 (-1149))) (|:| -2811 (-625 (-1149))))) 18)))
+(((-1188) (-10 -7 (-15 -2919 ((-1237) (-625 (-1149)))) (-15 -2919 ((-1237) (-625 (-1149)) (-625 (-1149)))) (-15 -2931 ((-2 (|:| -2800 (-625 (-1149))) (|:| -2811 (-625 (-1149)))))) (-15 -2941 ((-1237))))) (T -1188))
+((-2941 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1188)))) (-2931 (*1 *2) (-12 (-5 *2 (-2 (|:| -2800 (-625 (-1149))) (|:| -2811 (-625 (-1149))))) (-5 *1 (-1188)))) (-2919 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188)))))
+(-10 -7 (-15 -2919 ((-1237) (-625 (-1149)))) (-15 -2919 ((-1237) (-625 (-1149)) (-625 (-1149)))) (-15 -2931 ((-2 (|:| -2800 (-625 (-1149))) (|:| -2811 (-625 (-1149)))))) (-15 -2941 ((-1237))))
+((-2194 (($ $) 17)) (-2951 (((-112) $) 24)))
+(((-1189 |#1|) (-10 -8 (-15 -2194 (|#1| |#1|)) (-15 -2951 ((-112) |#1|))) (-1190)) (T -1189))
+NIL
+(-10 -8 (-15 -2194 (|#1| |#1|)) (-15 -2951 ((-112) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 49)) (-1330 (((-413 $) $) 50)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-2951 (((-112) $) 51)) (-3650 (((-112) $) 30)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3824 (((-413 $) $) 48)) (-2802 (((-3 $ "failed") $ $) 40)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24)))
(((-1190) (-138)) (T -1190))
-((-4086 (*1 *2 *1) (-12 (-4 *1 (-1190)) (-5 *2 (-112)))) (-4329 (*1 *2 *1) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1190)))) (-4134 (*1 *1 *1) (-4 *1 (-1190))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1190)))))
-(-13 (-446) (-10 -8 (-15 -4086 ((-112) $)) (-15 -4329 ((-400 $) $)) (-15 -4134 ($ $)) (-15 -4092 ((-400 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-1221 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 10)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-2178 (($ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-2176 (((-112) $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-4130 (($ $ (-538)) NIL) (($ $ (-538) (-538)) NIL)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) NIL)) (-4091 (((-1221 |#1| |#2| |#3|) $) NIL)) (-4088 (((-3 (-1221 |#1| |#2| |#3|) "failed") $) NIL)) (-4089 (((-1221 |#1| |#2| |#3|) $) NIL)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3986 (((-538) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-1221 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-3 (-402 (-538)) #2#) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358)))) (((-3 (-538) #2#) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))))) (-3507 (((-1221 |#1| |#2| |#3|) $) NIL) (((-1149) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-402 (-538)) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358)))) (((-538) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))))) (-4090 (($ $) NIL) (($ (-538) $) NIL)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-1221 |#1| |#2| |#3|)) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-1221 |#1| |#2| |#3|))) (|:| |vec| (-1231 (-1221 |#1| |#2| |#3|)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-621 (-538))) (|has| |#1| (-358)))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-621 (-538))) (|has| |#1| (-358))))) (-3821 (((-3 $ "failed") $) NIL)) (-4087 (((-402 (-922 |#1|)) $ (-538)) NIL (|has| |#1| (-545))) (((-402 (-922 |#1|)) $ (-538) (-538)) NIL (|has| |#1| (-545)))) (-3327 (($) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3537 (((-112) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-862 (-538))) (|has| |#1| (-358)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-862 (-373))) (|has| |#1| (-358))))) (-4131 (((-538) $) NIL) (((-538) $ (-538)) NIL)) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL (|has| |#1| (-358)))) (-3331 (((-1221 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3803 (((-3 $ "failed") $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))))) (-3538 (((-112) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-4136 (($ $ (-895)) NIL)) (-4175 (($ (-1 |#1| (-538)) $) NIL)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-538)) 17) (($ $ (-1055) (-538)) NIL) (($ $ (-622 (-1055)) (-622 (-538))) NIL)) (-3677 (($ $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3678 (($ $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4138 (($ (-538) (-1221 |#1| |#2| |#3|)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) 25 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 26 (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3463 (($ $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3465 (((-1221 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-538)) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-538))))) (($ $ (-1149) (-1221 |#1| |#2| |#3|)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-507 (-1149) (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-1149)) (-622 (-1221 |#1| |#2| |#3|))) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-507 (-1149) (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-288 (-1221 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-288 (-1221 |#1| |#2| |#3|))) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-1221 |#1| |#2| |#3|)) (-622 (-1221 |#1| |#2| |#3|))) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-538)) NIL) (($ $ $) NIL (|has| (-538) (-1085))) (($ $ (-1221 |#1| |#2| |#3|)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-281 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-1 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1228 |#2|)) 24) (($ $ (-751)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) 23 (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-3328 (($ $) NIL (|has| |#1| (-358)))) (-3330 (((-1221 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-4307 (((-538) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4330 (((-527) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-598 (-527))) (|has| |#1| (-358)))) (((-373) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-996)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-996)) (|has| |#1| (-358)))) (((-866 (-373)) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-598 (-866 (-373)))) (|has| |#1| (-358)))) (((-866 (-538)) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-598 (-866 (-538)))) (|has| |#1| (-358))))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1221 |#1| |#2| |#3|)) NIL) (($ (-1228 |#2|)) 22) (($ (-1149)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (($ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545)))) (($ (-402 (-538))) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-538))))))) (-4040 ((|#1| $ (-538)) NIL)) (-3035 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 11)) (-3466 (((-1221 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-538)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3742 (($ $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2991 (($) 19 T CONST)) (-2997 (($) 15 T CONST)) (-3002 (($ $ (-1 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-2896 (((-112) $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2897 (((-112) $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3018 (((-112) $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358))) (($ (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 20)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1221 |#1| |#2| |#3|)) NIL (|has| |#1| (-358))) (($ (-1221 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-1191 |#1| |#2| |#3|) (-13 (-1195 |#1| (-1221 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1191))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))))
-(-13 (-1195 |#1| (-1221 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|)))
-((-4318 (((-1191 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1191 |#1| |#3| |#5|)) 23)))
-(((-1192 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4318 ((-1191 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1191 |#1| |#3| |#5|)))) (-1025) (-1025) (-1149) (-1149) |#1| |#2|) (T -1192))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5 *7 *9)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1191 *6 *8 *10)) (-5 *1 (-1192 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1149)))))
-(-10 -7 (-15 -4318 ((-1191 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1191 |#1| |#3| |#5|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ (-538)) 96) (($ $ (-538) (-538)) 95)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) 103)) (-3846 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 116 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 160 (|has| |#1| (-358)))) (-4329 (((-400 $) $) 161 (|has| |#1| (-358)))) (-3370 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3844 (($ $) 132 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) 171)) (-3848 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 118 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-2894 (($ $ $) 155 (|has| |#1| (-358)))) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-4087 (((-402 (-922 |#1|)) $ (-538)) 169 (|has| |#1| (-545))) (((-402 (-922 |#1|)) $ (-538) (-538)) 168 (|has| |#1| (-545)))) (-2893 (($ $ $) 154 (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 149 (|has| |#1| (-358)))) (-4086 (((-112) $) 162 (|has| |#1| (-358)))) (-3225 (((-112) $) 71)) (-3990 (($) 143 (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-538) $) 98) (((-538) $ (-538)) 97)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 114 (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) 99)) (-4175 (($ (-1 |#1| (-538)) $) 170)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 158 (|has| |#1| (-358)))) (-4297 (((-112) $) 60)) (-3226 (($ |#1| (-538)) 59) (($ $ (-1055) (-538)) 74) (($ $ (-622 (-1055)) (-622 (-538))) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-4302 (($ $) 140 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-2013 (($ (-622 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 163 (|has| |#1| (-358)))) (-4172 (($ $) 167 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 166 (-3891 (-12 (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-538))))) (-12 (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-538)))))))) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 148 (|has| |#1| (-358)))) (-3495 (($ (-622 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-4092 (((-400 $) $) 159 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 156 (|has| |#1| (-358)))) (-4128 (($ $ (-538)) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 150 (|has| |#1| (-358)))) (-4303 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-538)))))) (-1704 (((-751) $) 152 (|has| |#1| (-358)))) (-4159 ((|#1| $ (-538)) 102) (($ $ $) 79 (|has| (-538) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 153 (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (-4307 (((-538) $) 62)) (-3849 (($ $) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 120 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 128 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545)))) (-4040 ((|#1| $ (-538)) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-3852 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-3850 (($ $) 138 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 126 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-538)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 136 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 124 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 134 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 122 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 113 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538)))))))
-(((-1193 |#1|) (-138) (-1025)) (T -1193))
-((-4178 (*1 *1 *2) (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-4 *3 (-1025)) (-4 *1 (-1193 *3)))) (-4175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-538))) (-4 *1 (-1193 *3)) (-4 *3 (-1025)))) (-4087 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1193 *4)) (-4 *4 (-1025)) (-4 *4 (-545)) (-5 *2 (-402 (-922 *4))))) (-4087 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1193 *4)) (-4 *4 (-1025)) (-4 *4 (-545)) (-5 *2 (-402 (-922 *4))))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-1193 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))) (-4172 (*1 *1 *1 *2) (-3891 (-12 (-5 *2 (-1149)) (-4 *1 (-1193 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-538)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1193 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3417 ((-622 *2) *3))) (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538)))))))))
-(-13 (-1210 |t#1| (-538)) (-10 -8 (-15 -4178 ($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |t#1|))))) (-15 -4175 ($ (-1 |t#1| (-538)) $)) (IF (|has| |t#1| (-545)) (PROGN (-15 -4087 ((-402 (-922 |t#1|)) $ (-538))) (-15 -4087 ((-402 (-922 |t#1|)) $ (-538) (-538)))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $)) (IF (|has| |t#1| (-15 -4172 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3417 ((-622 (-1149)) |t#1|))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-936)) (IF (|has| |t#1| (-29 (-538))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-538)) . T) ((-25) . T) ((-38 #2=(-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-538) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-281 $ $) |has| (-538) (-1085)) ((-285) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-545) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-628 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) ((-949 |#1| #1# (-1055)) . T) ((-897) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-1031 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #1#) . T))
-((-3539 (((-112) $) 12)) (-3508 (((-3 |#3| #1="failed") $) 17) (((-3 (-1149) #1#) $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 (-538) #1#) $) NIL)) (-3507 ((|#3| $) 14) (((-1149) $) NIL) (((-402 (-538)) $) NIL) (((-538) $) NIL)))
-(((-1194 |#1| |#2| |#3|) (-10 -8 (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| #1#) |#1|)) (-15 -3539 ((-112) |#1|))) (-1195 |#2| |#3|) (-1025) (-1224 |#2|)) (T -1194))
-NIL
-(-10 -8 (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| #1#) |#1|)) (-15 -3539 ((-112) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3464 ((|#2| $) 228 (-3191 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ (-538)) 96) (($ $ (-538) (-538)) 95)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) 103)) (-4091 ((|#2| $) 264)) (-4088 (((-3 |#2| "failed") $) 260)) (-4089 ((|#2| $) 261)) (-3846 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 116 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 237 (-3191 (|has| |#2| (-886)) (|has| |#1| (-358))))) (-4134 (($ $) 160 (|has| |#1| (-358)))) (-4329 (((-400 $) $) 161 (|has| |#1| (-358)))) (-3370 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 234 (-3191 (|has| |#2| (-886)) (|has| |#1| (-358))))) (-1705 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3844 (($ $) 132 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-3986 (((-538) $) 246 (-3191 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) 171)) (-3848 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 118 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#2| #2="failed") $) 267) (((-3 (-538) #2#) $) 256 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#1| (-358)))) (((-3 (-402 (-538)) #2#) $) 254 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#1| (-358)))) (((-3 (-1149) #2#) $) 239 (-3191 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-3507 ((|#2| $) 266) (((-538) $) 257 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#1| (-358)))) (((-402 (-538)) $) 255 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#1| (-358)))) (((-1149) $) 240 (-3191 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-4090 (($ $) 263) (($ (-538) $) 262)) (-2894 (($ $ $) 155 (|has| |#1| (-358)))) (-4319 (($ $) 58)) (-2362 (((-669 |#2|) (-669 $)) 218 (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 217 (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 216 (-3191 (|has| |#2| (-621 (-538))) (|has| |#1| (-358)))) (((-669 (-538)) (-669 $)) 215 (-3191 (|has| |#2| (-621 (-538))) (|has| |#1| (-358))))) (-3821 (((-3 $ "failed") $) 32)) (-4087 (((-402 (-922 |#1|)) $ (-538)) 169 (|has| |#1| (-545))) (((-402 (-922 |#1|)) $ (-538) (-538)) 168 (|has| |#1| (-545)))) (-3327 (($) 230 (-3191 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-2893 (($ $ $) 154 (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 149 (|has| |#1| (-358)))) (-4086 (((-112) $) 162 (|has| |#1| (-358)))) (-3537 (((-112) $) 244 (-3191 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-3225 (((-112) $) 71)) (-3990 (($) 143 (|has| |#1| (-38 (-402 (-538)))))) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 222 (-3191 (|has| |#2| (-862 (-373))) (|has| |#1| (-358)))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 221 (-3191 (|has| |#2| (-862 (-538))) (|has| |#1| (-358))))) (-4131 (((-538) $) 98) (((-538) $ (-538)) 97)) (-2502 (((-112) $) 30)) (-3329 (($ $) 226 (|has| |#1| (-358)))) (-3331 ((|#2| $) 224 (|has| |#1| (-358)))) (-3344 (($ $ (-538)) 114 (|has| |#1| (-38 (-402 (-538)))))) (-3803 (((-3 $ "failed") $) 258 (-3191 (|has| |#2| (-1124)) (|has| |#1| (-358))))) (-3538 (((-112) $) 245 (-3191 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-4136 (($ $ (-895)) 99)) (-4175 (($ (-1 |#1| (-538)) $) 170)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) 158 (|has| |#1| (-358)))) (-4297 (((-112) $) 60)) (-3226 (($ |#1| (-538)) 59) (($ $ (-1055) (-538)) 74) (($ $ (-622 (-1055)) (-622 (-538))) 73)) (-3677 (($ $ $) 248 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-3678 (($ $ $) 249 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-4318 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-358)))) (-4302 (($ $) 140 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-2013 (($ (-622 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-4138 (($ (-538) |#2|) 265)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 163 (|has| |#1| (-358)))) (-4172 (($ $) 167 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 166 (-3891 (-12 (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-538))))) (-12 (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-538)))))))) (-3804 (($) 259 (-3191 (|has| |#2| (-1124)) (|has| |#1| (-358))) CONST)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 148 (|has| |#1| (-358)))) (-3495 (($ (-622 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-3463 (($ $) 229 (-3191 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-3465 ((|#2| $) 232 (-3191 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-3038 (((-400 (-1143 $)) (-1143 $)) 235 (-3191 (|has| |#2| (-886)) (|has| |#1| (-358))))) (-3039 (((-400 (-1143 $)) (-1143 $)) 236 (-3191 (|has| |#2| (-886)) (|has| |#1| (-358))))) (-4092 (((-400 $) $) 159 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 156 (|has| |#1| (-358)))) (-4128 (($ $ (-538)) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 150 (|has| |#1| (-358)))) (-4303 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-538))))) (($ $ (-1149) |#2|) 209 (-3191 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-622 (-1149)) (-622 |#2|)) 208 (-3191 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-622 (-288 |#2|))) 207 (-3191 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-288 |#2|)) 206 (-3191 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ |#2| |#2|) 205 (-3191 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-622 |#2|) (-622 |#2|)) 204 (-3191 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358))))) (-1704 (((-751) $) 152 (|has| |#1| (-358)))) (-4159 ((|#1| $ (-538)) 102) (($ $ $) 79 (|has| (-538) (-1085))) (($ $ |#2|) 203 (-3191 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-358))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 153 (|has| |#1| (-358)))) (-4170 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) 213 (|has| |#1| (-358))) (($ $ (-751)) 82 (-3891 (-3191 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) 80 (-3891 (-3191 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) 87 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) 86 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) 85 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) 84 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-3328 (($ $) 227 (|has| |#1| (-358)))) (-3330 ((|#2| $) 225 (|has| |#1| (-358)))) (-4307 (((-538) $) 62)) (-3849 (($ $) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 120 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 128 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-4330 (((-221) $) 243 (-3191 (|has| |#2| (-996)) (|has| |#1| (-358)))) (((-373) $) 242 (-3191 (|has| |#2| (-996)) (|has| |#1| (-358)))) (((-527) $) 241 (-3191 (|has| |#2| (-598 (-527))) (|has| |#1| (-358)))) (((-866 (-373)) $) 220 (-3191 (|has| |#2| (-598 (-866 (-373)))) (|has| |#1| (-358)))) (((-866 (-538)) $) 219 (-3191 (|has| |#2| (-598 (-866 (-538)))) (|has| |#1| (-358))))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 233 (-3191 (-3191 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#1| (-358))))) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1149)) 238 (-3191 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358)))) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545)))) (-4040 ((|#1| $ (-538)) 57)) (-3035 (((-3 $ "failed") $) 46 (-3891 (-3191 (-3891 (|has| |#2| (-143)) (-3191 (|has| $ (-143)) (|has| |#2| (-886)))) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-3466 ((|#2| $) 231 (-3191 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-3852 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-3850 (($ $) 138 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 126 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-538)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 136 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 124 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 134 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 122 (|has| |#1| (-38 (-402 (-538)))))) (-3742 (($ $) 247 (-3191 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) 211 (|has| |#1| (-358))) (($ $ (-751)) 83 (-3891 (-3191 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) 81 (-3891 (-3191 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) 91 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) 90 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) 89 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) 88 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-2896 (((-112) $ $) 251 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2897 (((-112) $ $) 252 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 250 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-3018 (((-112) $ $) 253 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358))) (($ |#2| |#2|) 223 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 113 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-358))) (($ |#2| $) 201 (|has| |#1| (-358))) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538)))))))
-(((-1195 |#1| |#2|) (-138) (-1025) (-1224 |t#1|)) (T -1195))
-((-4307 (*1 *2 *1) (-12 (-4 *1 (-1195 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1224 *3)) (-5 *2 (-538)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1195 *3 *2)) (-4 *2 (-1224 *3)))) (-4138 (*1 *1 *2 *3) (-12 (-5 *2 (-538)) (-4 *4 (-1025)) (-4 *1 (-1195 *4 *3)) (-4 *3 (-1224 *4)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3)))) (-4090 (*1 *1 *1) (-12 (-4 *1 (-1195 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1224 *2)))) (-4090 (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-4 *1 (-1195 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1224 *3)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3)))) (-4088 (*1 *2 *1) (|partial| -12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3)))))
-(-13 (-1193 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -4138 ($ (-538) |t#2|)) (-15 -4307 ((-538) $)) (-15 -4091 (|t#2| $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)) (-15 -4317 ($ |t#2|)) (-15 -4089 (|t#2| $)) (-15 -4088 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-358)) (-6 (-967 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-538)) . T) ((-25) . T) ((-38 #2=(-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-358)) ((-38 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-358)) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) -3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-598 (-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-996))) ((-598 (-373)) -12 (|has| |#1| (-358)) (|has| |#2| (-996))) ((-598 (-527)) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-527)))) ((-598 (-866 (-373))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-373))))) ((-598 (-866 (-538))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-538))))) ((-227 |#2|) |has| |#1| (-358)) ((-229) -3891 (|has| |#1| (-15 * (|#1| (-538) |#1|))) (-12 (|has| |#1| (-358)) (|has| |#2| (-229)))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-281 |#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) ((-281 $ $) |has| (-538) (-1085)) ((-285) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-358) |has| |#1| (-358)) ((-333 |#2|) |has| |#1| (-358)) ((-372 |#2|) |has| |#1| (-358)) ((-395 |#2|) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-507 (-1149) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|))) ((-507 |#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-545) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-628 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-628 |#1|) . T) ((-628 |#2|) |has| |#1| (-358)) ((-628 $) . T) ((-621 (-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-621 (-538)))) ((-621 |#2|) |has| |#1| (-358)) ((-698 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 |#2|) |has| |#1| (-358)) ((-698 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-707) . T) ((-771) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-772) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-774) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-777) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-800) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-825) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-827) -3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-827))) (-12 (|has| |#1| (-358)) (|has| |#2| (-800)))) ((-876 (-1149)) -3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149))))) ((-862 (-373)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-373)))) ((-862 (-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-538)))) ((-860 |#2|) |has| |#1| (-358)) ((-886) -12 (|has| |#1| (-358)) (|has| |#2| (-886))) ((-949 |#1| #1# (-1055)) . T) ((-897) |has| |#1| (-358)) ((-967 |#2|) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-996) -12 (|has| |#1| (-358)) (|has| |#2| (-996))) ((-1014 (-402 (-538))) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538)))) ((-1014 (-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538)))) ((-1014 (-1149)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))) ((-1014 |#2|) . T) ((-1031 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-1031 |#1|) . T) ((-1031 |#2|) |has| |#1| (-358)) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) -12 (|has| |#1| (-358)) (|has| |#2| (-1124))) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))) ((-1185) |has| |#1| (-358)) ((-1190) |has| |#1| (-358)) ((-1193 |#1|) . T) ((-1210 |#1| #1#) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 70)) (-3464 ((|#2| $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-302))))) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 88)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-538)) 97) (($ $ (-538) (-538)) 99)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) 47)) (-4091 ((|#2| $) 11)) (-4088 (((-3 |#2| "failed") $) 30)) (-4089 ((|#2| $) 31)) (-3846 (($ $) 192 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 168 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-886))))) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-886))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) 188 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 164 (|has| |#1| (-38 (-402 (-538)))))) (-3986 (((-538) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-800))))) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) 57)) (-3848 (($ $) 196 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 172 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) 144) (((-3 (-538) #2#) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538))))) (((-3 (-402 (-538)) #2#) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538))))) (((-3 (-1149) #2#) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))))) (-3507 ((|#2| $) 143) (((-538) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538))))) (((-402 (-538)) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538))))) (((-1149) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))))) (-4090 (($ $) 61) (($ (-538) $) 24)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-2362 (((-669 |#2|) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-621 (-538))))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-621 (-538)))))) (-3821 (((-3 $ "failed") $) 77)) (-4087 (((-402 (-922 |#1|)) $ (-538)) 112 (|has| |#1| (-545))) (((-402 (-922 |#1|)) $ (-538) (-538)) 114 (|has| |#1| (-545)))) (-3327 (($) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-537))))) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3537 (((-112) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-800))))) (-3225 (((-112) $) 64)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-862 (-538)))))) (-4131 (((-538) $) 93) (((-538) $ (-538)) 95)) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL (|has| |#1| (-358)))) (-3331 ((|#2| $) 151 (|has| |#1| (-358)))) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3803 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1124))))) (-3538 (((-112) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-800))))) (-4136 (($ $ (-895)) 136)) (-4175 (($ (-1 |#1| (-538)) $) 132)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-538)) 19) (($ $ (-1055) (-538)) NIL) (($ $ (-622 (-1055)) (-622 (-538))) NIL)) (-3677 (($ $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-3678 (($ $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-4318 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-358)))) (-4302 (($ $) 162 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4138 (($ (-538) |#2|) 10)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 145 (|has| |#1| (-358)))) (-4172 (($ $) 214 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 219 (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))))))) (-3804 (($) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1124))) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3463 (($ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-302))))) (-3465 ((|#2| $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-537))))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-886))))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-886))))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-538)) 126)) (-3820 (((-3 $ "failed") $ $) 116 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) 160 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-538))))) (($ $ (-1149) |#2|) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|)))) (($ $ (-622 (-1149)) (-622 |#2|)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-538)) 91) (($ $ $) 79 (|has| (-538) (-1085))) (($ $ |#2|) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) 137 (-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-1149)) 140 (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149))))))) (-3328 (($ $) NIL (|has| |#1| (-358)))) (-3330 ((|#2| $) 152 (|has| |#1| (-358)))) (-4307 (((-538) $) 12)) (-3849 (($ $) 198 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 174 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 194 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 170 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 190 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 166 (|has| |#1| (-38 (-402 (-538)))))) (-4330 (((-221) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-996)))) (((-373) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-996)))) (((-527) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-598 (-527))))) (((-866 (-373)) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-538))))))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-358)) (|has| |#2| (-886))))) (-3224 (($ $) 124)) (-4317 (((-840) $) 245) (($ (-538)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1149)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149))))) (($ (-402 (-538))) 155 (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-538)) 74)) (-3035 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-358)) (|has| |#2| (-886))) (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| |#2| (-143)))))) (-3461 (((-751)) 142)) (-4132 ((|#1| $) 90)) (-3466 ((|#2| $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-537))))) (-3852 (($ $) 204 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 180 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) 200 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 176 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 208 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 184 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-538)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 210 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 186 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 206 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 182 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 202 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 178 (|has| |#1| (-38 (-402 (-538)))))) (-3742 (($ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-800))))) (-2991 (($) 13 T CONST)) (-2997 (($) 17 T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) NIL (-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149))))))) (-2896 (((-112) $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-2897 (((-112) $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-3387 (((-112) $ $) 63)) (-3017 (((-112) $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-3018 (((-112) $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358))) (($ |#2| |#2|) 150 (|has| |#1| (-358)))) (-4197 (($ $) 213) (($ $ $) 68)) (-4199 (($ $ $) 66)) (** (($ $ (-895)) NIL) (($ $ (-751)) 73) (($ $ (-538)) 146 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 158 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-358))) (($ |#2| $) 147 (|has| |#1| (-358))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-1196 |#1| |#2|) (-1195 |#1| |#2|) (-1025) (-1224 |#1|)) (T -1196))
-NIL
-(-1195 |#1| |#2|)
-((-4094 (((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112)) 12)) (-4093 (((-400 |#1|) |#1|) 22)) (-4092 (((-400 |#1|) |#1|) 21)))
-(((-1197 |#1|) (-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1|)) (-15 -4094 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112)))) (-1207 (-538))) (T -1197))
-((-4094 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538))))) (-4093 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538))))))
-(-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1|)) (-15 -4094 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112))))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4096 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4318 (((-1126 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-825)))) (-3580 ((|#1| $) 14)) (-3582 ((|#1| $) 10)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3578 (((-538) $) 18)) (-3579 ((|#1| $) 17)) (-3581 ((|#1| $) 11)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4095 (((-112) $) 16)) (-4323 (((-1126 |#1|) $) 38 (|has| |#1| (-825))) (((-1126 |#1|) (-622 $)) 37 (|has| |#1| (-825)))) (-4330 (($ |#1|) 25)) (-4317 (($ (-1062 |#1|)) 24) (((-840) $) 34 (|has| |#1| (-1074)))) (-4097 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3583 (($ $ (-538)) 13)) (-3387 (((-112) $ $) 27 (|has| |#1| (-1074)))))
-(((-1198 |#1|) (-13 (-1067 |#1|) (-10 -8 (-15 -4097 ($ |#1|)) (-15 -4096 ($ |#1|)) (-15 -4317 ($ (-1062 |#1|))) (-15 -4095 ((-112) $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-1126 |#1|))) |%noBranch|))) (-1185)) (T -1198))
-((-4097 (*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1185)))) (-4096 (*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1185)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1062 *3)) (-4 *3 (-1185)) (-5 *1 (-1198 *3)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1185)))))
-(-13 (-1067 |#1|) (-10 -8 (-15 -4097 ($ |#1|)) (-15 -4096 ($ |#1|)) (-15 -4317 ($ (-1062 |#1|))) (-15 -4095 ((-112) $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-1126 |#1|))) |%noBranch|)))
-((-4318 (((-1126 |#2|) (-1 |#2| |#1|) (-1198 |#1|)) 23 (|has| |#1| (-825))) (((-1198 |#2|) (-1 |#2| |#1|) (-1198 |#1|)) 17)))
-(((-1199 |#1| |#2|) (-10 -7 (-15 -4318 ((-1198 |#2|) (-1 |#2| |#1|) (-1198 |#1|))) (IF (|has| |#1| (-825)) (-15 -4318 ((-1126 |#2|) (-1 |#2| |#1|) (-1198 |#1|))) |%noBranch|)) (-1185) (-1185)) (T -1199))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1198 *5)) (-4 *5 (-825)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1126 *6)) (-5 *1 (-1199 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1198 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1198 *6)) (-5 *1 (-1199 *5 *6)))))
-(-10 -7 (-15 -4318 ((-1198 |#2|) (-1 |#2| |#1|) (-1198 |#1|))) (IF (|has| |#1| (-825)) (-15 -4318 ((-1126 |#2|) (-1 |#2| |#1|) (-1198 |#1|))) |%noBranch|))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4126 (((-1231 |#2|) $ (-751)) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4124 (($ (-1143 |#2|)) NIL)) (-3419 (((-1143 $) $ (-1055)) NIL) (((-1143 |#2|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-2178 (($ $) NIL (|has| |#2| (-545)))) (-2176 (((-112) $) NIL (|has| |#2| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1055))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4115 (($ $ $) NIL (|has| |#2| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL (|has| |#2| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-358)))) (-4120 (($ $ (-751)) NIL)) (-4119 (($ $ (-751)) NIL)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-446)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-1055) #2#) $) NIL)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-1055) $) NIL)) (-4116 (($ $ $ (-1055)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2894 (($ $ $) NIL (|has| |#2| (-358)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#2| (-358)))) (-4118 (($ $ $) NIL)) (-4113 (($ $ $) NIL (|has| |#2| (-545)))) (-4112 (((-2 (|:| -4313 |#2|) (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#2| (-358)))) (-3857 (($ $) NIL (|has| |#2| (-446))) (($ $ (-1055)) NIL (|has| |#2| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#2| (-886)))) (-1721 (($ $ |#2| (-751) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1055) (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1055) (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-4131 (((-751) $ $) NIL (|has| |#2| (-545)))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#2| (-1124)))) (-3420 (($ (-1143 |#2|) (-1055)) NIL) (($ (-1143 $) (-1055)) NIL)) (-4136 (($ $ (-751)) NIL)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#2| (-358)))) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#2| (-751)) 17) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1055)) NIL) (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-3153 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-1722 (($ (-1 (-751) (-751)) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-4125 (((-1143 |#2|) $) NIL)) (-3418 (((-3 (-1055) #4="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#2| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3593 (((-1131) $) NIL)) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) NIL)) (-3156 (((-3 (-622 $) #4#) $) NIL)) (-3155 (((-3 (-622 $) #4#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1055)) (|:| -2493 (-751))) #4#) $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-38 (-402 (-538)))))) (-3804 (($) NIL (|has| |#2| (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#2| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-4098 (($ $ (-751) |#2| $) NIL)) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-886)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#2| (-358)))) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#2| (-358)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1055) |#2|) NIL) (($ $ (-622 (-1055)) (-622 |#2|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-622 (-1055)) (-622 $)) NIL)) (-1704 (((-751) $) NIL (|has| |#2| (-358)))) (-4159 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#2| (-545))) ((|#2| (-402 $) |#2|) NIL (|has| |#2| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#2| (-545)))) (-4123 (((-3 $ #5="failed") $ (-751)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-358)))) (-4117 (($ $ (-1055)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-4170 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4307 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1055) (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-1055)) NIL (|has| |#2| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4114 (((-3 $ #5#) $ $) NIL (|has| |#2| (-545))) (((-3 (-402 $) #5#) (-402 $) $) NIL (|has| |#2| (-545)))) (-4317 (((-840) $) 13) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-1055)) NIL) (($ (-1228 |#1|)) 19) (($ (-402 (-538))) NIL (-3891 (|has| |#2| (-38 (-402 (-538)))) (|has| |#2| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#2| (-545)))) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#2| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) 14 T CONST)) (-3002 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#2| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#2| (-38 (-402 (-538))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1200 |#1| |#2|) (-13 (-1207 |#2|) (-10 -8 (-15 -4317 ($ (-1228 |#1|))) (-15 -4098 ($ $ (-751) |#2| $)))) (-1149) (-1025)) (T -1200))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-1025)))) (-4098 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1200 *4 *3)) (-14 *4 (-1149)) (-4 *3 (-1025)))))
-(-13 (-1207 |#2|) (-10 -8 (-15 -4317 ($ (-1228 |#1|))) (-15 -4098 ($ $ (-751) |#2| $))))
-((-4318 (((-1200 |#3| |#4|) (-1 |#4| |#2|) (-1200 |#1| |#2|)) 15)))
-(((-1201 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 ((-1200 |#3| |#4|) (-1 |#4| |#2|) (-1200 |#1| |#2|)))) (-1149) (-1025) (-1149) (-1025)) (T -1201))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1200 *5 *6)) (-14 *5 (-1149)) (-4 *6 (-1025)) (-4 *8 (-1025)) (-5 *2 (-1200 *7 *8)) (-5 *1 (-1201 *5 *6 *7 *8)) (-14 *7 (-1149)))))
-(-10 -7 (-15 -4318 ((-1200 |#3| |#4|) (-1 |#4| |#2|) (-1200 |#1| |#2|))))
-((-4101 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4099 ((|#1| |#3|) 13)) (-4100 ((|#3| |#3|) 19)))
-(((-1202 |#1| |#2| |#3|) (-10 -7 (-15 -4099 (|#1| |#3|)) (-15 -4100 (|#3| |#3|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-545) (-967 |#1|) (-1207 |#2|)) (T -1202))
-((-4101 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1202 *4 *5 *3)) (-4 *3 (-1207 *5)))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-545)) (-4 *4 (-967 *3)) (-5 *1 (-1202 *3 *4 *2)) (-4 *2 (-1207 *4)))) (-4099 (*1 *2 *3) (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-1202 *2 *4 *3)) (-4 *3 (-1207 *4)))))
-(-10 -7 (-15 -4099 (|#1| |#3|)) (-15 -4100 (|#3| |#3|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-4103 (((-3 |#2| "failed") |#2| (-751) |#1|) 29)) (-4102 (((-3 |#2| "failed") |#2| (-751)) 30)) (-4105 (((-3 (-2 (|:| -3473 |#2|) (|:| -3472 |#2|)) "failed") |#2|) 43)) (-4106 (((-622 |#2|) |#2|) 45)) (-4104 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1203 |#1| |#2|) (-10 -7 (-15 -4102 ((-3 |#2| "failed") |#2| (-751))) (-15 -4103 ((-3 |#2| "failed") |#2| (-751) |#1|)) (-15 -4104 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4105 ((-3 (-2 (|:| -3473 |#2|) (|:| -3472 |#2|)) "failed") |#2|)) (-15 -4106 ((-622 |#2|) |#2|))) (-13 (-545) (-145)) (-1207 |#1|)) (T -1203))
-((-4106 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-145))) (-5 *2 (-622 *3)) (-5 *1 (-1203 *4 *3)) (-4 *3 (-1207 *4)))) (-4105 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-545) (-145))) (-5 *2 (-2 (|:| -3473 *3) (|:| -3472 *3))) (-5 *1 (-1203 *4 *3)) (-4 *3 (-1207 *4)))) (-4104 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-1207 *3)))) (-4103 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-545) (-145))) (-5 *1 (-1203 *4 *2)) (-4 *2 (-1207 *4)))) (-4102 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-545) (-145))) (-5 *1 (-1203 *4 *2)) (-4 *2 (-1207 *4)))))
-(-10 -7 (-15 -4102 ((-3 |#2| "failed") |#2| (-751))) (-15 -4103 ((-3 |#2| "failed") |#2| (-751) |#1|)) (-15 -4104 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4105 ((-3 (-2 (|:| -3473 |#2|) (|:| -3472 |#2|)) "failed") |#2|)) (-15 -4106 ((-622 |#2|) |#2|)))
-((-4107 (((-3 (-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1204 |#1| |#2|) (-10 -7 (-15 -4107 ((-3 (-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) "failed") |#2| |#2|))) (-545) (-1207 |#1|)) (T -1204))
-((-4107 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-1204 *4 *3)) (-4 *3 (-1207 *4)))))
-(-10 -7 (-15 -4107 ((-3 (-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) "failed") |#2| |#2|)))
-((-4108 ((|#2| |#2| |#2|) 19)) (-4109 ((|#2| |#2| |#2|) 30)) (-4110 ((|#2| |#2| |#2| (-751) (-751)) 36)))
-(((-1205 |#1| |#2|) (-10 -7 (-15 -4108 (|#2| |#2| |#2|)) (-15 -4109 (|#2| |#2| |#2|)) (-15 -4110 (|#2| |#2| |#2| (-751) (-751)))) (-1025) (-1207 |#1|)) (T -1205))
-((-4110 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-1205 *4 *2)) (-4 *2 (-1207 *4)))) (-4109 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1207 *3)))) (-4108 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1207 *3)))))
-(-10 -7 (-15 -4108 (|#2| |#2| |#2|)) (-15 -4109 (|#2| |#2| |#2|)) (-15 -4110 (|#2| |#2| |#2| (-751) (-751))))
-((-4126 (((-1231 |#2|) $ (-751)) 114)) (-3417 (((-622 (-1055)) $) 15)) (-4124 (($ (-1143 |#2|)) 67)) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1055))) 18)) (-3040 (((-400 (-1143 $)) (-1143 $)) 185)) (-4134 (($ $) 175)) (-4329 (((-400 $) $) 173)) (-3037 (((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $)) 82)) (-4120 (($ $ (-751)) 71)) (-4119 (($ $ (-751)) 73)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3508 (((-3 |#2| #1="failed") $) 117) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 (-538) #1#) $) NIL) (((-3 (-1055) #1#) $) NIL)) (-3507 ((|#2| $) 115) (((-402 (-538)) $) NIL) (((-538) $) NIL) (((-1055) $) NIL)) (-4113 (($ $ $) 151)) (-4112 (((-2 (|:| -4313 |#2|) (|:| -2096 $) (|:| -3235 $)) $ $) 153)) (-4131 (((-751) $ $) 170)) (-3803 (((-3 $ "failed") $) 123)) (-3226 (($ |#2| (-751)) NIL) (($ $ (-1055) (-751)) 47) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3153 (((-751) $) NIL) (((-751) $ (-1055)) 42) (((-622 (-751)) $ (-622 (-1055))) 43)) (-4125 (((-1143 |#2|) $) 59)) (-3418 (((-3 (-1055) "failed") $) 40)) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) 70)) (-4172 (($ $) 197)) (-3804 (($) 119)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 182)) (-3038 (((-400 (-1143 $)) (-1143 $)) 88)) (-3039 (((-400 (-1143 $)) (-1143 $)) 86)) (-4092 (((-400 $) $) 107)) (-4127 (($ $ (-622 (-288 $))) 39) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1055) |#2|) 31) (($ $ (-622 (-1055)) (-622 |#2|)) 28) (($ $ (-1055) $) 25) (($ $ (-622 (-1055)) (-622 $)) 23)) (-1704 (((-751) $) 188)) (-4159 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) 147) ((|#2| (-402 $) |#2|) 187) (((-402 $) $ (-402 $)) 169)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 191)) (-4170 (($ $ (-1055)) 140) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) 138) (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4307 (((-751) $) NIL) (((-751) $ (-1055)) 16) (((-622 (-751)) $ (-622 (-1055))) 20)) (-3150 ((|#2| $) NIL) (($ $ (-1055)) 125)) (-4114 (((-3 $ "failed") $ $) 161) (((-3 (-402 $) "failed") (-402 $) $) 157)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-1055)) 51) (($ (-402 (-538))) NIL) (($ $) NIL)))
-(((-1206 |#1| |#2|) (-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -4159 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -1704 ((-751) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -4159 (|#2| (-402 |#1|) |#2|)) (-15 -4111 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4112 ((-2 (|:| -4313 |#2|) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -4113 (|#1| |#1| |#1|)) (-15 -4114 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -4114 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4131 ((-751) |#1| |#1|)) (-15 -4159 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4119 (|#1| |#1| (-751))) (-15 -4120 (|#1| |#1| (-751))) (-15 -4121 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| (-751))) (-15 -4124 (|#1| (-1143 |#2|))) (-15 -4125 ((-1143 |#2|) |#1|)) (-15 -4126 ((-1231 |#2|) |#1| (-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#2| |#1| |#2|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3040 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3150 (|#1| |#1| (-1055))) (-15 -3417 ((-622 (-1055)) |#1|)) (-15 -3152 ((-751) |#1| (-622 (-1055)))) (-15 -3152 ((-751) |#1|)) (-15 -3226 (|#1| |#1| (-622 (-1055)) (-622 (-751)))) (-15 -3226 (|#1| |#1| (-1055) (-751))) (-15 -3153 ((-622 (-751)) |#1| (-622 (-1055)))) (-15 -3153 ((-751) |#1| (-1055))) (-15 -3418 ((-3 (-1055) "failed") |#1|)) (-15 -4307 ((-622 (-751)) |#1| (-622 (-1055)))) (-15 -4307 ((-751) |#1| (-1055))) (-15 -3507 ((-1055) |#1|)) (-15 -3508 ((-3 (-1055) #1="failed") |#1|)) (-15 -4317 (|#1| (-1055))) (-15 -4127 (|#1| |#1| (-622 (-1055)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-1055) |#1|)) (-15 -4127 (|#1| |#1| (-622 (-1055)) (-622 |#2|))) (-15 -4127 (|#1| |#1| (-1055) |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4307 ((-751) |#1|)) (-15 -3226 (|#1| |#2| (-751))) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3153 ((-751) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4170 (|#1| |#1| (-622 (-1055)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1055) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1055)))) (-15 -4170 (|#1| |#1| (-1055))) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-1207 |#2|) (-1025)) (T -1206))
-NIL
-(-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -4159 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -1704 ((-751) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -4159 (|#2| (-402 |#1|) |#2|)) (-15 -4111 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4112 ((-2 (|:| -4313 |#2|) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -4113 (|#1| |#1| |#1|)) (-15 -4114 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -4114 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4131 ((-751) |#1| |#1|)) (-15 -4159 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4119 (|#1| |#1| (-751))) (-15 -4120 (|#1| |#1| (-751))) (-15 -4121 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| (-751))) (-15 -4124 (|#1| (-1143 |#2|))) (-15 -4125 ((-1143 |#2|) |#1|)) (-15 -4126 ((-1231 |#2|) |#1| (-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#2| |#1| |#2|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3040 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3150 (|#1| |#1| (-1055))) (-15 -3417 ((-622 (-1055)) |#1|)) (-15 -3152 ((-751) |#1| (-622 (-1055)))) (-15 -3152 ((-751) |#1|)) (-15 -3226 (|#1| |#1| (-622 (-1055)) (-622 (-751)))) (-15 -3226 (|#1| |#1| (-1055) (-751))) (-15 -3153 ((-622 (-751)) |#1| (-622 (-1055)))) (-15 -3153 ((-751) |#1| (-1055))) (-15 -3418 ((-3 (-1055) "failed") |#1|)) (-15 -4307 ((-622 (-751)) |#1| (-622 (-1055)))) (-15 -4307 ((-751) |#1| (-1055))) (-15 -3507 ((-1055) |#1|)) (-15 -3508 ((-3 (-1055) #1="failed") |#1|)) (-15 -4317 (|#1| (-1055))) (-15 -4127 (|#1| |#1| (-622 (-1055)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-1055) |#1|)) (-15 -4127 (|#1| |#1| (-622 (-1055)) (-622 |#2|))) (-15 -4127 (|#1| |#1| (-1055) |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4307 ((-751) |#1|)) (-15 -3226 (|#1| |#2| (-751))) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3153 ((-751) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4170 (|#1| |#1| (-622 (-1055)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1055) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1055)))) (-15 -4170 (|#1| |#1| (-1055))) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-4126 (((-1231 |#1|) $ (-751)) 236)) (-3417 (((-622 (-1055)) $) 108)) (-4124 (($ (-1143 |#1|)) 234)) (-3419 (((-1143 $) $ (-1055)) 123) (((-1143 |#1|) $) 122)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-545)))) (-2178 (($ $) 86 (|has| |#1| (-545)))) (-2176 (((-112) $) 88 (|has| |#1| (-545)))) (-3152 (((-751) $) 110) (((-751) $ (-622 (-1055))) 109)) (-1368 (((-3 $ "failed") $ $) 19)) (-4115 (($ $ $) 221 (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) 98 (|has| |#1| (-886)))) (-4134 (($ $) 96 (|has| |#1| (-446)))) (-4329 (((-400 $) $) 95 (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 101 (|has| |#1| (-886)))) (-1705 (((-112) $ $) 206 (|has| |#1| (-358)))) (-4120 (($ $ (-751)) 229)) (-4119 (($ $ (-751)) 228)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-446)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| #2="failed") $) 162) (((-3 (-402 (-538)) #2#) $) 160 (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) 158 (|has| |#1| (-1014 (-538)))) (((-3 (-1055) #2#) $) 134)) (-3507 ((|#1| $) 163) (((-402 (-538)) $) 159 (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) 157 (|has| |#1| (-1014 (-538)))) (((-1055) $) 133)) (-4116 (($ $ $ (-1055)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-2894 (($ $ $) 210 (|has| |#1| (-358)))) (-4319 (($ $) 152)) (-2362 (((-669 (-538)) (-669 $)) 132 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 131 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 209 (|has| |#1| (-358)))) (-4118 (($ $ $) 227)) (-4113 (($ $ $) 218 (|has| |#1| (-545)))) (-4112 (((-2 (|:| -4313 |#1|) (|:| -2096 $) (|:| -3235 $)) $ $) 217 (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 204 (|has| |#1| (-358)))) (-3857 (($ $) 174 (|has| |#1| (-446))) (($ $ (-1055)) 103 (|has| |#1| (-446)))) (-3151 (((-622 $) $) 107)) (-4086 (((-112) $) 94 (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-751) $) 170)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 82 (-12 (|has| (-1055) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 81 (-12 (|has| (-1055) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ $) 222 (|has| |#1| (-545)))) (-2502 (((-112) $) 30)) (-2510 (((-751) $) 167)) (-3803 (((-3 $ "failed") $) 202 (|has| |#1| (-1124)))) (-3420 (($ (-1143 |#1|) (-1055)) 115) (($ (-1143 $) (-1055)) 114)) (-4136 (($ $ (-751)) 233)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) 213 (|has| |#1| (-358)))) (-3154 (((-622 $) $) 124)) (-4297 (((-112) $) 150)) (-3226 (($ |#1| (-751)) 151) (($ $ (-1055) (-751)) 117) (($ $ (-622 (-1055)) (-622 (-751))) 116)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1055)) 118) (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 231)) (-3153 (((-751) $) 168) (((-751) $ (-1055)) 120) (((-622 (-751)) $ (-622 (-1055))) 119)) (-3677 (($ $ $) 77 (|has| |#1| (-827)))) (-3678 (($ $ $) 76 (|has| |#1| (-827)))) (-1722 (($ (-1 (-751) (-751)) $) 169)) (-4318 (($ (-1 |#1| |#1|) $) 149)) (-4125 (((-1143 |#1|) $) 235)) (-3418 (((-3 (-1055) #4="failed") $) 121)) (-3227 (($ $) 147)) (-3525 ((|#1| $) 146)) (-2013 (($ (-622 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-3593 (((-1131) $) 9)) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) 230)) (-3156 (((-3 (-622 $) #4#) $) 112)) (-3155 (((-3 (-622 $) #4#) $) 113)) (-3157 (((-3 (-2 (|:| |var| (-1055)) (|:| -2493 (-751))) #4#) $) 111)) (-4172 (($ $) 214 (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) 201 (|has| |#1| (-1124)) CONST)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 164)) (-1915 ((|#1| $) 165)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 93 (|has| |#1| (-446)))) (-3495 (($ (-622 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 100 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 99 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 97 (|has| |#1| (-886)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 212 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 211 (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 205 (|has| |#1| (-358)))) (-4127 (($ $ (-622 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-622 $) (-622 $)) 140) (($ $ (-1055) |#1|) 139) (($ $ (-622 (-1055)) (-622 |#1|)) 138) (($ $ (-1055) $) 137) (($ $ (-622 (-1055)) (-622 $)) 136)) (-1704 (((-751) $) 207 (|has| |#1| (-358)))) (-4159 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-402 $) (-402 $) (-402 $)) 223 (|has| |#1| (-545))) ((|#1| (-402 $) |#1|) 215 (|has| |#1| (-358))) (((-402 $) $ (-402 $)) 203 (|has| |#1| (-545)))) (-4123 (((-3 $ "failed") $ (-751)) 232)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 208 (|has| |#1| (-358)))) (-4117 (($ $ (-1055)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-4170 (($ $ (-1055)) 40) (($ $ (-622 (-1055))) 39) (($ $ (-1055) (-751)) 38) (($ $ (-622 (-1055)) (-622 (-751))) 37) (($ $ (-751)) 251) (($ $) 249) (($ $ (-1149)) 248 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 247 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 246 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 245 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-4307 (((-751) $) 148) (((-751) $ (-1055)) 128) (((-622 (-751)) $ (-622 (-1055))) 127)) (-4330 (((-866 (-373)) $) 80 (-12 (|has| (-1055) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) 79 (-12 (|has| (-1055) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) 78 (-12 (|has| (-1055) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ (-1055)) 104 (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 102 (-3191 (|has| $ (-143)) (|has| |#1| (-886))))) (-4114 (((-3 $ "failed") $ $) 220 (|has| |#1| (-545))) (((-3 (-402 $) "failed") (-402 $) $) 219 (|has| |#1| (-545)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 161) (($ (-1055)) 135) (($ (-402 (-538))) 70 (-3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| |#1| (-38 (-402 (-538)))))) (($ $) 83 (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) 166)) (-4040 ((|#1| $ (-751)) 153) (($ $ (-1055) (-751)) 126) (($ $ (-622 (-1055)) (-622 (-751))) 125)) (-3035 (((-3 $ #1#) $) 71 (-3891 (-3191 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 28)) (-1720 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 87 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1055)) 36) (($ $ (-622 (-1055))) 35) (($ $ (-1055) (-751)) 34) (($ $ (-622 (-1055)) (-622 (-751))) 33) (($ $ (-751)) 252) (($ $) 250) (($ $ (-1149)) 244 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 243 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 242 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 241 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2896 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 73 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 75 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 72 (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 156 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 155 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-1207 |#1|) (-138) (-1025)) (T -1207))
-((-4126 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1207 *4)) (-4 *4 (-1025)) (-5 *2 (-1231 *4)))) (-4125 (*1 *2 *1) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-5 *2 (-1143 *3)))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1025)) (-4 *1 (-1207 *3)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) (-4123 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) (-4122 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1207 *3)))) (-4121 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1207 *4)))) (-4120 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) (-4118 (*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)))) (-4170 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))) (-4116 (*1 *2 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))) (-4159 (*1 *2 *2 *2) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-4 *3 (-545)))) (-4131 (*1 *2 *1 *1) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-4 *3 (-545)) (-5 *2 (-751)))) (-4115 (*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))) (-4114 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))) (-4114 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-4 *3 (-545)))) (-4113 (*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))) (-4112 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -4313 *3) (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1207 *3)))) (-4111 (*1 *2 *1 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1207 *3)))) (-4159 (*1 *2 *3 *2) (-12 (-5 *3 (-402 *1)) (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))))
-(-13 (-926 |t#1| (-751) (-1055)) (-281 |t#1| |t#1|) (-281 $ $) (-229) (-227 |t#1|) (-10 -8 (-15 -4126 ((-1231 |t#1|) $ (-751))) (-15 -4125 ((-1143 |t#1|) $)) (-15 -4124 ($ (-1143 |t#1|))) (-15 -4136 ($ $ (-751))) (-15 -4123 ((-3 $ "failed") $ (-751))) (-15 -4122 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -4121 ((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751))) (-15 -4120 ($ $ (-751))) (-15 -4119 ($ $ (-751))) (-15 -4118 ($ $ $)) (-15 -4170 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4117 (|t#1| $)) (-15 -4116 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-6 (-281 (-402 $) (-402 $))) (-15 -4159 ((-402 $) (-402 $) (-402 $))) (-15 -4131 ((-751) $ $)) (-15 -4115 ($ $ $)) (-15 -4114 ((-3 $ "failed") $ $)) (-15 -4114 ((-3 (-402 $) "failed") (-402 $) $)) (-15 -4113 ($ $ $)) (-15 -4112 ((-2 (|:| -4313 |t#1|) (|:| -2096 $) (|:| -3235 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (-15 -4111 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-302)) (-6 -4349) (-15 -4159 (|t#1| (-402 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-538)))) (-15 -4172 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-751)) . T) ((-25) . T) ((-38 #2=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-598 (-527)) -12 (|has| |#1| (-598 (-527))) (|has| (-1055) (-598 (-527)))) ((-598 (-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| (-1055) (-598 (-866 (-373))))) ((-598 (-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| (-1055) (-598 (-866 (-538))))) ((-227 |#1|) . T) ((-229) . T) ((-281 (-402 $) (-402 $)) |has| |#1| (-545)) ((-281 |#1| |#1|) . T) ((-281 $ $) . T) ((-285) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 $) . T) ((-321 |#1| #1#) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-886)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-507 #3=(-1055) |#1|) . T) ((-507 #3# $) . T) ((-507 $ $) . T) ((-545) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-628 #2#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #2#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 #3#) . T) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-373)) -12 (|has| |#1| (-862 (-373))) (|has| (-1055) (-862 (-373)))) ((-862 (-538)) -12 (|has| |#1| (-862 (-538))) (|has| (-1055) (-862 (-538)))) ((-926 |#1| #1# #3#) . T) ((-886) |has| |#1| (-886)) ((-897) |has| |#1| (-358)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 #3#) . T) ((-1014 |#1|) . T) ((-1031 #2#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| |#1| (-1124)) ((-1190) |has| |#1| (-886)))
-((-4318 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1208 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|))) (-1025) (-1207 |#1|) (-1025) (-1207 |#3|)) (T -1208))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1207 *6)) (-5 *1 (-1208 *5 *4 *6 *2)) (-4 *4 (-1207 *5)))))
-(-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3417 (((-622 (-1055)) $) 28)) (-4319 (($ $) 25)) (-3226 (($ |#2| |#3|) NIL) (($ $ (-1055) |#3|) 22) (($ $ (-622 (-1055)) (-622 |#3|)) 21)) (-3227 (($ $) 14)) (-3525 ((|#2| $) 12)) (-4307 ((|#3| $) 10)))
-(((-1209 |#1| |#2| |#3|) (-10 -8 (-15 -3417 ((-622 (-1055)) |#1|)) (-15 -3226 (|#1| |#1| (-622 (-1055)) (-622 |#3|))) (-15 -3226 (|#1| |#1| (-1055) |#3|)) (-15 -4319 (|#1| |#1|)) (-15 -3226 (|#1| |#2| |#3|)) (-15 -4307 (|#3| |#1|)) (-15 -3227 (|#1| |#1|)) (-15 -3525 (|#2| |#1|))) (-1210 |#2| |#3|) (-1025) (-772)) (T -1209))
-NIL
-(-10 -8 (-15 -3417 ((-622 (-1055)) |#1|)) (-15 -3226 (|#1| |#1| (-622 (-1055)) (-622 |#3|))) (-15 -3226 (|#1| |#1| (-1055) |#3|)) (-15 -4319 (|#1| |#1|)) (-15 -3226 (|#1| |#2| |#3|)) (-15 -4307 (|#3| |#1|)) (-15 -3227 (|#1| |#1|)) (-15 -3525 (|#2| |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4133 (((-1126 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-3225 (((-112) $) 71)) (-4131 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2502 (((-112) $) 30)) (-4136 (($ $ (-895)) 99)) (-4297 (((-112) $) 60)) (-3226 (($ |#1| |#2|) 59) (($ $ (-1055) |#2|) 74) (($ $ (-622 (-1055)) (-622 |#2|)) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4128 (($ $ |#2|) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4159 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1085)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-622 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4307 ((|#2| $) 62)) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4040 ((|#1| $ |#2|) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-4129 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-622 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538)))))))
+((-2951 (*1 *2 *1) (-12 (-4 *1 (-1190)) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1190)))) (-2194 (*1 *1 *1) (-4 *1 (-1190))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1190)))))
+(-13 (-446) (-10 -8 (-15 -2951 ((-112) $)) (-15 -1330 ((-413 $) $)) (-15 -2194 ($ $)) (-15 -3824 ((-413 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1996 (((-1196 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1196 |#1| |#3| |#5|)) 23)))
+(((-1191 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1996 ((-1196 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1196 |#1| |#3| |#5|)))) (-1025) (-1025) (-1149) (-1149) |#1| |#2|) (T -1191))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5 *7 *9)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1196 *6 *8 *10)) (-5 *1 (-1191 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1149)))))
+(-10 -7 (-15 -1996 ((-1196 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1196 |#1| |#3| |#5|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ (-552)) 96) (($ $ (-552) (-552)) 95)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 103)) (-3728 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 116 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 160 (|has| |#1| (-358)))) (-1330 (((-413 $) $) 161 (|has| |#1| (-358)))) (-3837 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3710 (($ $) 132 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 171)) (-3749 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 118 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-2851 (($ $ $) 155 (|has| |#1| (-358)))) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-2965 (((-402 (-928 |#1|)) $ (-552)) 169 (|has| |#1| (-544))) (((-402 (-928 |#1|)) $ (-552) (-552)) 168 (|has| |#1| (-544)))) (-2826 (($ $ $) 154 (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 149 (|has| |#1| (-358)))) (-2951 (((-112) $) 162 (|has| |#1| (-358)))) (-3592 (((-112) $) 71)) (-1385 (($) 143 (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-552) $) 98) (((-552) $ (-552)) 97)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 114 (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) 99)) (-2493 (($ (-1 |#1| (-552)) $) 170)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 158 (|has| |#1| (-358)))) (-4201 (((-112) $) 60)) (-3957 (($ |#1| (-552)) 59) (($ $ (-1055) (-552)) 74) (($ $ (-625 (-1055)) (-625 (-552))) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-2458 (($ $) 140 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2605 (($ (-625 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 163 (|has| |#1| (-358)))) (-2481 (($ $) 167 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 166 (-1523 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-935)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-552)))))))) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 148 (|has| |#1| (-358)))) (-2633 (($ (-625 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-3824 (((-413 $) $) 159 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 156 (|has| |#1| (-358)))) (-2147 (($ $ (-552)) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 150 (|has| |#1| (-358)))) (-2863 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-552)))))) (-2397 (((-751) $) 152 (|has| |#1| (-358)))) (-2154 ((|#1| $ (-552)) 102) (($ $ $) 79 (|has| (-552) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 153 (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-4276 (((-552) $) 62)) (-3759 (($ $) 130 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 120 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 128 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-3637 ((|#1| $ (-552)) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-3789 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-3769 (($ $) 138 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 126 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-552)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 136 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 124 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 134 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 122 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 113 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552)))))))
+(((-1192 |#1|) (-138) (-1025)) (T -1192))
+((-3615 (*1 *1 *2) (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-4 *3 (-1025)) (-4 *1 (-1192 *3)))) (-2493 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1192 *3)) (-4 *3 (-1025)))) (-2965 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1192 *4)) (-4 *4 (-1025)) (-4 *4 (-544)) (-5 *2 (-402 (-928 *4))))) (-2965 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1192 *4)) (-4 *4 (-1025)) (-4 *4 (-544)) (-5 *2 (-402 (-928 *4))))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-1192 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))) (-2481 (*1 *1 *1 *2) (-1523 (-12 (-5 *2 (-1149)) (-4 *1 (-1192 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-552)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1192 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3982 ((-625 *2) *3))) (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552)))))))))
+(-13 (-1210 |t#1| (-552)) (-10 -8 (-15 -3615 ($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |t#1|))))) (-15 -2493 ($ (-1 |t#1| (-552)) $)) (IF (|has| |t#1| (-544)) (PROGN (-15 -2965 ((-402 (-928 |t#1|)) $ (-552))) (-15 -2965 ((-402 (-928 |t#1|)) $ (-552) (-552)))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $)) (IF (|has| |t#1| (-15 -2481 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3982 ((-625 (-1149)) |t#1|))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-935)) (IF (|has| |t#1| (-29 (-552))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-552)) . T) ((-25) . T) ((-38 #1=(-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-552) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-281 $ $) |has| (-552) (-1085)) ((-285) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-544) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-628 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))) ((-949 |#1| #0# (-1055)) . T) ((-896) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-1031 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #0#) . T))
+((-3641 (((-112) $) 12)) (-1893 (((-3 |#3| "failed") $) 17) (((-3 (-1149) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL)) (-1895 ((|#3| $) 14) (((-1149) $) NIL) (((-402 (-552)) $) NIL) (((-552) $) NIL)))
+(((-1193 |#1| |#2| |#3|) (-10 -8 (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -3641 ((-112) |#1|))) (-1194 |#2| |#3|) (-1025) (-1223 |#2|)) (T -1193))
+NIL
+(-10 -8 (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -3641 ((-112) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-4177 ((|#2| $) 228 (-3743 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ (-552)) 96) (($ $ (-552) (-552)) 95)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 103)) (-2999 ((|#2| $) 264)) (-2976 (((-3 |#2| "failed") $) 260)) (-4041 ((|#2| $) 261)) (-3728 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 116 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 237 (-3743 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-2194 (($ $) 160 (|has| |#1| (-358)))) (-1330 (((-413 $) $) 161 (|has| |#1| (-358)))) (-3837 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 234 (-3743 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-2408 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3710 (($ $) 132 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-4127 (((-552) $) 246 (-3743 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 171)) (-3749 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 118 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#2| "failed") $) 267) (((-3 (-552) "failed") $) 256 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-402 (-552)) "failed") $) 254 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-1149) "failed") $) 239 (-3743 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-1895 ((|#2| $) 266) (((-552) $) 257 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-402 (-552)) $) 255 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-1149) $) 240 (-3743 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-2987 (($ $) 263) (($ (-552) $) 262)) (-2851 (($ $ $) 155 (|has| |#1| (-358)))) (-4169 (($ $) 58)) (-1794 (((-669 |#2|) (-669 $)) 218 (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 217 (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 216 (-3743 (|has| |#2| (-621 (-552))) (|has| |#1| (-358)))) (((-669 (-552)) (-669 $)) 215 (-3743 (|has| |#2| (-621 (-552))) (|has| |#1| (-358))))) (-4174 (((-3 $ "failed") $) 32)) (-2965 (((-402 (-928 |#1|)) $ (-552)) 169 (|has| |#1| (-544))) (((-402 (-928 |#1|)) $ (-552) (-552)) 168 (|has| |#1| (-544)))) (-3702 (($) 230 (-3743 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-2826 (($ $ $) 154 (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 149 (|has| |#1| (-358)))) (-2951 (((-112) $) 162 (|has| |#1| (-358)))) (-3620 (((-112) $) 244 (-3743 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-3592 (((-112) $) 71)) (-1385 (($) 143 (|has| |#1| (-38 (-402 (-552)))))) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 222 (-3743 (|has| |#2| (-862 (-374))) (|has| |#1| (-358)))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 221 (-3743 (|has| |#2| (-862 (-552))) (|has| |#1| (-358))))) (-2172 (((-552) $) 98) (((-552) $ (-552)) 97)) (-3650 (((-112) $) 30)) (-2276 (($ $) 226 (|has| |#1| (-358)))) (-1356 ((|#2| $) 224 (|has| |#1| (-358)))) (-2429 (($ $ (-552)) 114 (|has| |#1| (-38 (-402 (-552)))))) (-4034 (((-3 $ "failed") $) 258 (-3743 (|has| |#2| (-1124)) (|has| |#1| (-358))))) (-3630 (((-112) $) 245 (-3743 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-2216 (($ $ (-897)) 99)) (-2493 (($ (-1 |#1| (-552)) $) 170)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 158 (|has| |#1| (-358)))) (-4201 (((-112) $) 60)) (-3957 (($ |#1| (-552)) 59) (($ $ (-1055) (-552)) 74) (($ $ (-625 (-1055)) (-625 (-552))) 73)) (-3658 (($ $ $) 248 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-3332 (($ $ $) 249 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-1996 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-358)))) (-2458 (($ $) 140 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2605 (($ (-625 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-4053 (($ (-552) |#2|) 265)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 163 (|has| |#1| (-358)))) (-2481 (($ $) 167 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 166 (-1523 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-935)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-552)))))))) (-2071 (($) 259 (-3743 (|has| |#2| (-1124)) (|has| |#1| (-358))) CONST)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 148 (|has| |#1| (-358)))) (-2633 (($ (-625 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-4166 (($ $) 229 (-3743 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-4189 ((|#2| $) 232 (-3743 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-4275 (((-413 (-1145 $)) (-1145 $)) 235 (-3743 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-4286 (((-413 (-1145 $)) (-1145 $)) 236 (-3743 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-3824 (((-413 $) $) 159 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 156 (|has| |#1| (-358)))) (-2147 (($ $ (-552)) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 150 (|has| |#1| (-358)))) (-2863 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1149) |#2|) 209 (-3743 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 |#2|)) 208 (-3743 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-625 (-289 |#2|))) 207 (-3743 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-289 |#2|)) 206 (-3743 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ |#2| |#2|) 205 (-3743 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-625 |#2|) (-625 |#2|)) 204 (-3743 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358))))) (-2397 (((-751) $) 152 (|has| |#1| (-358)))) (-2154 ((|#1| $ (-552)) 102) (($ $ $) 79 (|has| (-552) (-1085))) (($ $ |#2|) 203 (-3743 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-358))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 153 (|has| |#1| (-358)))) (-3072 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) 213 (|has| |#1| (-358))) (($ $ (-751)) 82 (-1523 (-3743 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 80 (-1523 (-3743 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) 87 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1149) (-751)) 86 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-625 (-1149))) 85 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1149)) 84 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))))) (-2265 (($ $) 227 (|has| |#1| (-358)))) (-1368 ((|#2| $) 225 (|has| |#1| (-358)))) (-4276 (((-552) $) 62)) (-3759 (($ $) 130 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 120 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 128 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-2042 (((-221) $) 243 (-3743 (|has| |#2| (-998)) (|has| |#1| (-358)))) (((-374) $) 242 (-3743 (|has| |#2| (-998)) (|has| |#1| (-358)))) (((-528) $) 241 (-3743 (|has| |#2| (-598 (-528))) (|has| |#1| (-358)))) (((-868 (-374)) $) 220 (-3743 (|has| |#2| (-598 (-868 (-374)))) (|has| |#1| (-358)))) (((-868 (-552)) $) 219 (-3743 (|has| |#2| (-598 (-868 (-552)))) (|has| |#1| (-358))))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 233 (-3743 (-3743 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#1| (-358))))) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1149)) 238 (-3743 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358)))) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-3637 ((|#1| $ (-552)) 57)) (-4243 (((-3 $ "failed") $) 46 (-1523 (-3743 (-1523 (|has| |#2| (-143)) (-3743 (|has| $ (-143)) (|has| |#2| (-885)))) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-4199 ((|#2| $) 231 (-3743 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-3789 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-3769 (($ $) 138 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 126 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-552)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 136 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 124 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 134 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 122 (|has| |#1| (-38 (-402 (-552)))))) (-1727 (($ $) 247 (-3743 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) 211 (|has| |#1| (-358))) (($ $ (-751)) 83 (-1523 (-3743 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 81 (-1523 (-3743 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) 91 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1149) (-751)) 90 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-625 (-1149))) 89 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1149)) 88 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))))) (-2346 (((-112) $ $) 251 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2320 (((-112) $ $) 252 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 250 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2307 (((-112) $ $) 253 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358))) (($ |#2| |#2|) 223 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 113 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-358))) (($ |#2| $) 201 (|has| |#1| (-358))) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552)))))))
+(((-1194 |#1| |#2|) (-138) (-1025) (-1223 |t#1|)) (T -1194))
+((-4276 (*1 *2 *1) (-12 (-4 *1 (-1194 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1223 *3)) (-5 *2 (-552)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1194 *3 *2)) (-4 *2 (-1223 *3)))) (-4053 (*1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *4 (-1025)) (-4 *1 (-1194 *4 *3)) (-4 *3 (-1223 *4)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1223 *3)))) (-2987 (*1 *1 *1) (-12 (-4 *1 (-1194 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1223 *2)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-1194 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1223 *3)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1223 *3)))) (-2976 (*1 *2 *1) (|partial| -12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1223 *3)))))
+(-13 (-1192 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -4053 ($ (-552) |t#2|)) (-15 -4276 ((-552) $)) (-15 -2999 (|t#2| $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)) (-15 -1683 ($ |t#2|)) (-15 -4041 (|t#2| $)) (-15 -2976 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-358)) (-6 (-968 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-552)) . T) ((-25) . T) ((-38 #1=(-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-358)) ((-38 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-358)) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) -1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-598 (-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-998))) ((-598 (-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-998))) ((-598 (-528)) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-528)))) ((-598 (-868 (-374))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-868 (-374))))) ((-598 (-868 (-552))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-868 (-552))))) ((-227 |#2|) |has| |#1| (-358)) ((-229) -1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-281 |#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) ((-281 $ $) |has| (-552) (-1085)) ((-285) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-358) |has| |#1| (-358)) ((-333 |#2|) |has| |#1| (-358)) ((-372 |#2|) |has| |#1| (-358)) ((-395 |#2|) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-507 (-1149) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|))) ((-507 |#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-544) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-628 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-628 |#1|) . T) ((-628 |#2|) |has| |#1| (-358)) ((-628 $) . T) ((-621 (-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-621 (-552)))) ((-621 |#2|) |has| |#1| (-358)) ((-698 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 |#2|) |has| |#1| (-358)) ((-698 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-707) . T) ((-771) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-772) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-774) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-775) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-800) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-825) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-827) -1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-827))) (-12 (|has| |#1| (-358)) (|has| |#2| (-800)))) ((-876 (-1149)) -1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) ((-862 (-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-374)))) ((-862 (-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-552)))) ((-860 |#2|) |has| |#1| (-358)) ((-885) -12 (|has| |#1| (-358)) (|has| |#2| (-885))) ((-949 |#1| #0# (-1055)) . T) ((-896) |has| |#1| (-358)) ((-968 |#2|) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-998) -12 (|has| |#1| (-358)) (|has| |#2| (-998))) ((-1014 (-402 (-552))) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-552)))) ((-1014 (-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-552)))) ((-1014 (-1149)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))) ((-1014 |#2|) . T) ((-1031 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-1031 |#1|) . T) ((-1031 |#2|) |has| |#1| (-358)) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) -12 (|has| |#1| (-358)) (|has| |#2| (-1124))) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))) ((-1186) |has| |#1| (-358)) ((-1190) |has| |#1| (-358)) ((-1192 |#1|) . T) ((-1210 |#1| #0#) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 70)) (-4177 ((|#2| $) NIL (-12 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 88)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-552)) 97) (($ $ (-552) (-552)) 99)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 47)) (-2999 ((|#2| $) 11)) (-2976 (((-3 |#2| "failed") $) 30)) (-4041 ((|#2| $) 31)) (-3728 (($ $) 192 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 168 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) 188 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 164 (|has| |#1| (-38 (-402 (-552)))))) (-4127 (((-552) $) NIL (-12 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 57)) (-3749 (($ $) 196 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 172 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) 144) (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-1149) "failed") $) NIL (-12 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-1895 ((|#2| $) 143) (((-552) $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-402 (-552)) $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-1149) $) NIL (-12 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-2987 (($ $) 61) (($ (-552) $) 24)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-1794 (((-669 |#2|) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#1| (-358)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#1| (-358))))) (-4174 (((-3 $ "failed") $) 77)) (-2965 (((-402 (-928 |#1|)) $ (-552)) 112 (|has| |#1| (-544))) (((-402 (-928 |#1|)) $ (-552) (-552)) 114 (|has| |#1| (-544)))) (-3702 (($) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3620 (((-112) $) NIL (-12 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-3592 (((-112) $) 64)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| |#2| (-862 (-374))) (|has| |#1| (-358)))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| |#2| (-862 (-552))) (|has| |#1| (-358))))) (-2172 (((-552) $) 93) (((-552) $ (-552)) 95)) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-358)))) (-1356 ((|#2| $) 151 (|has| |#1| (-358)))) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4034 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1124)) (|has| |#1| (-358))))) (-3630 (((-112) $) NIL (-12 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-2216 (($ $ (-897)) 136)) (-2493 (($ (-1 |#1| (-552)) $) 132)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-552)) 19) (($ $ (-1055) (-552)) NIL) (($ $ (-625 (-1055)) (-625 (-552))) NIL)) (-3658 (($ $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-3332 (($ $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-1996 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-358)))) (-2458 (($ $) 162 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4053 (($ (-552) |#2|) 10)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 145 (|has| |#1| (-358)))) (-2481 (($ $) 214 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 219 (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171)))))) (-2071 (($) NIL (-12 (|has| |#2| (-1124)) (|has| |#1| (-358))) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4166 (($ $) NIL (-12 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-4189 ((|#2| $) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-552)) 126)) (-2802 (((-3 $ "failed") $ $) 116 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) 160 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1149) |#2|) NIL (-12 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 |#2|)) NIL (-12 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-552)) 91) (($ $ $) 79 (|has| (-552) (-1085))) (($ $ |#2|) NIL (-12 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-358))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-1523 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 137 (-1523 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) 140 (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2265 (($ $) NIL (|has| |#1| (-358)))) (-1368 ((|#2| $) 152 (|has| |#1| (-358)))) (-4276 (((-552) $) 12)) (-3759 (($ $) 198 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 174 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 194 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 170 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 190 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 166 (|has| |#1| (-38 (-402 (-552)))))) (-2042 (((-221) $) NIL (-12 (|has| |#2| (-998)) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| |#2| (-998)) (|has| |#1| (-358)))) (((-528) $) NIL (-12 (|has| |#2| (-598 (-528))) (|has| |#1| (-358)))) (((-868 (-374)) $) NIL (-12 (|has| |#2| (-598 (-868 (-374)))) (|has| |#1| (-358)))) (((-868 (-552)) $) NIL (-12 (|has| |#2| (-598 (-868 (-552)))) (|has| |#1| (-358))))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885)) (|has| |#1| (-358))))) (-3580 (($ $) 124)) (-1683 (((-839) $) 245) (($ (-552)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1149)) NIL (-12 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358)))) (($ (-402 (-552))) 155 (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-552)) 74)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885)) (|has| |#1| (-358))) (-12 (|has| |#2| (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-4141 (((-751)) 142)) (-2845 ((|#1| $) 90)) (-4199 ((|#2| $) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-3789 (($ $) 204 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 180 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) 200 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 176 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 208 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 184 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-552)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 210 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 186 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 206 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 182 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 202 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 178 (|has| |#1| (-38 (-402 (-552)))))) (-1727 (($ $) NIL (-12 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-2089 (($) 13 T CONST)) (-2100 (($) 17 T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-1523 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1523 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2346 (((-112) $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2320 (((-112) $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2281 (((-112) $ $) 63)) (-2334 (((-112) $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2307 (((-112) $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358))) (($ |#2| |#2|) 150 (|has| |#1| (-358)))) (-2393 (($ $) 213) (($ $ $) 68)) (-2382 (($ $ $) 66)) (** (($ $ (-897)) NIL) (($ $ (-751)) 73) (($ $ (-552)) 146 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 158 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-358))) (($ |#2| $) 147 (|has| |#1| (-358))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-1195 |#1| |#2|) (-1194 |#1| |#2|) (-1025) (-1223 |#1|)) (T -1195))
+NIL
+(-1194 |#1| |#2|)
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-1224 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 10)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3528 (($ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3509 (((-112) $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-2162 (($ $ (-552)) NIL) (($ $ (-552) (-552)) NIL)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) NIL)) (-2999 (((-1224 |#1| |#2| |#3|) $) NIL)) (-2976 (((-3 (-1224 |#1| |#2| |#3|) "failed") $) NIL)) (-4041 (((-1224 |#1| |#2| |#3|) $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4127 (((-552) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-1224 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-552) "failed") $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))))) (-1895 (((-1224 |#1| |#2| |#3|) $) NIL) (((-1149) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-402 (-552)) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358)))) (((-552) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))))) (-2987 (($ $) NIL) (($ (-552) $) NIL)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-1224 |#1| |#2| |#3|)) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-1224 |#1| |#2| |#3|))) (|:| |vec| (-1232 (-1224 |#1| |#2| |#3|)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-621 (-552))) (|has| |#1| (-358)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-621 (-552))) (|has| |#1| (-358))))) (-4174 (((-3 $ "failed") $) NIL)) (-2965 (((-402 (-928 |#1|)) $ (-552)) NIL (|has| |#1| (-544))) (((-402 (-928 |#1|)) $ (-552) (-552)) NIL (|has| |#1| (-544)))) (-3702 (($) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3620 (((-112) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-862 (-552))) (|has| |#1| (-358)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-862 (-374))) (|has| |#1| (-358))))) (-2172 (((-552) $) NIL) (((-552) $ (-552)) NIL)) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-358)))) (-1356 (((-1224 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4034 (((-3 $ "failed") $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))))) (-3630 (((-112) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2216 (($ $ (-897)) NIL)) (-2493 (($ (-1 |#1| (-552)) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-552)) 17) (($ $ (-1055) (-552)) NIL) (($ $ (-625 (-1055)) (-625 (-552))) NIL)) (-3658 (($ $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3332 (($ $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4053 (($ (-552) (-1224 |#1| |#2| |#3|)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) 25 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 26 (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4166 (($ $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-4189 (((-1224 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-552)) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1149) (-1224 |#1| |#2| |#3|)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-507 (-1149) (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 (-1224 |#1| |#2| |#3|))) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-507 (-1149) (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-289 (-1224 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-289 (-1224 |#1| |#2| |#3|))) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-1224 |#1| |#2| |#3|)) (-625 (-1224 |#1| |#2| |#3|))) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-552)) NIL) (($ $ $) NIL (|has| (-552) (-1085))) (($ $ (-1224 |#1| |#2| |#3|)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-281 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-1 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1228 |#2|)) 24) (($ $ (-751)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 23 (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2265 (($ $) NIL (|has| |#1| (-358)))) (-1368 (((-1224 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-4276 (((-552) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2042 (((-528) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-598 (-528))) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-998)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-998)) (|has| |#1| (-358)))) (((-868 (-374)) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-598 (-868 (-374)))) (|has| |#1| (-358)))) (((-868 (-552)) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-598 (-868 (-552)))) (|has| |#1| (-358))))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1224 |#1| |#2| |#3|)) NIL) (($ (-1228 |#2|)) 22) (($ (-1149)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (($ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544)))) (($ (-402 (-552))) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-552))))))) (-3637 ((|#1| $ (-552)) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 11)) (-4199 (((-1224 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-1727 (($ $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2089 (($) 19 T CONST)) (-2100 (($) 15 T CONST)) (-3768 (($ $ (-1 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2346 (((-112) $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2320 (((-112) $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2307 (((-112) $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358))) (($ (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 20)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1224 |#1| |#2| |#3|)) NIL (|has| |#1| (-358))) (($ (-1224 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-1196 |#1| |#2| |#3|) (-13 (-1194 |#1| (-1224 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1196))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))))
+(-13 (-1194 |#1| (-1224 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|)))
+((-3023 (((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112)) 12)) (-3011 (((-413 |#1|) |#1|) 22)) (-3824 (((-413 |#1|) |#1|) 21)))
+(((-1197 |#1|) (-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1|)) (-15 -3023 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112)))) (-1208 (-552))) (T -1197))
+((-3023 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552))))) (-3011 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552))))))
+(-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1|)) (-15 -3023 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112))))
+((-1996 (((-1129 |#2|) (-1 |#2| |#1|) (-1199 |#1|)) 23 (|has| |#1| (-825))) (((-1199 |#2|) (-1 |#2| |#1|) (-1199 |#1|)) 17)))
+(((-1198 |#1| |#2|) (-10 -7 (-15 -1996 ((-1199 |#2|) (-1 |#2| |#1|) (-1199 |#1|))) (IF (|has| |#1| (-825)) (-15 -1996 ((-1129 |#2|) (-1 |#2| |#1|) (-1199 |#1|))) |%noBranch|)) (-1186) (-1186)) (T -1198))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5)) (-4 *5 (-825)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1129 *6)) (-5 *1 (-1198 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1199 *6)) (-5 *1 (-1198 *5 *6)))))
+(-10 -7 (-15 -1996 ((-1199 |#2|) (-1 |#2| |#1|) (-1199 |#1|))) (IF (|has| |#1| (-825)) (-15 -1996 ((-1129 |#2|) (-1 |#2| |#1|) (-1199 |#1|))) |%noBranch|))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2735 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1996 (((-1129 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-825)))) (-2811 ((|#1| $) 14)) (-3286 ((|#1| $) 10)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3295 (((-552) $) 18)) (-2800 ((|#1| $) 17)) (-3305 ((|#1| $) 11)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-3034 (((-112) $) 16)) (-3455 (((-1129 |#1|) $) 38 (|has| |#1| (-825))) (((-1129 |#1|) (-625 $)) 37 (|has| |#1| (-825)))) (-2042 (($ |#1|) 25)) (-1683 (($ (-1067 |#1|)) 24) (((-839) $) 34 (|has| |#1| (-1073)))) (-1504 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2060 (($ $ (-552)) 13)) (-2281 (((-112) $ $) 27 (|has| |#1| (-1073)))))
+(((-1199 |#1|) (-13 (-1066 |#1|) (-10 -8 (-15 -1504 ($ |#1|)) (-15 -2735 ($ |#1|)) (-15 -1683 ($ (-1067 |#1|))) (-15 -3034 ((-112) $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-1129 |#1|))) |%noBranch|))) (-1186)) (T -1199))
+((-1504 (*1 *1 *2) (-12 (-5 *1 (-1199 *2)) (-4 *2 (-1186)))) (-2735 (*1 *1 *2) (-12 (-5 *1 (-1199 *2)) (-4 *2 (-1186)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-1186)) (-5 *1 (-1199 *3)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199 *3)) (-4 *3 (-1186)))))
+(-13 (-1066 |#1|) (-10 -8 (-15 -1504 ($ |#1|)) (-15 -2735 ($ |#1|)) (-15 -1683 ($ (-1067 |#1|))) (-15 -3034 ((-112) $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-1129 |#1|))) |%noBranch|)))
+((-1996 (((-1205 |#3| |#4|) (-1 |#4| |#2|) (-1205 |#1| |#2|)) 15)))
+(((-1200 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 ((-1205 |#3| |#4|) (-1 |#4| |#2|) (-1205 |#1| |#2|)))) (-1149) (-1025) (-1149) (-1025)) (T -1200))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1205 *5 *6)) (-14 *5 (-1149)) (-4 *6 (-1025)) (-4 *8 (-1025)) (-5 *2 (-1205 *7 *8)) (-5 *1 (-1200 *5 *6 *7 *8)) (-14 *7 (-1149)))))
+(-10 -7 (-15 -1996 ((-1205 |#3| |#4|) (-1 |#4| |#2|) (-1205 |#1| |#2|))))
+((-3076 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3055 ((|#1| |#3|) 13)) (-3066 ((|#3| |#3|) 19)))
+(((-1201 |#1| |#2| |#3|) (-10 -7 (-15 -3055 (|#1| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-544) (-968 |#1|) (-1208 |#2|)) (T -1201))
+((-3076 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1201 *4 *5 *3)) (-4 *3 (-1208 *5)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *4 (-968 *3)) (-5 *1 (-1201 *3 *4 *2)) (-4 *2 (-1208 *4)))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-1201 *2 *4 *3)) (-4 *3 (-1208 *4)))))
+(-10 -7 (-15 -3055 (|#1| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3092 (((-3 |#2| "failed") |#2| (-751) |#1|) 29)) (-3084 (((-3 |#2| "failed") |#2| (-751)) 30)) (-3109 (((-3 (-2 (|:| -2290 |#2|) (|:| -2303 |#2|)) "failed") |#2|) 43)) (-3117 (((-625 |#2|) |#2|) 45)) (-3099 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1202 |#1| |#2|) (-10 -7 (-15 -3084 ((-3 |#2| "failed") |#2| (-751))) (-15 -3092 ((-3 |#2| "failed") |#2| (-751) |#1|)) (-15 -3099 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3109 ((-3 (-2 (|:| -2290 |#2|) (|:| -2303 |#2|)) "failed") |#2|)) (-15 -3117 ((-625 |#2|) |#2|))) (-13 (-544) (-145)) (-1208 |#1|)) (T -1202))
+((-3117 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-145))) (-5 *2 (-625 *3)) (-5 *1 (-1202 *4 *3)) (-4 *3 (-1208 *4)))) (-3109 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-145))) (-5 *2 (-2 (|:| -2290 *3) (|:| -2303 *3))) (-5 *1 (-1202 *4 *3)) (-4 *3 (-1208 *4)))) (-3099 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-1202 *3 *2)) (-4 *2 (-1208 *3)))) (-3092 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-544) (-145))) (-5 *1 (-1202 *4 *2)) (-4 *2 (-1208 *4)))) (-3084 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-544) (-145))) (-5 *1 (-1202 *4 *2)) (-4 *2 (-1208 *4)))))
+(-10 -7 (-15 -3084 ((-3 |#2| "failed") |#2| (-751))) (-15 -3092 ((-3 |#2| "failed") |#2| (-751) |#1|)) (-15 -3099 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3109 ((-3 (-2 (|:| -2290 |#2|) (|:| -2303 |#2|)) "failed") |#2|)) (-15 -3117 ((-625 |#2|) |#2|)))
+((-3127 (((-3 (-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1203 |#1| |#2|) (-10 -7 (-15 -3127 ((-3 (-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) "failed") |#2| |#2|))) (-544) (-1208 |#1|)) (T -1203))
+((-3127 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-1203 *4 *3)) (-4 *3 (-1208 *4)))))
+(-10 -7 (-15 -3127 ((-3 (-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) "failed") |#2| |#2|)))
+((-3135 ((|#2| |#2| |#2|) 19)) (-3146 ((|#2| |#2| |#2|) 30)) (-3158 ((|#2| |#2| |#2| (-751) (-751)) 36)))
+(((-1204 |#1| |#2|) (-10 -7 (-15 -3135 (|#2| |#2| |#2|)) (-15 -3146 (|#2| |#2| |#2|)) (-15 -3158 (|#2| |#2| |#2| (-751) (-751)))) (-1025) (-1208 |#1|)) (T -1204))
+((-3158 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-1204 *4 *2)) (-4 *2 (-1208 *4)))) (-3146 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-1208 *3)))) (-3135 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-1208 *3)))))
+(-10 -7 (-15 -3135 (|#2| |#2| |#2|)) (-15 -3146 (|#2| |#2| |#2|)) (-15 -3158 (|#2| |#2| |#2| (-751) (-751))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2138 (((-1232 |#2|) $ (-751)) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2117 (($ (-1145 |#2|)) NIL)) (-3793 (((-1145 $) $ (-1055)) NIL) (((-1145 |#2|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3528 (($ $) NIL (|has| |#2| (-544)))) (-3509 (((-112) $) NIL (|has| |#2| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1055))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3197 (($ $ $) NIL (|has| |#2| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL (|has| |#2| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2408 (((-112) $ $) NIL (|has| |#2| (-358)))) (-2076 (($ $ (-751)) NIL)) (-2065 (($ $ (-751)) NIL)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-446)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-1055) "failed") $) NIL)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-1055) $) NIL)) (-3207 (($ $ $ (-1055)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2851 (($ $ $) NIL (|has| |#2| (-358)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#2| (-358)))) (-2052 (($ $ $) NIL)) (-3181 (($ $ $) NIL (|has| |#2| (-544)))) (-3173 (((-2 (|:| -3340 |#2|) (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#2| (-358)))) (-1294 (($ $) NIL (|has| |#2| (-446))) (($ $ (-1055)) NIL (|has| |#2| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#2| (-885)))) (-1347 (($ $ |#2| (-751) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1055) (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1055) (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-2172 (((-751) $ $) NIL (|has| |#2| (-544)))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#2| (-1124)))) (-3970 (($ (-1145 |#2|) (-1055)) NIL) (($ (-1145 $) (-1055)) NIL)) (-2216 (($ $ (-751)) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#2| (-358)))) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#2| (-751)) 17) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1055)) NIL) (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-4134 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1357 (($ (-1 (-751) (-751)) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-2127 (((-1145 |#2|) $) NIL)) (-1942 (((-3 (-1055) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#2| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2883 (((-1131) $) NIL)) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1055)) (|:| -3564 (-751))) "failed") $) NIL)) (-2481 (($ $) NIL (|has| |#2| (-38 (-402 (-552)))))) (-2071 (($) NIL (|has| |#2| (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#2| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3044 (($ $ (-751) |#2| $) NIL)) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-885)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#2| (-358)))) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#2| (-358)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1055) |#2|) NIL) (($ $ (-625 (-1055)) (-625 |#2|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-625 (-1055)) (-625 $)) NIL)) (-2397 (((-751) $) NIL (|has| |#2| (-358)))) (-2154 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#2| (-544))) ((|#2| (-402 $) |#2|) NIL (|has| |#2| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#2| (-544)))) (-2108 (((-3 $ "failed") $ (-751)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-358)))) (-3217 (($ $ (-1055)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-3072 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4276 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1055) (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-1055)) NIL (|has| |#2| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-3190 (((-3 $ "failed") $ $) NIL (|has| |#2| (-544))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#2| (-544)))) (-1683 (((-839) $) 13) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-1055)) NIL) (($ (-1228 |#1|)) 19) (($ (-402 (-552))) NIL (-1523 (|has| |#2| (-38 (-402 (-552)))) (|has| |#2| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#2| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) 14 T CONST)) (-3768 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#2| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#2| (-38 (-402 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1205 |#1| |#2|) (-13 (-1208 |#2|) (-10 -8 (-15 -1683 ($ (-1228 |#1|))) (-15 -3044 ($ $ (-751) |#2| $)))) (-1149) (-1025)) (T -1205))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-1205 *3 *4)) (-4 *4 (-1025)))) (-3044 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1205 *4 *3)) (-14 *4 (-1149)) (-4 *3 (-1025)))))
+(-13 (-1208 |#2|) (-10 -8 (-15 -1683 ($ (-1228 |#1|))) (-15 -3044 ($ $ (-751) |#2| $))))
+((-1996 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1206 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|))) (-1025) (-1208 |#1|) (-1025) (-1208 |#3|)) (T -1206))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1208 *6)) (-5 *1 (-1206 *5 *4 *6 *2)) (-4 *4 (-1208 *5)))))
+(-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2138 (((-1232 |#2|) $ (-751)) 114)) (-3982 (((-625 (-1055)) $) 15)) (-2117 (($ (-1145 |#2|)) 67)) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1055))) 18)) (-4296 (((-413 (-1145 $)) (-1145 $)) 185)) (-2194 (($ $) 175)) (-1330 (((-413 $) $) 173)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 82)) (-2076 (($ $ (-751)) 71)) (-2065 (($ $ (-751)) 73)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-1893 (((-3 |#2| "failed") $) 117) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-1055) "failed") $) NIL)) (-1895 ((|#2| $) 115) (((-402 (-552)) $) NIL) (((-552) $) NIL) (((-1055) $) NIL)) (-3181 (($ $ $) 151)) (-3173 (((-2 (|:| -3340 |#2|) (|:| -3984 $) (|:| -3645 $)) $ $) 153)) (-2172 (((-751) $ $) 170)) (-4034 (((-3 $ "failed") $) 123)) (-3957 (($ |#2| (-751)) NIL) (($ $ (-1055) (-751)) 47) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-4134 (((-751) $) NIL) (((-751) $ (-1055)) 42) (((-625 (-751)) $ (-625 (-1055))) 43)) (-2127 (((-1145 |#2|) $) 59)) (-1942 (((-3 (-1055) "failed") $) 40)) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) 70)) (-2481 (($ $) 197)) (-2071 (($) 119)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 182)) (-4275 (((-413 (-1145 $)) (-1145 $)) 88)) (-4286 (((-413 (-1145 $)) (-1145 $)) 86)) (-3824 (((-413 $) $) 107)) (-4073 (($ $ (-625 (-289 $))) 39) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1055) |#2|) 31) (($ $ (-625 (-1055)) (-625 |#2|)) 28) (($ $ (-1055) $) 25) (($ $ (-625 (-1055)) (-625 $)) 23)) (-2397 (((-751) $) 188)) (-2154 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) 147) ((|#2| (-402 $) |#2|) 187) (((-402 $) $ (-402 $)) 169)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 191)) (-3072 (($ $ (-1055)) 140) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) 138) (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4276 (((-751) $) NIL) (((-751) $ (-1055)) 16) (((-625 (-751)) $ (-625 (-1055))) 20)) (-4108 ((|#2| $) NIL) (($ $ (-1055)) 125)) (-3190 (((-3 $ "failed") $ $) 161) (((-3 (-402 $) "failed") (-402 $) $) 157)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-1055)) 51) (($ (-402 (-552))) NIL) (($ $) NIL)))
+(((-1207 |#1| |#2|) (-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -2154 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -2397 ((-751) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -2154 (|#2| (-402 |#1|) |#2|)) (-15 -3165 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3173 ((-2 (|:| -3340 |#2|) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3181 (|#1| |#1| |#1|)) (-15 -3190 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -3190 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2172 ((-751) |#1| |#1|)) (-15 -2154 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2065 (|#1| |#1| (-751))) (-15 -2076 (|#1| |#1| (-751))) (-15 -2086 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| (-751))) (-15 -2117 (|#1| (-1145 |#2|))) (-15 -2127 ((-1145 |#2|) |#1|)) (-15 -2138 ((-1232 |#2|) |#1| (-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| |#1|)) (-15 -2154 (|#2| |#1| |#2|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -4296 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4108 (|#1| |#1| (-1055))) (-15 -3982 ((-625 (-1055)) |#1|)) (-15 -4121 ((-751) |#1| (-625 (-1055)))) (-15 -4121 ((-751) |#1|)) (-15 -3957 (|#1| |#1| (-625 (-1055)) (-625 (-751)))) (-15 -3957 (|#1| |#1| (-1055) (-751))) (-15 -4134 ((-625 (-751)) |#1| (-625 (-1055)))) (-15 -4134 ((-751) |#1| (-1055))) (-15 -1942 ((-3 (-1055) "failed") |#1|)) (-15 -4276 ((-625 (-751)) |#1| (-625 (-1055)))) (-15 -4276 ((-751) |#1| (-1055))) (-15 -1895 ((-1055) |#1|)) (-15 -1893 ((-3 (-1055) "failed") |#1|)) (-15 -1683 (|#1| (-1055))) (-15 -4073 (|#1| |#1| (-625 (-1055)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-1055) |#1|)) (-15 -4073 (|#1| |#1| (-625 (-1055)) (-625 |#2|))) (-15 -4073 (|#1| |#1| (-1055) |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4276 ((-751) |#1|)) (-15 -3957 (|#1| |#2| (-751))) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -4134 ((-751) |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -3072 (|#1| |#1| (-625 (-1055)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1055) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1055)))) (-15 -3072 (|#1| |#1| (-1055))) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-1208 |#2|) (-1025)) (T -1207))
+NIL
+(-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -2154 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -2397 ((-751) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -2154 (|#2| (-402 |#1|) |#2|)) (-15 -3165 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3173 ((-2 (|:| -3340 |#2|) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3181 (|#1| |#1| |#1|)) (-15 -3190 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -3190 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2172 ((-751) |#1| |#1|)) (-15 -2154 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2065 (|#1| |#1| (-751))) (-15 -2076 (|#1| |#1| (-751))) (-15 -2086 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| (-751))) (-15 -2117 (|#1| (-1145 |#2|))) (-15 -2127 ((-1145 |#2|) |#1|)) (-15 -2138 ((-1232 |#2|) |#1| (-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| |#1|)) (-15 -2154 (|#2| |#1| |#2|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -4296 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4108 (|#1| |#1| (-1055))) (-15 -3982 ((-625 (-1055)) |#1|)) (-15 -4121 ((-751) |#1| (-625 (-1055)))) (-15 -4121 ((-751) |#1|)) (-15 -3957 (|#1| |#1| (-625 (-1055)) (-625 (-751)))) (-15 -3957 (|#1| |#1| (-1055) (-751))) (-15 -4134 ((-625 (-751)) |#1| (-625 (-1055)))) (-15 -4134 ((-751) |#1| (-1055))) (-15 -1942 ((-3 (-1055) "failed") |#1|)) (-15 -4276 ((-625 (-751)) |#1| (-625 (-1055)))) (-15 -4276 ((-751) |#1| (-1055))) (-15 -1895 ((-1055) |#1|)) (-15 -1893 ((-3 (-1055) "failed") |#1|)) (-15 -1683 (|#1| (-1055))) (-15 -4073 (|#1| |#1| (-625 (-1055)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-1055) |#1|)) (-15 -4073 (|#1| |#1| (-625 (-1055)) (-625 |#2|))) (-15 -4073 (|#1| |#1| (-1055) |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4276 ((-751) |#1|)) (-15 -3957 (|#1| |#2| (-751))) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -4134 ((-751) |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -3072 (|#1| |#1| (-625 (-1055)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1055) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1055)))) (-15 -3072 (|#1| |#1| (-1055))) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2138 (((-1232 |#1|) $ (-751)) 236)) (-3982 (((-625 (-1055)) $) 108)) (-2117 (($ (-1145 |#1|)) 234)) (-3793 (((-1145 $) $ (-1055)) 123) (((-1145 |#1|) $) 122)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3528 (($ $) 86 (|has| |#1| (-544)))) (-3509 (((-112) $) 88 (|has| |#1| (-544)))) (-4121 (((-751) $) 110) (((-751) $ (-625 (-1055))) 109)) (-2077 (((-3 $ "failed") $ $) 19)) (-3197 (($ $ $) 221 (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) 98 (|has| |#1| (-885)))) (-2194 (($ $) 96 (|has| |#1| (-446)))) (-1330 (((-413 $) $) 95 (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 101 (|has| |#1| (-885)))) (-2408 (((-112) $ $) 206 (|has| |#1| (-358)))) (-2076 (($ $ (-751)) 229)) (-2065 (($ $ (-751)) 228)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-446)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 162) (((-3 (-402 (-552)) "failed") $) 160 (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1014 (-552)))) (((-3 (-1055) "failed") $) 134)) (-1895 ((|#1| $) 163) (((-402 (-552)) $) 159 (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) 157 (|has| |#1| (-1014 (-552)))) (((-1055) $) 133)) (-3207 (($ $ $ (-1055)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-2851 (($ $ $) 210 (|has| |#1| (-358)))) (-4169 (($ $) 152)) (-1794 (((-669 (-552)) (-669 $)) 132 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 131 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 209 (|has| |#1| (-358)))) (-2052 (($ $ $) 227)) (-3181 (($ $ $) 218 (|has| |#1| (-544)))) (-3173 (((-2 (|:| -3340 |#1|) (|:| -3984 $) (|:| -3645 $)) $ $) 217 (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 204 (|has| |#1| (-358)))) (-1294 (($ $) 174 (|has| |#1| (-446))) (($ $ (-1055)) 103 (|has| |#1| (-446)))) (-4157 (((-625 $) $) 107)) (-2951 (((-112) $) 94 (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-751) $) 170)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 82 (-12 (|has| (-1055) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 81 (-12 (|has| (-1055) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ $) 222 (|has| |#1| (-544)))) (-3650 (((-112) $) 30)) (-3723 (((-751) $) 167)) (-4034 (((-3 $ "failed") $) 202 (|has| |#1| (-1124)))) (-3970 (($ (-1145 |#1|) (-1055)) 115) (($ (-1145 $) (-1055)) 114)) (-2216 (($ $ (-751)) 233)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 213 (|has| |#1| (-358)))) (-4148 (((-625 $) $) 124)) (-4201 (((-112) $) 150)) (-3957 (($ |#1| (-751)) 151) (($ $ (-1055) (-751)) 117) (($ $ (-625 (-1055)) (-625 (-751))) 116)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1055)) 118) (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 231)) (-4134 (((-751) $) 168) (((-751) $ (-1055)) 120) (((-625 (-751)) $ (-625 (-1055))) 119)) (-3658 (($ $ $) 77 (|has| |#1| (-827)))) (-3332 (($ $ $) 76 (|has| |#1| (-827)))) (-1357 (($ (-1 (-751) (-751)) $) 169)) (-1996 (($ (-1 |#1| |#1|) $) 149)) (-2127 (((-1145 |#1|) $) 235)) (-1942 (((-3 (-1055) "failed") $) 121)) (-4131 (($ $) 147)) (-4144 ((|#1| $) 146)) (-2605 (($ (-625 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-2883 (((-1131) $) 9)) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) 230)) (-4172 (((-3 (-625 $) "failed") $) 112)) (-4160 (((-3 (-625 $) "failed") $) 113)) (-4182 (((-3 (-2 (|:| |var| (-1055)) (|:| -3564 (-751))) "failed") $) 111)) (-2481 (($ $) 214 (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) 201 (|has| |#1| (-1124)) CONST)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 164)) (-4117 ((|#1| $) 165)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 93 (|has| |#1| (-446)))) (-2633 (($ (-625 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 100 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 99 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 97 (|has| |#1| (-885)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 211 (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 205 (|has| |#1| (-358)))) (-4073 (($ $ (-625 (-289 $))) 143) (($ $ (-289 $)) 142) (($ $ $ $) 141) (($ $ (-625 $) (-625 $)) 140) (($ $ (-1055) |#1|) 139) (($ $ (-625 (-1055)) (-625 |#1|)) 138) (($ $ (-1055) $) 137) (($ $ (-625 (-1055)) (-625 $)) 136)) (-2397 (((-751) $) 207 (|has| |#1| (-358)))) (-2154 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-402 $) (-402 $) (-402 $)) 223 (|has| |#1| (-544))) ((|#1| (-402 $) |#1|) 215 (|has| |#1| (-358))) (((-402 $) $ (-402 $)) 203 (|has| |#1| (-544)))) (-2108 (((-3 $ "failed") $ (-751)) 232)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 208 (|has| |#1| (-358)))) (-3217 (($ $ (-1055)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-3072 (($ $ (-1055)) 40) (($ $ (-625 (-1055))) 39) (($ $ (-1055) (-751)) 38) (($ $ (-625 (-1055)) (-625 (-751))) 37) (($ $ (-751)) 251) (($ $) 249) (($ $ (-1149)) 248 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 247 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 246 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 245 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-4276 (((-751) $) 148) (((-751) $ (-1055)) 128) (((-625 (-751)) $ (-625 (-1055))) 127)) (-2042 (((-868 (-374)) $) 80 (-12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) 79 (-12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) 78 (-12 (|has| (-1055) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ (-1055)) 104 (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 102 (-3743 (|has| $ (-143)) (|has| |#1| (-885))))) (-3190 (((-3 $ "failed") $ $) 220 (|has| |#1| (-544))) (((-3 (-402 $) "failed") (-402 $) $) 219 (|has| |#1| (-544)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ (-1055)) 135) (($ (-402 (-552))) 70 (-1523 (|has| |#1| (-1014 (-402 (-552)))) (|has| |#1| (-38 (-402 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) 166)) (-3637 ((|#1| $ (-751)) 153) (($ $ (-1055) (-751)) 126) (($ $ (-625 (-1055)) (-625 (-751))) 125)) (-4243 (((-3 $ "failed") $) 71 (-1523 (-3743 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 28)) (-1336 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 87 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1055)) 36) (($ $ (-625 (-1055))) 35) (($ $ (-1055) (-751)) 34) (($ $ (-625 (-1055)) (-625 (-751))) 33) (($ $ (-751)) 252) (($ $) 250) (($ $ (-1149)) 244 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 243 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 242 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 241 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2346 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 73 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 75 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 72 (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 156 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 155 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-1208 |#1|) (-138) (-1025)) (T -1208))
+((-2138 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1208 *4)) (-4 *4 (-1025)) (-5 *2 (-1232 *4)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-5 *2 (-1145 *3)))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-4 *3 (-1025)) (-4 *1 (-1208 *3)))) (-2216 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) (-2108 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) (-2097 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1208 *3)))) (-2086 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1208 *4)))) (-2076 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) (-2052 (*1 *1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)))) (-3072 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))) (-3207 (*1 *2 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))) (-2154 (*1 *2 *2 *2) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-4 *3 (-544)))) (-2172 (*1 *2 *1 *1) (-12 (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-4 *3 (-544)) (-5 *2 (-751)))) (-3197 (*1 *1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))) (-3190 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))) (-3190 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-4 *3 (-544)))) (-3181 (*1 *1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))) (-3173 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3340 *3) (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1208 *3)))) (-3165 (*1 *2 *1 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1208 *3)))) (-2154 (*1 *2 *3 *2) (-12 (-5 *3 (-402 *1)) (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))))
+(-13 (-925 |t#1| (-751) (-1055)) (-281 |t#1| |t#1|) (-281 $ $) (-229) (-227 |t#1|) (-10 -8 (-15 -2138 ((-1232 |t#1|) $ (-751))) (-15 -2127 ((-1145 |t#1|) $)) (-15 -2117 ($ (-1145 |t#1|))) (-15 -2216 ($ $ (-751))) (-15 -2108 ((-3 $ "failed") $ (-751))) (-15 -2097 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2086 ((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751))) (-15 -2076 ($ $ (-751))) (-15 -2065 ($ $ (-751))) (-15 -2052 ($ $ $)) (-15 -3072 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -3217 (|t#1| $)) (-15 -3207 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-281 (-402 $) (-402 $))) (-15 -2154 ((-402 $) (-402 $) (-402 $))) (-15 -2172 ((-751) $ $)) (-15 -3197 ($ $ $)) (-15 -3190 ((-3 $ "failed") $ $)) (-15 -3190 ((-3 (-402 $) "failed") (-402 $) $)) (-15 -3181 ($ $ $)) (-15 -3173 ((-2 (|:| -3340 |t#1|) (|:| -3984 $) (|:| -3645 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (-15 -3165 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-302)) (-6 -4349) (-15 -2154 (|t#1| (-402 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-552)))) (-15 -2481 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-751)) . T) ((-25) . T) ((-38 #1=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-598 (-528)) -12 (|has| (-1055) (-598 (-528))) (|has| |#1| (-598 (-528)))) ((-598 (-868 (-374))) -12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374))))) ((-598 (-868 (-552))) -12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552))))) ((-227 |#1|) . T) ((-229) . T) ((-281 (-402 $) (-402 $)) |has| |#1| (-544)) ((-281 |#1| |#1|) . T) ((-281 $ $) . T) ((-285) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 $) . T) ((-321 |#1| #0#) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-885)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-507 #2=(-1055) |#1|) . T) ((-507 #2# $) . T) ((-507 $ $) . T) ((-544) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-628 #1#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 #2#) . T) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-374)) -12 (|has| (-1055) (-862 (-374))) (|has| |#1| (-862 (-374)))) ((-862 (-552)) -12 (|has| (-1055) (-862 (-552))) (|has| |#1| (-862 (-552)))) ((-925 |#1| #0# #2#) . T) ((-885) |has| |#1| (-885)) ((-896) |has| |#1| (-358)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 #2#) . T) ((-1014 |#1|) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| |#1| (-1124)) ((-1190) |has| |#1| (-885)))
+((-3982 (((-625 (-1055)) $) 28)) (-4169 (($ $) 25)) (-3957 (($ |#2| |#3|) NIL) (($ $ (-1055) |#3|) 22) (($ $ (-625 (-1055)) (-625 |#3|)) 21)) (-4131 (($ $) 14)) (-4144 ((|#2| $) 12)) (-4276 ((|#3| $) 10)))
+(((-1209 |#1| |#2| |#3|) (-10 -8 (-15 -3982 ((-625 (-1055)) |#1|)) (-15 -3957 (|#1| |#1| (-625 (-1055)) (-625 |#3|))) (-15 -3957 (|#1| |#1| (-1055) |#3|)) (-15 -4169 (|#1| |#1|)) (-15 -3957 (|#1| |#2| |#3|)) (-15 -4276 (|#3| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4144 (|#2| |#1|))) (-1210 |#2| |#3|) (-1025) (-772)) (T -1209))
+NIL
+(-10 -8 (-15 -3982 ((-625 (-1055)) |#1|)) (-15 -3957 (|#1| |#1| (-625 (-1055)) (-625 |#3|))) (-15 -3957 (|#1| |#1| (-1055) |#3|)) (-15 -4169 (|#1| |#1|)) (-15 -3957 (|#1| |#2| |#3|)) (-15 -4276 (|#3| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4144 (|#2| |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-2182 (((-1129 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-3592 (((-112) $) 71)) (-2172 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-3650 (((-112) $) 30)) (-2216 (($ $ (-897)) 99)) (-4201 (((-112) $) 60)) (-3957 (($ |#1| |#2|) 59) (($ $ (-1055) |#2|) 74) (($ $ (-625 (-1055)) (-625 |#2|)) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2147 (($ $ |#2|) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2154 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1085)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-625 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4276 ((|#2| $) 62)) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-170)))) (-3637 ((|#1| $ |#2|) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-2874 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-625 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552)))))))
(((-1210 |#1| |#2|) (-138) (-1025) (-772)) (T -1210))
-((-4133 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-1126 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4159 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-1149)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4131 (*1 *2 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4130 (*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4130 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4129 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4317 (*2 (-1149)))) (-4 *2 (-1025)))) (-4128 (*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4127 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1126 *3)))))
-(-13 (-949 |t#1| |t#2| (-1055)) (-10 -8 (-15 -4133 ((-1126 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4159 (|t#1| $ |t#2|)) (-15 -4191 ((-1149) $)) (-15 -4132 (|t#1| $)) (-15 -4136 ($ $ (-895))) (-15 -4131 (|t#2| $)) (-15 -4131 (|t#2| $ |t#2|)) (-15 -4130 ($ $ |t#2|)) (-15 -4130 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4317 (|t#1| (-1149)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4129 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4128 ($ $ |t#2|)) (IF (|has| |t#2| (-1085)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-229)) (IF (|has| |t#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4127 ((-1126 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-281 $ $) |has| |#2| (-1085)) ((-285) |has| |#1| (-545)) ((-545) |has| |#1| (-545)) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-949 |#1| |#2| (-1055)) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-4134 ((|#2| |#2|) 12)) (-4329 (((-400 |#2|) |#2|) 14)) (-4135 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-538))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-538)))) 30)))
-(((-1211 |#1| |#2|) (-10 -7 (-15 -4329 ((-400 |#2|) |#2|)) (-15 -4134 (|#2| |#2|)) (-15 -4135 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-538))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-538)))))) (-545) (-13 (-1207 |#1|) (-545) (-10 -8 (-15 -3495 ($ $ $))))) (T -1211))
-((-4135 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-538)))) (-4 *4 (-13 (-1207 *3) (-545) (-10 -8 (-15 -3495 ($ $ $))))) (-4 *3 (-545)) (-5 *1 (-1211 *3 *4)))) (-4134 (*1 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-1207 *3) (-545) (-10 -8 (-15 -3495 ($ $ $))))))) (-4329 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-400 *3)) (-5 *1 (-1211 *4 *3)) (-4 *3 (-13 (-1207 *4) (-545) (-10 -8 (-15 -3495 ($ $ $))))))))
-(-10 -7 (-15 -4329 ((-400 |#2|) |#2|)) (-15 -4134 (|#2| |#2|)) (-15 -4135 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-538))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-538))))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 11)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) NIL) (($ $ (-402 (-538)) (-402 (-538))) NIL)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) NIL)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-1191 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1221 |#1| |#2| |#3|) #1#) $) 22)) (-3507 (((-1191 |#1| |#2| |#3|) $) NIL) (((-1221 |#1| |#2| |#3|) $) NIL)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4140 (((-402 (-538)) $) 57)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4141 (($ (-402 (-538)) (-1191 |#1| |#2| |#3|)) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) NIL) (((-402 (-538)) $ (-402 (-538))) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) NIL) (($ $ (-402 (-538))) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-402 (-538))) 30) (($ $ (-1055) (-402 (-538))) NIL) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4139 (((-1191 |#1| |#2| |#3|) $) 60)) (-4137 (((-3 (-1191 |#1| |#2| |#3|) "failed") $) NIL)) (-4138 (((-1191 |#1| |#2| |#3|) $) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) 39 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 40 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) NIL) (($ $ $) NIL (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $ (-1228 |#2|)) 38)) (-4307 (((-402 (-538)) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) 89) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1191 |#1| |#2| |#3|)) 16) (($ (-1221 |#1| |#2| |#3|)) 17) (($ (-1228 |#2|)) 36) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 12)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 32 T CONST)) (-2997 (($) 26 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 34)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-1212 |#1| |#2| |#3|) (-13 (-1216 |#1| (-1191 |#1| |#2| |#3|)) (-1014 (-1221 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1212))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))))
-(-13 (-1216 |#1| (-1191 |#1| |#2| |#3|)) (-1014 (-1221 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|)))
-((-4318 (((-1212 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1212 |#1| |#3| |#5|)) 24)))
-(((-1213 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4318 ((-1212 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1212 |#1| |#3| |#5|)))) (-1025) (-1025) (-1149) (-1149) |#1| |#2|) (T -1213))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1212 *5 *7 *9)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1212 *6 *8 *10)) (-5 *1 (-1213 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1149)))))
-(-10 -7 (-15 -4318 ((-1212 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1212 |#1| |#3| |#5|))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) 96) (($ $ (-402 (-538)) (-402 (-538))) 95)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) 103)) (-3846 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 116 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 160 (|has| |#1| (-358)))) (-4329 (((-400 $) $) 161 (|has| |#1| (-358)))) (-3370 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3844 (($ $) 132 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) 169)) (-3848 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 118 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-2894 (($ $ $) 155 (|has| |#1| (-358)))) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 154 (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 149 (|has| |#1| (-358)))) (-4086 (((-112) $) 162 (|has| |#1| (-358)))) (-3225 (((-112) $) 71)) (-3990 (($) 143 (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) 98) (((-402 (-538)) $ (-402 (-538))) 97)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 114 (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) 99) (($ $ (-402 (-538))) 168)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 158 (|has| |#1| (-358)))) (-4297 (((-112) $) 60)) (-3226 (($ |#1| (-402 (-538))) 59) (($ $ (-1055) (-402 (-538))) 74) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-4302 (($ $) 140 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-2013 (($ (-622 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 163 (|has| |#1| (-358)))) (-4172 (($ $) 167 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 166 (-3891 (-12 (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-538))))) (-12 (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-538)))))))) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 148 (|has| |#1| (-358)))) (-3495 (($ (-622 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-4092 (((-400 $) $) 159 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 156 (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 150 (|has| |#1| (-358)))) (-4303 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) 152 (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) 102) (($ $ $) 79 (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 153 (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-4307 (((-402 (-538)) $) 62)) (-3849 (($ $) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 120 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 128 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-3852 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-3850 (($ $) 138 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 126 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 136 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 124 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 134 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 122 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 113 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538)))))))
-(((-1214 |#1|) (-138) (-1025)) (T -1214))
-((-4178 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| *4)))) (-4 *4 (-1025)) (-4 *1 (-1214 *4)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-4 *1 (-1214 *3)) (-4 *3 (-1025)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))) (-4172 (*1 *1 *1 *2) (-3891 (-12 (-5 *2 (-1149)) (-4 *1 (-1214 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-538)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1214 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3417 ((-622 *2) *3))) (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538)))))))))
-(-13 (-1210 |t#1| (-402 (-538))) (-10 -8 (-15 -4178 ($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |t#1|))))) (-15 -4136 ($ $ (-402 (-538)))) (IF (|has| |t#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $)) (IF (|has| |t#1| (-15 -4172 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3417 ((-622 (-1149)) |t#1|))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-936)) (IF (|has| |t#1| (-29 (-538))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-402 (-538))) . T) ((-25) . T) ((-38 #2=(-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-281 $ $) |has| (-402 (-538)) (-1085)) ((-285) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-545) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-628 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) ((-949 |#1| #1# (-1055)) . T) ((-897) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-1031 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #1#) . T))
-((-3539 (((-112) $) 12)) (-3508 (((-3 |#3| "failed") $) 17)) (-3507 ((|#3| $) 14)))
-(((-1215 |#1| |#2| |#3|) (-10 -8 (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| "failed") |#1|)) (-15 -3539 ((-112) |#1|))) (-1216 |#2| |#3|) (-1025) (-1193 |#2|)) (T -1215))
-NIL
-(-10 -8 (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| "failed") |#1|)) (-15 -3539 ((-112) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) 96) (($ $ (-402 (-538)) (-402 (-538))) 95)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) 103)) (-3846 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 116 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 160 (|has| |#1| (-358)))) (-4329 (((-400 $) $) 161 (|has| |#1| (-358)))) (-3370 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3844 (($ $) 132 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) 169)) (-3848 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 118 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#2| "failed") $) 180)) (-3507 ((|#2| $) 179)) (-2894 (($ $ $) 155 (|has| |#1| (-358)))) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-4140 (((-402 (-538)) $) 177)) (-2893 (($ $ $) 154 (|has| |#1| (-358)))) (-4141 (($ (-402 (-538)) |#2|) 178)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 149 (|has| |#1| (-358)))) (-4086 (((-112) $) 162 (|has| |#1| (-358)))) (-3225 (((-112) $) 71)) (-3990 (($) 143 (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) 98) (((-402 (-538)) $ (-402 (-538))) 97)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 114 (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) 99) (($ $ (-402 (-538))) 168)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 158 (|has| |#1| (-358)))) (-4297 (((-112) $) 60)) (-3226 (($ |#1| (-402 (-538))) 59) (($ $ (-1055) (-402 (-538))) 74) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-4302 (($ $) 140 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-2013 (($ (-622 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-4139 ((|#2| $) 176)) (-4137 (((-3 |#2| "failed") $) 174)) (-4138 ((|#2| $) 175)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 163 (|has| |#1| (-358)))) (-4172 (($ $) 167 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 166 (-3891 (-12 (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-538))))) (-12 (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-538)))))))) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 148 (|has| |#1| (-358)))) (-3495 (($ (-622 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-4092 (((-400 $) $) 159 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 156 (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 150 (|has| |#1| (-358)))) (-4303 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) 152 (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) 102) (($ $ $) 79 (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 153 (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-4307 (((-402 (-538)) $) 62)) (-3849 (($ $) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 120 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 128 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-3852 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-3850 (($ $) 138 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 126 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 136 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 124 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 134 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 122 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 113 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538)))))))
-(((-1216 |#1| |#2|) (-138) (-1025) (-1193 |t#1|)) (T -1216))
-((-4307 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1193 *3)) (-5 *2 (-402 (-538))))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1216 *3 *2)) (-4 *2 (-1193 *3)))) (-4141 (*1 *1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-4 *4 (-1025)) (-4 *1 (-1216 *4 *3)) (-4 *3 (-1193 *4)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1193 *3)) (-5 *2 (-402 (-538))))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3)))) (-4137 (*1 *2 *1) (|partial| -12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3)))))
-(-13 (-1214 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -4141 ($ (-402 (-538)) |t#2|)) (-15 -4140 ((-402 (-538)) $)) (-15 -4139 (|t#2| $)) (-15 -4307 ((-402 (-538)) $)) (-15 -4317 ($ |t#2|)) (-15 -4138 (|t#2| $)) (-15 -4137 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-402 (-538))) . T) ((-25) . T) ((-38 #2=(-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-281 $ $) |has| (-402 (-538)) (-1085)) ((-285) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-545) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-628 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) ((-949 |#1| #1# (-1055)) . T) ((-897) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-1014 |#2|) . T) ((-1031 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #1#) . T) ((-1214 |#1|) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 96)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) 106) (($ $ (-402 (-538)) (-402 (-538))) 108)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) 51)) (-3846 (($ $) 180 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 156 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) 176 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 152 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) 61)) (-3848 (($ $) 184 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 160 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| "failed") $) NIL)) (-3507 ((|#2| $) NIL)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) 79)) (-4140 (((-402 (-538)) $) 13)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4141 (($ (-402 (-538)) |#2|) 11)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3225 (((-112) $) 68)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) 103) (((-402 (-538)) $ (-402 (-538))) 104)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) 120) (($ $ (-402 (-538))) 118)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-402 (-538))) 31) (($ $ (-1055) (-402 (-538))) NIL) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) 115)) (-4302 (($ $) 150 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4139 ((|#2| $) 12)) (-4137 (((-3 |#2| "failed") $) 41)) (-4138 ((|#2| $) 42)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 93 (|has| |#1| (-358)))) (-4172 (($ $) 135 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 140 (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))))))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) 112)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) 148 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) 100) (($ $ $) 86 (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 127 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-4307 (((-402 (-538)) $) 16)) (-3849 (($ $) 186 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 162 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 182 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 158 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 178 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 154 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 110)) (-4317 (((-840) $) NIL) (($ (-538)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-402 (-538))) 128 (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) 99)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) 117)) (-4132 ((|#1| $) 98)) (-3852 (($ $) 192 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 168 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) 188 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 164 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 196 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 172 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 198 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 174 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 194 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 170 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 190 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 166 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 21 T CONST)) (-2997 (($) 17 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) 66)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 92 (|has| |#1| (-358)))) (-4197 (($ $) 131) (($ $ $) 72)) (-4199 (($ $ $) 70)) (** (($ $ (-895)) NIL) (($ $ (-751)) 76) (($ $ (-538)) 145 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 146 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-1217 |#1| |#2|) (-1216 |#1| |#2|) (-1025) (-1193 |#1|)) (T -1217))
-NIL
-(-1216 |#1| |#2|)
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 34)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1014 (-402 (-538))))) (((-3 (-1212 |#2| |#3| |#4|) #1#) $) 20)) (-3507 (((-538) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1014 (-402 (-538))))) (((-1212 |#2| |#3| |#4|) $) NIL)) (-4319 (($ $) 35)) (-3821 (((-3 $ "failed") $) 25)) (-3857 (($ $) NIL (|has| (-1212 |#2| |#3| |#4|) (-446)))) (-1721 (($ $ (-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|) $) NIL)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) 11)) (-4297 (((-112) $) NIL)) (-3226 (($ (-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) 23)) (-3153 (((-314 |#2| |#3| |#4|) $) NIL)) (-1722 (($ (-1 (-314 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) $) NIL)) (-4318 (($ (-1 (-1212 |#2| |#3| |#4|) (-1212 |#2| |#3| |#4|)) $) NIL)) (-4143 (((-3 (-819 |#2|) "failed") $) 75)) (-3227 (($ $) NIL)) (-3525 (((-1212 |#2| |#3| |#4|) $) 18)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 (((-1212 |#2| |#3| |#4|) $) NIL)) (-3820 (((-3 $ "failed") $ (-1212 |#2| |#3| |#4|)) NIL (|has| (-1212 |#2| |#3| |#4|) (-545))) (((-3 $ "failed") $ $) NIL)) (-4142 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-622 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $) 58)) (-4307 (((-314 |#2| |#3| |#4|) $) 14)) (-3150 (((-1212 |#2| |#3| |#4|) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-1212 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL (-3891 (|has| (-1212 |#2| |#3| |#4|) (-1014 (-402 (-538)))) (|has| (-1212 |#2| |#3| |#4|) (-38 (-402 (-538))))))) (-4177 (((-622 (-1212 |#2| |#3| |#4|)) $) NIL)) (-4040 (((-1212 |#2| |#3| |#4|) $ (-314 |#2| |#3| |#4|)) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| (-1212 |#2| |#3| |#4|) (-143)))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| (-1212 |#2| |#3| |#4|) (-170)))) (-2177 (((-112) $ $) NIL)) (-2991 (($) 63 T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ (-1212 |#2| |#3| |#4|)) NIL (|has| (-1212 |#2| |#3| |#4|) (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-1212 |#2| |#3| |#4|)) NIL) (($ (-1212 |#2| |#3| |#4|) $) NIL) (($ (-402 (-538)) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| (-1212 |#2| |#3| |#4|) (-38 (-402 (-538)))))))
-(((-1218 |#1| |#2| |#3| |#4|) (-13 (-321 (-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-545) (-10 -8 (-15 -4143 ((-3 (-819 |#2|) "failed") $)) (-15 -4142 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-622 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $)))) (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446)) (-13 (-27) (-1171) (-416 |#1|)) (-1149) |#2|) (T -1218))
-((-4143 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) (-5 *2 (-819 *4)) (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4))) (-4142 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 *4 *5 *6)) (|:| |%expon| (-314 *4 *5 *6)) (|:| |%expTerms| (-622 (-2 (|:| |k| (-402 (-538))) (|:| |c| *4)))))) (|:| |%type| (-1131)))) (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4))))
-(-13 (-321 (-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-545) (-10 -8 (-15 -4143 ((-3 (-819 |#2|) "failed") $)) (-15 -4142 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-622 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $))))
-((-3761 ((|#2| $) 29)) (-4154 ((|#2| $) 18)) (-4156 (($ $) 36)) (-4144 (($ $ (-538)) 64)) (-1271 (((-112) $ (-751)) 33)) (-3358 ((|#2| $ |#2|) 61)) (-4145 ((|#2| $ |#2|) 59)) (-4147 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3359 (($ $ (-622 $)) 60)) (-4155 ((|#2| $) 17)) (-4158 (($ $) NIL) (($ $ (-751)) 42)) (-3364 (((-622 $) $) 26)) (-3360 (((-112) $ $) 50)) (-4082 (((-112) $ (-751)) 32)) (-4079 (((-112) $ (-751)) 31)) (-3881 (((-112) $) 28)) (-4157 ((|#2| $) 24) (($ $ (-751)) 46)) (-4159 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3996 (((-112) $) 22)) (-4151 (($ $) 39)) (-4149 (($ $) 65)) (-4152 (((-751) $) 41)) (-4153 (($ $) 40)) (-4161 (($ $ $) 58) (($ |#2| $) NIL)) (-3876 (((-622 $) $) 27)) (-3387 (((-112) $ $) 48)) (-4316 (((-751) $) 35)))
-(((-1219 |#1| |#2|) (-10 -8 (-15 -4144 (|#1| |#1| (-538))) (-15 -4147 (|#2| |#1| "last" |#2|)) (-15 -4145 (|#2| |#1| |#2|)) (-15 -4147 (|#1| |#1| "rest" |#1|)) (-15 -4147 (|#2| |#1| "first" |#2|)) (-15 -4149 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 ((-751) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4154 (|#2| |#1|)) (-15 -4155 (|#2| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "last")) (-15 -4157 (|#2| |#1|)) (-15 -4158 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| "rest")) (-15 -4158 (|#1| |#1|)) (-15 -4159 (|#2| |#1| "first")) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#1|)) (-15 -3358 (|#2| |#1| |#2|)) (-15 -4147 (|#2| |#1| #1="value" |#2|)) (-15 -3359 (|#1| |#1| (-622 |#1|))) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -3761 (|#2| |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751)))) (-1220 |#2|) (-1185)) (T -1219))
-NIL
-(-10 -8 (-15 -4144 (|#1| |#1| (-538))) (-15 -4147 (|#2| |#1| "last" |#2|)) (-15 -4145 (|#2| |#1| |#2|)) (-15 -4147 (|#1| |#1| "rest" |#1|)) (-15 -4147 (|#2| |#1| "first" |#2|)) (-15 -4149 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 ((-751) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4154 (|#2| |#1|)) (-15 -4155 (|#2| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "last")) (-15 -4157 (|#2| |#1|)) (-15 -4158 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| "rest")) (-15 -4158 (|#1| |#1|)) (-15 -4159 (|#2| |#1| "first")) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#1|)) (-15 -3358 (|#2| |#1| |#2|)) (-15 -4147 (|#2| |#1| #1="value" |#2|)) (-15 -3359 (|#1| |#1| (-622 |#1|))) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -3761 (|#2| |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751))))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-4154 ((|#1| $) 65)) (-4156 (($ $) 67)) (-4144 (($ $ (-538)) 52 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-4146 (($ $ $) 56 (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ "rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-4155 ((|#1| $) 66)) (-3896 (($) 7 T CONST)) (-4158 (($ $) 73) (($ $ (-751)) 71)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-4157 ((|#1| $) 70) (($ $ (-751)) 68)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 76) (($ $ (-751)) 74)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3362 (((-538) $ $) 44)) (-3996 (((-112) $) 46)) (-4151 (($ $) 62)) (-4149 (($ $) 59 (|has| $ (-6 -4354)))) (-4152 (((-751) $) 63)) (-4153 (($ $) 64)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4150 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-4161 (($ $ $) 78) (($ |#1| $) 77)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-1220 |#1|) (-138) (-1185)) (T -1220))
-((-4161 (*1 *1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4161 (*1 *1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) (-4158 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) (-4158 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) (-4157 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4157 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4153 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-1220 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4150 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4150 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4149 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4148 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4146 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4147 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) (-4145 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4144 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))))
-(-13 (-986 |t#1|) (-10 -8 (-15 -4161 ($ $ $)) (-15 -4161 ($ |t#1| $)) (-15 -4160 (|t#1| $)) (-15 -4159 (|t#1| $ "first")) (-15 -4160 ($ $ (-751))) (-15 -4158 ($ $)) (-15 -4159 ($ $ "rest")) (-15 -4158 ($ $ (-751))) (-15 -4157 (|t#1| $)) (-15 -4159 (|t#1| $ "last")) (-15 -4157 ($ $ (-751))) (-15 -4156 ($ $)) (-15 -4155 (|t#1| $)) (-15 -4154 (|t#1| $)) (-15 -4153 ($ $)) (-15 -4152 ((-751) $)) (-15 -4151 ($ $)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -4150 ($ $ $)) (-15 -4150 ($ $ |t#1|)) (-15 -4149 ($ $)) (-15 -4148 (|t#1| $ |t#1|)) (-15 -4147 (|t#1| $ "first" |t#1|)) (-15 -4146 ($ $ $)) (-15 -4147 ($ $ "rest" $)) (-15 -4145 (|t#1| $ |t#1|)) (-15 -4147 (|t#1| $ "last" |t#1|)) (-15 -4144 ($ $ (-538)))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 87)) (-4171 (((-1200 |#2| |#1|) $ (-751)) 73)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) 137 (|has| |#1| (-545)))) (-4130 (($ $ (-751)) 122) (($ $ (-751) (-751)) 124)) (-4133 (((-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 42)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 53) (($ (-1126 |#1|)) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-4164 (($ $) 128)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4176 (($ $) 135)) (-4174 (((-922 |#1|) $ (-751)) 63) (((-922 |#1|) $ (-751) (-751)) 65)) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $) NIL) (((-751) $ (-751)) NIL)) (-2502 (((-112) $) NIL)) (-4167 (($ $) 112)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4163 (($ (-538) (-538) $) 130)) (-4136 (($ $ (-895)) 134)) (-4175 (($ (-1 |#1| (-538)) $) 106)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) 15) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) 94)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-4168 (($ $) 110)) (-4169 (($ $) 108)) (-4162 (($ (-538) (-538) $) 132)) (-4172 (($ $) 145 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 151 (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 146 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-4165 (($ $ (-538) (-538)) 116)) (-4128 (($ $ (-751)) 118)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4166 (($ $) 114)) (-4127 (((-1126 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-4159 ((|#1| $ (-751)) 91) (($ $ $) 126 (|has| (-751) (-1085)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) 103 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $ (-1228 |#2|)) 99)) (-4307 (((-751) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 120)) (-4317 (((-840) $) NIL) (($ (-538)) 24) (($ (-402 (-538))) 143 (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1200 |#2| |#1|)) 80) (($ (-1228 |#2|)) 20)) (-4177 (((-1126 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) 90)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 88)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-751)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 17 T CONST)) (-2997 (($) 13 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) 102)) (-4199 (($ $ $) 18)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ |#1|) 140 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))))
-(((-1221 |#1| |#2| |#3|) (-13 (-1224 |#1|) (-10 -8 (-15 -4317 ($ (-1200 |#2| |#1|))) (-15 -4171 ((-1200 |#2| |#1|) $ (-751))) (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (-15 -4169 ($ $)) (-15 -4168 ($ $)) (-15 -4167 ($ $)) (-15 -4166 ($ $)) (-15 -4165 ($ $ (-538) (-538))) (-15 -4164 ($ $)) (-15 -4163 ($ (-538) (-538) $)) (-15 -4162 ($ (-538) (-538) $)) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1221))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-1221 *3 *4 *5)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1221 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-4168 (*1 *1 *1) (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-4167 (*1 *1 *1) (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-4166 (*1 *1 *1) (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-4165 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-4164 (*1 *1 *1) (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-4163 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-4162 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))))
-(-13 (-1224 |#1|) (-10 -8 (-15 -4317 ($ (-1200 |#2| |#1|))) (-15 -4171 ((-1200 |#2| |#1|) $ (-751))) (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (-15 -4169 ($ $)) (-15 -4168 ($ $)) (-15 -4167 ($ $)) (-15 -4166 ($ $)) (-15 -4165 ($ $ (-538) (-538))) (-15 -4164 ($ $)) (-15 -4163 ($ (-538) (-538) $)) (-15 -4162 ($ (-538) (-538) $)) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|)))
-((-4318 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1222 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#2| |#1|) |#3|))) (-1025) (-1025) (-1224 |#1|) (-1224 |#2|)) (T -1222))
-((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1224 *6)) (-5 *1 (-1222 *5 *6 *4 *2)) (-4 *4 (-1224 *5)))))
-(-10 -7 (-15 -4318 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3539 (((-112) $) 15)) (-3846 (($ $) 92)) (-4002 (($ $) 68)) (-3844 (($ $) 88)) (-4001 (($ $) 64)) (-3848 (($ $) 96)) (-4000 (($ $) 72)) (-4302 (($ $) 62)) (-4303 (($ $) 60)) (-3849 (($ $) 98)) (-3999 (($ $) 74)) (-3847 (($ $) 94)) (-3998 (($ $) 70)) (-3845 (($ $) 90)) (-3997 (($ $) 66)) (-4317 (((-840) $) 48) (($ (-538)) NIL) (($ (-402 (-538))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3852 (($ $) 104)) (-3840 (($ $) 80)) (-3850 (($ $) 100)) (-3838 (($ $) 76)) (-3854 (($ $) 108)) (-3842 (($ $) 84)) (-3855 (($ $) 110)) (-3843 (($ $) 86)) (-3853 (($ $) 106)) (-3841 (($ $) 82)) (-3851 (($ $) 102)) (-3839 (($ $) 78)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-402 (-538))) 58)))
-(((-1223 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -4002 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895))) (-15 -3539 ((-112) |#1|)) (-15 -4317 ((-840) |#1|))) (-1224 |#2|) (-1025)) (T -1223))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -4002 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895))) (-15 -3539 ((-112) |#1|)) (-15 -4317 ((-840) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ (-751)) 96) (($ $ (-751) (-751)) 95)) (-4133 (((-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 103)) (-3846 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 116 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-3370 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) 132 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 153) (($ (-1126 |#1|)) 151)) (-3848 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 118 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-4176 (($ $) 150)) (-4174 (((-922 |#1|) $ (-751)) 148) (((-922 |#1|) $ (-751) (-751)) 147)) (-3225 (((-112) $) 71)) (-3990 (($) 143 (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $) 98) (((-751) $ (-751)) 97)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 114 (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) 99)) (-4175 (($ (-1 |#1| (-538)) $) 149)) (-4297 (((-112) $) 60)) (-3226 (($ |#1| (-751)) 59) (($ $ (-1055) (-751)) 74) (($ $ (-622 (-1055)) (-622 (-751))) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-4302 (($ $) 140 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-3593 (((-1131) $) 9)) (-4172 (($ $) 145 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 144 (-3891 (-12 (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-538))))) (-12 (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-538)))))))) (-3594 (((-1093) $) 10)) (-4128 (($ $ (-751)) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-4303 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-4159 ((|#1| $ (-751)) 102) (($ $ $) 79 (|has| (-751) (-1085)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-4307 (((-751) $) 62)) (-3849 (($ $) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 120 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 128 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4177 (((-1126 |#1|) $) 152)) (-4040 ((|#1| $ (-751)) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-3852 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-3850 (($ $) 138 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 126 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-751)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 136 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 124 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 134 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 122 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ |#1|) 146 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 113 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538)))))))
-(((-1224 |#1|) (-138) (-1025)) (T -1224))
-((-4178 (*1 *1 *2) (-12 (-5 *2 (-1126 (-2 (|:| |k| (-751)) (|:| |c| *3)))) (-4 *3 (-1025)) (-4 *1 (-1224 *3)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-1224 *3)) (-4 *3 (-1025)) (-5 *2 (-1126 *3)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-4 *1 (-1224 *3)))) (-4176 (*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)))) (-4175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-538))) (-4 *1 (-1224 *3)) (-4 *3 (-1025)))) (-4174 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1224 *4)) (-4 *4 (-1025)) (-5 *2 (-922 *4)))) (-4174 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1224 *4)) (-4 *4 (-1025)) (-5 *2 (-922 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))) (-4172 (*1 *1 *1 *2) (-3891 (-12 (-5 *2 (-1149)) (-4 *1 (-1224 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-538)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1224 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3417 ((-622 *2) *3))) (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538)))))))))
-(-13 (-1210 |t#1| (-751)) (-10 -8 (-15 -4178 ($ (-1126 (-2 (|:| |k| (-751)) (|:| |c| |t#1|))))) (-15 -4177 ((-1126 |t#1|) $)) (-15 -4178 ($ (-1126 |t#1|))) (-15 -4176 ($ $)) (-15 -4175 ($ (-1 |t#1| (-538)) $)) (-15 -4174 ((-922 |t#1|) $ (-751))) (-15 -4174 ((-922 |t#1|) $ (-751) (-751))) (IF (|has| |t#1| (-358)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $)) (IF (|has| |t#1| (-15 -4172 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3417 ((-622 (-1149)) |t#1|))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-936)) (IF (|has| |t#1| (-29 (-538))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-751)) . T) ((-25) . T) ((-38 #2=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-751) |#1|))) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-281 $ $) |has| (-751) (-1085)) ((-285) |has| |#1| (-545)) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-545) |has| |#1| (-545)) ((-628 #2#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #2#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|)))) ((-949 |#1| #1# (-1055)) . T) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-1031 #2#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))) ((-1210 |#1| #1#) . T))
-((-4181 (((-1 (-1126 |#1|) (-622 (-1126 |#1|))) (-1 |#2| (-622 |#2|))) 24)) (-4180 (((-1 (-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4179 (((-1 (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2|)) 13)) (-4184 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4183 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4185 ((|#2| (-1 |#2| (-622 |#2|)) (-622 |#1|)) 54)) (-4186 (((-622 |#2|) (-622 |#1|) (-622 (-1 |#2| (-622 |#2|)))) 61)) (-4182 ((|#2| |#2| |#2|) 43)))
-(((-1225 |#1| |#2|) (-10 -7 (-15 -4179 ((-1 (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2|))) (-15 -4180 ((-1 (-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4181 ((-1 (-1126 |#1|) (-622 (-1126 |#1|))) (-1 |#2| (-622 |#2|)))) (-15 -4182 (|#2| |#2| |#2|)) (-15 -4183 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4184 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4185 (|#2| (-1 |#2| (-622 |#2|)) (-622 |#1|))) (-15 -4186 ((-622 |#2|) (-622 |#1|) (-622 (-1 |#2| (-622 |#2|)))))) (-38 (-402 (-538))) (-1224 |#1|)) (T -1225))
-((-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 (-1 *6 (-622 *6)))) (-4 *5 (-38 (-402 (-538)))) (-4 *6 (-1224 *5)) (-5 *2 (-622 *6)) (-5 *1 (-1225 *5 *6)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-622 *2))) (-5 *4 (-622 *5)) (-4 *5 (-38 (-402 (-538)))) (-4 *2 (-1224 *5)) (-5 *1 (-1225 *5 *2)))) (-4184 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1224 *4)) (-5 *1 (-1225 *4 *2)) (-4 *4 (-38 (-402 (-538)))))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1224 *4)) (-5 *1 (-1225 *4 *2)) (-4 *4 (-38 (-402 (-538)))))) (-4182 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1224 *3)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-622 *5))) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538)))) (-5 *2 (-1 (-1126 *4) (-622 (-1126 *4)))) (-5 *1 (-1225 *4 *5)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538)))) (-5 *2 (-1 (-1126 *4) (-1126 *4) (-1126 *4))) (-5 *1 (-1225 *4 *5)))) (-4179 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538)))) (-5 *2 (-1 (-1126 *4) (-1126 *4))) (-5 *1 (-1225 *4 *5)))))
-(-10 -7 (-15 -4179 ((-1 (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2|))) (-15 -4180 ((-1 (-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4181 ((-1 (-1126 |#1|) (-622 (-1126 |#1|))) (-1 |#2| (-622 |#2|)))) (-15 -4182 (|#2| |#2| |#2|)) (-15 -4183 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4184 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4185 (|#2| (-1 |#2| (-622 |#2|)) (-622 |#1|))) (-15 -4186 ((-622 |#2|) (-622 |#1|) (-622 (-1 |#2| (-622 |#2|))))))
-((-4188 ((|#2| |#4| (-751)) 30)) (-4187 ((|#4| |#2|) 25)) (-4190 ((|#4| (-402 |#2|)) 52 (|has| |#1| (-545)))) (-4189 (((-1 |#4| (-622 |#4|)) |#3|) 46)))
-(((-1226 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4187 (|#4| |#2|)) (-15 -4188 (|#2| |#4| (-751))) (-15 -4189 ((-1 |#4| (-622 |#4|)) |#3|)) (IF (|has| |#1| (-545)) (-15 -4190 (|#4| (-402 |#2|))) |%noBranch|)) (-1025) (-1207 |#1|) (-638 |#2|) (-1224 |#1|)) (T -1226))
-((-4190 (*1 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-545)) (-4 *4 (-1025)) (-4 *2 (-1224 *4)) (-5 *1 (-1226 *4 *5 *6 *2)) (-4 *6 (-638 *5)))) (-4189 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-1207 *4)) (-5 *2 (-1 *6 (-622 *6))) (-5 *1 (-1226 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-1224 *4)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-4 *2 (-1207 *5)) (-5 *1 (-1226 *5 *2 *6 *3)) (-4 *6 (-638 *2)) (-4 *3 (-1224 *5)))) (-4187 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *3 (-1207 *4)) (-4 *2 (-1224 *4)) (-5 *1 (-1226 *4 *3 *5 *2)) (-4 *5 (-638 *3)))))
-(-10 -7 (-15 -4187 (|#4| |#2|)) (-15 -4188 (|#2| |#4| (-751))) (-15 -4189 ((-1 |#4| (-622 |#4|)) |#3|)) (IF (|has| |#1| (-545)) (-15 -4190 (|#4| (-402 |#2|))) |%noBranch|))
+((-2182 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-1129 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2154 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-1149)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-2216 (*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-2172 (*1 *2 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-2162 (*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-2162 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-2874 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1683 (*2 (-1149)))) (-4 *2 (-1025)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4073 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1129 *3)))))
+(-13 (-949 |t#1| |t#2| (-1055)) (-10 -8 (-15 -2182 ((-1129 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2154 (|t#1| $ |t#2|)) (-15 -2195 ((-1149) $)) (-15 -2845 (|t#1| $)) (-15 -2216 ($ $ (-897))) (-15 -2172 (|t#2| $)) (-15 -2172 (|t#2| $ |t#2|)) (-15 -2162 ($ $ |t#2|)) (-15 -2162 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1683 (|t#1| (-1149)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2874 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2147 ($ $ |t#2|)) (IF (|has| |t#2| (-1085)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-229)) (IF (|has| |t#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4073 ((-1129 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-281 $ $) |has| |#2| (-1085)) ((-285) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-876 (-1149)))) ((-949 |#1| |#2| (-1055)) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-2194 ((|#2| |#2|) 12)) (-1330 (((-413 |#2|) |#2|) 14)) (-2205 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))) 30)))
+(((-1211 |#1| |#2|) (-10 -7 (-15 -1330 ((-413 |#2|) |#2|)) (-15 -2194 (|#2| |#2|)) (-15 -2205 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))))) (-544) (-13 (-1208 |#1|) (-544) (-10 -8 (-15 -2633 ($ $ $))))) (T -1211))
+((-2205 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-552)))) (-4 *4 (-13 (-1208 *3) (-544) (-10 -8 (-15 -2633 ($ $ $))))) (-4 *3 (-544)) (-5 *1 (-1211 *3 *4)))) (-2194 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-1208 *3) (-544) (-10 -8 (-15 -2633 ($ $ $))))))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-413 *3)) (-5 *1 (-1211 *4 *3)) (-4 *3 (-13 (-1208 *4) (-544) (-10 -8 (-15 -2633 ($ $ $))))))))
+(-10 -7 (-15 -1330 ((-413 |#2|) |#2|)) (-15 -2194 (|#2| |#2|)) (-15 -2205 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))))))
+((-1996 (((-1217 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1217 |#1| |#3| |#5|)) 24)))
+(((-1212 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1996 ((-1217 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1217 |#1| |#3| |#5|)))) (-1025) (-1025) (-1149) (-1149) |#1| |#2|) (T -1212))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1217 *5 *7 *9)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1217 *6 *8 *10)) (-5 *1 (-1212 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1149)))))
+(-10 -7 (-15 -1996 ((-1217 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1217 |#1| |#3| |#5|))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) 96) (($ $ (-402 (-552)) (-402 (-552))) 95)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) 103)) (-3728 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 116 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 160 (|has| |#1| (-358)))) (-1330 (((-413 $) $) 161 (|has| |#1| (-358)))) (-3837 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3710 (($ $) 132 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) 169)) (-3749 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 118 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-2851 (($ $ $) 155 (|has| |#1| (-358)))) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 154 (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 149 (|has| |#1| (-358)))) (-2951 (((-112) $) 162 (|has| |#1| (-358)))) (-3592 (((-112) $) 71)) (-1385 (($) 143 (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) 98) (((-402 (-552)) $ (-402 (-552))) 97)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 114 (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) 99) (($ $ (-402 (-552))) 168)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 158 (|has| |#1| (-358)))) (-4201 (((-112) $) 60)) (-3957 (($ |#1| (-402 (-552))) 59) (($ $ (-1055) (-402 (-552))) 74) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-2458 (($ $) 140 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2605 (($ (-625 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 163 (|has| |#1| (-358)))) (-2481 (($ $) 167 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 166 (-1523 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-935)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-552)))))))) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 148 (|has| |#1| (-358)))) (-2633 (($ (-625 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-3824 (((-413 $) $) 159 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 156 (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 150 (|has| |#1| (-358)))) (-2863 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) 152 (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) 102) (($ $ $) 79 (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 153 (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-625 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-4276 (((-402 (-552)) $) 62)) (-3759 (($ $) 130 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 120 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 128 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-3789 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-3769 (($ $) 138 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 126 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 136 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 124 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 134 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 122 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-625 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 113 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552)))))))
+(((-1213 |#1|) (-138) (-1025)) (T -1213))
+((-3615 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| *4)))) (-4 *4 (-1025)) (-4 *1 (-1213 *4)))) (-2216 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-4 *1 (-1213 *3)) (-4 *3 (-1025)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))) (-2481 (*1 *1 *1 *2) (-1523 (-12 (-5 *2 (-1149)) (-4 *1 (-1213 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-552)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1213 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3982 ((-625 *2) *3))) (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552)))))))))
+(-13 (-1210 |t#1| (-402 (-552))) (-10 -8 (-15 -3615 ($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |t#1|))))) (-15 -2216 ($ $ (-402 (-552)))) (IF (|has| |t#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $)) (IF (|has| |t#1| (-15 -2481 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3982 ((-625 (-1149)) |t#1|))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-935)) (IF (|has| |t#1| (-29 (-552))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-402 (-552))) . T) ((-25) . T) ((-38 #1=(-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-281 $ $) |has| (-402 (-552)) (-1085)) ((-285) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-544) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-628 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149)))) ((-949 |#1| #0# (-1055)) . T) ((-896) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-1031 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #0#) . T))
+((-3641 (((-112) $) 12)) (-1893 (((-3 |#3| "failed") $) 17)) (-1895 ((|#3| $) 14)))
+(((-1214 |#1| |#2| |#3|) (-10 -8 (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -3641 ((-112) |#1|))) (-1215 |#2| |#3|) (-1025) (-1192 |#2|)) (T -1214))
+NIL
+(-10 -8 (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -3641 ((-112) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) 96) (($ $ (-402 (-552)) (-402 (-552))) 95)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) 103)) (-3728 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 116 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 160 (|has| |#1| (-358)))) (-1330 (((-413 $) $) 161 (|has| |#1| (-358)))) (-3837 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3710 (($ $) 132 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) 169)) (-3749 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 118 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#2| "failed") $) 180)) (-1895 ((|#2| $) 179)) (-2851 (($ $ $) 155 (|has| |#1| (-358)))) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-2249 (((-402 (-552)) $) 177)) (-2826 (($ $ $) 154 (|has| |#1| (-358)))) (-4066 (($ (-402 (-552)) |#2|) 178)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 149 (|has| |#1| (-358)))) (-2951 (((-112) $) 162 (|has| |#1| (-358)))) (-3592 (((-112) $) 71)) (-1385 (($) 143 (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) 98) (((-402 (-552)) $ (-402 (-552))) 97)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 114 (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) 99) (($ $ (-402 (-552))) 168)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 158 (|has| |#1| (-358)))) (-4201 (((-112) $) 60)) (-3957 (($ |#1| (-402 (-552))) 59) (($ $ (-1055) (-402 (-552))) 74) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-2458 (($ $) 140 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2605 (($ (-625 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-2238 ((|#2| $) 176)) (-2226 (((-3 |#2| "failed") $) 174)) (-4053 ((|#2| $) 175)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 163 (|has| |#1| (-358)))) (-2481 (($ $) 167 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 166 (-1523 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-935)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-552)))))))) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 148 (|has| |#1| (-358)))) (-2633 (($ (-625 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-3824 (((-413 $) $) 159 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 156 (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 150 (|has| |#1| (-358)))) (-2863 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) 152 (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) 102) (($ $ $) 79 (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 153 (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-625 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-4276 (((-402 (-552)) $) 62)) (-3759 (($ $) 130 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 120 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 128 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-3789 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-3769 (($ $) 138 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 126 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 136 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 124 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 134 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 122 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-625 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 113 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552)))))))
+(((-1215 |#1| |#2|) (-138) (-1025) (-1192 |t#1|)) (T -1215))
+((-4276 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1192 *3)) (-5 *2 (-402 (-552))))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1215 *3 *2)) (-4 *2 (-1192 *3)))) (-4066 (*1 *1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-4 *4 (-1025)) (-4 *1 (-1215 *4 *3)) (-4 *3 (-1192 *4)))) (-2249 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1192 *3)) (-5 *2 (-402 (-552))))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1192 *3)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1192 *3)))) (-2226 (*1 *2 *1) (|partial| -12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1192 *3)))))
+(-13 (-1213 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -4066 ($ (-402 (-552)) |t#2|)) (-15 -2249 ((-402 (-552)) $)) (-15 -2238 (|t#2| $)) (-15 -4276 ((-402 (-552)) $)) (-15 -1683 ($ |t#2|)) (-15 -4053 (|t#2| $)) (-15 -2226 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-402 (-552))) . T) ((-25) . T) ((-38 #1=(-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-281 $ $) |has| (-402 (-552)) (-1085)) ((-285) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-544) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-628 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149)))) ((-949 |#1| #0# (-1055)) . T) ((-896) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-1014 |#2|) . T) ((-1031 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #0#) . T) ((-1213 |#1|) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 96)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) 106) (($ $ (-402 (-552)) (-402 (-552))) 108)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) 51)) (-3728 (($ $) 180 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 156 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) 176 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 152 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) 61)) (-3749 (($ $) 184 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 160 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL)) (-1895 ((|#2| $) NIL)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) 79)) (-2249 (((-402 (-552)) $) 13)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-4066 (($ (-402 (-552)) |#2|) 11)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3592 (((-112) $) 68)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) 103) (((-402 (-552)) $ (-402 (-552))) 104)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) 120) (($ $ (-402 (-552))) 118)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-402 (-552))) 31) (($ $ (-1055) (-402 (-552))) NIL) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) 115)) (-2458 (($ $) 150 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2238 ((|#2| $) 12)) (-2226 (((-3 |#2| "failed") $) 41)) (-4053 ((|#2| $) 42)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 93 (|has| |#1| (-358)))) (-2481 (($ $) 135 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 140 (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171)))))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) 112)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) 148 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) 100) (($ $ $) 86 (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) 127 (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-4276 (((-402 (-552)) $) 16)) (-3759 (($ $) 186 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 162 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 182 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 158 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 178 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 154 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 110)) (-1683 (((-839) $) NIL) (($ (-552)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-402 (-552))) 128 (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) 99)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) 117)) (-2845 ((|#1| $) 98)) (-3789 (($ $) 192 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 168 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) 188 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 164 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 196 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 172 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 198 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 174 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 194 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 170 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 190 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 166 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 21 T CONST)) (-2100 (($) 17 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) 66)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 92 (|has| |#1| (-358)))) (-2393 (($ $) 131) (($ $ $) 72)) (-2382 (($ $ $) 70)) (** (($ $ (-897)) NIL) (($ $ (-751)) 76) (($ $ (-552)) 145 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 146 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-1216 |#1| |#2|) (-1215 |#1| |#2|) (-1025) (-1192 |#1|)) (T -1216))
+NIL
+(-1215 |#1| |#2|)
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 11)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) NIL) (($ $ (-402 (-552)) (-402 (-552))) NIL)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-1196 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1224 |#1| |#2| |#3|) "failed") $) 22)) (-1895 (((-1196 |#1| |#2| |#3|) $) NIL) (((-1224 |#1| |#2| |#3|) $) NIL)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2249 (((-402 (-552)) $) 57)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-4066 (($ (-402 (-552)) (-1196 |#1| |#2| |#3|)) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) NIL) (((-402 (-552)) $ (-402 (-552))) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) NIL) (($ $ (-402 (-552))) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-402 (-552))) 30) (($ $ (-1055) (-402 (-552))) NIL) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2238 (((-1196 |#1| |#2| |#3|) $) 60)) (-2226 (((-3 (-1196 |#1| |#2| |#3|) "failed") $) NIL)) (-4053 (((-1196 |#1| |#2| |#3|) $) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) 39 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 40 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) NIL) (($ $ $) NIL (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $ (-1228 |#2|)) 38)) (-4276 (((-402 (-552)) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) 89) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1196 |#1| |#2| |#3|)) 16) (($ (-1224 |#1| |#2| |#3|)) 17) (($ (-1228 |#2|)) 36) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 12)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 32 T CONST)) (-2100 (($) 26 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 34)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-1217 |#1| |#2| |#3|) (-13 (-1215 |#1| (-1196 |#1| |#2| |#3|)) (-1014 (-1224 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1217))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))))
+(-13 (-1215 |#1| (-1196 |#1| |#2| |#3|)) (-1014 (-1224 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 34)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| (-1217 |#2| |#3| |#4|) (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-1217 |#2| |#3| |#4|) (-1014 (-402 (-552))))) (((-3 (-1217 |#2| |#3| |#4|) "failed") $) 20)) (-1895 (((-552) $) NIL (|has| (-1217 |#2| |#3| |#4|) (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| (-1217 |#2| |#3| |#4|) (-1014 (-402 (-552))))) (((-1217 |#2| |#3| |#4|) $) NIL)) (-4169 (($ $) 35)) (-4174 (((-3 $ "failed") $) 25)) (-1294 (($ $) NIL (|has| (-1217 |#2| |#3| |#4|) (-446)))) (-1347 (($ $ (-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|) $) NIL)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) 11)) (-4201 (((-112) $) NIL)) (-3957 (($ (-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) 23)) (-4134 (((-314 |#2| |#3| |#4|) $) NIL)) (-1357 (($ (-1 (-314 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) $) NIL)) (-1996 (($ (-1 (-1217 |#2| |#3| |#4|) (-1217 |#2| |#3| |#4|)) $) NIL)) (-2267 (((-3 (-820 |#2|) "failed") $) 75)) (-4131 (($ $) NIL)) (-4144 (((-1217 |#2| |#3| |#4|) $) 18)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 (((-1217 |#2| |#3| |#4|) $) NIL)) (-2802 (((-3 $ "failed") $ (-1217 |#2| |#3| |#4|)) NIL (|has| (-1217 |#2| |#3| |#4|) (-544))) (((-3 $ "failed") $ $) NIL)) (-2258 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1217 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-625 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $) 58)) (-4276 (((-314 |#2| |#3| |#4|) $) 14)) (-4108 (((-1217 |#2| |#3| |#4|) $) NIL (|has| (-1217 |#2| |#3| |#4|) (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-1217 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL (-1523 (|has| (-1217 |#2| |#3| |#4|) (-38 (-402 (-552)))) (|has| (-1217 |#2| |#3| |#4|) (-1014 (-402 (-552))))))) (-2512 (((-625 (-1217 |#2| |#3| |#4|)) $) NIL)) (-3637 (((-1217 |#2| |#3| |#4|) $ (-314 |#2| |#3| |#4|)) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| (-1217 |#2| |#3| |#4|) (-143)))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| (-1217 |#2| |#3| |#4|) (-170)))) (-3518 (((-112) $ $) NIL)) (-2089 (($) 63 T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ (-1217 |#2| |#3| |#4|)) NIL (|has| (-1217 |#2| |#3| |#4|) (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-1217 |#2| |#3| |#4|)) NIL) (($ (-1217 |#2| |#3| |#4|) $) NIL) (($ (-402 (-552)) $) NIL (|has| (-1217 |#2| |#3| |#4|) (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| (-1217 |#2| |#3| |#4|) (-38 (-402 (-552)))))))
+(((-1218 |#1| |#2| |#3| |#4|) (-13 (-321 (-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-544) (-10 -8 (-15 -2267 ((-3 (-820 |#2|) "failed") $)) (-15 -2258 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1217 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-625 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $)))) (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446)) (-13 (-27) (-1171) (-425 |#1|)) (-1149) |#2|) (T -1218))
+((-2267 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) (-5 *2 (-820 *4)) (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149)) (-14 *6 *4))) (-2258 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1217 *4 *5 *6)) (|:| |%expon| (-314 *4 *5 *6)) (|:| |%expTerms| (-625 (-2 (|:| |k| (-402 (-552))) (|:| |c| *4)))))) (|:| |%type| (-1131)))) (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149)) (-14 *6 *4))))
+(-13 (-321 (-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-544) (-10 -8 (-15 -2267 ((-3 (-820 |#2|) "failed") $)) (-15 -2258 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1217 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-625 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $))))
+((-3800 ((|#2| $) 29)) (-3897 ((|#2| $) 18)) (-2101 (($ $) 36)) (-2278 (($ $ (-552)) 64)) (-3495 (((-112) $ (-751)) 33)) (-2565 ((|#2| $ |#2|) 61)) (-2289 ((|#2| $ |#2|) 59)) (-1851 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1359 (($ $ (-625 $)) 60)) (-2673 ((|#2| $) 17)) (-2936 (($ $) NIL) (($ $ (-751)) 42)) (-1399 (((-625 $) $) 26)) (-1371 (((-112) $ $) 50)) (-2909 (((-112) $ (-751)) 32)) (-2878 (((-112) $ (-751)) 31)) (-3367 (((-112) $) 28)) (-1437 ((|#2| $) 24) (($ $ (-751)) 46)) (-2154 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2316 (((-112) $) 22)) (-2356 (($ $) 39)) (-2330 (($ $) 65)) (-2368 (((-751) $) 41)) (-2379 (($ $) 40)) (-3402 (($ $ $) 58) (($ |#2| $) NIL)) (-3320 (((-625 $) $) 27)) (-2281 (((-112) $ $) 48)) (-1471 (((-751) $) 35)))
+(((-1219 |#1| |#2|) (-10 -8 (-15 -2278 (|#1| |#1| (-552))) (-15 -1851 (|#2| |#1| "last" |#2|)) (-15 -2289 (|#2| |#1| |#2|)) (-15 -1851 (|#1| |#1| "rest" |#1|)) (-15 -1851 (|#2| |#1| "first" |#2|)) (-15 -2330 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2368 ((-751) |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -3897 (|#2| |#1|)) (-15 -2673 (|#2| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -1437 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "last")) (-15 -1437 (|#2| |#1|)) (-15 -2936 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| "rest")) (-15 -2936 (|#1| |#1|)) (-15 -2154 (|#2| |#1| "first")) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#1|)) (-15 -2565 (|#2| |#1| |#2|)) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1359 (|#1| |#1| (-625 |#1|))) (-15 -1371 ((-112) |#1| |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3800 (|#2| |#1|)) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751)))) (-1220 |#2|) (-1186)) (T -1219))
+NIL
+(-10 -8 (-15 -2278 (|#1| |#1| (-552))) (-15 -1851 (|#2| |#1| "last" |#2|)) (-15 -2289 (|#2| |#1| |#2|)) (-15 -1851 (|#1| |#1| "rest" |#1|)) (-15 -1851 (|#2| |#1| "first" |#2|)) (-15 -2330 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2368 ((-751) |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -3897 (|#2| |#1|)) (-15 -2673 (|#2| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -1437 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "last")) (-15 -1437 (|#2| |#1|)) (-15 -2936 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| "rest")) (-15 -2936 (|#1| |#1|)) (-15 -2154 (|#2| |#1| "first")) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#1|)) (-15 -2565 (|#2| |#1| |#2|)) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1359 (|#1| |#1| (-625 |#1|))) (-15 -1371 ((-112) |#1| |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3800 (|#2| |#1|)) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751))))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3897 ((|#1| $) 65)) (-2101 (($ $) 67)) (-2278 (($ $ (-552)) 52 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-2301 (($ $ $) 56 (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ "rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-2673 ((|#1| $) 66)) (-3101 (($) 7 T CONST)) (-2936 (($ $) 73) (($ $ (-751)) 71)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-1437 ((|#1| $) 70) (($ $ (-751)) 68)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 76) (($ $ (-751)) 74)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1389 (((-552) $ $) 44)) (-2316 (((-112) $) 46)) (-2356 (($ $) 62)) (-2330 (($ $) 59 (|has| $ (-6 -4354)))) (-2368 (((-751) $) 63)) (-2379 (($ $) 64)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2342 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-3402 (($ $ $) 78) (($ |#1| $) 77)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-1220 |#1|) (-138) (-1186)) (T -1220))
+((-3402 (*1 *1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-3402 (*1 *1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) (-2936 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) (-2936 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) (-2101 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-1220 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2342 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2342 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2330 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2317 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2301 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-1851 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) (-2289 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2278 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))))
+(-13 (-986 |t#1|) (-10 -8 (-15 -3402 ($ $ $)) (-15 -3402 ($ |t#1| $)) (-15 -2924 (|t#1| $)) (-15 -2154 (|t#1| $ "first")) (-15 -2924 ($ $ (-751))) (-15 -2936 ($ $)) (-15 -2154 ($ $ "rest")) (-15 -2936 ($ $ (-751))) (-15 -1437 (|t#1| $)) (-15 -2154 (|t#1| $ "last")) (-15 -1437 ($ $ (-751))) (-15 -2101 ($ $)) (-15 -2673 (|t#1| $)) (-15 -3897 (|t#1| $)) (-15 -2379 ($ $)) (-15 -2368 ((-751) $)) (-15 -2356 ($ $)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -2342 ($ $ $)) (-15 -2342 ($ $ |t#1|)) (-15 -2330 ($ $)) (-15 -2317 (|t#1| $ |t#1|)) (-15 -1851 (|t#1| $ "first" |t#1|)) (-15 -2301 ($ $ $)) (-15 -1851 ($ $ "rest" $)) (-15 -2289 (|t#1| $ |t#1|)) (-15 -1851 (|t#1| $ "last" |t#1|)) (-15 -2278 ($ $ (-552)))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T))
+((-1996 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1221 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#2| |#1|) |#3|))) (-1025) (-1025) (-1223 |#1|) (-1223 |#2|)) (T -1221))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1223 *6)) (-5 *1 (-1221 *5 *6 *4 *2)) (-4 *4 (-1223 *5)))))
+(-10 -7 (-15 -1996 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3641 (((-112) $) 15)) (-3728 (($ $) 92)) (-3604 (($ $) 68)) (-3710 (($ $) 88)) (-3581 (($ $) 64)) (-3749 (($ $) 96)) (-3627 (($ $) 72)) (-2458 (($ $) 62)) (-2863 (($ $) 60)) (-3759 (($ $) 98)) (-3638 (($ $) 74)) (-3738 (($ $) 94)) (-3614 (($ $) 70)) (-3721 (($ $) 90)) (-3593 (($ $) 66)) (-1683 (((-839) $) 48) (($ (-552)) NIL) (($ (-402 (-552))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3789 (($ $) 104)) (-3670 (($ $) 80)) (-3769 (($ $) 100)) (-3648 (($ $) 76)) (-3809 (($ $) 108)) (-3691 (($ $) 84)) (-3742 (($ $) 110)) (-3700 (($ $) 86)) (-3797 (($ $) 106)) (-3681 (($ $) 82)) (-3778 (($ $) 102)) (-3659 (($ $) 78)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-402 (-552))) 58)))
+(((-1222 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -3604 (|#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -3691 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3721 (|#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2863 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897))) (-15 -3641 ((-112) |#1|)) (-15 -1683 ((-839) |#1|))) (-1223 |#2|) (-1025)) (T -1222))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -3604 (|#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -3691 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3721 (|#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2863 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897))) (-15 -3641 ((-112) |#1|)) (-15 -1683 ((-839) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ (-751)) 96) (($ $ (-751) (-751)) 95)) (-2182 (((-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 103)) (-3728 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 116 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-3837 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) 132 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 153) (($ (-1129 |#1|)) 151)) (-3749 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 118 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-2502 (($ $) 150)) (-4098 (((-928 |#1|) $ (-751)) 148) (((-928 |#1|) $ (-751) (-751)) 147)) (-3592 (((-112) $) 71)) (-1385 (($) 143 (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $) 98) (((-751) $ (-751)) 97)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 114 (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) 99)) (-2493 (($ (-1 |#1| (-552)) $) 149)) (-4201 (((-112) $) 60)) (-3957 (($ |#1| (-751)) 59) (($ $ (-1055) (-751)) 74) (($ $ (-625 (-1055)) (-625 (-751))) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-2458 (($ $) 140 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2883 (((-1131) $) 9)) (-2481 (($ $) 145 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 144 (-1523 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-935)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-552)))))))) (-2831 (((-1093) $) 10)) (-2147 (($ $ (-751)) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-2863 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-2154 ((|#1| $ (-751)) 102) (($ $ $) 79 (|has| (-751) (-1085)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-625 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-4276 (((-751) $) 62)) (-3759 (($ $) 130 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 120 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 128 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2512 (((-1129 |#1|) $) 152)) (-3637 ((|#1| $ (-751)) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-3789 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-3769 (($ $) 138 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 126 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-751)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 136 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 124 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 134 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 122 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-625 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ |#1|) 146 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 113 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552)))))))
+(((-1223 |#1|) (-138) (-1025)) (T -1223))
+((-3615 (*1 *1 *2) (-12 (-5 *2 (-1129 (-2 (|:| |k| (-751)) (|:| |c| *3)))) (-4 *3 (-1025)) (-4 *1 (-1223 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1025)) (-5 *2 (-1129 *3)))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-4 *1 (-1223 *3)))) (-2502 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)))) (-2493 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1223 *3)) (-4 *3 (-1025)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1223 *4)) (-4 *4 (-1025)) (-5 *2 (-928 *4)))) (-4098 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1223 *4)) (-4 *4 (-1025)) (-5 *2 (-928 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))) (-2481 (*1 *1 *1 *2) (-1523 (-12 (-5 *2 (-1149)) (-4 *1 (-1223 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-552)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1223 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3982 ((-625 *2) *3))) (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552)))))))))
+(-13 (-1210 |t#1| (-751)) (-10 -8 (-15 -3615 ($ (-1129 (-2 (|:| |k| (-751)) (|:| |c| |t#1|))))) (-15 -2512 ((-1129 |t#1|) $)) (-15 -3615 ($ (-1129 |t#1|))) (-15 -2502 ($ $)) (-15 -2493 ($ (-1 |t#1| (-552)) $)) (-15 -4098 ((-928 |t#1|) $ (-751))) (-15 -4098 ((-928 |t#1|) $ (-751) (-751))) (IF (|has| |t#1| (-358)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $)) (IF (|has| |t#1| (-15 -2481 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3982 ((-625 (-1149)) |t#1|))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-935)) (IF (|has| |t#1| (-29 (-552))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-751)) . T) ((-25) . T) ((-38 #1=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-751) |#1|))) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-281 $ $) |has| (-751) (-1085)) ((-285) |has| |#1| (-544)) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-544) |has| |#1| (-544)) ((-628 #1#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149)))) ((-949 |#1| #0# (-1055)) . T) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-1031 #1#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))) ((-1210 |#1| #0#) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 87)) (-2472 (((-1205 |#2| |#1|) $ (-751)) 73)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) 137 (|has| |#1| (-544)))) (-2162 (($ $ (-751)) 122) (($ $ (-751) (-751)) 124)) (-2182 (((-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 42)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 53) (($ (-1129 |#1|)) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-2412 (($ $) 128)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2502 (($ $) 135)) (-4098 (((-928 |#1|) $ (-751)) 63) (((-928 |#1|) $ (-751) (-751)) 65)) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $) NIL) (((-751) $ (-751)) NIL)) (-3650 (((-112) $) NIL)) (-2441 (($ $) 112)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2401 (($ (-552) (-552) $) 130)) (-2216 (($ $ (-897)) 134)) (-2493 (($ (-1 |#1| (-552)) $) 106)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) 15) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) 94)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2451 (($ $) 110)) (-2463 (($ $) 108)) (-2390 (($ (-552) (-552) $) 132)) (-2481 (($ $) 145 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 151 (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 146 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-2421 (($ $ (-552) (-552)) 116)) (-2147 (($ $ (-751)) 118)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2431 (($ $) 114)) (-4073 (((-1129 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-2154 ((|#1| $ (-751)) 91) (($ $ $) 126 (|has| (-751) (-1085)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) 103 (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $ (-1228 |#2|)) 99)) (-4276 (((-751) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 120)) (-1683 (((-839) $) NIL) (($ (-552)) 24) (($ (-402 (-552))) 143 (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1205 |#2| |#1|)) 80) (($ (-1228 |#2|)) 20)) (-2512 (((-1129 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) 90)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 88)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-751)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 17 T CONST)) (-2100 (($) 13 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) 102)) (-2382 (($ $ $) 18)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ |#1|) 140 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))))
+(((-1224 |#1| |#2| |#3|) (-13 (-1223 |#1|) (-10 -8 (-15 -1683 ($ (-1205 |#2| |#1|))) (-15 -2472 ((-1205 |#2| |#1|) $ (-751))) (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (-15 -2463 ($ $)) (-15 -2451 ($ $)) (-15 -2441 ($ $)) (-15 -2431 ($ $)) (-15 -2421 ($ $ (-552) (-552))) (-15 -2412 ($ $)) (-15 -2401 ($ (-552) (-552) $)) (-15 -2390 ($ (-552) (-552) $)) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1224))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-1205 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-1224 *3 *4 *5)))) (-2472 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1205 *5 *4)) (-5 *1 (-1224 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2463 (*1 *1 *1) (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-2451 (*1 *1 *1) (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-2441 (*1 *1 *1) (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-2431 (*1 *1 *1) (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-2421 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-2412 (*1 *1 *1) (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-2401 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-2390 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))))
+(-13 (-1223 |#1|) (-10 -8 (-15 -1683 ($ (-1205 |#2| |#1|))) (-15 -2472 ((-1205 |#2| |#1|) $ (-751))) (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (-15 -2463 ($ $)) (-15 -2451 ($ $)) (-15 -2441 ($ $)) (-15 -2431 ($ $)) (-15 -2421 ($ $ (-552) (-552))) (-15 -2412 ($ $)) (-15 -2401 ($ (-552) (-552) $)) (-15 -2390 ($ (-552) (-552) $)) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|)))
+((-2540 (((-1 (-1129 |#1|) (-625 (-1129 |#1|))) (-1 |#2| (-625 |#2|))) 24)) (-2530 (((-1 (-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2521 (((-1 (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2|)) 13)) (-2567 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2557 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2576 ((|#2| (-1 |#2| (-625 |#2|)) (-625 |#1|)) 54)) (-2587 (((-625 |#2|) (-625 |#1|) (-625 (-1 |#2| (-625 |#2|)))) 61)) (-2548 ((|#2| |#2| |#2|) 43)))
+(((-1225 |#1| |#2|) (-10 -7 (-15 -2521 ((-1 (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2|))) (-15 -2530 ((-1 (-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2540 ((-1 (-1129 |#1|) (-625 (-1129 |#1|))) (-1 |#2| (-625 |#2|)))) (-15 -2548 (|#2| |#2| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2567 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2576 (|#2| (-1 |#2| (-625 |#2|)) (-625 |#1|))) (-15 -2587 ((-625 |#2|) (-625 |#1|) (-625 (-1 |#2| (-625 |#2|)))))) (-38 (-402 (-552))) (-1223 |#1|)) (T -1225))
+((-2587 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 (-1 *6 (-625 *6)))) (-4 *5 (-38 (-402 (-552)))) (-4 *6 (-1223 *5)) (-5 *2 (-625 *6)) (-5 *1 (-1225 *5 *6)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-625 *2))) (-5 *4 (-625 *5)) (-4 *5 (-38 (-402 (-552)))) (-4 *2 (-1223 *5)) (-5 *1 (-1225 *5 *2)))) (-2567 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1223 *4)) (-5 *1 (-1225 *4 *2)) (-4 *4 (-38 (-402 (-552)))))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1223 *4)) (-5 *1 (-1225 *4 *2)) (-4 *4 (-38 (-402 (-552)))))) (-2548 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1223 *3)))) (-2540 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-625 *5))) (-4 *5 (-1223 *4)) (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-1 (-1129 *4) (-625 (-1129 *4)))) (-5 *1 (-1225 *4 *5)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1223 *4)) (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-1 (-1129 *4) (-1129 *4) (-1129 *4))) (-5 *1 (-1225 *4 *5)))) (-2521 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1223 *4)) (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-1 (-1129 *4) (-1129 *4))) (-5 *1 (-1225 *4 *5)))))
+(-10 -7 (-15 -2521 ((-1 (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2|))) (-15 -2530 ((-1 (-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2540 ((-1 (-1129 |#1|) (-625 (-1129 |#1|))) (-1 |#2| (-625 |#2|)))) (-15 -2548 (|#2| |#2| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2567 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2576 (|#2| (-1 |#2| (-625 |#2|)) (-625 |#1|))) (-15 -2587 ((-625 |#2|) (-625 |#1|) (-625 (-1 |#2| (-625 |#2|))))))
+((-2610 ((|#2| |#4| (-751)) 30)) (-2599 ((|#4| |#2|) 25)) (-2627 ((|#4| (-402 |#2|)) 52 (|has| |#1| (-544)))) (-2617 (((-1 |#4| (-625 |#4|)) |#3|) 46)))
+(((-1226 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2599 (|#4| |#2|)) (-15 -2610 (|#2| |#4| (-751))) (-15 -2617 ((-1 |#4| (-625 |#4|)) |#3|)) (IF (|has| |#1| (-544)) (-15 -2627 (|#4| (-402 |#2|))) |%noBranch|)) (-1025) (-1208 |#1|) (-636 |#2|) (-1223 |#1|)) (T -1226))
+((-2627 (*1 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-544)) (-4 *4 (-1025)) (-4 *2 (-1223 *4)) (-5 *1 (-1226 *4 *5 *6 *2)) (-4 *6 (-636 *5)))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-1208 *4)) (-5 *2 (-1 *6 (-625 *6))) (-5 *1 (-1226 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-1223 *4)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-4 *2 (-1208 *5)) (-5 *1 (-1226 *5 *2 *6 *3)) (-4 *6 (-636 *2)) (-4 *3 (-1223 *5)))) (-2599 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *3 (-1208 *4)) (-4 *2 (-1223 *4)) (-5 *1 (-1226 *4 *3 *5 *2)) (-4 *5 (-636 *3)))))
+(-10 -7 (-15 -2599 (|#4| |#2|)) (-15 -2610 (|#2| |#4| (-751))) (-15 -2617 ((-1 |#4| (-625 |#4|)) |#3|)) (IF (|has| |#1| (-544)) (-15 -2627 (|#4| (-402 |#2|))) |%noBranch|))
NIL
(((-1227) (-138)) (T -1227))
NIL
-(-13 (-10 -7 (-6 -2368)))
-((-2898 (((-112) $ $) NIL)) (-4191 (((-1149)) 12)) (-3593 (((-1131) $) 17)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 11) (((-1149) $) 8)) (-3387 (((-112) $ $) 14)))
-(((-1228 |#1|) (-13 (-1074) (-597 (-1149)) (-10 -8 (-15 -4317 ((-1149) $)) (-15 -4191 ((-1149))))) (-1149)) (T -1228))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2))) (-4191 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2))))
-(-13 (-1074) (-597 (-1149)) (-10 -8 (-15 -4317 ((-1149) $)) (-15 -4191 ((-1149)))))
-((-4198 (($ (-751)) 18)) (-4195 (((-669 |#2|) $ $) 40)) (-4192 ((|#2| $) 48)) (-4193 ((|#2| $) 47)) (-4196 ((|#2| $ $) 35)) (-4194 (($ $ $) 44)) (-4197 (($ $) 22) (($ $ $) 28)) (-4199 (($ $ $) 15)) (* (($ (-538) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1229 |#1| |#2|) (-10 -8 (-15 -4192 (|#2| |#1|)) (-15 -4193 (|#2| |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4195 ((-669 |#2|) |#1| |#1|)) (-15 -4196 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -4198 (|#1| (-751))) (-15 -4199 (|#1| |#1| |#1|))) (-1230 |#2|) (-1185)) (T -1229))
-NIL
-(-10 -8 (-15 -4192 (|#2| |#1|)) (-15 -4193 (|#2| |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4195 ((-669 |#2|) |#1| |#1|)) (-15 -4196 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -4198 (|#1| (-751))) (-15 -4199 (|#1| |#1| |#1|)))
-((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-4198 (($ (-751)) 112 (|has| |#1| (-23)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-3778 (((-538) (-1 (-112) |#1|) $) 97) (((-538) |#1| $) 96 (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) 95 (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4195 (((-669 |#1|) $ $) 105 (|has| |#1| (-1025)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4192 ((|#1| $) 102 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-4079 (((-112) $ (-751)) 10)) (-4193 ((|#1| $) 103 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-4196 ((|#1| $ $) 106 (|has| |#1| (-1025)))) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-4194 (($ $ $) 104 (|has| |#1| (-1025)))) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 70)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) 85 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 82 (|has| |#1| (-827)))) (-4197 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4199 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-538) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-707))) (($ $ |#1|) 107 (|has| |#1| (-707)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353)))))
-(((-1230 |#1|) (-138) (-1185)) (T -1230))
-((-4199 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-25)))) (-4198 (*1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1230 *3)) (-4 *3 (-23)) (-4 *3 (-1185)))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-21)))) (-4197 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-4 *1 (-1230 *3)) (-4 *3 (-1185)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))) (-4196 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-1025)))) (-4195 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1185)) (-4 *3 (-1025)) (-5 *2 (-669 *3)))) (-4194 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-1025)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-978)) (-4 *2 (-1025)))) (-4192 (*1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-978)) (-4 *2 (-1025)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4199 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4198 ($ (-751))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4197 ($ $)) (-15 -4197 ($ $ $)) (-15 * ($ (-538) $))) |%noBranch|) (IF (|has| |t#1| (-707)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-15 -4196 (|t#1| $ $)) (-15 -4195 ((-669 |t#1|) $ $)) (-15 -4194 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-1025)) (PROGN (-15 -4193 (|t#1| $)) (-15 -4192 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-101) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-367 |#1|) . T) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-19 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1074) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-1185) . T))
-((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751)) NIL (|has| |#1| (-23)))) (-4200 (($ (-622 |#1|)) 9)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) 15 (|has| $ (-6 -4353)))) (-4195 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4192 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-4079 (((-112) $ (-751)) NIL)) (-4193 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-4196 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-1025)))) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) 19 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 8)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4197 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4199 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-538) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1231 |#1|) (-13 (-1230 |#1|) (-10 -8 (-15 -4200 ($ (-622 |#1|))))) (-1185)) (T -1231))
-((-4200 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1231 *3)))))
-(-13 (-1230 |#1|) (-10 -8 (-15 -4200 ($ (-622 |#1|)))))
-((-4201 (((-1231 |#2|) (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|) 13)) (-4202 ((|#2| (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|) 15)) (-4318 (((-3 (-1231 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1231 |#1|)) 28) (((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|)) 18)))
-(((-1232 |#1| |#2|) (-10 -7 (-15 -4201 ((-1231 |#2|) (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|)) (-15 -4318 ((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) (-15 -4318 ((-3 (-1231 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1231 |#1|)))) (-1185) (-1185)) (T -1232))
-((-4318 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1231 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1231 *6)) (-5 *1 (-1232 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1231 *6)) (-5 *1 (-1232 *5 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1231 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-1232 *5 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1231 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-5 *2 (-1231 *5)) (-5 *1 (-1232 *6 *5)))))
-(-10 -7 (-15 -4201 ((-1231 |#2|) (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|)) (-15 -4318 ((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) (-15 -4318 ((-3 (-1231 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1231 |#1|))))
-((-4203 (((-462) (-622 (-622 (-919 (-221)))) (-622 (-256))) 21) (((-462) (-622 (-622 (-919 (-221))))) 20) (((-462) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256))) 19)) (-4204 (((-1234) (-622 (-622 (-919 (-221)))) (-622 (-256))) 27) (((-1234) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256))) 26)) (-4317 (((-1234) (-462)) 38)))
-(((-1233) (-10 -7 (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256)))) (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))))) (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))) (-622 (-256)))) (-15 -4204 ((-1234) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256)))) (-15 -4204 ((-1234) (-622 (-622 (-919 (-221)))) (-622 (-256)))) (-15 -4317 ((-1234) (-462))))) (T -1233))
-((-4317 (*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1234)) (-5 *1 (-1233)))) (-4204 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-1233)))) (-4204 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-895)) (-5 *6 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-1233)))) (-4203 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-622 (-256))) (-5 *2 (-462)) (-5 *1 (-1233)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-462)) (-5 *1 (-1233)))) (-4203 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-895)) (-5 *6 (-622 (-256))) (-5 *2 (-462)) (-5 *1 (-1233)))))
-(-10 -7 (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256)))) (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))))) (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))) (-622 (-256)))) (-15 -4204 ((-1234) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256)))) (-15 -4204 ((-1234) (-622 (-622 (-919 (-221)))) (-622 (-256)))) (-15 -4317 ((-1234) (-462))))
-((-2898 (((-112) $ $) NIL)) (-4222 (((-1131) $ (-1131)) 90) (((-1131) $ (-1131) (-1131)) 88) (((-1131) $ (-1131) (-622 (-1131))) 87)) (-4218 (($) 59)) (-4205 (((-1237) $ (-462) (-895)) 45)) (-4211 (((-1237) $ (-895) (-1131)) 73) (((-1237) $ (-895) (-850)) 74)) (-4233 (((-1237) $ (-895) (-373) (-373)) 48)) (-4243 (((-1237) $ (-1131)) 69)) (-4206 (((-1237) $ (-895) (-1131)) 78)) (-4207 (((-1237) $ (-895) (-373) (-373)) 49)) (-4244 (((-1237) $ (-895) (-895)) 46)) (-4224 (((-1237) $) 70)) (-4209 (((-1237) $ (-895) (-1131)) 77)) (-4213 (((-1237) $ (-462) (-895)) 31)) (-4210 (((-1237) $ (-895) (-1131)) 76)) (-4246 (((-622 (-256)) $) 23) (($ $ (-622 (-256))) 24)) (-4245 (((-1237) $ (-751) (-751)) 43)) (-4217 (($ $) 60) (($ (-462) (-622 (-256))) 61)) (-3593 (((-1131) $) NIL)) (-4220 (((-538) $) 38)) (-3594 (((-1093) $) NIL)) (-4214 (((-1231 (-3 (-462) "undefined")) $) 37)) (-4215 (((-1231 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -4210 (-538)) (|:| -4208 (-538)) (|:| |spline| (-538)) (|:| -4239 (-538)) (|:| |axesColor| (-850)) (|:| -4211 (-538)) (|:| |unitsColor| (-850)) (|:| |showing| (-538)))) $) 36)) (-4216 (((-1237) $ (-895) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-850) (-538) (-850) (-538)) 68)) (-4219 (((-622 (-919 (-221))) $) NIL)) (-4212 (((-462) $ (-895)) 33)) (-4242 (((-1237) $ (-751) (-751) (-895) (-895)) 40)) (-4240 (((-1237) $ (-1131)) 79)) (-4208 (((-1237) $ (-895) (-1131)) 75)) (-4317 (((-840) $) 85)) (-4221 (((-1237) $) 80)) (-4239 (((-1237) $ (-895) (-1131)) 71) (((-1237) $ (-895) (-850)) 72)) (-3387 (((-112) $ $) NIL)))
-(((-1234) (-13 (-1074) (-10 -8 (-15 -4219 ((-622 (-919 (-221))) $)) (-15 -4218 ($)) (-15 -4217 ($ $)) (-15 -4246 ((-622 (-256)) $)) (-15 -4246 ($ $ (-622 (-256)))) (-15 -4217 ($ (-462) (-622 (-256)))) (-15 -4216 ((-1237) $ (-895) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-850) (-538) (-850) (-538))) (-15 -4215 ((-1231 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -4210 (-538)) (|:| -4208 (-538)) (|:| |spline| (-538)) (|:| -4239 (-538)) (|:| |axesColor| (-850)) (|:| -4211 (-538)) (|:| |unitsColor| (-850)) (|:| |showing| (-538)))) $)) (-15 -4214 ((-1231 (-3 (-462) "undefined")) $)) (-15 -4243 ((-1237) $ (-1131))) (-15 -4213 ((-1237) $ (-462) (-895))) (-15 -4212 ((-462) $ (-895))) (-15 -4239 ((-1237) $ (-895) (-1131))) (-15 -4239 ((-1237) $ (-895) (-850))) (-15 -4211 ((-1237) $ (-895) (-1131))) (-15 -4211 ((-1237) $ (-895) (-850))) (-15 -4210 ((-1237) $ (-895) (-1131))) (-15 -4209 ((-1237) $ (-895) (-1131))) (-15 -4208 ((-1237) $ (-895) (-1131))) (-15 -4240 ((-1237) $ (-1131))) (-15 -4221 ((-1237) $)) (-15 -4242 ((-1237) $ (-751) (-751) (-895) (-895))) (-15 -4207 ((-1237) $ (-895) (-373) (-373))) (-15 -4233 ((-1237) $ (-895) (-373) (-373))) (-15 -4206 ((-1237) $ (-895) (-1131))) (-15 -4245 ((-1237) $ (-751) (-751))) (-15 -4205 ((-1237) $ (-462) (-895))) (-15 -4244 ((-1237) $ (-895) (-895))) (-15 -4222 ((-1131) $ (-1131))) (-15 -4222 ((-1131) $ (-1131) (-1131))) (-15 -4222 ((-1131) $ (-1131) (-622 (-1131)))) (-15 -4224 ((-1237) $)) (-15 -4220 ((-538) $)) (-15 -4317 ((-840) $))))) (T -1234))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1234)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-622 (-919 (-221)))) (-5 *1 (-1234)))) (-4218 (*1 *1) (-5 *1 (-1234))) (-4217 (*1 *1 *1) (-5 *1 (-1234))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1234)))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1234)))) (-4217 (*1 *1 *2 *3) (-12 (-5 *2 (-462)) (-5 *3 (-622 (-256))) (-5 *1 (-1234)))) (-4216 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-895)) (-5 *4 (-221)) (-5 *5 (-538)) (-5 *6 (-850)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-1231 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -4210 (-538)) (|:| -4208 (-538)) (|:| |spline| (-538)) (|:| -4239 (-538)) (|:| |axesColor| (-850)) (|:| -4211 (-538)) (|:| |unitsColor| (-850)) (|:| |showing| (-538))))) (-5 *1 (-1234)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-1231 (-3 (-462) "undefined"))) (-5 *1 (-1234)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4213 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4212 (*1 *2 *1 *3) (-12 (-5 *3 (-895)) (-5 *2 (-462)) (-5 *1 (-1234)))) (-4239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4211 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4211 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4210 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4209 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4208 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4242 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-751)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4207 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-895)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4233 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-895)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4245 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4205 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4244 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4222 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) (-4222 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) (-4222 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1234)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1234)))))
-(-13 (-1074) (-10 -8 (-15 -4219 ((-622 (-919 (-221))) $)) (-15 -4218 ($)) (-15 -4217 ($ $)) (-15 -4246 ((-622 (-256)) $)) (-15 -4246 ($ $ (-622 (-256)))) (-15 -4217 ($ (-462) (-622 (-256)))) (-15 -4216 ((-1237) $ (-895) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-850) (-538) (-850) (-538))) (-15 -4215 ((-1231 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -4210 (-538)) (|:| -4208 (-538)) (|:| |spline| (-538)) (|:| -4239 (-538)) (|:| |axesColor| (-850)) (|:| -4211 (-538)) (|:| |unitsColor| (-850)) (|:| |showing| (-538)))) $)) (-15 -4214 ((-1231 (-3 (-462) "undefined")) $)) (-15 -4243 ((-1237) $ (-1131))) (-15 -4213 ((-1237) $ (-462) (-895))) (-15 -4212 ((-462) $ (-895))) (-15 -4239 ((-1237) $ (-895) (-1131))) (-15 -4239 ((-1237) $ (-895) (-850))) (-15 -4211 ((-1237) $ (-895) (-1131))) (-15 -4211 ((-1237) $ (-895) (-850))) (-15 -4210 ((-1237) $ (-895) (-1131))) (-15 -4209 ((-1237) $ (-895) (-1131))) (-15 -4208 ((-1237) $ (-895) (-1131))) (-15 -4240 ((-1237) $ (-1131))) (-15 -4221 ((-1237) $)) (-15 -4242 ((-1237) $ (-751) (-751) (-895) (-895))) (-15 -4207 ((-1237) $ (-895) (-373) (-373))) (-15 -4233 ((-1237) $ (-895) (-373) (-373))) (-15 -4206 ((-1237) $ (-895) (-1131))) (-15 -4245 ((-1237) $ (-751) (-751))) (-15 -4205 ((-1237) $ (-462) (-895))) (-15 -4244 ((-1237) $ (-895) (-895))) (-15 -4222 ((-1131) $ (-1131))) (-15 -4222 ((-1131) $ (-1131) (-1131))) (-15 -4222 ((-1131) $ (-1131) (-622 (-1131)))) (-15 -4224 ((-1237) $)) (-15 -4220 ((-538) $)) (-15 -4317 ((-840) $))))
-((-2898 (((-112) $ $) NIL)) (-4234 (((-1237) $ (-373)) 140) (((-1237) $ (-373) (-373) (-373)) 141)) (-4222 (((-1131) $ (-1131)) 148) (((-1131) $ (-1131) (-1131)) 146) (((-1131) $ (-1131) (-622 (-1131))) 145)) (-4250 (($) 50)) (-4241 (((-1237) $ (-373) (-373) (-373) (-373) (-373)) 116) (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $) 114) (((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 115) (((-1237) $ (-538) (-538) (-373) (-373) (-373)) 117) (((-1237) $ (-373) (-373)) 118) (((-1237) $ (-373) (-373) (-373)) 125)) (-4253 (((-373)) 97) (((-373) (-373)) 98)) (-4255 (((-373)) 92) (((-373) (-373)) 94)) (-4254 (((-373)) 95) (((-373) (-373)) 96)) (-4251 (((-373)) 101) (((-373) (-373)) 102)) (-4252 (((-373)) 99) (((-373) (-373)) 100)) (-4233 (((-1237) $ (-373) (-373)) 142)) (-4243 (((-1237) $ (-1131)) 126)) (-4248 (((-1106 (-221)) $) 51) (($ $ (-1106 (-221))) 52)) (-4229 (((-1237) $ (-1131)) 154)) (-4228 (((-1237) $ (-1131)) 155)) (-4235 (((-1237) $ (-373) (-373)) 124) (((-1237) $ (-538) (-538)) 139)) (-4244 (((-1237) $ (-895) (-895)) 132)) (-4224 (((-1237) $) 112)) (-4232 (((-1237) $ (-1131)) 153)) (-4237 (((-1237) $ (-1131)) 109)) (-4246 (((-622 (-256)) $) 53) (($ $ (-622 (-256))) 54)) (-4245 (((-1237) $ (-751) (-751)) 131)) (-4247 (((-1237) $ (-751) (-919 (-221))) 160)) (-4249 (($ $) 56) (($ (-1106 (-221)) (-1131)) 57) (($ (-1106 (-221)) (-622 (-256))) 58)) (-4226 (((-1237) $ (-373) (-373) (-373)) 106)) (-3593 (((-1131) $) NIL)) (-4220 (((-538) $) 103)) (-4225 (((-1237) $ (-373)) 143)) (-4230 (((-1237) $ (-373)) 158)) (-3594 (((-1093) $) NIL)) (-4231 (((-1237) $ (-373)) 157)) (-4236 (((-1237) $ (-1131)) 111)) (-4242 (((-1237) $ (-751) (-751) (-895) (-895)) 130)) (-4238 (((-1237) $ (-1131)) 108)) (-4240 (((-1237) $ (-1131)) 110)) (-4223 (((-1237) $ (-155) (-155)) 129)) (-4317 (((-840) $) 137)) (-4221 (((-1237) $) 113)) (-4227 (((-1237) $ (-1131)) 156)) (-4239 (((-1237) $ (-1131)) 107)) (-3387 (((-112) $ $) NIL)))
-(((-1235) (-13 (-1074) (-10 -8 (-15 -4255 ((-373))) (-15 -4255 ((-373) (-373))) (-15 -4254 ((-373))) (-15 -4254 ((-373) (-373))) (-15 -4253 ((-373))) (-15 -4253 ((-373) (-373))) (-15 -4252 ((-373))) (-15 -4252 ((-373) (-373))) (-15 -4251 ((-373))) (-15 -4251 ((-373) (-373))) (-15 -4250 ($)) (-15 -4249 ($ $)) (-15 -4249 ($ (-1106 (-221)) (-1131))) (-15 -4249 ($ (-1106 (-221)) (-622 (-256)))) (-15 -4248 ((-1106 (-221)) $)) (-15 -4248 ($ $ (-1106 (-221)))) (-15 -4247 ((-1237) $ (-751) (-919 (-221)))) (-15 -4246 ((-622 (-256)) $)) (-15 -4246 ($ $ (-622 (-256)))) (-15 -4245 ((-1237) $ (-751) (-751))) (-15 -4244 ((-1237) $ (-895) (-895))) (-15 -4243 ((-1237) $ (-1131))) (-15 -4242 ((-1237) $ (-751) (-751) (-895) (-895))) (-15 -4241 ((-1237) $ (-373) (-373) (-373) (-373) (-373))) (-15 -4241 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -4241 ((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4241 ((-1237) $ (-538) (-538) (-373) (-373) (-373))) (-15 -4241 ((-1237) $ (-373) (-373))) (-15 -4241 ((-1237) $ (-373) (-373) (-373))) (-15 -4240 ((-1237) $ (-1131))) (-15 -4239 ((-1237) $ (-1131))) (-15 -4238 ((-1237) $ (-1131))) (-15 -4237 ((-1237) $ (-1131))) (-15 -4236 ((-1237) $ (-1131))) (-15 -4235 ((-1237) $ (-373) (-373))) (-15 -4235 ((-1237) $ (-538) (-538))) (-15 -4234 ((-1237) $ (-373))) (-15 -4234 ((-1237) $ (-373) (-373) (-373))) (-15 -4233 ((-1237) $ (-373) (-373))) (-15 -4232 ((-1237) $ (-1131))) (-15 -4231 ((-1237) $ (-373))) (-15 -4230 ((-1237) $ (-373))) (-15 -4229 ((-1237) $ (-1131))) (-15 -4228 ((-1237) $ (-1131))) (-15 -4227 ((-1237) $ (-1131))) (-15 -4226 ((-1237) $ (-373) (-373) (-373))) (-15 -4225 ((-1237) $ (-373))) (-15 -4224 ((-1237) $)) (-15 -4223 ((-1237) $ (-155) (-155))) (-15 -4222 ((-1131) $ (-1131))) (-15 -4222 ((-1131) $ (-1131) (-1131))) (-15 -4222 ((-1131) $ (-1131) (-622 (-1131)))) (-15 -4221 ((-1237) $)) (-15 -4220 ((-538) $))))) (T -1235))
-((-4255 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4255 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4254 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4254 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4253 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4253 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4252 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4251 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4251 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4250 (*1 *1) (-5 *1 (-1235))) (-4249 (*1 *1 *1) (-5 *1 (-1235))) (-4249 (*1 *1 *2 *3) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1131)) (-5 *1 (-1235)))) (-4249 (*1 *1 *2 *3) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-622 (-256))) (-5 *1 (-1235)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1235)))) (-4248 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1235)))) (-4247 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1235)))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1235)))) (-4245 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4244 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4242 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-751)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4241 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-1235)))) (-4241 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4241 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-538)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4241 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4241 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4239 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4238 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4237 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4236 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4235 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4235 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4234 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4233 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4227 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4226 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4225 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4222 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1235)))) (-4222 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1235)))) (-4222 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1235)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1235)))))
-(-13 (-1074) (-10 -8 (-15 -4255 ((-373))) (-15 -4255 ((-373) (-373))) (-15 -4254 ((-373))) (-15 -4254 ((-373) (-373))) (-15 -4253 ((-373))) (-15 -4253 ((-373) (-373))) (-15 -4252 ((-373))) (-15 -4252 ((-373) (-373))) (-15 -4251 ((-373))) (-15 -4251 ((-373) (-373))) (-15 -4250 ($)) (-15 -4249 ($ $)) (-15 -4249 ($ (-1106 (-221)) (-1131))) (-15 -4249 ($ (-1106 (-221)) (-622 (-256)))) (-15 -4248 ((-1106 (-221)) $)) (-15 -4248 ($ $ (-1106 (-221)))) (-15 -4247 ((-1237) $ (-751) (-919 (-221)))) (-15 -4246 ((-622 (-256)) $)) (-15 -4246 ($ $ (-622 (-256)))) (-15 -4245 ((-1237) $ (-751) (-751))) (-15 -4244 ((-1237) $ (-895) (-895))) (-15 -4243 ((-1237) $ (-1131))) (-15 -4242 ((-1237) $ (-751) (-751) (-895) (-895))) (-15 -4241 ((-1237) $ (-373) (-373) (-373) (-373) (-373))) (-15 -4241 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -4241 ((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4241 ((-1237) $ (-538) (-538) (-373) (-373) (-373))) (-15 -4241 ((-1237) $ (-373) (-373))) (-15 -4241 ((-1237) $ (-373) (-373) (-373))) (-15 -4240 ((-1237) $ (-1131))) (-15 -4239 ((-1237) $ (-1131))) (-15 -4238 ((-1237) $ (-1131))) (-15 -4237 ((-1237) $ (-1131))) (-15 -4236 ((-1237) $ (-1131))) (-15 -4235 ((-1237) $ (-373) (-373))) (-15 -4235 ((-1237) $ (-538) (-538))) (-15 -4234 ((-1237) $ (-373))) (-15 -4234 ((-1237) $ (-373) (-373) (-373))) (-15 -4233 ((-1237) $ (-373) (-373))) (-15 -4232 ((-1237) $ (-1131))) (-15 -4231 ((-1237) $ (-373))) (-15 -4230 ((-1237) $ (-373))) (-15 -4229 ((-1237) $ (-1131))) (-15 -4228 ((-1237) $ (-1131))) (-15 -4227 ((-1237) $ (-1131))) (-15 -4226 ((-1237) $ (-373) (-373) (-373))) (-15 -4225 ((-1237) $ (-373))) (-15 -4224 ((-1237) $)) (-15 -4223 ((-1237) $ (-155) (-155))) (-15 -4222 ((-1131) $ (-1131))) (-15 -4222 ((-1131) $ (-1131) (-1131))) (-15 -4222 ((-1131) $ (-1131) (-622 (-1131)))) (-15 -4221 ((-1237) $)) (-15 -4220 ((-538) $))))
-((-4264 (((-622 (-1131)) (-622 (-1131))) 94) (((-622 (-1131))) 90)) (-4265 (((-622 (-1131))) 88)) (-4262 (((-622 (-895)) (-622 (-895))) 63) (((-622 (-895))) 60)) (-4261 (((-622 (-751)) (-622 (-751))) 57) (((-622 (-751))) 53)) (-4263 (((-1237)) 65)) (-4267 (((-895) (-895)) 81) (((-895)) 80)) (-4266 (((-895) (-895)) 79) (((-895)) 78)) (-4259 (((-850) (-850)) 75) (((-850)) 74)) (-4269 (((-221)) 85) (((-221) (-373)) 87)) (-4268 (((-895)) 82) (((-895) (-895)) 83)) (-4260 (((-895) (-895)) 77) (((-895)) 76)) (-4256 (((-850) (-850)) 69) (((-850)) 67)) (-4257 (((-850) (-850)) 71) (((-850)) 70)) (-4258 (((-850) (-850)) 73) (((-850)) 72)))
-(((-1236) (-10 -7 (-15 -4256 ((-850))) (-15 -4256 ((-850) (-850))) (-15 -4257 ((-850))) (-15 -4257 ((-850) (-850))) (-15 -4258 ((-850))) (-15 -4258 ((-850) (-850))) (-15 -4259 ((-850))) (-15 -4259 ((-850) (-850))) (-15 -4260 ((-895))) (-15 -4260 ((-895) (-895))) (-15 -4261 ((-622 (-751)))) (-15 -4261 ((-622 (-751)) (-622 (-751)))) (-15 -4262 ((-622 (-895)))) (-15 -4262 ((-622 (-895)) (-622 (-895)))) (-15 -4263 ((-1237))) (-15 -4264 ((-622 (-1131)))) (-15 -4264 ((-622 (-1131)) (-622 (-1131)))) (-15 -4265 ((-622 (-1131)))) (-15 -4266 ((-895))) (-15 -4267 ((-895))) (-15 -4266 ((-895) (-895))) (-15 -4267 ((-895) (-895))) (-15 -4268 ((-895) (-895))) (-15 -4268 ((-895))) (-15 -4269 ((-221) (-373))) (-15 -4269 ((-221))))) (T -1236))
-((-4269 (*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1236)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-221)) (-5 *1 (-1236)))) (-4268 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4268 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4267 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4266 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4267 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4266 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4265 (*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236)))) (-4264 (*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236)))) (-4264 (*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236)))) (-4263 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1236)))) (-4262 (*1 *2 *2) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1236)))) (-4262 (*1 *2) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1236)))) (-4261 (*1 *2 *2) (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1236)))) (-4261 (*1 *2) (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1236)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4260 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4259 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4258 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4258 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4257 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4256 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4256 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))))
-(-10 -7 (-15 -4256 ((-850))) (-15 -4256 ((-850) (-850))) (-15 -4257 ((-850))) (-15 -4257 ((-850) (-850))) (-15 -4258 ((-850))) (-15 -4258 ((-850) (-850))) (-15 -4259 ((-850))) (-15 -4259 ((-850) (-850))) (-15 -4260 ((-895))) (-15 -4260 ((-895) (-895))) (-15 -4261 ((-622 (-751)))) (-15 -4261 ((-622 (-751)) (-622 (-751)))) (-15 -4262 ((-622 (-895)))) (-15 -4262 ((-622 (-895)) (-622 (-895)))) (-15 -4263 ((-1237))) (-15 -4264 ((-622 (-1131)))) (-15 -4264 ((-622 (-1131)) (-622 (-1131)))) (-15 -4265 ((-622 (-1131)))) (-15 -4266 ((-895))) (-15 -4267 ((-895))) (-15 -4266 ((-895) (-895))) (-15 -4267 ((-895) (-895))) (-15 -4268 ((-895) (-895))) (-15 -4268 ((-895))) (-15 -4269 ((-221) (-373))) (-15 -4269 ((-221))))
-((-4270 (($) 7)) (-4317 (((-840) $) 10)))
-(((-1237) (-10 -8 (-15 -4270 ($)) (-15 -4317 ((-840) $)))) (T -1237))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1237)))) (-4270 (*1 *1) (-5 *1 (-1237))))
-(-10 -8 (-15 -4270 ($)) (-15 -4317 ((-840) $)))
-((-4308 (($ $ |#2|) 10)))
-(((-1238 |#1| |#2|) (-10 -8 (-15 -4308 (|#1| |#1| |#2|))) (-1239 |#2|) (-358)) (T -1238))
-NIL
-(-10 -8 (-15 -4308 (|#1| |#1| |#2|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4271 (((-133)) 28)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 29)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(-13 (-10 -7 (-6 -3526)))
+((-1671 (((-112) $ $) NIL)) (-2195 (((-1149)) 12)) (-2883 (((-1131) $) 17)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 11) (((-1149) $) 8)) (-2281 (((-112) $ $) 14)))
+(((-1228 |#1|) (-13 (-1073) (-597 (-1149)) (-10 -8 (-15 -1683 ((-1149) $)) (-15 -2195 ((-1149))))) (-1149)) (T -1228))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2))) (-2195 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2))))
+(-13 (-1073) (-597 (-1149)) (-10 -8 (-15 -1683 ((-1149) $)) (-15 -2195 ((-1149)))))
+((-2983 (($ (-751)) 18)) (-3191 (((-669 |#2|) $ $) 40)) (-2638 ((|#2| $) 48)) (-3456 ((|#2| $) 47)) (-1443 ((|#2| $ $) 35)) (-1431 (($ $ $) 44)) (-2393 (($ $) 22) (($ $ $) 28)) (-2382 (($ $ $) 15)) (* (($ (-552) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1229 |#1| |#2|) (-10 -8 (-15 -2638 (|#2| |#1|)) (-15 -3456 (|#2| |#1|)) (-15 -1431 (|#1| |#1| |#1|)) (-15 -3191 ((-669 |#2|) |#1| |#1|)) (-15 -1443 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2983 (|#1| (-751))) (-15 -2382 (|#1| |#1| |#1|))) (-1230 |#2|) (-1186)) (T -1229))
+NIL
+(-10 -8 (-15 -2638 (|#2| |#1|)) (-15 -3456 (|#2| |#1|)) (-15 -1431 (|#1| |#1| |#1|)) (-15 -3191 ((-669 |#2|) |#1| |#1|)) (-15 -1443 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2983 (|#1| (-751))) (-15 -2382 (|#1| |#1| |#1|)))
+((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2983 (($ (-751)) 112 (|has| |#1| (-23)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-2483 (((-552) (-1 (-112) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3191 (((-669 |#1|) $ $) 105 (|has| |#1| (-1025)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2638 ((|#1| $) 102 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-2878 (((-112) $ (-751)) 10)) (-3456 ((|#1| $) 103 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-1443 ((|#1| $ $) 106 (|has| |#1| (-1025)))) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-1431 (($ $ $) 104 (|has| |#1| (-1025)))) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 70)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 83 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) 85 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 82 (|has| |#1| (-827)))) (-2393 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2382 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-552) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-707))) (($ $ |#1|) 107 (|has| |#1| (-707)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353)))))
+(((-1230 |#1|) (-138) (-1186)) (T -1230))
+((-2382 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-25)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1230 *3)) (-4 *3 (-23)) (-4 *3 (-1186)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-21)))) (-2393 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-1230 *3)) (-4 *3 (-1186)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))) (-1443 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-1025)))) (-3191 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1186)) (-4 *3 (-1025)) (-5 *2 (-669 *3)))) (-1431 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-1025)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-978)) (-4 *2 (-1025)))) (-2638 (*1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-978)) (-4 *2 (-1025)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2382 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2983 ($ (-751))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2393 ($ $)) (-15 -2393 ($ $ $)) (-15 * ($ (-552) $))) |%noBranch|) (IF (|has| |t#1| (-707)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-15 -1443 (|t#1| $ $)) (-15 -3191 ((-669 |t#1|) $ $)) (-15 -1431 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-1025)) (PROGN (-15 -3456 (|t#1| $)) (-15 -2638 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-101) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-19 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1073) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-1186) . T))
+((-1454 (((-1232 |#2|) (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|) 13)) (-2163 ((|#2| (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|) 15)) (-1996 (((-3 (-1232 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1232 |#1|)) 28) (((-1232 |#2|) (-1 |#2| |#1|) (-1232 |#1|)) 18)))
+(((-1231 |#1| |#2|) (-10 -7 (-15 -1454 ((-1232 |#2|) (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|)) (-15 -1996 ((-1232 |#2|) (-1 |#2| |#1|) (-1232 |#1|))) (-15 -1996 ((-3 (-1232 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1232 |#1|)))) (-1186) (-1186)) (T -1231))
+((-1996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1232 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1232 *6)) (-5 *1 (-1231 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1232 *6)) (-5 *1 (-1231 *5 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1232 *5)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-1231 *5 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1232 *6)) (-4 *6 (-1186)) (-4 *5 (-1186)) (-5 *2 (-1232 *5)) (-5 *1 (-1231 *6 *5)))))
+(-10 -7 (-15 -1454 ((-1232 |#2|) (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|)) (-15 -1996 ((-1232 |#2|) (-1 |#2| |#1|) (-1232 |#1|))) (-15 -1996 ((-3 (-1232 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1232 |#1|))))
+((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751)) NIL (|has| |#1| (-23)))) (-3062 (($ (-625 |#1|)) 9)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) 15 (|has| $ (-6 -4353)))) (-3191 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2638 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2878 (((-112) $ (-751)) NIL)) (-3456 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-1443 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-1431 (($ $ $) NIL (|has| |#1| (-1025)))) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) 19 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 8)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2393 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2382 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1232 |#1|) (-13 (-1230 |#1|) (-10 -8 (-15 -3062 ($ (-625 |#1|))))) (-1186)) (T -1232))
+((-3062 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1232 *3)))))
+(-13 (-1230 |#1|) (-10 -8 (-15 -3062 ($ (-625 |#1|)))))
+((-1671 (((-112) $ $) NIL)) (-1339 (((-1131) $ (-1131)) 90) (((-1131) $ (-1131) (-1131)) 88) (((-1131) $ (-1131) (-625 (-1131))) 87)) (-1597 (($) 59)) (-2423 (((-1237) $ (-462) (-897)) 45)) (-4124 (((-1237) $ (-897) (-1131)) 73) (((-1237) $ (-897) (-850)) 74)) (-1618 (((-1237) $ (-897) (-374) (-374)) 48)) (-4332 (((-1237) $ (-1131)) 69)) (-1627 (((-1237) $ (-897) (-1131)) 78)) (-1487 (((-1237) $ (-897) (-374) (-374)) 49)) (-1820 (((-1237) $ (-897) (-897)) 46)) (-1318 (((-1237) $) 70)) (-1508 (((-1237) $ (-897) (-1131)) 77)) (-1543 (((-1237) $ (-462) (-897)) 31)) (-1521 (((-1237) $ (-897) (-1131)) 76)) (-4232 (((-625 (-258)) $) 23) (($ $ (-625 (-258))) 24)) (-1831 (((-1237) $ (-751) (-751)) 43)) (-1585 (($ $) 60) (($ (-462) (-625 (-258))) 61)) (-2883 (((-1131) $) NIL)) (-2971 (((-552) $) 38)) (-2831 (((-1093) $) NIL)) (-1554 (((-1232 (-3 (-462) "undefined")) $) 37)) (-1565 (((-1232 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1521 (-552)) (|:| -1497 (-552)) (|:| |spline| (-552)) (|:| -1775 (-552)) (|:| |axesColor| (-850)) (|:| -4124 (-552)) (|:| |unitsColor| (-850)) (|:| |showing| (-552)))) $) 36)) (-1575 (((-1237) $ (-897) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-850) (-552) (-850) (-552)) 68)) (-1609 (((-625 (-919 (-221))) $) NIL)) (-1532 (((-462) $ (-897)) 33)) (-1809 (((-1237) $ (-751) (-751) (-897) (-897)) 40)) (-1786 (((-1237) $ (-1131)) 79)) (-1497 (((-1237) $ (-897) (-1131)) 75)) (-1683 (((-839) $) 85)) (-1387 (((-1237) $) 80)) (-1775 (((-1237) $ (-897) (-1131)) 71) (((-1237) $ (-897) (-850)) 72)) (-2281 (((-112) $ $) NIL)))
+(((-1233) (-13 (-1073) (-10 -8 (-15 -1609 ((-625 (-919 (-221))) $)) (-15 -1597 ($)) (-15 -1585 ($ $)) (-15 -4232 ((-625 (-258)) $)) (-15 -4232 ($ $ (-625 (-258)))) (-15 -1585 ($ (-462) (-625 (-258)))) (-15 -1575 ((-1237) $ (-897) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-850) (-552) (-850) (-552))) (-15 -1565 ((-1232 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1521 (-552)) (|:| -1497 (-552)) (|:| |spline| (-552)) (|:| -1775 (-552)) (|:| |axesColor| (-850)) (|:| -4124 (-552)) (|:| |unitsColor| (-850)) (|:| |showing| (-552)))) $)) (-15 -1554 ((-1232 (-3 (-462) "undefined")) $)) (-15 -4332 ((-1237) $ (-1131))) (-15 -1543 ((-1237) $ (-462) (-897))) (-15 -1532 ((-462) $ (-897))) (-15 -1775 ((-1237) $ (-897) (-1131))) (-15 -1775 ((-1237) $ (-897) (-850))) (-15 -4124 ((-1237) $ (-897) (-1131))) (-15 -4124 ((-1237) $ (-897) (-850))) (-15 -1521 ((-1237) $ (-897) (-1131))) (-15 -1508 ((-1237) $ (-897) (-1131))) (-15 -1497 ((-1237) $ (-897) (-1131))) (-15 -1786 ((-1237) $ (-1131))) (-15 -1387 ((-1237) $)) (-15 -1809 ((-1237) $ (-751) (-751) (-897) (-897))) (-15 -1487 ((-1237) $ (-897) (-374) (-374))) (-15 -1618 ((-1237) $ (-897) (-374) (-374))) (-15 -1627 ((-1237) $ (-897) (-1131))) (-15 -1831 ((-1237) $ (-751) (-751))) (-15 -2423 ((-1237) $ (-462) (-897))) (-15 -1820 ((-1237) $ (-897) (-897))) (-15 -1339 ((-1131) $ (-1131))) (-15 -1339 ((-1131) $ (-1131) (-1131))) (-15 -1339 ((-1131) $ (-1131) (-625 (-1131)))) (-15 -1318 ((-1237) $)) (-15 -2971 ((-552) $)) (-15 -1683 ((-839) $))))) (T -1233))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1233)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-625 (-919 (-221)))) (-5 *1 (-1233)))) (-1597 (*1 *1) (-5 *1 (-1233))) (-1585 (*1 *1 *1) (-5 *1 (-1233))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1233)))) (-4232 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1233)))) (-1585 (*1 *1 *2 *3) (-12 (-5 *2 (-462)) (-5 *3 (-625 (-258))) (-5 *1 (-1233)))) (-1575 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-897)) (-5 *4 (-221)) (-5 *5 (-552)) (-5 *6 (-850)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-1232 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1521 (-552)) (|:| -1497 (-552)) (|:| |spline| (-552)) (|:| -1775 (-552)) (|:| |axesColor| (-850)) (|:| -4124 (-552)) (|:| |unitsColor| (-850)) (|:| |showing| (-552))))) (-5 *1 (-1233)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-1232 (-3 (-462) "undefined"))) (-5 *1 (-1233)))) (-4332 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1543 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1532 (*1 *2 *1 *3) (-12 (-5 *3 (-897)) (-5 *2 (-462)) (-5 *1 (-1233)))) (-1775 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1775 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-4124 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-4124 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1521 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1508 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1497 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1809 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-751)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1487 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-897)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1618 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-897)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1627 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1831 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-2423 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1820 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1339 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1233)))) (-1339 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1233)))) (-1339 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1233)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1233)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1233)))))
+(-13 (-1073) (-10 -8 (-15 -1609 ((-625 (-919 (-221))) $)) (-15 -1597 ($)) (-15 -1585 ($ $)) (-15 -4232 ((-625 (-258)) $)) (-15 -4232 ($ $ (-625 (-258)))) (-15 -1585 ($ (-462) (-625 (-258)))) (-15 -1575 ((-1237) $ (-897) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-850) (-552) (-850) (-552))) (-15 -1565 ((-1232 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1521 (-552)) (|:| -1497 (-552)) (|:| |spline| (-552)) (|:| -1775 (-552)) (|:| |axesColor| (-850)) (|:| -4124 (-552)) (|:| |unitsColor| (-850)) (|:| |showing| (-552)))) $)) (-15 -1554 ((-1232 (-3 (-462) "undefined")) $)) (-15 -4332 ((-1237) $ (-1131))) (-15 -1543 ((-1237) $ (-462) (-897))) (-15 -1532 ((-462) $ (-897))) (-15 -1775 ((-1237) $ (-897) (-1131))) (-15 -1775 ((-1237) $ (-897) (-850))) (-15 -4124 ((-1237) $ (-897) (-1131))) (-15 -4124 ((-1237) $ (-897) (-850))) (-15 -1521 ((-1237) $ (-897) (-1131))) (-15 -1508 ((-1237) $ (-897) (-1131))) (-15 -1497 ((-1237) $ (-897) (-1131))) (-15 -1786 ((-1237) $ (-1131))) (-15 -1387 ((-1237) $)) (-15 -1809 ((-1237) $ (-751) (-751) (-897) (-897))) (-15 -1487 ((-1237) $ (-897) (-374) (-374))) (-15 -1618 ((-1237) $ (-897) (-374) (-374))) (-15 -1627 ((-1237) $ (-897) (-1131))) (-15 -1831 ((-1237) $ (-751) (-751))) (-15 -2423 ((-1237) $ (-462) (-897))) (-15 -1820 ((-1237) $ (-897) (-897))) (-15 -1339 ((-1131) $ (-1131))) (-15 -1339 ((-1131) $ (-1131) (-1131))) (-15 -1339 ((-1131) $ (-1131) (-625 (-1131)))) (-15 -1318 ((-1237) $)) (-15 -2971 ((-552) $)) (-15 -1683 ((-839) $))))
+((-1671 (((-112) $ $) NIL)) (-1722 (((-1237) $ (-374)) 140) (((-1237) $ (-374) (-374) (-374)) 141)) (-1339 (((-1131) $ (-1131)) 148) (((-1131) $ (-1131) (-1131)) 146) (((-1131) $ (-1131) (-625 (-1131))) 145)) (-1876 (($) 50)) (-1797 (((-1237) $ (-374) (-374) (-374) (-374) (-374)) 116) (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $) 114) (((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 115) (((-1237) $ (-552) (-552) (-374) (-374) (-374)) 117) (((-1237) $ (-374) (-374)) 118) (((-1237) $ (-374) (-374) (-374)) 125)) (-1910 (((-374)) 97) (((-374) (-374)) 98)) (-1935 (((-374)) 92) (((-374) (-374)) 94)) (-1921 (((-374)) 95) (((-374) (-374)) 96)) (-1886 (((-374)) 101) (((-374) (-374)) 102)) (-1897 (((-374)) 99) (((-374) (-374)) 100)) (-1618 (((-1237) $ (-374) (-374)) 142)) (-4332 (((-1237) $ (-1131)) 126)) (-1856 (((-1106 (-221)) $) 51) (($ $ (-1106 (-221))) 52)) (-1676 (((-1237) $ (-1131)) 154)) (-1665 (((-1237) $ (-1131)) 155)) (-1734 (((-1237) $ (-374) (-374)) 124) (((-1237) $ (-552) (-552)) 139)) (-1820 (((-1237) $ (-897) (-897)) 132)) (-1318 (((-1237) $) 112)) (-1710 (((-1237) $ (-1131)) 153)) (-1754 (((-1237) $ (-1131)) 109)) (-4232 (((-625 (-258)) $) 53) (($ $ (-625 (-258))) 54)) (-1831 (((-1237) $ (-751) (-751)) 131)) (-1844 (((-1237) $ (-751) (-919 (-221))) 160)) (-1865 (($ $) 56) (($ (-1106 (-221)) (-1131)) 57) (($ (-1106 (-221)) (-625 (-258))) 58)) (-1643 (((-1237) $ (-374) (-374) (-374)) 106)) (-2883 (((-1131) $) NIL)) (-2971 (((-552) $) 103)) (-1631 (((-1237) $ (-374)) 143)) (-1688 (((-1237) $ (-374)) 158)) (-2831 (((-1093) $) NIL)) (-1700 (((-1237) $ (-374)) 157)) (-1744 (((-1237) $ (-1131)) 111)) (-1809 (((-1237) $ (-751) (-751) (-897) (-897)) 130)) (-1764 (((-1237) $ (-1131)) 108)) (-1786 (((-1237) $ (-1131)) 110)) (-1620 (((-1237) $ (-155) (-155)) 129)) (-1683 (((-839) $) 137)) (-1387 (((-1237) $) 113)) (-1654 (((-1237) $ (-1131)) 156)) (-1775 (((-1237) $ (-1131)) 107)) (-2281 (((-112) $ $) NIL)))
+(((-1234) (-13 (-1073) (-10 -8 (-15 -1935 ((-374))) (-15 -1935 ((-374) (-374))) (-15 -1921 ((-374))) (-15 -1921 ((-374) (-374))) (-15 -1910 ((-374))) (-15 -1910 ((-374) (-374))) (-15 -1897 ((-374))) (-15 -1897 ((-374) (-374))) (-15 -1886 ((-374))) (-15 -1886 ((-374) (-374))) (-15 -1876 ($)) (-15 -1865 ($ $)) (-15 -1865 ($ (-1106 (-221)) (-1131))) (-15 -1865 ($ (-1106 (-221)) (-625 (-258)))) (-15 -1856 ((-1106 (-221)) $)) (-15 -1856 ($ $ (-1106 (-221)))) (-15 -1844 ((-1237) $ (-751) (-919 (-221)))) (-15 -4232 ((-625 (-258)) $)) (-15 -4232 ($ $ (-625 (-258)))) (-15 -1831 ((-1237) $ (-751) (-751))) (-15 -1820 ((-1237) $ (-897) (-897))) (-15 -4332 ((-1237) $ (-1131))) (-15 -1809 ((-1237) $ (-751) (-751) (-897) (-897))) (-15 -1797 ((-1237) $ (-374) (-374) (-374) (-374) (-374))) (-15 -1797 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -1797 ((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -1797 ((-1237) $ (-552) (-552) (-374) (-374) (-374))) (-15 -1797 ((-1237) $ (-374) (-374))) (-15 -1797 ((-1237) $ (-374) (-374) (-374))) (-15 -1786 ((-1237) $ (-1131))) (-15 -1775 ((-1237) $ (-1131))) (-15 -1764 ((-1237) $ (-1131))) (-15 -1754 ((-1237) $ (-1131))) (-15 -1744 ((-1237) $ (-1131))) (-15 -1734 ((-1237) $ (-374) (-374))) (-15 -1734 ((-1237) $ (-552) (-552))) (-15 -1722 ((-1237) $ (-374))) (-15 -1722 ((-1237) $ (-374) (-374) (-374))) (-15 -1618 ((-1237) $ (-374) (-374))) (-15 -1710 ((-1237) $ (-1131))) (-15 -1700 ((-1237) $ (-374))) (-15 -1688 ((-1237) $ (-374))) (-15 -1676 ((-1237) $ (-1131))) (-15 -1665 ((-1237) $ (-1131))) (-15 -1654 ((-1237) $ (-1131))) (-15 -1643 ((-1237) $ (-374) (-374) (-374))) (-15 -1631 ((-1237) $ (-374))) (-15 -1318 ((-1237) $)) (-15 -1620 ((-1237) $ (-155) (-155))) (-15 -1339 ((-1131) $ (-1131))) (-15 -1339 ((-1131) $ (-1131) (-1131))) (-15 -1339 ((-1131) $ (-1131) (-625 (-1131)))) (-15 -1387 ((-1237) $)) (-15 -2971 ((-552) $))))) (T -1234))
+((-1935 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1921 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1910 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1910 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1897 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1897 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1886 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1886 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1876 (*1 *1) (-5 *1 (-1234))) (-1865 (*1 *1 *1) (-5 *1 (-1234))) (-1865 (*1 *1 *2 *3) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1131)) (-5 *1 (-1234)))) (-1865 (*1 *1 *2 *3) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-625 (-258))) (-5 *1 (-1234)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1234)))) (-1856 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1234)))) (-1844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1234)))) (-4232 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1234)))) (-1831 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1820 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4332 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1809 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-751)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1797 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-1234)))) (-1797 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1797 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-552)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1797 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1764 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1754 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1744 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1734 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1734 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1722 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1722 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1618 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1710 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1700 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1688 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1676 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1665 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1654 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1643 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1631 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1620 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1339 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) (-1339 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) (-1339 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1234)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1234)))))
+(-13 (-1073) (-10 -8 (-15 -1935 ((-374))) (-15 -1935 ((-374) (-374))) (-15 -1921 ((-374))) (-15 -1921 ((-374) (-374))) (-15 -1910 ((-374))) (-15 -1910 ((-374) (-374))) (-15 -1897 ((-374))) (-15 -1897 ((-374) (-374))) (-15 -1886 ((-374))) (-15 -1886 ((-374) (-374))) (-15 -1876 ($)) (-15 -1865 ($ $)) (-15 -1865 ($ (-1106 (-221)) (-1131))) (-15 -1865 ($ (-1106 (-221)) (-625 (-258)))) (-15 -1856 ((-1106 (-221)) $)) (-15 -1856 ($ $ (-1106 (-221)))) (-15 -1844 ((-1237) $ (-751) (-919 (-221)))) (-15 -4232 ((-625 (-258)) $)) (-15 -4232 ($ $ (-625 (-258)))) (-15 -1831 ((-1237) $ (-751) (-751))) (-15 -1820 ((-1237) $ (-897) (-897))) (-15 -4332 ((-1237) $ (-1131))) (-15 -1809 ((-1237) $ (-751) (-751) (-897) (-897))) (-15 -1797 ((-1237) $ (-374) (-374) (-374) (-374) (-374))) (-15 -1797 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -1797 ((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -1797 ((-1237) $ (-552) (-552) (-374) (-374) (-374))) (-15 -1797 ((-1237) $ (-374) (-374))) (-15 -1797 ((-1237) $ (-374) (-374) (-374))) (-15 -1786 ((-1237) $ (-1131))) (-15 -1775 ((-1237) $ (-1131))) (-15 -1764 ((-1237) $ (-1131))) (-15 -1754 ((-1237) $ (-1131))) (-15 -1744 ((-1237) $ (-1131))) (-15 -1734 ((-1237) $ (-374) (-374))) (-15 -1734 ((-1237) $ (-552) (-552))) (-15 -1722 ((-1237) $ (-374))) (-15 -1722 ((-1237) $ (-374) (-374) (-374))) (-15 -1618 ((-1237) $ (-374) (-374))) (-15 -1710 ((-1237) $ (-1131))) (-15 -1700 ((-1237) $ (-374))) (-15 -1688 ((-1237) $ (-374))) (-15 -1676 ((-1237) $ (-1131))) (-15 -1665 ((-1237) $ (-1131))) (-15 -1654 ((-1237) $ (-1131))) (-15 -1643 ((-1237) $ (-374) (-374) (-374))) (-15 -1631 ((-1237) $ (-374))) (-15 -1318 ((-1237) $)) (-15 -1620 ((-1237) $ (-155) (-155))) (-15 -1339 ((-1131) $ (-1131))) (-15 -1339 ((-1131) $ (-1131) (-1131))) (-15 -1339 ((-1131) $ (-1131) (-625 (-1131)))) (-15 -1387 ((-1237) $)) (-15 -2971 ((-552) $))))
+((-2024 (((-625 (-1131)) (-625 (-1131))) 94) (((-625 (-1131))) 90)) (-2033 (((-625 (-1131))) 88)) (-2008 (((-625 (-897)) (-625 (-897))) 63) (((-625 (-897))) 60)) (-1998 (((-625 (-751)) (-625 (-751))) 57) (((-625 (-751))) 53)) (-2015 (((-1237)) 65)) (-3864 (((-897) (-897)) 81) (((-897)) 80)) (-3851 (((-897) (-897)) 79) (((-897)) 78)) (-1978 (((-850) (-850)) 75) (((-850)) 74)) (-3891 (((-221)) 85) (((-221) (-374)) 87)) (-3877 (((-897)) 82) (((-897) (-897)) 83)) (-1987 (((-897) (-897)) 77) (((-897)) 76)) (-1945 (((-850) (-850)) 69) (((-850)) 67)) (-1957 (((-850) (-850)) 71) (((-850)) 70)) (-1969 (((-850) (-850)) 73) (((-850)) 72)))
+(((-1235) (-10 -7 (-15 -1945 ((-850))) (-15 -1945 ((-850) (-850))) (-15 -1957 ((-850))) (-15 -1957 ((-850) (-850))) (-15 -1969 ((-850))) (-15 -1969 ((-850) (-850))) (-15 -1978 ((-850))) (-15 -1978 ((-850) (-850))) (-15 -1987 ((-897))) (-15 -1987 ((-897) (-897))) (-15 -1998 ((-625 (-751)))) (-15 -1998 ((-625 (-751)) (-625 (-751)))) (-15 -2008 ((-625 (-897)))) (-15 -2008 ((-625 (-897)) (-625 (-897)))) (-15 -2015 ((-1237))) (-15 -2024 ((-625 (-1131)))) (-15 -2024 ((-625 (-1131)) (-625 (-1131)))) (-15 -2033 ((-625 (-1131)))) (-15 -3851 ((-897))) (-15 -3864 ((-897))) (-15 -3851 ((-897) (-897))) (-15 -3864 ((-897) (-897))) (-15 -3877 ((-897) (-897))) (-15 -3877 ((-897))) (-15 -3891 ((-221) (-374))) (-15 -3891 ((-221))))) (T -1235))
+((-3891 (*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1235)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-1235)))) (-3877 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-3864 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-3851 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-2033 (*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235)))) (-2024 (*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235)))) (-2015 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1235)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1235)))) (-2008 (*1 *2) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1235)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1235)))) (-1998 (*1 *2) (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1235)))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-1987 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1978 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1969 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1957 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1957 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1945 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))))
+(-10 -7 (-15 -1945 ((-850))) (-15 -1945 ((-850) (-850))) (-15 -1957 ((-850))) (-15 -1957 ((-850) (-850))) (-15 -1969 ((-850))) (-15 -1969 ((-850) (-850))) (-15 -1978 ((-850))) (-15 -1978 ((-850) (-850))) (-15 -1987 ((-897))) (-15 -1987 ((-897) (-897))) (-15 -1998 ((-625 (-751)))) (-15 -1998 ((-625 (-751)) (-625 (-751)))) (-15 -2008 ((-625 (-897)))) (-15 -2008 ((-625 (-897)) (-625 (-897)))) (-15 -2015 ((-1237))) (-15 -2024 ((-625 (-1131)))) (-15 -2024 ((-625 (-1131)) (-625 (-1131)))) (-15 -2033 ((-625 (-1131)))) (-15 -3851 ((-897))) (-15 -3864 ((-897))) (-15 -3851 ((-897) (-897))) (-15 -3864 ((-897) (-897))) (-15 -3877 ((-897) (-897))) (-15 -3877 ((-897))) (-15 -3891 ((-221) (-374))) (-15 -3891 ((-221))))
+((-1465 (((-462) (-625 (-625 (-919 (-221)))) (-625 (-258))) 21) (((-462) (-625 (-625 (-919 (-221))))) 20) (((-462) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258))) 19)) (-1477 (((-1233) (-625 (-625 (-919 (-221)))) (-625 (-258))) 27) (((-1233) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258))) 26)) (-1683 (((-1233) (-462)) 38)))
+(((-1236) (-10 -7 (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258)))) (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))))) (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))) (-625 (-258)))) (-15 -1477 ((-1233) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258)))) (-15 -1477 ((-1233) (-625 (-625 (-919 (-221)))) (-625 (-258)))) (-15 -1683 ((-1233) (-462))))) (T -1236))
+((-1683 (*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1233)) (-5 *1 (-1236)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-1236)))) (-1477 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-897)) (-5 *6 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-1236)))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-625 (-258))) (-5 *2 (-462)) (-5 *1 (-1236)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *2 (-462)) (-5 *1 (-1236)))) (-1465 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-897)) (-5 *6 (-625 (-258))) (-5 *2 (-462)) (-5 *1 (-1236)))))
+(-10 -7 (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258)))) (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))))) (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))) (-625 (-258)))) (-15 -1477 ((-1233) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258)))) (-15 -1477 ((-1233) (-625 (-625 (-919 (-221)))) (-625 (-258)))) (-15 -1683 ((-1233) (-462))))
+((-2781 (($) 7)) (-1683 (((-839) $) 10)))
+(((-1237) (-10 -8 (-15 -2781 ($)) (-15 -1683 ((-839) $)))) (T -1237))
+((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1237)))) (-2781 (*1 *1) (-5 *1 (-1237))))
+(-10 -8 (-15 -2781 ($)) (-15 -1683 ((-839) $)))
+((-2404 (($ $ |#2|) 10)))
+(((-1238 |#1| |#2|) (-10 -8 (-15 -2404 (|#1| |#1| |#2|))) (-1239 |#2|) (-358)) (T -1238))
+NIL
+(-10 -8 (-15 -2404 (|#1| |#1| |#2|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3904 (((-133)) 28)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 29)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-1239 |#1|) (-138) (-358)) (T -1239))
-((-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-358)))) (-4271 (*1 *2) (-12 (-4 *1 (-1239 *3)) (-4 *3 (-358)) (-5 *2 (-133)))))
-(-13 (-698 |t#1|) (-10 -8 (-15 -4308 ($ $ |t#1|)) (-15 -4271 ((-133)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-1031 |#1|) . T) ((-1074) . T))
-((-4276 (((-622 (-1178 |#1|)) (-1149) (-1178 |#1|)) 74)) (-4274 (((-1126 (-1126 (-922 |#1|))) (-1149) (-1126 (-922 |#1|))) 53)) (-4277 (((-1 (-1126 (-1178 |#1|)) (-1126 (-1178 |#1|))) (-751) (-1178 |#1|) (-1126 (-1178 |#1|))) 64)) (-4272 (((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751)) 55)) (-4275 (((-1 (-1143 (-922 |#1|)) (-922 |#1|)) (-1149)) 29)) (-4273 (((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751)) 54)))
-(((-1240 |#1|) (-10 -7 (-15 -4272 ((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751))) (-15 -4273 ((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751))) (-15 -4274 ((-1126 (-1126 (-922 |#1|))) (-1149) (-1126 (-922 |#1|)))) (-15 -4275 ((-1 (-1143 (-922 |#1|)) (-922 |#1|)) (-1149))) (-15 -4276 ((-622 (-1178 |#1|)) (-1149) (-1178 |#1|))) (-15 -4277 ((-1 (-1126 (-1178 |#1|)) (-1126 (-1178 |#1|))) (-751) (-1178 |#1|) (-1126 (-1178 |#1|))))) (-358)) (T -1240))
-((-4277 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-751)) (-4 *6 (-358)) (-5 *4 (-1178 *6)) (-5 *2 (-1 (-1126 *4) (-1126 *4))) (-5 *1 (-1240 *6)) (-5 *5 (-1126 *4)))) (-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-622 (-1178 *5))) (-5 *1 (-1240 *5)) (-5 *4 (-1178 *5)))) (-4275 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 (-1143 (-922 *4)) (-922 *4))) (-5 *1 (-1240 *4)) (-4 *4 (-358)))) (-4274 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-1126 (-1126 (-922 *5)))) (-5 *1 (-1240 *5)) (-5 *4 (-1126 (-922 *5))))) (-4273 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1126 (-922 *4)) (-1126 (-922 *4)))) (-5 *1 (-1240 *4)) (-4 *4 (-358)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1126 (-922 *4)) (-1126 (-922 *4)))) (-5 *1 (-1240 *4)) (-4 *4 (-358)))))
-(-10 -7 (-15 -4272 ((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751))) (-15 -4273 ((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751))) (-15 -4274 ((-1126 (-1126 (-922 |#1|))) (-1149) (-1126 (-922 |#1|)))) (-15 -4275 ((-1 (-1143 (-922 |#1|)) (-922 |#1|)) (-1149))) (-15 -4276 ((-622 (-1178 |#1|)) (-1149) (-1178 |#1|))) (-15 -4277 ((-1 (-1126 (-1178 |#1|)) (-1126 (-1178 |#1|))) (-751) (-1178 |#1|) (-1126 (-1178 |#1|)))))
-((-4279 (((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|) 75)) (-4278 (((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) 74)))
-(((-1241 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|))) (-345) (-1207 |#1|) (-1207 |#2|) (-405 |#2| |#3|)) (T -1241))
-((-4279 (*1 *2 *3) (-12 (-4 *4 (-345)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 *3)) (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-1241 *4 *3 *5 *6)) (-4 *6 (-405 *3 *5)))) (-4278 (*1 *2) (-12 (-4 *3 (-345)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| -2128 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4)))) (-5 *1 (-1241 *3 *4 *5 *6)) (-4 *6 (-405 *4 *5)))))
-(-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|)))
-((-2898 (((-112) $ $) NIL)) (-4280 (((-1108) $) 11)) (-4281 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-1242) (-13 (-1056) (-10 -8 (-15 -4281 ((-1108) $)) (-15 -4280 ((-1108) $))))) (T -1242))
-((-4281 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242)))))
-(-13 (-1056) (-10 -8 (-15 -4281 ((-1108) $)) (-15 -4280 ((-1108) $))))
-((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4282 (((-1108) $) 9)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL)))
-(((-1243) (-13 (-1056) (-10 -8 (-15 -4282 ((-1108) $))))) (T -1243))
-((-4282 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1243)))))
-(-13 (-1056) (-10 -8 (-15 -4282 ((-1108) $))))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 43)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 64) (($ (-538)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-3461 (((-751)) NIL)) (-4283 (((-1237) (-751)) 16)) (-2991 (($) 27 T CONST)) (-2997 (($) 67 T CONST)) (-3387 (((-112) $ $) 69)) (-4308 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) 71) (($ $ $) NIL)) (-4199 (($ $ $) 47)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-1244 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4317 (|#4| $)) (IF (|has| |#1| (-358)) (-15 -4308 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4317 ($ |#4|)) (-15 -4283 ((-1237) (-751))))) (-1025) (-827) (-773) (-926 |#1| |#3| |#2|) (-622 |#2|) (-622 (-751)) (-751)) (T -1244))
-((-4317 (*1 *2 *1) (-12 (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-622 *4)) (-14 *7 (-622 (-751))) (-14 *8 (-751)))) (-4308 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-773)) (-14 *6 (-622 *3)) (-5 *1 (-1244 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-926 *2 *4 *3)) (-14 *7 (-622 (-751))) (-14 *8 (-751)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-622 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-926 *3 *5 *4)) (-14 *7 (-622 (-751))) (-14 *8 (-751)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-14 *8 (-622 *5)) (-5 *2 (-1237)) (-5 *1 (-1244 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-926 *4 *6 *5)) (-14 *9 (-622 *3)) (-14 *10 *3))))
-(-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4317 (|#4| $)) (IF (|has| |#1| (-358)) (-15 -4308 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4317 ($ |#4|)) (-15 -4283 ((-1237) (-751)))))
-((-2898 (((-112) $ $) NIL)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) NIL)) (-4045 (((-622 $) (-622 |#4|)) 88)) (-3417 (((-622 |#3|) $) NIL)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4051 ((|#4| |#4| $) NIL)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) NIL (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3233 (((-622 |#4|) (-622 |#4|) $) 25 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) NIL)) (-3507 (($ (-622 |#4|)) NIL)) (-4158 (((-3 $ #1#) $) 70)) (-4048 ((|#4| |#4| $) 75)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3765 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) NIL)) (-2068 (((-622 |#4|) $) NIL (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3531 ((|#3| $) 76)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#4|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-4286 (((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-622 |#4|)) 35)) (-2072 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) NIL)) (-3247 (((-622 |#3|) $) NIL)) (-3246 (((-112) |#3| $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-4157 (((-3 |#4| #1#) $) NIL)) (-4060 (((-622 |#4|) $) 50)) (-4054 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4049 ((|#4| |#4| $) 74)) (-4062 (((-112) $ $) 85)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4050 ((|#4| |#4| $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-3 |#4| #1#) $) 69)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4042 (((-3 $ #1#) $ |#4|) NIL)) (-4128 (($ $ |#4|) NIL)) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 67)) (-3928 (($) 42)) (-4307 (((-751) $) NIL)) (-2069 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) NIL)) (-3243 (($ $ |#3|) NIL)) (-3245 (($ $ |#3|) NIL)) (-4047 (($ $) NIL)) (-3244 (($ $ |#3|) NIL)) (-4317 (((-840) $) NIL) (((-622 |#4|) $) 57)) (-4041 (((-751) $) NIL (|has| |#3| (-363)))) (-4285 (((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-622 |#4|)) 41)) (-4284 (((-622 $) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-622 $) (-622 |#4|)) 66)) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) NIL)) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) NIL)) (-4293 (((-112) |#3| $) NIL)) (-3387 (((-112) $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353)))))
-(((-1245 |#1| |#2| |#3| |#4|) (-13 (-1180 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4286 ((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4286 ((-3 $ "failed") (-622 |#4|))) (-15 -4285 ((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4285 ((-3 $ "failed") (-622 |#4|))) (-15 -4284 ((-622 $) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4284 ((-622 $) (-622 |#4|))))) (-545) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1245))
-((-4286 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))) (-4286 (*1 *1 *2) (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6)))) (-4285 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))) (-4285 (*1 *1 *2) (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6)))) (-4284 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-622 (-1245 *6 *7 *8 *9))) (-5 *1 (-1245 *6 *7 *8 *9)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 (-1245 *4 *5 *6 *7))) (-5 *1 (-1245 *4 *5 *6 *7)))))
-(-13 (-1180 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4286 ((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4286 ((-3 $ "failed") (-622 |#4|))) (-15 -4285 ((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4285 ((-3 $ "failed") (-622 |#4|))) (-15 -4284 ((-622 $) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4284 ((-622 $) (-622 |#4|)))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 36)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37)))
+((-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-358)))) (-3904 (*1 *2) (-12 (-4 *1 (-1239 *3)) (-4 *3 (-358)) (-5 *2 (-133)))))
+(-13 (-698 |t#1|) (-10 -8 (-15 -2404 ($ $ |t#1|)) (-15 -3904 ((-133)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-1031 |#1|) . T) ((-1073) . T))
+((-3969 (((-625 (-1180 |#1|)) (-1149) (-1180 |#1|)) 74)) (-3944 (((-1129 (-1129 (-928 |#1|))) (-1149) (-1129 (-928 |#1|))) 53)) (-3981 (((-1 (-1129 (-1180 |#1|)) (-1129 (-1180 |#1|))) (-751) (-1180 |#1|) (-1129 (-1180 |#1|))) 64)) (-3918 (((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751)) 55)) (-3956 (((-1 (-1145 (-928 |#1|)) (-928 |#1|)) (-1149)) 29)) (-3933 (((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751)) 54)))
+(((-1240 |#1|) (-10 -7 (-15 -3918 ((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751))) (-15 -3933 ((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751))) (-15 -3944 ((-1129 (-1129 (-928 |#1|))) (-1149) (-1129 (-928 |#1|)))) (-15 -3956 ((-1 (-1145 (-928 |#1|)) (-928 |#1|)) (-1149))) (-15 -3969 ((-625 (-1180 |#1|)) (-1149) (-1180 |#1|))) (-15 -3981 ((-1 (-1129 (-1180 |#1|)) (-1129 (-1180 |#1|))) (-751) (-1180 |#1|) (-1129 (-1180 |#1|))))) (-358)) (T -1240))
+((-3981 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-751)) (-4 *6 (-358)) (-5 *4 (-1180 *6)) (-5 *2 (-1 (-1129 *4) (-1129 *4))) (-5 *1 (-1240 *6)) (-5 *5 (-1129 *4)))) (-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-625 (-1180 *5))) (-5 *1 (-1240 *5)) (-5 *4 (-1180 *5)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 (-1145 (-928 *4)) (-928 *4))) (-5 *1 (-1240 *4)) (-4 *4 (-358)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-1129 (-1129 (-928 *5)))) (-5 *1 (-1240 *5)) (-5 *4 (-1129 (-928 *5))))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1129 (-928 *4)) (-1129 (-928 *4)))) (-5 *1 (-1240 *4)) (-4 *4 (-358)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1129 (-928 *4)) (-1129 (-928 *4)))) (-5 *1 (-1240 *4)) (-4 *4 (-358)))))
+(-10 -7 (-15 -3918 ((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751))) (-15 -3933 ((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751))) (-15 -3944 ((-1129 (-1129 (-928 |#1|))) (-1149) (-1129 (-928 |#1|)))) (-15 -3956 ((-1 (-1145 (-928 |#1|)) (-928 |#1|)) (-1149))) (-15 -3969 ((-625 (-1180 |#1|)) (-1149) (-1180 |#1|))) (-15 -3981 ((-1 (-1129 (-1180 |#1|)) (-1129 (-1180 |#1|))) (-751) (-1180 |#1|) (-1129 (-1180 |#1|)))))
+((-4006 (((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|) 75)) (-3993 (((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) 74)))
+(((-1241 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|))) (-344) (-1208 |#1|) (-1208 |#2|) (-404 |#2| |#3|)) (T -1241))
+((-4006 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 *3)) (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-1241 *4 *3 *5 *6)) (-4 *6 (-404 *3 *5)))) (-3993 (*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| -1270 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4)))) (-5 *1 (-1241 *3 *4 *5 *6)) (-4 *6 (-404 *4 *5)))))
+(-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|)))
+((-1671 (((-112) $ $) NIL)) (-4017 (((-1108) $) 11)) (-4029 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-1242) (-13 (-1056) (-10 -8 (-15 -4029 ((-1108) $)) (-15 -4017 ((-1108) $))))) (T -1242))
+((-4029 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242)))))
+(-13 (-1056) (-10 -8 (-15 -4029 ((-1108) $)) (-15 -4017 ((-1108) $))))
+((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3848 (((-1108) $) 9)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL)))
+(((-1243) (-13 (-1056) (-10 -8 (-15 -3848 ((-1108) $))))) (T -1243))
+((-3848 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1243)))))
+(-13 (-1056) (-10 -8 (-15 -3848 ((-1108) $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 43)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 64) (($ (-552)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-4141 (((-751)) NIL)) (-4040 (((-1237) (-751)) 16)) (-2089 (($) 27 T CONST)) (-2100 (($) 67 T CONST)) (-2281 (((-112) $ $) 69)) (-2404 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) 71) (($ $ $) NIL)) (-2382 (($ $ $) 47)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-1244 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1683 (|#4| $)) (IF (|has| |#1| (-358)) (-15 -2404 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1683 ($ |#4|)) (-15 -4040 ((-1237) (-751))))) (-1025) (-827) (-773) (-925 |#1| |#3| |#2|) (-625 |#2|) (-625 (-751)) (-751)) (T -1244))
+((-1683 (*1 *2 *1) (-12 (-4 *2 (-925 *3 *5 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-625 *4)) (-14 *7 (-625 (-751))) (-14 *8 (-751)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-773)) (-14 *6 (-625 *3)) (-5 *1 (-1244 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-925 *2 *4 *3)) (-14 *7 (-625 (-751))) (-14 *8 (-751)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-625 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-925 *3 *5 *4)) (-14 *7 (-625 (-751))) (-14 *8 (-751)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-14 *8 (-625 *5)) (-5 *2 (-1237)) (-5 *1 (-1244 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-925 *4 *6 *5)) (-14 *9 (-625 *3)) (-14 *10 *3))))
+(-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1683 (|#4| $)) (IF (|has| |#1| (-358)) (-15 -2404 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1683 ($ |#4|)) (-15 -4040 ((-1237) (-751)))))
+((-1671 (((-112) $ $) NIL)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) NIL)) (-3690 (((-625 $) (-625 |#4|)) 88)) (-3982 (((-625 |#3|) $) NIL)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) NIL (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3624 (((-625 |#4|) (-625 |#4|) $) 25 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) NIL)) (-1895 (($ (-625 |#4|)) NIL)) (-2936 (((-3 $ "failed") $) 70)) (-3720 ((|#4| |#4| $) 75)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1416 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3699 ((|#4| |#4| $) NIL)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) NIL)) (-3799 (((-625 |#4|) $) NIL (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3565 ((|#3| $) 76)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#4|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-4079 (((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-625 |#4|)) 35)) (-3683 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) NIL)) (-2615 (((-625 |#3|) $) NIL)) (-2608 (((-112) |#3| $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-1437 (((-3 |#4| "failed") $) NIL)) (-2699 (((-625 |#4|) $) 50)) (-3777 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3727 ((|#4| |#4| $) 74)) (-2719 (((-112) $ $) 85)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3737 ((|#4| |#4| $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-3 |#4| "failed") $) 69)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3657 (((-3 $ "failed") $ |#4|) NIL)) (-2147 (($ $ |#4|) NIL)) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 67)) (-3600 (($) 42)) (-4276 (((-751) $) NIL)) (-2840 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) NIL)) (-3718 (($ $ |#3|) NIL)) (-2595 (($ $ |#3|) NIL)) (-3709 (($ $) NIL)) (-2584 (($ $ |#3|) NIL)) (-1683 (((-839) $) NIL) (((-625 |#4|) $) 57)) (-3647 (((-751) $) NIL (|has| |#3| (-363)))) (-4065 (((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-625 |#4|)) 41)) (-4052 (((-625 $) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-625 $) (-625 |#4|)) 66)) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) NIL)) (-4168 (((-112) |#3| $) NIL)) (-2281 (((-112) $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353)))))
+(((-1245 |#1| |#2| |#3| |#4|) (-13 (-1179 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4079 ((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4079 ((-3 $ "failed") (-625 |#4|))) (-15 -4065 ((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4065 ((-3 $ "failed") (-625 |#4|))) (-15 -4052 ((-625 $) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4052 ((-625 $) (-625 |#4|))))) (-544) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1245))
+((-4079 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))) (-4079 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6)))) (-4065 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))) (-4065 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6)))) (-4052 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-625 (-1245 *6 *7 *8 *9))) (-5 *1 (-1245 *6 *7 *8 *9)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-1245 *4 *5 *6 *7))) (-5 *1 (-1245 *4 *5 *6 *7)))))
+(-13 (-1179 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4079 ((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4079 ((-3 $ "failed") (-625 |#4|))) (-15 -4065 ((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4065 ((-3 $ "failed") (-625 |#4|))) (-15 -4052 ((-625 $) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4052 ((-625 $) (-625 |#4|)))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 36)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37)))
(((-1246 |#1|) (-138) (-1025)) (T -1246))
-((-4317 (*1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1025)))))
-(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (-15 -4317 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T))
-((-2898 (((-112) $ $) 60)) (-3539 (((-112) $) NIL)) (-4294 (((-622 |#1|) $) 45)) (-4306 (($ $ (-751)) 39)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4295 (($ $ (-751)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-3896 (($) NIL T CONST)) (-4299 (($ $ $) 63) (($ $ (-799 |#1|)) 49) (($ $ |#1|) 53)) (-3508 (((-3 (-799 |#1|) "failed") $) NIL)) (-3507 (((-799 |#1|) $) NIL)) (-4319 (($ $) 32)) (-3821 (((-3 $ "failed") $) NIL)) (-4310 (((-112) $) NIL)) (-4309 (($ $) NIL)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ (-799 |#1|) |#2|) 31)) (-4296 (($ $) 33)) (-4301 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 12)) (-4314 (((-799 |#1|) $) NIL)) (-4315 (((-799 |#1|) $) 34)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-4300 (($ $ $) 62) (($ $ (-799 |#1|)) 51) (($ $ |#1|) 55)) (-1865 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3227 (((-799 |#1|) $) 28)) (-3525 ((|#2| $) 30)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4307 (((-751) $) 36)) (-4312 (((-112) $) 40)) (-4311 ((|#2| $) NIL)) (-4317 (((-840) $) NIL) (($ (-799 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-538)) NIL)) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-799 |#1|)) NIL)) (-4313 ((|#2| $ $) 65) ((|#2| $ (-799 |#1|)) NIL)) (-3461 (((-751)) NIL)) (-2991 (($) 13 T CONST)) (-2997 (($) 15 T CONST)) (-2996 (((-622 (-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3387 (((-112) $ $) 38)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 22)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-799 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1247 |#1| |#2|) (-13 (-379 |#2| (-799 |#1|)) (-1254 |#1| |#2|)) (-827) (-1025)) (T -1247))
-NIL
-(-13 (-379 |#2| (-799 |#1|)) (-1254 |#1| |#2|))
-((-4302 ((|#3| |#3| (-751)) 23)) (-4303 ((|#3| |#3| (-751)) 27)) (-4287 ((|#3| |#3| |#3| (-751)) 28)))
-(((-1248 |#1| |#2| |#3|) (-10 -7 (-15 -4303 (|#3| |#3| (-751))) (-15 -4302 (|#3| |#3| (-751))) (-15 -4287 (|#3| |#3| |#3| (-751)))) (-13 (-1025) (-698 (-402 (-538)))) (-827) (-1254 |#2| |#1|)) (T -1248))
-((-4287 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4)))) (-4302 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4)))) (-4303 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4)))))
-(-10 -7 (-15 -4303 (|#3| |#3| (-751))) (-15 -4302 (|#3| |#3| (-751))) (-15 -4287 (|#3| |#3| |#3| (-751))))
-((-4292 (((-112) $) 15)) (-4293 (((-112) $) 14)) (-4288 (($ $) 19) (($ $ (-751)) 20)))
-(((-1249 |#1| |#2|) (-10 -8 (-15 -4288 (|#1| |#1| (-751))) (-15 -4288 (|#1| |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4293 ((-112) |#1|))) (-1250 |#2|) (-358)) (T -1249))
-NIL
-(-10 -8 (-15 -4288 (|#1| |#1| (-751))) (-15 -4288 (|#1| |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4293 ((-112) |#1|)))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-4292 (((-112) $) 91)) (-4289 (((-751)) 87)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| "failed") $) 98)) (-3507 ((|#1| $) 97)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-1886 (($ $ (-751)) 84 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 83 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) 68)) (-4131 (((-812 (-895)) $) 81 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) 30)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-4291 (((-112) $) 90)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-4092 (((-400 $) $) 71)) (-4290 (((-812 (-895))) 88)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-1887 (((-3 (-751) "failed") $ $) 82 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) 96)) (-4307 (((-812 (-895)) $) 89)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ |#1|) 99)) (-3035 (((-3 $ "failed") $) 80 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-4293 (((-112) $) 92)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-4288 (($ $) 86 (|has| |#1| (-363))) (($ $ (-751)) 85 (|has| |#1| (-363)))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62) (($ $ |#1|) 95)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
-(((-1250 |#1|) (-138) (-358)) (T -1250))
-((-4293 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4291 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-812 (-895))))) (-4290 (*1 *2) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-812 (-895))))) (-4289 (*1 *2) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-751)))) (-4288 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-358)) (-4 *2 (-363)))) (-4288 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-4 *3 (-363)))))
-(-13 (-358) (-1014 |t#1|) (-1239 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-397)) |%noBranch|) (-15 -4293 ((-112) $)) (-15 -4292 ((-112) $)) (-15 -4291 ((-112) $)) (-15 -4307 ((-812 (-895)) $)) (-15 -4290 ((-812 (-895)))) (-15 -4289 ((-751))) (IF (|has| |t#1| (-363)) (PROGN (-6 (-397)) (-15 -4288 ($ $)) (-15 -4288 ($ $ (-751)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3891 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) -3891 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1014 |#1|) . T) ((-1031 #1#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T) ((-1239 |#1|) . T))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-4294 (((-622 |#1|) $) 38)) (-1368 (((-3 $ "failed") $ $) 19)) (-4295 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-751)) 40 (|has| |#2| (-170)))) (-3896 (($) 17 T CONST)) (-4299 (($ $ |#1|) 52) (($ $ (-799 |#1|)) 51) (($ $ $) 50)) (-3508 (((-3 (-799 |#1|) "failed") $) 62)) (-3507 (((-799 |#1|) $) 61)) (-3821 (((-3 $ "failed") $) 32)) (-4310 (((-112) $) 43)) (-4309 (($ $) 42)) (-2502 (((-112) $) 30)) (-4297 (((-112) $) 48)) (-4298 (($ (-799 |#1|) |#2|) 49)) (-4296 (($ $) 47)) (-4301 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 58)) (-4314 (((-799 |#1|) $) 59)) (-4318 (($ (-1 |#2| |#2|) $) 39)) (-4300 (($ $ |#1|) 55) (($ $ (-799 |#1|)) 54) (($ $ $) 53)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4312 (((-112) $) 45)) (-4311 ((|#2| $) 44)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#2|) 66) (($ (-799 |#1|)) 63) (($ |#1|) 46)) (-4313 ((|#2| $ (-799 |#1|)) 57) ((|#2| $ $) 56)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
-(((-1251 |#1| |#2|) (-138) (-827) (-1025)) (T -1251))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-2 (|:| |k| (-799 *3)) (|:| |c| *4))))) (-4313 (*1 *2 *1 *3) (-12 (-5 *3 (-799 *4)) (-4 *1 (-1251 *4 *2)) (-4 *4 (-827)) (-4 *2 (-1025)))) (-4313 (*1 *2 *1 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (-4300 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4300 (*1 *1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4300 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4299 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4299 (*1 *1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4299 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4298 (*1 *1 *2 *3) (-12 (-5 *2 (-799 *4)) (-4 *4 (-827)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1025)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-4296 (*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4317 (*1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-4309 (*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4295 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)) (-4 *3 (-170)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-4 *4 (-170)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-622 *3)))))
-(-13 (-1025) (-1246 |t#2|) (-1014 (-799 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4314 ((-799 |t#1|) $)) (-15 -4301 ((-2 (|:| |k| (-799 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4313 (|t#2| $ (-799 |t#1|))) (-15 -4313 (|t#2| $ $)) (-15 -4300 ($ $ |t#1|)) (-15 -4300 ($ $ (-799 |t#1|))) (-15 -4300 ($ $ $)) (-15 -4299 ($ $ |t#1|)) (-15 -4299 ($ $ (-799 |t#1|))) (-15 -4299 ($ $ $)) (-15 -4298 ($ (-799 |t#1|) |t#2|)) (-15 -4297 ((-112) $)) (-15 -4296 ($ $)) (-15 -4317 ($ |t#1|)) (-15 -4312 ((-112) $)) (-15 -4311 (|t#2| $)) (-15 -4310 ((-112) $)) (-15 -4309 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -4295 ($ $ $)) (-15 -4295 ($ $ (-751)))) |%noBranch|) (-15 -4318 ($ (-1 |t#2| |t#2|) $)) (-15 -4294 ((-622 |t#1|) $)) (IF (|has| |t#2| (-6 -4346)) (-6 -4346) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#2|) . T) ((-628 $) . T) ((-698 |#2|) |has| |#2| (-170)) ((-707) . T) ((-1014 (-799 |#1|)) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1246 |#2|) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4294 (((-622 |#1|) $) 86)) (-4306 (($ $ (-751)) 89)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4295 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-751)) NIL (|has| |#2| (-170)))) (-3896 (($) NIL T CONST)) (-4299 (($ $ |#1|) NIL) (($ $ (-799 |#1|)) NIL) (($ $ $) NIL)) (-3508 (((-3 (-799 |#1|) #1="failed") $) NIL) (((-3 (-869 |#1|) #1#) $) NIL)) (-3507 (((-799 |#1|) $) NIL) (((-869 |#1|) $) NIL)) (-4319 (($ $) 88)) (-3821 (((-3 $ "failed") $) NIL)) (-4310 (((-112) $) 77)) (-4309 (($ $) 81)) (-4304 (($ $ $ (-751)) 90)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ (-799 |#1|) |#2|) NIL) (($ (-869 |#1|) |#2|) 26)) (-4296 (($ $) 103)) (-4301 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4314 (((-799 |#1|) $) NIL)) (-4315 (((-799 |#1|) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-4300 (($ $ |#1|) NIL) (($ $ (-799 |#1|)) NIL) (($ $ $) NIL)) (-4302 (($ $ (-751)) 97 (|has| |#2| (-698 (-402 (-538)))))) (-1865 (((-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3227 (((-869 |#1|) $) 70)) (-3525 ((|#2| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4303 (($ $ (-751)) 94 (|has| |#2| (-698 (-402 (-538)))))) (-4307 (((-751) $) 87)) (-4312 (((-112) $) 71)) (-4311 ((|#2| $) 75)) (-4317 (((-840) $) 57) (($ (-538)) NIL) (($ |#2|) 51) (($ (-799 |#1|)) NIL) (($ |#1|) 59) (($ (-869 |#1|)) NIL) (($ (-644 |#1| |#2|)) 43) (((-1247 |#1| |#2|) $) 64) (((-1256 |#1| |#2|) $) 69)) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-869 |#1|)) NIL)) (-4313 ((|#2| $ (-799 |#1|)) NIL) ((|#2| $ $) NIL)) (-3461 (((-751)) NIL)) (-2991 (($) 21 T CONST)) (-2997 (($) 25 T CONST)) (-2996 (((-622 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4305 (((-3 (-644 |#1| |#2|) "failed") $) 102)) (-3387 (((-112) $ $) 65)) (-4197 (($ $) 96) (($ $ $) 95)) (-4199 (($ $ $) 20)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-869 |#1|)) NIL)))
-(((-1252 |#1| |#2|) (-13 (-1254 |#1| |#2|) (-379 |#2| (-869 |#1|)) (-10 -8 (-15 -4317 ($ (-644 |#1| |#2|))) (-15 -4317 ((-1247 |#1| |#2|) $)) (-15 -4317 ((-1256 |#1| |#2|) $)) (-15 -4305 ((-3 (-644 |#1| |#2|) "failed") $)) (-15 -4304 ($ $ $ (-751))) (IF (|has| |#2| (-698 (-402 (-538)))) (PROGN (-15 -4303 ($ $ (-751))) (-15 -4302 ($ $ (-751)))) |%noBranch|))) (-827) (-170)) (T -1252))
-((-4317 (*1 *1 *2) (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *1 (-1252 *3 *4)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4305 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4304 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4303 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-538)))) (-4 *3 (-827)) (-4 *4 (-170)))) (-4302 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-538)))) (-4 *3 (-827)) (-4 *4 (-170)))))
-(-13 (-1254 |#1| |#2|) (-379 |#2| (-869 |#1|)) (-10 -8 (-15 -4317 ($ (-644 |#1| |#2|))) (-15 -4317 ((-1247 |#1| |#2|) $)) (-15 -4317 ((-1256 |#1| |#2|) $)) (-15 -4305 ((-3 (-644 |#1| |#2|) "failed") $)) (-15 -4304 ($ $ $ (-751))) (IF (|has| |#2| (-698 (-402 (-538)))) (PROGN (-15 -4303 ($ $ (-751))) (-15 -4302 ($ $ (-751)))) |%noBranch|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4294 (((-622 (-1149)) $) NIL)) (-4322 (($ (-1247 (-1149) |#1|)) NIL)) (-4306 (($ $ (-751)) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4295 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-751)) NIL (|has| |#1| (-170)))) (-3896 (($) NIL T CONST)) (-4299 (($ $ (-1149)) NIL) (($ $ (-799 (-1149))) NIL) (($ $ $) NIL)) (-3508 (((-3 (-799 (-1149)) "failed") $) NIL)) (-3507 (((-799 (-1149)) $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4310 (((-112) $) NIL)) (-4309 (($ $) NIL)) (-2502 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ (-799 (-1149)) |#1|) NIL)) (-4296 (($ $) NIL)) (-4301 (((-2 (|:| |k| (-799 (-1149))) (|:| |c| |#1|)) $) NIL)) (-4314 (((-799 (-1149)) $) NIL)) (-4315 (((-799 (-1149)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4300 (($ $ (-1149)) NIL) (($ $ (-799 (-1149))) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4323 (((-1247 (-1149) |#1|) $) NIL)) (-4307 (((-751) $) NIL)) (-4312 (((-112) $) NIL)) (-4311 ((|#1| $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-799 (-1149))) NIL) (($ (-1149)) NIL)) (-4313 ((|#1| $ (-799 (-1149))) NIL) ((|#1| $ $) NIL)) (-3461 (((-751)) NIL)) (-2991 (($) NIL T CONST)) (-4321 (((-622 (-2 (|:| |k| (-1149)) (|:| |c| $))) $) NIL)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1149) $) NIL)))
-(((-1253 |#1|) (-13 (-1254 (-1149) |#1|) (-10 -8 (-15 -4323 ((-1247 (-1149) |#1|) $)) (-15 -4322 ($ (-1247 (-1149) |#1|))) (-15 -4321 ((-622 (-2 (|:| |k| (-1149)) (|:| |c| $))) $)))) (-1025)) (T -1253))
-((-4323 (*1 *2 *1) (-12 (-5 *2 (-1247 (-1149) *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1025)))) (-4322 (*1 *1 *2) (-12 (-5 *2 (-1247 (-1149) *3)) (-4 *3 (-1025)) (-5 *1 (-1253 *3)))) (-4321 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |k| (-1149)) (|:| |c| (-1253 *3))))) (-5 *1 (-1253 *3)) (-4 *3 (-1025)))))
-(-13 (-1254 #1=(-1149) |#1|) (-10 -8 (-15 -4323 ((-1247 #1# |#1|) $)) (-15 -4322 ($ (-1247 #1# |#1|))) (-15 -4321 ((-622 (-2 (|:| |k| #1#) (|:| |c| $))) $))))
-((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-4294 (((-622 |#1|) $) 38)) (-4306 (($ $ (-751)) 71)) (-1368 (((-3 $ "failed") $ $) 19)) (-4295 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-751)) 40 (|has| |#2| (-170)))) (-3896 (($) 17 T CONST)) (-4299 (($ $ |#1|) 52) (($ $ (-799 |#1|)) 51) (($ $ $) 50)) (-3508 (((-3 (-799 |#1|) "failed") $) 62)) (-3507 (((-799 |#1|) $) 61)) (-3821 (((-3 $ "failed") $) 32)) (-4310 (((-112) $) 43)) (-4309 (($ $) 42)) (-2502 (((-112) $) 30)) (-4297 (((-112) $) 48)) (-4298 (($ (-799 |#1|) |#2|) 49)) (-4296 (($ $) 47)) (-4301 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 58)) (-4314 (((-799 |#1|) $) 59)) (-4315 (((-799 |#1|) $) 73)) (-4318 (($ (-1 |#2| |#2|) $) 39)) (-4300 (($ $ |#1|) 55) (($ $ (-799 |#1|)) 54) (($ $ $) 53)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4307 (((-751) $) 72)) (-4312 (((-112) $) 45)) (-4311 ((|#2| $) 44)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#2|) 66) (($ (-799 |#1|)) 63) (($ |#1|) 46)) (-4313 ((|#2| $ (-799 |#1|)) 57) ((|#2| $ $) 56)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
-(((-1254 |#1| |#2|) (-138) (-827) (-1025)) (T -1254))
-((-4315 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-751)))) (-4306 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))))
-(-13 (-1251 |t#1| |t#2|) (-10 -8 (-15 -4315 ((-799 |t#1|) $)) (-15 -4307 ((-751) $)) (-15 -4306 ($ $ (-751)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#2|) . T) ((-628 $) . T) ((-698 |#2|) |has| |#2| (-170)) ((-707) . T) ((-1014 (-799 |#1|)) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1246 |#2|) . T) ((-1251 |#1| |#2|) . T))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| "failed") $) NIL)) (-3507 ((|#2| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) 36)) (-4310 (((-112) $) 30)) (-4309 (($ $) 32)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ |#2| |#1|) NIL)) (-4314 ((|#2| $) 19)) (-4315 ((|#2| $) 16)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-1865 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3227 ((|#2| $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4312 (((-112) $) 27)) (-4311 ((|#1| $) 28)) (-4317 (((-840) $) 55) (($ (-538)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ |#2|) NIL)) (-4313 ((|#1| $ |#2|) 24)) (-3461 (((-751)) 14)) (-2991 (($) 25 T CONST)) (-2997 (($) 11 T CONST)) (-2996 (((-622 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3387 (((-112) $ $) 26)) (-4308 (($ $ |#1|) 57 (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 44)) (** (($ $ (-895)) NIL) (($ $ (-751)) 46)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4316 (((-751) $) 15)))
-(((-1255 |#1| |#2|) (-13 (-1025) (-1246 |#1|) (-379 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4316 ((-751) $)) (-15 -4317 ($ |#2|)) (-15 -4315 (|#2| $)) (-15 -4314 (|#2| $)) (-15 -4319 ($ $)) (-15 -4313 (|#1| $ |#2|)) (-15 -4312 ((-112) $)) (-15 -4311 (|#1| $)) (-15 -4310 ((-112) $)) (-15 -4309 ($ $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -4308 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|) (IF (|has| |#1| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025) (-823)) (T -1255))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-4319 (*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-1255 *3 *4)) (-4 *4 (-823)))) (-4317 (*1 *1 *2) (-12 (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-823)))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-4315 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))) (-4314 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))) (-4313 (*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-4311 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-4309 (*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-4308 (*1 *1 *1 *2) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-823)))))
-(-13 (-1025) (-1246 |#1|) (-379 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4316 ((-751) $)) (-15 -4317 ($ |#2|)) (-15 -4315 (|#2| $)) (-15 -4314 (|#2| $)) (-15 -4319 ($ $)) (-15 -4313 (|#1| $ |#2|)) (-15 -4312 ((-112) $)) (-15 -4311 (|#1| $)) (-15 -4310 ((-112) $)) (-15 -4309 ($ $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -4308 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|) (IF (|has| |#1| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|)))
-((-2898 (((-112) $ $) 26)) (-3539 (((-112) $) NIL)) (-4294 (((-622 |#1|) $) 120)) (-4322 (($ (-1247 |#1| |#2|)) 44)) (-4306 (($ $ (-751)) 32)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4295 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-751)) 46 (|has| |#2| (-170)))) (-3896 (($) NIL T CONST)) (-4299 (($ $ |#1|) 102) (($ $ (-799 |#1|)) 103) (($ $ $) 25)) (-3508 (((-3 (-799 |#1|) "failed") $) NIL)) (-3507 (((-799 |#1|) $) NIL)) (-3821 (((-3 $ "failed") $) 110)) (-4310 (((-112) $) 105)) (-4309 (($ $) 106)) (-2502 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ (-799 |#1|) |#2|) 19)) (-4296 (($ $) NIL)) (-4301 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4314 (((-799 |#1|) $) 111)) (-4315 (((-799 |#1|) $) 114)) (-4318 (($ (-1 |#2| |#2|) $) 119)) (-4300 (($ $ |#1|) 100) (($ $ (-799 |#1|)) 101) (($ $ $) 56)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4323 (((-1247 |#1| |#2|) $) 84)) (-4307 (((-751) $) 117)) (-4312 (((-112) $) 70)) (-4311 ((|#2| $) 28)) (-4317 (((-840) $) 63) (($ (-538)) 77) (($ |#2|) 74) (($ (-799 |#1|)) 17) (($ |#1|) 73)) (-4313 ((|#2| $ (-799 |#1|)) 104) ((|#2| $ $) 27)) (-3461 (((-751)) 108)) (-2991 (($) 14 T CONST)) (-4321 (((-622 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 13)) (-4197 (($ $) 88) (($ $ $) 91)) (-4199 (($ $ $) 55)) (** (($ $ (-895)) NIL) (($ $ (-751)) 49)) (* (($ (-895) $) NIL) (($ (-751) $) 47) (($ (-538) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1256 |#1| |#2|) (-13 (-1254 |#1| |#2|) (-10 -8 (-15 -4323 ((-1247 |#1| |#2|) $)) (-15 -4322 ($ (-1247 |#1| |#2|))) (-15 -4321 ((-622 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-827) (-1025)) (T -1256))
-((-4323 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4322 (*1 *1 *2) (-12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *1 (-1256 *3 *4)))) (-4321 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |k| *3) (|:| |c| (-1256 *3 *4))))) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))))
-(-13 (-1254 |#1| |#2|) (-10 -8 (-15 -4323 ((-1247 |#1| |#2|) $)) (-15 -4322 ($ (-1247 |#1| |#2|))) (-15 -4321 ((-622 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-4324 (((-622 (-1126 |#1|)) (-1 (-622 (-1126 |#1|)) (-622 (-1126 |#1|))) (-538)) 15) (((-1126 |#1|) (-1 (-1126 |#1|) (-1126 |#1|))) 11)))
-(((-1257 |#1|) (-10 -7 (-15 -4324 ((-1126 |#1|) (-1 (-1126 |#1|) (-1126 |#1|)))) (-15 -4324 ((-622 (-1126 |#1|)) (-1 (-622 (-1126 |#1|)) (-622 (-1126 |#1|))) (-538)))) (-1185)) (T -1257))
-((-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-622 (-1126 *5)) (-622 (-1126 *5)))) (-5 *4 (-538)) (-5 *2 (-622 (-1126 *5))) (-5 *1 (-1257 *5)) (-4 *5 (-1185)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-1 (-1126 *4) (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1257 *4)) (-4 *4 (-1185)))))
-(-10 -7 (-15 -4324 ((-1126 |#1|) (-1 (-1126 |#1|) (-1126 |#1|)))) (-15 -4324 ((-622 (-1126 |#1|)) (-1 (-622 (-1126 |#1|)) (-622 (-1126 |#1|))) (-538))))
-((-4326 (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|))) 148) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112)) 147) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112)) 146) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112) (-112)) 145) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-1022 |#1| |#2|)) 130)) (-4325 (((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|))) 72) (((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112)) 71) (((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112) (-112)) 70)) (-4329 (((-622 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|)) 61)) (-4327 (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|))) 115) (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112)) 114) (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112)) 113) (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112) (-112)) 112) (((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|)) 107)) (-4328 (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|))) 120) (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112)) 119) (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112)) 118) (((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|)) 117)) (-4330 (((-622 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) 98) (((-1143 (-1000 (-402 |#1|))) (-1143 |#1|)) 89) (((-922 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|))) 96) (((-922 (-1000 (-402 |#1|))) (-922 |#1|)) 94) (((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|))) 33)))
-(((-1258 |#1| |#2| |#3|) (-10 -7 (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112))) (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-1022 |#1| |#2|))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)))) (-15 -4329 ((-622 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|))) (-15 -4330 ((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|)))) (-15 -4330 ((-922 (-1000 (-402 |#1|))) (-922 |#1|))) (-15 -4330 ((-922 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|)))) (-15 -4330 ((-1143 (-1000 (-402 |#1|))) (-1143 |#1|))) (-15 -4330 ((-622 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))))) (-13 (-825) (-302) (-145) (-996)) (-622 (-1149)) (-622 (-1149))) (T -1258))
-((-4330 (*1 *2 *3) (-12 (-5 *3 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6)))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-760 *4 (-841 *6)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-1143 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-760 *4 (-841 *6))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *6 (-622 (-1149))) (-5 *2 (-922 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-922 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-922 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-760 *4 (-841 *5))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *5 (-622 (-1149))) (-5 *2 (-760 *4 (-841 *6))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4328 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4328 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4327 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4327 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4327 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) (-4326 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4)))))) (-5 *1 (-1258 *4 *5 *6)) (-5 *3 (-622 (-922 *4))) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4326 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4326 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4326 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4)))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-1022 *4 *5))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4325 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))))
-(-10 -7 (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112))) (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-1022 |#1| |#2|))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)))) (-15 -4329 ((-622 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|))) (-15 -4330 ((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|)))) (-15 -4330 ((-922 (-1000 (-402 |#1|))) (-922 |#1|))) (-15 -4330 ((-922 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|)))) (-15 -4330 ((-1143 (-1000 (-402 |#1|))) (-1143 |#1|))) (-15 -4330 ((-622 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|))))))
-((-4333 (((-3 (-1231 (-402 (-538))) "failed") (-1231 |#1|) |#1|) 21)) (-4331 (((-112) (-1231 |#1|)) 12)) (-4332 (((-3 (-1231 (-538)) "failed") (-1231 |#1|)) 16)))
-(((-1259 |#1|) (-10 -7 (-15 -4331 ((-112) (-1231 |#1|))) (-15 -4332 ((-3 (-1231 (-538)) "failed") (-1231 |#1|))) (-15 -4333 ((-3 (-1231 (-402 (-538))) "failed") (-1231 |#1|) |#1|))) (-621 (-538))) (T -1259))
-((-4333 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538))) (-5 *2 (-1231 (-402 (-538)))) (-5 *1 (-1259 *4)))) (-4332 (*1 *2 *3) (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538))) (-5 *2 (-1231 (-538))) (-5 *1 (-1259 *4)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538))) (-5 *2 (-112)) (-5 *1 (-1259 *4)))))
-(-10 -7 (-15 -4331 ((-112) (-1231 |#1|))) (-15 -4332 ((-3 (-1231 (-538)) "failed") (-1231 |#1|))) (-15 -4333 ((-3 (-1231 (-402 (-538))) "failed") (-1231 |#1|) |#1|)))
-((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 11)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751)) 8)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) 43)) (-3327 (($) 36)) (-2502 (((-112) $) NIL)) (-3803 (((-3 $ "failed") $) 29)) (-2126 (((-895) $) 15)) (-3593 (((-1131) $) NIL)) (-3804 (($) 25 T CONST)) (-2492 (($ (-895)) 37)) (-3594 (((-1093) $) NIL)) (-4330 (((-538) $) 13)) (-4317 (((-840) $) 22) (($ (-538)) 19)) (-3461 (((-751)) 9)) (-2991 (($) 23 T CONST)) (-2997 (($) 24 T CONST)) (-3387 (((-112) $ $) 27)) (-4197 (($ $) 38) (($ $ $) 35)) (-4199 (($ $ $) 26)) (** (($ $ (-895)) NIL) (($ $ (-751)) 40)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 32) (($ $ $) 31)))
-(((-1260 |#1|) (-13 (-170) (-363) (-598 (-538)) (-1124)) (-895)) (T -1260))
-NIL
-(-13 (-170) (-363) (-598 (-538)) (-1124))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3168410 3168415 3168420 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3168395 3168400 3168405 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3168380 3168385 3168390 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3168365 3168370 3168375 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1260 3167541 3168240 3168317 "ZMOD" 3168322 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1259 3166651 3166815 3167024 "ZLINDEP" 3167373 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1258 3155979 3157743 3159714 "ZDSOLVE" 3164781 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1257 3155225 3155366 3155555 "YSTREAM" 3155825 NIL YSTREAM (NIL T) -7 NIL NIL) (-1256 3153036 3154526 3154730 "XRPOLY" 3155068 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1255 3149528 3150811 3151395 "XPR" 3152499 NIL XPR (NIL T T) -8 NIL NIL) (-1254 3147377 3148711 3148766 "XPOLYC" 3149054 NIL XPOLYC (NIL T T) -9 NIL 3149167) (-1253 3145142 3146717 3146921 "XPOLY" 3147217 NIL XPOLY (NIL T) -8 NIL NIL) (-1252 3141562 3143659 3144047 "XPBWPOLY" 3144800 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1251 3136954 3138209 3138264 "XFALG" 3140436 NIL XFALG (NIL T T) -9 NIL 3141225) (-1250 3132941 3135187 3135229 "XF" 3135850 NIL XF (NIL T) -9 NIL 3136250) (-1249 3132562 3132650 3132819 "XF-" 3132824 NIL XF- (NIL T T) -8 NIL NIL) (-1248 3131695 3131799 3132004 "XEXPPKG" 3132454 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1247 3129839 3131545 3131641 "XDPOLY" 3131646 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1246 3128755 3129321 3129364 "XALG" 3129427 NIL XALG (NIL T) -9 NIL 3129547) (-1245 3122251 3126732 3127226 "WUTSET" 3128347 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1244 3120102 3120863 3121216 "WP" 3122032 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1243 3119731 3119924 3119994 "WHILEAST" 3120054 T WHILEAST (NIL) -8 NIL NIL) (-1242 3119230 3119448 3119542 "WHEREAST" 3119659 T WHEREAST (NIL) -8 NIL NIL) (-1241 3118116 3118314 3118609 "WFFINTBS" 3119027 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1240 3116020 3116447 3116909 "WEIER" 3117688 NIL WEIER (NIL T) -7 NIL NIL) (-1239 3115167 3115591 3115633 "VSPACE" 3115769 NIL VSPACE (NIL T) -9 NIL 3115843) (-1238 3115005 3115032 3115123 "VSPACE-" 3115128 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1237 3114751 3114794 3114865 "VOID" 3114956 T VOID (NIL) -8 NIL NIL) (-1236 3111176 3111814 3112551 "VIEWDEF" 3114036 T VIEWDEF (NIL) -7 NIL NIL) (-1235 3100514 3102724 3104897 "VIEW3D" 3109025 T VIEW3D (NIL) -8 NIL NIL) (-1234 3092796 3094425 3096004 "VIEW2D" 3098957 T VIEW2D (NIL) -8 NIL NIL) (-1233 3090932 3091291 3091697 "VIEW" 3092412 T VIEW (NIL) -7 NIL NIL) (-1232 3089509 3089768 3090086 "VECTOR2" 3090662 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1231 3084913 3089279 3089371 "VECTOR" 3089452 NIL VECTOR (NIL T) -8 NIL NIL) (-1230 3078440 3082697 3082740 "VECTCAT" 3083733 NIL VECTCAT (NIL T) -9 NIL 3084319) (-1229 3077454 3077708 3078098 "VECTCAT-" 3078103 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1228 3076935 3077105 3077225 "VARIABLE" 3077369 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1227 3076868 3076873 3076903 "UTYPE" 3076908 T UTYPE (NIL) -9 NIL NIL) (-1226 3075698 3075852 3076114 "UTSODETL" 3076694 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1225 3073138 3073598 3074122 "UTSODE" 3075239 NIL UTSODE (NIL T T) -7 NIL NIL) (-1224 3064511 3069830 3069873 "UTSCAT" 3070985 NIL UTSCAT (NIL T) -9 NIL 3071742) (-1223 3061865 3062581 3063570 "UTSCAT-" 3063575 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1222 3061492 3061535 3061668 "UTS2" 3061816 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1221 3053368 3059118 3059607 "UTS" 3061061 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1220 3047644 3050208 3050251 "URAGG" 3052321 NIL URAGG (NIL T) -9 NIL 3053043) (-1219 3044586 3045448 3046570 "URAGG-" 3046575 NIL URAGG- (NIL T T) -8 NIL NIL) (-1218 3040317 3043200 3043672 "UPXSSING" 3044250 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1217 3033432 3040221 3040293 "UPXSCONS" 3040298 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1216 3023792 3030535 3030597 "UPXSCCA" 3031253 NIL UPXSCCA (NIL T T) -9 NIL 3031495) (-1215 3023430 3023515 3023689 "UPXSCCA-" 3023694 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1214 3013716 3020232 3020275 "UPXSCAT" 3020923 NIL UPXSCAT (NIL T) -9 NIL 3021531) (-1213 3013146 3013225 3013404 "UPXS2" 3013631 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1212 3005120 3012261 3012543 "UPXS" 3012922 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1211 3003777 3004029 3004379 "UPSQFREE" 3004864 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1210 2997695 3000704 3000759 "UPSCAT" 3001920 NIL UPSCAT (NIL T T) -9 NIL 3002694) (-1209 2996899 2997106 2997433 "UPSCAT-" 2997438 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1208 2996526 2996569 2996702 "UPOLYC2" 2996850 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1207 2982650 2990613 2990656 "UPOLYC" 2992757 NIL UPOLYC (NIL T) -9 NIL 2993978) (-1206 2974015 2976428 2979563 "UPOLYC-" 2979568 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1205 2973354 2973461 2973625 "UPMP" 2973904 NIL UPMP (NIL T T) -7 NIL NIL) (-1204 2972907 2972988 2973127 "UPDIVP" 2973267 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1203 2971475 2971724 2972040 "UPDECOMP" 2972656 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1202 2970710 2970822 2971007 "UPCDEN" 2971359 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1201 2970229 2970298 2970447 "UP2" 2970635 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1200 2961726 2969795 2969933 "UP" 2970139 NIL UP (NIL NIL T) -8 NIL NIL) (-1199 2960941 2961068 2961273 "UNISEG2" 2961569 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1198 2959458 2960145 2960422 "UNISEG" 2960699 NIL UNISEG (NIL T) -8 NIL NIL) (-1197 2958518 2958698 2958924 "UNIFACT" 2959274 NIL UNIFACT (NIL T) -7 NIL NIL) (-1196 2946576 2958422 2958494 "ULSCONS" 2958499 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1195 2929396 2941315 2941377 "ULSCCAT" 2942097 NIL ULSCCAT (NIL T T) -9 NIL 2942394) (-1194 2928482 2928715 2929091 "ULSCCAT-" 2929096 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1193 2918545 2924975 2925018 "ULSCAT" 2925881 NIL ULSCAT (NIL T) -9 NIL 2926611) (-1192 2917975 2918054 2918233 "ULS2" 2918460 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1191 2901960 2917152 2917403 "ULS" 2917782 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1190 2900398 2901321 2901351 "UFD" 2901563 T UFD (NIL) -9 NIL 2901677) (-1189 2900192 2900238 2900333 "UFD-" 2900338 NIL UFD- (NIL T) -8 NIL NIL) (-1188 2899274 2899457 2899673 "UDVO" 2899998 T UDVO (NIL) -7 NIL NIL) (-1187 2897090 2897499 2897970 "UDPO" 2898838 NIL UDPO (NIL T) -7 NIL NIL) (-1186 2896877 2897045 2897076 "TYPEAST" 2897081 T TYPEAST (NIL) -8 NIL NIL) (-1185 2896810 2896815 2896845 "TYPE" 2896850 T TYPE (NIL) -9 NIL NIL) (-1184 2895781 2895983 2896223 "TWOFACT" 2896604 NIL TWOFACT (NIL T) -7 NIL NIL) (-1183 2894719 2895056 2895319 "TUPLE" 2895553 NIL TUPLE (NIL T) -8 NIL NIL) (-1182 2892410 2892929 2893468 "TUBETOOL" 2894202 T TUBETOOL (NIL) -7 NIL NIL) (-1181 2891259 2891464 2891705 "TUBE" 2892203 NIL TUBE (NIL T) -8 NIL NIL) (-1180 2879926 2884018 2884115 "TSETCAT" 2889384 NIL TSETCAT (NIL T T T T) -9 NIL 2890915) (-1179 2874660 2876258 2878149 "TSETCAT-" 2878154 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1178 2869424 2873632 2873915 "TS" 2874412 NIL TS (NIL T) -8 NIL NIL) (-1177 2863687 2864533 2865475 "TRMANIP" 2868560 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1176 2863128 2863191 2863354 "TRIMAT" 2863619 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1175 2860924 2861161 2861525 "TRIGMNIP" 2862877 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1174 2860444 2860557 2860587 "TRIGCAT" 2860800 T TRIGCAT (NIL) -9 NIL NIL) (-1173 2860113 2860192 2860333 "TRIGCAT-" 2860338 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1172 2857013 2858973 2859253 "TREE" 2859868 NIL TREE (NIL T) -8 NIL NIL) (-1171 2856287 2856815 2856845 "TRANFUN" 2856880 T TRANFUN (NIL) -9 NIL 2856946) (-1170 2855566 2855757 2856037 "TRANFUN-" 2856042 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1169 2855370 2855402 2855463 "TOPSP" 2855527 T TOPSP (NIL) -7 NIL NIL) (-1168 2854718 2854833 2854987 "TOOLSIGN" 2855251 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1167 2853379 2853895 2854134 "TEXTFILE" 2854501 T TEXTFILE (NIL) -8 NIL NIL) (-1166 2853160 2853191 2853263 "TEX1" 2853342 NIL TEX1 (NIL T) -7 NIL NIL) (-1165 2851025 2851539 2851977 "TEX" 2852744 T TEX (NIL) -8 NIL NIL) (-1164 2850673 2850736 2850826 "TEMUTL" 2850957 T TEMUTL (NIL) -7 NIL NIL) (-1163 2848827 2849107 2849432 "TBCMPPK" 2850396 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1162 2840717 2846987 2847043 "TBAGG" 2847443 NIL TBAGG (NIL T T) -9 NIL 2847654) (-1161 2835787 2837275 2839029 "TBAGG-" 2839034 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1160 2835171 2835278 2835423 "TANEXP" 2835676 NIL TANEXP (NIL T) -7 NIL NIL) (-1159 2834583 2834682 2834820 "TABLEAU" 2835068 NIL TABLEAU (NIL T) -8 NIL NIL) (-1158 2828086 2834440 2834533 "TABLE" 2834538 NIL TABLE (NIL T T) -8 NIL NIL) (-1157 2822694 2823914 2825162 "TABLBUMP" 2826872 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1156 2822122 2822222 2822350 "SYSTEM" 2822588 T SYSTEM (NIL) -7 NIL NIL) (-1155 2818585 2819280 2820063 "SYSSOLP" 2821373 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1154 2814877 2815584 2816318 "SYNTAX" 2817873 T SYNTAX (NIL) -8 NIL NIL) (-1153 2812035 2812637 2813269 "SYMTAB" 2814267 T SYMTAB (NIL) -8 NIL NIL) (-1152 2807308 2808204 2809181 "SYMS" 2811080 T SYMS (NIL) -8 NIL NIL) (-1151 2804590 2806769 2806999 "SYMPOLY" 2807116 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1150 2804107 2804182 2804305 "SYMFUNC" 2804502 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1149 2800084 2801344 2802166 "SYMBOL" 2803307 T SYMBOL (NIL) -8 NIL NIL) (-1148 2793623 2795312 2797032 "SWITCH" 2798386 T SWITCH (NIL) -8 NIL NIL) (-1147 2786893 2792444 2792747 "SUTS" 2793378 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1146 2778866 2786008 2786290 "SUPXS" 2786669 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1145 2778025 2778152 2778369 "SUPFRACF" 2778734 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1144 2777646 2777705 2777818 "SUP2" 2777960 NIL SUP2 (NIL T T) -7 NIL NIL) (-1143 2769215 2777264 2777390 "SUP" 2777555 NIL SUP (NIL T) -8 NIL NIL) (-1142 2767628 2767902 2768265 "SUMRF" 2768914 NIL SUMRF (NIL T) -7 NIL NIL) (-1141 2766942 2767008 2767207 "SUMFS" 2767549 NIL SUMFS (NIL T T) -7 NIL NIL) (-1140 2750967 2766119 2766370 "SULS" 2766749 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1139 2750596 2750789 2750859 "SUCHTAST" 2750919 T SUCHTAST (NIL) -8 NIL NIL) (-1138 2749918 2750121 2750261 "SUCH" 2750504 NIL SUCH (NIL T T) -8 NIL NIL) (-1137 2743812 2744824 2745783 "SUBSPACE" 2749006 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1136 2743242 2743332 2743496 "SUBRESP" 2743700 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1135 2737415 2738535 2739682 "STTFNC" 2742142 NIL STTFNC (NIL T) -7 NIL NIL) (-1134 2730784 2732080 2733391 "STTF" 2736151 NIL STTF (NIL T) -7 NIL NIL) (-1133 2722099 2723966 2725760 "STTAYLOR" 2729025 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1132 2715345 2721963 2722046 "STRTBL" 2722051 NIL STRTBL (NIL T) -8 NIL NIL) (-1131 2710736 2715300 2715331 "STRING" 2715336 T STRING (NIL) -8 NIL NIL) (-1130 2705624 2710109 2710139 "STRICAT" 2710198 T STRICAT (NIL) -9 NIL 2710260) (-1129 2705134 2705211 2705355 "STREAM3" 2705541 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1128 2704116 2704299 2704534 "STREAM2" 2704947 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1127 2703804 2703856 2703949 "STREAM1" 2704058 NIL STREAM1 (NIL T) -7 NIL NIL) (-1126 2696519 2701327 2701947 "STREAM" 2703219 NIL STREAM (NIL T) -8 NIL NIL) (-1125 2695535 2695716 2695947 "STINPROD" 2696335 NIL STINPROD (NIL T) -7 NIL NIL) (-1124 2695113 2695297 2695327 "STEP" 2695407 T STEP (NIL) -9 NIL 2695485) (-1123 2688658 2695012 2695089 "STBL" 2695094 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1122 2683835 2687880 2687923 "STAGG" 2688076 NIL STAGG (NIL T) -9 NIL 2688165) (-1121 2681543 2682143 2683013 "STAGG-" 2683018 NIL STAGG- (NIL T T) -8 NIL NIL) (-1120 2679738 2681313 2681405 "STACK" 2681486 NIL STACK (NIL T) -8 NIL NIL) (-1119 2672490 2677879 2678335 "SREGSET" 2679368 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1118 2664916 2666284 2667797 "SRDCMPK" 2671096 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1117 2657883 2662356 2662386 "SRAGG" 2663689 T SRAGG (NIL) -9 NIL 2664297) (-1116 2656900 2657155 2657534 "SRAGG-" 2657539 NIL SRAGG- (NIL T) -8 NIL NIL) (-1115 2651399 2655847 2656268 "SQMATRIX" 2656526 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1114 2645152 2648119 2648845 "SPLTREE" 2650745 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1113 2641142 2641808 2642454 "SPLNODE" 2644578 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1112 2640189 2640422 2640452 "SPFCAT" 2640896 T SPFCAT (NIL) -9 NIL NIL) (-1111 2638926 2639136 2639400 "SPECOUT" 2639947 T SPECOUT (NIL) -7 NIL NIL) (-1110 2630615 2632359 2632389 "SPADXPT" 2636781 T SPADXPT (NIL) -9 NIL 2638815) (-1109 2630376 2630416 2630485 "SPADPRSR" 2630568 T SPADPRSR (NIL) -7 NIL NIL) (-1108 2628559 2630331 2630362 "SPADAST" 2630367 T SPADAST (NIL) -8 NIL NIL) (-1107 2620530 2622277 2622320 "SPACEC" 2626693 NIL SPACEC (NIL T) -9 NIL 2628509) (-1106 2618701 2620462 2620511 "SPACE3" 2620516 NIL SPACE3 (NIL T) -8 NIL NIL) (-1105 2617453 2617624 2617915 "SORTPAK" 2618506 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1104 2615503 2615806 2616225 "SOLVETRA" 2617117 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1103 2614514 2614736 2615010 "SOLVESER" 2615276 NIL SOLVESER (NIL T) -7 NIL NIL) (-1102 2609734 2610615 2611617 "SOLVERAD" 2613566 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1101 2605549 2606158 2606887 "SOLVEFOR" 2609101 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1100 2599873 2604898 2604995 "SNTSCAT" 2605000 NIL SNTSCAT (NIL T T T T) -9 NIL 2605070) (-1099 2594016 2598196 2598587 "SMTS" 2599563 NIL SMTS (NIL T T T) -8 NIL NIL) (-1098 2588492 2593904 2593981 "SMP" 2593986 NIL SMP (NIL T T) -8 NIL NIL) (-1097 2586651 2586952 2587350 "SMITH" 2588189 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1096 2579632 2583783 2583886 "SMATCAT" 2585240 NIL SMATCAT (NIL NIL T T T) -9 NIL 2585790) (-1095 2576593 2577409 2578580 "SMATCAT-" 2578585 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1094 2574306 2575829 2575872 "SKAGG" 2576133 NIL SKAGG (NIL T) -9 NIL 2576268) (-1093 2570424 2573410 2573688 "SINT" 2574050 T SINT (NIL) -8 NIL NIL) (-1092 2570196 2570234 2570300 "SIMPAN" 2570380 T SIMPAN (NIL) -7 NIL NIL) (-1091 2569055 2569269 2569537 "SIGNRF" 2569962 NIL SIGNRF (NIL T) -7 NIL NIL) (-1090 2567881 2568025 2568309 "SIGNEF" 2568891 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1089 2567214 2567464 2567588 "SIGAST" 2567779 T SIGAST (NIL) -8 NIL NIL) (-1088 2566521 2566749 2566889 "SIG" 2567096 T SIG (NIL) -8 NIL NIL) (-1087 2564211 2564665 2565171 "SHP" 2566062 NIL SHP (NIL T NIL) -7 NIL NIL) (-1086 2558124 2564112 2564188 "SHDP" 2564193 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1085 2557723 2557889 2557919 "SGROUP" 2558012 T SGROUP (NIL) -9 NIL 2558074) (-1084 2557581 2557607 2557680 "SGROUP-" 2557685 NIL SGROUP- (NIL T) -8 NIL NIL) (-1083 2554417 2555114 2555837 "SGCF" 2556880 T SGCF (NIL) -7 NIL NIL) (-1082 2548839 2553864 2553961 "SFRTCAT" 2553966 NIL SFRTCAT (NIL T T T T) -9 NIL 2554005) (-1081 2542263 2543278 2544414 "SFRGCD" 2547822 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1080 2535391 2536462 2537648 "SFQCMPK" 2541196 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1079 2535013 2535102 2535212 "SFORT" 2535332 NIL SFORT (NIL T T) -8 NIL NIL) (-1078 2534158 2534853 2534974 "SEXOF" 2534979 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1077 2528934 2529623 2529718 "SEXCAT" 2533489 NIL SEXCAT (NIL T T T T T) -9 NIL 2534108) (-1076 2528068 2528815 2528883 "SEX" 2528888 T SEX (NIL) -8 NIL NIL) (-1075 2526325 2526785 2527088 "SETMN" 2527811 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1074 2525931 2526057 2526087 "SETCAT" 2526204 T SETCAT (NIL) -9 NIL 2526289) (-1073 2525711 2525763 2525862 "SETCAT-" 2525867 NIL SETCAT- (NIL T) -8 NIL NIL) (-1072 2522098 2524172 2524215 "SETAGG" 2525085 NIL SETAGG (NIL T) -9 NIL 2525425) (-1071 2521556 2521672 2521909 "SETAGG-" 2521914 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1070 2518736 2521490 2521538 "SET" 2521543 NIL SET (NIL T) -8 NIL NIL) (-1069 2518206 2518432 2518533 "SEQAST" 2518657 T SEQAST (NIL) -8 NIL NIL) (-1068 2517410 2517703 2517764 "SEGXCAT" 2518050 NIL SEGXCAT (NIL T T) -9 NIL 2518170) (-1067 2516317 2516530 2516573 "SEGCAT" 2517155 NIL SEGCAT (NIL T) -9 NIL 2517393) (-1066 2515938 2515997 2516110 "SEGBIND2" 2516252 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1065 2514987 2515317 2515517 "SEGBIND" 2515773 NIL SEGBIND (NIL T) -8 NIL NIL) (-1064 2514588 2514788 2514865 "SEGAST" 2514932 T SEGAST (NIL) -8 NIL NIL) (-1063 2513807 2513933 2514137 "SEG2" 2514432 NIL SEG2 (NIL T T) -7 NIL NIL) (-1062 2512863 2513473 2513655 "SEG" 2513660 NIL SEG (NIL T) -8 NIL NIL) (-1061 2512300 2512798 2512845 "SDVAR" 2512850 NIL SDVAR (NIL T) -8 NIL NIL) (-1060 2504631 2512070 2512200 "SDPOL" 2512205 NIL SDPOL (NIL T) -8 NIL NIL) (-1059 2503224 2503490 2503809 "SCPKG" 2504346 NIL SCPKG (NIL T) -7 NIL NIL) (-1058 2502360 2502540 2502740 "SCOPE" 2503046 T SCOPE (NIL) -8 NIL NIL) (-1057 2501581 2501714 2501893 "SCACHE" 2502215 NIL SCACHE (NIL T) -7 NIL NIL) (-1056 2501290 2501450 2501480 "SASTCAT" 2501485 T SASTCAT (NIL) -9 NIL 2501498) (-1055 2500729 2501050 2501135 "SAOS" 2501227 T SAOS (NIL) -8 NIL NIL) (-1054 2500294 2500329 2500502 "SAERFFC" 2500688 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1053 2499887 2499922 2500081 "SAEFACT" 2500253 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1052 2493870 2499784 2499864 "SAE" 2499869 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1051 2492191 2492505 2492906 "RURPK" 2493536 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1050 2490827 2491106 2491418 "RULESET" 2492025 NIL RULESET (NIL T T T) -8 NIL NIL) (-1049 2490466 2490621 2490704 "RULECOLD" 2490779 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1048 2487653 2488156 2488621 "RULE" 2490147 NIL RULE (NIL T T T) -8 NIL NIL) (-1047 2487151 2487370 2487464 "RSTRCAST" 2487581 T RSTRCAST (NIL) -8 NIL NIL) (-1046 2482000 2482794 2483714 "RSETGCD" 2486350 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1045 2471284 2476309 2476406 "RSETCAT" 2480525 NIL RSETCAT (NIL T T T T) -9 NIL 2481622) (-1044 2469211 2469750 2470574 "RSETCAT-" 2470579 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1043 2461598 2462973 2464493 "RSDCMPK" 2467810 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1042 2459603 2460044 2460118 "RRCC" 2461204 NIL RRCC (NIL T T) -9 NIL 2461548) (-1041 2458954 2459128 2459407 "RRCC-" 2459412 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1040 2458424 2458650 2458751 "RPTAST" 2458875 T RPTAST (NIL) -8 NIL NIL) (-1039 2432683 2442237 2442304 "RPOLCAT" 2452968 NIL RPOLCAT (NIL T T T) -9 NIL 2456127) (-1038 2424219 2426545 2429655 "RPOLCAT-" 2429660 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1037 2415268 2422430 2422912 "ROUTINE" 2423759 T ROUTINE (NIL) -8 NIL NIL) (-1036 2412028 2414819 2414968 "ROMAN" 2415141 T ROMAN (NIL) -8 NIL NIL) (-1035 2410305 2410888 2411148 "ROIRC" 2411833 NIL ROIRC (NIL T T) -8 NIL NIL) (-1034 2406760 2408995 2409025 "RNS" 2409329 T RNS (NIL) -9 NIL 2409601) (-1033 2405269 2405652 2406186 "RNS-" 2406261 NIL RNS- (NIL T) -8 NIL NIL) (-1032 2404718 2405100 2405130 "RNG" 2405135 T RNG (NIL) -9 NIL 2405156) (-1031 2404110 2404472 2404515 "RMODULE" 2404577 NIL RMODULE (NIL T) -9 NIL 2404619) (-1030 2402946 2403040 2403376 "RMCAT2" 2404011 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1029 2399651 2402120 2402445 "RMATRIX" 2402680 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1028 2392593 2394827 2394942 "RMATCAT" 2398301 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2399283) (-1027 2391968 2392115 2392422 "RMATCAT-" 2392427 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1026 2391535 2391610 2391738 "RINTERP" 2391887 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1025 2390623 2391143 2391173 "RING" 2391285 T RING (NIL) -9 NIL 2391380) (-1024 2390415 2390459 2390556 "RING-" 2390561 NIL RING- (NIL T) -8 NIL NIL) (-1023 2389256 2389493 2389751 "RIDIST" 2390179 T RIDIST (NIL) -7 NIL NIL) (-1022 2380599 2388724 2388930 "RGCHAIN" 2389104 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1021 2379975 2380355 2380396 "RGBCSPC" 2380454 NIL RGBCSPC (NIL T) -9 NIL 2380506) (-1020 2379159 2379514 2379555 "RGBCMDL" 2379787 NIL RGBCMDL (NIL T) -9 NIL 2379901) (-1019 2378805 2378868 2378971 "RFFACTOR" 2379090 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1018 2378530 2378565 2378662 "RFFACT" 2378764 NIL RFFACT (NIL T) -7 NIL NIL) (-1017 2376647 2377011 2377393 "RFDIST" 2378170 T RFDIST (NIL) -7 NIL NIL) (-1016 2373641 2374255 2374925 "RF" 2376011 NIL RF (NIL T) -7 NIL NIL) (-1015 2373094 2373186 2373349 "RETSOL" 2373543 NIL RETSOL (NIL T T) -7 NIL NIL) (-1014 2372682 2372762 2372805 "RETRACT" 2372998 NIL RETRACT (NIL T) -9 NIL NIL) (-1013 2372531 2372556 2372643 "RETRACT-" 2372648 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1012 2372160 2372353 2372423 "RETAST" 2372483 T RETAST (NIL) -8 NIL NIL) (-1011 2365016 2371813 2371940 "RESULT" 2372055 T RESULT (NIL) -8 NIL NIL) (-1010 2363642 2364285 2364484 "RESRING" 2364919 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1009 2363278 2363327 2363425 "RESLATC" 2363579 NIL RESLATC (NIL T) -7 NIL NIL) (-1008 2362984 2363018 2363125 "REPSQ" 2363237 NIL REPSQ (NIL T) -7 NIL NIL) (-1007 2362682 2362716 2362827 "REPDB" 2362943 NIL REPDB (NIL T) -7 NIL NIL) (-1006 2356592 2357971 2359194 "REP2" 2361494 NIL REP2 (NIL T) -7 NIL NIL) (-1005 2352969 2353650 2354458 "REP1" 2355819 NIL REP1 (NIL T) -7 NIL NIL) (-1004 2350391 2350971 2351573 "REP" 2352389 T REP (NIL) -7 NIL NIL) (-1003 2343144 2348532 2348988 "REGSET" 2350021 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1002 2341957 2342292 2342542 "REF" 2342929 NIL REF (NIL T) -8 NIL NIL) (-1001 2341334 2341437 2341604 "REDORDER" 2341841 NIL REDORDER (NIL T T) -7 NIL NIL) (-1000 2337376 2340553 2340778 "RECLOS" 2341163 NIL RECLOS (NIL T) -8 NIL NIL) (-999 2336433 2336614 2336827 "REALSOLV" 2337183 T REALSOLV (NIL) -7 NIL NIL) (-998 2332924 2333726 2334608 "REAL0Q" 2335598 NIL REAL0Q (NIL T) -7 NIL NIL) (-997 2328535 2329523 2330582 "REAL0" 2331905 NIL REAL0 (NIL T) -7 NIL NIL) (-996 2328383 2328424 2328452 "REAL" 2328457 T REAL (NIL) -9 NIL 2328492) (-995 2327885 2328104 2328196 "RDUCEAST" 2328311 T RDUCEAST (NIL) -8 NIL NIL) (-994 2327293 2327365 2327570 "RDIV" 2327807 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-993 2326366 2326540 2326751 "RDIST" 2327115 NIL RDIST (NIL T) -7 NIL NIL) (-992 2324967 2325254 2325624 "RDETRS" 2326074 NIL RDETRS (NIL T T) -7 NIL NIL) (-991 2322784 2323238 2323774 "RDETR" 2324509 NIL RDETR (NIL T T) -7 NIL NIL) (-990 2321398 2321676 2322078 "RDEEFS" 2322500 NIL RDEEFS (NIL T T) -7 NIL NIL) (-989 2319896 2320202 2320632 "RDEEF" 2321086 NIL RDEEF (NIL T T) -7 NIL NIL) (-988 2314242 2317104 2317132 "RCFIELD" 2318409 T RCFIELD (NIL) -9 NIL 2319139) (-987 2312311 2312815 2313508 "RCFIELD-" 2313581 NIL RCFIELD- (NIL T) -8 NIL NIL) (-986 2308642 2310427 2310468 "RCAGG" 2311539 NIL RCAGG (NIL T) -9 NIL 2312004) (-985 2308273 2308367 2308527 "RCAGG-" 2308532 NIL RCAGG- (NIL T T) -8 NIL NIL) (-984 2307613 2307725 2307888 "RATRET" 2308157 NIL RATRET (NIL T) -7 NIL NIL) (-983 2307170 2307237 2307356 "RATFACT" 2307541 NIL RATFACT (NIL T) -7 NIL NIL) (-982 2306485 2306605 2306755 "RANDSRC" 2307040 T RANDSRC (NIL) -7 NIL NIL) (-981 2306222 2306266 2306337 "RADUTIL" 2306434 T RADUTIL (NIL) -7 NIL NIL) (-980 2299308 2304965 2305282 "RADIX" 2305937 NIL RADIX (NIL NIL) -8 NIL NIL) (-979 2290975 2299152 2299280 "RADFF" 2299285 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-978 2290627 2290702 2290730 "RADCAT" 2290887 T RADCAT (NIL) -9 NIL NIL) (-977 2290412 2290460 2290557 "RADCAT-" 2290562 NIL RADCAT- (NIL T) -8 NIL NIL) (-976 2288563 2290187 2290276 "QUEUE" 2290356 NIL QUEUE (NIL T) -8 NIL NIL) (-975 2288201 2288244 2288371 "QUATCT2" 2288514 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-974 2282068 2285362 2285402 "QUATCAT" 2286182 NIL QUATCAT (NIL T) -9 NIL 2286948) (-973 2278233 2279263 2280643 "QUATCAT-" 2280737 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-972 2274816 2278170 2278215 "QUAT" 2278220 NIL QUAT (NIL T) -8 NIL NIL) (-971 2272336 2273900 2273941 "QUAGG" 2274316 NIL QUAGG (NIL T) -9 NIL 2274491) (-970 2271968 2272161 2272229 "QQUTAST" 2272288 T QQUTAST (NIL) -8 NIL NIL) (-969 2270893 2271366 2271538 "QFORM" 2271840 NIL QFORM (NIL NIL T) -8 NIL NIL) (-968 2270531 2270574 2270701 "QFCAT2" 2270844 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-967 2261880 2267067 2267107 "QFCAT" 2267765 NIL QFCAT (NIL T) -9 NIL 2268764) (-966 2257488 2258677 2260256 "QFCAT-" 2260350 NIL QFCAT- (NIL T T) -8 NIL NIL) (-965 2256948 2257058 2257188 "QEQUAT" 2257378 T QEQUAT (NIL) -8 NIL NIL) (-964 2250096 2251167 2252351 "QCMPACK" 2255881 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-963 2249341 2249515 2249747 "QALGSET2" 2249916 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-962 2246923 2247342 2247768 "QALGSET" 2248998 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-961 2245614 2245837 2246154 "PWFFINTB" 2246696 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-960 2243813 2243981 2244335 "PUSHVAR" 2245428 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-959 2239731 2240785 2240826 "PTRANFN" 2242710 NIL PTRANFN (NIL T) -9 NIL NIL) (-958 2238133 2238424 2238746 "PTPACK" 2239442 NIL PTPACK (NIL T) -7 NIL NIL) (-957 2237765 2237822 2237931 "PTFUNC2" 2238070 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-956 2232231 2236576 2236617 "PTCAT" 2236990 NIL PTCAT (NIL T) -9 NIL 2237152) (-955 2231889 2231924 2232048 "PSQFR" 2232190 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-954 2230484 2230782 2231116 "PSEUDLIN" 2231587 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-953 2217253 2219618 2221942 "PSETPK" 2228244 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-952 2210297 2213011 2213107 "PSETCAT" 2216128 NIL PSETCAT (NIL T T T T) -9 NIL 2216942) (-951 2208133 2208767 2209588 "PSETCAT-" 2209593 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-950 2207482 2207647 2207675 "PSCURVE" 2207943 T PSCURVE (NIL) -9 NIL 2208110) (-949 2203963 2205445 2205510 "PSCAT" 2206354 NIL PSCAT (NIL T T T) -9 NIL 2206594) (-948 2203026 2203242 2203642 "PSCAT-" 2203647 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-947 2201678 2202311 2202525 "PRTITION" 2202832 T PRTITION (NIL) -8 NIL NIL) (-946 2201180 2201399 2201491 "PRTDAST" 2201606 T PRTDAST (NIL) -8 NIL NIL) (-945 2190278 2192484 2194672 "PRS" 2199042 NIL PRS (NIL T T) -7 NIL NIL) (-944 2188136 2189628 2189668 "PRQAGG" 2189851 NIL PRQAGG (NIL T) -9 NIL 2189953) (-943 2187522 2187751 2187779 "PROPLOG" 2187964 T PROPLOG (NIL) -9 NIL 2188086) (-942 2184692 2185336 2185800 "PROPFRML" 2187090 NIL PROPFRML (NIL T) -8 NIL NIL) (-941 2184152 2184262 2184392 "PROPERTY" 2184582 T PROPERTY (NIL) -8 NIL NIL) (-940 2178237 2182318 2183138 "PRODUCT" 2183378 NIL PRODUCT (NIL T T) -8 NIL NIL) (-939 2178033 2178065 2178124 "PRINT" 2178198 T PRINT (NIL) -7 NIL NIL) (-938 2177373 2177490 2177642 "PRIMES" 2177913 NIL PRIMES (NIL T) -7 NIL NIL) (-937 2175438 2175839 2176305 "PRIMELT" 2176952 NIL PRIMELT (NIL T) -7 NIL NIL) (-936 2175167 2175216 2175244 "PRIMCAT" 2175368 T PRIMCAT (NIL) -9 NIL NIL) (-935 2174174 2174352 2174580 "PRIMARR2" 2174985 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-934 2170335 2174112 2174157 "PRIMARR" 2174162 NIL PRIMARR (NIL T) -8 NIL NIL) (-933 2169978 2170034 2170145 "PREASSOC" 2170273 NIL PREASSOC (NIL T T) -7 NIL NIL) (-932 2167298 2169436 2169670 "PR" 2169789 NIL PR (NIL T T) -8 NIL NIL) (-931 2166773 2166906 2166934 "PPCURVE" 2167139 T PPCURVE (NIL) -9 NIL 2167275) (-930 2166395 2166568 2166651 "PORTNUM" 2166710 T PORTNUM (NIL) -8 NIL NIL) (-929 2163754 2164153 2164745 "POLYROOT" 2165976 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-928 2163137 2163195 2163429 "POLYLIFT" 2163690 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-927 2159412 2159861 2160490 "POLYCATQ" 2162682 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-926 2146465 2151807 2151872 "POLYCAT" 2155386 NIL POLYCAT (NIL T T T) -9 NIL 2157314) (-925 2139972 2141814 2144179 "POLYCAT-" 2144184 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-924 2139559 2139627 2139747 "POLY2UP" 2139898 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-923 2139191 2139248 2139357 "POLY2" 2139496 NIL POLY2 (NIL T T) -7 NIL NIL) (-922 2133167 2138795 2138955 "POLY" 2139064 NIL POLY (NIL T) -8 NIL NIL) (-921 2131852 2132091 2132367 "POLUTIL" 2132941 NIL POLUTIL (NIL T T) -7 NIL NIL) (-920 2130207 2130484 2130815 "POLTOPOL" 2131574 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-919 2125725 2130143 2130189 "POINT" 2130194 NIL POINT (NIL T) -8 NIL NIL) (-918 2123912 2124269 2124644 "PNTHEORY" 2125370 T PNTHEORY (NIL) -7 NIL NIL) (-917 2122331 2122628 2123040 "PMTOOLS" 2123610 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-916 2121924 2122002 2122119 "PMSYM" 2122247 NIL PMSYM (NIL T) -7 NIL NIL) (-915 2121434 2121503 2121677 "PMQFCAT" 2121849 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-914 2120830 2120916 2121077 "PMPREDFS" 2121335 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-913 2120185 2120295 2120451 "PMPRED" 2120707 NIL PMPRED (NIL T) -7 NIL NIL) (-912 2118828 2119036 2119421 "PMPLCAT" 2119947 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-911 2118360 2118439 2118591 "PMLSAGG" 2118743 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-910 2117835 2117911 2118092 "PMKERNEL" 2118278 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-909 2117452 2117527 2117640 "PMINS" 2117754 NIL PMINS (NIL T) -7 NIL NIL) (-908 2116880 2116949 2117165 "PMFS" 2117377 NIL PMFS (NIL T T T) -7 NIL NIL) (-907 2116108 2116226 2116431 "PMDOWN" 2116757 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-906 2115382 2115493 2115656 "PMASSFS" 2115994 NIL PMASSFS (NIL T T) -7 NIL NIL) (-905 2114545 2114704 2114886 "PMASS" 2115220 T PMASS (NIL) -7 NIL NIL) (-904 2114200 2114268 2114362 "PLOTTOOL" 2114471 T PLOTTOOL (NIL) -7 NIL NIL) (-903 2110014 2111048 2111969 "PLOT3D" 2113299 T PLOT3D (NIL) -8 NIL NIL) (-902 2108926 2109103 2109338 "PLOT1" 2109818 NIL PLOT1 (NIL T) -7 NIL NIL) (-901 2103548 2104737 2105885 "PLOT" 2107798 T PLOT (NIL) -8 NIL NIL) (-900 2078942 2083614 2088465 "PLEQN" 2098814 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-899 2078635 2078682 2078785 "PINTERPA" 2078889 NIL PINTERPA (NIL T T) -7 NIL NIL) (-898 2077953 2078075 2078255 "PINTERP" 2078500 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-897 2076385 2077326 2077354 "PID" 2077536 T PID (NIL) -9 NIL 2077670) (-896 2076110 2076147 2076235 "PICOERCE" 2076342 NIL PICOERCE (NIL T) -7 NIL NIL) (-895 2075395 2075916 2076003 "PI" 2076043 T PI (NIL) -8 NIL NIL) (-894 2074715 2074854 2075030 "PGROEB" 2075251 NIL PGROEB (NIL T) -7 NIL NIL) (-893 2070302 2071116 2072021 "PGE" 2073830 T PGE (NIL) -7 NIL NIL) (-892 2068426 2068672 2069038 "PGCD" 2070019 NIL PGCD (NIL T T T T) -7 NIL NIL) (-891 2067764 2067867 2068028 "PFRPAC" 2068310 NIL PFRPAC (NIL T) -7 NIL NIL) (-890 2064446 2066312 2066665 "PFR" 2067443 NIL PFR (NIL T) -8 NIL NIL) (-889 2062835 2063079 2063404 "PFOTOOLS" 2064193 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-888 2061368 2061607 2061958 "PFOQ" 2062592 NIL PFOQ (NIL T T T) -7 NIL NIL) (-887 2059841 2060053 2060416 "PFO" 2061152 NIL PFO (NIL T T T T T) -7 NIL NIL) (-886 2057310 2058547 2058575 "PFECAT" 2059160 T PFECAT (NIL) -9 NIL 2059544) (-885 2056755 2056909 2057123 "PFECAT-" 2057128 NIL PFECAT- (NIL T) -8 NIL NIL) (-884 2055359 2055610 2055911 "PFBRU" 2056504 NIL PFBRU (NIL T T) -7 NIL NIL) (-883 2053226 2053577 2054009 "PFBR" 2055010 NIL PFBR (NIL T T T T) -7 NIL NIL) (-882 2049816 2053115 2053184 "PF" 2053189 NIL PF (NIL NIL) -8 NIL NIL) (-881 2045082 2046023 2046893 "PERMGRP" 2048979 NIL PERMGRP (NIL T) -8 NIL NIL) (-880 2043214 2044145 2044186 "PERMCAT" 2044632 NIL PERMCAT (NIL T) -9 NIL 2044937) (-879 2042867 2042908 2043032 "PERMAN" 2043167 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-878 2038783 2040243 2040919 "PERM" 2042224 NIL PERM (NIL T) -8 NIL NIL) (-877 2036225 2038352 2038483 "PENDTREE" 2038685 NIL PENDTREE (NIL T) -8 NIL NIL) (-876 2034338 2035072 2035113 "PDRING" 2035770 NIL PDRING (NIL T) -9 NIL 2036056) (-875 2033441 2033659 2034021 "PDRING-" 2034026 NIL PDRING- (NIL T T) -8 NIL NIL) (-874 2030582 2031333 2032024 "PDEPROB" 2032770 T PDEPROB (NIL) -8 NIL NIL) (-873 2028129 2028631 2029186 "PDEPACK" 2030047 T PDEPACK (NIL) -7 NIL NIL) (-872 2027041 2027231 2027482 "PDECOMP" 2027928 NIL PDECOMP (NIL T T) -7 NIL NIL) (-871 2024646 2025463 2025491 "PDECAT" 2026278 T PDECAT (NIL) -9 NIL 2026991) (-870 2024397 2024430 2024520 "PCOMP" 2024607 NIL PCOMP (NIL T T) -7 NIL NIL) (-869 2022602 2023198 2023495 "PBWLB" 2024126 NIL PBWLB (NIL T) -8 NIL NIL) (-868 2022234 2022291 2022400 "PATTERN2" 2022539 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-867 2019991 2020379 2020836 "PATTERN1" 2021823 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-866 2012497 2014064 2015402 "PATTERN" 2018674 NIL PATTERN (NIL T) -8 NIL NIL) (-865 2012061 2012128 2012260 "PATRES2" 2012424 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-864 2009456 2010010 2010491 "PATRES" 2011626 NIL PATRES (NIL T T) -8 NIL NIL) (-863 2007339 2007744 2008151 "PATMATCH" 2009123 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-862 2006875 2007058 2007099 "PATMAB" 2007206 NIL PATMAB (NIL T) -9 NIL 2007289) (-861 2005420 2005729 2005987 "PATLRES" 2006680 NIL PATLRES (NIL T T T) -8 NIL NIL) (-860 2004966 2005089 2005130 "PATAB" 2005135 NIL PATAB (NIL T) -9 NIL 2005307) (-859 2002447 2002979 2003552 "PARTPERM" 2004413 T PARTPERM (NIL) -7 NIL NIL) (-858 2002068 2002131 2002233 "PARSURF" 2002378 NIL PARSURF (NIL T) -8 NIL NIL) (-857 2001700 2001757 2001866 "PARSU2" 2002005 NIL PARSU2 (NIL T T) -7 NIL NIL) (-856 2001464 2001504 2001571 "PARSER" 2001653 T PARSER (NIL) -7 NIL NIL) (-855 2001085 2001148 2001250 "PARSCURV" 2001395 NIL PARSCURV (NIL T) -8 NIL NIL) (-854 2000717 2000774 2000883 "PARSC2" 2001022 NIL PARSC2 (NIL T T) -7 NIL NIL) (-853 2000356 2000414 2000511 "PARPCURV" 2000653 NIL PARPCURV (NIL T) -8 NIL NIL) (-852 1999988 2000045 2000154 "PARPC2" 2000293 NIL PARPC2 (NIL T T) -7 NIL NIL) (-851 1999508 1999594 1999713 "PAN2EXPR" 1999889 T PAN2EXPR (NIL) -7 NIL NIL) (-850 1998314 1998629 1998857 "PALETTE" 1999300 T PALETTE (NIL) -8 NIL NIL) (-849 1996782 1997319 1997679 "PAIR" 1998000 NIL PAIR (NIL T T) -8 NIL NIL) (-848 1990711 1996041 1996235 "PADICRC" 1996637 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-847 1983998 1990057 1990241 "PADICRAT" 1990559 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-846 1981245 1982773 1982813 "PADICCT" 1983394 NIL PADICCT (NIL NIL) -9 NIL 1983676) (-845 1979597 1981182 1981227 "PADIC" 1981232 NIL PADIC (NIL NIL) -8 NIL NIL) (-844 1978554 1978754 1979022 "PADEPAC" 1979384 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-843 1977766 1977899 1978105 "PADE" 1978416 NIL PADE (NIL T T T) -7 NIL NIL) (-842 1975816 1976602 1976919 "OWP" 1977533 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-841 1974925 1975421 1975593 "OVAR" 1975684 NIL OVAR (NIL NIL) -8 NIL NIL) (-840 1963832 1966034 1968234 "OUTFORM" 1972745 T OUTFORM (NIL) -8 NIL NIL) (-839 1963253 1963429 1963556 "OUTBFILE" 1963725 T OUTBFILE (NIL) -8 NIL NIL) (-838 1962890 1962973 1963001 "OUTBCON" 1963152 T OUTBCON (NIL) -9 NIL 1963237) (-837 1962730 1962765 1962841 "OUTBCON-" 1962846 NIL OUTBCON- (NIL T) -8 NIL NIL) (-836 1961994 1962115 1962276 "OUT" 1962589 T OUT (NIL) -7 NIL NIL) (-835 1961402 1961723 1961812 "OSI" 1961925 T OSI (NIL) -8 NIL NIL) (-834 1960958 1961270 1961298 "OSGROUP" 1961303 T OSGROUP (NIL) -9 NIL 1961325) (-833 1959703 1959930 1960215 "ORTHPOL" 1960705 NIL ORTHPOL (NIL T) -7 NIL NIL) (-832 1957127 1959362 1959501 "OREUP" 1959646 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-831 1954579 1956818 1956945 "ORESUP" 1957069 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-830 1952107 1952607 1953168 "OREPCTO" 1954068 NIL OREPCTO (NIL T T) -7 NIL NIL) (-829 1946025 1948185 1948226 "OREPCAT" 1950574 NIL OREPCAT (NIL T) -9 NIL 1951678) (-828 1943193 1943968 1945019 "OREPCAT-" 1945024 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-827 1942370 1942642 1942670 "ORDSET" 1942979 T ORDSET (NIL) -9 NIL 1943143) (-826 1941889 1942011 1942204 "ORDSET-" 1942209 NIL ORDSET- (NIL T) -8 NIL NIL) (-825 1940543 1941300 1941328 "ORDRING" 1941530 T ORDRING (NIL) -9 NIL 1941655) (-824 1940188 1940282 1940426 "ORDRING-" 1940431 NIL ORDRING- (NIL T) -8 NIL NIL) (-823 1939594 1940031 1940059 "ORDMON" 1940064 T ORDMON (NIL) -9 NIL 1940085) (-822 1938756 1938903 1939098 "ORDFUNS" 1939443 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-821 1938267 1938626 1938654 "ORDFIN" 1938659 T ORDFIN (NIL) -9 NIL 1938680) (-820 1937533 1937660 1937846 "ORDCOMP2" 1938127 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-819 1934132 1936119 1936528 "ORDCOMP" 1937157 NIL ORDCOMP (NIL T) -8 NIL NIL) (-818 1930639 1931522 1932359 "OPTPROB" 1933315 T OPTPROB (NIL) -8 NIL NIL) (-817 1927441 1928080 1928784 "OPTPACK" 1929955 T OPTPACK (NIL) -7 NIL NIL) (-816 1925154 1925894 1925922 "OPTCAT" 1926741 T OPTCAT (NIL) -9 NIL 1927391) (-815 1924922 1924961 1925027 "OPQUERY" 1925108 T OPQUERY (NIL) -7 NIL NIL) (-814 1922090 1923233 1923737 "OP" 1924451 NIL OP (NIL T) -8 NIL NIL) (-813 1921395 1921510 1921684 "ONECOMP2" 1921962 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-812 1918247 1920192 1920561 "ONECOMP" 1921059 NIL ONECOMP (NIL T) -8 NIL NIL) (-811 1917666 1917772 1917902 "OMSERVER" 1918137 T OMSERVER (NIL) -7 NIL NIL) (-810 1914554 1917106 1917146 "OMSAGG" 1917207 NIL OMSAGG (NIL T) -9 NIL 1917271) (-809 1913177 1913440 1913722 "OMPKG" 1914292 T OMPKG (NIL) -7 NIL NIL) (-808 1911759 1912726 1912895 "OMLO" 1913058 NIL OMLO (NIL T T) -8 NIL NIL) (-807 1910684 1910831 1911058 "OMEXPR" 1911585 NIL OMEXPR (NIL T) -7 NIL NIL) (-806 1909862 1910105 1910265 "OMERRK" 1910544 T OMERRK (NIL) -8 NIL NIL) (-805 1909180 1909408 1909544 "OMERR" 1909746 T OMERR (NIL) -8 NIL NIL) (-804 1908658 1908857 1908965 "OMENC" 1909092 T OMENC (NIL) -8 NIL NIL) (-803 1902553 1903738 1904909 "OMDEV" 1907507 T OMDEV (NIL) -8 NIL NIL) (-802 1901622 1901793 1901987 "OMCONN" 1902379 T OMCONN (NIL) -8 NIL NIL) (-801 1901052 1901155 1901183 "OM" 1901482 T OM (NIL) -9 NIL NIL) (-800 1899708 1900650 1900678 "OINTDOM" 1900683 T OINTDOM (NIL) -9 NIL 1900704) (-799 1895514 1896698 1897414 "OFMONOID" 1899024 NIL OFMONOID (NIL T) -8 NIL NIL) (-798 1894952 1895451 1895496 "ODVAR" 1895501 NIL ODVAR (NIL T) -8 NIL NIL) (-797 1892164 1894449 1894634 "ODR" 1894827 NIL ODR (NIL T T NIL) -8 NIL NIL) (-796 1884549 1891940 1892066 "ODPOL" 1892071 NIL ODPOL (NIL T) -8 NIL NIL) (-795 1878432 1884421 1884526 "ODP" 1884531 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-794 1877198 1877413 1877688 "ODETOOLS" 1878206 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-793 1874167 1874823 1875539 "ODESYS" 1876531 NIL ODESYS (NIL T T) -7 NIL NIL) (-792 1869049 1869957 1870982 "ODERTRIC" 1873242 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-791 1868475 1868557 1868751 "ODERED" 1868961 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-790 1865371 1865917 1866592 "ODERAT" 1867900 NIL ODERAT (NIL T T) -7 NIL NIL) (-789 1862331 1862795 1863392 "ODEPRRIC" 1864900 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-788 1860200 1860769 1861278 "ODEPROB" 1861842 T ODEPROB (NIL) -8 NIL NIL) (-787 1856722 1857205 1857852 "ODEPRIM" 1859679 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-786 1855971 1856073 1856333 "ODEPAL" 1856614 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-785 1852133 1852924 1853788 "ODEPACK" 1855127 T ODEPACK (NIL) -7 NIL NIL) (-784 1851166 1851273 1851502 "ODEINT" 1852022 NIL ODEINT (NIL T T) -7 NIL NIL) (-783 1845267 1846692 1848139 "ODEIFTBL" 1849739 T ODEIFTBL (NIL) -8 NIL NIL) (-782 1840616 1841398 1842353 "ODEEF" 1844430 NIL ODEEF (NIL T T) -7 NIL NIL) (-781 1839951 1840040 1840270 "ODECONST" 1840521 NIL ODECONST (NIL T T T) -7 NIL NIL) (-780 1838102 1838737 1838765 "ODECAT" 1839370 T ODECAT (NIL) -9 NIL 1839901) (-779 1837740 1837783 1837910 "OCTCT2" 1838053 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-778 1834659 1837452 1837571 "OCT" 1837653 NIL OCT (NIL T) -8 NIL NIL) (-777 1834037 1834479 1834507 "OCAMON" 1834512 T OCAMON (NIL) -9 NIL 1834533) (-776 1828905 1831298 1831338 "OC" 1832435 NIL OC (NIL T) -9 NIL 1833293) (-775 1826153 1826894 1827877 "OC-" 1827971 NIL OC- (NIL T T) -8 NIL NIL) (-774 1825710 1826025 1826053 "OASGP" 1826058 T OASGP (NIL) -9 NIL 1826078) (-773 1824997 1825460 1825488 "OAMONS" 1825528 T OAMONS (NIL) -9 NIL 1825571) (-772 1824437 1824844 1824872 "OAMON" 1824877 T OAMON (NIL) -9 NIL 1824897) (-771 1823741 1824233 1824261 "OAGROUP" 1824266 T OAGROUP (NIL) -9 NIL 1824286) (-770 1823431 1823481 1823569 "NUMTUBE" 1823685 NIL NUMTUBE (NIL T) -7 NIL NIL) (-769 1817004 1818522 1820058 "NUMQUAD" 1821915 T NUMQUAD (NIL) -7 NIL NIL) (-768 1812760 1813748 1814773 "NUMODE" 1815999 T NUMODE (NIL) -7 NIL NIL) (-767 1810141 1810995 1811023 "NUMINT" 1811946 T NUMINT (NIL) -9 NIL 1812710) (-766 1809089 1809286 1809504 "NUMFMT" 1809943 T NUMFMT (NIL) -7 NIL NIL) (-765 1795448 1798393 1800925 "NUMERIC" 1806596 NIL NUMERIC (NIL T) -7 NIL NIL) (-764 1789872 1794897 1794992 "NTSCAT" 1794997 NIL NTSCAT (NIL T T T T) -9 NIL 1795036) (-763 1789066 1789231 1789424 "NTPOLFN" 1789711 NIL NTPOLFN (NIL T) -7 NIL NIL) (-762 1788698 1788755 1788864 "NSUP2" 1789003 NIL NSUP2 (NIL T T) -7 NIL NIL) (-761 1776583 1785523 1786335 "NSUP" 1787919 NIL NSUP (NIL T) -8 NIL NIL) (-760 1766628 1776357 1776490 "NSMP" 1776495 NIL NSMP (NIL T T) -8 NIL NIL) (-759 1765060 1765361 1765718 "NREP" 1766316 NIL NREP (NIL T) -7 NIL NIL) (-758 1763651 1763903 1764261 "NPCOEF" 1764803 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-757 1762717 1762832 1763048 "NORMRETR" 1763532 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-756 1760758 1761048 1761457 "NORMPK" 1762425 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-755 1760443 1760471 1760595 "NORMMA" 1760724 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-754 1760232 1760261 1760330 "NONE1" 1760407 NIL NONE1 (NIL T) -7 NIL NIL) (-753 1760059 1760189 1760218 "NONE" 1760223 T NONE (NIL) -8 NIL NIL) (-752 1759542 1759604 1759790 "NODE1" 1759991 NIL NODE1 (NIL T T) -7 NIL NIL) (-751 1757882 1758705 1758960 "NNI" 1759307 T NNI (NIL) -8 NIL NIL) (-750 1756302 1756615 1756979 "NLINSOL" 1757550 NIL NLINSOL (NIL T) -7 NIL NIL) (-749 1752469 1753437 1754359 "NIPROB" 1755400 T NIPROB (NIL) -8 NIL NIL) (-748 1751226 1751460 1751762 "NFINTBAS" 1752231 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-747 1749934 1750165 1750446 "NCODIV" 1750994 NIL NCODIV (NIL T T) -7 NIL NIL) (-746 1749696 1749733 1749808 "NCNTFRAC" 1749891 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-745 1747876 1748240 1748660 "NCEP" 1749321 NIL NCEP (NIL T) -7 NIL NIL) (-744 1746794 1747526 1747554 "NASRING" 1747664 T NASRING (NIL) -9 NIL 1747738) (-743 1746589 1746633 1746727 "NASRING-" 1746732 NIL NASRING- (NIL T) -8 NIL NIL) (-742 1745742 1746241 1746269 "NARNG" 1746386 T NARNG (NIL) -9 NIL 1746477) (-741 1745434 1745501 1745635 "NARNG-" 1745640 NIL NARNG- (NIL T) -8 NIL NIL) (-740 1744313 1744520 1744755 "NAGSP" 1745219 T NAGSP (NIL) -7 NIL NIL) (-739 1735585 1737269 1738942 "NAGS" 1742660 T NAGS (NIL) -7 NIL NIL) (-738 1734133 1734441 1734772 "NAGF07" 1735274 T NAGF07 (NIL) -7 NIL NIL) (-737 1728671 1729962 1731269 "NAGF04" 1732846 T NAGF04 (NIL) -7 NIL NIL) (-736 1721639 1723253 1724886 "NAGF02" 1727058 T NAGF02 (NIL) -7 NIL NIL) (-735 1716863 1717963 1719080 "NAGF01" 1720542 T NAGF01 (NIL) -7 NIL NIL) (-734 1710491 1712057 1713642 "NAGE04" 1715298 T NAGE04 (NIL) -7 NIL NIL) (-733 1701660 1703781 1705911 "NAGE02" 1708381 T NAGE02 (NIL) -7 NIL NIL) (-732 1697613 1698560 1699524 "NAGE01" 1700716 T NAGE01 (NIL) -7 NIL NIL) (-731 1695408 1695942 1696500 "NAGD03" 1697075 T NAGD03 (NIL) -7 NIL NIL) (-730 1687158 1689086 1691040 "NAGD02" 1693474 T NAGD02 (NIL) -7 NIL NIL) (-729 1680969 1682394 1683834 "NAGD01" 1685738 T NAGD01 (NIL) -7 NIL NIL) (-728 1677178 1678000 1678837 "NAGC06" 1680152 T NAGC06 (NIL) -7 NIL NIL) (-727 1675643 1675975 1676331 "NAGC05" 1676842 T NAGC05 (NIL) -7 NIL NIL) (-726 1675019 1675138 1675282 "NAGC02" 1675519 T NAGC02 (NIL) -7 NIL NIL) (-725 1674079 1674636 1674676 "NAALG" 1674755 NIL NAALG (NIL T) -9 NIL 1674816) (-724 1673914 1673943 1674033 "NAALG-" 1674038 NIL NAALG- (NIL T T) -8 NIL NIL) (-723 1667864 1668972 1670159 "MULTSQFR" 1672810 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-722 1667183 1667258 1667442 "MULTFACT" 1667776 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-721 1660406 1664271 1664324 "MTSCAT" 1665394 NIL MTSCAT (NIL T T) -9 NIL 1665908) (-720 1660118 1660172 1660264 "MTHING" 1660346 NIL MTHING (NIL T) -7 NIL NIL) (-719 1659910 1659943 1660003 "MSYSCMD" 1660078 T MSYSCMD (NIL) -7 NIL NIL) (-718 1657005 1659471 1659512 "MSETAGG" 1659517 NIL MSETAGG (NIL T) -9 NIL 1659551) (-717 1653117 1655760 1656080 "MSET" 1656718 NIL MSET (NIL T) -8 NIL NIL) (-716 1649002 1650496 1651241 "MRING" 1652417 NIL MRING (NIL T T) -8 NIL NIL) (-715 1648568 1648635 1648766 "MRF2" 1648929 NIL MRF2 (NIL T T T) -7 NIL NIL) (-714 1648186 1648221 1648365 "MRATFAC" 1648527 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-713 1645798 1646093 1646524 "MPRFF" 1647891 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-712 1639884 1645652 1645749 "MPOLY" 1645754 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-711 1639374 1639409 1639617 "MPCPF" 1639843 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-710 1638888 1638931 1639115 "MPC3" 1639325 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-709 1638083 1638164 1638385 "MPC2" 1638803 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-708 1636384 1636721 1637111 "MONOTOOL" 1637743 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-707 1635635 1635926 1635954 "MONOID" 1636173 T MONOID (NIL) -9 NIL 1636320) (-706 1635181 1635300 1635481 "MONOID-" 1635486 NIL MONOID- (NIL T) -8 NIL NIL) (-705 1626240 1632137 1632196 "MONOGEN" 1632870 NIL MONOGEN (NIL T T) -9 NIL 1633326) (-704 1623479 1624207 1625200 "MONOGEN-" 1625319 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-703 1622338 1622758 1622786 "MONADWU" 1623178 T MONADWU (NIL) -9 NIL 1623416) (-702 1621710 1621869 1622117 "MONADWU-" 1622122 NIL MONADWU- (NIL T) -8 NIL NIL) (-701 1621095 1621313 1621341 "MONAD" 1621548 T MONAD (NIL) -9 NIL 1621660) (-700 1620780 1620858 1620990 "MONAD-" 1620995 NIL MONAD- (NIL T) -8 NIL NIL) (-699 1619096 1619693 1619972 "MOEBIUS" 1620533 NIL MOEBIUS (NIL T) -8 NIL NIL) (-698 1618488 1618866 1618906 "MODULE" 1618911 NIL MODULE (NIL T) -9 NIL 1618937) (-697 1618056 1618152 1618342 "MODULE-" 1618347 NIL MODULE- (NIL T T) -8 NIL NIL) (-696 1615815 1616464 1616791 "MODRING" 1617880 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-695 1612803 1613920 1614441 "MODOP" 1615344 NIL MODOP (NIL T T) -8 NIL NIL) (-694 1610990 1611442 1611783 "MODMONOM" 1612602 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-693 1600738 1609182 1609605 "MODMON" 1610618 NIL MODMON (NIL T T) -8 NIL NIL) (-692 1597955 1599606 1599882 "MODFIELD" 1600613 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-691 1596959 1597236 1597426 "MMLFORM" 1597785 T MMLFORM (NIL) -8 NIL NIL) (-690 1596485 1596528 1596707 "MMAP" 1596910 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-689 1594754 1595487 1595528 "MLO" 1595951 NIL MLO (NIL T) -9 NIL 1596193) (-688 1592121 1592636 1593238 "MLIFT" 1594235 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-687 1591512 1591596 1591750 "MKUCFUNC" 1592032 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-686 1591111 1591181 1591304 "MKRECORD" 1591435 NIL MKRECORD (NIL T T) -7 NIL NIL) (-685 1590159 1590320 1590548 "MKFUNC" 1590922 NIL MKFUNC (NIL T) -7 NIL NIL) (-684 1589547 1589651 1589807 "MKFLCFN" 1590042 NIL MKFLCFN (NIL T) -7 NIL NIL) (-683 1588973 1589340 1589429 "MKCHSET" 1589491 NIL MKCHSET (NIL T) -8 NIL NIL) (-682 1588250 1588352 1588537 "MKBCFUNC" 1588866 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-681 1584994 1587804 1587940 "MINT" 1588134 T MINT (NIL) -8 NIL NIL) (-680 1583806 1584049 1584326 "MHROWRED" 1584749 NIL MHROWRED (NIL T) -7 NIL NIL) (-679 1579241 1582341 1582746 "MFLOAT" 1583421 T MFLOAT (NIL) -8 NIL NIL) (-678 1578598 1578674 1578845 "MFINFACT" 1579153 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-677 1574933 1575776 1576655 "MESH" 1577739 T MESH (NIL) -7 NIL NIL) (-676 1573323 1573635 1573988 "MDDFACT" 1574620 NIL MDDFACT (NIL T) -7 NIL NIL) (-675 1570165 1572482 1572523 "MDAGG" 1572778 NIL MDAGG (NIL T) -9 NIL 1572921) (-674 1559963 1569458 1569665 "MCMPLX" 1569978 T MCMPLX (NIL) -8 NIL NIL) (-673 1559104 1559250 1559450 "MCDEN" 1559812 NIL MCDEN (NIL T T) -7 NIL NIL) (-672 1556994 1557264 1557644 "MCALCFN" 1558834 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-671 1555905 1556078 1556319 "MAYBE" 1556792 NIL MAYBE (NIL T) -8 NIL NIL) (-670 1553517 1554040 1554602 "MATSTOR" 1555376 NIL MATSTOR (NIL T) -7 NIL NIL) (-669 1549522 1552889 1553137 "MATRIX" 1553302 NIL MATRIX (NIL T) -8 NIL NIL) (-668 1545291 1545995 1546731 "MATLIN" 1548879 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-667 1543885 1544038 1544371 "MATCAT2" 1545126 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-666 1534033 1537174 1537251 "MATCAT" 1542134 NIL MATCAT (NIL T T T) -9 NIL 1543551) (-665 1530397 1531410 1532766 "MATCAT-" 1532771 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-664 1528509 1528833 1529217 "MAPPKG3" 1530072 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-663 1527490 1527663 1527885 "MAPPKG2" 1528333 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-662 1525989 1526273 1526600 "MAPPKG1" 1527196 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-661 1525095 1525395 1525572 "MAPPAST" 1525832 T MAPPAST (NIL) -8 NIL NIL) (-660 1524706 1524764 1524887 "MAPHACK3" 1525031 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-659 1524298 1524359 1524473 "MAPHACK2" 1524638 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-658 1523736 1523839 1523981 "MAPHACK1" 1524189 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-657 1521842 1522436 1522740 "MAGMA" 1523464 NIL MAGMA (NIL T) -8 NIL NIL) (-656 1521348 1521566 1521657 "MACROAST" 1521771 T MACROAST (NIL) -8 NIL NIL) (-655 1517815 1519587 1520048 "M3D" 1520920 NIL M3D (NIL T) -8 NIL NIL) (-654 1511972 1516185 1516226 "LZSTAGG" 1517008 NIL LZSTAGG (NIL T) -9 NIL 1517303) (-653 1507945 1509103 1510560 "LZSTAGG-" 1510565 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-652 1505059 1505836 1506323 "LWORD" 1507490 NIL LWORD (NIL T) -8 NIL NIL) (-651 1504662 1504863 1504938 "LSTAST" 1505004 T LSTAST (NIL) -8 NIL NIL) (-650 1497894 1504433 1504567 "LSQM" 1504572 NIL LSQM (NIL NIL T) -8 NIL NIL) (-649 1497118 1497257 1497485 "LSPP" 1497749 NIL LSPP (NIL T T T T) -7 NIL NIL) (-648 1493960 1494617 1495330 "LSMP1" 1496437 NIL LSMP1 (NIL T) -7 NIL NIL) (-647 1491795 1492089 1492538 "LSMP" 1493656 NIL LSMP (NIL T T T T) -7 NIL NIL) (-646 1485723 1490963 1491004 "LSAGG" 1491066 NIL LSAGG (NIL T) -9 NIL 1491144) (-645 1482418 1483342 1484555 "LSAGG-" 1484560 NIL LSAGG- (NIL T T) -8 NIL NIL) (-644 1480044 1481562 1481811 "LPOLY" 1482213 NIL LPOLY (NIL T T) -8 NIL NIL) (-643 1479626 1479711 1479834 "LPEFRAC" 1479953 NIL LPEFRAC (NIL T) -7 NIL NIL) (-642 1479278 1479390 1479418 "LOGIC" 1479529 T LOGIC (NIL) -9 NIL 1479610) (-641 1479140 1479163 1479234 "LOGIC-" 1479239 NIL LOGIC- (NIL T) -8 NIL NIL) (-640 1478333 1478473 1478666 "LODOOPS" 1478996 NIL LODOOPS (NIL T T) -7 NIL NIL) (-639 1476871 1477106 1477459 "LODOF" 1478080 NIL LODOF (NIL T T) -7 NIL NIL) (-638 1473328 1475711 1475752 "LODOCAT" 1476190 NIL LODOCAT (NIL T) -9 NIL 1476401) (-637 1473061 1473119 1473246 "LODOCAT-" 1473251 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-636 1470430 1472902 1473020 "LODO2" 1473025 NIL LODO2 (NIL T T) -8 NIL NIL) (-635 1467914 1470367 1470412 "LODO1" 1470417 NIL LODO1 (NIL T) -8 NIL NIL) (-634 1465386 1467830 1467896 "LODO" 1467901 NIL LODO (NIL T NIL) -8 NIL NIL) (-633 1464246 1464411 1464723 "LODEEF" 1465209 NIL LODEEF (NIL T T T) -7 NIL NIL) (-632 1462593 1463340 1463593 "LO" 1464078 NIL LO (NIL T T T) -8 NIL NIL) (-631 1457879 1460723 1460764 "LNAGG" 1461711 NIL LNAGG (NIL T) -9 NIL 1462155) (-630 1457026 1457240 1457582 "LNAGG-" 1457587 NIL LNAGG- (NIL T T) -8 NIL NIL) (-629 1453189 1453951 1454590 "LMOPS" 1456441 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-628 1452584 1452946 1452987 "LMODULE" 1453048 NIL LMODULE (NIL T) -9 NIL 1453090) (-627 1449830 1452229 1452352 "LMDICT" 1452494 NIL LMDICT (NIL T) -8 NIL NIL) (-626 1449556 1449738 1449798 "LITERAL" 1449803 NIL LITERAL (NIL T) -8 NIL NIL) (-625 1449081 1449155 1449294 "LIST3" 1449476 NIL LIST3 (NIL T T T) -7 NIL NIL) (-624 1447215 1447527 1447926 "LIST2MAP" 1448728 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-623 1446222 1446400 1446628 "LIST2" 1447033 NIL LIST2 (NIL T T) -7 NIL NIL) (-622 1439451 1445168 1445466 "LIST" 1445957 NIL LIST (NIL T) -8 NIL NIL) (-621 1438201 1438837 1438878 "LINEXP" 1439133 NIL LINEXP (NIL T) -9 NIL 1439282) (-620 1436848 1437108 1437405 "LINDEP" 1437953 NIL LINDEP (NIL T T) -7 NIL NIL) (-619 1433686 1434386 1435144 "LIMITRF" 1436122 NIL LIMITRF (NIL T) -7 NIL NIL) (-618 1431985 1432273 1432682 "LIMITPS" 1433388 NIL LIMITPS (NIL T T) -7 NIL NIL) (-617 1431034 1431477 1431517 "LIECAT" 1431657 NIL LIECAT (NIL T) -9 NIL 1431808) (-616 1430875 1430902 1430990 "LIECAT-" 1430995 NIL LIECAT- (NIL T T) -8 NIL NIL) (-615 1425362 1430386 1430614 "LIE" 1430696 NIL LIE (NIL T T) -8 NIL NIL) (-614 1417976 1424811 1424976 "LIB" 1425217 T LIB (NIL) -8 NIL NIL) (-613 1413613 1414494 1415429 "LGROBP" 1417093 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-612 1412453 1413145 1413173 "LFCAT" 1413380 T LFCAT (NIL) -9 NIL 1413519) (-611 1410319 1410593 1410955 "LF" 1412174 NIL LF (NIL T T) -7 NIL NIL) (-610 1407223 1407851 1408539 "LEXTRIPK" 1409683 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-609 1403994 1404793 1405296 "LEXP" 1406803 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-608 1403497 1403715 1403807 "LETAST" 1403922 T LETAST (NIL) -8 NIL NIL) (-607 1401895 1402208 1402609 "LEADCDET" 1403179 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-606 1401085 1401159 1401388 "LAZM3PK" 1401816 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-605 1396055 1399162 1399700 "LAUPOL" 1400597 NIL LAUPOL (NIL T T) -8 NIL NIL) (-604 1395620 1395664 1395832 "LAPLACE" 1396005 NIL LAPLACE (NIL T T) -7 NIL NIL) (-603 1394721 1395271 1395312 "LALG" 1395374 NIL LALG (NIL T) -9 NIL 1395433) (-602 1394435 1394494 1394630 "LALG-" 1394635 NIL LALG- (NIL T T) -8 NIL NIL) (-601 1392409 1393536 1393787 "LA" 1394268 NIL LA (NIL T T T) -8 NIL NIL) (-600 1391209 1391626 1391855 "KTVLOGIC" 1392200 T KTVLOGIC (NIL) -8 NIL NIL) (-599 1390113 1390300 1390599 "KOVACIC" 1391009 NIL KOVACIC (NIL T T) -7 NIL NIL) (-598 1389948 1389972 1390013 "KONVERT" 1390075 NIL KONVERT (NIL T) -9 NIL NIL) (-597 1389783 1389807 1389848 "KOERCE" 1389910 NIL KOERCE (NIL T) -9 NIL NIL) (-596 1389285 1389366 1389496 "KERNEL2" 1389697 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-595 1387019 1387779 1388172 "KERNEL" 1388924 NIL KERNEL (NIL T) -8 NIL NIL) (-594 1380870 1385558 1385612 "KDAGG" 1385989 NIL KDAGG (NIL T T) -9 NIL 1386195) (-593 1380399 1380523 1380728 "KDAGG-" 1380733 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-592 1373576 1380060 1380215 "KAFILE" 1380277 NIL KAFILE (NIL T) -8 NIL NIL) (-591 1368063 1373087 1373315 "JORDAN" 1373397 NIL JORDAN (NIL T T) -8 NIL NIL) (-590 1367469 1367712 1367833 "JOINAST" 1367962 T JOINAST (NIL) -8 NIL NIL) (-589 1367198 1367257 1367344 "JAVACODE" 1367402 T JAVACODE (NIL) -8 NIL NIL) (-588 1363497 1365403 1365457 "IXAGG" 1366386 NIL IXAGG (NIL T T) -9 NIL 1366845) (-587 1362416 1362722 1363141 "IXAGG-" 1363146 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-586 1357996 1362338 1362397 "IVECTOR" 1362402 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-585 1356762 1356999 1357265 "ITUPLE" 1357763 NIL ITUPLE (NIL T) -8 NIL NIL) (-584 1355198 1355375 1355681 "ITRIGMNP" 1356584 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-583 1353943 1354147 1354430 "ITFUN3" 1354974 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-582 1353575 1353632 1353741 "ITFUN2" 1353880 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-581 1351412 1352437 1352736 "ITAYLOR" 1353309 NIL ITAYLOR (NIL T) -8 NIL NIL) (-580 1340394 1345549 1346712 "ISUPS" 1350282 NIL ISUPS (NIL T) -8 NIL NIL) (-579 1339498 1339638 1339874 "ISUMP" 1340241 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-578 1334762 1339299 1339378 "ISTRING" 1339451 NIL ISTRING (NIL NIL) -8 NIL NIL) (-577 1334265 1334483 1334575 "ISAST" 1334690 T ISAST (NIL) -8 NIL NIL) (-576 1333475 1333556 1333772 "IRURPK" 1334179 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-575 1332411 1332612 1332852 "IRSN" 1333255 T IRSN (NIL) -7 NIL NIL) (-574 1330440 1330795 1331231 "IRRF2F" 1332049 NIL IRRF2F (NIL T) -7 NIL NIL) (-573 1330187 1330225 1330301 "IRREDFFX" 1330396 NIL IRREDFFX (NIL T) -7 NIL NIL) (-572 1328802 1329061 1329360 "IROOT" 1329920 NIL IROOT (NIL T) -7 NIL NIL) (-571 1327874 1327987 1328208 "IR2F" 1328685 NIL IR2F (NIL T T) -7 NIL NIL) (-570 1325487 1325982 1326548 "IR2" 1327352 NIL IR2 (NIL T T) -7 NIL NIL) (-569 1322119 1323171 1323863 "IR" 1324827 NIL IR (NIL T) -8 NIL NIL) (-568 1321910 1321944 1322004 "IPRNTPK" 1322079 T IPRNTPK (NIL) -7 NIL NIL) (-567 1318531 1321799 1321868 "IPF" 1321873 NIL IPF (NIL NIL) -8 NIL NIL) (-566 1316896 1318456 1318513 "IPADIC" 1318518 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-565 1316396 1316600 1316710 "IOMODE" 1316806 T IOMODE (NIL) -8 NIL NIL) (-564 1316160 1316300 1316328 "IOBCON" 1316333 T IOBCON (NIL) -9 NIL 1316354) (-563 1315657 1315715 1315905 "INVLAPLA" 1316096 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-562 1305354 1307695 1310069 "INTTR" 1313333 NIL INTTR (NIL T T) -7 NIL NIL) (-561 1301698 1302440 1303304 "INTTOOLS" 1304539 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-560 1301284 1301375 1301492 "INTSLPE" 1301601 T INTSLPE (NIL) -7 NIL NIL) (-559 1299279 1301207 1301266 "INTRVL" 1301271 NIL INTRVL (NIL T) -8 NIL NIL) (-558 1296881 1297393 1297968 "INTRF" 1298764 NIL INTRF (NIL T) -7 NIL NIL) (-557 1296292 1296389 1296531 "INTRET" 1296779 NIL INTRET (NIL T) -7 NIL NIL) (-556 1294289 1294678 1295148 "INTRAT" 1295900 NIL INTRAT (NIL T T) -7 NIL NIL) (-555 1291517 1292100 1292726 "INTPM" 1293774 NIL INTPM (NIL T T) -7 NIL NIL) (-554 1288243 1288835 1289573 "INTPAF" 1290910 NIL INTPAF (NIL T T T) -7 NIL NIL) (-553 1283422 1284384 1285435 "INTPACK" 1287212 T INTPACK (NIL) -7 NIL NIL) (-552 1282674 1282826 1283034 "INTHERTR" 1283264 NIL INTHERTR (NIL T T) -7 NIL NIL) (-551 1282113 1282193 1282381 "INTHERAL" 1282588 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-550 1279959 1280402 1280859 "INTHEORY" 1281676 T INTHEORY (NIL) -7 NIL NIL) (-549 1271325 1272928 1274689 "INTG0" 1278329 NIL INTG0 (NIL T T T) -7 NIL NIL) (-548 1257598 1260963 1264348 "INTFTBL" 1267960 T INTFTBL (NIL) -8 NIL NIL) (-547 1256847 1256985 1257158 "INTFACT" 1257457 NIL INTFACT (NIL T) -7 NIL NIL) (-546 1254238 1254682 1255244 "INTEF" 1256403 NIL INTEF (NIL T T) -7 NIL NIL) (-545 1252740 1253445 1253473 "INTDOM" 1253774 T INTDOM (NIL) -9 NIL 1253981) (-544 1252109 1252283 1252525 "INTDOM-" 1252530 NIL INTDOM- (NIL T) -8 NIL NIL) (-543 1248642 1250528 1250582 "INTCAT" 1251381 NIL INTCAT (NIL T) -9 NIL 1251701) (-542 1248115 1248217 1248345 "INTBIT" 1248534 T INTBIT (NIL) -7 NIL NIL) (-541 1246786 1246940 1247254 "INTALG" 1247960 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-540 1246243 1246333 1246503 "INTAF" 1246690 NIL INTAF (NIL T T) -7 NIL NIL) (-539 1239699 1246053 1246193 "INTABL" 1246198 NIL INTABL (NIL T T T) -8 NIL NIL) (-538 1236613 1239428 1239555 "INT" 1239592 T INT (NIL) -8 NIL NIL) (-537 1231670 1234339 1234367 "INS" 1235301 T INS (NIL) -9 NIL 1235965) (-536 1228910 1229681 1230655 "INS-" 1230728 NIL INS- (NIL T) -8 NIL NIL) (-535 1227758 1227963 1228239 "INPSIGN" 1228685 NIL INPSIGN (NIL T T) -7 NIL NIL) (-534 1226876 1226993 1227190 "INPRODPF" 1227638 NIL INPRODPF (NIL T T) -7 NIL NIL) (-533 1225770 1225887 1226124 "INPRODFF" 1226756 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-532 1224770 1224922 1225182 "INNMFACT" 1225606 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-531 1223967 1224064 1224252 "INMODGCD" 1224669 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-530 1222476 1222720 1223044 "INFSP" 1223712 NIL INFSP (NIL T T T) -7 NIL NIL) (-529 1221660 1221777 1221960 "INFPROD0" 1222356 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-528 1221270 1221330 1221428 "INFORM1" 1221595 NIL INFORM1 (NIL T) -7 NIL NIL) (-527 1218152 1219335 1219850 "INFORM" 1220763 T INFORM (NIL) -8 NIL NIL) (-526 1217675 1217764 1217878 "INFINITY" 1218058 T INFINITY (NIL) -7 NIL NIL) (-525 1216292 1216541 1216862 "INEP" 1217423 NIL INEP (NIL T T T) -7 NIL NIL) (-524 1215568 1216189 1216254 "INDE" 1216259 NIL INDE (NIL T) -8 NIL NIL) (-523 1215132 1215200 1215317 "INCRMAPS" 1215495 NIL INCRMAPS (NIL T) -7 NIL NIL) (-522 1214435 1214628 1214778 "INBFILE" 1215002 T INBFILE (NIL) -8 NIL NIL) (-521 1209746 1210671 1211615 "INBFF" 1213523 NIL INBFF (NIL T) -7 NIL NIL) (-520 1209415 1209491 1209519 "INBCON" 1209652 T INBCON (NIL) -9 NIL 1209730) (-519 1209255 1209290 1209366 "INBCON-" 1209371 NIL INBCON- (NIL T) -8 NIL NIL) (-518 1208757 1208976 1209068 "INAST" 1209183 T INAST (NIL) -8 NIL NIL) (-517 1208211 1208436 1208542 "IMPTAST" 1208671 T IMPTAST (NIL) -8 NIL NIL) (-516 1204704 1208055 1208159 "IMATRIX" 1208164 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-515 1203416 1203539 1203854 "IMATQF" 1204560 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-514 1201636 1201863 1202200 "IMATLIN" 1203172 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-513 1196264 1201560 1201618 "ILIST" 1201623 NIL ILIST (NIL T NIL) -8 NIL NIL) (-512 1194217 1196124 1196237 "IIARRAY2" 1196242 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-511 1189652 1194128 1194192 "IFF" 1194197 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-510 1189026 1189269 1189385 "IFAST" 1189556 T IFAST (NIL) -8 NIL NIL) (-509 1184069 1188318 1188506 "IFARRAY" 1188883 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-508 1183276 1183973 1184046 "IFAMON" 1184051 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-507 1182860 1182925 1182979 "IEVALAB" 1183186 NIL IEVALAB (NIL T T) -9 NIL NIL) (-506 1182535 1182603 1182763 "IEVALAB-" 1182768 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-505 1181812 1182424 1182499 "IDPOAMS" 1182504 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-504 1181146 1181701 1181776 "IDPOAM" 1181781 NIL IDPOAM (NIL T T) -8 NIL NIL) (-503 1180804 1181060 1181123 "IDPO" 1181128 NIL IDPO (NIL T T) -8 NIL NIL) (-502 1179889 1180139 1180192 "IDPC" 1180605 NIL IDPC (NIL T T) -9 NIL 1180754) (-501 1179385 1179781 1179854 "IDPAM" 1179859 NIL IDPAM (NIL T T) -8 NIL NIL) (-500 1178788 1179277 1179350 "IDPAG" 1179355 NIL IDPAG (NIL T T) -8 NIL NIL) (-499 1178518 1178703 1178753 "IDENT" 1178758 T IDENT (NIL) -8 NIL NIL) (-498 1174773 1175621 1176516 "IDECOMP" 1177675 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-497 1167646 1168696 1169743 "IDEAL" 1173809 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-496 1166810 1166922 1167121 "ICDEN" 1167530 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-495 1165909 1166290 1166437 "ICARD" 1166683 T ICARD (NIL) -8 NIL NIL) (-494 1163969 1164282 1164687 "IBPTOOLS" 1165586 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-493 1159603 1163589 1163702 "IBITS" 1163888 NIL IBITS (NIL NIL) -8 NIL NIL) (-492 1156326 1156902 1157597 "IBATOOL" 1159020 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-491 1154106 1154567 1155100 "IBACHIN" 1155861 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-490 1151983 1153952 1154055 "IARRAY2" 1154060 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-489 1148136 1151909 1151966 "IARRAY1" 1151971 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-488 1142140 1146550 1147030 "IAN" 1147676 T IAN (NIL) -8 NIL NIL) (-487 1141651 1141708 1141881 "IALGFACT" 1142077 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-486 1141179 1141292 1141320 "HYPCAT" 1141527 T HYPCAT (NIL) -9 NIL NIL) (-485 1140717 1140834 1141020 "HYPCAT-" 1141025 NIL HYPCAT- (NIL T) -8 NIL NIL) (-484 1140339 1140512 1140595 "HOSTNAME" 1140654 T HOSTNAME (NIL) -8 NIL NIL) (-483 1137018 1138349 1138390 "HOAGG" 1139371 NIL HOAGG (NIL T) -9 NIL 1140050) (-482 1135612 1136011 1136537 "HOAGG-" 1136542 NIL HOAGG- (NIL T T) -8 NIL NIL) (-481 1129521 1135053 1135219 "HEXADEC" 1135466 T HEXADEC (NIL) -8 NIL NIL) (-480 1128269 1128491 1128754 "HEUGCD" 1129298 NIL HEUGCD (NIL T) -7 NIL NIL) (-479 1127372 1128106 1128236 "HELLFDIV" 1128241 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-478 1125600 1127149 1127237 "HEAP" 1127316 NIL HEAP (NIL T) -8 NIL NIL) (-477 1124891 1125152 1125286 "HEADAST" 1125486 T HEADAST (NIL) -8 NIL NIL) (-476 1118818 1124806 1124868 "HDP" 1124873 NIL HDP (NIL NIL T) -8 NIL NIL) (-475 1112600 1118453 1118605 "HDMP" 1118719 NIL HDMP (NIL NIL T) -8 NIL NIL) (-474 1111925 1112064 1112228 "HB" 1112456 T HB (NIL) -7 NIL NIL) (-473 1105424 1111771 1111875 "HASHTBL" 1111880 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-472 1104927 1105145 1105237 "HASAST" 1105352 T HASAST (NIL) -8 NIL NIL) (-471 1102745 1104551 1104732 "HACKPI" 1104766 T HACKPI (NIL) -8 NIL NIL) (-470 1098467 1102598 1102711 "GTSET" 1102716 NIL GTSET (NIL T T T T) -8 NIL NIL) (-469 1091995 1098345 1098443 "GSTBL" 1098448 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-468 1084310 1091026 1091291 "GSERIES" 1091786 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-467 1083477 1083868 1083896 "GROUP" 1084099 T GROUP (NIL) -9 NIL 1084233) (-466 1082843 1083002 1083253 "GROUP-" 1083258 NIL GROUP- (NIL T) -8 NIL NIL) (-465 1081212 1081531 1081918 "GROEBSOL" 1082520 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-464 1080152 1080414 1080465 "GRMOD" 1080994 NIL GRMOD (NIL T T) -9 NIL 1081162) (-463 1079920 1079956 1080084 "GRMOD-" 1080089 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-462 1075245 1076274 1077274 "GRIMAGE" 1078940 T GRIMAGE (NIL) -8 NIL NIL) (-461 1073712 1073972 1074296 "GRDEF" 1074941 T GRDEF (NIL) -7 NIL NIL) (-460 1073156 1073272 1073413 "GRAY" 1073591 T GRAY (NIL) -7 NIL NIL) (-459 1072387 1072767 1072818 "GRALG" 1072971 NIL GRALG (NIL T T) -9 NIL 1073064) (-458 1072048 1072121 1072284 "GRALG-" 1072289 NIL GRALG- (NIL T T T) -8 NIL NIL) (-457 1068852 1071633 1071811 "GPOLSET" 1071955 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-456 1068206 1068263 1068521 "GOSPER" 1068789 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-455 1063965 1064644 1065170 "GMODPOL" 1067905 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-454 1062970 1063154 1063392 "GHENSEL" 1063777 NIL GHENSEL (NIL T T) -7 NIL NIL) (-453 1057021 1057864 1058891 "GENUPS" 1062054 NIL GENUPS (NIL T T) -7 NIL NIL) (-452 1056718 1056769 1056858 "GENUFACT" 1056964 NIL GENUFACT (NIL T) -7 NIL NIL) (-451 1056130 1056207 1056372 "GENPGCD" 1056636 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-450 1055604 1055639 1055852 "GENMFACT" 1056089 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-449 1054172 1054427 1054734 "GENEEZ" 1055347 NIL GENEEZ (NIL T T) -7 NIL NIL) (-448 1048116 1053783 1053945 "GDMP" 1054095 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-447 1037515 1041887 1042993 "GCNAALG" 1047099 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-446 1035977 1036805 1036833 "GCDDOM" 1037088 T GCDDOM (NIL) -9 NIL 1037245) (-445 1035447 1035574 1035789 "GCDDOM-" 1035794 NIL GCDDOM- (NIL T) -8 NIL NIL) (-444 1024067 1026393 1028785 "GBINTERN" 1033138 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-443 1021904 1022196 1022617 "GBF" 1023742 NIL GBF (NIL T T T T) -7 NIL NIL) (-442 1020685 1020850 1021117 "GBEUCLID" 1021720 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-441 1019357 1019542 1019846 "GB" 1020464 NIL GB (NIL T T T T) -7 NIL NIL) (-440 1018706 1018831 1018980 "GAUSSFAC" 1019228 T GAUSSFAC (NIL) -7 NIL NIL) (-439 1017073 1017375 1017689 "GALUTIL" 1018425 NIL GALUTIL (NIL T) -7 NIL NIL) (-438 1015381 1015655 1015979 "GALPOLYU" 1016800 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-437 1012746 1013036 1013443 "GALFACTU" 1015078 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-436 1004552 1006051 1007659 "GALFACT" 1011178 NIL GALFACT (NIL T) -7 NIL NIL) (-435 1001940 1002598 1002626 "FVFUN" 1003782 T FVFUN (NIL) -9 NIL 1004502) (-434 1001206 1001388 1001416 "FVC" 1001707 T FVC (NIL) -9 NIL 1001890) (-433 1000848 1001003 1001084 "FUNCTION" 1001158 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-432 999666 1000149 1000352 "FTEM" 1000665 T FTEM (NIL) -8 NIL NIL) (-431 997348 997896 998382 "FT" 999200 T FT (NIL) -8 NIL NIL) (-430 995604 995893 996297 "FSUPFACT" 997039 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-429 994001 994290 994622 "FST" 995292 T FST (NIL) -8 NIL NIL) (-428 993172 993278 993473 "FSRED" 993883 NIL FSRED (NIL T T) -7 NIL NIL) (-427 991851 992106 992460 "FSPRMELT" 992887 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-426 988936 989374 989873 "FSPECF" 991414 NIL FSPECF (NIL T T) -7 NIL NIL) (-425 988450 988504 988681 "FSINT" 988877 NIL FSINT (NIL T T) -7 NIL NIL) (-424 986777 987443 987746 "FSERIES" 988229 NIL FSERIES (NIL T T) -8 NIL NIL) (-423 985791 985907 986138 "FSCINT" 986657 NIL FSCINT (NIL T T) -7 NIL NIL) (-422 984833 984976 985203 "FSAGG2" 985644 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-421 981067 983777 983818 "FSAGG" 984188 NIL FSAGG (NIL T) -9 NIL 984447) (-420 978829 979430 980226 "FSAGG-" 980321 NIL FSAGG- (NIL T T) -8 NIL NIL) (-419 976484 976763 977317 "FS2UPS" 978547 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-418 975341 975512 975821 "FS2EXPXP" 976309 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-417 974923 974966 975121 "FS2" 975292 NIL FS2 (NIL T T T T) -7 NIL NIL) (-416 957394 965807 965847 "FS" 969695 NIL FS (NIL T) -9 NIL 971984) (-415 946125 949088 953117 "FS-" 953414 NIL FS- (NIL T T) -8 NIL NIL) (-414 945551 945666 945818 "FRUTIL" 946005 NIL FRUTIL (NIL T) -7 NIL NIL) (-413 940658 943269 943309 "FRNAALG" 944705 NIL FRNAALG (NIL T) -9 NIL 945312) (-412 936387 937441 938699 "FRNAALG-" 939449 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-411 936025 936068 936195 "FRNAAF2" 936338 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-410 934432 934879 935174 "FRMOD" 935837 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-409 933627 933714 934003 "FRIDEAL2" 934339 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-408 931406 932010 932327 "FRIDEAL" 933418 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-407 930655 931062 931103 "FRETRCT" 931108 NIL FRETRCT (NIL T) -9 NIL 931284) (-406 929788 930012 930356 "FRETRCT-" 930361 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-405 927038 928214 928273 "FRAMALG" 929155 NIL FRAMALG (NIL T T) -9 NIL 929447) (-404 925172 925627 926257 "FRAMALG-" 926480 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-403 924808 924865 924972 "FRAC2" 925109 NIL FRAC2 (NIL T T) -7 NIL NIL) (-402 918789 924283 924559 "FRAC" 924564 NIL FRAC (NIL T) -8 NIL NIL) (-401 918425 918482 918589 "FR2" 918726 NIL FR2 (NIL T T) -7 NIL NIL) (-400 910001 914005 915334 "FR" 917128 NIL FR (NIL T) -8 NIL NIL) (-399 904735 907579 907607 "FPS" 908726 T FPS (NIL) -9 NIL 909283) (-398 904184 904293 904457 "FPS-" 904603 NIL FPS- (NIL T) -8 NIL NIL) (-397 901692 903325 903353 "FPC" 903578 T FPC (NIL) -9 NIL 903720) (-396 901485 901525 901622 "FPC-" 901627 NIL FPC- (NIL T) -8 NIL NIL) (-395 900363 900973 901014 "FPATMAB" 901019 NIL FPATMAB (NIL T) -9 NIL 901171) (-394 898063 898539 898965 "FPARFRAC" 900000 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-393 893495 893994 894676 "FORTRAN" 897495 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-392 891171 891733 891761 "FORTFN" 892821 T FORTFN (NIL) -9 NIL 893445) (-391 890935 890985 891013 "FORTCAT" 891072 T FORTCAT (NIL) -9 NIL 891134) (-390 888651 889151 889690 "FORT" 890416 T FORT (NIL) -7 NIL NIL) (-389 888439 888469 888538 "FORMULA1" 888615 NIL FORMULA1 (NIL T) -7 NIL NIL) (-388 886499 886982 887381 "FORMULA" 888060 T FORMULA (NIL) -8 NIL NIL) (-387 886022 886074 886247 "FORDER" 886441 NIL FORDER (NIL T T T T) -7 NIL NIL) (-386 885118 885282 885475 "FOP" 885849 T FOP (NIL) -7 NIL NIL) (-385 883726 884398 884572 "FNLA" 885000 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-384 882394 882783 882811 "FNCAT" 883383 T FNCAT (NIL) -9 NIL 883676) (-383 881960 882353 882381 "FNAME" 882386 T FNAME (NIL) -8 NIL NIL) (-382 880658 881587 881615 "FMTC" 881620 T FMTC (NIL) -9 NIL 881656) (-381 877020 878181 878810 "FMONOID" 880062 NIL FMONOID (NIL T) -8 NIL NIL) (-380 874444 875090 875118 "FMFUN" 876262 T FMFUN (NIL) -9 NIL 876970) (-379 871656 872490 872544 "FMCAT" 873739 NIL FMCAT (NIL T T) -9 NIL 874234) (-378 870925 871106 871134 "FMC" 871424 T FMC (NIL) -9 NIL 871606) (-377 869818 870691 870791 "FM1" 870870 NIL FM1 (NIL T T) -8 NIL NIL) (-376 869037 869560 869709 "FM" 869714 NIL FM (NIL T T) -8 NIL NIL) (-375 866811 867227 867721 "FLOATRP" 868588 NIL FLOATRP (NIL T) -7 NIL NIL) (-374 864249 864749 865327 "FLOATCP" 866278 NIL FLOATCP (NIL T) -7 NIL NIL) (-373 857804 861905 862535 "FLOAT" 863639 T FLOAT (NIL) -8 NIL NIL) (-372 856633 857437 857478 "FLINEXP" 857483 NIL FLINEXP (NIL T) -9 NIL 857576) (-371 855787 856022 856350 "FLINEXP-" 856355 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-370 854863 855007 855231 "FLASORT" 855639 NIL FLASORT (NIL T T) -7 NIL NIL) (-369 852080 852922 852974 "FLALG" 854201 NIL FLALG (NIL T T) -9 NIL 854668) (-368 851122 851265 851492 "FLAGG2" 851933 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-367 844906 848608 848649 "FLAGG" 849911 NIL FLAGG (NIL T) -9 NIL 850563) (-366 843632 843971 844461 "FLAGG-" 844466 NIL FLAGG- (NIL T T) -8 NIL NIL) (-365 840645 841619 841678 "FINRALG" 842806 NIL FINRALG (NIL T T) -9 NIL 843314) (-364 839805 840034 840373 "FINRALG-" 840378 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-363 839211 839424 839452 "FINITE" 839648 T FINITE (NIL) -9 NIL 839755) (-362 831669 833830 833870 "FINAALG" 837537 NIL FINAALG (NIL T) -9 NIL 838990) (-361 827010 828051 829195 "FINAALG-" 830574 NIL FINAALG- (NIL T T) -8 NIL NIL) (-360 825694 826006 826060 "FILECAT" 826744 NIL FILECAT (NIL T T) -9 NIL 826960) (-359 825089 825449 825552 "FILE" 825624 NIL FILE (NIL T) -8 NIL NIL) (-358 823011 824503 824531 "FIELD" 824571 T FIELD (NIL) -9 NIL 824651) (-357 821631 822016 822527 "FIELD-" 822532 NIL FIELD- (NIL T) -8 NIL NIL) (-356 819509 820266 820613 "FGROUP" 821317 NIL FGROUP (NIL T) -8 NIL NIL) (-355 818599 818763 818983 "FGLMICPK" 819341 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-354 814468 818524 818581 "FFX" 818586 NIL FFX (NIL T NIL) -8 NIL NIL) (-353 814069 814130 814265 "FFSLPE" 814401 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-352 813573 813609 813818 "FFPOLY2" 814027 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-351 809566 810345 811141 "FFPOLY" 812809 NIL FFPOLY (NIL T) -7 NIL NIL) (-350 805454 809485 809548 "FFP" 809553 NIL FFP (NIL T NIL) -8 NIL NIL) (-349 800617 804797 804987 "FFNBX" 805308 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-348 795593 799752 800010 "FFNBP" 800471 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-347 790263 794877 795088 "FFNB" 795426 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-346 789095 789293 789608 "FFINTBAS" 790060 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-345 785381 787554 787582 "FFIELDC" 788202 T FFIELDC (NIL) -9 NIL 788578) (-344 784044 784414 784911 "FFIELDC-" 784916 NIL FFIELDC- (NIL T) -8 NIL NIL) (-343 783614 783659 783783 "FFHOM" 783986 NIL FFHOM (NIL T T T) -7 NIL NIL) (-342 781312 781796 782313 "FFF" 783129 NIL FFF (NIL T) -7 NIL NIL) (-341 776967 781054 781155 "FFCGX" 781255 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-340 772636 776699 776806 "FFCGP" 776910 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-339 767856 772363 772471 "FFCG" 772572 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-338 767267 767310 767545 "FFCAT2" 767807 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-337 749334 758361 758447 "FFCAT" 763612 NIL FFCAT (NIL T T T) -9 NIL 765063) (-336 744532 745579 746893 "FFCAT-" 748123 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-335 739967 744443 744507 "FF" 744512 NIL FF (NIL NIL NIL) -8 NIL NIL) (-334 729181 732939 734159 "FEXPR" 738819 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-333 728181 728616 728657 "FEVALAB" 728741 NIL FEVALAB (NIL T) -9 NIL 729002) (-332 727340 727550 727888 "FEVALAB-" 727893 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-331 724406 725121 725236 "FDIVCAT" 726804 NIL FDIVCAT (NIL T T T T) -9 NIL 727241) (-330 724168 724195 724365 "FDIVCAT-" 724370 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-329 723388 723475 723752 "FDIV2" 724075 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-328 721981 722771 722974 "FDIV" 723287 NIL FDIV (NIL T T T T) -8 NIL NIL) (-327 720667 720926 721215 "FCPAK1" 721712 T FCPAK1 (NIL) -7 NIL NIL) (-326 719795 720167 720308 "FCOMP" 720558 NIL FCOMP (NIL T) -8 NIL NIL) (-325 703430 706844 710405 "FC" 716254 T FC (NIL) -8 NIL NIL) (-324 696085 700064 700104 "FAXF" 701906 NIL FAXF (NIL T) -9 NIL 702598) (-323 693364 694019 694844 "FAXF-" 695309 NIL FAXF- (NIL T T) -8 NIL NIL) (-322 688464 692740 692916 "FARRAY" 693221 NIL FARRAY (NIL T) -8 NIL NIL) (-321 683878 685903 685956 "FAMR" 686979 NIL FAMR (NIL T T) -9 NIL 687439) (-320 682768 683070 683505 "FAMR-" 683510 NIL FAMR- (NIL T T T) -8 NIL NIL) (-319 681964 682690 682743 "FAMONOID" 682748 NIL FAMONOID (NIL T) -8 NIL NIL) (-318 679794 680478 680531 "FAMONC" 681472 NIL FAMONC (NIL T T) -9 NIL 681858) (-317 678486 679548 679685 "FAGROUP" 679690 NIL FAGROUP (NIL T) -8 NIL NIL) (-316 676281 676600 677003 "FACUTIL" 678167 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-315 675380 675565 675787 "FACTFUNC" 676091 NIL FACTFUNC (NIL T) -7 NIL NIL) (-314 667787 674631 674843 "EXPUPXS" 675236 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-313 665270 665810 666396 "EXPRTUBE" 667221 T EXPRTUBE (NIL) -7 NIL NIL) (-312 661464 662056 662793 "EXPRODE" 664609 NIL EXPRODE (NIL T T) -7 NIL NIL) (-311 655871 656458 657271 "EXPR2UPS" 660762 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-310 655507 655564 655671 "EXPR2" 655808 NIL EXPR2 (NIL T T) -7 NIL NIL) (-309 640942 654162 654590 "EXPR" 655111 NIL EXPR (NIL T) -8 NIL NIL) (-308 632375 640074 640371 "EXPEXPAN" 640779 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-307 631882 632099 632190 "EXITAST" 632304 T EXITAST (NIL) -8 NIL NIL) (-306 631709 631839 631868 "EXIT" 631873 T EXIT (NIL) -8 NIL NIL) (-305 631336 631398 631511 "EVALCYC" 631641 NIL EVALCYC (NIL T) -7 NIL NIL) (-304 630877 630995 631036 "EVALAB" 631206 NIL EVALAB (NIL T) -9 NIL 631310) (-303 630358 630480 630701 "EVALAB-" 630706 NIL EVALAB- (NIL T T) -8 NIL NIL) (-302 627861 629129 629157 "EUCDOM" 629712 T EUCDOM (NIL) -9 NIL 630062) (-301 626266 626708 627298 "EUCDOM-" 627303 NIL EUCDOM- (NIL T) -8 NIL NIL) (-300 625898 625955 626064 "ESTOOLS2" 626203 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-299 625649 625691 625771 "ESTOOLS1" 625850 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-298 613189 615947 618697 "ESTOOLS" 622919 T ESTOOLS (NIL) -7 NIL NIL) (-297 612934 612966 613048 "ESCONT1" 613151 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-296 609309 610069 610849 "ESCONT" 612174 T ESCONT (NIL) -7 NIL NIL) (-295 608984 609034 609134 "ES2" 609253 NIL ES2 (NIL T T) -7 NIL NIL) (-294 608614 608672 608781 "ES1" 608920 NIL ES1 (NIL T T) -7 NIL NIL) (-293 602539 604267 604295 "ES" 607063 T ES (NIL) -9 NIL 608472) (-292 597486 598773 600590 "ES-" 600754 NIL ES- (NIL T) -8 NIL NIL) (-291 596702 596831 597007 "ERROR" 597330 T ERROR (NIL) -7 NIL NIL) (-290 590207 596561 596652 "EQTBL" 596657 NIL EQTBL (NIL T T) -8 NIL NIL) (-289 589839 589896 590005 "EQ2" 590144 NIL EQ2 (NIL T T) -7 NIL NIL) (-288 582396 585153 586602 "EQ" 588423 NIL -3890 (NIL T) -8 NIL NIL) (-287 577688 578734 579827 "EP" 581335 NIL EP (NIL T) -7 NIL NIL) (-286 576270 576571 576888 "ENV" 577391 T ENV (NIL) -8 NIL NIL) (-285 575469 575989 576017 "ENTIRER" 576022 T ENTIRER (NIL) -9 NIL 576068) (-284 572027 573478 573848 "EMR" 575268 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-283 571171 571356 571410 "ELTAGG" 571790 NIL ELTAGG (NIL T T) -9 NIL 572001) (-282 570890 570952 571093 "ELTAGG-" 571098 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-281 570679 570708 570762 "ELTAB" 570846 NIL ELTAB (NIL T T) -9 NIL NIL) (-280 569805 569951 570150 "ELFUTS" 570530 NIL ELFUTS (NIL T T) -7 NIL NIL) (-279 569547 569603 569631 "ELEMFUN" 569736 T ELEMFUN (NIL) -9 NIL NIL) (-278 569417 569438 569506 "ELEMFUN-" 569511 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-277 564308 567517 567558 "ELAGG" 568498 NIL ELAGG (NIL T) -9 NIL 568961) (-276 562593 563027 563690 "ELAGG-" 563695 NIL ELAGG- (NIL T T) -8 NIL NIL) (-275 561250 561530 561825 "ELABEXPR" 562318 T ELABEXPR (NIL) -8 NIL NIL) (-274 554243 555917 556744 "EFUPXS" 560526 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-273 547820 549494 550304 "EFULS" 553519 NIL EFULS (NIL T T T) -8 NIL NIL) (-272 545242 545600 546079 "EFSTRUC" 547452 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-271 534314 535879 537439 "EF" 543757 NIL EF (NIL T T) -7 NIL NIL) (-270 533415 533799 533948 "EAB" 534185 T EAB (NIL) -8 NIL NIL) (-269 532624 533374 533402 "E04UCFA" 533407 T E04UCFA (NIL) -8 NIL NIL) (-268 531833 532583 532611 "E04NAFA" 532616 T E04NAFA (NIL) -8 NIL NIL) (-267 531042 531792 531820 "E04MBFA" 531825 T E04MBFA (NIL) -8 NIL NIL) (-266 530251 531001 531029 "E04JAFA" 531034 T E04JAFA (NIL) -8 NIL NIL) (-265 529462 530210 530238 "E04GCFA" 530243 T E04GCFA (NIL) -8 NIL NIL) (-264 528673 529421 529449 "E04FDFA" 529454 T E04FDFA (NIL) -8 NIL NIL) (-263 527882 528632 528660 "E04DGFA" 528665 T E04DGFA (NIL) -8 NIL NIL) (-262 522060 523407 524771 "E04AGNT" 526538 T E04AGNT (NIL) -7 NIL NIL) (-261 520784 521264 521304 "DVARCAT" 521779 NIL DVARCAT (NIL T) -9 NIL 521978) (-260 519988 520200 520514 "DVARCAT-" 520519 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-259 512929 519787 519916 "DSMP" 519921 NIL DSMP (NIL T T T) -8 NIL NIL) (-258 512594 512653 512751 "DROPT1" 512864 NIL DROPT1 (NIL T) -7 NIL NIL) (-257 507709 508835 509972 "DROPT0" 511477 T DROPT0 (NIL) -7 NIL NIL) (-256 502519 503654 504722 "DROPT" 506661 T DROPT (NIL) -8 NIL NIL) (-255 500864 501189 501575 "DRAWPT" 502153 T DRAWPT (NIL) -7 NIL NIL) (-254 500497 500550 500668 "DRAWHACK" 500805 NIL DRAWHACK (NIL T) -7 NIL NIL) (-253 499228 499497 499788 "DRAWCX" 500226 T DRAWCX (NIL) -7 NIL NIL) (-252 498744 498812 498963 "DRAWCURV" 499154 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-251 489215 491174 493289 "DRAWCFUN" 496649 T DRAWCFUN (NIL) -7 NIL NIL) (-250 483802 484725 485804 "DRAW" 488189 NIL DRAW (NIL T) -7 NIL NIL) (-249 480615 482497 482538 "DQAGG" 483167 NIL DQAGG (NIL T) -9 NIL 483440) (-248 469170 475831 475914 "DPOLCAT" 477766 NIL DPOLCAT (NIL T T T T) -9 NIL 478311) (-247 464060 465389 467330 "DPOLCAT-" 467335 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-246 457222 463921 464019 "DPMO" 464024 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-245 450287 457002 457169 "DPMM" 457174 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-244 449707 449910 450024 "DOMAIN" 450193 T DOMAIN (NIL) -8 NIL NIL) (-243 443489 449342 449494 "DMP" 449608 NIL DMP (NIL NIL T) -8 NIL NIL) (-242 443089 443145 443289 "DLP" 443427 NIL DLP (NIL T) -7 NIL NIL) (-241 436735 442190 442417 "DLIST" 442894 NIL DLIST (NIL T) -8 NIL NIL) (-240 433582 435590 435631 "DLAGG" 436181 NIL DLAGG (NIL T) -9 NIL 436410) (-239 432432 433062 433090 "DIVRING" 433182 T DIVRING (NIL) -9 NIL 433265) (-238 431669 431859 432159 "DIVRING-" 432164 NIL DIVRING- (NIL T) -8 NIL NIL) (-237 429771 430128 430534 "DISPLAY" 431283 T DISPLAY (NIL) -7 NIL NIL) (-236 428619 428822 429087 "DIRPROD2" 429564 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-235 422568 428533 428596 "DIRPROD" 428601 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-234 412113 418058 418111 "DIRPCAT" 418521 NIL DIRPCAT (NIL NIL T) -9 NIL 419361) (-233 409439 410081 410962 "DIRPCAT-" 411299 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-232 408726 408886 409072 "DIOSP" 409273 T DIOSP (NIL) -7 NIL NIL) (-231 405428 407638 407679 "DIOPS" 408113 NIL DIOPS (NIL T) -9 NIL 408342) (-230 404977 405091 405282 "DIOPS-" 405287 NIL DIOPS- (NIL T T) -8 NIL NIL) (-229 403889 404483 404511 "DIFRING" 404698 T DIFRING (NIL) -9 NIL 404808) (-228 403535 403612 403764 "DIFRING-" 403769 NIL DIFRING- (NIL T) -8 NIL NIL) (-227 401360 402598 402639 "DIFEXT" 403002 NIL DIFEXT (NIL T) -9 NIL 403296) (-226 399645 400073 400739 "DIFEXT-" 400744 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-225 396967 399177 399218 "DIAGG" 399223 NIL DIAGG (NIL T) -9 NIL 399243) (-224 396351 396508 396760 "DIAGG-" 396765 NIL DIAGG- (NIL T T) -8 NIL NIL) (-223 391815 395310 395587 "DHMATRIX" 396120 NIL DHMATRIX (NIL T) -8 NIL NIL) (-222 387427 388336 389346 "DFSFUN" 390825 T DFSFUN (NIL) -7 NIL NIL) (-221 382547 386358 386670 "DFLOAT" 387135 T DFLOAT (NIL) -8 NIL NIL) (-220 380775 381056 381452 "DFINTTLS" 382255 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-219 377840 378796 379196 "DERHAM" 380441 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-218 375689 377615 377704 "DEQUEUE" 377784 NIL DEQUEUE (NIL T) -8 NIL NIL) (-217 374904 375037 375233 "DEGRED" 375551 NIL DEGRED (NIL T T) -7 NIL NIL) (-216 371479 372179 372987 "DEFINTRF" 374177 NIL DEFINTRF (NIL T) -7 NIL NIL) (-215 369118 369559 370130 "DEFINTEF" 371026 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-214 368495 368738 368853 "DEFAST" 369023 T DEFAST (NIL) -8 NIL NIL) (-213 362404 367936 368102 "DECIMAL" 368349 T DECIMAL (NIL) -8 NIL NIL) (-212 359916 360374 360880 "DDFACT" 361948 NIL DDFACT (NIL T T) -7 NIL NIL) (-211 359512 359555 359706 "DBLRESP" 359867 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-210 357222 357556 357925 "DBASE" 359270 NIL DBASE (NIL T) -8 NIL NIL) (-209 356491 356702 356848 "DATABUF" 357121 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-208 355624 356450 356478 "D03FAFA" 356483 T D03FAFA (NIL) -8 NIL NIL) (-207 354758 355583 355611 "D03EEFA" 355616 T D03EEFA (NIL) -8 NIL NIL) (-206 352708 353174 353663 "D03AGNT" 354289 T D03AGNT (NIL) -7 NIL NIL) (-205 352024 352667 352695 "D02EJFA" 352700 T D02EJFA (NIL) -8 NIL NIL) (-204 351340 351983 352011 "D02CJFA" 352016 T D02CJFA (NIL) -8 NIL NIL) (-203 350656 351299 351327 "D02BHFA" 351332 T D02BHFA (NIL) -8 NIL NIL) (-202 349972 350615 350643 "D02BBFA" 350648 T D02BBFA (NIL) -8 NIL NIL) (-201 343170 344758 346364 "D02AGNT" 348386 T D02AGNT (NIL) -7 NIL NIL) (-200 340939 341461 342007 "D01WGTS" 342644 T D01WGTS (NIL) -7 NIL NIL) (-199 340034 340898 340926 "D01TRNS" 340931 T D01TRNS (NIL) -8 NIL NIL) (-198 339129 339993 340021 "D01GBFA" 340026 T D01GBFA (NIL) -8 NIL NIL) (-197 338224 339088 339116 "D01FCFA" 339121 T D01FCFA (NIL) -8 NIL NIL) (-196 337319 338183 338211 "D01ASFA" 338216 T D01ASFA (NIL) -8 NIL NIL) (-195 336414 337278 337306 "D01AQFA" 337311 T D01AQFA (NIL) -8 NIL NIL) (-194 335509 336373 336401 "D01APFA" 336406 T D01APFA (NIL) -8 NIL NIL) (-193 334604 335468 335496 "D01ANFA" 335501 T D01ANFA (NIL) -8 NIL NIL) (-192 333699 334563 334591 "D01AMFA" 334596 T D01AMFA (NIL) -8 NIL NIL) (-191 332794 333658 333686 "D01ALFA" 333691 T D01ALFA (NIL) -8 NIL NIL) (-190 331889 332753 332781 "D01AKFA" 332786 T D01AKFA (NIL) -8 NIL NIL) (-189 330984 331848 331876 "D01AJFA" 331881 T D01AJFA (NIL) -8 NIL NIL) (-188 324281 325832 327393 "D01AGNT" 329443 T D01AGNT (NIL) -7 NIL NIL) (-187 323618 323746 323898 "CYCLOTOM" 324149 T CYCLOTOM (NIL) -7 NIL NIL) (-186 320353 321066 321793 "CYCLES" 322911 T CYCLES (NIL) -7 NIL NIL) (-185 319665 319799 319970 "CVMP" 320214 NIL CVMP (NIL T) -7 NIL NIL) (-184 317436 317694 318070 "CTRIGMNP" 319393 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-183 316972 317167 317268 "CTORKIND" 317355 T CTORKIND (NIL) -8 NIL NIL) (-182 316483 316672 316771 "CTORCALL" 316893 T CTORCALL (NIL) -8 NIL NIL) (-181 315898 316106 316220 "CTOR" 316389 T CTOR (NIL) -8 NIL NIL) (-180 315272 315371 315524 "CSTTOOLS" 315795 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311071 311728 312486 "CRFP" 314584 NIL CRFP (NIL T T) -7 NIL NIL) (-178 310573 310792 310884 "CRCEAST" 310999 T CRCEAST (NIL) -8 NIL NIL) (-177 309620 309805 310033 "CRAPACK" 310377 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309004 309105 309309 "CPMATCH" 309496 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 308729 308757 308863 "CPIMA" 308970 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305093 305765 306483 "COORDSYS" 308064 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 304477 304606 304756 "CONTOUR" 304963 T CONTOUR (NIL) -8 NIL NIL) (-172 300405 302480 302972 "CONTFRAC" 304017 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300285 300306 300334 "CONDUIT" 300371 T CONDUIT (NIL) -9 NIL NIL) (-170 299478 299998 300026 "COMRING" 300031 T COMRING (NIL) -9 NIL 300083) (-169 298559 298836 299020 "COMPPROP" 299314 T COMPPROP (NIL) -8 NIL NIL) (-168 298220 298255 298383 "COMPLPAT" 298518 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 297856 297913 298020 "COMPLEX2" 298157 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-166 287933 297665 297774 "COMPLEX" 297779 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 287651 287686 287784 "COMPFACT" 287892 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272058 282265 282305 "COMPCAT" 283309 NIL COMPCAT (NIL T) -9 NIL 284704) (-163 261594 264511 268131 "COMPCAT-" 268487 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261323 261351 261454 "COMMUPC" 261560 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261118 261151 261210 "COMMONOP" 261284 T COMMONOP (NIL) -7 NIL NIL) (-160 260722 260922 260997 "COMMAAST" 261063 T COMMAAST (NIL) -8 NIL NIL) (-159 260305 260473 260560 "COMM" 260655 T COMM (NIL) -8 NIL NIL) (-158 259554 259748 259776 "COMBOPC" 260114 T COMBOPC (NIL) -9 NIL 260289) (-157 258450 258660 258902 "COMBINAT" 259344 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 254648 255221 255861 "COMBF" 257872 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253434 253764 253999 "COLOR" 254433 T COLOR (NIL) -8 NIL NIL) (-154 252937 253155 253247 "COLONAST" 253362 T COLONAST (NIL) -8 NIL NIL) (-153 252577 252624 252749 "CMPLXRT" 252884 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252052 252277 252376 "CLLCTAST" 252498 T CLLCTAST (NIL) -8 NIL NIL) (-151 247554 248582 249662 "CLIP" 250992 T CLIP (NIL) -7 NIL NIL) (-150 245936 246660 246899 "CLIF" 247381 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242158 244082 244123 "CLAGG" 245052 NIL CLAGG (NIL T) -9 NIL 245588) (-148 240580 241037 241620 "CLAGG-" 241625 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240124 240209 240349 "CINTSLPE" 240489 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237625 238096 238644 "CHVAR" 239652 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 236888 237408 237436 "CHARZ" 237441 T CHARZ (NIL) -9 NIL 237456) (-144 236642 236682 236760 "CHARPOL" 236842 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235789 236342 236370 "CHARNZ" 236417 T CHARNZ (NIL) -9 NIL 236473) (-142 233814 234479 234814 "CHAR" 235474 T CHAR (NIL) -8 NIL NIL) (-141 233540 233601 233629 "CFCAT" 233740 T CFCAT (NIL) -9 NIL NIL) (-140 232785 232896 233078 "CDEN" 233424 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228777 231938 232218 "CCLASS" 232525 T CCLASS (NIL) -8 NIL NIL) (-138 228696 228722 228757 "CATEGORY" 228762 T -10 (NIL) -8 NIL NIL) (-137 228170 228396 228495 "CATAST" 228617 T CATAST (NIL) -8 NIL NIL) (-136 227673 227891 227983 "CASEAST" 228098 T CASEAST (NIL) -8 NIL NIL) (-135 226781 226929 227150 "CARTEN2" 227520 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-134 221833 222810 223563 "CARTEN" 226084 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-133 220175 220983 221240 "CARD" 221596 T CARD (NIL) -8 NIL NIL) (-132 219778 219979 220054 "CAPSLAST" 220120 T CAPSLAST (NIL) -8 NIL NIL) (-131 219150 219478 219506 "CACHSET" 219638 T CACHSET (NIL) -9 NIL 219715) (-130 218646 218942 218970 "CABMON" 219020 T CABMON (NIL) -9 NIL 219076) (-129 214594 218593 218627 "BYTEARY" 218632 T BYTEARY (NIL) -8 NIL NIL) (-128 213521 213949 214145 "BYTE" 214418 T BYTE (NIL) -8 NIL NIL) (-127 211080 213213 213320 "BTREE" 213447 NIL BTREE (NIL T) -8 NIL NIL) (-126 208580 210728 210850 "BTOURN" 210990 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206000 208051 208092 "BTCAT" 208160 NIL BTCAT (NIL T) -9 NIL 208237) (-124 205667 205747 205896 "BTCAT-" 205901 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 200959 204810 204838 "BTAGG" 205060 T BTAGG (NIL) -9 NIL 205221) (-122 200449 200574 200780 "BTAGG-" 200785 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197495 199727 199942 "BSTREE" 200266 NIL BSTREE (NIL T) -8 NIL NIL) (-120 196633 196759 196943 "BRILL" 197351 NIL BRILL (NIL T) -7 NIL NIL) (-119 193335 195361 195402 "BRAGG" 196051 NIL BRAGG (NIL T) -9 NIL 196308) (-118 191867 192272 192826 "BRAGG-" 192831 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185154 191213 191397 "BPADICRT" 191715 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183506 185091 185136 "BPADIC" 185141 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183204 183234 183348 "BOUNDZRO" 183470 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 180825 181269 181789 "BOP1" 182717 NIL BOP1 (NIL T) -7 NIL NIL) (-113 176340 177431 178298 "BOP" 179978 T BOP (NIL) -8 NIL NIL) (-112 175078 175764 175957 "BOOLEAN" 176167 T BOOLEAN (NIL) -8 NIL NIL) (-111 174440 174818 174872 "BMODULE" 174877 NIL BMODULE (NIL T T) -9 NIL 174942) (-110 170270 174238 174311 "BITS" 174387 T BITS (NIL) -8 NIL NIL) (-109 169367 169802 169954 "BINFILE" 170138 T BINFILE (NIL) -8 NIL NIL) (-108 168779 168901 169043 "BINDING" 169245 T BINDING (NIL) -8 NIL NIL) (-107 162692 168223 168388 "BINARY" 168634 T BINARY (NIL) -8 NIL NIL) (-106 160519 161947 161988 "BGAGG" 162248 NIL BGAGG (NIL T) -9 NIL 162385) (-105 160350 160382 160473 "BGAGG-" 160478 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159448 159734 159939 "BFUNCT" 160165 T BFUNCT (NIL) -8 NIL NIL) (-103 158132 158313 158601 "BEZOUT" 159272 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 154651 156984 157314 "BBTREE" 157835 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154385 154438 154466 "BASTYPE" 154585 T BASTYPE (NIL) -9 NIL NIL) (-100 154237 154266 154339 "BASTYPE-" 154344 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 153675 153751 153901 "BALFACT" 154148 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152558 153090 153276 "AUTOMOR" 153520 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152284 152289 152315 "ATTREG" 152320 T ATTREG (NIL) -9 NIL NIL) (-96 150563 150981 151333 "ATTRBUT" 151950 T ATTRBUT (NIL) -8 NIL NIL) (-95 150198 150391 150457 "ATTRAST" 150515 T ATTRAST (NIL) -8 NIL NIL) (-94 149734 149847 149873 "ATRIG" 150074 T ATRIG (NIL) -9 NIL NIL) (-93 149543 149584 149671 "ATRIG-" 149676 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149165 149325 149351 "ASTCAT" 149409 T ASTCAT (NIL) -9 NIL 149472) (-91 148892 148951 149070 "ASTCAT-" 149075 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147089 148668 148756 "ASTACK" 148835 NIL ASTACK (NIL T) -8 NIL NIL) (-89 145594 145891 146256 "ASSOCEQ" 146771 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 144648 145253 145377 "ASP9" 145501 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 143539 144253 144395 "ASP80" 144537 NIL ASP80 (NIL NIL) -8 NIL NIL) (-86 143303 143487 143526 "ASP8" 143531 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 142279 142980 143098 "ASP78" 143216 NIL ASP78 (NIL NIL) -8 NIL NIL) (-84 141270 141959 142076 "ASP77" 142193 NIL ASP77 (NIL NIL) -8 NIL NIL) (-83 140204 140908 141039 "ASP74" 141170 NIL ASP74 (NIL NIL) -8 NIL NIL) (-82 139126 139839 139971 "ASP73" 140103 NIL ASP73 (NIL NIL) -8 NIL NIL) (-81 138047 138761 138893 "ASP7" 139025 NIL ASP7 (NIL NIL) -8 NIL NIL) (-80 137024 137724 137842 "ASP6" 137960 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 135994 136701 136819 "ASP55" 136937 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 134966 135668 135787 "ASP50" 135906 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134076 134667 134777 "ASP49" 134887 NIL ASP49 (NIL NIL) -8 NIL NIL) (-76 132883 133615 133783 "ASP42" 133965 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-75 131682 132416 132586 "ASP41" 132770 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-74 130792 131383 131493 "ASP4" 131603 NIL ASP4 (NIL NIL) -8 NIL NIL) (-73 129764 130469 130587 "ASP35" 130705 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129529 129712 129751 "ASP34" 129756 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129266 129333 129409 "ASP33" 129484 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128183 128901 129033 "ASP31" 129165 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 127948 128131 128170 "ASP30" 128175 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127683 127752 127828 "ASP29" 127903 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127448 127631 127670 "ASP28" 127675 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127213 127396 127435 "ASP27" 127440 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126319 126911 127022 "ASP24" 127133 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125257 125960 126090 "ASP20" 126220 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124223 124931 125050 "ASP19" 125169 NIL ASP19 (NIL NIL) -8 NIL NIL) (-62 123960 124027 124103 "ASP12" 124178 NIL ASP12 (NIL NIL) -8 NIL NIL) (-61 122834 123559 123703 "ASP10" 123847 NIL ASP10 (NIL NIL) -8 NIL NIL) (-60 121944 122535 122645 "ASP1" 122755 NIL ASP1 (NIL NIL) -8 NIL NIL) (-59 119843 121788 121879 "ARRAY2" 121884 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 118875 119048 119269 "ARRAY12" 119666 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-57 114691 118523 118637 "ARRAY1" 118792 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 109050 110921 110996 "ARR2CAT" 113626 NIL ARR2CAT (NIL T T T) -9 NIL 114384) (-55 106484 107228 108182 "ARR2CAT-" 108187 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105232 105384 105690 "APPRULE" 106320 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104883 104931 105050 "APPLYORE" 105178 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 104161 104284 104441 "ANY1" 104757 NIL ANY1 (NIL T) -7 NIL NIL) (-51 103135 103426 103621 "ANY" 103984 T ANY (NIL) -8 NIL NIL) (-50 100700 101572 101899 "ANTISYM" 102859 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100215 100404 100501 "ANON" 100621 T ANON (NIL) -8 NIL NIL) (-48 94358 98756 99209 "AN" 99780 T AN (NIL) -8 NIL NIL) (-47 90739 92093 92144 "AMR" 92892 NIL AMR (NIL T T) -9 NIL 93492) (-46 89851 90072 90435 "AMR-" 90440 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74407 89768 89829 "ALIST" 89834 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71276 74001 74170 "ALGSC" 74325 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67832 68386 68993 "ALGPKG" 70716 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67109 67210 67394 "ALGMFACT" 67718 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62848 63533 64188 "ALGMANIP" 66632 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54265 62474 62624 "ALGFF" 62781 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53461 53592 53771 "ALGFACT" 54123 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52491 53057 53095 "ALGEBRA" 53155 NIL ALGEBRA (NIL T) -9 NIL 53214) (-37 52209 52268 52400 "ALGEBRA-" 52405 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34475 50212 50264 "ALAGG" 50400 NIL ALAGG (NIL T T) -9 NIL 50561) (-35 34011 34124 34150 "AHYP" 34351 T AHYP (NIL) -9 NIL NIL) (-34 32942 33190 33216 "AGG" 33715 T AGG (NIL) -9 NIL 33994) (-33 32376 32538 32752 "AGG-" 32757 NIL AGG- (NIL T) -8 NIL NIL) (-32 30053 30475 30893 "AF" 32018 NIL AF (NIL T T) -7 NIL NIL) (-31 29560 29778 29868 "ADDAST" 29981 T ADDAST (NIL) -8 NIL NIL) (-30 28829 29087 29243 "ACPLOT" 29422 T ACPLOT (NIL) -8 NIL NIL) (-29 18356 26221 26272 "ACFS" 26983 NIL ACFS (NIL T) -9 NIL 27222) (-28 16370 16860 17635 "ACFS-" 17640 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-1683 (*1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1025)))))
+(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (-15 -1683 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T))
+((-1671 (((-112) $ $) 60)) (-3641 (((-112) $) NIL)) (-3202 (((-625 |#1|) $) 45)) (-4266 (($ $ (-751)) 39)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4179 (($ $ (-751)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-3101 (($) NIL T CONST)) (-4211 (($ $ $) 63) (($ $ (-799 |#1|)) 49) (($ $ |#1|) 53)) (-1893 (((-3 (-799 |#1|) "failed") $) NIL)) (-1895 (((-799 |#1|) $) NIL)) (-4169 (($ $) 32)) (-4174 (((-3 $ "failed") $) NIL)) (-4297 (((-112) $) NIL)) (-4287 (($ $) NIL)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ (-799 |#1|) |#2|) 31)) (-4191 (($ $) 33)) (-4233 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 12)) (-4316 (((-799 |#1|) $) NIL)) (-4326 (((-799 |#1|) $) 34)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-4222 (($ $ $) 62) (($ $ (-799 |#1|)) 51) (($ $ |#1|) 55)) (-3388 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4131 (((-799 |#1|) $) 28)) (-4144 ((|#2| $) 30)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4276 (((-751) $) 36)) (-4307 (((-112) $) 40)) (-1426 ((|#2| $) NIL)) (-1683 (((-839) $) NIL) (($ (-799 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-552)) NIL)) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-799 |#1|)) NIL)) (-3340 ((|#2| $ $) 65) ((|#2| $ (-799 |#1|)) NIL)) (-4141 (((-751)) NIL)) (-2089 (($) 13 T CONST)) (-2100 (($) 15 T CONST)) (-2032 (((-625 (-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2281 (((-112) $ $) 38)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 22)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-799 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1247 |#1| |#2|) (-13 (-377 |#2| (-799 |#1|)) (-1253 |#1| |#2|)) (-827) (-1025)) (T -1247))
+NIL
+(-13 (-377 |#2| (-799 |#1|)) (-1253 |#1| |#2|))
+((-2458 ((|#3| |#3| (-751)) 23)) (-2863 ((|#3| |#3| (-751)) 27)) (-4091 ((|#3| |#3| |#3| (-751)) 28)))
+(((-1248 |#1| |#2| |#3|) (-10 -7 (-15 -2863 (|#3| |#3| (-751))) (-15 -2458 (|#3| |#3| (-751))) (-15 -4091 (|#3| |#3| |#3| (-751)))) (-13 (-1025) (-698 (-402 (-552)))) (-827) (-1253 |#2| |#1|)) (T -1248))
+((-4091 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4)))) (-2458 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4)))) (-2863 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4)))))
+(-10 -7 (-15 -2863 (|#3| |#3| (-751))) (-15 -2458 (|#3| |#3| (-751))) (-15 -4091 (|#3| |#3| |#3| (-751))))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3202 (((-625 |#1|) $) 38)) (-2077 (((-3 $ "failed") $ $) 19)) (-4179 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-751)) 40 (|has| |#2| (-170)))) (-3101 (($) 17 T CONST)) (-4211 (($ $ |#1|) 52) (($ $ (-799 |#1|)) 51) (($ $ $) 50)) (-1893 (((-3 (-799 |#1|) "failed") $) 62)) (-1895 (((-799 |#1|) $) 61)) (-4174 (((-3 $ "failed") $) 32)) (-4297 (((-112) $) 43)) (-4287 (($ $) 42)) (-3650 (((-112) $) 30)) (-4201 (((-112) $) 48)) (-2243 (($ (-799 |#1|) |#2|) 49)) (-4191 (($ $) 47)) (-4233 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 58)) (-4316 (((-799 |#1|) $) 59)) (-1996 (($ (-1 |#2| |#2|) $) 39)) (-4222 (($ $ |#1|) 55) (($ $ (-799 |#1|)) 54) (($ $ $) 53)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4307 (((-112) $) 45)) (-1426 ((|#2| $) 44)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#2|) 66) (($ (-799 |#1|)) 63) (($ |#1|) 46)) (-3340 ((|#2| $ (-799 |#1|)) 57) ((|#2| $ $) 56)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
+(((-1249 |#1| |#2|) (-138) (-827) (-1025)) (T -1249))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-2 (|:| |k| (-799 *3)) (|:| |c| *4))))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-799 *4)) (-4 *1 (-1249 *4 *2)) (-4 *4 (-827)) (-4 *2 (-1025)))) (-3340 (*1 *2 *1 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (-4222 (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4222 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4211 (*1 *1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4211 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-2243 (*1 *1 *2 *3) (-12 (-5 *2 (-799 *4)) (-4 *4 (-827)) (-4 *1 (-1249 *4 *3)) (-4 *3 (-1025)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-4191 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-1683 (*1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-4287 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4179 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)) (-4 *3 (-170)))) (-4179 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-4 *4 (-170)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-625 *3)))))
+(-13 (-1025) (-1246 |t#2|) (-1014 (-799 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4316 ((-799 |t#1|) $)) (-15 -4233 ((-2 (|:| |k| (-799 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3340 (|t#2| $ (-799 |t#1|))) (-15 -3340 (|t#2| $ $)) (-15 -4222 ($ $ |t#1|)) (-15 -4222 ($ $ (-799 |t#1|))) (-15 -4222 ($ $ $)) (-15 -4211 ($ $ |t#1|)) (-15 -4211 ($ $ (-799 |t#1|))) (-15 -4211 ($ $ $)) (-15 -2243 ($ (-799 |t#1|) |t#2|)) (-15 -4201 ((-112) $)) (-15 -4191 ($ $)) (-15 -1683 ($ |t#1|)) (-15 -4307 ((-112) $)) (-15 -1426 (|t#2| $)) (-15 -4297 ((-112) $)) (-15 -4287 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -4179 ($ $ $)) (-15 -4179 ($ $ (-751)))) |%noBranch|) (-15 -1996 ($ (-1 |t#2| |t#2|) $)) (-15 -3202 ((-625 |t#1|) $)) (IF (|has| |t#2| (-6 -4346)) (-6 -4346) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#2|) . T) ((-628 $) . T) ((-698 |#2|) |has| |#2| (-170)) ((-707) . T) ((-1014 (-799 |#1|)) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1246 |#2|) . T))
+((-4156 (((-112) $) 15)) (-4168 (((-112) $) 14)) (-4104 (($ $) 19) (($ $ (-751)) 20)))
+(((-1250 |#1| |#2|) (-10 -8 (-15 -4104 (|#1| |#1| (-751))) (-15 -4104 (|#1| |#1|)) (-15 -4156 ((-112) |#1|)) (-15 -4168 ((-112) |#1|))) (-1251 |#2|) (-358)) (T -1250))
+NIL
+(-10 -8 (-15 -4104 (|#1| |#1| (-751))) (-15 -4104 (|#1| |#1|)) (-15 -4156 ((-112) |#1|)) (-15 -4168 ((-112) |#1|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-4156 (((-112) $) 91)) (-4116 (((-751)) 87)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 98)) (-1895 ((|#1| $) 97)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-3554 (($ $ (-751)) 84 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 83 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) 68)) (-2172 (((-813 (-897)) $) 81 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) 30)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-4143 (((-112) $) 90)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3824 (((-413 $) $) 71)) (-4130 (((-813 (-897))) 88)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-3563 (((-3 (-751) "failed") $ $) 82 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) 96)) (-4276 (((-813 (-897)) $) 89)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ |#1|) 99)) (-4243 (((-3 $ "failed") $) 80 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-4168 (((-112) $) 92)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-4104 (($ $) 86 (|has| |#1| (-363))) (($ $ (-751)) 85 (|has| |#1| (-363)))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62) (($ $ |#1|) 95)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
+(((-1251 |#1|) (-138) (-358)) (T -1251))
+((-4168 (*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-813 (-897))))) (-4130 (*1 *2) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-813 (-897))))) (-4116 (*1 *2) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-751)))) (-4104 (*1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-358)) (-4 *2 (-363)))) (-4104 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-4 *3 (-363)))))
+(-13 (-358) (-1014 |t#1|) (-1239 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-397)) |%noBranch|) (-15 -4168 ((-112) $)) (-15 -4156 ((-112) $)) (-15 -4143 ((-112) $)) (-15 -4276 ((-813 (-897)) $)) (-15 -4130 ((-813 (-897)))) (-15 -4116 ((-751))) (IF (|has| |t#1| (-363)) (PROGN (-6 (-397)) (-15 -4104 ($ $)) (-15 -4104 ($ $ (-751)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1523 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) -1523 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1014 |#1|) . T) ((-1031 #0#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T) ((-1239 |#1|) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3202 (((-625 |#1|) $) 86)) (-4266 (($ $ (-751)) 89)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4179 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-751)) NIL (|has| |#2| (-170)))) (-3101 (($) NIL T CONST)) (-4211 (($ $ |#1|) NIL) (($ $ (-799 |#1|)) NIL) (($ $ $) NIL)) (-1893 (((-3 (-799 |#1|) "failed") $) NIL) (((-3 (-869 |#1|) "failed") $) NIL)) (-1895 (((-799 |#1|) $) NIL) (((-869 |#1|) $) NIL)) (-4169 (($ $) 88)) (-4174 (((-3 $ "failed") $) NIL)) (-4297 (((-112) $) 77)) (-4287 (($ $) 81)) (-4244 (($ $ $ (-751)) 90)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ (-799 |#1|) |#2|) NIL) (($ (-869 |#1|) |#2|) 26)) (-4191 (($ $) 103)) (-4233 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4316 (((-799 |#1|) $) NIL)) (-4326 (((-799 |#1|) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-4222 (($ $ |#1|) NIL) (($ $ (-799 |#1|)) NIL) (($ $ $) NIL)) (-2458 (($ $ (-751)) 97 (|has| |#2| (-698 (-402 (-552)))))) (-3388 (((-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4131 (((-869 |#1|) $) 70)) (-4144 ((|#2| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2863 (($ $ (-751)) 94 (|has| |#2| (-698 (-402 (-552)))))) (-4276 (((-751) $) 87)) (-4307 (((-112) $) 71)) (-1426 ((|#2| $) 75)) (-1683 (((-839) $) 57) (($ (-552)) NIL) (($ |#2|) 51) (($ (-799 |#1|)) NIL) (($ |#1|) 59) (($ (-869 |#1|)) NIL) (($ (-644 |#1| |#2|)) 43) (((-1247 |#1| |#2|) $) 64) (((-1256 |#1| |#2|) $) 69)) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-869 |#1|)) NIL)) (-3340 ((|#2| $ (-799 |#1|)) NIL) ((|#2| $ $) NIL)) (-4141 (((-751)) NIL)) (-2089 (($) 21 T CONST)) (-2100 (($) 25 T CONST)) (-2032 (((-625 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4254 (((-3 (-644 |#1| |#2|) "failed") $) 102)) (-2281 (((-112) $ $) 65)) (-2393 (($ $) 96) (($ $ $) 95)) (-2382 (($ $ $) 20)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-869 |#1|)) NIL)))
+(((-1252 |#1| |#2|) (-13 (-1253 |#1| |#2|) (-377 |#2| (-869 |#1|)) (-10 -8 (-15 -1683 ($ (-644 |#1| |#2|))) (-15 -1683 ((-1247 |#1| |#2|) $)) (-15 -1683 ((-1256 |#1| |#2|) $)) (-15 -4254 ((-3 (-644 |#1| |#2|) "failed") $)) (-15 -4244 ($ $ $ (-751))) (IF (|has| |#2| (-698 (-402 (-552)))) (PROGN (-15 -2863 ($ $ (-751))) (-15 -2458 ($ $ (-751)))) |%noBranch|))) (-827) (-170)) (T -1252))
+((-1683 (*1 *1 *2) (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *1 (-1252 *3 *4)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4254 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4244 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-552)))) (-4 *3 (-827)) (-4 *4 (-170)))) (-2458 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-552)))) (-4 *3 (-827)) (-4 *4 (-170)))))
+(-13 (-1253 |#1| |#2|) (-377 |#2| (-869 |#1|)) (-10 -8 (-15 -1683 ($ (-644 |#1| |#2|))) (-15 -1683 ((-1247 |#1| |#2|) $)) (-15 -1683 ((-1256 |#1| |#2|) $)) (-15 -4254 ((-3 (-644 |#1| |#2|) "failed") $)) (-15 -4244 ($ $ $ (-751))) (IF (|has| |#2| (-698 (-402 (-552)))) (PROGN (-15 -2863 ($ $ (-751))) (-15 -2458 ($ $ (-751)))) |%noBranch|)))
+((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3202 (((-625 |#1|) $) 38)) (-4266 (($ $ (-751)) 71)) (-2077 (((-3 $ "failed") $ $) 19)) (-4179 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-751)) 40 (|has| |#2| (-170)))) (-3101 (($) 17 T CONST)) (-4211 (($ $ |#1|) 52) (($ $ (-799 |#1|)) 51) (($ $ $) 50)) (-1893 (((-3 (-799 |#1|) "failed") $) 62)) (-1895 (((-799 |#1|) $) 61)) (-4174 (((-3 $ "failed") $) 32)) (-4297 (((-112) $) 43)) (-4287 (($ $) 42)) (-3650 (((-112) $) 30)) (-4201 (((-112) $) 48)) (-2243 (($ (-799 |#1|) |#2|) 49)) (-4191 (($ $) 47)) (-4233 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 58)) (-4316 (((-799 |#1|) $) 59)) (-4326 (((-799 |#1|) $) 73)) (-1996 (($ (-1 |#2| |#2|) $) 39)) (-4222 (($ $ |#1|) 55) (($ $ (-799 |#1|)) 54) (($ $ $) 53)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4276 (((-751) $) 72)) (-4307 (((-112) $) 45)) (-1426 ((|#2| $) 44)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#2|) 66) (($ (-799 |#1|)) 63) (($ |#1|) 46)) (-3340 ((|#2| $ (-799 |#1|)) 57) ((|#2| $ $) 56)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
+(((-1253 |#1| |#2|) (-138) (-827) (-1025)) (T -1253))
+((-4326 (*1 *2 *1) (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-751)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))))
+(-13 (-1249 |t#1| |t#2|) (-10 -8 (-15 -4326 ((-799 |t#1|) $)) (-15 -4276 ((-751) $)) (-15 -4266 ($ $ (-751)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#2|) . T) ((-628 $) . T) ((-698 |#2|) |has| |#2| (-170)) ((-707) . T) ((-1014 (-799 |#1|)) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1246 |#2|) . T) ((-1249 |#1| |#2|) . T))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3202 (((-625 (-1149)) $) NIL)) (-1278 (($ (-1247 (-1149) |#1|)) NIL)) (-4266 (($ $ (-751)) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4179 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-751)) NIL (|has| |#1| (-170)))) (-3101 (($) NIL T CONST)) (-4211 (($ $ (-1149)) NIL) (($ $ (-799 (-1149))) NIL) (($ $ $) NIL)) (-1893 (((-3 (-799 (-1149)) "failed") $) NIL)) (-1895 (((-799 (-1149)) $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-4297 (((-112) $) NIL)) (-4287 (($ $) NIL)) (-3650 (((-112) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ (-799 (-1149)) |#1|) NIL)) (-4191 (($ $) NIL)) (-4233 (((-2 (|:| |k| (-799 (-1149))) (|:| |c| |#1|)) $) NIL)) (-4316 (((-799 (-1149)) $) NIL)) (-4326 (((-799 (-1149)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4222 (($ $ (-1149)) NIL) (($ $ (-799 (-1149))) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3455 (((-1247 (-1149) |#1|) $) NIL)) (-4276 (((-751) $) NIL)) (-4307 (((-112) $) NIL)) (-1426 ((|#1| $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-799 (-1149))) NIL) (($ (-1149)) NIL)) (-3340 ((|#1| $ (-799 (-1149))) NIL) ((|#1| $ $) NIL)) (-4141 (((-751)) NIL)) (-2089 (($) NIL T CONST)) (-1268 (((-625 (-2 (|:| |k| (-1149)) (|:| |c| $))) $) NIL)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1149) $) NIL)))
+(((-1254 |#1|) (-13 (-1253 (-1149) |#1|) (-10 -8 (-15 -3455 ((-1247 (-1149) |#1|) $)) (-15 -1278 ($ (-1247 (-1149) |#1|))) (-15 -1268 ((-625 (-2 (|:| |k| (-1149)) (|:| |c| $))) $)))) (-1025)) (T -1254))
+((-3455 (*1 *2 *1) (-12 (-5 *2 (-1247 (-1149) *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1025)))) (-1278 (*1 *1 *2) (-12 (-5 *2 (-1247 (-1149) *3)) (-4 *3 (-1025)) (-5 *1 (-1254 *3)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |k| (-1149)) (|:| |c| (-1254 *3))))) (-5 *1 (-1254 *3)) (-4 *3 (-1025)))))
+(-13 (-1253 (-1149) |#1|) (-10 -8 (-15 -3455 ((-1247 (-1149) |#1|) $)) (-15 -1278 ($ (-1247 (-1149) |#1|))) (-15 -1268 ((-625 (-2 (|:| |k| (-1149)) (|:| |c| $))) $))))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL)) (-1895 ((|#2| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) 36)) (-4297 (((-112) $) 30)) (-4287 (($ $) 32)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ |#2| |#1|) NIL)) (-4316 ((|#2| $) 19)) (-4326 ((|#2| $) 16)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3388 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4131 ((|#2| $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4307 (((-112) $) 27)) (-1426 ((|#1| $) 28)) (-1683 (((-839) $) 55) (($ (-552)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ |#2|) NIL)) (-3340 ((|#1| $ |#2|) 24)) (-4141 (((-751)) 14)) (-2089 (($) 25 T CONST)) (-2100 (($) 11 T CONST)) (-2032 (((-625 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2281 (((-112) $ $) 26)) (-2404 (($ $ |#1|) 57 (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 44)) (** (($ $ (-897)) NIL) (($ $ (-751)) 46)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-1471 (((-751) $) 15)))
+(((-1255 |#1| |#2|) (-13 (-1025) (-1246 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1471 ((-751) $)) (-15 -1683 ($ |#2|)) (-15 -4326 (|#2| $)) (-15 -4316 (|#2| $)) (-15 -4169 ($ $)) (-15 -3340 (|#1| $ |#2|)) (-15 -4307 ((-112) $)) (-15 -1426 (|#1| $)) (-15 -4297 ((-112) $)) (-15 -4287 ($ $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -2404 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|) (IF (|has| |#1| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025) (-823)) (T -1255))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-1255 *3 *4)) (-4 *4 (-823)))) (-1683 (*1 *1 *2) (-12 (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-823)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-4326 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))) (-4316 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))) (-3340 (*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-1426 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-4287 (*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-2404 (*1 *1 *1 *2) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-823)))))
+(-13 (-1025) (-1246 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1471 ((-751) $)) (-15 -1683 ($ |#2|)) (-15 -4326 (|#2| $)) (-15 -4316 (|#2| $)) (-15 -4169 ($ $)) (-15 -3340 (|#1| $ |#2|)) (-15 -4307 ((-112) $)) (-15 -1426 (|#1| $)) (-15 -4297 ((-112) $)) (-15 -4287 ($ $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -2404 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|) (IF (|has| |#1| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|)))
+((-1671 (((-112) $ $) 26)) (-3641 (((-112) $) NIL)) (-3202 (((-625 |#1|) $) 120)) (-1278 (($ (-1247 |#1| |#2|)) 44)) (-4266 (($ $ (-751)) 32)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4179 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-751)) 46 (|has| |#2| (-170)))) (-3101 (($) NIL T CONST)) (-4211 (($ $ |#1|) 102) (($ $ (-799 |#1|)) 103) (($ $ $) 25)) (-1893 (((-3 (-799 |#1|) "failed") $) NIL)) (-1895 (((-799 |#1|) $) NIL)) (-4174 (((-3 $ "failed") $) 110)) (-4297 (((-112) $) 105)) (-4287 (($ $) 106)) (-3650 (((-112) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ (-799 |#1|) |#2|) 19)) (-4191 (($ $) NIL)) (-4233 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4316 (((-799 |#1|) $) 111)) (-4326 (((-799 |#1|) $) 114)) (-1996 (($ (-1 |#2| |#2|) $) 119)) (-4222 (($ $ |#1|) 100) (($ $ (-799 |#1|)) 101) (($ $ $) 56)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3455 (((-1247 |#1| |#2|) $) 84)) (-4276 (((-751) $) 117)) (-4307 (((-112) $) 70)) (-1426 ((|#2| $) 28)) (-1683 (((-839) $) 63) (($ (-552)) 77) (($ |#2|) 74) (($ (-799 |#1|)) 17) (($ |#1|) 73)) (-3340 ((|#2| $ (-799 |#1|)) 104) ((|#2| $ $) 27)) (-4141 (((-751)) 108)) (-2089 (($) 14 T CONST)) (-1268 (((-625 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 13)) (-2393 (($ $) 88) (($ $ $) 91)) (-2382 (($ $ $) 55)) (** (($ $ (-897)) NIL) (($ $ (-751)) 49)) (* (($ (-897) $) NIL) (($ (-751) $) 47) (($ (-552) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1256 |#1| |#2|) (-13 (-1253 |#1| |#2|) (-10 -8 (-15 -3455 ((-1247 |#1| |#2|) $)) (-15 -1278 ($ (-1247 |#1| |#2|))) (-15 -1268 ((-625 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-827) (-1025)) (T -1256))
+((-3455 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-1278 (*1 *1 *2) (-12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *1 (-1256 *3 *4)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |k| *3) (|:| |c| (-1256 *3 *4))))) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))))
+(-13 (-1253 |#1| |#2|) (-10 -8 (-15 -3455 ((-1247 |#1| |#2|) $)) (-15 -1278 ($ (-1247 |#1| |#2|))) (-15 -1268 ((-625 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1367 (((-625 (-1129 |#1|)) (-1 (-625 (-1129 |#1|)) (-625 (-1129 |#1|))) (-552)) 15) (((-1129 |#1|) (-1 (-1129 |#1|) (-1129 |#1|))) 11)))
+(((-1257 |#1|) (-10 -7 (-15 -1367 ((-1129 |#1|) (-1 (-1129 |#1|) (-1129 |#1|)))) (-15 -1367 ((-625 (-1129 |#1|)) (-1 (-625 (-1129 |#1|)) (-625 (-1129 |#1|))) (-552)))) (-1186)) (T -1257))
+((-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-625 (-1129 *5)) (-625 (-1129 *5)))) (-5 *4 (-552)) (-5 *2 (-625 (-1129 *5))) (-5 *1 (-1257 *5)) (-4 *5 (-1186)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1 (-1129 *4) (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1257 *4)) (-4 *4 (-1186)))))
+(-10 -7 (-15 -1367 ((-1129 |#1|) (-1 (-1129 |#1|) (-1129 |#1|)))) (-15 -1367 ((-625 (-1129 |#1|)) (-1 (-625 (-1129 |#1|)) (-625 (-1129 |#1|))) (-552))))
+((-1301 (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|))) 148) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112)) 147) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112)) 146) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112) (-112)) 145) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-1022 |#1| |#2|)) 130)) (-1289 (((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|))) 72) (((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112)) 71) (((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112) (-112)) 70)) (-1330 (((-625 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|)) 61)) (-1311 (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|))) 115) (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112)) 114) (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112)) 113) (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112) (-112)) 112) (((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|)) 107)) (-1320 (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|))) 120) (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112)) 119) (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112)) 118) (((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|)) 117)) (-2042 (((-625 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) 98) (((-1145 (-1000 (-402 |#1|))) (-1145 |#1|)) 89) (((-928 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|))) 96) (((-928 (-1000 (-402 |#1|))) (-928 |#1|)) 94) (((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|))) 33)))
+(((-1258 |#1| |#2| |#3|) (-10 -7 (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112))) (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-1022 |#1| |#2|))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)))) (-15 -1330 ((-625 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|))) (-15 -2042 ((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|)))) (-15 -2042 ((-928 (-1000 (-402 |#1|))) (-928 |#1|))) (-15 -2042 ((-928 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|)))) (-15 -2042 ((-1145 (-1000 (-402 |#1|))) (-1145 |#1|))) (-15 -2042 ((-625 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))))) (-13 (-825) (-302) (-145) (-998)) (-625 (-1149)) (-625 (-1149))) (T -1258))
+((-2042 (*1 *2 *3) (-12 (-5 *3 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6)))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-760 *4 (-841 *6)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-1145 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-760 *4 (-841 *6))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *6 (-625 (-1149))) (-5 *2 (-928 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-928 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-928 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-760 *4 (-841 *5))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) (-5 *2 (-760 *4 (-841 *6))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-1320 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1320 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-1311 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1311 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1311 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4)))))) (-5 *1 (-1258 *4 *5 *6)) (-5 *3 (-625 (-928 *4))) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-1301 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5))) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1301 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5))) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1301 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5))) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1301 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4)))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) (-1289 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-1022 *4 *5))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1289 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))))
+(-10 -7 (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112))) (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-1022 |#1| |#2|))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)))) (-15 -1330 ((-625 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|))) (-15 -2042 ((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|)))) (-15 -2042 ((-928 (-1000 (-402 |#1|))) (-928 |#1|))) (-15 -2042 ((-928 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|)))) (-15 -2042 ((-1145 (-1000 (-402 |#1|))) (-1145 |#1|))) (-15 -2042 ((-625 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|))))))
+((-1361 (((-3 (-1232 (-402 (-552))) "failed") (-1232 |#1|) |#1|) 21)) (-1341 (((-112) (-1232 |#1|)) 12)) (-1349 (((-3 (-1232 (-552)) "failed") (-1232 |#1|)) 16)))
+(((-1259 |#1|) (-10 -7 (-15 -1341 ((-112) (-1232 |#1|))) (-15 -1349 ((-3 (-1232 (-552)) "failed") (-1232 |#1|))) (-15 -1361 ((-3 (-1232 (-402 (-552))) "failed") (-1232 |#1|) |#1|))) (-621 (-552))) (T -1259))
+((-1361 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552))) (-5 *2 (-1232 (-402 (-552)))) (-5 *1 (-1259 *4)))) (-1349 (*1 *2 *3) (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552))) (-5 *2 (-1232 (-552))) (-5 *1 (-1259 *4)))) (-1341 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552))) (-5 *2 (-112)) (-5 *1 (-1259 *4)))))
+(-10 -7 (-15 -1341 ((-112) (-1232 |#1|))) (-15 -1349 ((-3 (-1232 (-552)) "failed") (-1232 |#1|))) (-15 -1361 ((-3 (-1232 (-402 (-552))) "failed") (-1232 |#1|) |#1|)))
+((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 11)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751)) 8)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) 43)) (-3702 (($) 36)) (-3650 (((-112) $) NIL)) (-4034 (((-3 $ "failed") $) 29)) (-4318 (((-897) $) 15)) (-2883 (((-1131) $) NIL)) (-2071 (($) 25 T CONST)) (-3123 (($ (-897)) 37)) (-2831 (((-1093) $) NIL)) (-2042 (((-552) $) 13)) (-1683 (((-839) $) 22) (($ (-552)) 19)) (-4141 (((-751)) 9)) (-2089 (($) 23 T CONST)) (-2100 (($) 24 T CONST)) (-2281 (((-112) $ $) 27)) (-2393 (($ $) 38) (($ $ $) 35)) (-2382 (($ $ $) 26)) (** (($ $ (-897)) NIL) (($ $ (-751)) 40)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 32) (($ $ $) 31)))
+(((-1260 |#1|) (-13 (-170) (-363) (-598 (-552)) (-1124)) (-897)) (T -1260))
+NIL
+(-13 (-170) (-363) (-598 (-552)) (-1124))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3178533 3178538 3178543 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3178518 3178523 3178528 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3178503 3178508 3178513 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3178488 3178493 3178498 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1260 3177664 3178363 3178440 "ZMOD" 3178445 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1259 3176774 3176938 3177147 "ZLINDEP" 3177496 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1258 3166102 3167866 3169837 "ZDSOLVE" 3174904 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1257 3165348 3165489 3165678 "YSTREAM" 3165948 NIL YSTREAM (NIL T) -7 NIL NIL) (-1256 3163159 3164649 3164853 "XRPOLY" 3165191 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1255 3159651 3160934 3161518 "XPR" 3162622 NIL XPR (NIL T T) -8 NIL NIL) (-1254 3157407 3158982 3159186 "XPOLY" 3159482 NIL XPOLY (NIL T) -8 NIL NIL) (-1253 3155256 3156590 3156645 "XPOLYC" 3156933 NIL XPOLYC (NIL T T) -9 NIL 3157046) (-1252 3151674 3153773 3154161 "XPBWPOLY" 3154914 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1251 3147659 3149907 3149949 "XF" 3150570 NIL XF (NIL T) -9 NIL 3150970) (-1250 3147280 3147368 3147537 "XF-" 3147542 NIL XF- (NIL T T) -8 NIL NIL) (-1249 3142672 3143927 3143982 "XFALG" 3146154 NIL XFALG (NIL T T) -9 NIL 3146943) (-1248 3141805 3141909 3142114 "XEXPPKG" 3142564 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1247 3139949 3141655 3141751 "XDPOLY" 3141756 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1246 3138865 3139431 3139474 "XALG" 3139537 NIL XALG (NIL T) -9 NIL 3139657) (-1245 3132334 3136842 3137336 "WUTSET" 3138457 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1244 3130185 3130946 3131299 "WP" 3132115 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1243 3129814 3130007 3130077 "WHILEAST" 3130137 T WHILEAST (NIL) -8 NIL NIL) (-1242 3129313 3129531 3129625 "WHEREAST" 3129742 T WHEREAST (NIL) -8 NIL NIL) (-1241 3128199 3128397 3128692 "WFFINTBS" 3129110 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1240 3126103 3126530 3126992 "WEIER" 3127771 NIL WEIER (NIL T) -7 NIL NIL) (-1239 3125250 3125674 3125716 "VSPACE" 3125852 NIL VSPACE (NIL T) -9 NIL 3125926) (-1238 3125088 3125115 3125206 "VSPACE-" 3125211 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1237 3124834 3124877 3124948 "VOID" 3125039 T VOID (NIL) -8 NIL NIL) (-1236 3122970 3123329 3123735 "VIEW" 3124450 T VIEW (NIL) -7 NIL NIL) (-1235 3119395 3120033 3120770 "VIEWDEF" 3122255 T VIEWDEF (NIL) -7 NIL NIL) (-1234 3108733 3110943 3113116 "VIEW3D" 3117244 T VIEW3D (NIL) -8 NIL NIL) (-1233 3101015 3102644 3104223 "VIEW2D" 3107176 T VIEW2D (NIL) -8 NIL NIL) (-1232 3096419 3100785 3100877 "VECTOR" 3100958 NIL VECTOR (NIL T) -8 NIL NIL) (-1231 3094996 3095255 3095573 "VECTOR2" 3096149 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1230 3088523 3092780 3092823 "VECTCAT" 3093816 NIL VECTCAT (NIL T) -9 NIL 3094402) (-1229 3087537 3087791 3088181 "VECTCAT-" 3088186 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1228 3087018 3087188 3087308 "VARIABLE" 3087452 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1227 3086951 3086956 3086986 "UTYPE" 3086991 T UTYPE (NIL) -9 NIL NIL) (-1226 3085781 3085935 3086197 "UTSODETL" 3086777 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1225 3083221 3083681 3084205 "UTSODE" 3085322 NIL UTSODE (NIL T T) -7 NIL NIL) (-1224 3075097 3080847 3081336 "UTS" 3082790 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1223 3066470 3071789 3071832 "UTSCAT" 3072944 NIL UTSCAT (NIL T) -9 NIL 3073701) (-1222 3063824 3064540 3065529 "UTSCAT-" 3065534 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1221 3063451 3063494 3063627 "UTS2" 3063775 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1220 3057726 3060291 3060334 "URAGG" 3062404 NIL URAGG (NIL T) -9 NIL 3063126) (-1219 3054665 3055528 3056651 "URAGG-" 3056656 NIL URAGG- (NIL T T) -8 NIL NIL) (-1218 3050389 3053279 3053751 "UPXSSING" 3054329 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1217 3042359 3049504 3049786 "UPXS" 3050165 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1216 3035472 3042263 3042335 "UPXSCONS" 3042340 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1215 3025830 3032575 3032637 "UPXSCCA" 3033293 NIL UPXSCCA (NIL T T) -9 NIL 3033535) (-1214 3025468 3025553 3025727 "UPXSCCA-" 3025732 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1213 3015752 3022270 3022313 "UPXSCAT" 3022961 NIL UPXSCAT (NIL T) -9 NIL 3023569) (-1212 3015182 3015261 3015440 "UPXS2" 3015667 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1211 3013836 3014089 3014440 "UPSQFREE" 3014925 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1210 3007754 3010763 3010818 "UPSCAT" 3011979 NIL UPSCAT (NIL T T) -9 NIL 3012753) (-1209 3006958 3007165 3007492 "UPSCAT-" 3007497 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1208 2993049 3001045 3001088 "UPOLYC" 3003189 NIL UPOLYC (NIL T) -9 NIL 3004410) (-1207 2984378 2986803 2989950 "UPOLYC-" 2989955 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1206 2984005 2984048 2984181 "UPOLYC2" 2984329 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1205 2975462 2983571 2983709 "UP" 2983915 NIL UP (NIL NIL T) -8 NIL NIL) (-1204 2974801 2974908 2975072 "UPMP" 2975351 NIL UPMP (NIL T T) -7 NIL NIL) (-1203 2974354 2974435 2974574 "UPDIVP" 2974714 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1202 2972922 2973171 2973487 "UPDECOMP" 2974103 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1201 2972157 2972269 2972454 "UPCDEN" 2972806 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1200 2971676 2971745 2971894 "UP2" 2972082 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1199 2970193 2970880 2971157 "UNISEG" 2971434 NIL UNISEG (NIL T) -8 NIL NIL) (-1198 2969408 2969535 2969740 "UNISEG2" 2970036 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1197 2968468 2968648 2968874 "UNIFACT" 2969224 NIL UNIFACT (NIL T) -7 NIL NIL) (-1196 2952437 2967645 2967896 "ULS" 2968275 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1195 2940479 2952341 2952413 "ULSCONS" 2952418 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1194 2923283 2935218 2935280 "ULSCCAT" 2936000 NIL ULSCCAT (NIL T T) -9 NIL 2936297) (-1193 2922333 2922578 2922966 "ULSCCAT-" 2922971 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1192 2912394 2918826 2918869 "ULSCAT" 2919732 NIL ULSCAT (NIL T) -9 NIL 2920462) (-1191 2911824 2911903 2912082 "ULS2" 2912309 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1190 2910262 2911185 2911215 "UFD" 2911427 T UFD (NIL) -9 NIL 2911541) (-1189 2910056 2910102 2910197 "UFD-" 2910202 NIL UFD- (NIL T) -8 NIL NIL) (-1188 2909138 2909321 2909537 "UDVO" 2909862 T UDVO (NIL) -7 NIL NIL) (-1187 2906954 2907363 2907834 "UDPO" 2908702 NIL UDPO (NIL T) -7 NIL NIL) (-1186 2906887 2906892 2906922 "TYPE" 2906927 T TYPE (NIL) -9 NIL NIL) (-1185 2906674 2906842 2906873 "TYPEAST" 2906878 T TYPEAST (NIL) -8 NIL NIL) (-1184 2905645 2905847 2906087 "TWOFACT" 2906468 NIL TWOFACT (NIL T) -7 NIL NIL) (-1183 2904583 2904920 2905183 "TUPLE" 2905417 NIL TUPLE (NIL T) -8 NIL NIL) (-1182 2902274 2902793 2903332 "TUBETOOL" 2904066 T TUBETOOL (NIL) -7 NIL NIL) (-1181 2901123 2901328 2901569 "TUBE" 2902067 NIL TUBE (NIL T) -8 NIL NIL) (-1180 2895887 2900095 2900378 "TS" 2900875 NIL TS (NIL T) -8 NIL NIL) (-1179 2884554 2888646 2888743 "TSETCAT" 2894012 NIL TSETCAT (NIL T T T T) -9 NIL 2895543) (-1178 2879288 2880886 2882777 "TSETCAT-" 2882782 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1177 2873551 2874397 2875339 "TRMANIP" 2878424 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1176 2872992 2873055 2873218 "TRIMAT" 2873483 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1175 2870788 2871025 2871389 "TRIGMNIP" 2872741 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1174 2870308 2870421 2870451 "TRIGCAT" 2870664 T TRIGCAT (NIL) -9 NIL NIL) (-1173 2869977 2870056 2870197 "TRIGCAT-" 2870202 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1172 2866876 2868837 2869117 "TREE" 2869732 NIL TREE (NIL T) -8 NIL NIL) (-1171 2866150 2866678 2866708 "TRANFUN" 2866743 T TRANFUN (NIL) -9 NIL 2866809) (-1170 2865429 2865620 2865900 "TRANFUN-" 2865905 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1169 2865233 2865265 2865326 "TOPSP" 2865390 T TOPSP (NIL) -7 NIL NIL) (-1168 2864581 2864696 2864850 "TOOLSIGN" 2865114 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1167 2863242 2863758 2863997 "TEXTFILE" 2864364 T TEXTFILE (NIL) -8 NIL NIL) (-1166 2861107 2861621 2862059 "TEX" 2862826 T TEX (NIL) -8 NIL NIL) (-1165 2860888 2860919 2860991 "TEX1" 2861070 NIL TEX1 (NIL T) -7 NIL NIL) (-1164 2860536 2860599 2860689 "TEMUTL" 2860820 T TEMUTL (NIL) -7 NIL NIL) (-1163 2858690 2858970 2859295 "TBCMPPK" 2860259 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1162 2850578 2856850 2856906 "TBAGG" 2857306 NIL TBAGG (NIL T T) -9 NIL 2857517) (-1161 2845648 2847136 2848890 "TBAGG-" 2848895 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1160 2845032 2845139 2845284 "TANEXP" 2845537 NIL TANEXP (NIL T) -7 NIL NIL) (-1159 2838533 2844889 2844982 "TABLE" 2844987 NIL TABLE (NIL T T) -8 NIL NIL) (-1158 2837945 2838044 2838182 "TABLEAU" 2838430 NIL TABLEAU (NIL T) -8 NIL NIL) (-1157 2832553 2833773 2835021 "TABLBUMP" 2836731 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1156 2831981 2832081 2832209 "SYSTEM" 2832447 T SYSTEM (NIL) -7 NIL NIL) (-1155 2828444 2829139 2829922 "SYSSOLP" 2831232 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1154 2824736 2825443 2826177 "SYNTAX" 2827732 T SYNTAX (NIL) -8 NIL NIL) (-1153 2821894 2822496 2823128 "SYMTAB" 2824126 T SYMTAB (NIL) -8 NIL NIL) (-1152 2817143 2818045 2819028 "SYMS" 2820933 T SYMS (NIL) -8 NIL NIL) (-1151 2814415 2816601 2816831 "SYMPOLY" 2816948 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1150 2813932 2814007 2814130 "SYMFUNC" 2814327 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1149 2809909 2811169 2811991 "SYMBOL" 2813132 T SYMBOL (NIL) -8 NIL NIL) (-1148 2803448 2805137 2806857 "SWITCH" 2808211 T SWITCH (NIL) -8 NIL NIL) (-1147 2796718 2802269 2802572 "SUTS" 2803203 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1146 2788687 2795833 2796115 "SUPXS" 2796494 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1145 2780216 2788305 2788431 "SUP" 2788596 NIL SUP (NIL T) -8 NIL NIL) (-1144 2779375 2779502 2779719 "SUPFRACF" 2780084 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1143 2778996 2779055 2779168 "SUP2" 2779310 NIL SUP2 (NIL T T) -7 NIL NIL) (-1142 2777409 2777683 2778046 "SUMRF" 2778695 NIL SUMRF (NIL T) -7 NIL NIL) (-1141 2776723 2776789 2776988 "SUMFS" 2777330 NIL SUMFS (NIL T T) -7 NIL NIL) (-1140 2760732 2775900 2776151 "SULS" 2776530 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1139 2760361 2760554 2760624 "SUCHTAST" 2760684 T SUCHTAST (NIL) -8 NIL NIL) (-1138 2759683 2759886 2760026 "SUCH" 2760269 NIL SUCH (NIL T T) -8 NIL NIL) (-1137 2753577 2754589 2755548 "SUBSPACE" 2758771 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1136 2753007 2753097 2753261 "SUBRESP" 2753465 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1135 2746376 2747672 2748983 "STTF" 2751743 NIL STTF (NIL T) -7 NIL NIL) (-1134 2740549 2741669 2742816 "STTFNC" 2745276 NIL STTFNC (NIL T) -7 NIL NIL) (-1133 2731864 2733731 2735525 "STTAYLOR" 2738790 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1132 2725108 2731728 2731811 "STRTBL" 2731816 NIL STRTBL (NIL T) -8 NIL NIL) (-1131 2720499 2725063 2725094 "STRING" 2725099 T STRING (NIL) -8 NIL NIL) (-1130 2715387 2719872 2719902 "STRICAT" 2719961 T STRICAT (NIL) -9 NIL 2720023) (-1129 2708100 2712910 2713530 "STREAM" 2714802 NIL STREAM (NIL T) -8 NIL NIL) (-1128 2707610 2707687 2707831 "STREAM3" 2708017 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1127 2706592 2706775 2707010 "STREAM2" 2707423 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1126 2706280 2706332 2706425 "STREAM1" 2706534 NIL STREAM1 (NIL T) -7 NIL NIL) (-1125 2705296 2705477 2705708 "STINPROD" 2706096 NIL STINPROD (NIL T) -7 NIL NIL) (-1124 2704874 2705058 2705088 "STEP" 2705168 T STEP (NIL) -9 NIL 2705246) (-1123 2698417 2704773 2704850 "STBL" 2704855 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1122 2693592 2697639 2697682 "STAGG" 2697835 NIL STAGG (NIL T) -9 NIL 2697924) (-1121 2691294 2691896 2692768 "STAGG-" 2692773 NIL STAGG- (NIL T T) -8 NIL NIL) (-1120 2689489 2691064 2691156 "STACK" 2691237 NIL STACK (NIL T) -8 NIL NIL) (-1119 2682214 2687630 2688086 "SREGSET" 2689119 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1118 2674640 2676008 2677521 "SRDCMPK" 2680820 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1117 2667607 2672080 2672110 "SRAGG" 2673413 T SRAGG (NIL) -9 NIL 2674021) (-1116 2666624 2666879 2667258 "SRAGG-" 2667263 NIL SRAGG- (NIL T) -8 NIL NIL) (-1115 2661119 2665571 2665992 "SQMATRIX" 2666250 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1114 2654871 2657839 2658565 "SPLTREE" 2660465 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1113 2650861 2651527 2652173 "SPLNODE" 2654297 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1112 2649908 2650141 2650171 "SPFCAT" 2650615 T SPFCAT (NIL) -9 NIL NIL) (-1111 2648645 2648855 2649119 "SPECOUT" 2649666 T SPECOUT (NIL) -7 NIL NIL) (-1110 2640334 2642078 2642108 "SPADXPT" 2646500 T SPADXPT (NIL) -9 NIL 2648534) (-1109 2640095 2640135 2640204 "SPADPRSR" 2640287 T SPADPRSR (NIL) -7 NIL NIL) (-1108 2638278 2640050 2640081 "SPADAST" 2640086 T SPADAST (NIL) -8 NIL NIL) (-1107 2630249 2631996 2632039 "SPACEC" 2636412 NIL SPACEC (NIL T) -9 NIL 2638228) (-1106 2628420 2630181 2630230 "SPACE3" 2630235 NIL SPACE3 (NIL T) -8 NIL NIL) (-1105 2627172 2627343 2627634 "SORTPAK" 2628225 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1104 2625222 2625525 2625944 "SOLVETRA" 2626836 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1103 2624233 2624455 2624729 "SOLVESER" 2624995 NIL SOLVESER (NIL T) -7 NIL NIL) (-1102 2619453 2620334 2621336 "SOLVERAD" 2623285 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1101 2615268 2615877 2616606 "SOLVEFOR" 2618820 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1100 2609565 2614617 2614714 "SNTSCAT" 2614719 NIL SNTSCAT (NIL T T T T) -9 NIL 2614789) (-1099 2603708 2607888 2608279 "SMTS" 2609255 NIL SMTS (NIL T T T) -8 NIL NIL) (-1098 2598158 2603596 2603673 "SMP" 2603678 NIL SMP (NIL T T) -8 NIL NIL) (-1097 2596317 2596618 2597016 "SMITH" 2597855 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1096 2589300 2593455 2593558 "SMATCAT" 2594909 NIL SMATCAT (NIL NIL T T T) -9 NIL 2595459) (-1095 2586240 2587063 2588241 "SMATCAT-" 2588246 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1094 2583953 2585476 2585519 "SKAGG" 2585780 NIL SKAGG (NIL T) -9 NIL 2585915) (-1093 2580069 2583057 2583335 "SINT" 2583697 T SINT (NIL) -8 NIL NIL) (-1092 2579841 2579879 2579945 "SIMPAN" 2580025 T SIMPAN (NIL) -7 NIL NIL) (-1091 2579148 2579376 2579516 "SIG" 2579723 T SIG (NIL) -8 NIL NIL) (-1090 2577986 2578207 2578482 "SIGNRF" 2578907 NIL SIGNRF (NIL T) -7 NIL NIL) (-1089 2576791 2576942 2577233 "SIGNEF" 2577815 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1088 2576124 2576374 2576498 "SIGAST" 2576689 T SIGAST (NIL) -8 NIL NIL) (-1087 2573814 2574268 2574774 "SHP" 2575665 NIL SHP (NIL T NIL) -7 NIL NIL) (-1086 2567720 2573715 2573791 "SHDP" 2573796 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1085 2567319 2567485 2567515 "SGROUP" 2567608 T SGROUP (NIL) -9 NIL 2567670) (-1084 2567177 2567203 2567276 "SGROUP-" 2567281 NIL SGROUP- (NIL T) -8 NIL NIL) (-1083 2564013 2564710 2565433 "SGCF" 2566476 T SGCF (NIL) -7 NIL NIL) (-1082 2558408 2563460 2563557 "SFRTCAT" 2563562 NIL SFRTCAT (NIL T T T T) -9 NIL 2563601) (-1081 2551832 2552847 2553983 "SFRGCD" 2557391 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1080 2544960 2546031 2547217 "SFQCMPK" 2550765 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1079 2544582 2544671 2544781 "SFORT" 2544901 NIL SFORT (NIL T T) -8 NIL NIL) (-1078 2543727 2544422 2544543 "SEXOF" 2544548 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1077 2542861 2543608 2543676 "SEX" 2543681 T SEX (NIL) -8 NIL NIL) (-1076 2537637 2538326 2538421 "SEXCAT" 2542192 NIL SEXCAT (NIL T T T T T) -9 NIL 2542811) (-1075 2534817 2537571 2537619 "SET" 2537624 NIL SET (NIL T) -8 NIL NIL) (-1074 2533068 2533530 2533835 "SETMN" 2534558 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1073 2532674 2532800 2532830 "SETCAT" 2532947 T SETCAT (NIL) -9 NIL 2533032) (-1072 2532454 2532506 2532605 "SETCAT-" 2532610 NIL SETCAT- (NIL T) -8 NIL NIL) (-1071 2528841 2530915 2530958 "SETAGG" 2531828 NIL SETAGG (NIL T) -9 NIL 2532168) (-1070 2528299 2528415 2528652 "SETAGG-" 2528657 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1069 2527769 2527995 2528096 "SEQAST" 2528220 T SEQAST (NIL) -8 NIL NIL) (-1068 2526973 2527266 2527327 "SEGXCAT" 2527613 NIL SEGXCAT (NIL T T) -9 NIL 2527733) (-1067 2526029 2526639 2526821 "SEG" 2526826 NIL SEG (NIL T) -8 NIL NIL) (-1066 2524936 2525149 2525192 "SEGCAT" 2525774 NIL SEGCAT (NIL T) -9 NIL 2526012) (-1065 2523985 2524315 2524515 "SEGBIND" 2524771 NIL SEGBIND (NIL T) -8 NIL NIL) (-1064 2523606 2523665 2523778 "SEGBIND2" 2523920 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1063 2523207 2523407 2523484 "SEGAST" 2523551 T SEGAST (NIL) -8 NIL NIL) (-1062 2522426 2522552 2522756 "SEG2" 2523051 NIL SEG2 (NIL T T) -7 NIL NIL) (-1061 2521863 2522361 2522408 "SDVAR" 2522413 NIL SDVAR (NIL T) -8 NIL NIL) (-1060 2514153 2521633 2521763 "SDPOL" 2521768 NIL SDPOL (NIL T) -8 NIL NIL) (-1059 2512746 2513012 2513331 "SCPKG" 2513868 NIL SCPKG (NIL T) -7 NIL NIL) (-1058 2511882 2512062 2512262 "SCOPE" 2512568 T SCOPE (NIL) -8 NIL NIL) (-1057 2511103 2511236 2511415 "SCACHE" 2511737 NIL SCACHE (NIL T) -7 NIL NIL) (-1056 2510812 2510972 2511002 "SASTCAT" 2511007 T SASTCAT (NIL) -9 NIL 2511020) (-1055 2510251 2510572 2510657 "SAOS" 2510749 T SAOS (NIL) -8 NIL NIL) (-1054 2509816 2509851 2510024 "SAERFFC" 2510210 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1053 2503790 2509713 2509793 "SAE" 2509798 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1052 2503383 2503418 2503577 "SAEFACT" 2503749 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1051 2501704 2502018 2502419 "RURPK" 2503049 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1050 2500340 2500619 2500931 "RULESET" 2501538 NIL RULESET (NIL T T T) -8 NIL NIL) (-1049 2497527 2498030 2498495 "RULE" 2500021 NIL RULE (NIL T T T) -8 NIL NIL) (-1048 2497166 2497321 2497404 "RULECOLD" 2497479 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1047 2496664 2496883 2496977 "RSTRCAST" 2497094 T RSTRCAST (NIL) -8 NIL NIL) (-1046 2491513 2492307 2493227 "RSETGCD" 2495863 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1045 2480770 2485822 2485919 "RSETCAT" 2490038 NIL RSETCAT (NIL T T T T) -9 NIL 2491135) (-1044 2478697 2479236 2480060 "RSETCAT-" 2480065 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1043 2471084 2472459 2473979 "RSDCMPK" 2477296 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1042 2469089 2469530 2469604 "RRCC" 2470690 NIL RRCC (NIL T T) -9 NIL 2471034) (-1041 2468440 2468614 2468893 "RRCC-" 2468898 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1040 2467910 2468136 2468237 "RPTAST" 2468361 T RPTAST (NIL) -8 NIL NIL) (-1039 2442138 2451723 2451790 "RPOLCAT" 2462454 NIL RPOLCAT (NIL T T T) -9 NIL 2465613) (-1038 2433638 2435976 2439098 "RPOLCAT-" 2439103 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1037 2424685 2431849 2432331 "ROUTINE" 2433178 T ROUTINE (NIL) -8 NIL NIL) (-1036 2421443 2424236 2424385 "ROMAN" 2424558 T ROMAN (NIL) -8 NIL NIL) (-1035 2419718 2420303 2420563 "ROIRC" 2421248 NIL ROIRC (NIL T T) -8 NIL NIL) (-1034 2416169 2418408 2418438 "RNS" 2418742 T RNS (NIL) -9 NIL 2419014) (-1033 2414678 2415061 2415595 "RNS-" 2415670 NIL RNS- (NIL T) -8 NIL NIL) (-1032 2414127 2414509 2414539 "RNG" 2414544 T RNG (NIL) -9 NIL 2414565) (-1031 2413519 2413881 2413924 "RMODULE" 2413986 NIL RMODULE (NIL T) -9 NIL 2414028) (-1030 2412355 2412449 2412785 "RMCAT2" 2413420 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1029 2409060 2411529 2411854 "RMATRIX" 2412089 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1028 2402002 2404236 2404351 "RMATCAT" 2407710 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2408692) (-1027 2401377 2401524 2401831 "RMATCAT-" 2401836 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1026 2400944 2401019 2401147 "RINTERP" 2401296 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1025 2400032 2400552 2400582 "RING" 2400694 T RING (NIL) -9 NIL 2400789) (-1024 2399824 2399868 2399965 "RING-" 2399970 NIL RING- (NIL T) -8 NIL NIL) (-1023 2398665 2398902 2399160 "RIDIST" 2399588 T RIDIST (NIL) -7 NIL NIL) (-1022 2389981 2398133 2398339 "RGCHAIN" 2398513 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1021 2389357 2389737 2389778 "RGBCSPC" 2389836 NIL RGBCSPC (NIL T) -9 NIL 2389888) (-1020 2388541 2388896 2388937 "RGBCMDL" 2389169 NIL RGBCMDL (NIL T) -9 NIL 2389283) (-1019 2385535 2386149 2386819 "RF" 2387905 NIL RF (NIL T) -7 NIL NIL) (-1018 2385181 2385244 2385347 "RFFACTOR" 2385466 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1017 2384906 2384941 2385038 "RFFACT" 2385140 NIL RFFACT (NIL T) -7 NIL NIL) (-1016 2383023 2383387 2383769 "RFDIST" 2384546 T RFDIST (NIL) -7 NIL NIL) (-1015 2382476 2382568 2382731 "RETSOL" 2382925 NIL RETSOL (NIL T T) -7 NIL NIL) (-1014 2382064 2382144 2382187 "RETRACT" 2382380 NIL RETRACT (NIL T) -9 NIL NIL) (-1013 2381913 2381938 2382025 "RETRACT-" 2382030 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1012 2381542 2381735 2381805 "RETAST" 2381865 T RETAST (NIL) -8 NIL NIL) (-1011 2374396 2381195 2381322 "RESULT" 2381437 T RESULT (NIL) -8 NIL NIL) (-1010 2373022 2373665 2373864 "RESRING" 2374299 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1009 2372658 2372707 2372805 "RESLATC" 2372959 NIL RESLATC (NIL T) -7 NIL NIL) (-1008 2372364 2372398 2372505 "REPSQ" 2372617 NIL REPSQ (NIL T) -7 NIL NIL) (-1007 2369786 2370366 2370968 "REP" 2371784 T REP (NIL) -7 NIL NIL) (-1006 2369484 2369518 2369629 "REPDB" 2369745 NIL REPDB (NIL T) -7 NIL NIL) (-1005 2363394 2364773 2365996 "REP2" 2368296 NIL REP2 (NIL T) -7 NIL NIL) (-1004 2359771 2360452 2361260 "REP1" 2362621 NIL REP1 (NIL T) -7 NIL NIL) (-1003 2352497 2357912 2358368 "REGSET" 2359401 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1002 2351310 2351645 2351895 "REF" 2352282 NIL REF (NIL T) -8 NIL NIL) (-1001 2350687 2350790 2350957 "REDORDER" 2351194 NIL REDORDER (NIL T T) -7 NIL NIL) (-1000 2346698 2349906 2350131 "RECLOS" 2350516 NIL RECLOS (NIL T) -8 NIL NIL) (-999 2345755 2345936 2346149 "REALSOLV" 2346505 T REALSOLV (NIL) -7 NIL NIL) (-998 2345603 2345644 2345672 "REAL" 2345677 T REAL (NIL) -9 NIL 2345712) (-997 2342094 2342896 2343778 "REAL0Q" 2344768 NIL REAL0Q (NIL T) -7 NIL NIL) (-996 2337705 2338693 2339752 "REAL0" 2341075 NIL REAL0 (NIL T) -7 NIL NIL) (-995 2337207 2337426 2337518 "RDUCEAST" 2337633 T RDUCEAST (NIL) -8 NIL NIL) (-994 2336615 2336687 2336892 "RDIV" 2337129 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-993 2335688 2335862 2336073 "RDIST" 2336437 NIL RDIST (NIL T) -7 NIL NIL) (-992 2334289 2334576 2334946 "RDETRS" 2335396 NIL RDETRS (NIL T T) -7 NIL NIL) (-991 2332106 2332560 2333096 "RDETR" 2333831 NIL RDETR (NIL T T) -7 NIL NIL) (-990 2330720 2330998 2331400 "RDEEFS" 2331822 NIL RDEEFS (NIL T T) -7 NIL NIL) (-989 2329218 2329524 2329954 "RDEEF" 2330408 NIL RDEEF (NIL T T) -7 NIL NIL) (-988 2323555 2326426 2326454 "RCFIELD" 2327731 T RCFIELD (NIL) -9 NIL 2328461) (-987 2321624 2322128 2322821 "RCFIELD-" 2322894 NIL RCFIELD- (NIL T) -8 NIL NIL) (-986 2317955 2319740 2319781 "RCAGG" 2320852 NIL RCAGG (NIL T) -9 NIL 2321317) (-985 2317586 2317680 2317840 "RCAGG-" 2317845 NIL RCAGG- (NIL T T) -8 NIL NIL) (-984 2316926 2317038 2317201 "RATRET" 2317470 NIL RATRET (NIL T) -7 NIL NIL) (-983 2316483 2316550 2316669 "RATFACT" 2316854 NIL RATFACT (NIL T) -7 NIL NIL) (-982 2315798 2315918 2316068 "RANDSRC" 2316353 T RANDSRC (NIL) -7 NIL NIL) (-981 2315535 2315579 2315650 "RADUTIL" 2315747 T RADUTIL (NIL) -7 NIL NIL) (-980 2308600 2314278 2314595 "RADIX" 2315250 NIL RADIX (NIL NIL) -8 NIL NIL) (-979 2300256 2308444 2308572 "RADFF" 2308577 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-978 2299908 2299983 2300011 "RADCAT" 2300168 T RADCAT (NIL) -9 NIL NIL) (-977 2299693 2299741 2299838 "RADCAT-" 2299843 NIL RADCAT- (NIL T) -8 NIL NIL) (-976 2297844 2299468 2299557 "QUEUE" 2299637 NIL QUEUE (NIL T) -8 NIL NIL) (-975 2294420 2297781 2297826 "QUAT" 2297831 NIL QUAT (NIL T) -8 NIL NIL) (-974 2294058 2294101 2294228 "QUATCT2" 2294371 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-973 2287918 2291219 2291259 "QUATCAT" 2292039 NIL QUATCAT (NIL T) -9 NIL 2292805) (-972 2284062 2285099 2286486 "QUATCAT-" 2286580 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-971 2281582 2283146 2283187 "QUAGG" 2283562 NIL QUAGG (NIL T) -9 NIL 2283737) (-970 2281214 2281407 2281475 "QQUTAST" 2281534 T QQUTAST (NIL) -8 NIL NIL) (-969 2280139 2280612 2280784 "QFORM" 2281086 NIL QFORM (NIL NIL T) -8 NIL NIL) (-968 2271472 2276675 2276715 "QFCAT" 2277373 NIL QFCAT (NIL T) -9 NIL 2278372) (-967 2267044 2268245 2269836 "QFCAT-" 2269930 NIL QFCAT- (NIL T T) -8 NIL NIL) (-966 2266682 2266725 2266852 "QFCAT2" 2266995 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-965 2266142 2266252 2266382 "QEQUAT" 2266572 T QEQUAT (NIL) -8 NIL NIL) (-964 2259290 2260361 2261545 "QCMPACK" 2265075 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-963 2256866 2257287 2257715 "QALGSET" 2258945 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-962 2256111 2256285 2256517 "QALGSET2" 2256686 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-961 2254802 2255025 2255342 "PWFFINTB" 2255884 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-960 2252984 2253152 2253506 "PUSHVAR" 2254616 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-959 2248902 2249956 2249997 "PTRANFN" 2251881 NIL PTRANFN (NIL T) -9 NIL NIL) (-958 2247304 2247595 2247917 "PTPACK" 2248613 NIL PTPACK (NIL T) -7 NIL NIL) (-957 2246936 2246993 2247102 "PTFUNC2" 2247241 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-956 2241402 2245747 2245788 "PTCAT" 2246161 NIL PTCAT (NIL T) -9 NIL 2246323) (-955 2241060 2241095 2241219 "PSQFR" 2241361 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-954 2239655 2239953 2240287 "PSEUDLIN" 2240758 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-953 2226424 2228789 2231113 "PSETPK" 2237415 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-952 2219468 2222182 2222278 "PSETCAT" 2225299 NIL PSETCAT (NIL T T T T) -9 NIL 2226113) (-951 2217304 2217938 2218759 "PSETCAT-" 2218764 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-950 2216653 2216818 2216846 "PSCURVE" 2217114 T PSCURVE (NIL) -9 NIL 2217281) (-949 2213134 2214616 2214681 "PSCAT" 2215525 NIL PSCAT (NIL T T T) -9 NIL 2215765) (-948 2212197 2212413 2212813 "PSCAT-" 2212818 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-947 2210849 2211482 2211696 "PRTITION" 2212003 T PRTITION (NIL) -8 NIL NIL) (-946 2210351 2210570 2210662 "PRTDAST" 2210777 T PRTDAST (NIL) -8 NIL NIL) (-945 2199449 2201655 2203843 "PRS" 2208213 NIL PRS (NIL T T) -7 NIL NIL) (-944 2197307 2198799 2198839 "PRQAGG" 2199022 NIL PRQAGG (NIL T) -9 NIL 2199124) (-943 2196693 2196922 2196950 "PROPLOG" 2197135 T PROPLOG (NIL) -9 NIL 2197257) (-942 2193863 2194507 2194971 "PROPFRML" 2196261 NIL PROPFRML (NIL T) -8 NIL NIL) (-941 2193323 2193433 2193563 "PROPERTY" 2193753 T PROPERTY (NIL) -8 NIL NIL) (-940 2187408 2191489 2192309 "PRODUCT" 2192549 NIL PRODUCT (NIL T T) -8 NIL NIL) (-939 2184721 2186866 2187100 "PR" 2187219 NIL PR (NIL T T) -8 NIL NIL) (-938 2184517 2184549 2184608 "PRINT" 2184682 T PRINT (NIL) -7 NIL NIL) (-937 2183857 2183974 2184126 "PRIMES" 2184397 NIL PRIMES (NIL T) -7 NIL NIL) (-936 2181922 2182323 2182789 "PRIMELT" 2183436 NIL PRIMELT (NIL T) -7 NIL NIL) (-935 2181651 2181700 2181728 "PRIMCAT" 2181852 T PRIMCAT (NIL) -9 NIL NIL) (-934 2177812 2181589 2181634 "PRIMARR" 2181639 NIL PRIMARR (NIL T) -8 NIL NIL) (-933 2176819 2176997 2177225 "PRIMARR2" 2177630 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-932 2176462 2176518 2176629 "PREASSOC" 2176757 NIL PREASSOC (NIL T T) -7 NIL NIL) (-931 2175937 2176070 2176098 "PPCURVE" 2176303 T PPCURVE (NIL) -9 NIL 2176439) (-930 2175559 2175732 2175815 "PORTNUM" 2175874 T PORTNUM (NIL) -8 NIL NIL) (-929 2172918 2173317 2173909 "POLYROOT" 2175140 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-928 2166863 2172522 2172682 "POLY" 2172791 NIL POLY (NIL T) -8 NIL NIL) (-927 2166246 2166304 2166538 "POLYLIFT" 2166799 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-926 2162521 2162970 2163599 "POLYCATQ" 2165791 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-925 2149560 2154916 2154981 "POLYCAT" 2158495 NIL POLYCAT (NIL T T T) -9 NIL 2160423) (-924 2143010 2144871 2147255 "POLYCAT-" 2147260 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-923 2142597 2142665 2142785 "POLY2UP" 2142936 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-922 2142229 2142286 2142395 "POLY2" 2142534 NIL POLY2 (NIL T T) -7 NIL NIL) (-921 2140914 2141153 2141429 "POLUTIL" 2142003 NIL POLUTIL (NIL T T) -7 NIL NIL) (-920 2139269 2139546 2139877 "POLTOPOL" 2140636 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-919 2134787 2139205 2139251 "POINT" 2139256 NIL POINT (NIL T) -8 NIL NIL) (-918 2132974 2133331 2133706 "PNTHEORY" 2134432 T PNTHEORY (NIL) -7 NIL NIL) (-917 2131393 2131690 2132102 "PMTOOLS" 2132672 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-916 2130986 2131064 2131181 "PMSYM" 2131309 NIL PMSYM (NIL T) -7 NIL NIL) (-915 2130496 2130565 2130739 "PMQFCAT" 2130911 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-914 2129851 2129961 2130117 "PMPRED" 2130373 NIL PMPRED (NIL T) -7 NIL NIL) (-913 2129247 2129333 2129494 "PMPREDFS" 2129752 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-912 2127890 2128098 2128483 "PMPLCAT" 2129009 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-911 2127422 2127501 2127653 "PMLSAGG" 2127805 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-910 2126897 2126973 2127154 "PMKERNEL" 2127340 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-909 2126514 2126589 2126702 "PMINS" 2126816 NIL PMINS (NIL T) -7 NIL NIL) (-908 2125942 2126011 2126227 "PMFS" 2126439 NIL PMFS (NIL T T T) -7 NIL NIL) (-907 2125170 2125288 2125493 "PMDOWN" 2125819 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-906 2124333 2124492 2124674 "PMASS" 2125008 T PMASS (NIL) -7 NIL NIL) (-905 2123607 2123718 2123881 "PMASSFS" 2124219 NIL PMASSFS (NIL T T) -7 NIL NIL) (-904 2123262 2123330 2123424 "PLOTTOOL" 2123533 T PLOTTOOL (NIL) -7 NIL NIL) (-903 2117884 2119073 2120221 "PLOT" 2122134 T PLOT (NIL) -8 NIL NIL) (-902 2113698 2114732 2115653 "PLOT3D" 2116983 T PLOT3D (NIL) -8 NIL NIL) (-901 2112610 2112787 2113022 "PLOT1" 2113502 NIL PLOT1 (NIL T) -7 NIL NIL) (-900 2088004 2092676 2097527 "PLEQN" 2107876 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-899 2087322 2087444 2087624 "PINTERP" 2087869 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-898 2087015 2087062 2087165 "PINTERPA" 2087269 NIL PINTERPA (NIL T T) -7 NIL NIL) (-897 2086300 2086821 2086908 "PI" 2086948 T PI (NIL) -8 NIL NIL) (-896 2084732 2085673 2085701 "PID" 2085883 T PID (NIL) -9 NIL 2086017) (-895 2084457 2084494 2084582 "PICOERCE" 2084689 NIL PICOERCE (NIL T) -7 NIL NIL) (-894 2083777 2083916 2084092 "PGROEB" 2084313 NIL PGROEB (NIL T) -7 NIL NIL) (-893 2079364 2080178 2081083 "PGE" 2082892 T PGE (NIL) -7 NIL NIL) (-892 2077488 2077734 2078100 "PGCD" 2079081 NIL PGCD (NIL T T T T) -7 NIL NIL) (-891 2076826 2076929 2077090 "PFRPAC" 2077372 NIL PFRPAC (NIL T) -7 NIL NIL) (-890 2073506 2075374 2075727 "PFR" 2076505 NIL PFR (NIL T) -8 NIL NIL) (-889 2071895 2072139 2072464 "PFOTOOLS" 2073253 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-888 2070428 2070667 2071018 "PFOQ" 2071652 NIL PFOQ (NIL T T T) -7 NIL NIL) (-887 2068901 2069113 2069476 "PFO" 2070212 NIL PFO (NIL T T T T T) -7 NIL NIL) (-886 2065489 2068790 2068859 "PF" 2068864 NIL PF (NIL NIL) -8 NIL NIL) (-885 2062958 2064195 2064223 "PFECAT" 2064808 T PFECAT (NIL) -9 NIL 2065192) (-884 2062403 2062557 2062771 "PFECAT-" 2062776 NIL PFECAT- (NIL T) -8 NIL NIL) (-883 2061007 2061258 2061559 "PFBRU" 2062152 NIL PFBRU (NIL T T) -7 NIL NIL) (-882 2058874 2059225 2059657 "PFBR" 2060658 NIL PFBR (NIL T T T T) -7 NIL NIL) (-881 2054790 2056250 2056926 "PERM" 2058231 NIL PERM (NIL T) -8 NIL NIL) (-880 2050056 2050997 2051867 "PERMGRP" 2053953 NIL PERMGRP (NIL T) -8 NIL NIL) (-879 2048188 2049119 2049160 "PERMCAT" 2049606 NIL PERMCAT (NIL T) -9 NIL 2049911) (-878 2047841 2047882 2048006 "PERMAN" 2048141 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-877 2045281 2047410 2047541 "PENDTREE" 2047743 NIL PENDTREE (NIL T) -8 NIL NIL) (-876 2043394 2044128 2044169 "PDRING" 2044826 NIL PDRING (NIL T) -9 NIL 2045112) (-875 2042497 2042715 2043077 "PDRING-" 2043082 NIL PDRING- (NIL T T) -8 NIL NIL) (-874 2039638 2040389 2041080 "PDEPROB" 2041826 T PDEPROB (NIL) -8 NIL NIL) (-873 2037185 2037687 2038242 "PDEPACK" 2039103 T PDEPACK (NIL) -7 NIL NIL) (-872 2036097 2036287 2036538 "PDECOMP" 2036984 NIL PDECOMP (NIL T T) -7 NIL NIL) (-871 2033702 2034519 2034547 "PDECAT" 2035334 T PDECAT (NIL) -9 NIL 2036047) (-870 2033453 2033486 2033576 "PCOMP" 2033663 NIL PCOMP (NIL T T) -7 NIL NIL) (-869 2031658 2032254 2032551 "PBWLB" 2033182 NIL PBWLB (NIL T) -8 NIL NIL) (-868 2024162 2025731 2027069 "PATTERN" 2030341 NIL PATTERN (NIL T) -8 NIL NIL) (-867 2023794 2023851 2023960 "PATTERN2" 2024099 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-866 2021551 2021939 2022396 "PATTERN1" 2023383 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-865 2018946 2019500 2019981 "PATRES" 2021116 NIL PATRES (NIL T T) -8 NIL NIL) (-864 2018510 2018577 2018709 "PATRES2" 2018873 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-863 2016393 2016798 2017205 "PATMATCH" 2018177 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-862 2015929 2016112 2016153 "PATMAB" 2016260 NIL PATMAB (NIL T) -9 NIL 2016343) (-861 2014474 2014783 2015041 "PATLRES" 2015734 NIL PATLRES (NIL T T T) -8 NIL NIL) (-860 2014020 2014143 2014184 "PATAB" 2014189 NIL PATAB (NIL T) -9 NIL 2014361) (-859 2011501 2012033 2012606 "PARTPERM" 2013467 T PARTPERM (NIL) -7 NIL NIL) (-858 2011122 2011185 2011287 "PARSURF" 2011432 NIL PARSURF (NIL T) -8 NIL NIL) (-857 2010754 2010811 2010920 "PARSU2" 2011059 NIL PARSU2 (NIL T T) -7 NIL NIL) (-856 2010518 2010558 2010625 "PARSER" 2010707 T PARSER (NIL) -7 NIL NIL) (-855 2010139 2010202 2010304 "PARSCURV" 2010449 NIL PARSCURV (NIL T) -8 NIL NIL) (-854 2009771 2009828 2009937 "PARSC2" 2010076 NIL PARSC2 (NIL T T) -7 NIL NIL) (-853 2009410 2009468 2009565 "PARPCURV" 2009707 NIL PARPCURV (NIL T) -8 NIL NIL) (-852 2009042 2009099 2009208 "PARPC2" 2009347 NIL PARPC2 (NIL T T) -7 NIL NIL) (-851 2008562 2008648 2008767 "PAN2EXPR" 2008943 T PAN2EXPR (NIL) -7 NIL NIL) (-850 2007368 2007683 2007911 "PALETTE" 2008354 T PALETTE (NIL) -8 NIL NIL) (-849 2005836 2006373 2006733 "PAIR" 2007054 NIL PAIR (NIL T T) -8 NIL NIL) (-848 1999744 2005095 2005289 "PADICRC" 2005691 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-847 1993010 1999090 1999274 "PADICRAT" 1999592 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-846 1991360 1992947 1992992 "PADIC" 1992997 NIL PADIC (NIL NIL) -8 NIL NIL) (-845 1988605 1990135 1990175 "PADICCT" 1990756 NIL PADICCT (NIL NIL) -9 NIL 1991038) (-844 1987562 1987762 1988030 "PADEPAC" 1988392 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-843 1986774 1986907 1987113 "PADE" 1987424 NIL PADE (NIL T T T) -7 NIL NIL) (-842 1984824 1985610 1985927 "OWP" 1986541 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-841 1983933 1984429 1984601 "OVAR" 1984692 NIL OVAR (NIL NIL) -8 NIL NIL) (-840 1983197 1983318 1983479 "OUT" 1983792 T OUT (NIL) -7 NIL NIL) (-839 1972104 1974306 1976506 "OUTFORM" 1981017 T OUTFORM (NIL) -8 NIL NIL) (-838 1971525 1971701 1971828 "OUTBFILE" 1971997 T OUTBFILE (NIL) -8 NIL NIL) (-837 1971162 1971245 1971273 "OUTBCON" 1971424 T OUTBCON (NIL) -9 NIL 1971509) (-836 1971002 1971037 1971113 "OUTBCON-" 1971118 NIL OUTBCON- (NIL T) -8 NIL NIL) (-835 1970410 1970731 1970820 "OSI" 1970933 T OSI (NIL) -8 NIL NIL) (-834 1969966 1970278 1970306 "OSGROUP" 1970311 T OSGROUP (NIL) -9 NIL 1970333) (-833 1968711 1968938 1969223 "ORTHPOL" 1969713 NIL ORTHPOL (NIL T) -7 NIL NIL) (-832 1966121 1968370 1968509 "OREUP" 1968654 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-831 1963559 1965812 1965939 "ORESUP" 1966063 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-830 1961087 1961587 1962148 "OREPCTO" 1963048 NIL OREPCTO (NIL T T) -7 NIL NIL) (-829 1954998 1957165 1957206 "OREPCAT" 1959554 NIL OREPCAT (NIL T) -9 NIL 1960658) (-828 1952145 1952927 1953985 "OREPCAT-" 1953990 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-827 1951322 1951594 1951622 "ORDSET" 1951931 T ORDSET (NIL) -9 NIL 1952095) (-826 1950841 1950963 1951156 "ORDSET-" 1951161 NIL ORDSET- (NIL T) -8 NIL NIL) (-825 1949495 1950252 1950280 "ORDRING" 1950482 T ORDRING (NIL) -9 NIL 1950607) (-824 1949140 1949234 1949378 "ORDRING-" 1949383 NIL ORDRING- (NIL T) -8 NIL NIL) (-823 1948546 1948983 1949011 "ORDMON" 1949016 T ORDMON (NIL) -9 NIL 1949037) (-822 1947708 1947855 1948050 "ORDFUNS" 1948395 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-821 1947219 1947578 1947606 "ORDFIN" 1947611 T ORDFIN (NIL) -9 NIL 1947632) (-820 1943811 1945805 1946214 "ORDCOMP" 1946843 NIL ORDCOMP (NIL T) -8 NIL NIL) (-819 1943077 1943204 1943390 "ORDCOMP2" 1943671 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-818 1939584 1940467 1941304 "OPTPROB" 1942260 T OPTPROB (NIL) -8 NIL NIL) (-817 1936386 1937025 1937729 "OPTPACK" 1938900 T OPTPACK (NIL) -7 NIL NIL) (-816 1934099 1934839 1934867 "OPTCAT" 1935686 T OPTCAT (NIL) -9 NIL 1936336) (-815 1933867 1933906 1933972 "OPQUERY" 1934053 T OPQUERY (NIL) -7 NIL NIL) (-814 1931033 1932178 1932682 "OP" 1933396 NIL OP (NIL T) -8 NIL NIL) (-813 1927878 1929830 1930199 "ONECOMP" 1930697 NIL ONECOMP (NIL T) -8 NIL NIL) (-812 1927183 1927298 1927472 "ONECOMP2" 1927750 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-811 1926602 1926708 1926838 "OMSERVER" 1927073 T OMSERVER (NIL) -7 NIL NIL) (-810 1923490 1926042 1926082 "OMSAGG" 1926143 NIL OMSAGG (NIL T) -9 NIL 1926207) (-809 1922113 1922376 1922658 "OMPKG" 1923228 T OMPKG (NIL) -7 NIL NIL) (-808 1921543 1921646 1921674 "OM" 1921973 T OM (NIL) -9 NIL NIL) (-807 1920125 1921092 1921261 "OMLO" 1921424 NIL OMLO (NIL T T) -8 NIL NIL) (-806 1919050 1919197 1919424 "OMEXPR" 1919951 NIL OMEXPR (NIL T) -7 NIL NIL) (-805 1918368 1918596 1918732 "OMERR" 1918934 T OMERR (NIL) -8 NIL NIL) (-804 1917546 1917789 1917949 "OMERRK" 1918228 T OMERRK (NIL) -8 NIL NIL) (-803 1917024 1917223 1917331 "OMENC" 1917458 T OMENC (NIL) -8 NIL NIL) (-802 1910919 1912104 1913275 "OMDEV" 1915873 T OMDEV (NIL) -8 NIL NIL) (-801 1909988 1910159 1910353 "OMCONN" 1910745 T OMCONN (NIL) -8 NIL NIL) (-800 1908644 1909586 1909614 "OINTDOM" 1909619 T OINTDOM (NIL) -9 NIL 1909640) (-799 1904450 1905634 1906350 "OFMONOID" 1907960 NIL OFMONOID (NIL T) -8 NIL NIL) (-798 1903888 1904387 1904432 "ODVAR" 1904437 NIL ODVAR (NIL T) -8 NIL NIL) (-797 1901098 1903385 1903570 "ODR" 1903763 NIL ODR (NIL T T NIL) -8 NIL NIL) (-796 1893442 1900874 1901000 "ODPOL" 1901005 NIL ODPOL (NIL T) -8 NIL NIL) (-795 1887318 1893314 1893419 "ODP" 1893424 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-794 1886084 1886299 1886574 "ODETOOLS" 1887092 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-793 1883053 1883709 1884425 "ODESYS" 1885417 NIL ODESYS (NIL T T) -7 NIL NIL) (-792 1877935 1878843 1879868 "ODERTRIC" 1882128 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-791 1877361 1877443 1877637 "ODERED" 1877847 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-790 1874249 1874797 1875474 "ODERAT" 1876784 NIL ODERAT (NIL T T) -7 NIL NIL) (-789 1871209 1871673 1872270 "ODEPRRIC" 1873778 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-788 1869078 1869647 1870156 "ODEPROB" 1870720 T ODEPROB (NIL) -8 NIL NIL) (-787 1865600 1866083 1866730 "ODEPRIM" 1868557 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-786 1864849 1864951 1865211 "ODEPAL" 1865492 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-785 1861011 1861802 1862666 "ODEPACK" 1864005 T ODEPACK (NIL) -7 NIL NIL) (-784 1860044 1860151 1860380 "ODEINT" 1860900 NIL ODEINT (NIL T T) -7 NIL NIL) (-783 1854145 1855570 1857017 "ODEIFTBL" 1858617 T ODEIFTBL (NIL) -8 NIL NIL) (-782 1849480 1850266 1851225 "ODEEF" 1853304 NIL ODEEF (NIL T T) -7 NIL NIL) (-781 1848815 1848904 1849134 "ODECONST" 1849385 NIL ODECONST (NIL T T T) -7 NIL NIL) (-780 1846966 1847601 1847629 "ODECAT" 1848234 T ODECAT (NIL) -9 NIL 1848765) (-779 1843873 1846678 1846797 "OCT" 1846879 NIL OCT (NIL T) -8 NIL NIL) (-778 1843511 1843554 1843681 "OCTCT2" 1843824 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-777 1838372 1840772 1840812 "OC" 1841909 NIL OC (NIL T) -9 NIL 1842767) (-776 1835599 1836347 1837337 "OC-" 1837431 NIL OC- (NIL T T) -8 NIL NIL) (-775 1834977 1835419 1835447 "OCAMON" 1835452 T OCAMON (NIL) -9 NIL 1835473) (-774 1834534 1834849 1834877 "OASGP" 1834882 T OASGP (NIL) -9 NIL 1834902) (-773 1833821 1834284 1834312 "OAMONS" 1834352 T OAMONS (NIL) -9 NIL 1834395) (-772 1833261 1833668 1833696 "OAMON" 1833701 T OAMON (NIL) -9 NIL 1833721) (-771 1832565 1833057 1833085 "OAGROUP" 1833090 T OAGROUP (NIL) -9 NIL 1833110) (-770 1832255 1832305 1832393 "NUMTUBE" 1832509 NIL NUMTUBE (NIL T) -7 NIL NIL) (-769 1825828 1827346 1828882 "NUMQUAD" 1830739 T NUMQUAD (NIL) -7 NIL NIL) (-768 1821584 1822572 1823597 "NUMODE" 1824823 T NUMODE (NIL) -7 NIL NIL) (-767 1818965 1819819 1819847 "NUMINT" 1820770 T NUMINT (NIL) -9 NIL 1821534) (-766 1817913 1818110 1818328 "NUMFMT" 1818767 T NUMFMT (NIL) -7 NIL NIL) (-765 1804272 1807217 1809749 "NUMERIC" 1815420 NIL NUMERIC (NIL T) -7 NIL NIL) (-764 1798669 1803721 1803816 "NTSCAT" 1803821 NIL NTSCAT (NIL T T T T) -9 NIL 1803860) (-763 1797863 1798028 1798221 "NTPOLFN" 1798508 NIL NTPOLFN (NIL T) -7 NIL NIL) (-762 1785703 1794688 1795500 "NSUP" 1797084 NIL NSUP (NIL T) -8 NIL NIL) (-761 1785335 1785392 1785501 "NSUP2" 1785640 NIL NSUP2 (NIL T T) -7 NIL NIL) (-760 1775332 1785109 1785242 "NSMP" 1785247 NIL NSMP (NIL T T) -8 NIL NIL) (-759 1773764 1774065 1774422 "NREP" 1775020 NIL NREP (NIL T) -7 NIL NIL) (-758 1772355 1772607 1772965 "NPCOEF" 1773507 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-757 1771421 1771536 1771752 "NORMRETR" 1772236 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-756 1769462 1769752 1770161 "NORMPK" 1771129 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-755 1769147 1769175 1769299 "NORMMA" 1769428 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-754 1768974 1769104 1769133 "NONE" 1769138 T NONE (NIL) -8 NIL NIL) (-753 1768763 1768792 1768861 "NONE1" 1768938 NIL NONE1 (NIL T) -7 NIL NIL) (-752 1768246 1768308 1768494 "NODE1" 1768695 NIL NODE1 (NIL T T) -7 NIL NIL) (-751 1766586 1767409 1767664 "NNI" 1768011 T NNI (NIL) -8 NIL NIL) (-750 1765006 1765319 1765683 "NLINSOL" 1766254 NIL NLINSOL (NIL T) -7 NIL NIL) (-749 1761173 1762141 1763063 "NIPROB" 1764104 T NIPROB (NIL) -8 NIL NIL) (-748 1759930 1760164 1760466 "NFINTBAS" 1760935 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-747 1758638 1758869 1759150 "NCODIV" 1759698 NIL NCODIV (NIL T T) -7 NIL NIL) (-746 1758400 1758437 1758512 "NCNTFRAC" 1758595 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-745 1756580 1756944 1757364 "NCEP" 1758025 NIL NCEP (NIL T) -7 NIL NIL) (-744 1755491 1756230 1756258 "NASRING" 1756368 T NASRING (NIL) -9 NIL 1756442) (-743 1755286 1755330 1755424 "NASRING-" 1755429 NIL NASRING- (NIL T) -8 NIL NIL) (-742 1754439 1754938 1754966 "NARNG" 1755083 T NARNG (NIL) -9 NIL 1755174) (-741 1754131 1754198 1754332 "NARNG-" 1754337 NIL NARNG- (NIL T) -8 NIL NIL) (-740 1753010 1753217 1753452 "NAGSP" 1753916 T NAGSP (NIL) -7 NIL NIL) (-739 1744282 1745966 1747639 "NAGS" 1751357 T NAGS (NIL) -7 NIL NIL) (-738 1742830 1743138 1743469 "NAGF07" 1743971 T NAGF07 (NIL) -7 NIL NIL) (-737 1737368 1738659 1739966 "NAGF04" 1741543 T NAGF04 (NIL) -7 NIL NIL) (-736 1730336 1731950 1733583 "NAGF02" 1735755 T NAGF02 (NIL) -7 NIL NIL) (-735 1725560 1726660 1727777 "NAGF01" 1729239 T NAGF01 (NIL) -7 NIL NIL) (-734 1719188 1720754 1722339 "NAGE04" 1723995 T NAGE04 (NIL) -7 NIL NIL) (-733 1710357 1712478 1714608 "NAGE02" 1717078 T NAGE02 (NIL) -7 NIL NIL) (-732 1706310 1707257 1708221 "NAGE01" 1709413 T NAGE01 (NIL) -7 NIL NIL) (-731 1704105 1704639 1705197 "NAGD03" 1705772 T NAGD03 (NIL) -7 NIL NIL) (-730 1695855 1697783 1699737 "NAGD02" 1702171 T NAGD02 (NIL) -7 NIL NIL) (-729 1689666 1691091 1692531 "NAGD01" 1694435 T NAGD01 (NIL) -7 NIL NIL) (-728 1685875 1686697 1687534 "NAGC06" 1688849 T NAGC06 (NIL) -7 NIL NIL) (-727 1684340 1684672 1685028 "NAGC05" 1685539 T NAGC05 (NIL) -7 NIL NIL) (-726 1683716 1683835 1683979 "NAGC02" 1684216 T NAGC02 (NIL) -7 NIL NIL) (-725 1682776 1683333 1683373 "NAALG" 1683452 NIL NAALG (NIL T) -9 NIL 1683513) (-724 1682611 1682640 1682730 "NAALG-" 1682735 NIL NAALG- (NIL T T) -8 NIL NIL) (-723 1676561 1677669 1678856 "MULTSQFR" 1681507 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-722 1675880 1675955 1676139 "MULTFACT" 1676473 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-721 1669103 1672968 1673021 "MTSCAT" 1674091 NIL MTSCAT (NIL T T) -9 NIL 1674605) (-720 1668815 1668869 1668961 "MTHING" 1669043 NIL MTHING (NIL T) -7 NIL NIL) (-719 1668607 1668640 1668700 "MSYSCMD" 1668775 T MSYSCMD (NIL) -7 NIL NIL) (-718 1664719 1667362 1667682 "MSET" 1668320 NIL MSET (NIL T) -8 NIL NIL) (-717 1661814 1664280 1664321 "MSETAGG" 1664326 NIL MSETAGG (NIL T) -9 NIL 1664360) (-716 1657697 1659193 1659938 "MRING" 1661114 NIL MRING (NIL T T) -8 NIL NIL) (-715 1657263 1657330 1657461 "MRF2" 1657624 NIL MRF2 (NIL T T T) -7 NIL NIL) (-714 1656881 1656916 1657060 "MRATFAC" 1657222 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-713 1654493 1654788 1655219 "MPRFF" 1656586 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-712 1648553 1654347 1654444 "MPOLY" 1654449 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-711 1648043 1648078 1648286 "MPCPF" 1648512 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-710 1647557 1647600 1647784 "MPC3" 1647994 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-709 1646752 1646833 1647054 "MPC2" 1647472 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-708 1645053 1645390 1645780 "MONOTOOL" 1646412 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-707 1644304 1644595 1644623 "MONOID" 1644842 T MONOID (NIL) -9 NIL 1644989) (-706 1643850 1643969 1644150 "MONOID-" 1644155 NIL MONOID- (NIL T) -8 NIL NIL) (-705 1634900 1640806 1640865 "MONOGEN" 1641539 NIL MONOGEN (NIL T T) -9 NIL 1641995) (-704 1632118 1632853 1633853 "MONOGEN-" 1633972 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-703 1630977 1631397 1631425 "MONADWU" 1631817 T MONADWU (NIL) -9 NIL 1632055) (-702 1630349 1630508 1630756 "MONADWU-" 1630761 NIL MONADWU- (NIL T) -8 NIL NIL) (-701 1629734 1629952 1629980 "MONAD" 1630187 T MONAD (NIL) -9 NIL 1630299) (-700 1629419 1629497 1629629 "MONAD-" 1629634 NIL MONAD- (NIL T) -8 NIL NIL) (-699 1627735 1628332 1628611 "MOEBIUS" 1629172 NIL MOEBIUS (NIL T) -8 NIL NIL) (-698 1627127 1627505 1627545 "MODULE" 1627550 NIL MODULE (NIL T) -9 NIL 1627576) (-697 1626695 1626791 1626981 "MODULE-" 1626986 NIL MODULE- (NIL T T) -8 NIL NIL) (-696 1624410 1625059 1625386 "MODRING" 1626519 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-695 1621396 1622515 1623036 "MODOP" 1623939 NIL MODOP (NIL T T) -8 NIL NIL) (-694 1619583 1620035 1620376 "MODMONOM" 1621195 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-693 1609291 1617775 1618198 "MODMON" 1619211 NIL MODMON (NIL T T) -8 NIL NIL) (-692 1606482 1608135 1608411 "MODFIELD" 1609166 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-691 1605486 1605763 1605953 "MMLFORM" 1606312 T MMLFORM (NIL) -8 NIL NIL) (-690 1605012 1605055 1605234 "MMAP" 1605437 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-689 1603281 1604014 1604055 "MLO" 1604478 NIL MLO (NIL T) -9 NIL 1604720) (-688 1600648 1601163 1601765 "MLIFT" 1602762 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-687 1600039 1600123 1600277 "MKUCFUNC" 1600559 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-686 1599638 1599708 1599831 "MKRECORD" 1599962 NIL MKRECORD (NIL T T) -7 NIL NIL) (-685 1598686 1598847 1599075 "MKFUNC" 1599449 NIL MKFUNC (NIL T) -7 NIL NIL) (-684 1598074 1598178 1598334 "MKFLCFN" 1598569 NIL MKFLCFN (NIL T) -7 NIL NIL) (-683 1597500 1597867 1597956 "MKCHSET" 1598018 NIL MKCHSET (NIL T) -8 NIL NIL) (-682 1596777 1596879 1597064 "MKBCFUNC" 1597393 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-681 1593519 1596331 1596467 "MINT" 1596661 T MINT (NIL) -8 NIL NIL) (-680 1592331 1592574 1592851 "MHROWRED" 1593274 NIL MHROWRED (NIL T) -7 NIL NIL) (-679 1587757 1590866 1591271 "MFLOAT" 1591946 T MFLOAT (NIL) -8 NIL NIL) (-678 1587114 1587190 1587361 "MFINFACT" 1587669 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-677 1583429 1584277 1585161 "MESH" 1586250 T MESH (NIL) -7 NIL NIL) (-676 1581819 1582131 1582484 "MDDFACT" 1583116 NIL MDDFACT (NIL T) -7 NIL NIL) (-675 1578661 1580978 1581019 "MDAGG" 1581274 NIL MDAGG (NIL T) -9 NIL 1581417) (-674 1568441 1577954 1578161 "MCMPLX" 1578474 T MCMPLX (NIL) -8 NIL NIL) (-673 1567582 1567728 1567928 "MCDEN" 1568290 NIL MCDEN (NIL T T) -7 NIL NIL) (-672 1565472 1565742 1566122 "MCALCFN" 1567312 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-671 1564383 1564556 1564797 "MAYBE" 1565270 NIL MAYBE (NIL T) -8 NIL NIL) (-670 1561995 1562518 1563080 "MATSTOR" 1563854 NIL MATSTOR (NIL T) -7 NIL NIL) (-669 1558001 1561367 1561615 "MATRIX" 1561780 NIL MATRIX (NIL T) -8 NIL NIL) (-668 1553770 1554474 1555210 "MATLIN" 1557358 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-667 1543924 1547062 1547139 "MATCAT" 1552019 NIL MATCAT (NIL T T T) -9 NIL 1553436) (-666 1540288 1541301 1542657 "MATCAT-" 1542662 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-665 1538882 1539035 1539368 "MATCAT2" 1540123 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-664 1536994 1537318 1537702 "MAPPKG3" 1538557 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-663 1535975 1536148 1536370 "MAPPKG2" 1536818 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-662 1534474 1534758 1535085 "MAPPKG1" 1535681 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-661 1533580 1533880 1534057 "MAPPAST" 1534317 T MAPPAST (NIL) -8 NIL NIL) (-660 1533191 1533249 1533372 "MAPHACK3" 1533516 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-659 1532783 1532844 1532958 "MAPHACK2" 1533123 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-658 1532221 1532324 1532466 "MAPHACK1" 1532674 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-657 1530327 1530921 1531225 "MAGMA" 1531949 NIL MAGMA (NIL T) -8 NIL NIL) (-656 1529833 1530051 1530142 "MACROAST" 1530256 T MACROAST (NIL) -8 NIL NIL) (-655 1526300 1528072 1528533 "M3D" 1529405 NIL M3D (NIL T) -8 NIL NIL) (-654 1520455 1524670 1524711 "LZSTAGG" 1525493 NIL LZSTAGG (NIL T) -9 NIL 1525788) (-653 1516428 1517586 1519043 "LZSTAGG-" 1519048 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-652 1513542 1514319 1514806 "LWORD" 1515973 NIL LWORD (NIL T) -8 NIL NIL) (-651 1513145 1513346 1513421 "LSTAST" 1513487 T LSTAST (NIL) -8 NIL NIL) (-650 1506346 1512916 1513050 "LSQM" 1513055 NIL LSQM (NIL NIL T) -8 NIL NIL) (-649 1505570 1505709 1505937 "LSPP" 1506201 NIL LSPP (NIL T T T T) -7 NIL NIL) (-648 1503382 1503683 1504139 "LSMP" 1505259 NIL LSMP (NIL T T T T) -7 NIL NIL) (-647 1500161 1500835 1501565 "LSMP1" 1502684 NIL LSMP1 (NIL T) -7 NIL NIL) (-646 1494087 1499329 1499370 "LSAGG" 1499432 NIL LSAGG (NIL T) -9 NIL 1499510) (-645 1490782 1491706 1492919 "LSAGG-" 1492924 NIL LSAGG- (NIL T T) -8 NIL NIL) (-644 1488408 1489926 1490175 "LPOLY" 1490577 NIL LPOLY (NIL T T) -8 NIL NIL) (-643 1487990 1488075 1488198 "LPEFRAC" 1488317 NIL LPEFRAC (NIL T) -7 NIL NIL) (-642 1486337 1487084 1487337 "LO" 1487822 NIL LO (NIL T T T) -8 NIL NIL) (-641 1485989 1486101 1486129 "LOGIC" 1486240 T LOGIC (NIL) -9 NIL 1486321) (-640 1485851 1485874 1485945 "LOGIC-" 1485950 NIL LOGIC- (NIL T) -8 NIL NIL) (-639 1485044 1485184 1485377 "LODOOPS" 1485707 NIL LODOOPS (NIL T T) -7 NIL NIL) (-638 1482502 1484960 1485026 "LODO" 1485031 NIL LODO (NIL T NIL) -8 NIL NIL) (-637 1481040 1481275 1481628 "LODOF" 1482249 NIL LODOF (NIL T T) -7 NIL NIL) (-636 1477483 1479880 1479921 "LODOCAT" 1480359 NIL LODOCAT (NIL T) -9 NIL 1480570) (-635 1477216 1477274 1477401 "LODOCAT-" 1477406 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-634 1474571 1477057 1477175 "LODO2" 1477180 NIL LODO2 (NIL T T) -8 NIL NIL) (-633 1472041 1474508 1474553 "LODO1" 1474558 NIL LODO1 (NIL T) -8 NIL NIL) (-632 1470901 1471066 1471378 "LODEEF" 1471864 NIL LODEEF (NIL T T T) -7 NIL NIL) (-631 1466187 1469031 1469072 "LNAGG" 1470019 NIL LNAGG (NIL T) -9 NIL 1470463) (-630 1465334 1465548 1465890 "LNAGG-" 1465895 NIL LNAGG- (NIL T T) -8 NIL NIL) (-629 1461497 1462259 1462898 "LMOPS" 1464749 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-628 1460892 1461254 1461295 "LMODULE" 1461356 NIL LMODULE (NIL T) -9 NIL 1461398) (-627 1458138 1460537 1460660 "LMDICT" 1460802 NIL LMDICT (NIL T) -8 NIL NIL) (-626 1457864 1458046 1458106 "LITERAL" 1458111 NIL LITERAL (NIL T) -8 NIL NIL) (-625 1451091 1456810 1457108 "LIST" 1457599 NIL LIST (NIL T) -8 NIL NIL) (-624 1450616 1450690 1450829 "LIST3" 1451011 NIL LIST3 (NIL T T T) -7 NIL NIL) (-623 1449623 1449801 1450029 "LIST2" 1450434 NIL LIST2 (NIL T T) -7 NIL NIL) (-622 1447757 1448069 1448468 "LIST2MAP" 1449270 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-621 1446507 1447143 1447184 "LINEXP" 1447439 NIL LINEXP (NIL T) -9 NIL 1447588) (-620 1445154 1445414 1445711 "LINDEP" 1446259 NIL LINDEP (NIL T T) -7 NIL NIL) (-619 1441921 1442640 1443417 "LIMITRF" 1444409 NIL LIMITRF (NIL T) -7 NIL NIL) (-618 1440197 1440492 1440908 "LIMITPS" 1441616 NIL LIMITPS (NIL T T) -7 NIL NIL) (-617 1434652 1439708 1439936 "LIE" 1440018 NIL LIE (NIL T T) -8 NIL NIL) (-616 1433701 1434144 1434184 "LIECAT" 1434324 NIL LIECAT (NIL T) -9 NIL 1434475) (-615 1433542 1433569 1433657 "LIECAT-" 1433662 NIL LIECAT- (NIL T T) -8 NIL NIL) (-614 1426154 1432991 1433156 "LIB" 1433397 T LIB (NIL) -8 NIL NIL) (-613 1421791 1422672 1423607 "LGROBP" 1425271 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-612 1419657 1419931 1420293 "LF" 1421512 NIL LF (NIL T T) -7 NIL NIL) (-611 1418497 1419189 1419217 "LFCAT" 1419424 T LFCAT (NIL) -9 NIL 1419563) (-610 1415401 1416029 1416717 "LEXTRIPK" 1417861 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-609 1412172 1412971 1413474 "LEXP" 1414981 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-608 1411675 1411893 1411985 "LETAST" 1412100 T LETAST (NIL) -8 NIL NIL) (-607 1410073 1410386 1410787 "LEADCDET" 1411357 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-606 1409263 1409337 1409566 "LAZM3PK" 1409994 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-605 1404219 1407340 1407878 "LAUPOL" 1408775 NIL LAUPOL (NIL T T) -8 NIL NIL) (-604 1403784 1403828 1403996 "LAPLACE" 1404169 NIL LAPLACE (NIL T T) -7 NIL NIL) (-603 1401758 1402885 1403136 "LA" 1403617 NIL LA (NIL T T T) -8 NIL NIL) (-602 1400859 1401409 1401450 "LALG" 1401512 NIL LALG (NIL T) -9 NIL 1401571) (-601 1400573 1400632 1400768 "LALG-" 1400773 NIL LALG- (NIL T T) -8 NIL NIL) (-600 1399373 1399790 1400019 "KTVLOGIC" 1400364 T KTVLOGIC (NIL) -8 NIL NIL) (-599 1398277 1398464 1398763 "KOVACIC" 1399173 NIL KOVACIC (NIL T T) -7 NIL NIL) (-598 1398112 1398136 1398177 "KONVERT" 1398239 NIL KONVERT (NIL T) -9 NIL NIL) (-597 1397947 1397971 1398012 "KOERCE" 1398074 NIL KOERCE (NIL T) -9 NIL NIL) (-596 1395681 1396441 1396834 "KERNEL" 1397586 NIL KERNEL (NIL T) -8 NIL NIL) (-595 1395183 1395264 1395394 "KERNEL2" 1395595 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-594 1389034 1393722 1393776 "KDAGG" 1394153 NIL KDAGG (NIL T T) -9 NIL 1394359) (-593 1388563 1388687 1388892 "KDAGG-" 1388897 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-592 1381738 1388224 1388379 "KAFILE" 1388441 NIL KAFILE (NIL T) -8 NIL NIL) (-591 1376193 1381249 1381477 "JORDAN" 1381559 NIL JORDAN (NIL T T) -8 NIL NIL) (-590 1375599 1375842 1375963 "JOINAST" 1376092 T JOINAST (NIL) -8 NIL NIL) (-589 1375328 1375387 1375474 "JAVACODE" 1375532 T JAVACODE (NIL) -8 NIL NIL) (-588 1371627 1373533 1373587 "IXAGG" 1374516 NIL IXAGG (NIL T T) -9 NIL 1374975) (-587 1370546 1370852 1371271 "IXAGG-" 1371276 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-586 1366126 1370468 1370527 "IVECTOR" 1370532 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-585 1364892 1365129 1365395 "ITUPLE" 1365893 NIL ITUPLE (NIL T) -8 NIL NIL) (-584 1363328 1363505 1363811 "ITRIGMNP" 1364714 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-583 1362073 1362277 1362560 "ITFUN3" 1363104 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-582 1361705 1361762 1361871 "ITFUN2" 1362010 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-581 1359542 1360567 1360866 "ITAYLOR" 1361439 NIL ITAYLOR (NIL T) -8 NIL NIL) (-580 1348524 1353679 1354842 "ISUPS" 1358412 NIL ISUPS (NIL T) -8 NIL NIL) (-579 1347628 1347768 1348004 "ISUMP" 1348371 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-578 1342892 1347429 1347508 "ISTRING" 1347581 NIL ISTRING (NIL NIL) -8 NIL NIL) (-577 1342395 1342613 1342705 "ISAST" 1342820 T ISAST (NIL) -8 NIL NIL) (-576 1341605 1341686 1341902 "IRURPK" 1342309 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-575 1340541 1340742 1340982 "IRSN" 1341385 T IRSN (NIL) -7 NIL NIL) (-574 1338570 1338925 1339361 "IRRF2F" 1340179 NIL IRRF2F (NIL T) -7 NIL NIL) (-573 1338317 1338355 1338431 "IRREDFFX" 1338526 NIL IRREDFFX (NIL T) -7 NIL NIL) (-572 1336932 1337191 1337490 "IROOT" 1338050 NIL IROOT (NIL T) -7 NIL NIL) (-571 1333564 1334616 1335308 "IR" 1336272 NIL IR (NIL T) -8 NIL NIL) (-570 1331177 1331672 1332238 "IR2" 1333042 NIL IR2 (NIL T T) -7 NIL NIL) (-569 1330249 1330362 1330583 "IR2F" 1331060 NIL IR2F (NIL T T) -7 NIL NIL) (-568 1330040 1330074 1330134 "IPRNTPK" 1330209 T IPRNTPK (NIL) -7 NIL NIL) (-567 1326659 1329929 1329998 "IPF" 1330003 NIL IPF (NIL NIL) -8 NIL NIL) (-566 1325022 1326584 1326641 "IPADIC" 1326646 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-565 1324522 1324726 1324836 "IOMODE" 1324932 T IOMODE (NIL) -8 NIL NIL) (-564 1324286 1324426 1324454 "IOBCON" 1324459 T IOBCON (NIL) -9 NIL 1324480) (-563 1323783 1323841 1324031 "INVLAPLA" 1324222 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-562 1313432 1315785 1318171 "INTTR" 1321447 NIL INTTR (NIL T T) -7 NIL NIL) (-561 1309776 1310518 1311382 "INTTOOLS" 1312617 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-560 1309362 1309453 1309570 "INTSLPE" 1309679 T INTSLPE (NIL) -7 NIL NIL) (-559 1307357 1309285 1309344 "INTRVL" 1309349 NIL INTRVL (NIL T) -8 NIL NIL) (-558 1304959 1305471 1306046 "INTRF" 1306842 NIL INTRF (NIL T) -7 NIL NIL) (-557 1304370 1304467 1304609 "INTRET" 1304857 NIL INTRET (NIL T) -7 NIL NIL) (-556 1302367 1302756 1303226 "INTRAT" 1303978 NIL INTRAT (NIL T T) -7 NIL NIL) (-555 1299595 1300178 1300804 "INTPM" 1301852 NIL INTPM (NIL T T) -7 NIL NIL) (-554 1296298 1296897 1297642 "INTPAF" 1298981 NIL INTPAF (NIL T T T) -7 NIL NIL) (-553 1291477 1292439 1293490 "INTPACK" 1295267 T INTPACK (NIL) -7 NIL NIL) (-552 1288389 1291206 1291333 "INT" 1291370 T INT (NIL) -8 NIL NIL) (-551 1287641 1287793 1288001 "INTHERTR" 1288231 NIL INTHERTR (NIL T T) -7 NIL NIL) (-550 1287080 1287160 1287348 "INTHERAL" 1287555 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-549 1284926 1285369 1285826 "INTHEORY" 1286643 T INTHEORY (NIL) -7 NIL NIL) (-548 1276234 1277855 1279634 "INTG0" 1283278 NIL INTG0 (NIL T T T) -7 NIL NIL) (-547 1256807 1261597 1266407 "INTFTBL" 1271444 T INTFTBL (NIL) -8 NIL NIL) (-546 1256056 1256194 1256367 "INTFACT" 1256666 NIL INTFACT (NIL T) -7 NIL NIL) (-545 1253441 1253887 1254451 "INTEF" 1255610 NIL INTEF (NIL T T) -7 NIL NIL) (-544 1251943 1252648 1252676 "INTDOM" 1252977 T INTDOM (NIL) -9 NIL 1253184) (-543 1251312 1251486 1251728 "INTDOM-" 1251733 NIL INTDOM- (NIL T) -8 NIL NIL) (-542 1247845 1249731 1249785 "INTCAT" 1250584 NIL INTCAT (NIL T) -9 NIL 1250904) (-541 1247318 1247420 1247548 "INTBIT" 1247737 T INTBIT (NIL) -7 NIL NIL) (-540 1245989 1246143 1246457 "INTALG" 1247163 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-539 1245446 1245536 1245706 "INTAF" 1245893 NIL INTAF (NIL T T) -7 NIL NIL) (-538 1238900 1245256 1245396 "INTABL" 1245401 NIL INTABL (NIL T T T) -8 NIL NIL) (-537 1233955 1236626 1236654 "INS" 1237588 T INS (NIL) -9 NIL 1238252) (-536 1231195 1231966 1232940 "INS-" 1233013 NIL INS- (NIL T) -8 NIL NIL) (-535 1229970 1230197 1230495 "INPSIGN" 1230948 NIL INPSIGN (NIL T T) -7 NIL NIL) (-534 1229088 1229205 1229402 "INPRODPF" 1229850 NIL INPRODPF (NIL T T) -7 NIL NIL) (-533 1227982 1228099 1228336 "INPRODFF" 1228968 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-532 1226982 1227134 1227394 "INNMFACT" 1227818 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-531 1226179 1226276 1226464 "INMODGCD" 1226881 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-530 1224688 1224932 1225256 "INFSP" 1225924 NIL INFSP (NIL T T T) -7 NIL NIL) (-529 1223872 1223989 1224172 "INFPROD0" 1224568 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-528 1220754 1221937 1222452 "INFORM" 1223365 T INFORM (NIL) -8 NIL NIL) (-527 1220364 1220424 1220522 "INFORM1" 1220689 NIL INFORM1 (NIL T) -7 NIL NIL) (-526 1219887 1219976 1220090 "INFINITY" 1220270 T INFINITY (NIL) -7 NIL NIL) (-525 1218504 1218753 1219074 "INEP" 1219635 NIL INEP (NIL T T T) -7 NIL NIL) (-524 1217780 1218401 1218466 "INDE" 1218471 NIL INDE (NIL T) -8 NIL NIL) (-523 1217344 1217412 1217529 "INCRMAPS" 1217707 NIL INCRMAPS (NIL T) -7 NIL NIL) (-522 1216647 1216840 1216990 "INBFILE" 1217214 T INBFILE (NIL) -8 NIL NIL) (-521 1211958 1212883 1213827 "INBFF" 1215735 NIL INBFF (NIL T) -7 NIL NIL) (-520 1211627 1211703 1211731 "INBCON" 1211864 T INBCON (NIL) -9 NIL 1211942) (-519 1211467 1211502 1211578 "INBCON-" 1211583 NIL INBCON- (NIL T) -8 NIL NIL) (-518 1210969 1211188 1211280 "INAST" 1211395 T INAST (NIL) -8 NIL NIL) (-517 1210423 1210648 1210754 "IMPTAST" 1210883 T IMPTAST (NIL) -8 NIL NIL) (-516 1206917 1210267 1210371 "IMATRIX" 1210376 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-515 1205629 1205752 1206067 "IMATQF" 1206773 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-514 1203849 1204076 1204413 "IMATLIN" 1205385 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-513 1198475 1203773 1203831 "ILIST" 1203836 NIL ILIST (NIL T NIL) -8 NIL NIL) (-512 1196428 1198335 1198448 "IIARRAY2" 1198453 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-511 1191861 1196339 1196403 "IFF" 1196408 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-510 1191235 1191478 1191594 "IFAST" 1191765 T IFAST (NIL) -8 NIL NIL) (-509 1186278 1190527 1190715 "IFARRAY" 1191092 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-508 1185485 1186182 1186255 "IFAMON" 1186260 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-507 1185069 1185134 1185188 "IEVALAB" 1185395 NIL IEVALAB (NIL T T) -9 NIL NIL) (-506 1184744 1184812 1184972 "IEVALAB-" 1184977 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-505 1184402 1184658 1184721 "IDPO" 1184726 NIL IDPO (NIL T T) -8 NIL NIL) (-504 1183679 1184291 1184366 "IDPOAMS" 1184371 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-503 1183013 1183568 1183643 "IDPOAM" 1183648 NIL IDPOAM (NIL T T) -8 NIL NIL) (-502 1182098 1182348 1182401 "IDPC" 1182814 NIL IDPC (NIL T T) -9 NIL 1182963) (-501 1181594 1181990 1182063 "IDPAM" 1182068 NIL IDPAM (NIL T T) -8 NIL NIL) (-500 1180997 1181486 1181559 "IDPAG" 1181564 NIL IDPAG (NIL T T) -8 NIL NIL) (-499 1180727 1180912 1180962 "IDENT" 1180967 T IDENT (NIL) -8 NIL NIL) (-498 1176982 1177830 1178725 "IDECOMP" 1179884 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-497 1169855 1170905 1171952 "IDEAL" 1176018 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-496 1169019 1169131 1169330 "ICDEN" 1169739 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-495 1168118 1168499 1168646 "ICARD" 1168892 T ICARD (NIL) -8 NIL NIL) (-494 1166178 1166491 1166896 "IBPTOOLS" 1167795 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-493 1161812 1165798 1165911 "IBITS" 1166097 NIL IBITS (NIL NIL) -8 NIL NIL) (-492 1158535 1159111 1159806 "IBATOOL" 1161229 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-491 1156315 1156776 1157309 "IBACHIN" 1158070 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-490 1154192 1156161 1156264 "IARRAY2" 1156269 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-489 1150345 1154118 1154175 "IARRAY1" 1154180 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-488 1144340 1148759 1149239 "IAN" 1149885 T IAN (NIL) -8 NIL NIL) (-487 1143851 1143908 1144081 "IALGFACT" 1144277 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-486 1143379 1143492 1143520 "HYPCAT" 1143727 T HYPCAT (NIL) -9 NIL NIL) (-485 1142917 1143034 1143220 "HYPCAT-" 1143225 NIL HYPCAT- (NIL T) -8 NIL NIL) (-484 1142539 1142712 1142795 "HOSTNAME" 1142854 T HOSTNAME (NIL) -8 NIL NIL) (-483 1139218 1140549 1140590 "HOAGG" 1141571 NIL HOAGG (NIL T) -9 NIL 1142250) (-482 1137812 1138211 1138737 "HOAGG-" 1138742 NIL HOAGG- (NIL T T) -8 NIL NIL) (-481 1131700 1137253 1137419 "HEXADEC" 1137666 T HEXADEC (NIL) -8 NIL NIL) (-480 1130448 1130670 1130933 "HEUGCD" 1131477 NIL HEUGCD (NIL T) -7 NIL NIL) (-479 1129551 1130285 1130415 "HELLFDIV" 1130420 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-478 1127779 1129328 1129416 "HEAP" 1129495 NIL HEAP (NIL T) -8 NIL NIL) (-477 1127070 1127331 1127465 "HEADAST" 1127665 T HEADAST (NIL) -8 NIL NIL) (-476 1120990 1126985 1127047 "HDP" 1127052 NIL HDP (NIL NIL T) -8 NIL NIL) (-475 1114741 1120625 1120777 "HDMP" 1120891 NIL HDMP (NIL NIL T) -8 NIL NIL) (-474 1114066 1114205 1114369 "HB" 1114597 T HB (NIL) -7 NIL NIL) (-473 1107563 1113912 1114016 "HASHTBL" 1114021 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-472 1107066 1107284 1107376 "HASAST" 1107491 T HASAST (NIL) -8 NIL NIL) (-471 1104880 1106690 1106871 "HACKPI" 1106905 T HACKPI (NIL) -8 NIL NIL) (-470 1100575 1104733 1104846 "GTSET" 1104851 NIL GTSET (NIL T T T T) -8 NIL NIL) (-469 1094101 1100453 1100551 "GSTBL" 1100556 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-468 1086414 1093132 1093397 "GSERIES" 1093892 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-467 1085581 1085972 1086000 "GROUP" 1086203 T GROUP (NIL) -9 NIL 1086337) (-466 1084947 1085106 1085357 "GROUP-" 1085362 NIL GROUP- (NIL T) -8 NIL NIL) (-465 1083316 1083635 1084022 "GROEBSOL" 1084624 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-464 1082256 1082518 1082569 "GRMOD" 1083098 NIL GRMOD (NIL T T) -9 NIL 1083266) (-463 1082024 1082060 1082188 "GRMOD-" 1082193 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-462 1077349 1078378 1079378 "GRIMAGE" 1081044 T GRIMAGE (NIL) -8 NIL NIL) (-461 1075816 1076076 1076400 "GRDEF" 1077045 T GRDEF (NIL) -7 NIL NIL) (-460 1075260 1075376 1075517 "GRAY" 1075695 T GRAY (NIL) -7 NIL NIL) (-459 1074491 1074871 1074922 "GRALG" 1075075 NIL GRALG (NIL T T) -9 NIL 1075168) (-458 1074152 1074225 1074388 "GRALG-" 1074393 NIL GRALG- (NIL T T T) -8 NIL NIL) (-457 1070956 1073737 1073915 "GPOLSET" 1074059 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-456 1070310 1070367 1070625 "GOSPER" 1070893 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-455 1066069 1066748 1067274 "GMODPOL" 1070009 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-454 1065074 1065258 1065496 "GHENSEL" 1065881 NIL GHENSEL (NIL T T) -7 NIL NIL) (-453 1059125 1059968 1060995 "GENUPS" 1064158 NIL GENUPS (NIL T T) -7 NIL NIL) (-452 1058822 1058873 1058962 "GENUFACT" 1059068 NIL GENUFACT (NIL T) -7 NIL NIL) (-451 1058234 1058311 1058476 "GENPGCD" 1058740 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-450 1057708 1057743 1057956 "GENMFACT" 1058193 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-449 1056276 1056531 1056838 "GENEEZ" 1057451 NIL GENEEZ (NIL T T) -7 NIL NIL) (-448 1050189 1055887 1056049 "GDMP" 1056199 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-447 1039566 1043960 1045066 "GCNAALG" 1049172 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-446 1038028 1038856 1038884 "GCDDOM" 1039139 T GCDDOM (NIL) -9 NIL 1039296) (-445 1037498 1037625 1037840 "GCDDOM-" 1037845 NIL GCDDOM- (NIL T) -8 NIL NIL) (-444 1036170 1036355 1036659 "GB" 1037277 NIL GB (NIL T T T T) -7 NIL NIL) (-443 1024790 1027116 1029508 "GBINTERN" 1033861 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-442 1022627 1022919 1023340 "GBF" 1024465 NIL GBF (NIL T T T T) -7 NIL NIL) (-441 1021408 1021573 1021840 "GBEUCLID" 1022443 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-440 1020757 1020882 1021031 "GAUSSFAC" 1021279 T GAUSSFAC (NIL) -7 NIL NIL) (-439 1019124 1019426 1019740 "GALUTIL" 1020476 NIL GALUTIL (NIL T) -7 NIL NIL) (-438 1017432 1017706 1018030 "GALPOLYU" 1018851 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-437 1014797 1015087 1015494 "GALFACTU" 1017129 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-436 1006603 1008102 1009710 "GALFACT" 1013229 NIL GALFACT (NIL T) -7 NIL NIL) (-435 1003991 1004649 1004677 "FVFUN" 1005833 T FVFUN (NIL) -9 NIL 1006553) (-434 1003257 1003439 1003467 "FVC" 1003758 T FVC (NIL) -9 NIL 1003941) (-433 1002899 1003054 1003135 "FUNCTION" 1003209 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-432 1000569 1001120 1001609 "FT" 1002430 T FT (NIL) -8 NIL NIL) (-431 999387 999870 1000073 "FTEM" 1000386 T FTEM (NIL) -8 NIL NIL) (-430 997643 997932 998336 "FSUPFACT" 999078 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-429 996040 996329 996661 "FST" 997331 T FST (NIL) -8 NIL NIL) (-428 995211 995317 995512 "FSRED" 995922 NIL FSRED (NIL T T) -7 NIL NIL) (-427 993890 994145 994499 "FSPRMELT" 994926 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-426 990975 991413 991912 "FSPECF" 993453 NIL FSPECF (NIL T T) -7 NIL NIL) (-425 973417 981859 981899 "FS" 985747 NIL FS (NIL T) -9 NIL 988036) (-424 962067 965057 969113 "FS-" 969410 NIL FS- (NIL T T) -8 NIL NIL) (-423 961581 961635 961812 "FSINT" 962008 NIL FSINT (NIL T T) -7 NIL NIL) (-422 959908 960574 960877 "FSERIES" 961360 NIL FSERIES (NIL T T) -8 NIL NIL) (-421 958922 959038 959269 "FSCINT" 959788 NIL FSCINT (NIL T T) -7 NIL NIL) (-420 955156 957866 957907 "FSAGG" 958277 NIL FSAGG (NIL T) -9 NIL 958536) (-419 952918 953519 954315 "FSAGG-" 954410 NIL FSAGG- (NIL T T) -8 NIL NIL) (-418 951960 952103 952330 "FSAGG2" 952771 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-417 949615 949894 950448 "FS2UPS" 951678 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-416 949197 949240 949395 "FS2" 949566 NIL FS2 (NIL T T T T) -7 NIL NIL) (-415 948054 948225 948534 "FS2EXPXP" 949022 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-414 947480 947595 947747 "FRUTIL" 947934 NIL FRUTIL (NIL T) -7 NIL NIL) (-413 938941 942979 944335 "FR" 946156 NIL FR (NIL T) -8 NIL NIL) (-412 934016 936659 936699 "FRNAALG" 938095 NIL FRNAALG (NIL T) -9 NIL 938702) (-411 929694 930765 932040 "FRNAALG-" 932790 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-410 929332 929375 929502 "FRNAAF2" 929645 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-409 927739 928186 928481 "FRMOD" 929144 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-408 925518 926122 926439 "FRIDEAL" 927530 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-407 924713 924800 925089 "FRIDEAL2" 925425 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-406 923955 924369 924410 "FRETRCT" 924415 NIL FRETRCT (NIL T) -9 NIL 924591) (-405 923067 923298 923649 "FRETRCT-" 923654 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-404 920317 921493 921552 "FRAMALG" 922434 NIL FRAMALG (NIL T T) -9 NIL 922726) (-403 918451 918906 919536 "FRAMALG-" 919759 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-402 912411 917926 918202 "FRAC" 918207 NIL FRAC (NIL T) -8 NIL NIL) (-401 912047 912104 912211 "FRAC2" 912348 NIL FRAC2 (NIL T T) -7 NIL NIL) (-400 911683 911740 911847 "FR2" 911984 NIL FR2 (NIL T T) -7 NIL NIL) (-399 906413 909261 909289 "FPS" 910408 T FPS (NIL) -9 NIL 910965) (-398 905862 905971 906135 "FPS-" 906281 NIL FPS- (NIL T) -8 NIL NIL) (-397 903368 905003 905031 "FPC" 905256 T FPC (NIL) -9 NIL 905398) (-396 903161 903201 903298 "FPC-" 903303 NIL FPC- (NIL T) -8 NIL NIL) (-395 902039 902649 902690 "FPATMAB" 902695 NIL FPATMAB (NIL T) -9 NIL 902847) (-394 899739 900215 900641 "FPARFRAC" 901676 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-393 895132 895631 896313 "FORTRAN" 899171 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-392 892848 893348 893887 "FORT" 894613 T FORT (NIL) -7 NIL NIL) (-391 890524 891086 891114 "FORTFN" 892174 T FORTFN (NIL) -9 NIL 892798) (-390 890288 890338 890366 "FORTCAT" 890425 T FORTCAT (NIL) -9 NIL 890487) (-389 888348 888831 889230 "FORMULA" 889909 T FORMULA (NIL) -8 NIL NIL) (-388 888136 888166 888235 "FORMULA1" 888312 NIL FORMULA1 (NIL T) -7 NIL NIL) (-387 887659 887711 887884 "FORDER" 888078 NIL FORDER (NIL T T T T) -7 NIL NIL) (-386 886755 886919 887112 "FOP" 887486 T FOP (NIL) -7 NIL NIL) (-385 885363 886035 886209 "FNLA" 886637 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-384 884031 884420 884448 "FNCAT" 885020 T FNCAT (NIL) -9 NIL 885313) (-383 883597 883990 884018 "FNAME" 884023 T FNAME (NIL) -8 NIL NIL) (-382 882295 883224 883252 "FMTC" 883257 T FMTC (NIL) -9 NIL 883293) (-381 878657 879818 880447 "FMONOID" 881699 NIL FMONOID (NIL T) -8 NIL NIL) (-380 877876 878399 878548 "FM" 878553 NIL FM (NIL T T) -8 NIL NIL) (-379 875300 875946 875974 "FMFUN" 877118 T FMFUN (NIL) -9 NIL 877826) (-378 874569 874750 874778 "FMC" 875068 T FMC (NIL) -9 NIL 875250) (-377 871781 872615 872669 "FMCAT" 873864 NIL FMCAT (NIL T T) -9 NIL 874359) (-376 870674 871547 871647 "FM1" 871726 NIL FM1 (NIL T T) -8 NIL NIL) (-375 868448 868864 869358 "FLOATRP" 870225 NIL FLOATRP (NIL T) -7 NIL NIL) (-374 861999 866104 866734 "FLOAT" 867838 T FLOAT (NIL) -8 NIL NIL) (-373 859437 859937 860515 "FLOATCP" 861466 NIL FLOATCP (NIL T) -7 NIL NIL) (-372 858266 859070 859111 "FLINEXP" 859116 NIL FLINEXP (NIL T) -9 NIL 859209) (-371 857420 857655 857983 "FLINEXP-" 857988 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-370 856496 856640 856864 "FLASORT" 857272 NIL FLASORT (NIL T T) -7 NIL NIL) (-369 853713 854555 854607 "FLALG" 855834 NIL FLALG (NIL T T) -9 NIL 856301) (-368 847497 851199 851240 "FLAGG" 852502 NIL FLAGG (NIL T) -9 NIL 853154) (-367 846223 846562 847052 "FLAGG-" 847057 NIL FLAGG- (NIL T T) -8 NIL NIL) (-366 845265 845408 845635 "FLAGG2" 846076 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-365 842278 843252 843311 "FINRALG" 844439 NIL FINRALG (NIL T T) -9 NIL 844947) (-364 841438 841667 842006 "FINRALG-" 842011 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-363 840844 841057 841085 "FINITE" 841281 T FINITE (NIL) -9 NIL 841388) (-362 833302 835463 835503 "FINAALG" 839170 NIL FINAALG (NIL T) -9 NIL 840623) (-361 828643 829684 830828 "FINAALG-" 832207 NIL FINAALG- (NIL T T) -8 NIL NIL) (-360 828038 828398 828501 "FILE" 828573 NIL FILE (NIL T) -8 NIL NIL) (-359 826722 827034 827088 "FILECAT" 827772 NIL FILECAT (NIL T T) -9 NIL 827988) (-358 824642 826136 826164 "FIELD" 826204 T FIELD (NIL) -9 NIL 826284) (-357 823262 823647 824158 "FIELD-" 824163 NIL FIELD- (NIL T) -8 NIL NIL) (-356 821140 821897 822244 "FGROUP" 822948 NIL FGROUP (NIL T) -8 NIL NIL) (-355 820230 820394 820614 "FGLMICPK" 820972 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-354 816097 820155 820212 "FFX" 820217 NIL FFX (NIL T NIL) -8 NIL NIL) (-353 815698 815759 815894 "FFSLPE" 816030 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-352 811691 812470 813266 "FFPOLY" 814934 NIL FFPOLY (NIL T) -7 NIL NIL) (-351 811195 811231 811440 "FFPOLY2" 811649 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-350 807081 811114 811177 "FFP" 811182 NIL FFP (NIL T NIL) -8 NIL NIL) (-349 802514 806992 807056 "FF" 807061 NIL FF (NIL NIL NIL) -8 NIL NIL) (-348 797675 801857 802047 "FFNBX" 802368 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-347 792649 796810 797068 "FFNBP" 797529 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-346 787317 791933 792144 "FFNB" 792482 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-345 786149 786347 786662 "FFINTBAS" 787114 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-344 782433 784608 784636 "FFIELDC" 785256 T FFIELDC (NIL) -9 NIL 785632) (-343 781096 781466 781963 "FFIELDC-" 781968 NIL FFIELDC- (NIL T) -8 NIL NIL) (-342 780666 780711 780835 "FFHOM" 781038 NIL FFHOM (NIL T T T) -7 NIL NIL) (-341 778364 778848 779365 "FFF" 780181 NIL FFF (NIL T) -7 NIL NIL) (-340 774017 778106 778207 "FFCGX" 778307 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-339 769684 773749 773856 "FFCGP" 773960 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-338 764902 769411 769519 "FFCG" 769620 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-337 746960 755996 756082 "FFCAT" 761247 NIL FFCAT (NIL T T T) -9 NIL 762698) (-336 742158 743205 744519 "FFCAT-" 745749 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-335 741569 741612 741847 "FFCAT2" 742109 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-334 730781 734541 735761 "FEXPR" 740421 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-333 729781 730216 730257 "FEVALAB" 730341 NIL FEVALAB (NIL T) -9 NIL 730602) (-332 728940 729150 729488 "FEVALAB-" 729493 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-331 727533 728323 728526 "FDIV" 728839 NIL FDIV (NIL T T T T) -8 NIL NIL) (-330 724599 725314 725429 "FDIVCAT" 726997 NIL FDIVCAT (NIL T T T T) -9 NIL 727434) (-329 724361 724388 724558 "FDIVCAT-" 724563 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-328 723581 723668 723945 "FDIV2" 724268 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-327 722267 722526 722815 "FCPAK1" 723312 T FCPAK1 (NIL) -7 NIL NIL) (-326 721395 721767 721908 "FCOMP" 722158 NIL FCOMP (NIL T) -8 NIL NIL) (-325 705030 708444 712005 "FC" 717854 T FC (NIL) -8 NIL NIL) (-324 697683 701664 701704 "FAXF" 703506 NIL FAXF (NIL T) -9 NIL 704198) (-323 694962 695617 696442 "FAXF-" 696907 NIL FAXF- (NIL T T) -8 NIL NIL) (-322 690062 694338 694514 "FARRAY" 694819 NIL FARRAY (NIL T) -8 NIL NIL) (-321 685469 687501 687554 "FAMR" 688577 NIL FAMR (NIL T T) -9 NIL 689037) (-320 684359 684661 685096 "FAMR-" 685101 NIL FAMR- (NIL T T T) -8 NIL NIL) (-319 683555 684281 684334 "FAMONOID" 684339 NIL FAMONOID (NIL T) -8 NIL NIL) (-318 681385 682069 682122 "FAMONC" 683063 NIL FAMONC (NIL T T) -9 NIL 683449) (-317 680077 681139 681276 "FAGROUP" 681281 NIL FAGROUP (NIL T) -8 NIL NIL) (-316 677872 678191 678594 "FACUTIL" 679758 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-315 676971 677156 677378 "FACTFUNC" 677682 NIL FACTFUNC (NIL T) -7 NIL NIL) (-314 669376 676222 676434 "EXPUPXS" 676827 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-313 666859 667399 667985 "EXPRTUBE" 668810 T EXPRTUBE (NIL) -7 NIL NIL) (-312 663053 663645 664382 "EXPRODE" 666198 NIL EXPRODE (NIL T T) -7 NIL NIL) (-311 648427 661708 662136 "EXPR" 662657 NIL EXPR (NIL T) -8 NIL NIL) (-310 642834 643421 644234 "EXPR2UPS" 647725 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-309 642470 642527 642634 "EXPR2" 642771 NIL EXPR2 (NIL T T) -7 NIL NIL) (-308 633877 641602 641899 "EXPEXPAN" 642307 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-307 633704 633834 633863 "EXIT" 633868 T EXIT (NIL) -8 NIL NIL) (-306 633211 633428 633519 "EXITAST" 633633 T EXITAST (NIL) -8 NIL NIL) (-305 632838 632900 633013 "EVALCYC" 633143 NIL EVALCYC (NIL T) -7 NIL NIL) (-304 632379 632497 632538 "EVALAB" 632708 NIL EVALAB (NIL T) -9 NIL 632812) (-303 631860 631982 632203 "EVALAB-" 632208 NIL EVALAB- (NIL T T) -8 NIL NIL) (-302 629363 630631 630659 "EUCDOM" 631214 T EUCDOM (NIL) -9 NIL 631564) (-301 627768 628210 628800 "EUCDOM-" 628805 NIL EUCDOM- (NIL T) -8 NIL NIL) (-300 615308 618066 620816 "ESTOOLS" 625038 T ESTOOLS (NIL) -7 NIL NIL) (-299 614940 614997 615106 "ESTOOLS2" 615245 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-298 614691 614733 614813 "ESTOOLS1" 614892 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-297 608616 610344 610372 "ES" 613140 T ES (NIL) -9 NIL 614549) (-296 603563 604850 606667 "ES-" 606831 NIL ES- (NIL T) -8 NIL NIL) (-295 599938 600698 601478 "ESCONT" 602803 T ESCONT (NIL) -7 NIL NIL) (-294 599683 599715 599797 "ESCONT1" 599900 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-293 599358 599408 599508 "ES2" 599627 NIL ES2 (NIL T T) -7 NIL NIL) (-292 598988 599046 599155 "ES1" 599294 NIL ES1 (NIL T T) -7 NIL NIL) (-291 598204 598333 598509 "ERROR" 598832 T ERROR (NIL) -7 NIL NIL) (-290 591707 598063 598154 "EQTBL" 598159 NIL EQTBL (NIL T T) -8 NIL NIL) (-289 584264 587021 588470 "EQ" 590291 NIL -3839 (NIL T) -8 NIL NIL) (-288 583896 583953 584062 "EQ2" 584201 NIL EQ2 (NIL T T) -7 NIL NIL) (-287 579188 580234 581327 "EP" 582835 NIL EP (NIL T) -7 NIL NIL) (-286 577770 578071 578388 "ENV" 578891 T ENV (NIL) -8 NIL NIL) (-285 576969 577489 577517 "ENTIRER" 577522 T ENTIRER (NIL) -9 NIL 577568) (-284 573471 574924 575294 "EMR" 576768 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-283 572615 572800 572854 "ELTAGG" 573234 NIL ELTAGG (NIL T T) -9 NIL 573445) (-282 572334 572396 572537 "ELTAGG-" 572542 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-281 572123 572152 572206 "ELTAB" 572290 NIL ELTAB (NIL T T) -9 NIL NIL) (-280 571249 571395 571594 "ELFUTS" 571974 NIL ELFUTS (NIL T T) -7 NIL NIL) (-279 570991 571047 571075 "ELEMFUN" 571180 T ELEMFUN (NIL) -9 NIL NIL) (-278 570861 570882 570950 "ELEMFUN-" 570955 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-277 565752 568961 569002 "ELAGG" 569942 NIL ELAGG (NIL T) -9 NIL 570405) (-276 564037 564471 565134 "ELAGG-" 565139 NIL ELAGG- (NIL T T) -8 NIL NIL) (-275 562694 562974 563269 "ELABEXPR" 563762 T ELABEXPR (NIL) -8 NIL NIL) (-274 555560 557361 558188 "EFUPXS" 561970 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-273 549010 550811 551621 "EFULS" 554836 NIL EFULS (NIL T T T) -8 NIL NIL) (-272 546432 546790 547269 "EFSTRUC" 548642 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-271 535504 537069 538629 "EF" 544947 NIL EF (NIL T T) -7 NIL NIL) (-270 534605 534989 535138 "EAB" 535375 T EAB (NIL) -8 NIL NIL) (-269 533814 534564 534592 "E04UCFA" 534597 T E04UCFA (NIL) -8 NIL NIL) (-268 533023 533773 533801 "E04NAFA" 533806 T E04NAFA (NIL) -8 NIL NIL) (-267 532232 532982 533010 "E04MBFA" 533015 T E04MBFA (NIL) -8 NIL NIL) (-266 531441 532191 532219 "E04JAFA" 532224 T E04JAFA (NIL) -8 NIL NIL) (-265 530652 531400 531428 "E04GCFA" 531433 T E04GCFA (NIL) -8 NIL NIL) (-264 529863 530611 530639 "E04FDFA" 530644 T E04FDFA (NIL) -8 NIL NIL) (-263 529072 529822 529850 "E04DGFA" 529855 T E04DGFA (NIL) -8 NIL NIL) (-262 523250 524597 525961 "E04AGNT" 527728 T E04AGNT (NIL) -7 NIL NIL) (-261 521974 522454 522494 "DVARCAT" 522969 NIL DVARCAT (NIL T) -9 NIL 523168) (-260 521178 521390 521704 "DVARCAT-" 521709 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-259 514078 520977 521106 "DSMP" 521111 NIL DSMP (NIL T T T) -8 NIL NIL) (-258 508888 510023 511091 "DROPT" 513030 T DROPT (NIL) -8 NIL NIL) (-257 508553 508612 508710 "DROPT1" 508823 NIL DROPT1 (NIL T) -7 NIL NIL) (-256 503668 504794 505931 "DROPT0" 507436 T DROPT0 (NIL) -7 NIL NIL) (-255 502013 502338 502724 "DRAWPT" 503302 T DRAWPT (NIL) -7 NIL NIL) (-254 496600 497523 498602 "DRAW" 500987 NIL DRAW (NIL T) -7 NIL NIL) (-253 496233 496286 496404 "DRAWHACK" 496541 NIL DRAWHACK (NIL T) -7 NIL NIL) (-252 494964 495233 495524 "DRAWCX" 495962 T DRAWCX (NIL) -7 NIL NIL) (-251 494480 494548 494699 "DRAWCURV" 494890 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-250 484951 486910 489025 "DRAWCFUN" 492385 T DRAWCFUN (NIL) -7 NIL NIL) (-249 481764 483646 483687 "DQAGG" 484316 NIL DQAGG (NIL T) -9 NIL 484589) (-248 470283 476980 477063 "DPOLCAT" 478915 NIL DPOLCAT (NIL T T T T) -9 NIL 479460) (-247 465122 466468 468426 "DPOLCAT-" 468431 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-246 458277 464983 465081 "DPMO" 465086 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-245 451335 458057 458224 "DPMM" 458229 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-244 450755 450958 451072 "DOMAIN" 451241 T DOMAIN (NIL) -8 NIL NIL) (-243 444506 450390 450542 "DMP" 450656 NIL DMP (NIL NIL T) -8 NIL NIL) (-242 444106 444162 444306 "DLP" 444444 NIL DLP (NIL T) -7 NIL NIL) (-241 437750 443207 443434 "DLIST" 443911 NIL DLIST (NIL T) -8 NIL NIL) (-240 434596 436605 436646 "DLAGG" 437196 NIL DLAGG (NIL T) -9 NIL 437425) (-239 433446 434076 434104 "DIVRING" 434196 T DIVRING (NIL) -9 NIL 434279) (-238 432683 432873 433173 "DIVRING-" 433178 NIL DIVRING- (NIL T) -8 NIL NIL) (-237 430785 431142 431548 "DISPLAY" 432297 T DISPLAY (NIL) -7 NIL NIL) (-236 424727 430699 430762 "DIRPROD" 430767 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-235 423575 423778 424043 "DIRPROD2" 424520 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-234 413113 419065 419118 "DIRPCAT" 419528 NIL DIRPCAT (NIL NIL T) -9 NIL 420368) (-233 410439 411081 411962 "DIRPCAT-" 412299 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-232 409726 409886 410072 "DIOSP" 410273 T DIOSP (NIL) -7 NIL NIL) (-231 406428 408638 408679 "DIOPS" 409113 NIL DIOPS (NIL T) -9 NIL 409342) (-230 405977 406091 406282 "DIOPS-" 406287 NIL DIOPS- (NIL T T) -8 NIL NIL) (-229 404889 405483 405511 "DIFRING" 405698 T DIFRING (NIL) -9 NIL 405808) (-228 404535 404612 404764 "DIFRING-" 404769 NIL DIFRING- (NIL T) -8 NIL NIL) (-227 402360 403598 403639 "DIFEXT" 404002 NIL DIFEXT (NIL T) -9 NIL 404296) (-226 400645 401073 401739 "DIFEXT-" 401744 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-225 397967 400177 400218 "DIAGG" 400223 NIL DIAGG (NIL T) -9 NIL 400243) (-224 397351 397508 397760 "DIAGG-" 397765 NIL DIAGG- (NIL T T) -8 NIL NIL) (-223 392816 396310 396587 "DHMATRIX" 397120 NIL DHMATRIX (NIL T) -8 NIL NIL) (-222 388428 389337 390347 "DFSFUN" 391826 T DFSFUN (NIL) -7 NIL NIL) (-221 383544 387359 387671 "DFLOAT" 388136 T DFLOAT (NIL) -8 NIL NIL) (-220 381772 382053 382449 "DFINTTLS" 383252 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-219 378837 379793 380193 "DERHAM" 381438 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-218 376686 378612 378701 "DEQUEUE" 378781 NIL DEQUEUE (NIL T) -8 NIL NIL) (-217 375901 376034 376230 "DEGRED" 376548 NIL DEGRED (NIL T T) -7 NIL NIL) (-216 372296 373041 373894 "DEFINTRF" 375129 NIL DEFINTRF (NIL T) -7 NIL NIL) (-215 369823 370292 370891 "DEFINTEF" 371815 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-214 369200 369443 369558 "DEFAST" 369728 T DEFAST (NIL) -8 NIL NIL) (-213 363088 368641 368807 "DECIMAL" 369054 T DECIMAL (NIL) -8 NIL NIL) (-212 360600 361058 361564 "DDFACT" 362632 NIL DDFACT (NIL T T) -7 NIL NIL) (-211 360196 360239 360390 "DBLRESP" 360551 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-210 357906 358240 358609 "DBASE" 359954 NIL DBASE (NIL T) -8 NIL NIL) (-209 357175 357386 357532 "DATABUF" 357805 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-208 356308 357134 357162 "D03FAFA" 357167 T D03FAFA (NIL) -8 NIL NIL) (-207 355442 356267 356295 "D03EEFA" 356300 T D03EEFA (NIL) -8 NIL NIL) (-206 353392 353858 354347 "D03AGNT" 354973 T D03AGNT (NIL) -7 NIL NIL) (-205 352708 353351 353379 "D02EJFA" 353384 T D02EJFA (NIL) -8 NIL NIL) (-204 352024 352667 352695 "D02CJFA" 352700 T D02CJFA (NIL) -8 NIL NIL) (-203 351340 351983 352011 "D02BHFA" 352016 T D02BHFA (NIL) -8 NIL NIL) (-202 350656 351299 351327 "D02BBFA" 351332 T D02BBFA (NIL) -8 NIL NIL) (-201 343854 345442 347048 "D02AGNT" 349070 T D02AGNT (NIL) -7 NIL NIL) (-200 341623 342145 342691 "D01WGTS" 343328 T D01WGTS (NIL) -7 NIL NIL) (-199 340718 341582 341610 "D01TRNS" 341615 T D01TRNS (NIL) -8 NIL NIL) (-198 339813 340677 340705 "D01GBFA" 340710 T D01GBFA (NIL) -8 NIL NIL) (-197 338908 339772 339800 "D01FCFA" 339805 T D01FCFA (NIL) -8 NIL NIL) (-196 338003 338867 338895 "D01ASFA" 338900 T D01ASFA (NIL) -8 NIL NIL) (-195 337098 337962 337990 "D01AQFA" 337995 T D01AQFA (NIL) -8 NIL NIL) (-194 336193 337057 337085 "D01APFA" 337090 T D01APFA (NIL) -8 NIL NIL) (-193 335288 336152 336180 "D01ANFA" 336185 T D01ANFA (NIL) -8 NIL NIL) (-192 334383 335247 335275 "D01AMFA" 335280 T D01AMFA (NIL) -8 NIL NIL) (-191 333478 334342 334370 "D01ALFA" 334375 T D01ALFA (NIL) -8 NIL NIL) (-190 332573 333437 333465 "D01AKFA" 333470 T D01AKFA (NIL) -8 NIL NIL) (-189 331668 332532 332560 "D01AJFA" 332565 T D01AJFA (NIL) -8 NIL NIL) (-188 324965 326516 328077 "D01AGNT" 330127 T D01AGNT (NIL) -7 NIL NIL) (-187 324302 324430 324582 "CYCLOTOM" 324833 T CYCLOTOM (NIL) -7 NIL NIL) (-186 321037 321750 322477 "CYCLES" 323595 T CYCLES (NIL) -7 NIL NIL) (-185 320349 320483 320654 "CVMP" 320898 NIL CVMP (NIL T) -7 NIL NIL) (-184 318120 318378 318754 "CTRIGMNP" 320077 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-183 317537 317743 317857 "CTOR" 318026 T CTOR (NIL) -8 NIL NIL) (-182 317073 317268 317369 "CTORKIND" 317456 T CTORKIND (NIL) -8 NIL NIL) (-181 316584 316773 316872 "CTORCALL" 316994 T CTORCALL (NIL) -8 NIL NIL) (-180 315958 316057 316210 "CSTTOOLS" 316481 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311757 312414 313172 "CRFP" 315270 NIL CRFP (NIL T T) -7 NIL NIL) (-178 311259 311478 311570 "CRCEAST" 311685 T CRCEAST (NIL) -8 NIL NIL) (-177 310306 310491 310719 "CRAPACK" 311063 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309690 309791 309995 "CPMATCH" 310182 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 309415 309443 309549 "CPIMA" 309656 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305779 306451 307169 "COORDSYS" 308750 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 305163 305292 305442 "CONTOUR" 305649 T CONTOUR (NIL) -8 NIL NIL) (-172 301089 303166 303658 "CONTFRAC" 304703 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300969 300990 301018 "CONDUIT" 301055 T CONDUIT (NIL) -9 NIL NIL) (-170 300162 300682 300710 "COMRING" 300715 T COMRING (NIL) -9 NIL 300767) (-169 299243 299520 299704 "COMPPROP" 299998 T COMPPROP (NIL) -8 NIL NIL) (-168 298904 298939 299067 "COMPLPAT" 299202 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 288963 298713 298822 "COMPLEX" 298827 NIL COMPLEX (NIL T) -8 NIL NIL) (-166 288599 288656 288763 "COMPLEX2" 288900 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-165 288317 288352 288450 "COMPFACT" 288558 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272715 282931 282971 "COMPCAT" 283975 NIL COMPCAT (NIL T) -9 NIL 285370) (-163 262230 265154 268781 "COMPCAT-" 269137 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261959 261987 262090 "COMMUPC" 262196 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261754 261787 261846 "COMMONOP" 261920 T COMMONOP (NIL) -7 NIL NIL) (-160 261337 261505 261592 "COMM" 261687 T COMM (NIL) -8 NIL NIL) (-159 260941 261141 261216 "COMMAAST" 261282 T COMMAAST (NIL) -8 NIL NIL) (-158 260190 260384 260412 "COMBOPC" 260750 T COMBOPC (NIL) -9 NIL 260925) (-157 259086 259296 259538 "COMBINAT" 259980 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 255284 255857 256497 "COMBF" 258508 NIL COMBF (NIL T T) -7 NIL NIL) (-155 254070 254400 254635 "COLOR" 255069 T COLOR (NIL) -8 NIL NIL) (-154 253573 253791 253883 "COLONAST" 253998 T COLONAST (NIL) -8 NIL NIL) (-153 253213 253260 253385 "CMPLXRT" 253520 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252688 252913 253012 "CLLCTAST" 253134 T CLLCTAST (NIL) -8 NIL NIL) (-151 248190 249218 250298 "CLIP" 251628 T CLIP (NIL) -7 NIL NIL) (-150 246572 247296 247535 "CLIF" 248017 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242794 244718 244759 "CLAGG" 245688 NIL CLAGG (NIL T) -9 NIL 246224) (-148 241216 241673 242256 "CLAGG-" 242261 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240760 240845 240985 "CINTSLPE" 241125 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 238261 238732 239280 "CHVAR" 240288 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237524 238044 238072 "CHARZ" 238077 T CHARZ (NIL) -9 NIL 238092) (-144 237278 237318 237396 "CHARPOL" 237478 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 236425 236978 237006 "CHARNZ" 237053 T CHARNZ (NIL) -9 NIL 237109) (-142 234450 235115 235450 "CHAR" 236110 T CHAR (NIL) -8 NIL NIL) (-141 234176 234237 234265 "CFCAT" 234376 T CFCAT (NIL) -9 NIL NIL) (-140 233421 233532 233714 "CDEN" 234060 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 229413 232574 232854 "CCLASS" 233161 T CCLASS (NIL) -8 NIL NIL) (-138 229332 229358 229393 "CATEGORY" 229398 T -10 (NIL) -8 NIL NIL) (-137 228806 229032 229131 "CATAST" 229253 T CATAST (NIL) -8 NIL NIL) (-136 228309 228527 228619 "CASEAST" 228734 T CASEAST (NIL) -8 NIL NIL) (-135 223361 224338 225091 "CARTEN" 227612 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222469 222617 222838 "CARTEN2" 223208 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220811 221619 221876 "CARD" 222232 T CARD (NIL) -8 NIL NIL) (-132 220414 220615 220690 "CAPSLAST" 220756 T CAPSLAST (NIL) -8 NIL NIL) (-131 219786 220114 220142 "CACHSET" 220274 T CACHSET (NIL) -9 NIL 220351) (-130 219282 219578 219606 "CABMON" 219656 T CABMON (NIL) -9 NIL 219712) (-129 218209 218637 218833 "BYTE" 219106 T BYTE (NIL) -8 NIL NIL) (-128 214157 218156 218190 "BYTEARY" 218195 T BYTEARY (NIL) -8 NIL NIL) (-127 211714 213849 213956 "BTREE" 214083 NIL BTREE (NIL T) -8 NIL NIL) (-126 209212 211362 211484 "BTOURN" 211624 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206630 208683 208724 "BTCAT" 208792 NIL BTCAT (NIL T) -9 NIL 208869) (-124 206297 206377 206526 "BTCAT-" 206531 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 201589 205440 205468 "BTAGG" 205690 T BTAGG (NIL) -9 NIL 205851) (-122 201079 201204 201410 "BTAGG-" 201415 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 198123 200357 200572 "BSTREE" 200896 NIL BSTREE (NIL T) -8 NIL NIL) (-120 197261 197387 197571 "BRILL" 197979 NIL BRILL (NIL T) -7 NIL NIL) (-119 193962 195989 196030 "BRAGG" 196679 NIL BRAGG (NIL T) -9 NIL 196936) (-118 192491 192897 193452 "BRAGG-" 193457 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185757 191837 192021 "BPADICRT" 192339 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 184107 185694 185739 "BPADIC" 185744 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183805 183835 183949 "BOUNDZRO" 184071 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 179320 180411 181278 "BOP" 182958 T BOP (NIL) -8 NIL NIL) (-113 176941 177385 177905 "BOP1" 178833 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175679 176365 176558 "BOOLEAN" 176768 T BOOLEAN (NIL) -8 NIL NIL) (-111 175041 175419 175473 "BMODULE" 175478 NIL BMODULE (NIL T T) -9 NIL 175543) (-110 170871 174839 174912 "BITS" 174988 T BITS (NIL) -8 NIL NIL) (-109 169968 170403 170555 "BINFILE" 170739 T BINFILE (NIL) -8 NIL NIL) (-108 169380 169502 169644 "BINDING" 169846 T BINDING (NIL) -8 NIL NIL) (-107 163272 168824 168989 "BINARY" 169235 T BINARY (NIL) -8 NIL NIL) (-106 161099 162527 162568 "BGAGG" 162828 NIL BGAGG (NIL T) -9 NIL 162965) (-105 160930 160962 161053 "BGAGG-" 161058 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 160028 160314 160519 "BFUNCT" 160745 T BFUNCT (NIL) -8 NIL NIL) (-103 158718 158896 159184 "BEZOUT" 159852 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155235 157570 157900 "BBTREE" 158421 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154969 155022 155050 "BASTYPE" 155169 T BASTYPE (NIL) -9 NIL NIL) (-100 154821 154850 154923 "BASTYPE-" 154928 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154259 154335 154485 "BALFACT" 154732 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 153142 153674 153860 "AUTOMOR" 154104 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152868 152873 152899 "ATTREG" 152904 T ATTREG (NIL) -9 NIL NIL) (-96 151147 151565 151917 "ATTRBUT" 152534 T ATTRBUT (NIL) -8 NIL NIL) (-95 150782 150975 151041 "ATTRAST" 151099 T ATTRAST (NIL) -8 NIL NIL) (-94 150318 150431 150457 "ATRIG" 150658 T ATRIG (NIL) -9 NIL NIL) (-93 150127 150168 150255 "ATRIG-" 150260 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149749 149909 149935 "ASTCAT" 149993 T ASTCAT (NIL) -9 NIL 150056) (-91 149476 149535 149654 "ASTCAT-" 149659 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147673 149252 149340 "ASTACK" 149419 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146178 146475 146840 "ASSOCEQ" 147355 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145210 145837 145961 "ASP9" 146085 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144974 145158 145197 "ASP8" 145202 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143843 144579 144721 "ASP80" 144863 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142742 143478 143610 "ASP7" 143742 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141696 142419 142537 "ASP78" 142655 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140665 141376 141493 "ASP77" 141610 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139577 140303 140434 "ASP74" 140565 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138477 139212 139344 "ASP73" 139476 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137432 138154 138272 "ASP6" 138390 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136380 137109 137227 "ASP55" 137345 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135330 136054 136173 "ASP50" 136292 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134418 135031 135141 "ASP4" 135251 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133506 134119 134229 "ASP49" 134339 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132291 133045 133213 "ASP42" 133395 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131068 131824 131994 "ASP41" 132178 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130018 130745 130863 "ASP35" 130981 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129783 129966 130005 "ASP34" 130010 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129520 129587 129663 "ASP33" 129738 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128415 129155 129287 "ASP31" 129419 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128180 128363 128402 "ASP30" 128407 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127915 127984 128060 "ASP29" 128135 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127680 127863 127902 "ASP28" 127907 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127445 127628 127667 "ASP27" 127672 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126529 127143 127254 "ASP24" 127365 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125445 126170 126300 "ASP20" 126430 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124533 125146 125256 "ASP1" 125366 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123477 124207 124326 "ASP19" 124445 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123214 123281 123357 "ASP12" 123432 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122066 122813 122957 "ASP10" 123101 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119965 121910 122001 "ARRAY2" 122006 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115781 119613 119727 "ARRAY1" 119882 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114813 114986 115207 "ARRAY12" 115604 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109172 111043 111118 "ARR2CAT" 113748 NIL ARR2CAT (NIL T T T) -9 NIL 114506) (-55 106606 107350 108304 "ARR2CAT-" 108309 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105354 105506 105812 "APPRULE" 106442 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105005 105053 105172 "APPLYORE" 105300 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103979 104270 104465 "ANY" 104828 T ANY (NIL) -8 NIL NIL) (-51 103257 103380 103537 "ANY1" 103853 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100822 101694 102021 "ANTISYM" 102981 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100337 100526 100623 "ANON" 100743 T ANON (NIL) -8 NIL NIL) (-48 94471 98878 99331 "AN" 99902 T AN (NIL) -8 NIL NIL) (-47 90852 92206 92257 "AMR" 93005 NIL AMR (NIL T T) -9 NIL 93605) (-46 89964 90185 90548 "AMR-" 90553 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74514 89881 89942 "ALIST" 89947 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71351 74108 74277 "ALGSC" 74432 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67907 68461 69068 "ALGPKG" 70791 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67184 67285 67469 "ALGMFACT" 67793 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62923 63608 64263 "ALGMANIP" 66707 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54329 62549 62699 "ALGFF" 62856 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53525 53656 53835 "ALGFACT" 54187 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52555 53121 53159 "ALGEBRA" 53219 NIL ALGEBRA (NIL T) -9 NIL 53278) (-37 52273 52332 52464 "ALGEBRA-" 52469 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34533 50276 50328 "ALAGG" 50464 NIL ALAGG (NIL T T) -9 NIL 50625) (-35 34069 34182 34208 "AHYP" 34409 T AHYP (NIL) -9 NIL NIL) (-34 33000 33248 33274 "AGG" 33773 T AGG (NIL) -9 NIL 34052) (-33 32434 32596 32810 "AGG-" 32815 NIL AGG- (NIL T) -8 NIL NIL) (-32 30111 30533 30951 "AF" 32076 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29836 29926 "ADDAST" 30039 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index b3ed780e..e2e4bfa8 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,3962 +1,2351 @@
-(730693 . 3432506633)
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538)))
- (-5 *2 (-1231 (-402 (-538)))) (-5 *1 (-1259 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538)))
- (-5 *2 (-1231 (-538))) (-5 *1 (-1259 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538))) (-5 *2 (-112))
- (-5 *1 (-1259 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-598 *2) (-170))) (-5 *2 (-866 *4)) (-5 *1 (-168 *4 *5 *3))
- (-4 *4 (-1074)) (-4 *3 (-164 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-1062 (-819 (-373)))))
- (-5 *2 (-622 (-1062 (-819 (-221))))) (-5 *1 (-298))))
- ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-373))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-388))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4))
- (-4 *4 (-1207 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3))
- (-5 *2 (-1231 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-400 *1)) (-4 *1 (-416 *3)) (-4 *3 (-545)) (-4 *3 (-827))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-457 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-527))))
- ((*1 *2 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5))
- (-4 *5 (-598 (-1149))) (-4 *4 (-773)) (-4 *5 (-827))))
- ((*1 *1 *2)
- (-3891
- (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5))
- (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538)))
- (-4 *5 (-598 (-1149))))
- (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))
- (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5))
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5))
- (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827))))
+(738747 . 3432784496)
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1131)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-258))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-402 (-552))))
+ (-5 *2 (-2 (|:| -3581 (-1129 *4)) (|:| -3593 (-1129 *4))))
+ (-5 *1 (-1135 *4)) (-5 *3 (-1129 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
+ (-5 *2
+ (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552))
+ (|:| |success| (-112))))
+ (-5 *1 (-769)) (-5 *5 (-552)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1073)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8)))
- (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131))
- (-5 *1 (-1043 *4 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1055))))
- ((*1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *2)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1077 *3 *4 *5 *2 *6)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *2 (-1074)) (-4 *6 (-1074))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1077 *3 *4 *2 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *2 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1077 *3 *2 *4 *5 *6)) (-4 *3 (-1074)) (-4 *2 (-1074))
- (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074))
- (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 *1)) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074))
- (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074))))
+ (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-112))
+ (-5 *1 (-352 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8)))
- (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131))
- (-5 *1 (-1118 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1154))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1154))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-1165))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-1165))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-760 *4 (-841 *5))) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-14 *5 (-622 (-1149))) (-5 *2 (-760 *4 (-841 *6))) (-5 *1 (-1258 *4 *5 *6))
- (-14 *6 (-622 (-1149)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-922 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-922 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6))
- (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-760 *4 (-841 *6))) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-14 *6 (-622 (-1149))) (-5 *2 (-922 (-1000 (-402 *4))))
- (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1143 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-1143 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6))
- (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6))))
- (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *6 (-622 (-1149)))
- (-5 *2 (-622 (-760 *4 (-841 *6)))) (-5 *1 (-1258 *4 *5 *6))
- (-14 *5 (-622 (-1149))))))
-(((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3))
- (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-926 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-4 *7 (-926 *6 *4 *5))
- (-5 *2 (-400 (-1143 *7))) (-5 *1 (-723 *4 *5 *6 *7)) (-5 *3 (-1143 *7))))
+ (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-112))
+ (-5 *1 (-521 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-827) (-544))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
+ (-5 *2 (-799 *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-400 *1)) (-4 *1 (-926 *3 *4 *5))))
+ (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4))
+ (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6)))
+ (-4 *8 (-337 *5 *6 *7))
+ (-4 *4 (-13 (-827) (-544) (-1014 (-552))))
+ (-5 *2 (-2 (|:| -2172 (-751)) (|:| -2487 *8)))
+ (-5 *1 (-887 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-446)) (-5 *2 (-400 *3))
- (-5 *1 (-955 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-926 *6 *4 *5))
- (-5 *2 (-400 (-1143 (-402 *7)))) (-5 *1 (-1145 *4 *5 *6 *7))
- (-5 *3 (-1143 (-402 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1190))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-400 *3)) (-5 *1 (-1211 *4 *3))
- (-4 *3 (-13 (-1207 *4) (-545) (-10 -8 (-15 -3495 ($ $ $)))))))
+ (|partial| -12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6))
+ (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4)))
+ (-4 *6 (-337 (-402 (-552)) *4 *5))
+ (-5 *2 (-2 (|:| -2172 (-751)) (|:| -2487 *6)))
+ (-5 *1 (-888 *4 *5 *6)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-374)) (-5 *1 (-1037)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-358)) (-4 *3 (-1025))
+ (-5 *1 (-1133 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
+ (-5 *2
+ (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552))
+ (|:| |success| (-112))))
+ (-5 *1 (-769)) (-5 *5 (-552)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1073)) (-5 *1 (-940 *3 *2)) (-4 *3 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-897))))
((*1 *2 *3)
- (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-14 *5 (-622 (-1149)))
- (-5 *2 (-622 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6)))))
- (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))))
+ (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-897))
+ (-5 *1 (-521 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-622 (-1000 (-402 *4)))))
- (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7))
- (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7))
- (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6))
- (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-622 (-1149)))
- (-5 *2 (-622 (-622 (-373)))) (-5 *1 (-999)) (-5 *5 (-373))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-622 (-1000 (-402 *4)))))
- (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7))
- (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7))
- (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7))
- (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6))
- (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-14 *5 (-622 (-1149)))
- (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4))))))
- (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5))))))
- (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149)))
- (-14 *7 (-622 (-1149)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5))))))
- (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149)))
- (-14 *7 (-622 (-1149)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5))))))
- (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149)))
- (-14 *7 (-622 (-1149)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4))))))
- (-5 *1 (-1258 *4 *5 *6)) (-5 *3 (-622 (-922 *4))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-622 (-1149))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-1022 *5 *6)))
- (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-1022 *5 *6)))
- (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996)))
- (-5 *2 (-622 (-1022 *4 *5))) (-5 *1 (-1258 *4 *5 *6))
- (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))))
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-827) (-544))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
+ (-5 *2 (-799 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1126 *4) (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1257 *4))
- (-4 *4 (-1185))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-622 (-1126 *5)) (-622 (-1126 *5)))) (-5 *4 (-538))
- (-5 *2 (-622 (-1126 *5))) (-5 *1 (-1257 *5)) (-4 *5 (-1185)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-895)) (-4 *6 (-13 (-545) (-827))) (-5 *2 (-622 (-309 *6)))
- (-5 *1 (-217 *5 *6)) (-5 *3 (-309 *6)) (-4 *5 (-1025))))
- ((*1 *2 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-569 *5)) (-4 *5 (-13 (-29 *4) (-1171)))
- (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-622 *5))
- (-5 *1 (-571 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-569 (-402 (-922 *4))))
- (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538))))
- (-5 *2 (-622 (-309 *4))) (-5 *1 (-574 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1122 *3))))
+ (-12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1208 *5))
+ (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7))
+ (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-112))
+ (-5 *1 (-887 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-622 *1)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825))
- (-4 *2 (-1122 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1247 (-1149) *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1025))))
+ (-12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6))
+ (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4)))
+ (-4 *6 (-337 (-402 (-552)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-888 *4 *5 *6)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-374)) (-5 *1 (-1037)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-552))) (-5 *5 (-1 (-1129 *4))) (-4 *4 (-358))
+ (-4 *4 (-1025)) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
+ (-5 *2
+ (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552))
+ (|:| |success| (-112))))
+ (-5 *1 (-769)) (-5 *5 (-552)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-625 *3)) (-5 *1 (-937 *3)) (-4 *3 (-537)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1232 *4)) (-5 *3 (-552)) (-4 *4 (-344))
+ (-5 *1 (-521 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))
((*1 *2 *1)
- (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827))
- (-4 *4 (-1025)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1247 (-1149) *3)) (-4 *3 (-1025)) (-5 *1 (-1253 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
- (-5 *1 (-1256 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| |k| (-1149)) (|:| |c| (-1253 *3)))))
- (-5 *1 (-1253 *3)) (-4 *3 (-1025))))
+ (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| |k| *3) (|:| |c| (-1256 *3 *4)))))
- (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-538))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-751))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-895))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-155))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171))) (-5 *1 (-223 *3))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-707))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-707))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1085)) (-4 *2 (-1185))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1085)) (-4 *2 (-1185))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-130))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1074))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2 *1)
- (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-4316 *3) (-751)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6))
- (-2 (|:| -2492 *5) (|:| -2493 *6))))
- (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-827))
- (-4 *2 (-926 *4 *6 (-841 *3)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5))
- (-4 *5 (-926 *2 *3 *4))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-527)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1032))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074))
- (-4 *7 (-1074)) (-5 *2 (-1 *7 *5)) (-5 *1 (-664 *5 *6 *7))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-666 *3 *2 *4)) (-4 *3 (-1025)) (-4 *2 (-367 *3))
- (-4 *4 (-367 *3))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-666 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *2 (-367 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-701)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
- ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-545))
- (-5 *1 (-945 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1032))))
- ((*1 *1 *1 *1) (-4 *1 (-1085)))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *2 (-234 *3 *4))
- (-4 *5 (-234 *3 *4))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4))
- (-4 *2 (-234 *3 *4))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2))
- (-4 *2 (-926 *3 (-524 *4) *4))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-919 (-221))) (-5 *3 (-221)) (-5 *1 (-1182))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-707))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-707))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-538)) (-4 *1 (-1230 *3)) (-4 *3 (-1185)) (-4 *3 (-21))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))))
- ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-622 (-1149)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827)))
- (-14 *3 (-622 (-1149)))))
- ((*1 *1 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1074))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-622 (-1149))) (-4 *3 (-170)) (-4 *5 (-234 (-4316 *2) (-751)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2492 *4) (|:| -2493 *5))
- (-2 (|:| -2492 *4) (|:| -2493 *5))))
- (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-827))
- (-4 *7 (-926 *3 *5 (-841 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-827))))
- ((*1 *1 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1025)) (-4 *3 (-707))))
- ((*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))))
- ((*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-622 (-1149)))))
- ((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185))
- (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185))
- (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185))
- (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-538))
- (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8))
- (-5 *1 (-135 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170))
- (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1025) (-827)))
- (-5 *1 (-219 *3 *4)) (-14 *4 (-622 (-1149)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-751)) (-4 *6 (-1185))
- (-4 *7 (-1185)) (-5 *2 (-235 *5 *7)) (-5 *1 (-236 *5 *6 *7))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-288 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-288 *6)) (-5 *1 (-289 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-595 *1)) (-4 *1 (-293))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1131)) (-5 *5 (-595 *6)) (-4 *6 (-293))
- (-4 *2 (-1185)) (-5 *1 (-294 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-595 *5)) (-4 *5 (-293)) (-4 *2 (-293))
- (-5 *1 (-295 *5 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-669 *5)) (-4 *5 (-1025)) (-4 *6 (-1025))
- (-5 *2 (-669 *6)) (-5 *1 (-300 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-827)) (-4 *6 (-827))
- (-5 *2 (-309 *6)) (-5 *1 (-310 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-328 *5 *6 *7 *8)) (-4 *5 (-358))
- (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7))
- (-4 *9 (-358)) (-4 *10 (-1207 *9)) (-4 *11 (-1207 (-402 *10)))
- (-5 *2 (-328 *9 *10 *11 *12)) (-5 *1 (-329 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-337 *9 *10 *11))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1074))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1190)) (-4 *8 (-1190)) (-4 *6 (-1207 *5))
- (-4 *7 (-1207 (-402 *6))) (-4 *9 (-1207 *8)) (-4 *2 (-337 *8 *9 *10))
- (-5 *1 (-338 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-337 *5 *6 *7))
- (-4 *10 (-1207 (-402 *9)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *2 (-367 *6))
- (-5 *1 (-368 *5 *4 *6 *2)) (-4 *4 (-367 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-379 *3 *4)) (-4 *3 (-1025))
- (-4 *4 (-1074))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-545)) (-5 *1 (-400 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-545)) (-4 *6 (-545))
- (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-545)) (-4 *6 (-545))
- (-5 *2 (-402 *6)) (-5 *1 (-403 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302))
- (-4 *6 (-967 *5)) (-4 *7 (-1207 *6)) (-4 *8 (-13 (-405 *6 *7) (-1014 *6)))
- (-4 *9 (-302)) (-4 *10 (-967 *9)) (-4 *11 (-1207 *10))
- (-5 *2 (-408 *9 *10 *11 *12)) (-5 *1 (-409 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-405 *10 *11) (-1014 *10)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-413 *6))
- (-5 *1 (-411 *4 *5 *2 *6)) (-4 *4 (-413 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1025) (-827)))
- (-4 *6 (-13 (-1025) (-827))) (-4 *2 (-416 *6)) (-5 *1 (-417 *5 *4 *6 *2))
- (-4 *4 (-416 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-421 *6))
- (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-421 *5))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1185))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-827))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-569 *5)) (-4 *5 (-358)) (-4 *6 (-358))
- (-5 *2 (-569 *6)) (-5 *1 (-570 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2251 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-358))
- (-4 *6 (-358)) (-5 *2 (-2 (|:| -2251 *6) (|:| |coeff| *6)))
- (-5 *1 (-570 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-358))
- (-4 *2 (-358)) (-5 *1 (-570 *5 *2))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4
- (-3
- (-2 (|:| |mainpart| *5)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
- "failed"))
- (-4 *5 (-358)) (-4 *6 (-358))
- (-5 *2
- (-2 (|:| |mainpart| *6)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-570 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-585 *6)) (-5 *1 (-582 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7))
- (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-585 *8))
- (-5 *1 (-583 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1126 *6)) (-5 *5 (-585 *7))
- (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8))
- (-5 *1 (-583 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-1126 *7))
- (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8))
- (-5 *1 (-583 *6 *7 *8))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-622 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-622 *6)) (-5 *1 (-623 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-622 *6)) (-5 *5 (-622 *7))
- (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-622 *8))
- (-5 *1 (-625 *6 *7 *8))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-631 *3)) (-4 *3 (-1185))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-367 *5))
- (-4 *7 (-367 *5)) (-4 *2 (-666 *8 *9 *10))
- (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-666 *5 *6 *7))
- (-4 *9 (-367 *8)) (-4 *10 (-367 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1025))
- (-4 *8 (-1025)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-666 *8 *9 *10))
- (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-666 *5 *6 *7))
- (-4 *9 (-367 *8)) (-4 *10 (-367 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-545)) (-4 *7 (-545)) (-4 *6 (-1207 *5))
- (-4 *2 (-1207 (-402 *8))) (-5 *1 (-690 *5 *6 *4 *7 *8 *2))
- (-4 *4 (-1207 (-402 *6))) (-4 *8 (-1207 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1025)) (-4 *9 (-1025)) (-4 *5 (-827))
- (-4 *6 (-773)) (-4 *2 (-926 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-773)) (-4 *4 (-926 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-4 *7 (-773))
- (-4 *9 (-1025)) (-4 *2 (-926 *9 *8 *6)) (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2))
- (-4 *8 (-773)) (-4 *4 (-926 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-716 *5 *7)) (-4 *5 (-1025)) (-4 *6 (-1025))
- (-4 *7 (-707)) (-5 *2 (-716 *6 *7)) (-5 *1 (-715 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-716 *3 *4)) (-4 *4 (-707))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-761 *5)) (-4 *5 (-1025)) (-4 *6 (-1025))
- (-5 *2 (-761 *6)) (-5 *1 (-762 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-776 *6))
- (-5 *1 (-779 *4 *5 *2 *6)) (-4 *4 (-776 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1074)) (-4 *6 (-1074))
- (-5 *2 (-812 *6)) (-5 *1 (-813 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-812 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1074))
- (-4 *6 (-1074)) (-5 *1 (-813 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1074)) (-4 *6 (-1074))
- (-5 *2 (-819 *6)) (-5 *1 (-820 *5 *6))))
- ((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-819 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1074))
- (-4 *6 (-1074)) (-5 *1 (-820 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-864 *5 *6)) (-4 *5 (-1074)) (-4 *6 (-1074))
- (-4 *7 (-1074)) (-5 *2 (-864 *5 *7)) (-5 *1 (-865 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-1074))
- (-5 *2 (-866 *6)) (-5 *1 (-868 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-922 *5)) (-4 *5 (-1025)) (-4 *6 (-1025))
- (-5 *2 (-922 *6)) (-5 *1 (-923 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-827)) (-4 *8 (-1025))
- (-4 *6 (-773))
- (-4 *2
- (-13 (-1074)
- (-10 -8 (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751))))))
- (-5 *1 (-928 *6 *7 *8 *5 *2)) (-4 *5 (-926 *8 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-934 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-934 *6)) (-5 *1 (-935 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-919 *5)) (-4 *5 (-1025)) (-4 *6 (-1025))
- (-5 *2 (-919 *6)) (-5 *1 (-957 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-922 *4))) (-4 *4 (-1025)) (-4 *2 (-926 (-922 *4) *5 *6))
- (-4 *5 (-773))
- (-4 *6
- (-13 (-827)
- (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149))))))
- (-5 *1 (-960 *4 *5 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-4 *2 (-967 *6))
- (-5 *1 (-968 *5 *6 *4 *2)) (-4 *4 (-967 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-974 *6))
- (-5 *1 (-975 *4 *5 *2 *6)) (-4 *4 (-974 *5))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1025)) (-4 *10 (-1025)) (-14 *5 (-751))
- (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7))
- (-4 *2 (-1028 *5 *6 *10 *11 *12))
- (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10))
- (-4 *12 (-234 *5 *10))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-1062 *6)) (-5 *1 (-1063 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-825)) (-4 *5 (-1185))
- (-4 *6 (-1185)) (-5 *2 (-622 *6)) (-5 *1 (-1063 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-1065 *6)) (-5 *1 (-1066 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825))
- (-4 *2 (-1122 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1126 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-1126 *6)) (-5 *1 (-1128 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1126 *6)) (-5 *5 (-1126 *7))
- (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8))
- (-5 *1 (-1129 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1025)) (-4 *6 (-1025))
- (-5 *2 (-1143 *6)) (-5 *1 (-1144 *5 *6))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-1074))
- (-4 *4 (-1074))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5 *7 *9)) (-4 *5 (-1025))
- (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1191 *6 *8 *10)) (-5 *1 (-1192 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1149))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1198 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-1198 *6)) (-5 *1 (-1199 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1198 *5)) (-4 *5 (-825)) (-4 *5 (-1185))
- (-4 *6 (-1185)) (-5 *2 (-1126 *6)) (-5 *1 (-1199 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1200 *5 *6)) (-14 *5 (-1149))
- (-4 *6 (-1025)) (-4 *8 (-1025)) (-5 *2 (-1200 *7 *8))
- (-5 *1 (-1201 *5 *6 *7 *8)) (-14 *7 (-1149))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1207 *6))
- (-5 *1 (-1208 *5 *4 *6 *2)) (-4 *4 (-1207 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1212 *5 *7 *9)) (-4 *5 (-1025))
- (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1212 *6 *8 *10)) (-5 *1 (-1213 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1149))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1224 *6))
- (-5 *1 (-1222 *5 *6 *4 *2)) (-4 *4 (-1224 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-1185)) (-4 *6 (-1185))
- (-5 *2 (-1231 *6)) (-5 *1 (-1232 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1231 *5))
- (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1231 *6)) (-5 *1 (-1232 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827))
- (-4 *4 (-1025))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-1255 *3 *4))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025))
(-4 *4 (-823)))))
-(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 *3)) (-4 *3 (-358)) (-14 *6 (-1231 (-669 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1185))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-334 (-3884 'X) (-3884) (-679))) (-5 *1 (-60 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884 'JINT 'X 'ELAM) (-3884) (-679))))
- (-5 *1 (-61 *3)) (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 'XC) (-679)))) (-5 *1 (-63 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-669 (-334 (-3884) (-3884 'X 'HESS) (-679)))) (-5 *1 (-64 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-334 (-3884) (-3884 'XC) (-679))) (-5 *1 (-65 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884 'X) (-3884 '-4324) (-679)))) (-5 *1 (-70 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 'X) (-679)))) (-5 *1 (-73 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-334 (-3884) (-3884 'X) (-679))) (-5 *1 (-74 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884 'X 'EPS) (-3884 '-4324) (-679))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884 'EPS) (-3884 'YA 'YB) (-679))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-334 (-3884) (-3884 'X) (-679))) (-5 *1 (-77 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 'XC) (-679)))) (-5 *1 (-78 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 'X) (-679)))) (-5 *1 (-79 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 'X) (-679)))) (-5 *1 (-80 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884 'X) (-3884 '-4324) (-679)))) (-5 *1 (-81 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884 'X '-4324) (-3884) (-679)))) (-5 *1 (-82 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-669 (-334 (-3884 'X '-4324) (-3884) (-679)))) (-5 *1 (-83 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-669 (-334 (-3884 'X) (-3884) (-679)))) (-5 *1 (-84 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-334 (-3884 'X) (-3884) (-679)))) (-5 *1 (-85 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-669 (-334 (-3884 'XL 'XR 'ELAM) (-3884) (-679))))
- (-5 *1 (-87 *3)) (-14 *3 (-1149))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-334 (-3884 'X) (-3884 '-4324) (-679))) (-5 *1 (-88 *3))
- (-14 *3 (-1149))))
- ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-92))))
- ((*1 *2 *1) (-12 (-5 *2 (-980 2)) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107))))
- ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-128))))
- ((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-128))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538))
- (-14 *4 (-751)) (-4 *5 (-170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538))
- (-14 *4 (-751))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1115 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170))
- (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170))
- (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1231 (-669 *4))) (-4 *4 (-170))
- (-5 *2 (-1231 (-669 (-402 (-922 *4))))) (-5 *1 (-185 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 *3))
- (-4 *3
- (-13 (-827)
- (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $))
- (-15 -2087 ((-1237) $)))))
- (-5 *1 (-210 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-980 10)) (-5 *1 (-213))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-241 *3)) (-4 *3 (-827))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-446))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *5 (-885)) (-5 *1 (-451 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-885)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-374)) (-5 *1 (-1037)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-358)) (-4 *3 (-1025))
+ (-5 *1 (-1133 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
+ (-5 *2
+ (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552))
+ (|:| |success| (-112))))
+ (-5 *1 (-769)) (-5 *5 (-552)))))
+(((*1 *2 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-537)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1093)) (-4 *4 (-344))
+ (-5 *1 (-521 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-552)) (-5 *1 (-237))))
((*1 *2 *3)
- (-12 (-5 *3 (-1065 (-309 *4))) (-4 *4 (-13 (-827) (-545) (-598 (-373))))
- (-5 *2 (-1065 (-373))) (-5 *1 (-254 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-270))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1207 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170))
- (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1212 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3)))
- (-14 *5 (-1149)) (-14 *6 *4)
- (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446)))
- (-5 *1 (-308 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-325))))
+ (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-552)) (-5 *1 (-237)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-309 *5)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149)))
- (-14 *4 (-622 (-1149))) (-4 *5 (-382))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-4 *2 (-324 *4)) (-5 *1 (-343 *3 *4 *2))
- (-4 *3 (-324 *4))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-823)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-413 (-1145 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1145 *1))
+ (-4 *4 (-446)) (-4 *4 (-544)) (-4 *4 (-827))))
((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-4 *2 (-324 *4)) (-5 *1 (-343 *2 *4 *3))
- (-4 *3 (-324 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))
- (-5 *2 (-1256 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))
- (-5 *2 (-1247 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))
- (-4 *1 (-378))))
- ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-378))))
- ((*1 *1 *2) (-12 (-5 *2 (-669 (-679))) (-4 *1 (-378))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))
- (-4 *1 (-380))))
- ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-380))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-380))))
- ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131))))
- ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-388))))
- ((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-389 *3)) (-4 *3 (-1074))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))
- (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-392))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-288 (-309 (-166 (-373))))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void")))
- (-14 *5 (-622 (-1149))) (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-288 (-309 (-373)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-288 (-309 (-538)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-309 (-166 (-373)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-309 (-373))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-309 (-538))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-288 (-309 (-674)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-288 (-309 (-679)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-288 (-309 (-681)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-309 (-674))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-309 (-679))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-309 (-681))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))
- (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 (-325))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1153))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-402 (-922 (-402 *3)))) (-4 *3 (-545)) (-4 *3 (-827))
- (-4 *1 (-416 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-922 (-402 *3))) (-4 *3 (-545)) (-4 *3 (-827))
- (-4 *1 (-416 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-402 *3)) (-4 *3 (-545)) (-4 *3 (-827)) (-4 *1 (-416 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1098 *3 (-595 *1))) (-4 *3 (-1025)) (-4 *3 (-827))
- (-4 *1 (-416 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-827) (-21))) (-5 *1 (-424 *3 *4))
- (-4 *3 (-13 (-170) (-38 (-402 (-538)))))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-424 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-538)))))
- (-4 *3 (-13 (-827) (-21)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-429))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-429))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-429))))
- ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-429))))
- ((*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-431))))
- ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-431))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))
- (-4 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-1231 (-679))) (-4 *1 (-434))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))
- (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-435))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-402 (-922 *3)))) (-4 *3 (-170))
- (-14 *6 (-1231 (-669 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-14 *4 (-895))
- (-14 *5 (-622 (-1149)))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-462))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3)
- (-5 *1 (-468 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-5 *2 (-980 16)) (-5 *1 (-481))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481))))
- ((*1 *1 *2) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488))))
- ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-495))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-517))))
- ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-589))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-590))))
- ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-591 *3 *2)) (-4 *2 (-725 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1025))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
- (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
- (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895))))
- ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-615 *3 *2)) (-4 *2 (-725 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-5 *1 (-655 *3)) (-4 *3 (-1074))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-4 *3 (-1074)) (-5 *1 (-655 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827))))
- ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-661))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1074))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *2)) (-4 *4 (-367 *3))
- (-4 *2 (-367 *3))))
- ((*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840)))))
- ((*1 *1 *2) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840)))))
- ((*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-674))))
- ((*1 *1 *2) (-12 (-5 *2 (-166 (-681))) (-5 *1 (-674))))
- ((*1 *1 *2) (-12 (-5 *2 (-166 (-679))) (-5 *1 (-674))))
- ((*1 *1 *2) (-12 (-5 *2 (-166 (-538))) (-5 *1 (-674))))
- ((*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-674))))
- ((*1 *1 *2) (-12 (-5 *2 (-681)) (-5 *1 (-679))))
- ((*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-679))))
- ((*1 *2 *3) (-12 (-5 *3 (-309 (-538))) (-5 *2 (-309 (-681))) (-5 *1 (-681))))
- ((*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1074))))
- ((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2492 *3) (|:| -2493 *4))) (-5 *1 (-694 *3 *4 *5))
- (-4 *3 (-827)) (-4 *4 (-1074)) (-14 *5 (-1 (-112) *2 *2))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -2492 *3) (|:| -2493 *4))) (-4 *3 (-827))
- (-4 *4 (-1074)) (-5 *1 (-694 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-170)) (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 (-2 (|:| -4313 *3) (|:| -4298 *4)))) (-4 *3 (-1025))
- (-4 *4 (-707)) (-5 *1 (-716 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-744))))
- ((*1 *1 *2)
- (-12
+ (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1037)) (-5 *3 (-1131)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2))
+ (-4 *2 (-667 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1129 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1025))
+ (-5 *3 (-402 (-552))) (-5 *1 (-1133 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
(-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221)))))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
- (-5 *1 (-749))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552))
+ (|:| |success| (-112))))
+ (-5 *1 (-769)) (-5 *5 (-552)))))
+(((*1 *2 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-537)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1232 *4)) (-5 *3 (-751)) (-4 *4 (-344))
+ (-5 *1 (-521 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-237)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-413 (-1145 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1145 *1))
+ (-4 *4 (-446)) (-4 *4 (-544)) (-4 *4 (-827))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1037)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-544)) (-4 *3 (-170)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2))
+ (-4 *2 (-667 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-52)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4))
+ (-4 *4 (-38 (-402 (-552)))) (-4 *4 (-1025)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
(-5 *2
- (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221)))))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *1 (-749))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552))
+ (|:| |success| (-112))))
+ (-5 *1 (-769)) (-5 *5 (-552)))))
+(((*1 *1) (-4 *1 (-344)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 *5)) (-4 *5 (-425 *4))
+ (-4 *4 (-13 (-544) (-827) (-145)))
(-5 *2
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *1 (-749))))
- ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-749))))
- ((*1 *2 *3) (-12 (-5 *2 (-753)) (-5 *1 (-754 *3)) (-4 *3 (-1185))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |primelt| *5) (|:| |poly| (-625 (-1145 *5)))
+ (|:| |prim| (-1145 *5))))
+ (-5 *1 (-427 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-544) (-827) (-145)))
(-5 *2
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *1 (-788))))
- ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-788))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-876 *3)) (-5 *1 (-797 *3 *2 *4)) (-4 *3 (-1074)) (-14 *4 *3)))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1074)) (-14 *4 *3) (-5 *1 (-797 *3 *2 *4)) (-4 *2 (-876 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-806))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1145 *3))
+ (|:| |pol2| (-1145 *3)) (|:| |prim| (-1145 *3))))
+ (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-425 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-928 *5)) (-5 *4 (-1149)) (-4 *5 (-13 (-358) (-145)))
(-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221)))
- (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221))))
- (|:| |ub| (-622 (-819 (-221))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))))
- (-5 *1 (-818))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))
- (-5 *1 (-818))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |coef1| (-552)) (|:| |coef2| (-552))
+ (|:| |prim| (-1145 *5))))
+ (-5 *1 (-936 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149)))
+ (-4 *5 (-13 (-358) (-145)))
(-5 *2
- (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221)))
- (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221))))
- (|:| |ub| (-622 (-819 (-221))))))
- (-5 *1 (-818))))
- ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-818))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-832 *3 *4 *5 *6))
- (-4 *4 (-1025)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-835))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-5 *1 (-842 *3 *4 *5 *6))
- (-14 *4 (-622 (-1149))) (-14 *5 (-622 (-751))) (-14 *6 (-751))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-922 *3)) (-5 *1 (-842 *3 *4 *5 *6)) (-4 *3 (-1025))
- (-14 *4 (-622 (-1149))) (-14 *5 (-622 (-751))) (-14 *6 (-751))))
- ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))
- ((*1 *2 *3) (-12 (-5 *3 (-922 (-48))) (-5 *2 (-309 (-538))) (-5 *1 (-851))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-402 (-922 (-48)))) (-5 *2 (-309 (-538))) (-5 *1 (-851))))
- ((*1 *1 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 *5)))
+ (|:| |prim| (-1145 *5))))
+ (-5 *1 (-936 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) (-5 *5 (-1149))
+ (-4 *6 (-13 (-358) (-145)))
(-5 *2
- (-2 (|:| |pde| (-622 (-309 (-221))))
- (|:| |constraints|
- (-622
- (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751))
- (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221)))
- (|:| |dFinish| (-669 (-221))))))
- (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131))
- (|:| |tol| (-221))))
- (-5 *1 (-874))))
- ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-874))))
- ((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1074))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-878 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-878 *3))) (-4 *3 (-1074)) (-5 *1 (-881 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074))))
- ((*1 *1 *2) (-12 (-5 *2 (-402 (-400 *3))) (-4 *3 (-302)) (-5 *1 (-890 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-471)) (-5 *2 (-309 *4)) (-5 *1 (-896 *4))
- (-4 *4 (-13 (-827) (-545)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943))))
- ((*1 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-947))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538))))
- ((*1 *2 *3) (-12 (-5 *2 (-1237)) (-5 *1 (-1009 *3)) (-4 *3 (-1185))))
- ((*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1009 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-926 *3 *4 *5)) (-14 *6 (-622 *2))))
- ((*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1185))))
- ((*1 *2 *3) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-1016 *3)) (-4 *3 (-545))))
- ((*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1025))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-669 *5)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751))
- (-14 *4 (-751)) (-4 *5 (-1025))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2))
- (-4 *2 (-926 *3 (-524 *4) *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4))
- (-4 *4 (-926 *3 (-524 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-840))))
- ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1117))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3))))
- ((*1 *2 *3) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3)
- (-5 *1 (-1147 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1148))))
- ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1149))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158 (-1149) (-431))) (-5 *1 (-1153))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154))))
- ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1154))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1154))))
- ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154))))
- ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1154))))
- ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1154))))
- ((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1154))))
- ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1159 *3)) (-4 *3 (-1074))))
- ((*1 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-1165))))
- ((*1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *1 (-1166 *3)) (-4 *3 (-1074))))
- ((*1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-5 *1 (-1178 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1178 *3)) (-4 *3 (-1025))))
- ((*1 *1 *2) (-12 (-5 *2 (-934 *3)) (-4 *3 (-1185)) (-5 *1 (-1183 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1195 *3 *2)) (-4 *2 (-1224 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1062 *3)) (-4 *3 (-1185)) (-5 *1 (-1198 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-1200 *3 *4))
- (-4 *4 (-1025))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1216 *3 *2)) (-4 *2 (-1193 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3)
- (-5 *1 (-1221 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2)))
- ((*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1234)) (-5 *1 (-1233))))
- ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1237))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-622 *4))
- (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-926 *3 *5 *4))
- (-14 *7 (-622 (-751))) (-14 *8 (-751))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8))
- (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-622 *4))
- (-14 *7 (-622 (-751))) (-14 *8 (-751))))
- ((*1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1025))))
- ((*1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827))
- (-4 *4 (-170))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827))
- (-4 *4 (-170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))
- (-5 *1 (-1252 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-823)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-34)) (-5 *2 (-751))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-538))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-751)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1256 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-827))
- (-4 *2 (-170))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-799 *4)) (-4 *1 (-1251 *4 *2)) (-4 *4 (-827)) (-4 *2 (-1025))))
- ((*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1074)) (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5))
- (-4 *4 (-1074))))
- ((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905))))
- ((*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025))))
- ((*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))
- ((*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-358))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-221))))
- ((*1 *1 *1 *1)
- (-3891 (-12 (-5 *1 (-288 *2)) (-4 *2 (-358)) (-4 *2 (-1185)))
- (-12 (-5 *1 (-288 *2)) (-4 *2 (-467)) (-4 *2 (-1185)))))
- ((*1 *1 *1 *1) (-4 *1 (-358)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-373))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1098 *3 (-595 *1))) (-4 *3 (-545)) (-4 *3 (-827))
- (-4 *1 (-416 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-467)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-527)))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-170)) (-5 *1 (-601 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-707) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-170)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-707) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)) (-4 *2 (-358))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-170)) (-5 *1 (-632 *2 *4 *3)) (-4 *2 (-698 *4))
- (-4 *3 (|SubsetCategory| (-707) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-170)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-698 *4))
- (-4 *2 (|SubsetCategory| (-707) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2)) (-4 *2 (-358))))
- ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-842 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *2 (-1025))
- (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-751))) (-14 *5 (-751))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) (-4 *5 (-234 *4 *2))
- (-4 *6 (-234 *3 *2)) (-4 *2 (-358))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-358))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-773))
- (-14 *6 (-622 *3)) (-5 *1 (-1244 *2 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-926 *2 *4 *3)) (-14 *7 (-622 (-751))) (-14 *8 (-751))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-823)))))
+ (-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 *6)))
+ (|:| |prim| (-1145 *6))))
+ (-5 *1 (-936 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1232 *5)) (-5 *3 (-751)) (-5 *4 (-1093)) (-4 *5 (-344))
+ (-5 *1 (-521 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-237)))))
(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))
((*1 *2 *1)
(-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025))
- (-14 *4 (-622 (-1149)))))
+ (-14 *4 (-625 (-1149)))))
((*1 *2 *1)
- (-12 (-5 *2 (-538)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827)))
- (-14 *4 (-622 (-1149)))))
+ (-12 (-5 *2 (-552)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827)))
+ (-14 *4 (-625 (-1149)))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827))
(-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751))))
((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-270))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1143 *8)) (-5 *4 (-622 *6)) (-4 *6 (-827))
- (-4 *8 (-926 *7 *5 *6)) (-4 *5 (-773)) (-4 *7 (-1025)) (-5 *2 (-622 (-751)))
- (-5 *1 (-316 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-895))))
+ (-12 (-5 *3 (-1145 *8)) (-5 *4 (-625 *6)) (-4 *6 (-827))
+ (-4 *8 (-925 *7 *5 *6)) (-4 *5 (-773)) (-4 *7 (-1025))
+ (-5 *2 (-625 (-751))) (-5 *1 (-316 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-897))))
((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-751))))
+ (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))
+ (-5 *2 (-751))))
((*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23))))
((*1 *2 *1)
- (-12 (-4 *3 (-545)) (-5 *2 (-538)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3))))
+ (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-605 *3 *4))
+ (-4 *4 (-1208 *3))))
((*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751))))
((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1074))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-880 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-622 (-751)))))
+ (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-751)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827))
- (-5 *2 (-751))))
+ (-12 (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773))
+ (-4 *3 (-827)) (-5 *2 (-751))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-949 *3 *2 *4)) (-4 *3 (-1025)) (-4 *4 (-827))
+ (-4 *2 (-772))))
((*1 *2 *1)
- (-12 (-4 *1 (-949 *3 *2 *4)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *2 (-772))))
+ (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-751))))
((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-751))))
+ (-12 (-4 *1 (-1194 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1223 *3))
+ (-5 *2 (-552))))
((*1 *2 *1)
- (-12 (-4 *1 (-1195 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1224 *3))
- (-5 *2 (-538))))
+ (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1192 *3))
+ (-5 *2 (-402 (-552)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1193 *3))
- (-5 *2 (-402 (-538)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-812 (-895)))))
+ (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-813 (-897)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-751)))))
+ (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
+ (-5 *2 (-751)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1)))))
+(((*1 *1) (-5 *1 (-1037))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-552)) (-4 *3 (-170)) (-4 *5 (-368 *3))
+ (-4 *6 (-368 *3)) (-5 *1 (-668 *3 *5 *6 *2))
+ (-4 *2 (-667 *3 *5 *6)))))
+(((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1129 *3))) (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
+ (-5 *2
+ (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552))
+ (|:| |success| (-112))))
+ (-5 *1 (-769)) (-5 *5 (-552)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1149)) (-5 *1 (-571 *2)) (-4 *2 (-1014 *3))
+ (-4 *2 (-358))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-571 *2)) (-4 *2 (-358))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-612 *4 *2))
+ (-4 *2 (-13 (-425 *4) (-978) (-1171)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-425 *4) (-978) (-1171)))
+ (-4 *4 (-13 (-827) (-544))) (-5 *1 (-612 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-935)) (-5 *2 (-1149))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-935)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-1145 *4)) (-5 *1 (-521 *4))
+ (-4 *4 (-344)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-289 (-928 (-552))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-625 (-1149)))
+ (|:| |inhom| (-3 (-625 (-1232 (-751))) "failed"))
+ (|:| |hom| (-625 (-1232 (-751))))))
+ (-5 *1 (-232)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))))
+ (-12 (-5 *2 (-751)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-170))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))))
+ (-12 (-5 *2 (-751)) (-4 *1 (-1253 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-1025)))))
+(((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1130))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-625 (-1145 *5))) (-5 *3 (-1145 *5))
+ (-4 *5 (-164 *4)) (-4 *4 (-537)) (-5 *1 (-147 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-625 *3)) (-4 *3 (-1208 *5))
+ (-4 *5 (-1208 *4)) (-4 *4 (-344)) (-5 *1 (-353 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-625 (-1145 (-552)))) (-5 *3 (-1145 (-552)))
+ (-5 *1 (-560))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-625 (-1145 *1))) (-5 *3 (-1145 *1))
+ (-4 *1 (-885)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-1037)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-552)) (-4 *3 (-170)) (-4 *5 (-368 *3))
+ (-4 *6 (-368 *3)) (-5 *1 (-668 *3 *5 *6 *2))
+ (-4 *2 (-667 *3 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4))
+ (-4 *4 (-1025)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
+ (-5 *2
+ (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552))
+ (|:| |success| (-112))))
+ (-5 *1 (-769)) (-5 *5 (-552)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-897)) (-4 *5 (-544)) (-5 *2 (-669 *5))
+ (-5 *1 (-932 *5 *3)) (-4 *3 (-636 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-1145 *4))
+ (-5 *1 (-521 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-231 *3))))
+ ((*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1073)))))
(((*1 *1 *2)
(|partial| -12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))
- (-5 *1 (-644 *3 *4))))
+ (-5 *1 (-644 *3 *4))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-644 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827))
- (-4 *4 (-170)))))
+ (|partial| -12 (-5 *2 (-644 *3 *4)) (-5 *1 (-1252 *3 *4))
+ (-4 *3 (-827)) (-4 *4 (-170)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-344)) (-5 *2 (-1232 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-143)) (-4 *1 (-885))
+ (-5 *2 (-1232 *1)))))
+(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1036))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *4 (-170)) (-4 *5 (-368 *4))
+ (-4 *6 (-368 *4)) (-5 *1 (-668 *4 *5 *6 *2))
+ (-4 *2 (-667 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1025)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1208 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374)))
+ (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237))
+ (-5 *1 (-768)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-930)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093))))))
+ (-4 *4 (-344)) (-5 *2 (-1237)) (-5 *1 (-521 *4)))))
+(((*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170))))
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751))
+ (-4 *4 (-170))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2))
- (-4 *2 (-416 *4))))
+ (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2))
+ (-4 *2 (-425 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1065 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545)))
+ (-12 (-5 *3 (-1065 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544)))
(-5 *1 (-156 *4 *2))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158))))
((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-622 (-538))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025))
- (-14 *4 (-622 (-1149)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
- ((*1 *1 *1) (-4 *1 (-279)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827))
- (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-5 *1 (-609 *3 *4 *5))
- (-14 *5 (-895))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827))
- (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-538))))
- (-4 *3 (-827)) (-4 *4 (-170)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
- ((*1 *1 *1) (-4 *1 (-279)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-400 *4)) (-4 *4 (-545))
- (-5 *2 (-622 (-2 (|:| -4313 (-751)) (|:| |logand| *4)))) (-5 *1 (-315 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
- (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827))
- (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-538))))
- (-4 *3 (-827)) (-4 *4 (-170)))))
+ (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-170)))))
+(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-344)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-885)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
+ (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3))
+ (-4 *3 (-1208 *2)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1073))
+ (-4 *6 (-1073)) (-4 *2 (-1073)) (-5 *1 (-660 *5 *6 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1129 *4)) (-5 *3 (-1 *4 (-552))) (-4 *4 (-1025))
+ (-5 *1 (-1133 *4)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-552))
+ (-5 *6
+ (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))))
+ (-5 *7 (-1 (-1237) (-1232 *5) (-1232 *5) (-374)))
+ (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237))
+ (-5 *1 (-768))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-552))
+ (-5 *6
+ (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))))
+ (-5 *7 (-1 (-1237) (-1232 *5) (-1232 *5) (-374)))
+ (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237))
+ (-5 *1 (-768)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-544))
+ (-4 *3 (-925 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| (-625 *3))))
+ (-5 *1 (-929 *5 *6 *7 *3 *8)) (-5 *4 (-751))
+ (-4 *8
+ (-13 (-358)
+ (-10 -8 (-15 -1356 (*3 $)) (-15 -1368 (*3 $)) (-15 -1683 ($ *3))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-1093)))))
+(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
(-5 *2 (-2 (|:| |k| (-799 *3)) (|:| |c| *4))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1233))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1233))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1234))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1234)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-827)) (-4 *5 (-885)) (-4 *6 (-773))
+ (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-413 (-1145 *8)))
+ (-5 *1 (-882 *5 *6 *7 *8)) (-5 *4 (-1145 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5)))
+ (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-413 *4) *4)) (-4 *4 (-544)) (-5 *2 (-413 *4))
+ (-5 *1 (-414 *4))))
+ ((*1 *1 *1) (-5 *1 (-902)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902))))
+ ((*1 *1 *1) (-5 *1 (-903)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))
+ (-5 *4 (-402 (-552))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))
+ (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))
+ (-5 *4 (-402 (-552))) (-5 *1 (-997 *3)) (-4 *3 (-1208 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))
+ (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3))
+ (-4 *3 (-1208 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374)))
+ (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237))
+ (-5 *1 (-768)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-544))
+ (-4 *8 (-925 *7 *5 *6))
+ (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| *3)))
+ (-5 *1 (-929 *5 *6 *7 *8 *3)) (-5 *4 (-751))
+ (-4 *3
+ (-13 (-358)
+ (-10 -8 (-15 -1356 (*8 $)) (-15 -1368 (*8 $)) (-15 -1683 ($ *8))))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-520)) (-5 *3 (-128)) (-5 *2 (-1093)))))
+(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))))
(((*1 *2 *2 *1)
(-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827))
(-4 *4 (-170))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1074))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1073))))
((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-799 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-1025))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-799 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))))
+ (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))))
+(((*1 *2)
+ (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-885))
+ (-5 *1 (-451 *3 *4 *2 *5)) (-4 *5 (-925 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-885))
+ (-5 *1 (-882 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-885)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1208 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-825) (-358))) (-5 *2 (-112)) (-5 *1 (-1035 *4 *3))
+ (-4 *3 (-1208 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374)))
+ (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237))
+ (-5 *1 (-768))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374)))
+ (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237))
+ (-5 *1 (-768)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-552))) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-544)) (-4 *8 (-925 *7 *5 *6))
+ (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *9) (|:| |radicand| *9)))
+ (-5 *1 (-929 *5 *6 *7 *8 *9)) (-5 *4 (-751))
+ (-4 *9
+ (-13 (-358)
+ (-10 -8 (-15 -1356 (*8 $)) (-15 -1368 (*8 $)) (-15 -1683 ($ *8))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-518)))))
+(((*1 *1) (-5 *1 (-565)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-840))))
+ ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-840))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-839)) (-5 *2 (-1237)) (-5 *1 (-840))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1129 *4))
+ (-4 *4 (-1073)) (-4 *4 (-1186)))))
+(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))))
(((*1 *2 *2 *1)
(-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827))
(-4 *4 (-170))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1074))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1073))))
((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-799 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-1025))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-799 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1074))))
+ (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-885)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-413 (-1145 *7)))
+ (-5 *1 (-882 *4 *5 *6 *7)) (-5 *3 (-1145 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5)))
+ (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-596 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-596 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1145 (-48))) (-5 *3 (-625 (-596 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1145 (-48))) (-5 *3 (-596 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1208 (-167 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-897)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))))
+ ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1208 *2)) (-4 *2 (-968 *3)) (-5 *1 (-408 *3 *2 *4 *5))
+ (-4 *3 (-302)) (-4 *5 (-13 (-404 *2 *4) (-1014 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1208 *2)) (-4 *2 (-968 *3))
+ (-5 *1 (-409 *3 *2 *4 *5 *6)) (-4 *3 (-302)) (-4 *5 (-404 *2 *4))
+ (-14 *6 (-1232 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-538)) (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-799 *4)) (-4 *4 (-827)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1025)))))
+ (-12 (-5 *4 (-897)) (-4 *5 (-1025))
+ (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279)))
+ (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1208 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-596 (-488)))) (-5 *1 (-488))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-596 (-488))) (-5 *1 (-488))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1145 (-488))) (-5 *3 (-625 (-596 (-488))))
+ (-5 *1 (-488))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1145 (-488))) (-5 *3 (-596 (-488))) (-5 *1 (-488))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1232 *4)) (-5 *3 (-897)) (-4 *4 (-344))
+ (-5 *1 (-521 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-705 *4 *2)) (-4 *2 (-1208 *4))
+ (-5 *1 (-755 *4 *2 *5 *3)) (-4 *3 (-1208 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170))))
+ ((*1 *1 *1) (-4 *1 (-1034))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-935)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-767)) (-5 *2 (-1011))
+ (-5 *3
+ (-2 (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-767)) (-5 *2 (-1011))
+ (-5 *3
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-544))
+ (-4 *7 (-925 *3 *5 *6))
+ (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *8) (|:| |radicand| *8)))
+ (-5 *1 (-929 *5 *6 *3 *7 *8)) (-5 *4 (-751))
+ (-4 *8
+ (-13 (-358)
+ (-10 -8 (-15 -1356 (*7 $)) (-15 -1368 (*7 $)) (-15 -1683 ($ *7))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-518)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073))
+ (-5 *2 (-112))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025))))
((*1 *2 *1)
- (-12 (-4 *3 (-545)) (-5 *2 (-112)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3))))
+ (-12 (-4 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-605 *3 *4))
+ (-4 *4 (-1208 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-707))))
((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-885)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-413 (-1145 *7)))
+ (-5 *1 (-882 *4 *5 *6 *7)) (-5 *3 (-1145 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5)))
+ (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-537))))
+ ((*1 *1 *1) (-4 *1 (-1034))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-625 (-1232 *4))) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544))
+ (-5 *2 (-625 (-1232 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-1133 *4)) (-4 *4 (-1025))
+ (-5 *3 (-552)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-766)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-827))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -3564 (-552)))) (-4 *1 (-425 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-868 *3)) (|:| -3564 (-868 *3))))
+ (-5 *1 (-868 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025))
+ (-4 *7 (-925 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -3564 (-552))))
+ (-5 *1 (-926 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-358)
+ (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $))
+ (-15 -1368 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-517)))))
+(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))))
(((*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170))))
((*1 *1 *1)
(-12 (-5 *1 (-609 *2 *3 *4)) (-4 *2 (-827))
- (-4 *3 (-13 (-170) (-698 (-402 (-538))))) (-14 *4 (-895))))
+ (-4 *3 (-13 (-170) (-698 (-402 (-552))))) (-14 *4 (-897))))
((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
- ((*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-625 (-1145 *7))) (-5 *3 (-1145 *7))
+ (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-885)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-5 *1 (-882 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-625 (-1145 *5))) (-5 *3 (-1145 *5))
+ (-4 *5 (-1208 *4)) (-4 *4 (-885)) (-5 *1 (-883 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-537))))
+ ((*1 *1 *1) (-4 *1 (-1034))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544))
+ (-5 *2 (-1145 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827))
+ (-4 *4 (-261 *3)) (-4 *5 (-773)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1149))
+ (|:| |arrayIndex| (-625 (-928 (-552))))
+ (|:| |rand|
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1149)) (|:| |rand| (-839))
+ (|:| |ints2Floats?| (-112))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1148)) (|:| |thenClause| (-325))
+ (|:| |elseClause| (-325))))
+ (|:| |returnBranch|
+ (-2 (|:| -1916 (-112))
+ (|:| -3800
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839))))))
+ (|:| |blockBranch| (-625 (-325)))
+ (|:| |commentBranch| (-625 (-1131))) (|:| |callBranch| (-1131))
+ (|:| |forBranch|
+ (-2 (|:| -3315 (-1065 (-928 (-552))))
+ (|:| |span| (-928 (-552))) (|:| -1300 (-325))))
+ (|:| |labelBranch| (-1093))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -1300 (-325))))
+ (|:| |commonBranch|
+ (-2 (|:| -1288 (-1149)) (|:| |contents| (-625 (-1149)))))
+ (|:| |printBranch| (-625 (-839)))))
+ (-5 *1 (-325)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-1133 *4)) (-4 *4 (-1025))
+ (-5 *3 (-552)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-766)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-1025)) (-4 *4 (-827))
+ (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552))))
+ (-4 *1 (-425 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1025)) (-4 *4 (-827))
+ (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552))))
+ (-4 *1 (-425 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827))
+ (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552))))
+ (-4 *1 (-425 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-868 *3)) (|:| -3564 (-751))))
+ (-5 *1 (-868 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-2 (|:| |var| *5) (|:| -3564 (-751))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025))
+ (-4 *7 (-925 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -3564 (-552))))
+ (-5 *1 (-926 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-358)
+ (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $))
+ (-15 -1368 (*7 $))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
+ (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-928 *6)) (-5 *4 (-1149))
+ (-5 *5 (-820 *7))
+ (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-4 *7 (-13 (-1171) (-29 *6))) (-5 *1 (-220 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1145 *6)) (-5 *4 (-820 *6))
+ (-4 *6 (-13 (-1171) (-29 *5)))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-220 *5 *6)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
- (-4 *4 (-170))))
+ (-12 (-5 *2 (-751)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-1025)) (-4 *4 (-170))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)) (-4 *3 (-170)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-751)) (-5 *2 (-622 (-1149))) (-5 *1 (-206)) (-5 *3 (-1149))))
+ (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))
+ (-4 *3 (-170)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-625 (-1145 *7))) (-5 *3 (-1145 *7))
+ (-4 *7 (-925 *5 *6 *4)) (-4 *5 (-885)) (-4 *6 (-773))
+ (-4 *4 (-827)) (-5 *1 (-882 *5 *6 *4 *7)))))
+(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))
+ ((*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302))))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-302))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-552)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544))
+ (-5 *2 (-1145 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-897)) (-4 *3 (-358))
+ (-14 *4 (-969 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
+ ((*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
+ ((*1 *1 *1) (|partial| -4 *1 (-703)))
+ ((*1 *1 *1) (|partial| -4 *1 (-707)))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 (-221))) (-5 *4 (-751)) (-5 *2 (-622 (-1149)))
- (-5 *1 (-262))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-622 *3))))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358)))
+ (-4 *2 (-1208 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-897)) (-5 *1 (-766)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-425 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-622 *3)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
- (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-799 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827))))
+ (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3))
+ (-4 *3 (-1073))))
((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-622 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1180 *4 *5 *3 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *3 (-827))
- (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-358)) (-5 *2 (-895)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-358)) (-5 *2 (-812 (-895))) (-5 *1 (-323 *3 *4))
- (-4 *3 (-324 *4))))
- ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-895))))
- ((*1 *2) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-812 (-895))))))
-(((*1 *2)
- (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4))))
- ((*1 *2) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-751)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-345)) (-4 *4 (-324 *3)) (-4 *5 (-1207 *4))
- (-5 *1 (-757 *3 *4 *5 *2 *6)) (-4 *2 (-1207 *5)) (-14 *6 (-895))))
+ (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025))
+ (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *3))
+ (-5 *1 (-926 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-358)
+ (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $))
+ (-15 -1368 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-820 *4)) (-5 *3 (-596 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1171) (-29 *6)))
+ (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-220 *6 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-625 (-1149)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827)))
+ (-14 *3 (-625 (-1149)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1073))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-625 (-1149))) (-4 *3 (-170))
+ (-4 *5 (-234 (-1471 *2) (-751)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3123 *4) (|:| -3564 *5))
+ (-2 (|:| -3123 *4) (|:| -3564 *5))))
+ (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-827))
+ (-4 *7 (-925 *3 *5 (-841 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-827))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1025))
+ (-4 *3 (-707))))
+ ((*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-4 *3 (-363))))
- ((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-358)) (-4 *2 (-363)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827))
- (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545))
- (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773))
- (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))))
+ (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1179 *4 *5 *3 *6)) (-4 *4 (-544)) (-4 *5 (-773))
+ (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *6))
+ (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213))))
+ ((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481))))
+ ((*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-302))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552))))
+ ((*1 *1 *1) (-4 *1 (-1034))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073))
+ (-4 *6 (-1073)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-664 *4 *5 *6)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170)))))
+(((*1 *1 *1 *1) (-5 *1 (-129))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545))
- (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773))
- (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1131)) (-5 *1 (-766)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-425 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3))
+ (-4 *3 (-1073))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025))
+ (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *3))
+ (-5 *1 (-926 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-358)
+ (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $))
+ (-15 -1368 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-622 (-1245 *4 *5 *6 *7)))
- (-5 *1 (-1245 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-622 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) (-4 *8 (-827))
- (-5 *2 (-622 (-1245 *6 *7 *8 *9))) (-5 *1 (-1245 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-1131))
+ (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1171) (-29 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-925 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))))
+(((*1 *1 *1) (-4 *1 (-1034))))
(((*1 *2 *3)
- (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-842 *4 *5 *6 *7))
- (-4 *4 (-1025)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 *3)) (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-4 *5 (-827)) (-4 *6 (-773))
- (-14 *8 (-622 *5)) (-5 *2 (-1237)) (-5 *1 (-1244 *4 *5 *6 *7 *8 *9 *10))
- (-4 *7 (-926 *4 *6 *5)) (-14 *9 (-622 *3)) (-14 *10 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *4 (-1073)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170)))))
+(((*1 *1 *1 *1) (-5 *1 (-129))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-4 *4 (-1186)) (-5 *2 (-112))
+ (-5 *1 (-1129 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-897)) (-5 *1 (-766)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-625 *1))
+ (-4 *1 (-377 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1074) (-34))) (-5 *1 (-1113 *3 *2))
- (-4 *3 (-13 (-1074) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1243)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))))
- (-4 *4 (-1207 *3))
- (-5 *2
- (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3))))
- (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-405 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-538)) (-4 *4 (-1207 *3))
- (-5 *2
- (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3))))
- (-5 *1 (-748 *4 *5)) (-4 *5 (-405 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 *3))
- (-5 *2
- (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3))))
- (-5 *1 (-961 *4 *3 *5 *6)) (-4 *6 (-705 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 *3))
- (-5 *2
- (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3))))
- (-5 *1 (-1241 *4 *3 *5 *6)) (-4 *6 (-405 *3 *5)))))
+ (-12 (-5 *2 (-625 (-716 *3 *4))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-707))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-925 *3 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-528)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-322 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-509 *3 *4))
+ (-14 *4 (-552)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-625 (-1149)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827)))
+ (-14 *3 (-625 (-1149))))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-625 (-1149)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4))
+ (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-625 (-1149))) (-4 *5 (-234 (-1471 *3) (-751)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3123 *4) (|:| -3564 *5))
+ (-2 (|:| -3123 *4) (|:| -3564 *5))))
+ (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-827))
+ (-4 *7 (-925 *2 *5 (-841 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1073))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-827))
+ (-4 *3 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *3 (-772)) (-4 *4 (-827))
+ (-4 *2 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-625 (-751)))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))))
(((*1 *2)
- (-12 (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4)))
- (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-163 *3 *4))
+ (-4 *3 (-164 *4))))
((*1 *2)
- (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))))
- (-4 *4 (-1207 *3))
- (-5 *2
- (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3))))
- (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-405 *3 *4))))
+ (-12 (-14 *4 *2) (-4 *5 (-1186)) (-5 *2 (-751))
+ (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-1207 (-538)))
- (-5 *2
- (-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538))
- (|:| |basisInv| (-669 (-538)))))
- (-5 *1 (-748 *3 *4)) (-4 *4 (-405 (-538) *3))))
+ (-12 (-4 *4 (-827)) (-5 *2 (-751)) (-5 *1 (-424 *3 *4))
+ (-4 *3 (-425 *4))))
+ ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-536 *3)) (-4 *3 (-537))))
+ ((*1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-751))))
((*1 *2)
- (-12 (-4 *3 (-345)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 *4))
- (-5 *2
- (-2 (|:| -2128 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4))))
- (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-705 *4 *5))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-776 *3 *4))
+ (-4 *3 (-777 *4))))
((*1 *2)
- (-12 (-4 *3 (-345)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 *4))
- (-5 *2
- (-2 (|:| -2128 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4))))
- (-5 *1 (-1241 *3 *4 *5 *6)) (-4 *6 (-405 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-751)) (-4 *6 (-358)) (-5 *4 (-1178 *6))
- (-5 *2 (-1 (-1126 *4) (-1126 *4))) (-5 *1 (-1240 *6)) (-5 *5 (-1126 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-622 (-1178 *5)))
- (-5 *1 (-1240 *5)) (-5 *4 (-1178 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1149)) (-5 *2 (-1 (-1143 (-922 *4)) (-922 *4)))
- (-5 *1 (-1240 *4)) (-4 *4 (-358)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-1126 (-1126 (-922 *5))))
- (-5 *1 (-1240 *5)) (-5 *4 (-1126 (-922 *5))))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-967 *3 *4))
+ (-4 *3 (-968 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-972 *3 *4))
+ (-4 *3 (-973 *4))))
+ ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-987 *3)) (-4 *3 (-988))))
+ ((*1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-751))))
+ ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1033 *3)) (-4 *3 (-1034)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1126 (-922 *4)) (-1126 (-922 *4))))
- (-5 *1 (-1240 *4)) (-4 *4 (-358)))))
+ (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1168 *3)) (-4 *3 (-1025)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1126 (-922 *4)) (-1126 (-922 *4))))
- (-5 *1 (-1240 *4)) (-4 *4 (-358)))))
-(((*1 *2)
- (-12 (-14 *4 (-751)) (-4 *5 (-1185)) (-5 *2 (-133)) (-5 *1 (-233 *3 *4 *5))
- (-4 *3 (-234 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-170))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-538))
- (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773))
- (-5 *2 (-538)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-1025)) (-5 *2 (-895))))
- ((*1 *2) (-12 (-4 *1 (-1239 *3)) (-4 *3 (-358)) (-5 *2 (-133)))))
-(((*1 *1) (-5 *1 (-1237))))
-(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-221)) (-5 *1 (-1236))))
- ((*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1236)))))
-(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236))))
- ((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236))))
- ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236))))
- ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236))))
- ((*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1236))))
- ((*1 *2 *2) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1236))))
- ((*1 *2 *2) (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236))))
- ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236))))
- ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236))))
- ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236))))
- ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))))
-(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236))))
- ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))))
-(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235))))
- ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))))
-(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235))))
- ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))))
-(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235))))
- ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))))
-(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235))))
- ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))))
-(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235))))
- ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))))
-(((*1 *1) (-5 *1 (-1235))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-622 (-256))) (-5 *1 (-1235))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1131)) (-5 *1 (-1235))))
- ((*1 *1 *1) (-5 *1 (-1235))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-1137 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1235))))
- ((*1 *2 *1) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1235)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-751)) (-5 *3 (-919 *4)) (-4 *1 (-1107 *4)) (-4 *4 (-1025))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-751)) (-5 *4 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1234))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1235))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-256))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-751)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-751)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221))
- (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
- (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
- (-5 *1 (-256))))
- ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1073)) (-4 *6 (-1073))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *5 (-1073)))))
+(((*1 *1 *1) (-5 *1 (-221)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
+ ((*1 *1 *1) (-5 *1 (-374))) ((*1 *1) (-5 *1 (-374))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1131)) (-4 *1 (-359 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1073)))))
+(((*1 *2 *3 *1)
(-12
(-5 *2
- (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221))
- (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
- (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
- (-5 *3 (-622 (-256))) (-5 *1 (-257))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-538)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))
+ (-2 (|:| |cycle?| (-112)) (|:| -2667 (-751)) (|:| |period| (-751))))
+ (-5 *1 (-1129 *4)) (-4 *4 (-1186)) (-5 *3 (-751)))))
+(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1131)) (-5 *1 (-766)))))
+(((*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751))))
+ ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751))))
((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221))
- (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
- (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
- (-5 *2 (-1237)) (-5 *1 (-1235))))
+ (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-751)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773))
+ (-4 *3 (-827)) (-5 *2 (-751)))))
+(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-322 *3)) (-4 *3 (-1186))))
((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221))
- (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
- (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
- (-5 *1 (-1235))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1235))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901))))
- ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1234))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1235))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1235))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
- ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-919 (-221)))) (-5 *1 (-1234)))))
-(((*1 *1) (-5 *1 (-1234))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-462)) (-5 *3 (-622 (-256))) (-5 *1 (-1234))))
- ((*1 *1 *1) (-5 *1 (-1234))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-895)) (-5 *4 (-221)) (-5 *5 (-538)) (-5 *6 (-850))
- (-5 *2 (-1237)) (-5 *1 (-1234)))))
+ (-12 (-5 *2 (-751)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186))
+ (-14 *4 (-552)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-1231
- (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221))
- (|:| |deltaY| (-221)) (|:| -4210 (-538)) (|:| -4208 (-538))
- (|:| |spline| (-538)) (|:| -4239 (-538)) (|:| |axesColor| (-850))
- (|:| -4211 (-538)) (|:| |unitsColor| (-850)) (|:| |showing| (-538)))))
- (-5 *1 (-1234)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538))))
- ((*1 *2 *1) (-12 (-5 *2 (-1231 (-3 (-462) "undefined"))) (-5 *1 (-1234)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-462)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-895)) (-5 *2 (-462)) (-5 *1 (-1234)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-622 (-373))) (-5 *3 (-622 (-256))) (-5 *1 (-257))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-462))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1234))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
- ((*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-462)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-895))
- (-5 *6 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-1233))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-622 (-256)))
- (-5 *2 (-1234)) (-5 *1 (-1233)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-895))
- (-5 *6 (-622 (-256))) (-5 *2 (-462)) (-5 *1 (-1233))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-462)) (-5 *1 (-1233))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-622 (-256))) (-5 *2 (-462))
- (-5 *1 (-1233)))))
-(((*1 *1 *1) (-5 *1 (-48)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1185)) (-4 *2 (-1185))
- (-5 *1 (-58 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1074)) (|has| *1 (-6 -4353))
- (-4 *1 (-149 *2)) (-4 *2 (-1185))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2))
- (-4 *2 (-1185))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2))
- (-4 *2 (-1185))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-5 *2 (-2 (|:| -2120 (-1143 *4)) (|:| |deg| (-895))))
- (-5 *1 (-217 *4 *5)) (-5 *3 (-1143 *4)) (-4 *5 (-13 (-545) (-827)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-751))
- (-4 *6 (-1185)) (-4 *2 (-1185)) (-5 *1 (-236 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1207 *4))
- (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-545)) (-4 *2 (-827))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-331 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1207 *2))
- (-4 *4 (-1207 (-402 *3))) (-4 *5 (-337 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1185)) (-4 *2 (-1185))
- (-5 *1 (-368 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1074)) (-4 *2 (-1074))
- (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-421 *5)) (-4 *6 (-421 *2))))
- ((*1 *1 *1) (-5 *1 (-488)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-622 *5)) (-4 *5 (-1185)) (-4 *2 (-1185))
- (-5 *1 (-623 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1025)) (-4 *2 (-1025)) (-4 *6 (-367 *5))
- (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) (-4 *9 (-367 *2))
- (-5 *1 (-667 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-666 *5 *6 *7))
- (-4 *10 (-666 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-358))
- (-4 *3 (-170)) (-4 *1 (-705 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-934 *5)) (-4 *5 (-1185)) (-4 *2 (-1185))
- (-5 *1 (-935 *5 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-926 *3 *4 *5)) (-14 *6 (-622 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1025)) (-4 *2 (-1025)) (-14 *5 (-751))
- (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7))
- (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2))
- (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *12 (-1028 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1126 *5)) (-4 *5 (-1185)) (-4 *2 (-1185))
- (-5 *1 (-1128 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1180 *5 *6 *7 *2)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827))
- (-4 *2 (-1039 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1231 *5)) (-4 *5 (-1185)) (-4 *2 (-1185))
- (-5 *1 (-1232 *5 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1185)) (-4 *5 (-1185))
- (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-751))
- (-4 *7 (-1185)) (-4 *5 (-1185)) (-5 *2 (-235 *6 *5))
- (-5 *1 (-236 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-4 *2 (-367 *5))
- (-5 *1 (-368 *6 *4 *5 *2)) (-4 *4 (-367 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1074)) (-4 *5 (-1074)) (-4 *2 (-421 *5))
- (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-421 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-622 *6)) (-4 *6 (-1185)) (-4 *5 (-1185))
- (-5 *2 (-622 *5)) (-5 *1 (-623 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-934 *6)) (-4 *6 (-1185)) (-4 *5 (-1185))
- (-5 *2 (-934 *5)) (-5 *1 (-935 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1126 *6)) (-4 *6 (-1185)) (-4 *3 (-1185))
- (-5 *2 (-1126 *3)) (-5 *1 (-1128 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1231 *6)) (-4 *6 (-1185)) (-4 *5 (-1185))
- (-5 *2 (-1231 *5)) (-5 *1 (-1232 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1231 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-210 *2))
- (-4 *2
- (-13 (-827)
- (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $))
- (-15 -2087 ((-1237) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1185))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1185))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-130))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5))
- (-4 *5 (-926 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-527)))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-25)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-1230 *3)) (-4 *3 (-23)) (-4 *3 (-1185)))))
-(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-133)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-210 *2))
- (-4 *2
- (-13 (-827)
- (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $))
- (-15 -2087 ((-1237) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2))))
- ((*1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-21)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-1025))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840))))
- ((*1 *1 *1) (-5 *1 (-840)))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-221)) (-5 *1 (-1182))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-1025)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1185)) (-4 *3 (-1025)) (-5 *2 (-669 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1025))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-1025)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))
- (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4))))
- ((*1 *1 *1) (-4 *1 (-537)))
- ((*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-657 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-869 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-1185)) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1183 *3)) (-4 *3 (-1185))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025))
+ (-14 *4 (-625 (-1149)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-978)) (-4 *2 (-1025)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-978)) (-4 *2 (-1025)))))
-(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-841 *3)) (-14 *3 (-622 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-965))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1065 *3)) (-4 *3 (-1185))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827)))
+ (-14 *4 (-625 (-1149))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))))
((*1 *2 *1)
- (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-1149))))
- ((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-402 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-545)) (-4 *4 (-1025))
- (-4 *2 (-1224 *4)) (-5 *1 (-1226 *4 *5 *6 *2)) (-4 *6 (-638 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-4 *5 (-1207 *4)) (-5 *2 (-1 *6 (-622 *6)))
- (-5 *1 (-1226 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-1224 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-4 *2 (-1207 *5))
- (-5 *1 (-1226 *5 *2 *6 *3)) (-4 *6 (-638 *2)) (-4 *3 (-1224 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-4 *3 (-1207 *4)) (-4 *2 (-1224 *4))
- (-5 *1 (-1226 *4 *3 *5 *2)) (-4 *5 (-638 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 (-1 *6 (-622 *6))))
- (-4 *5 (-38 (-402 (-538)))) (-4 *6 (-1224 *5)) (-5 *2 (-622 *6))
- (-5 *1 (-1225 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-622 *2))) (-5 *4 (-622 *5)) (-4 *5 (-38 (-402 (-538))))
- (-4 *2 (-1224 *5)) (-5 *1 (-1225 *5 *2)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1224 *4)) (-5 *1 (-1225 *4 *2))
- (-4 *4 (-38 (-402 (-538)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1224 *4)) (-5 *1 (-1225 *4 *2))
- (-4 *4 (-38 (-402 (-538)))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1224 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-622 *5))) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538))))
- (-5 *2 (-1 (-1126 *4) (-622 (-1126 *4)))) (-5 *1 (-1225 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538))))
- (-5 *2 (-1 (-1126 *4) (-1126 *4) (-1126 *4))) (-5 *1 (-1225 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538))))
- (-5 *2 (-1 (-1126 *4) (-1126 *4))) (-5 *1 (-1225 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4)))))
+ (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1073))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170))
+ (-4 *6 (-234 (-1471 *3) (-751)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6))
+ (-2 (|:| -3123 *5) (|:| -3564 *6))))
+ (-5 *2 (-694 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-827)) (-4 *8 (-925 *4 *6 (-841 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-707)) (-4 *2 (-827)) (-5 *1 (-716 *3 *2))
+ (-4 *3 (-1025))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772))
+ (-4 *4 (-827)))))
+(((*1 *2)
+ (-12 (-4 *4 (-358)) (-5 *2 (-897)) (-5 *1 (-323 *3 *4))
+ (-4 *3 (-324 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-358)) (-5 *2 (-813 (-897))) (-5 *1 (-323 *3 *4))
+ (-4 *3 (-324 *4))))
+ ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-897))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-813 (-897))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-881 *3))) (-4 *3 (-1073)) (-5 *1 (-880 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-669 *5)) (-4 *5 (-1025)) (-5 *1 (-1029 *3 *4 *5))
+ (-14 *3 (-751)) (-14 *4 (-751)))))
+(((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-552))))
+ ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-881 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358)))
+ (-4 *3 (-1208 *4)) (-5 *2 (-552))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-402 (-538)))
- (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))
- (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-288 *3)) (-5 *5 (-402 (-538)))
- (-4 *3 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-538))) (-5 *4 (-288 *6))
- (-4 *6 (-13 (-27) (-1171) (-416 *5)))
- (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *5 *6))))
+ (|partial| -12
+ (-4 *4 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446)))
+ (-5 *2 (-552)) (-5 *1 (-1089 *4 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *6 *3))))
+ (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-820 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446)))
+ (-5 *2 (-552)) (-5 *1 (-1089 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-1131))
+ (-4 *6 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446)))
+ (-5 *2 (-552)) (-5 *1 (-1089 *6 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-446)) (-5 *2 (-552))
+ (-5 *1 (-1090 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-538)))
- (-4 *7 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-538)))
- (-4 *3 (-13 (-27) (-1171) (-416 *7)))
- (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-402 (-538)))) (-5 *4 (-288 *8))
- (-5 *5 (-1198 (-402 (-538)))) (-5 *6 (-402 (-538)))
- (-4 *8 (-13 (-27) (-1171) (-416 *7)))
- (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-402 (-538))))
- (-5 *7 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *8)))
- (-4 *8 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-4 *3 (-1025))
- (-5 *1 (-580 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-581 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-4 *3 (-1025))
- (-4 *1 (-1193 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-751)) (-5 *3 (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| *4))))
- (-4 *4 (-1025)) (-4 *1 (-1214 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-4 *1 (-1224 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1126 (-2 (|:| |k| (-751)) (|:| |c| *3)))) (-4 *3 (-1025))
- (-4 *1 (-1224 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-622 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-622 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-622 *3)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-622 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1224 *3)) (-4 *3 (-1025)) (-5 *2 (-1126 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-538))) (-4 *3 (-1025)) (-5 *1 (-580 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-538))) (-4 *1 (-1193 *3)) (-4 *3 (-1025))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-538))) (-4 *1 (-1224 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827))
- (-5 *2 (-922 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827))
- (-5 *2 (-922 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-751)) (-4 *1 (-1224 *4)) (-4 *4 (-1025)) (-5 *2 (-922 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-751)) (-4 *1 (-1224 *4)) (-4 *4 (-1025)) (-5 *2 (-922 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-402 (-538))) (-4 *4 (-1014 (-538))) (-4 *4 (-13 (-827) (-545)))
- (-5 *1 (-32 *4 *2)) (-4 *2 (-416 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-133)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-221)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-538))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-402 (-538))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1224 *4))
- (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1195 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-402 (-538))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1193 *4))
- (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1216 *4 *5)) (-4 *6 (-959 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-279)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-356 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *1) (-5 *1 (-373)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-381 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-416 *3)) (-4 *3 (-827)) (-4 *3 (-1085))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-538))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1231 *4)) (-5 *3 (-538)) (-4 *4 (-345)) (-5 *1 (-521 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-527))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-527))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *4 (-1074)) (-5 *1 (-662 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-4 *3 (-358))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-538)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)) (-4 *4 (-628 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *5))
- (-4 *5 (-628 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-751))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-799 *2)) (-4 *2 (-827))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-814 *3)) (-4 *3 (-1025))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-538)) (-5 *1 (-814 *4)) (-4 *4 (-1025))))
- ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-402 (-538)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1085)) (-5 *2 (-895))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-538)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *4 (-1025))
- (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+ (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-820 (-402 (-928 *6))))
+ (-5 *3 (-402 (-928 *6))) (-4 *6 (-446)) (-5 *2 (-552))
+ (-5 *1 (-1090 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-402 (-928 *6))) (-5 *4 (-1149))
+ (-5 *5 (-1131)) (-4 *6 (-446)) (-5 *2 (-552)) (-5 *1 (-1090 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1168 *3)) (-4 *3 (-1025)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1065 (-819 *3))) (-4 *3 (-13 (-1171) (-936) (-29 *5)))
- (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2
- (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3)))
- (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
- (-5 *1 (-215 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1065 (-819 *3))) (-5 *5 (-1131))
- (-4 *3 (-13 (-1171) (-936) (-29 *6)))
- (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2
- (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| #1#)
- (|:| |pole| #2#)))
- (-5 *1 (-215 *6 *3))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073))
+ (-4 *6 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6)))))
+(((*1 *1 *1) (-4 *1 (-171)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-625 (-374))) (-5 *3 (-625 (-258))) (-5 *1 (-256))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-462))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-462))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1129 *3))) (-5 *1 (-1129 *3)) (-4 *3 (-1186)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-928 (-167 *4))) (-4 *4 (-170))
+ (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1065 (-819 (-309 *5))))
- (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2
- (-3 (|:| |f1| (-819 (-309 *5))) (|:| |f2| (-622 (-819 (-309 *5))))
- (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
- (-5 *1 (-216 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-402 (-922 *6))) (-5 *4 (-1065 (-819 (-309 *6))))
- (-5 *5 (-1131))
- (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2
- (-3 (|:| |f1| (-819 (-309 *6))) (|:| |f2| (-622 (-819 (-309 *6))))
- (|:| |fail| #3#) (|:| |pole| #4#)))
- (-5 *1 (-216 *6))))
+ (|partial| -12 (-5 *3 (-928 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-170))
+ (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-928 *4)) (-4 *4 (-1025))
+ (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1065 (-819 (-402 (-922 *5))))) (-5 *3 (-402 (-922 *5)))
- (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2
- (-3 (|:| |f1| (-819 (-309 *5))) (|:| |f2| (-622 (-819 (-309 *5))))
- (|:| |fail| #3#) (|:| |pole| #4#)))
- (-5 *1 (-216 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1065 (-819 (-402 (-922 *6))))) (-5 *5 (-1131))
- (-5 *3 (-402 (-922 *6)))
- (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2
- (-3 (|:| |f1| (-819 (-309 *6))) (|:| |f2| (-622 (-819 (-309 *6))))
- (|:| |fail| #3#) (|:| |pole| #4#)))
- (-5 *1 (-216 *6))))
+ (|partial| -12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025))
+ (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544))
+ (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149))
- (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-3 *3 (-622 *3))) (-5 *1 (-425 *5 *3))
- (-4 *3 (-13 (-1171) (-936) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5))
- (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373))
- (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553))))
- ((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1011)) (-5 *1 (-553))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373))
- (-5 *2 (-1011)) (-5 *1 (-553))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373))
- (-5 *2 (-1011)) (-5 *1 (-553))))
+ (|partial| -12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544))
+ (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-402 (-928 (-167 *4)))) (-4 *4 (-544))
+ (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *2 (-1011))
- (-5 *1 (-553))))
+ (|partial| -12 (-5 *3 (-402 (-928 (-167 *5)))) (-5 *4 (-897))
+ (-4 *5 (-544)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374)))
+ (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827))
+ (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373)))))
- (-5 *2 (-1011)) (-5 *1 (-553))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373)))))
- (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373)))))
- (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373)))))
- (-5 *5 (-373)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-309 (-373))) (-5 *4 (-1065 (-819 (-373))))
- (-5 *5 (-1131)) (-5 *2 (-1011)) (-5 *1 (-553))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-309 (-373))) (-5 *4 (-1065 (-819 (-373))))
- (-5 *5 (-1149)) (-5 *2 (-1011)) (-5 *1 (-553))))
+ (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544))
+ (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374)))
+ (-5 *1 (-765 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4))
- (-5 *2 (-569 (-402 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5))))
+ (|partial| -12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-544)) (-4 *4 (-827))
+ (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-145))
- (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538))))
- (-5 *2 (-3 (-309 *5) (-622 (-309 *5)))) (-5 *1 (-574 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827))
- (-4 *3 (-38 (-402 (-538))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1149)) (-5 *1 (-922 *3)) (-4 *3 (-38 (-402 (-538))))
- (-4 *3 (-1025))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-4 *2 (-827))
- (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-926 *3 (-524 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025))
- (-5 *1 (-1133 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5))
- (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5))
- (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5))
- (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *1 (-1178 *3)) (-4 *3 (-38 (-402 (-538))))
- (-4 *3 (-1025))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5))
- (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3891
- (-12 (-5 *2 (-1149)) (-4 *1 (-1193 *3)) (-4 *3 (-1025))
- (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171))
- (-4 *3 (-38 (-402 (-538))))))
- (-12 (-5 *2 (-1149)) (-4 *1 (-1193 *3)) (-4 *3 (-1025))
- (-12 (|has| *3 (-15 -3417 ((-622 *2) *3)))
- (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1193 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5))
- (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3891
- (-12 (-5 *2 (-1149)) (-4 *1 (-1214 *3)) (-4 *3 (-1025))
- (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171))
- (-4 *3 (-38 (-402 (-538))))))
- (-12 (-5 *2 (-1149)) (-4 *1 (-1214 *3)) (-4 *3 (-1025))
- (-12 (|has| *3 (-15 -3417 ((-622 *2) *3)))
- (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5))
- (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3891
- (-12 (-5 *2 (-1149)) (-4 *1 (-1224 *3)) (-4 *3 (-1025))
- (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171))
- (-4 *3 (-38 (-402 (-538))))))
- (-12 (-5 *2 (-1149)) (-4 *1 (-1224 *3)) (-4 *3 (-1025))
- (-12 (|has| *3 (-15 -3417 ((-622 *2) *3)))
- (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))))
+ (|partial| -12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-544))
+ (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374)))
+ (-5 *1 (-765 *5)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-751)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1147 *4 *5 *6))
- (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-751)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1221 *4 *5 *6))
- (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751))))
- ((*1 *1 *1) (-4 *1 (-229)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-261 *3)) (-4 *3 (-827))))
- ((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190))
- (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4))
- (-4 *4 (-1207 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1207 *2))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-358)) (-4 *2 (-876 *3)) (-5 *1 (-569 *2)) (-5 *3 (-1149))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-569 *2)) (-4 *2 (-358))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 (-751))) (-4 *1 (-876 *4))
- (-4 *4 (-1074))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1074))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1207 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5))
- (-4 *3 (-1025)) (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149))
- (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149))
- (-14 *5 *3))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149))
- (-14 *5 *3))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1011)) (-5 *1 (-298))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-1011))) (-5 *2 (-1011)) (-5 *1 (-298))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-631 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1 *1) (-5 *1 (-1037)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1127 *4))
- (-4 *4 (-1185))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1074)) (-4 *3 (-827)) (-4 *2 (-1185))))
- ((*1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
- ((*1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
- ((*1 *2 *1) (-12 (-4 *2 (-1185)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1185))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773))
- (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185))))
- ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2))
- (-4 *5 (-367 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2))
- (-4 *5 (-367 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1185))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 (-538))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2))
- (-14 *4 (-538)) (-14 *5 (-751))))
- ((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-751))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-751))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-751))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-751))))
+ (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751))))
((*1 *2 *1)
- (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-538)) (-14 *4 (-751))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-751)) (-4 *2 (-1074)) (-5 *1 (-209 *4 *2)) (-14 *4 (-895))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1149)) (-5 *2 (-241 (-1131))) (-5 *1 (-210 *4))
- (-4 *4
- (-13 (-827)
- (-10 -8 (-15 -4159 ((-1131) $ *3)) (-15 -3980 ((-1237) $))
- (-15 -2087 ((-1237) $)))))))
+ (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-751)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1129 (-221)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3315
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-547)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-322 *3)) (-4 *3 (-1186))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-965)) (-5 *1 (-210 *3))
- (-4 *3
- (-13 (-827)
- (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $))
- (-15 -2087 ((-1237) $)))))))
+ (-12 (-5 *2 (-552)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186)) (-14 *4 *2))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-311 *3)) (-4 *3 (-13 (-1025) (-827)))
+ (-5 *1 (-219 *3 *4)) (-14 *4 (-625 (-1149))))))
+(((*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)))))
+(((*1 *2)
+ (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4))
+ (-4 *3 (-324 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-751)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-879 *3)) (-4 *3 (-1073)) (-5 *2 (-1075 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-751)) (-5 *1 (-241 *4)) (-4 *4 (-827))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-827))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-827))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185))))
- ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185))))
- ((*1 *2 *1 *2)
- (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1207 *3))
- (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 *1)) (-4 *1 (-293))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113))))
- ((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1207 *2))
- (-4 *4 (-1207 (-402 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-413 *2)) (-4 *2 (-170))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1131)) (-5 *1 (-495))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-51)) (-5 *1 (-614))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-631 *3)) (-4 *3 (-1185))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-622 (-538))) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025))
- (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-622 (-866 *4))) (-5 *1 (-866 *4))
- (-4 *4 (-1074))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-880 *2)) (-4 *2 (-1074))))
+ (-12 (-4 *4 (-1073)) (-5 *2 (-1075 (-625 *4))) (-5 *1 (-880 *4))
+ (-5 *3 (-625 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-751)) (-5 *2 (-878 *4)) (-5 *1 (-881 *4)) (-4 *4 (-1074))))
+ (-12 (-4 *4 (-1073)) (-5 *2 (-1075 (-1075 *4))) (-5 *1 (-880 *4))
+ (-5 *3 (-1075 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-895)) (-4 *2 (-358))
- (-5 *1 (-969 *4 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-986 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *2 (-1025))
- (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2))
- (-4 *7 (-234 *4 *2)) (-4 *2 (-1025))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-895)) (-4 *4 (-1074))
- (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4))))
- (-5 *1 (-1048 *4 *5 *2))
- (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4))))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-895)) (-4 *4 (-1074))
- (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4))))
- (-5 *1 (-1050 *4 *5 *2))
- (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-538))) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074))
- (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-538)) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074))
- (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074))))
- ((*1 *1 *1 *1) (-4 *1 (-1117)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-402 *1)) (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-402 *1)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-4 *3 (-545))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1220 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1220 *3)) (-4 *3 (-1185))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
- ((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
- ((*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1180 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-773))
- (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1069))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773))
- (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185))))
- ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))
- ((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1185)) (-5 *1 (-849 *3 *2)) (-4 *3 (-1185))))
- ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1220 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2))
- (-4 *5 (-367 *2))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3))
- (-4 *3 (-1185))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) (-4 *3 (-1185))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-751)) (-5 *1 (-209 *4 *2)) (-14 *4 (-895)) (-4 *2 (-1074))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1074))
- (-4 *2 (-1185))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1149)) (-5 *1 (-614))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1198 (-538))) (|has| *1 (-6 -4354)) (-4 *1 (-631 *2))
- (-4 *2 (-1185))))
- ((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-622 (-538))) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025))
- (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4354)) (-4 *1 (-986 *2))
- (-4 *2 (-1185))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2))
- (-4 *2 (-1185))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3))
- (-4 *3 (-1185))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2))
- (-4 *2 (-1185)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1126 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-538)) (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3))
- (-4 *3 (-1185)))))
+ (-12 (-5 *2 (-1075 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446)))
- (-5 *2 (-819 *4)) (-5 *1 (-308 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4)))
+ (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446)))
- (-5 *2 (-819 *4)) (-5 *1 (-1218 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4))))
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1073)) (-4 *4 (-1073))
+ (-4 *6 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *5 *4 *6)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1212 *4 *5 *6)) (|:| |%expon| (-314 *4 *5 *6))
- (|:| |%expTerms| (-622 (-2 (|:| |k| (-402 (-538))) (|:| |c| *4))))))
- (|:| |%type| (-1131))))
- (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3)))
- (-14 *5 (-1149)) (-14 *6 *4))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-402 (-538)))
- (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))
- (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-288 *3)) (-5 *5 (-402 (-538)))
- (-4 *3 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-402 (-538)))) (-5 *4 (-288 *8))
- (-5 *5 (-1198 (-402 (-538)))) (-5 *6 (-402 (-538)))
- (-4 *8 (-13 (-27) (-1171) (-416 *7)))
- (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-402 (-538))))
- (-5 *7 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *8)))
- (-4 *8 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-402 (-538))) (-4 *4 (-1025)) (-4 *1 (-1216 *4 *3))
- (-4 *3 (-1193 *4)))))
+ (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-5 *2 (-1131)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1193 *3))
- (-5 *2 (-402 (-538))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3)))))
+ (-12 (-5 *2 (-839)) (-5 *1 (-1129 *3)) (-4 *3 (-1073))
+ (-4 *3 (-1186)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4)))))
+ (|partial| -12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2))
+ (-5 *2 (-374)) (-5 *1 (-765 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025))
+ (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4)))))
+ (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544))
+ (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-538)) (-4 *5 (-13 (-446) (-827) (-1014 *4) (-621 *4)))
- (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))))
+ (|partial| -12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544))
+ (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827))
+ (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))
- (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-446) (-827) (-1014 *5) (-621 *5))) (-5 *5 (-538))
- (-5 *2 (-51)) (-5 *1 (-311 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-538)))
- (-4 *7 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-538)))
- (-4 *3 (-13 (-27) (-1171) (-416 *7)))
- (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-538)) (-4 *4 (-1025)) (-4 *1 (-1195 *4 *3))
- (-4 *3 (-1224 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3)))))
+ (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544))
+ (-4 *5 (-827)) (-4 *5 (-598 *2)) (-5 *2 (-374))
+ (-5 *1 (-765 *5)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-895)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-4 *1 (-1214 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-538))))
- (-4 *4 (-13 (-1207 *3) (-545) (-10 -8 (-15 -3495 ($ $ $))))) (-4 *3 (-545))
- (-5 *1 (-1211 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
+ (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))
(-4 *2 (-446))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))
- (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *1))))
- (-4 *1 (-1045 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1190)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 *4)) (-4 *4 (-1208 (-552))) (-5 *2 (-625 (-552)))
+ (-5 *1 (-480 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827)) (-4 *3 (-446)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1186))))
((*1 *2 *2)
- (-12 (-4 *3 (-545)) (-5 *1 (-1211 *3 *2))
- (-4 *2 (-13 (-1207 *3) (-545) (-10 -8 (-15 -3495 ($ $ $))))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186))
+ (-14 *4 (-552)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827)))
+ (-14 *3 (-625 (-1149))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130))
- (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| -4313 *3) (|:| -4298 *4)))) (-5 *1 (-716 *3 *4))
- (-4 *3 (-1025)) (-4 *4 (-707))))
+ (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-827)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-324 *3)) (-4 *5 (-1208 *4))
+ (-5 *1 (-757 *3 *4 *5 *2 *6)) (-4 *2 (-1208 *5)) (-14 *6 (-897))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-4 *3 (-363))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-358)) (-4 *2 (-363)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1075 (-1075 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))
- (-5 *2 (-1126 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-237))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-622 (-1131))) (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *1 (-237))))
- ((*1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840))))
- ((*1 *2 *1) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))))
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1073)) (-4 *5 (-1073))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827))
- (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751))))
+ (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025))
+ (-4 *5 (-827)) (-5 *2 (-928 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827))
- (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-895))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-328 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358)))
- (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-4 *7 (-337 *4 *5 *6))
- (-5 *2 (-751)) (-5 *1 (-387 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-812 (-895)))))
- ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-545)) (-5 *2 (-538)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827))))
+ (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025))
+ (-4 *5 (-827)) (-5 *2 (-928 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-751)) (-4 *1 (-1223 *4)) (-4 *4 (-1025))
+ (-5 *2 (-928 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1074))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4))
- (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7))
- (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-751))
- (-5 *1 (-887 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6))
- (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-1207 (-402 *4)))
- (-4 *6 (-337 (-402 (-538)) *4 *5)) (-5 *2 (-751)) (-5 *1 (-888 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-328 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358))
- (-4 *7 (-1207 *6)) (-4 *4 (-1207 (-402 *7))) (-4 *8 (-337 *6 *7 *4))
- (-4 *9 (-13 (-363) (-358))) (-5 *2 (-751)) (-5 *1 (-994 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-4 *3 (-545)) (-5 *2 (-751))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))))
-(((*1 *1 *1) (-4 *1 (-1034)))
- ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))))
+ (-12 (-5 *3 (-751)) (-4 *1 (-1223 *4)) (-4 *4 (-1025))
+ (-5 *2 (-928 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1129 *3)) (-4 *3 (-1073))
+ (-4 *3 (-1186)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-552))))
+ (-4 *2 (-170)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-625 *5)) (-5 *4 (-552)) (-4 *5 (-825)) (-4 *5 (-358))
+ (-5 *2 (-751)) (-5 *1 (-921 *5 *6)) (-4 *6 (-1208 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-502 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-827)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1149)) (-5 *6 (-112))
+ (-4 *7 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-4 *3 (-13 (-1171) (-935) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-215 *7 *3)) (-5 *5 (-820 *3)))))
+(((*1 *1 *1) (-4 *1 (-239)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-1523 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1186)))
+ (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1186)))))
+ ((*1 *1 *1) (-4 *1 (-467)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)) (-4 *2 (-358)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552)))))
+ (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-625 (-751)))
+ (-5 *1 (-880 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1073)) (-4 *5 (-1073))
+ (-5 *2 (-1 *5)) (-5 *1 (-663 *4 *5)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-402 (-538))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-538))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-402 (-538))) (-5 *1 (-847 *4)) (-14 *4 *3) (-5 *3 (-538))))
- ((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-402 (-538))) (-5 *1 (-848 *4 *5)) (-5 *3 (-538))
- (-4 *5 (-846 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-988)) (-5 *2 (-402 (-538)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1207 *2))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (|has| *2 (-15 ** (*2 *2 *3)))
- (|has| *2 (-15 -4317 (*2 (-1149)))) (-4 *2 (-1025)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-172 *3)) (-4 *3 (-302))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-654 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-721 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-827))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-956 *3)) (-4 *3 (-1025))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7))
- (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))
- (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *2 (-1039 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))))
+ (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-754)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1077)) (-5 *1 (-941)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *4 (-13 (-544) (-145))) (-5 *1 (-529 *4 *2))
+ (-4 *2 (-1223 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *4 (-13 (-358) (-363) (-598 *3)))
+ (-4 *5 (-1208 *4)) (-4 *6 (-705 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2))
+ (-4 *2 (-1223 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *4 (-13 (-358) (-363) (-598 *3)))
+ (-5 *1 (-534 *4 *2)) (-4 *2 (-1223 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-13 (-544) (-145)))
+ (-5 *1 (-1125 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-552))))
+ (-4 *2 (-170)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *4)) (-4 *4 (-825)) (-4 *4 (-358)) (-5 *2 (-751))
+ (-5 *1 (-921 *4 *5)) (-4 *5 (-1208 *4)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-751)) (-4 *5 (-170))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-751)) (-4 *5 (-170))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4)
+ (-243 *4 (-402 (-552)))))
+ (-5 *3 (-625 (-841 *4))) (-14 *4 (-625 (-1149))) (-14 *5 (-751))
+ (-5 *1 (-498 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5))
+ (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-1245 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544))
+ (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-625 (-751)))
+ (-5 *1 (-880 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-109))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1073))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-663 *4 *3)) (-4 *4 (-1073))
+ (-4 *3 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344))
+ (-4 *2
+ (-13 (-397)
+ (-10 -7 (-15 -1683 (*2 *4)) (-15 -4318 ((-897) *2))
+ (-15 -1270 ((-1232 *2) (-897))) (-15 -4104 (*2 *2)))))
+ (-5 *1 (-351 *2 *4)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-402 *5)) (-4 *4 (-1190)) (-4 *5 (-1207 *4))
- (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1207 *3))))
+ (-12 (-5 *3 (-402 *5)) (-4 *4 (-1190)) (-4 *5 (-1208 *4))
+ (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1208 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1151 (-402 (-538)))) (-5 *2 (-402 (-538))) (-5 *1 (-186))))
+ (-12 (-5 *3 (-1151 (-402 (-552)))) (-5 *2 (-402 (-552)))
+ (-5 *1 (-186))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-669 (-309 (-221)))) (-5 *3 (-622 (-1149)))
- (-5 *4 (-1231 (-309 (-221)))) (-5 *1 (-201))))
+ (-12 (-5 *2 (-669 (-311 (-221)))) (-5 *3 (-625 (-1149)))
+ (-5 *4 (-1232 (-311 (-221)))) (-5 *1 (-201))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-288 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1074))
- (-4 *3 (-1185)) (-5 *1 (-288 *3))))
+ (-12 (-5 *2 (-625 (-289 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1073))
+ (-4 *3 (-1186)) (-5 *1 (-289 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-304 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)) (-5 *1 (-288 *2))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293))))
+ (-12 (-4 *2 (-304 *2)) (-4 *2 (-1073)) (-4 *2 (-1186))
+ (-5 *1 (-289 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-622 *1))) (-4 *1 (-293))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-293))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-625 *1))) (-4 *1 (-297))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 (-1 *1 *1))) (-4 *1 (-293))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293))))
+ (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 (-1 *1 (-625 *1))))
+ (-4 *1 (-297))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 (-622 *1))) (-4 *1 (-293))))
+ (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 (-1 *1 *1))) (-4 *1 (-297))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-293))))
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-1 *1 *1))) (-4 *1 (-293))))
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 (-625 *1))) (-4 *1 (-297))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-1 *1 (-625 *1))))
+ (-4 *1 (-297))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-1 *1 *1))) (-4 *1 (-297))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-289 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1073))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-288 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1074))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1074))))
+ (-12 (-5 *2 (-289 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1073))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-538))) (-5 *4 (-1151 (-402 (-538)))) (-5 *1 (-305 *2))
- (-4 *2 (-38 (-402 (-538))))))
+ (-12 (-5 *3 (-1 *2 (-552))) (-5 *4 (-1151 (-402 (-552))))
+ (-5 *1 (-305 *2)) (-4 *2 (-38 (-402 (-552))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-827))
- (-4 *5 (-170))))
- ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170))))
+ (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 *1)) (-4 *1 (-369 *4 *5))
+ (-4 *4 (-827)) (-4 *5 (-170))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 *1)) (-4 *1 (-416 *5))
- (-4 *5 (-827)) (-4 *5 (-1025))))
+ (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 (-622 *1)))
- (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025))))
+ (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 (-625 *1)))
+ (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-751)))
- (-5 *4 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-416 *5)) (-4 *5 (-827))
+ (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-751)))
+ (-5 *4 (-625 (-1 *1 (-625 *1)))) (-4 *1 (-425 *5)) (-4 *5 (-827))
(-4 *5 (-1025))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-751))) (-5 *4 (-622 (-1 *1 *1)))
- (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025))))
+ (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-751)))
+ (-5 *4 (-625 (-1 *1 *1))) (-4 *1 (-425 *5)) (-4 *5 (-827))
+ (-4 *5 (-1025))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 *1)) (-5 *4 (-1149))
- (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-598 (-527)))))
+ (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 *1)) (-5 *4 (-1149))
+ (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-598 (-528)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-1149)) (-4 *1 (-416 *4)) (-4 *4 (-827))
- (-4 *4 (-598 (-527)))))
- ((*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-598 (-527)))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1149)) (-4 *1 (-425 *4)) (-4 *4 (-827))
+ (-4 *4 (-598 (-528)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-598 (-528)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-1149))) (-4 *1 (-416 *3)) (-4 *3 (-827))
- (-4 *3 (-598 (-527)))))
+ (-12 (-5 *2 (-625 (-1149))) (-4 *1 (-425 *3)) (-4 *3 (-827))
+ (-4 *3 (-598 (-528)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)) (-4 *3 (-598 (-527)))))
- ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1185))))
+ (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827))
+ (-4 *3 (-598 (-528)))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1186))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 *5)) (-4 *1 (-507 *4 *5)) (-4 *4 (-1074))
- (-4 *5 (-1185))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-812 *3)) (-4 *3 (-358)) (-5 *1 (-699 *3))))
+ (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 *5)) (-4 *1 (-507 *4 *5))
+ (-4 *4 (-1073)) (-4 *5 (-1186))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-813 *3)) (-4 *3 (-358)) (-5 *1 (-699 *3))))
((*1 *2 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-880 *2)) (-4 *2 (-1074))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1073))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-402 (-922 *4))) (-5 *3 (-1149)) (-4 *4 (-545))
- (-5 *1 (-1016 *4))))
+ (-12 (-5 *2 (-402 (-928 *4))) (-5 *3 (-1149)) (-4 *4 (-544))
+ (-5 *1 (-1019 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-622 (-1149))) (-5 *4 (-622 (-402 (-922 *5))))
- (-5 *2 (-402 (-922 *5))) (-4 *5 (-545)) (-5 *1 (-1016 *5))))
+ (-12 (-5 *3 (-625 (-1149))) (-5 *4 (-625 (-402 (-928 *5))))
+ (-5 *2 (-402 (-928 *5))) (-4 *5 (-544)) (-5 *1 (-1019 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-288 (-402 (-922 *4)))) (-5 *2 (-402 (-922 *4))) (-4 *4 (-545))
- (-5 *1 (-1016 *4))))
+ (-12 (-5 *3 (-289 (-402 (-928 *4)))) (-5 *2 (-402 (-928 *4)))
+ (-4 *4 (-544)) (-5 *1 (-1019 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 (-288 (-402 (-922 *4))))) (-5 *2 (-402 (-922 *4)))
- (-4 *4 (-545)) (-5 *1 (-1016 *4))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ (-12 (-5 *3 (-625 (-289 (-402 (-928 *4))))) (-5 *2 (-402 (-928 *4)))
+ (-4 *4 (-544)) (-5 *1 (-1019 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1126 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-751)) (-4 *1 (-1207 *4)) (-4 *4 (-1025)) (-5 *2 (-1231 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-5 *2 (-1143 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1025)) (-4 *1 (-1207 *3)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827))
- (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-926 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1)))
- (-4 *1 (-1207 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-751)) (-4 *4 (-1025))
- (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1207 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)))))
-(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1207 *2))
- (-4 *2 (-170))))
- ((*1 *2)
- (-12 (-4 *4 (-1207 *2)) (-4 *2 (-170)) (-5 *1 (-404 *3 *2 *4))
- (-4 *3 (-405 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-405 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170))))
- ((*1 *2)
- (-12 (-4 *3 (-1207 *2)) (-5 *2 (-538)) (-5 *1 (-748 *3 *4))
- (-4 *4 (-405 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))
- (-4 *3 (-170))))
- ((*1 *2 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))
- (-4 *3 (-170))))
- ((*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-545))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-545))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1207 *3)) (-4 *3 (-1025))
- (-4 *3 (-545))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -4313 *4) (|:| -2096 *3) (|:| -3235 *3)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1039 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-545)) (-4 *3 (-1025))
- (-5 *2 (-2 (|:| -4313 *3) (|:| -2096 *1) (|:| -3235 *1)))
- (-4 *1 (-1207 *3)))))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1129 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *4 (-545)) (-4 *5 (-1207 *4))
- (-5 *2 (-2 (|:| -1884 (-605 *4 *5)) (|:| -1883 (-402 *5))))
- (-5 *1 (-605 *4 *5)) (-5 *3 (-402 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895))
- (-4 *4 (-1025))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-446)) (-4 *3 (-1025))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1207 *3)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-1205 *4 *2))
- (-4 *2 (-1207 *4)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3)))
- (-5 *1 (-1204 *4 *3)) (-4 *3 (-1207 *4)))))
+ (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2))
+ (-4 *2 (-1223 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3))
+ (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2))
+ (-4 *2 (-1223 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145)))
+ (-5 *1 (-1125 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-545) (-145))) (-5 *2 (-622 *3)) (-5 *1 (-1203 *4 *3))
- (-4 *3 (-1207 *4)))))
+ (-12 (-4 *2 (-358)) (-4 *2 (-825)) (-5 *1 (-921 *2 *3))
+ (-4 *3 (-1208 *2)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-545) (-145)))
- (-5 *2 (-2 (|:| -3473 *3) (|:| -3472 *3))) (-5 *1 (-1203 *4 *3))
- (-4 *3 (-1207 *4)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1203 *3 *2))
- (-4 *2 (-1207 *3)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-545) (-145)))
- (-5 *1 (-1203 *4 *2)) (-4 *2 (-1207 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-545) (-145)))
- (-5 *1 (-1203 *4 *2)) (-4 *2 (-1207 *4)))))
+ (-12 (-14 *4 (-625 (-1149))) (-14 *5 (-751))
+ (-5 *2
+ (-625
+ (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4)
+ (-243 *4 (-402 (-552))))))
+ (-5 *1 (-498 *4 *5))
+ (-5 *3
+ (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4)
+ (-243 *4 (-402 (-552))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-967 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3))
- (-4 *3 (-367 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-967 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-496 *4 *5 *6 *3))
- (-4 *6 (-367 *4)) (-4 *3 (-367 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-669 *5)) (-4 *5 (-967 *4)) (-4 *4 (-545))
- (-5 *2 (-2 (|:| |num| (-669 *4)) (|:| |den| *4))) (-5 *1 (-673 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5))
- (-5 *2 (-2 (|:| -3617 *7) (|:| |rh| (-622 (-402 *6)))))
- (-5 *1 (-787 *5 *6 *7 *3)) (-5 *4 (-622 (-402 *6))) (-4 *7 (-638 *6))
- (-4 *3 (-638 (-402 *6)))))
+ (-12 (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3))
+ (-4 *3 (-1208 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *4 *5))
+ (-4 *5 (-13 (-27) (-1171) (-425 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-967 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1202 *4 *5 *3))
- (-4 *3 (-1207 *5)))))
+ (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *4 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-402 (-552)))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *5 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5)))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-552)))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-402 (-552)))) (-5 *4 (-289 *8))
+ (-5 *5 (-1199 (-402 (-552)))) (-5 *6 (-402 (-552)))
+ (-4 *8 (-13 (-27) (-1171) (-425 *7)))
+ (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-402 (-552))))
+ (-5 *7 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *8)))
+ (-4 *8 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-402 (-552))) (-4 *4 (-1025)) (-4 *1 (-1215 *4 *3))
+ (-4 *3 (-1192 *4)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5))
+ (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-1245 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544))
+ (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1075 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1075 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-552))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-751) *2)) (-5 *4 (-751)) (-4 *2 (-1073))
+ (-5 *1 (-658 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-751) *3)) (-4 *3 (-1073)) (-5 *1 (-662 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-934 (-1145 *4))) (-5 *1 (-352 *4))
+ (-5 *3 (-1145 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-545)) (-4 *4 (-967 *3)) (-5 *1 (-140 *3 *4 *2))
- (-4 *2 (-367 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-4 *2 (-367 *4))
- (-5 *1 (-496 *4 *5 *2 *3)) (-4 *3 (-367 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-669 *5)) (-4 *5 (-967 *4)) (-4 *4 (-545)) (-5 *2 (-669 *4))
- (-5 *1 (-673 *4 *5))))
+ (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2))
+ (-4 *2 (-1223 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3))
+ (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2))
+ (-4 *2 (-1223 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-545)) (-4 *4 (-967 *3)) (-5 *1 (-1202 *3 *4 *2))
- (-4 *2 (-1207 *4)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145)))
+ (-5 *1 (-1125 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-751)) (-5 *1 (-1074 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
(((*1 *2 *3)
- (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-140 *2 *4 *3))
- (-4 *3 (-367 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-496 *2 *4 *5 *3))
- (-4 *5 (-367 *2)) (-4 *3 (-367 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-669 *4)) (-4 *4 (-967 *2)) (-4 *2 (-545))
- (-5 *1 (-673 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-1202 *2 *4 *3))
- (-4 *3 (-1207 *4)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-761 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-545)) (-4 *3 (-1025))
- (-4 *2 (-772))))
- ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1143 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-947)) (-4 *2 (-130)) (-5 *1 (-1151 *3)) (-4 *3 (-545))
- (-4 *3 (-1025))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-751)) (-5 *1 (-1200 *4 *3)) (-14 *4 (-1149)) (-4 *3 (-1025)))))
-(((*1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1062 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-1185))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1185)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-538))
- (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538)))))))
- (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-538))
- (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538)))))))
- (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538))))))
+ (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-921 *4 *3))
+ (-4 *3 (-1208 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-5 *2 (-400 *3)) (-5 *1 (-212 *4 *3))
- (-4 *3 (-1207 *4))))
- ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-751))) (-5 *2 (-400 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1207 (-538)))))
+ (-12
+ (-5 *3
+ (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4)
+ (-243 *4 (-402 (-552)))))
+ (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112))
+ (-5 *1 (-498 *4 *5)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2))
+ (-4 *2 (-1208 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *4 *5))
+ (-4 *5 (-13 (-27) (-1171) (-425 *4)))))
((*1 *2 *3)
- (-12 (-5 *2 (-400 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1207 (-402 (-538))))))
- ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-48))) (-5 *2 (-400 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1207 (-48)))))
- ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48)))))
+ (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *4 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-400 *3))
- (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-926 (-48) *6 *5))))
+ (-12 (-5 *4 (-552)) (-4 *5 (-13 (-446) (-827) (-1014 *4) (-621 *4)))
+ (-5 *2 (-52)) (-5 *1 (-310 *5 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-48))) (-4 *5 (-827)) (-4 *6 (-773))
- (-4 *7 (-926 (-48) *6 *5)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-42 *5 *6 *7))
- (-5 *3 (-1143 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-165 *4 *3))
- (-4 *3 (-1207 (-166 *4)))))
+ (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5)))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3))
- (-4 *3 (-1207 (-166 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3))
- (-4 *3 (-1207 (-166 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-5 *2 (-400 *3)) (-5 *1 (-212 *4 *3))
- (-4 *3 (-1207 *4))))
- ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-751))) (-5 *2 (-400 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1207 (-538)))))
+ (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-446) (-827) (-1014 *5) (-621 *5))) (-5 *5 (-552))
+ (-5 *2 (-52)) (-5 *1 (-310 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-400 (-166 (-538)))) (-5 *1 (-440)) (-5 *3 (-166 (-538)))))
- ((*1 *2 *3)
- (-12
- (-4 *4
- (-13 (-827)
- (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149))))))
- (-4 *5 (-773)) (-4 *7 (-545)) (-5 *2 (-400 *3))
- (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-545)) (-4 *3 (-926 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-302)) (-5 *2 (-400 (-1143 *4))) (-5 *1 (-452 *4))
- (-5 *3 (-1143 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358))
- (-4 *7 (-13 (-358) (-145) (-705 *5 *6))) (-5 *2 (-400 *3))
- (-5 *1 (-487 *5 *6 *7 *3)) (-4 *3 (-1207 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-400 (-1143 *7)) (-1143 *7))) (-4 *7 (-13 (-302) (-145)))
- (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-400 *3)) (-5 *1 (-532 *5 *6 *7 *3))
- (-4 *3 (-926 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-400 (-1143 *7)) (-1143 *7))) (-4 *7 (-13 (-302) (-145)))
- (-4 *5 (-827)) (-4 *6 (-773)) (-4 *8 (-926 *7 *6 *5))
- (-5 *2 (-400 (-1143 *8))) (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1143 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-622 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-4 *6 (-1207 *5)) (-5 *2 (-622 (-635 (-402 *6)))) (-5 *1 (-639 *5 *6))
- (-5 *3 (-635 (-402 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-4 *5 (-1207 *4)) (-5 *2 (-622 (-635 (-402 *5)))) (-5 *1 (-639 *4 *5))
- (-5 *3 (-635 (-402 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-622 (-652 *4)))
- (-5 *1 (-652 *4))))
+ (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-552)))
+ (-4 *7 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-552)))
+ (-4 *3 (-13 (-27) (-1171) (-425 *7)))
+ (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-552)) (-4 *4 (-1025)) (-4 *1 (-1194 *4 *3))
+ (-4 *3 (-1223 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1192 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-1245 *4 *5 *6 *7)))
+ (-5 *1 (-1245 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-625 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544))
+ (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-625 (-1245 *6 *7 *8 *9)))
+ (-5 *1 (-1245 *6 *7 *8 *9)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-880 *4))
+ (-4 *4 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-552))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-662 *2)) (-4 *2 (-1073))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-538)) (-5 *2 (-622 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1207 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-345)) (-5 *2 (-400 *3))
- (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-345)) (-4 *7 (-926 *6 *5 *4))
- (-5 *2 (-400 (-1143 *7))) (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1143 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-773))
- (-4 *5
- (-13 (-827)
- (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149))))))
- (-4 *6 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-711 *4 *5 *6 *3))
- (-4 *3 (-926 (-922 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)))))
- (-4 *6 (-545)) (-5 *2 (-400 *3)) (-5 *1 (-713 *4 *5 *6 *3))
- (-4 *3 (-926 (-402 (-922 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-13 (-302) (-145)))
- (-5 *2 (-400 *3)) (-5 *1 (-714 *4 *5 *6 *3))
- (-4 *3 (-926 (-402 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145)))
- (-5 *2 (-400 *3)) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145)))
- (-4 *7 (-926 *6 *5 *4)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-722 *4 *5 *6 *7))
- (-5 *3 (-1143 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-400 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1207 (-402 (-538))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-400 *3)) (-5 *1 (-1018 *3))
- (-4 *3 (-1207 (-402 (-922 (-538)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1207 (-402 (-538))))
- (-4 *5 (-13 (-358) (-145) (-705 (-402 (-538)) *4))) (-5 *2 (-400 *3))
- (-5 *1 (-1053 *4 *5 *3)) (-4 *3 (-1207 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1207 (-402 (-922 (-538)))))
- (-4 *5 (-13 (-358) (-145) (-705 (-402 (-922 (-538))) *4))) (-5 *2 (-400 *3))
- (-5 *1 (-1054 *4 *5 *3)) (-4 *3 (-1207 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-926 *6 *4 *5))
- (-5 *2 (-400 (-1143 (-402 *7)))) (-5 *1 (-1145 *4 *5 *6 *7))
- (-5 *3 (-1143 (-402 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1190))))
- ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-538))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-847 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-14 *2 (-538))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-538)) (-14 *3 *2) (-5 *1 (-848 *3 *4)) (-4 *4 (-846 *3))))
- ((*1 *1 *1) (-12 (-14 *2 (-538)) (-5 *1 (-848 *2 *3)) (-4 *3 (-846 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-538)) (-4 *1 (-1195 *3 *4)) (-4 *3 (-1025))
- (-4 *4 (-1224 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-1195 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1224 *2)))))
+ (-12 (-5 *3 (-1 (-625 *5) (-625 *5))) (-5 *4 (-552))
+ (-5 *2 (-625 *5)) (-5 *1 (-662 *5)) (-4 *5 (-1073)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2))
+ (-4 *2 (-1223 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3))
+ (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2))
+ (-4 *2 (-1223 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145)))
+ (-5 *1 (-1125 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-625 (-762 *3))) (-5 *1 (-762 *3)) (-4 *3 (-544))
+ (-4 *3 (-1025)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-921 *4 *3))
+ (-4 *3 (-1208 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4)
+ (-243 *4 (-402 (-552)))))
+ (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112))
+ (-5 *1 (-498 *4 *5)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2))
+ (-4 *2 (-1208 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4)))))
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *4 *5))
+ (-4 *5 (-13 (-27) (-1171) (-425 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-751)) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))
- (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *5 *3))))
+ (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *4 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-751))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *5 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5)))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-288 *3)) (-5 *5 (-751)) (-4 *3 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-311 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-538))) (-5 *4 (-288 *6))
- (-4 *6 (-13 (-27) (-1171) (-416 *5)))
- (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *5 *6))))
+ (-12 (-5 *4 (-289 *3)) (-5 *5 (-751))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-289 *6))
+ (-4 *6 (-13 (-27) (-1171) (-425 *5)))
+ (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *6 *3))))
+ (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-751)))
- (-4 *7 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-751)))
+ (-4 *7 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-751)))
- (-4 *3 (-13 (-27) (-1171) (-416 *7)))
- (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51))
- (-5 *1 (-453 *7 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-1193 *4)) (-4 *4 (-1025)) (-4 *4 (-545))
- (-5 *2 (-402 (-922 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-1193 *4)) (-4 *4 (-1025)) (-4 *4 (-545))
- (-5 *2 (-402 (-922 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-166 (-538))) (-5 *2 (-112)) (-5 *1 (-440))))
+ (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-751)))
+ (-4 *3 (-13 (-27) (-1171) (-425 *7)))
+ (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1223 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-842 *4 *5 *6 *7))
+ (-4 *4 (-1025)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 *3))
+ (-14 *7 *3)))
((*1 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-4 *5 (-827)) (-4 *6 (-773))
+ (-14 *8 (-625 *5)) (-5 *2 (-1237))
+ (-5 *1 (-1244 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-925 *4 *6 *5))
+ (-14 *9 (-625 *3)) (-14 *10 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-879 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-552))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1124))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538)))))
- (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112))
- (-5 *1 (-498 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-938 *3)) (-4 *3 (-537))))
- ((*1 *2 *1) (-12 (-4 *1 (-1190)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1188)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3579 (-622 (-1149))) (|:| -3580 (-622 (-1149)))))
- (-5 *1 (-1188)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-827)) (-4 *3 (-1074)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1187 *2))
- (-4 *2 (-1074))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-827)) (-5 *1 (-1187 *2)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1074))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1074)) (-5 *2 (-112))
- (-5 *1 (-1187 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3580 (-622 *3)) (|:| -3579 (-622 *3))))
- (-5 *1 (-1187 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-5 *2 (-1237)) (-5 *1 (-1187 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-5 *2 (-1237)) (-5 *1 (-1187 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-538)) (-4 *5 (-345)) (-5 *2 (-400 (-1143 (-1143 *5))))
- (-5 *1 (-1184 *5)) (-5 *3 (-1143 (-1143 *5))))))
+ (-5 *2
+ (-2 (|:| -3207 *3) (|:| |coef1| (-762 *3)) (|:| |coef2| (-762 *3))))
+ (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-5 *2 (-400 (-1143 (-1143 *4)))) (-5 *1 (-1184 *4))
- (-5 *3 (-1143 (-1143 *4))))))
+ (-12 (-5 *3 (-928 *5)) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5))
+ (-5 *1 (-920 *4 *5)) (-14 *4 (-625 (-1149))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-5 *2 (-400 (-1143 (-1143 *4)))) (-5 *1 (-1184 *4))
- (-5 *3 (-1143 (-1143 *4))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3))
- (-4 *3 (-1185))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1185))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1180 *4 *5 *3 *2)) (-4 *4 (-545)) (-4 *5 (-773))
- (-4 *3 (-827)) (-4 *2 (-1039 *4 *5 *3))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-1183 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-622 (-622 (-221)))) (-5 *4 (-221)) (-5 *2 (-622 (-919 *4)))
- (-5 *1 (-1182)) (-5 *3 (-919 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *2 (-622 (-622 (-221)))) (-5 *1 (-1182)))))
+ (-12 (-4 *4 (-344))
+ (-5 *2 (-625 (-2 (|:| |deg| (-751)) (|:| -2430 *3))))
+ (-5 *1 (-212 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-895)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1025)) (-4 *4 (-1185))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-4316 *3) (-751)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *5))
- (-2 (|:| -2492 *2) (|:| -2493 *5))))
- (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-827))
- (-4 *7 (-926 *4 *5 (-841 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-462))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-919 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)) (-5 *3 (-221)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-221)) (-5 *5 (-538)) (-5 *2 (-1181 *3)) (-5 *1 (-770 *3))
- (-4 *3 (-950))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-112)) (-5 *1 (-1181 *2))
- (-4 *2 (-950)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))))
+ (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-4 *1 (-879 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-1181 *3)) (-4 *3 (-950)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-950)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) (-4 *8 (-827))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3683 (-622 *9)))) (-5 *3 (-622 *9))
- (-4 *1 (-1180 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1039 *5 *6 *7))
- (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3683 (-622 *8)))) (-5 *3 (-622 *8))
- (-4 *1 (-1180 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5))
- (-5 *2 (-2 (|:| -4221 (-622 *6)) (|:| -1818 (-622 *6)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1180 *5 *6 *7 *3)) (-4 *5 (-545))
- (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-112))))
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-552))))
((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-1185))) (-5 *3 (-1185)) (-5 *1 (-661)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-528))) (-5 *1 (-528)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3207 *3) (|:| |coef1| (-762 *3))))
+ (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025))
+ (-5 *2 (-928 *5)) (-5 *1 (-920 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-294 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1067 (-820 (-221)))) (-5 *3 (-221)) (-5 *2 (-112))
+ (-5 *1 (-300))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-622 *7))) (-4 *1 (-1180 *4 *5 *6 *7))
- (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-622 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8))
- (-4 *1 (-1180 *5 *6 *7 *8)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827))
- (-4 *8 (-1039 *5 *6 *7)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *2 (-1039 *3 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *2 (-1039 *3 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *2 (-1039 *3 *4 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *2 (-1039 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1180 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *5 (-1039 *2 *3 *4)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *2 (-1039 *3 *4 *5)))))
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
+ (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 *10))
- (-5 *1 (-606 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1045 *5 *6 *7 *8))
- (-4 *10 (-1082 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
- (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-610 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
- (-14 *6 (-622 (-1149)))
- (-5 *2 (-622 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6)))))
- (-5 *1 (-610 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8)))
- (-5 *1 (-1003 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8)))
- (-5 *1 (-1003 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
- (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-1022 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 *1))
- (-4 *1 (-1045 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8)))
- (-5 *1 (-1119 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8)))
- (-5 *1 (-1119 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1180 *4 *5 *6 *7)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552)))))))
+ (-5 *1 (-212 *5 *3)) (-4 *3 (-1208 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-622 (-2 (|:| -4221 *1) (|:| -1818 (-622 *7))))) (-5 *3 (-622 *7))
- (-4 *1 (-1180 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773))
- (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-4 *5 (-363)) (-5 *2 (-751)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-622 (-1149)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 (-895))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5))
- (-14 *4 (-895)) (-14 *5 (-969 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-309 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827)))
- (-14 *4 (-622 (-1149)))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-130))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1025))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *2 (-545)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1207 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025))))
- ((*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-707))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 *5)) (-5 *3 (-622 (-751))) (-4 *1 (-721 *4 *5))
- (-4 *4 (-1025)) (-4 *5 (-827))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 (-751))) (-4 *1 (-926 *4 *5 *6))
- (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *1 (-926 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773))
- (-4 *2 (-827))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-751)) (-4 *2 (-926 *4 (-524 *5) *5)) (-5 *1 (-1099 *4 *5 *2))
- (-4 *4 (-1025)) (-4 *5 (-827))))
+ (-12 (-5 *3 (-1115 *4 *2)) (-14 *4 (-897))
+ (-4 *2 (-13 (-1025) (-10 -7 (-6 (-4355 "*")))))
+ (-5 *1 (-878 *4 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1186))
+ (-4 *5 (-368 *4)) (-4 *2 (-368 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-751)) (-5 *2 (-922 *4)) (-5 *1 (-1178 *4)) (-4 *4 (-1025)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1099 *4 *3 *5))) (-4 *4 (-38 (-402 (-538))))
- (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *1 (-1099 *4 *3 *5))
- (-4 *5 (-926 *4 (-524 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1178 *4))) (-5 *3 (-1149)) (-5 *1 (-1178 *4))
- (-4 *4 (-38 (-402 (-538)))) (-4 *4 (-1025)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-598 (-866 *3))) (-4 *3 (-862 *3)) (-4 *3 (-13 (-827) (-446)))
- (-5 *1 (-1177 *3 *2)) (-4 *2 (-598 (-866 *3))) (-4 *2 (-862 *3))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
+ (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *6 *2 *7)) (-4 *6 (-1025))
+ (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325))
+ (-5 *1 (-327))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1149)) (-5 *4 (-1065 (-928 (-552)))) (-5 *2 (-325))
+ (-5 *1 (-327))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025))
+ (-4 *3 (-1073)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-827))
- (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5)) (-4 *5 (-926 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-538))) (-5 *1 (-1092))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
- (-4 *2 (-13 (-416 *3) (-1171))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))
- (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))
- (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))))
+ (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3207 *3) (|:| |coef2| (-762 *3))))
+ (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-166 (-309 *4)))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-166 *3)) (-5 *1 (-1175 *4 *3))
- (-4 *3 (-13 (-27) (-1171) (-416 *4))))))
+ (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025))
+ (-5 *2 (-928 *5)) (-5 *1 (-920 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1208 (-402 *2)))
+ (-4 *2 (-1208 *5)) (-5 *1 (-211 *5 *2 *6 *3))
+ (-4 *3 (-337 *5 *2 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-112))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))
+ (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))))
+ (-4 *4 (-1208 *3))
+ (-5 *2
+ (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-669 *3))))
+ (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-112))
- (-5 *1 (-1175 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ (-12 (-5 *3 (-552)) (-4 *4 (-1208 *3))
+ (-5 *2
+ (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-669 *3))))
+ (-5 *1 (-748 *4 *5)) (-4 *5 (-404 *3 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-309 *4))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ (-12 (-4 *4 (-344)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 *3))
+ (-5 *2
+ (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-669 *3))))
+ (-5 *1 (-961 *4 *3 *5 *6)) (-4 *6 (-705 *3 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-309 *4))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2))
- (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2))
- (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538))))
- (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))))
+ (-12 (-4 *4 (-344)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 *3))
+ (-5 *2
+ (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-669 *3))))
+ (-5 *1 (-1241 *4 *3 *5 *6)) (-4 *6 (-404 *3 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-625 *3)) (|:| |image| (-625 *3))))
+ (-5 *1 (-881 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1186))
+ (-4 *5 (-368 *4)) (-4 *2 (-368 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *6 *7 *2)) (-4 *6 (-1025))
+ (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025))
+ (-4 *3 (-1073)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-631 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2))
- (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538))))
- (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))))
+ (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-625 (-1003 *5 *6 *7 *3))) (-5 *1 (-1003 *5 *6 *7 *3))
+ (-4 *3 (-1039 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-625 *6)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-625 (-1119 *5 *6 *7 *3))) (-5 *1 (-1119 *5 *6 *7 *3))
+ (-4 *3 (-1039 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 (-402 (-552))))
+ (-5 *2
+ (-625
+ (-2 (|:| |outval| *4) (|:| |outmult| (-552))
+ (|:| |outvect| (-625 (-669 *4))))))
+ (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-928 *5)) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5))
+ (-5 *1 (-920 *4 *5)) (-14 *4 (-625 (-1149))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
+ (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773))
+ (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-625 (-311 (-221))))
+ (|:| |constraints|
+ (-625
+ (-2 (|:| |start| (-221)) (|:| |finish| (-221))
+ (|:| |grid| (-751)) (|:| |boundaryType| (-552))
+ (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221))))))
+ (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131))
+ (|:| |tol| (-221))))
+ (-5 *2 (-112)) (-5 *1 (-206)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-552)) (-4 *1 (-631 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-631 *2)) (-4 *2 (-1186)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4)))
+ (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))))
+ (-4 *4 (-1208 *3))
+ (-5 *2
+ (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-669 *3))))
+ (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1208 (-552)))
+ (-5 *2
+ (-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552))
+ (|:| |basisInv| (-669 (-552)))))
+ (-5 *1 (-748 *3 *4)) (-4 *4 (-404 (-552) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 *4))
+ (-5 *2
+ (-2 (|:| -1270 (-669 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-669 *4))))
+ (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-705 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 *4))
+ (-5 *2
+ (-2 (|:| -1270 (-669 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-669 *4))))
+ (-5 *1 (-1241 *3 *4 *5 *6)) (-4 *6 (-404 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
+ (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
+ (-4 *7 (-968 *4)) (-4 *2 (-667 *7 *8 *9))
+ (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-667 *4 *5 *6))
+ (-4 *8 (-368 *7)) (-4 *9 (-368 *7))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))
- ((*1 *1 *1) (-4 *1 (-1174))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2)) (-4 *2 (-302))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827))))
+ (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2))
+ (-4 *2 (-667 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))
- ((*1 *1 *1) (-4 *1 (-1174))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))
- ((*1 *1 *1) (-4 *1 (-1174))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))
- ((*1 *1 *1) (-4 *1 (-1174))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))
- ((*1 *1 *1) (-4 *1 (-1174))))
+ (-12 (-4 *1 (-1028 *2 *3 *4 *5 *6)) (-4 *4 (-1025))
+ (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *2 *4)) (-4 *4 (-302)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1164)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1073)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))
- ((*1 *1 *1) (-4 *1 (-1174))))
-(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-1172 *3))))
+ (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *2 (-625 *4)) (-5 *1 (-759 *4))
+ (-4 *4 (-13 (-358) (-825))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025))
+ (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827))
+ (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-625 (-311 (-221)))) (-5 *3 (-221)) (-5 *2 (-112))
+ (-5 *1 (-206)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))
+ (-5 *2 (-625 (-1149))) (-5 *1 (-262))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1145 *7)) (-4 *7 (-925 *6 *4 *5)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-625 *5))
+ (-5 *1 (-316 *4 *5 *6 *7))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-382))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-425 *3)) (-4 *3 (-827)) (-5 *2 (-625 (-1149)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-625 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025))
+ (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *5))
+ (-5 *1 (-926 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-358)
+ (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1075 (-1149))) (-5 *1 (-942 *3)) (-4 *3 (-943))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772))
+ (-4 *5 (-827)) (-5 *2 (-625 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-5 *2 (-625 (-1149)))
+ (-5 *1 (-1019 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-751)) (-4 *6 (-358)) (-5 *4 (-1180 *6))
+ (-5 *2 (-1 (-1129 *4) (-1129 *4))) (-5 *1 (-1240 *6))
+ (-5 *5 (-1129 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
+ (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-751))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4))
+ (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3))
+ (-4 *3 (-667 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544))
+ (-5 *2 (-751)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-1164)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1149)) (-5 *1 (-655 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4))
+ (-4 *4 (-344)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *8 (-1039 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-625 *8))
+ (|:| |towers| (-625 (-1003 *5 *6 *7 *8)))))
+ (-5 *1 (-1003 *5 *6 *7 *8)) (-5 *3 (-625 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *8 (-1039 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-625 *8))
+ (|:| |towers| (-625 (-1119 *5 *6 *7 *8)))))
+ (-5 *1 (-1119 *5 *6 *7 *8)) (-5 *3 (-625 *8)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-669 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-170)) (-4 *2 (-1208 *4)) (-5 *1 (-175 *4 *2 *3))
+ (-4 *3 (-705 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 (-402 (-928 *5)))) (-5 *4 (-1149))
+ (-5 *2 (-928 *5)) (-5 *1 (-287 *5)) (-4 *5 (-446))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-669 (-402 (-928 *4)))) (-5 *2 (-928 *4))
+ (-5 *1 (-287 *4)) (-4 *4 (-446))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-669 (-167 (-402 (-552)))))
+ (-5 *2 (-928 (-167 (-402 (-552))))) (-5 *1 (-745 *4))
+ (-4 *4 (-13 (-358) (-825)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *4 (-1149))
+ (-5 *2 (-928 (-167 (-402 (-552))))) (-5 *1 (-745 *5))
+ (-4 *5 (-13 (-358) (-825)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *2 (-928 (-402 (-552))))
+ (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *4 (-1149))
+ (-5 *2 (-928 (-402 (-552)))) (-5 *1 (-759 *5))
+ (-4 *5 (-13 (-358) (-825))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025))
+ (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773))
+ (-5 *2
+ (-2 (|:| |mval| (-669 *4)) (|:| |invmval| (-669 *4))
+ (|:| |genIdeal| (-497 *4 *5 *6 *7))))
+ (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-206)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1145 (-402 (-1145 *2)))) (-5 *4 (-596 *2))
+ (-4 *2 (-13 (-425 *5) (-27) (-1171)))
+ (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *1 (-548 *5 *2 *6)) (-4 *6 (-1073))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-622 (-1172 *2))) (-5 *1 (-1172 *2)) (-4 *2 (-1074)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1074)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2))
- (-4 *3 (-13 (-827) (-545)))))
- ((*1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
- ((*1 *1) (-5 *1 (-471))) ((*1 *1) (-4 *1 (-1171))))
-(((*1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1169)))))
+ (-12 (-5 *2 (-1145 *1)) (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025))
+ (-4 *5 (-773)) (-4 *3 (-827))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1145 *4)) (-4 *4 (-1025)) (-4 *1 (-925 *4 *5 *3))
+ (-4 *5 (-773)) (-4 *3 (-827))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-1145 *2))) (-4 *5 (-773)) (-4 *4 (-827))
+ (-4 *6 (-1025))
+ (-4 *2
+ (-13 (-358)
+ (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $)))))
+ (-5 *1 (-926 *5 *4 *6 *7 *2)) (-4 *7 (-925 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-1145 (-402 (-928 *5))))) (-5 *4 (-1149))
+ (-5 *2 (-402 (-928 *5))) (-5 *1 (-1019 *5)) (-4 *5 (-544)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-625 (-1180 *5)))
+ (-5 *1 (-1240 *5)) (-5 *4 (-1180 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1131)) (-5 *2 (-538)) (-5 *1 (-1168 *4)) (-4 *4 (-1025)))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-538)) (-5 *1 (-1168 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-538))))
- ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-878 *3)) (-4 *3 (-1074))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4))
- (-5 *2 (-538))))
+ (-12 (|has| *6 (-6 -4354)) (-4 *4 (-358)) (-4 *5 (-368 *4))
+ (-4 *6 (-368 *4)) (-5 *2 (-625 *6)) (-5 *1 (-514 *4 *5 *6 *3))
+ (-4 *3 (-667 *4 *5 *6))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446)))
- (-5 *2 (-538)) (-5 *1 (-1090 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-819 *3))
- (-4 *3 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-538))
- (-5 *1 (-1090 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-1131))
- (-4 *6 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-538))
- (-5 *1 (-1090 *6 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6)))))
+ (-12 (|has| *9 (-6 -4354)) (-4 *4 (-544)) (-4 *5 (-368 *4))
+ (-4 *6 (-368 *4)) (-4 *7 (-968 *4)) (-4 *8 (-368 *7))
+ (-4 *9 (-368 *7)) (-5 *2 (-625 *6))
+ (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-667 *4 *5 *6))
+ (-4 *10 (-667 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-625 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-446)) (-5 *2 (-538))
- (-5 *1 (-1091 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-819 (-402 (-922 *6))))
- (-5 *3 (-402 (-922 *6))) (-4 *6 (-446)) (-5 *2 (-538)) (-5 *1 (-1091 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-402 (-922 *6))) (-5 *4 (-1149)) (-5 *5 (-1131))
- (-4 *6 (-446)) (-5 *2 (-538)) (-5 *1 (-1091 *6))))
- ((*1 *2 *3) (|partial| -12 (-5 *2 (-538)) (-5 *1 (-1168 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-109))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1074))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-840) (-840))) (-5 *1 (-113))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-840) (-622 (-840)))) (-5 *1 (-113))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-840) (-622 (-840)))) (-5 *1 (-113))))
+ (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4))
+ (-4 *6 (-368 *4)) (-5 *2 (-625 *6)) (-5 *1 (-668 *4 *5 *6 *3))
+ (-4 *3 (-667 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3))
- (-4 *3
- (-13 (-827)
- (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $))
- (-15 -2087 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-388))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-388))))
- ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495))))
- ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-691))))
- ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1165))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1165)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-751)) (-4 *3 (-1185)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3))))
- ((*1 *1) (-5 *1 (-169)))
- ((*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1074))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384))))
- ((*1 *1) (-5 *1 (-388)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *1 (-631 *3)) (-4 *3 (-1185))))
- ((*1 *1)
- (-12 (-4 *3 (-1074)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1074))
- (-4 *4 (-646 *3))))
- ((*1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074))))
- ((*1 *1 *2) (-12 (-5 *1 (-1115 *3 *2)) (-14 *3 (-751)) (-4 *2 (-1025))))
- ((*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025))))
- ((*1 *1 *1) (-5 *1 (-1149))) ((*1 *1) (-5 *1 (-1149)))
- ((*1 *1) (-5 *1 (-1165))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-1164)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185))))
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544))
+ (-5 *2 (-625 *7)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186))))
((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827))))
((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-827))))
- ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-277 *3)) (-4 *3 (-1185))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-277 *2)) (-4 *2 (-1185))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-552)) (-4 *1 (-277 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-277 *2)) (-4 *2 (-1186))))
((*1 *1 *2)
(-12
(-5 *2
(-2
- (|:| -4220
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
+ (|:| -2971
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
(|:| |relerr| (-221))))
- (|:| -2191
+ (|:| -4120
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -3969,12583 +2358,16073 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1126 (-221)))
+ (-3 (|:| |str| (-1129 (-221)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1561
+ (|:| -3315
(-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-548))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-675 *2)) (-4 *2 (-1074))))
+ (-5 *1 (-547))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-751)) (-4 *1 (-675 *2)) (-4 *2 (-1073))))
((*1 *1 *2)
(-12
(-5 *2
(-2
- (|:| -4220
+ (|:| -2971
(-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
(|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (|:| -2191
- (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373))
- (|:| |expense| (-373)) (|:| |accuracy| (-373))
- (|:| |intermediateResults| (-373))))))
+ (|:| -4120
+ (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374))
+ (|:| |expense| (-374)) (|:| |accuracy| (-374))
+ (|:| |intermediateResults| (-374))))))
(-5 *1 (-783))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
+ (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1073)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1232 (-751))) (-5 *1 (-655 *3)) (-4 *3 (-1073)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1074)) (-5 *1 (-1163 *3 *2)) (-4 *3 (-1074)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
-(((*1 *2)
- (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
-(((*1 *2)
- (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
+ (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4))
+ (-4 *4 (-344)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-625 *11))
+ (|:| |todo| (-625 (-2 (|:| |val| *3) (|:| -3715 *11))))))
+ (-5 *6 (-751))
+ (-5 *2 (-625 (-2 (|:| |val| (-625 *10)) (|:| -3715 *11))))
+ (-5 *3 (-625 *10)) (-5 *4 (-625 *11)) (-4 *10 (-1039 *7 *8 *9))
+ (-4 *11 (-1045 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773))
+ (-4 *9 (-827)) (-5 *1 (-1043 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-625 *11))
+ (|:| |todo| (-625 (-2 (|:| |val| *3) (|:| -3715 *11))))))
+ (-5 *6 (-751))
+ (-5 *2 (-625 (-2 (|:| |val| (-625 *10)) (|:| -3715 *11))))
+ (-5 *3 (-625 *10)) (-5 *4 (-625 *11)) (-4 *10 (-1039 *7 *8 *9))
+ (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773))
+ (-4 *9 (-827)) (-5 *1 (-1118 *7 *8 *9 *10 *11)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1074))
- (-4 *5 (-1074)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1074))
- (-4 *5 (-1074)))))
-(((*1 *2)
- (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
+ (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302))
+ (-5 *2 (-625 (-751))) (-5 *1 (-758 *3 *4 *5 *6 *7))
+ (-4 *3 (-1208 *6)) (-4 *7 (-925 *6 *4 *5)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-622 (-2 (|:| -4220 *3) (|:| -2191 *4)))) (-4 *3 (-1074))
- (-4 *4 (-1074)) (-4 *1 (-1162 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-1160 *2)) (-4 *2 (-358)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-669 *3)) (|:| |invmval| (-669 *3))
+ (|:| |genIdeal| (-497 *3 *4 *5 *6))))
+ (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-5 *2 (-374)) (-5 *1 (-201)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-625 (-897))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-897))
+ (-4 *2 (-358)) (-14 *5 (-969 *4 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-694 *5 *6 *7)) (-4 *5 (-827))
+ (-4 *6 (-234 (-1471 *4) (-751)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6))
+ (-2 (|:| -3123 *5) (|:| -3564 *6))))
+ (-14 *4 (-625 (-1149))) (-4 *2 (-170))
+ (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) (-4 *8 (-925 *2 *6 (-841 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-827))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-605 *2 *4))
+ (-4 *4 (-1208 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-716 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-707))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 *5)) (-5 *3 (-625 (-751))) (-4 *1 (-721 *4 *5))
+ (-4 *4 (-1025)) (-4 *5 (-827))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025))
+ (-4 *2 (-827))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 (-751))) (-4 *1 (-925 *4 *5 *6))
+ (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *1 (-925 *4 *5 *2)) (-4 *4 (-1025))
+ (-4 *5 (-773)) (-4 *2 (-827))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 *5)) (-4 *1 (-949 *4 *5 *6))
+ (-4 *4 (-1025)) (-4 *5 (-772)) (-4 *6 (-827))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-949 *4 *3 *2)) (-4 *4 (-1025)) (-4 *3 (-772))
+ (-4 *2 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1149)) (-5 *2 (-1 (-1145 (-928 *4)) (-928 *4)))
+ (-5 *1 (-1240 *4)) (-4 *4 (-358)))))
+(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1073)) (-5 *1 (-1163 *3 *2)) (-4 *3 (-1073)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1205 *4 *5)) (-5 *3 (-625 *5)) (-14 *4 (-1149))
+ (-4 *5 (-358)) (-5 *1 (-899 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *5)) (-4 *5 (-358)) (-5 *2 (-1145 *5))
+ (-5 *1 (-899 *4 *5)) (-14 *4 (-1149))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-625 *6)) (-5 *4 (-751)) (-4 *6 (-358))
+ (-5 *2 (-402 (-928 *6))) (-5 *1 (-1026 *5 *6)) (-14 *5 (-1149)))))
+(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4))
+ (-4 *4 (-344)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -2150 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -2992 (-402 *6))
+ (|:| |special| (-402 *6))))
+ (-5 *1 (-708 *5 *6)) (-5 *3 (-402 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-872 *3 *4))
+ (-4 *3 (-1208 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-751)) (-4 *5 (-358))
+ (-5 *2 (-2 (|:| -2290 *3) (|:| -2303 *3))) (-5 *1 (-872 *3 *5))
+ (-4 *3 (-1208 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112))
+ (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446))
+ (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112))
+ (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446))
+ (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112))
+ (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446))
+ (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112))
+ (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446))
+ (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1208 *9)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-302))
+ (-4 *10 (-925 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-625 (-1145 *10)))
+ (|:| |dterm|
+ (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-625 *6)) (|:| |nlead| (-625 *10))))
+ (-5 *1 (-758 *6 *7 *8 *9 *10)) (-5 *3 (-1145 *10)) (-5 *4 (-625 *6))
+ (-5 *5 (-625 *10)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827))
+ (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-5 *2 (-374)) (-5 *1 (-201)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-895)) (-5 *2 (-1143 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-358)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-1160 *2)) (-4 *2 (-358)))))
+ (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-1129 (-1129 (-928 *5))))
+ (-5 *1 (-1240 *5)) (-5 *4 (-1129 (-928 *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-622 (-622 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-622 (-622 *5)))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-622 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-1159 *3)))))
+ (-12 (-4 *1 (-1014 (-552))) (-4 *1 (-297)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1073)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1023)))))
+(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-827))
+ (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4))
+ (-4 *4 (-344)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773))
+ (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9))
(-5 *2
- (-2 (|:| |f1| (-622 *4)) (|:| |f2| (-622 (-622 (-622 *4))))
- (|:| |f3| (-622 (-622 *4))) (|:| |f4| (-622 (-622 (-622 *4))))))
- (-5 *1 (-1157 *4)) (-5 *3 (-622 (-622 (-622 *4)))))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-827)) (-5 *3 (-622 *6)) (-5 *5 (-622 *3))
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1045 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-4 *3 (-1039 *6 *7 *8))
(-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-622 *5)) (|:| |f3| *5) (|:| |f4| (-622 *5))))
- (-5 *1 (-1157 *6)) (-5 *4 (-622 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))
- (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))
- (-4 *7 (-967 *4)) (-4 *2 (-666 *7 *8 *9))
- (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-666 *4 *5 *6))
- (-4 *8 (-367 *7)) (-4 *9 (-367 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2)) (-4 *2 (-358))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))
- ((*1 *1 *1) (|partial| -12 (-5 *1 (-669 *2)) (-4 *2 (-358)) (-4 *2 (-1025))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1096 *2 *3 *4 *5)) (-4 *3 (-1025))
- (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358))))
- ((*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-1157 *3)))))
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773))
+ (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1118 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-4 *3 (-1039 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-827)) (-5 *2 (-622 (-622 *4))) (-5 *1 (-1157 *4))
- (-5 *3 (-622 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-827)) (-5 *1 (-1157 *3)))))
+ (-12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1208 *5))
+ (-5 *2 (-625 *3)) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1208 *6))
+ (-14 *7 (-897)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-827)) (-5 *2 (-1159 (-622 *4))) (-5 *1 (-1157 *4))
- (-5 *3 (-622 *4)))))
+ (-12 (-5 *3 (-1145 (-552))) (-5 *2 (-552)) (-5 *1 (-918)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5))
+ (-5 *2 (-408 *4 (-402 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 *6)) (-4 *6 (-13 (-404 *4 *5) (-1014 *4)))
+ (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-4 *3 (-302))
+ (-5 *1 (-408 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-827)) (-5 *2 (-622 (-622 (-622 *4)))) (-5 *1 (-1157 *4))
- (-5 *3 (-622 (-622 *4))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-5 *2 (-374)) (-5 *1 (-201)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1159 (-622 *4))) (-4 *4 (-827)) (-5 *2 (-622 (-622 *4)))
- (-5 *1 (-1157 *4)))))
+ (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1129 (-928 *4)) (-1129 (-928 *4))))
+ (-5 *1 (-1240 *4)) (-4 *4 (-358)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1014 (-552))) (-4 *1 (-297)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-622 (-622 *4)))) (-5 *2 (-622 (-622 *4)))
- (-5 *1 (-1157 *4)) (-4 *4 (-827)))))
+ (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-237)) (-5 *3 (-1131))))
+ ((*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1073)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) ((*1 *1) (-4 *1 (-537)))
+ ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023)))))
+(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4))
+ (-4 *4 (-344)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 (-622 (-622 *4)))) (-5 *2 (-622 (-622 *4))) (-4 *4 (-827))
- (-5 *1 (-1157 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-622 (-622 (-622 *4)))) (-5 *3 (-622 *4)) (-4 *4 (-827))
- (-5 *1 (-1157 *4)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-622 (-622 (-622 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-622 *5)) (-4 *5 (-827)) (-5 *1 (-1157 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-827)) (-5 *4 (-622 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-622 *4))))
- (-5 *1 (-1157 *6)) (-5 *5 (-622 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1156)))))
-(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))))
-(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))))
-(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-545))
- (-5 *2 (-622 (-622 (-922 *5)))) (-5 *1 (-1155 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-402 (-922 (-538)))))
- (-5 *2 (-622 (-622 (-288 (-922 *4))))) (-5 *1 (-375 *4))
- (-4 *4 (-13 (-825) (-358)))))
+ (-12 (-5 *2 (-868 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1073))
+ (-4 *5 (-1186)) (-5 *1 (-866 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-868 *4)) (-5 *3 (-625 (-1 (-112) *5))) (-4 *4 (-1073))
+ (-4 *5 (-1186)) (-5 *1 (-866 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-868 *5)) (-5 *3 (-625 (-1149)))
+ (-5 *4 (-1 (-112) (-625 *6))) (-4 *5 (-1073)) (-4 *6 (-1186))
+ (-5 *1 (-866 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1186)) (-4 *4 (-827))
+ (-5 *1 (-913 *4 *2 *5)) (-4 *2 (-425 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 (-1 (-112) *5))) (-4 *5 (-1186)) (-4 *4 (-827))
+ (-5 *1 (-913 *4 *2 *5)) (-4 *2 (-425 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-288 (-402 (-922 (-538))))))
- (-5 *2 (-622 (-622 (-288 (-922 *4))))) (-5 *1 (-375 *4))
- (-4 *4 (-13 (-825) (-358)))))
+ (-12 (-5 *3 (-1149)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1186))
+ (-5 *2 (-311 (-552))) (-5 *1 (-914 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 (-538)))) (-5 *2 (-622 (-288 (-922 *4))))
- (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358)))))
+ (-12 (-5 *3 (-1149)) (-5 *4 (-625 (-1 (-112) *5))) (-4 *5 (-1186))
+ (-5 *2 (-311 (-552))) (-5 *1 (-914 *5))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-1 (-112) (-625 *6)))
+ (-4 *6 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))) (-4 *4 (-1073))
+ (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4))))
+ (-5 *1 (-1049 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-4 *3 (-1039 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-288 (-402 (-922 (-538))))) (-5 *2 (-622 (-288 (-922 *4))))
- (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358)))))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1149))
- (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-4 *4 (-13 (-29 *6) (-1171) (-936)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2128 (-622 *4))))
- (-5 *1 (-633 *6 *4 *3)) (-4 *3 (-638 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 *2))
- (-4 *2 (-13 (-29 *6) (-1171) (-936)))
- (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *1 (-633 *6 *2 *3)) (-4 *3 (-638 *2))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354))))
- (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4))))
- (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354))))
- (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4354))))
- (-5 *2 (-622 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2128 (-622 *7)))))
- (-5 *1 (-647 *5 *6 *7 *3)) (-5 *4 (-622 *7)) (-4 *3 (-666 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *5)) (-4 *5 (-358))
+ (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-4 *3 (-1039 *6 *7 *8))
(-5 *2
- (-2 (|:| |particular| (-3 (-1231 *5) #2="failed"))
- (|:| -2128 (-622 (-1231 *5)))))
- (-5 *1 (-648 *5)) (-5 *4 (-1231 *5))))
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-622 *5))) (-4 *5 (-358))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
(-5 *2
- (-2 (|:| |particular| (-3 (-1231 *5) #2#)) (|:| -2128 (-622 (-1231 *5)))))
- (-5 *1 (-648 *5)) (-5 *4 (-1231 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *5)) (-4 *5 (-358))
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4))))
+ (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-5 *2 (-374)) (-5 *1 (-201)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-544)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
+ (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1129 (-928 *4)) (-1129 (-928 *4))))
+ (-5 *1 (-1240 *4)) (-4 *4 (-358)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1075 *3)) (-5 *1 (-881 *3)) (-4 *3 (-363))
+ (-4 *3 (-1073)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1073)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025))
(-5 *2
- (-622
- (-2 (|:| |particular| (-3 (-1231 *5) #2#))
- (|:| -2128 (-622 (-1231 *5))))))
- (-5 *1 (-648 *5)) (-5 *4 (-622 (-1231 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-622 *5))) (-4 *5 (-358))
+ (-2 (|:| -1521 (-751)) (|:| |curves| (-751))
+ (|:| |polygons| (-751)) (|:| |constructs| (-751)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023)))))
+(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-4 *3 (-1039 *6 *7 *8))
(-5 *2
- (-622
- (-2 (|:| |particular| (-3 (-1231 *5) #2#))
- (|:| -2128 (-622 (-1231 *5))))))
- (-5 *1 (-648 *5)) (-5 *4 (-622 (-1231 *5)))))
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) (-4 *5 (-545))
- (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-750 *5))))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-625 *4))
+ (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))))
+ (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1131)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-4 *4 (-1039 *6 *7 *8)) (-5 *2 (-1237))
+ (-5 *1 (-756 *6 *7 *8 *4 *5)) (-4 *5 (-1045 *6 *7 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-187)) (-5 *3 (-552))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-170))))
((*1 *2 *3)
- (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-545))
- (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-750 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1149))
- (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *1 (-752 *5 *2)) (-4 *2 (-13 (-29 *5) (-1171) (-936)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-669 *7)) (-5 *5 (-1149))
- (-4 *7 (-13 (-29 *6) (-1171) (-936)))
- (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7)))))
- (-5 *1 (-782 *6 *7)) (-5 *4 (-1231 *7))))
+ (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
+ (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-839)))) (-5 *1 (-839))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1115 *3 *4)) (-5 *1 (-969 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-358))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 *5))) (-4 *5 (-1025))
+ (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *6 (-234 *4 *5))
+ (-4 *7 (-234 *3 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))))
+ (-5 *1 (-201)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 *4))))
+ (-5 *1 (-865 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073))
+ (-4 *7 (-1073)) (-5 *2 (-625 *1)) (-4 *1 (-1076 *3 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-14 *4 (-751)) (-4 *5 (-1186)) (-5 *2 (-133))
+ (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4))
+ (-4 *3 (-324 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-170))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-552))
+ (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773))
+ (-5 *2 (-552)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-1025)) (-5 *2 (-897))))
+ ((*1 *2) (-12 (-4 *1 (-1239 *3)) (-4 *3 (-358)) (-5 *2 (-133)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-881 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1073)))))
+(((*1 *1 *1 *1) (-4 *1 (-141)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))
+ ((*1 *1 *1 *1) (-5 *1 (-839)))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-669 *6)) (-5 *4 (-1149))
- (-4 *6 (-13 (-29 *5) (-1171) (-936)))
- (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-622 (-1231 *6))) (-5 *1 (-782 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-622 (-288 *7))) (-5 *4 (-622 (-113))) (-5 *5 (-1149))
- (-4 *7 (-13 (-29 *6) (-1171) (-936)))
- (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7)))))
- (-5 *1 (-782 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-622 *7)) (-5 *4 (-622 (-113))) (-5 *5 (-1149))
- (-4 *7 (-13 (-29 *6) (-1171) (-936)))
- (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7)))))
- (-5 *1 (-782 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1149))
- (-4 *7 (-13 (-29 *6) (-1171) (-936)))
- (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2128 (-622 *7))) *7 #3="failed"))
- (-5 *1 (-782 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-113)) (-5 *5 (-1149))
- (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2128 (-622 *3))) *3 #3#))
- (-5 *1 (-782 *6 *3)) (-4 *3 (-13 (-29 *6) (-1171) (-936)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-622 *2))
- (-4 *2 (-13 (-29 *6) (-1171) (-936))) (-5 *1 (-782 *6 *2))
- (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-622 *2))
- (-4 *2 (-13 (-29 *6) (-1171) (-936)))
- (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *1 (-782 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1011)) (-5 *1 (-785))))
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023))
+ (-5 *3 (-552)))))
+(((*1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344)))))
+(((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773))
+ (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-785))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4))
- (-5 *2 (-1011)) (-5 *1 (-785))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4))
- (-5 *2 (-1011)) (-5 *1 (-785))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373)))
- (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4))
- (-5 *2 (-1011)) (-5 *1 (-785))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373)))
- (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373)))
- (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1 (-3 (-2 (|:| |particular| *6) (|:| -2128 (-622 *6))) "failed") *7 *6))
- (-4 *6 (-358)) (-4 *7 (-638 *6))
- (-5 *2 (-2 (|:| |particular| (-1231 *6)) (|:| -2128 (-669 *6))))
- (-5 *1 (-793 *6 *7)) (-5 *3 (-669 *6)) (-5 *4 (-1231 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1011)) (-5 *1 (-873))))
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773))
+ (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4)))))
+ ((*1 *1 *1) (-5 *1 (-374)))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-873))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-751)) (-5 *6 (-622 (-622 (-309 *3)))) (-5 *7 (-1131))
- (-5 *8 (-221)) (-5 *5 (-622 (-309 (-373)))) (-5 *3 (-373)) (-5 *2 (-1011))
- (-5 *1 (-873))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-751)) (-5 *6 (-622 (-622 (-309 *3)))) (-5 *7 (-1131))
- (-5 *5 (-622 (-309 (-373)))) (-5 *3 (-373)) (-5 *2 (-1011)) (-5 *1 (-873))))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4))))
+ (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773))
+ (-5 *1 (-497 *4 *5 *6 *2)) (-4 *2 (-925 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-669 (-311 (-221))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))))
+ (-5 *1 (-201)))))
+(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-1235))))
+ ((*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1235)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-749))
+ (-5 *2
+ (-2 (|:| -3890 (-374)) (|:| -1288 (-1131))
+ (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))))
+ (-5 *1 (-553))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *2 (-622 (-373))) (-5 *1 (-999))
- (-5 *4 (-373))))
+ (-12 (-5 *3 (-749)) (-5 *4 (-1037))
+ (-5 *2
+ (-2 (|:| -3890 (-374)) (|:| -1288 (-1131))
+ (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))))
+ (-5 *1 (-553))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-922 (-538))) (-5 *2 (-622 (-373))) (-5 *1 (-999))
- (-5 *4 (-373))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-309 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1104 *4))
- (-5 *3 (-288 (-309 *4)))))
+ (-12 (-4 *1 (-767)) (-5 *3 (-1037))
+ (-5 *4
+ (-2 (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2
+ (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))
+ (|:| |extra| (-1011))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149))
- (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1104 *5))
- (-5 *3 (-288 (-309 *5)))))
+ (-12 (-4 *1 (-767)) (-5 *3 (-1037))
+ (-5 *4
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2
+ (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))
+ (|:| |extra| (-1011))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149))
- (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1104 *5)) (-5 *3 (-309 *5))))
+ (-12 (-4 *1 (-780)) (-5 *3 (-1037))
+ (-5 *4
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-788))
+ (-5 *2
+ (-2 (|:| -3890 (-374)) (|:| -1288 (-1131))
+ (|:| |explanations| (-625 (-1131)))))
+ (-5 *1 (-785))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-1149)))
- (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-622 (-622 (-288 (-309 *5))))) (-5 *1 (-1104 *5))
- (-5 *3 (-622 (-288 (-309 *5))))))
+ (-12 (-5 *3 (-788)) (-5 *4 (-1037))
+ (-5 *2
+ (-2 (|:| -3890 (-374)) (|:| -1288 (-1131))
+ (|:| |explanations| (-625 (-1131)))))
+ (-5 *1 (-785))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-545))
- (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-1155 *5))))
+ (-12 (-4 *1 (-816)) (-5 *3 (-1037))
+ (-5 *4
+ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))
+ (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-1149))) (-4 *5 (-545))
- (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-1155 *5))
- (-5 *3 (-622 (-288 (-402 (-922 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-402 (-922 *4)))) (-4 *4 (-545))
- (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-1155 *4))))
+ (-12 (-4 *1 (-816)) (-5 *3 (-1037))
+ (-5 *4
+ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221)))
+ (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221))))
+ (|:| |ub| (-625 (-820 (-221))))))
+ (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))))))
((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *4))))))
- (-5 *1 (-1155 *4)) (-5 *3 (-622 (-288 (-402 (-922 *4)))))))
+ (-12 (-5 *3 (-818))
+ (-5 *2
+ (-2 (|:| -3890 (-374)) (|:| -1288 (-1131))
+ (|:| |explanations| (-625 (-1131)))))
+ (-5 *1 (-817))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *5)))))
- (-5 *1 (-1155 *5)) (-5 *3 (-402 (-922 *5)))))
+ (-12 (-5 *3 (-818)) (-5 *4 (-1037))
+ (-5 *2
+ (-2 (|:| -3890 (-374)) (|:| -1288 (-1131))
+ (|:| |explanations| (-625 (-1131)))))
+ (-5 *1 (-817))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *5)))))
- (-5 *1 (-1155 *5)) (-5 *3 (-288 (-402 (-922 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *4))))) (-5 *1 (-1155 *4))
- (-5 *3 (-402 (-922 *4)))))
+ (-12 (-4 *1 (-871)) (-5 *3 (-1037))
+ (-5 *4
+ (-2 (|:| |pde| (-625 (-311 (-221))))
+ (|:| |constraints|
+ (-625
+ (-2 (|:| |start| (-221)) (|:| |finish| (-221))
+ (|:| |grid| (-751)) (|:| |boundaryType| (-552))
+ (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221))))))
+ (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131))
+ (|:| |tol| (-221))))
+ (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))))))
((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *4))))) (-5 *1 (-1155 *4))
- (-5 *3 (-288 (-402 (-922 *4)))))))
-(((*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-538))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1131))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-499))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-577))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-472))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-136))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1139))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-608))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1069))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1064))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1047))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-946))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-178))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1012))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-307))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-651))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-152))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-518))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1243))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1040))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-510))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-661))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-95))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1089))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-132))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1242))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-656))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-214))))
- ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-517))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154))))
- ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154))))
- ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1154)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1154))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-1154))) (-5 *1 (-1154)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-538) (-221) (-1149) (-1131) (-1154))) (-5 *1 (-1154)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-622 (-275))) (-5 *1 (-275))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1154)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2322)) (-5 *2 (-112)) (-5 *1 (-600))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2323)) (-5 *2 (-112)) (-5 *1 (-600))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2324)) (-5 *2 (-112)) (-5 *1 (-600))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2446)) (-5 *2 (-112)) (-5 *1 (-671 *4))
- (-4 *4 (-597 (-840)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-597 (-840))) (-5 *2 (-112))
- (-5 *1 (-671 *4))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1139))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-946))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1012))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-307))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-651))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1243))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1242))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-656))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)) (-5 *1 (-1154))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1149))) (-5 *2 (-112)) (-5 *1 (-1154))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1154))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)) (-5 *1 (-1154)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-286))) ((*1 *1) (-5 *1 (-840)))
- ((*1 *1)
- (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5))
- (-4 *5 (-926 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1058)))
- ((*1 *1)
- (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34)))
- (-4 *3 (-13 (-1074) (-34)))))
- ((*1 *1) (-5 *1 (-1152))) ((*1 *1) (-5 *1 (-1153))))
-(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-431)) (-5 *3 (-622 (-1149))) (-5 *4 (-1149)) (-5 *1 (-1152))))
- ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152))))
- ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1153))))
- ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-622 (-1149))) (-5 *1 (-1153)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-431)) (-5 *1 (-1153)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1153)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-429))
- (-5 *2
- (-622
- (-3 (|:| -3905 (-1149))
- (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538)))))))))
- (-5 *1 (-1153)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1153)))))
-(((*1 *2 *1)
- (-12
+ (-12 (-5 *3 (-874))
(-5 *2
- (-622
- (-622
- (-3 (|:| -3905 (-1149))
- (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538))))))))))
- (-5 *1 (-1153)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1153)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))
- ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1153)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-431)))))
- (-5 *1 (-1153)))))
-(((*1 *1) (-5 *1 (-1152))))
-(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))
- ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))))
-(((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))))
-(((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1152))))
+ (-2 (|:| -3890 (-374)) (|:| -1288 (-1131))
+ (|:| |explanations| (-625 (-1131)))))
+ (-5 *1 (-873))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))))
+ (-12 (-5 *3 (-874)) (-5 *4 (-1037))
+ (-5 *2
+ (-2 (|:| -3890 (-374)) (|:| -1288 (-1131))
+ (|:| |explanations| (-625 (-1131)))))
+ (-5 *1 (-873)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1073)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void"))) (-5 *2 (-1237))
- (-5 *1 (-1152))))
+ (-12 (-5 *3 (-1075 *4)) (-4 *4 (-1073)) (-5 *2 (-1 *4))
+ (-5 *1 (-993 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1067 (-552))) (-5 *2 (-1 (-552))) (-5 *1 (-1023)))))
+(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1152))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#)))
- (-5 *2 (-1237)) (-5 *1 (-1152))))
+ (-12 (-5 *4 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237))
+ (-5 *1 (-1152))))
((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#)))
- (-5 *2 (-1237)) (-5 *1 (-1152)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152))))
- ((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1149)) (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 "void")))
+ (-12 (-5 *4 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237))
(-5 *1 (-1152)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1152)) (-5 *3 (-1149)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1153)) (-5 *1 (-1152)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *4)) (-4 *4 (-1025)) (-5 *2 (-1231 *4))
- (-5 *1 (-1150 *4))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-1049 *3 *4 *5))) (-4 *3 (-1073))
+ (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3))))
+ (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3))))
+ (-5 *1 (-1050 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773))
+ (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-895)) (-5 *2 (-1231 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1025)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1149)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-95))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-113))))
- ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-181))))
- ((*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1074))))
- ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-433 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-477))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-941))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1049 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1089)))) ((*1 *1 *1) (-5 *1 (-1149))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840)))
- (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840)))
- (|:| |args| (-622 (-840)))))
- (-5 *1 (-1149)))))
-(((*1 *1 *1 *2)
- (-12
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773))
+ (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *2 (-1039 *4 *5 *6)) (-5 *1 (-756 *4 *5 *6 *2 *3))
+ (-4 *3 (-1045 *4 *5 *6 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *5 *6)) (-4 *6 (-598 (-1149)))
+ (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *2 (-1138 (-625 (-928 *4)) (-625 (-289 (-928 *4)))))
+ (-5 *1 (-497 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-669 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1186)) (-4 *1 (-234 *3 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235))))
+ ((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-5 *1 (-872 *2 *4))
+ (-4 *2 (-1208 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5))
+ (-4 *4 (-1073)) (-4 *5 (-1073)))))
+(((*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))))
+(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-112))
+ (-5 *1 (-352 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-839))))
+ ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-938)))))
+(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
+ ((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 (-167 (-402 (-552)))))
(-5 *2
- (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840)))
- (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840)))
- (|:| |args| (-622 (-840)))))
- (-5 *1 (-1149))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-622 (-840)))) (-5 *1 (-1149)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))))
-(((*1 *1 *1) (-5 *1 (-840)))
+ (-625
+ (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-552))
+ (|:| |outvect| (-625 (-669 (-167 *4)))))))
+ (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))))
+(((*1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-210 *4))
+ (-4 *4
+ (-13 (-827)
+ (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $))
+ (-15 -3867 (*2 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074))))
- ((*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1130))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))))
-(((*1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1149)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-128)))
- ((*1 *1)
- (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170))))
- ((*1 *1) (-4 *1 (-707))) ((*1 *1) (-5 *1 (-1149))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373)))
- (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148))))
- (-5 *1 (-1148)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373)))
- (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148))))
- (-5 *1 (-1148)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373)))
- (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148))))
- (-5 *1 (-1148)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373)))
- (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148))))
- (-5 *1 (-1148)))))
-(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3))
+ (-4 *3
+ (-13 (-827)
+ (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $))
+ (-15 -3867 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-201))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 (-374))) (-5 *2 (-374)) (-5 *1 (-201)))))
+(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-311 *4))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))))
+(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235))))
+ ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-358)) (-5 *1 (-872 *2 *3))
+ (-4 *2 (-1208 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5))
+ (-4 *4 (-1073)) (-4 *5 (-1073)))))
+(((*1 *1) (-5 *1 (-155)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-112))
+ (-5 *1 (-652 *4)))))
+(((*1 *2)
(-12
(-5 *2
- (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373)))
- (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148))))
- (-5 *1 (-1148)))))
-(((*1 *1 *2 *2)
+ (-1232 (-625 (-2 (|:| -3800 (-886 *3)) (|:| -3123 (-1093))))))
+ (-5 *1 (-346 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093))))))
+ (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1145 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093))))))
+ (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-897)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
+(((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *2 (-625 (-167 *4)))
+ (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 (-868 *6)))
+ (-5 *5 (-1 (-865 *6 *8) *8 (-868 *6) (-865 *6 *8))) (-4 *6 (-1073))
+ (-4 *8 (-13 (-1025) (-598 (-868 *6)) (-1014 *7)))
+ (-5 *2 (-865 *6 *8)) (-4 *7 (-13 (-1025) (-827)))
+ (-5 *1 (-917 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025))
+ (-4 *6 (-1208 *5)) (-5 *2 (-1145 (-1145 *7)))
+ (-5 *1 (-494 *5 *6 *4 *7)) (-4 *4 (-1208 *6)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373)))
- (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148))))
- (-5 *1 (-1148)))))
+ (-5 *3
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2 (-552)) (-5 *1 (-200)))))
+(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-311 *4))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))))
+(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235))))
+ ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-871))
+ (-5 *3
+ (-2 (|:| |pde| (-625 (-311 (-221))))
+ (|:| |constraints|
+ (-625
+ (-2 (|:| |start| (-221)) (|:| |finish| (-221))
+ (|:| |grid| (-751)) (|:| |boundaryType| (-552))
+ (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221))))))
+ (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131))
+ (|:| |tol| (-221))))
+ (-5 *2 (-1011)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1073)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1073) (-34))) (-5 *1 (-1113 *3 *2))
+ (-4 *3 (-13 (-1073) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1243)))))
+(((*1 *1) (-5 *1 (-155)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))))
+(((*1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-669 (-886 *3))) (-5 *1 (-346 *3 *4)) (-14 *3 (-897))
+ (-14 *4 (-897))))
+ ((*1 *2)
+ (-12 (-5 *2 (-669 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344))
+ (-14 *4
+ (-3 (-1145 *3)
+ (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-669 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344))
+ (-14 *4 (-897)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 *1)) (-4 *1 (-425 *4))
+ (-4 *4 (-827))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))))
+(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
+ ((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-742))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-865 *5 *3)) (-5 *4 (-868 *5)) (-4 *5 (-1073))
+ (-4 *3 (-164 *6)) (-4 (-928 *6) (-862 *5))
+ (-4 *6 (-13 (-862 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-865 *4 *1)) (-5 *3 (-868 *4)) (-4 *1 (-862 *4))
+ (-4 *4 (-1073))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-865 *5 *6)) (-5 *4 (-868 *5)) (-4 *5 (-1073))
+ (-4 *6 (-13 (-1073) (-1014 *3))) (-4 *3 (-862 *5))
+ (-5 *1 (-907 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073))
+ (-4 *3 (-13 (-425 *6) (-598 *4) (-862 *5) (-1014 (-596 $))))
+ (-5 *4 (-868 *5)) (-4 *6 (-13 (-544) (-827) (-862 *5)))
+ (-5 *1 (-908 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-865 (-552) *3)) (-5 *4 (-868 (-552))) (-4 *3 (-537))
+ (-5 *1 (-909 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-865 *5 *6)) (-5 *3 (-596 *6)) (-4 *5 (-1073))
+ (-4 *6 (-13 (-827) (-1014 (-596 $)) (-598 *4) (-862 *5)))
+ (-5 *4 (-868 *5)) (-5 *1 (-910 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-861 *5 *6 *3)) (-5 *4 (-868 *5)) (-4 *5 (-1073))
+ (-4 *6 (-862 *5)) (-4 *3 (-646 *6)) (-5 *1 (-911 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-865 *6 *3) *8 (-868 *6) (-865 *6 *3)))
+ (-4 *8 (-827)) (-5 *2 (-865 *6 *3)) (-5 *4 (-868 *6))
+ (-4 *6 (-1073)) (-4 *3 (-13 (-925 *9 *7 *8) (-598 *4)))
+ (-4 *7 (-773)) (-4 *9 (-13 (-1025) (-827) (-862 *6)))
+ (-5 *1 (-912 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073))
+ (-4 *3 (-13 (-925 *8 *6 *7) (-598 *4))) (-5 *4 (-868 *5))
+ (-4 *7 (-862 *5)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *8 (-13 (-1025) (-827) (-862 *5)))
+ (-5 *1 (-912 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073)) (-4 *3 (-968 *6))
+ (-4 *6 (-13 (-544) (-862 *5) (-598 *4))) (-5 *4 (-868 *5))
+ (-5 *1 (-915 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-865 *5 (-1149))) (-5 *3 (-1149)) (-5 *4 (-868 *5))
+ (-4 *5 (-1073)) (-5 *1 (-916 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-625 (-868 *7))) (-5 *5 (-1 *9 (-625 *9)))
+ (-5 *6 (-1 (-865 *7 *9) *9 (-868 *7) (-865 *7 *9))) (-4 *7 (-1073))
+ (-4 *9 (-13 (-1025) (-598 (-868 *7)) (-1014 *8)))
+ (-5 *2 (-865 *7 *9)) (-5 *3 (-625 *9)) (-4 *8 (-13 (-1025) (-827)))
+ (-5 *1 (-917 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-669 (-1145 *8))) (-4 *5 (-1025)) (-4 *8 (-1025))
+ (-4 *6 (-1208 *5)) (-5 *2 (-669 *6)) (-5 *1 (-494 *5 *6 *7 *8))
+ (-4 *7 (-1208 *6)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373)))
- (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148))))
+ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374)))
+ (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148))))
(-5 *1 (-1148)))))
-(((*1 *1 *1) (-5 *1 (-1148)))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373)))
- (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148))))
- (-5 *1 (-1148)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-840) (-840) (-840))) (-5 *4 (-538)) (-5 *2 (-840))
- (-5 *1 (-629 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-840)) (-5 *1 (-831 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-98 *3))
- (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-840))))
- ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-840))))
- ((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-1143 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1062 *3)) (-4 *3 (-926 *7 *6 *4)) (-4 *6 (-773)) (-4 *4 (-827))
- (-4 *7 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-538))))
- (-5 *1 (-579 *6 *4 *7 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552))))
+ ((*1 *1 *1) (-4 *1 (-978)))
+ ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-988))))
+ ((*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-4 *1 (-988))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-897))))
+ ((*1 *1 *1) (-4 *1 (-988))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2 (-625 (-221))) (-5 *1 (-200)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-1160 *2)) (-4 *2 (-358)))))
+(((*1 *1) (-5 *1 (-155)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093))))))
+ (-4 *4 (-344)) (-5 *2 (-751)) (-5 *1 (-341 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-346 *3 *4)) (-14 *3 (-897))
+ (-14 *4 (-897))))
+ ((*1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344))
+ (-14 *4
+ (-3 (-1145 *3)
+ (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344))
+ (-14 *4 (-897)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-297)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-596 *1))) (-5 *3 (-625 *1)) (-4 *1 (-297))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-289 *1))) (-4 *1 (-297))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-289 *1)) (-4 *1 (-297)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906)))))
+(((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *1 *1 *1) (-4 *1 (-467))) ((*1 *1 *1 *1) (-4 *1 (-742))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1073) (-1014 *5)))
+ (-4 *5 (-862 *4)) (-4 *4 (-1073)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-907 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1145 *7))
+ (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1208 *5))
+ (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1208 *2)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2 (-2 (|:| -3362 (-114)) (|:| |w| (-221)))) (-5 *1 (-200)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-48))) (-5 *2 (-413 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1208 (-48)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-545))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-538)))) (-5 *1 (-579 *5 *4 *6 *3))
- (-4 *3 (-926 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1) (-5 *1 (-840)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-416 *4) (-158) (-27) (-1171)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-416 *4) (-158) (-27) (-1171)))
- (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-1141 *4 *2))))
+ (-12 (-5 *4 (-625 (-48))) (-4 *5 (-827)) (-4 *6 (-773))
+ (-5 *2 (-413 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-925 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538))))
- (-5 *2 (-402 (-922 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-922 *5))))
+ (-12 (-5 *4 (-625 (-48))) (-4 *5 (-827)) (-4 *6 (-773))
+ (-4 *7 (-925 (-48) *6 *5)) (-5 *2 (-413 (-1145 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1145 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-165 *4 *3))
+ (-4 *3 (-1208 (-167 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538))))
- (-5 *2 (-3 (-402 (-922 *5)) (-309 *5))) (-5 *1 (-1142 *5))
- (-5 *3 (-402 (-922 *5)))))
+ (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3))
+ (-4 *3 (-1208 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1065 (-922 *5))) (-5 *3 (-922 *5))
- (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-402 *3))
- (-5 *1 (-1142 *5))))
+ (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
+ (-4 *3 (-1208 (-552)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1065 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5)))
- (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-3 *3 (-309 *5)))
- (-5 *1 (-1142 *5)))))
+ (-12 (-5 *4 (-625 (-751))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
+ (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *2 (-413 *3))
+ (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
+ (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-413 (-167 (-552)))) (-5 *1 (-440))
+ (-5 *3 (-167 (-552)))))
+ ((*1 *2 *3)
+ (-12
+ (-4 *4
+ (-13 (-827)
+ (-10 -8 (-15 -2042 ((-1149) $))
+ (-15 -2195 ((-3 $ "failed") (-1149))))))
+ (-4 *5 (-773)) (-4 *7 (-544)) (-5 *2 (-413 *3))
+ (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-544))
+ (-4 *3 (-925 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-302)) (-5 *2 (-413 (-1145 *4))) (-5 *1 (-452 *4))
+ (-5 *3 (-1145 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358))
+ (-4 *7 (-13 (-358) (-145) (-705 *5 *6))) (-5 *2 (-413 *3))
+ (-5 *1 (-487 *5 *6 *7 *3)) (-4 *3 (-1208 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-413 (-1145 *7)) (-1145 *7)))
+ (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773))
+ (-5 *2 (-413 *3)) (-5 *1 (-532 *5 *6 *7 *3))
+ (-4 *3 (-925 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-413 (-1145 *7)) (-1145 *7)))
+ (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773))
+ (-4 *8 (-925 *7 *6 *5)) (-5 *2 (-413 (-1145 *8)))
+ (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1145 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-625 *5) *6))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-4 *6 (-1208 *5)) (-5 *2 (-625 (-633 (-402 *6))))
+ (-5 *1 (-637 *5 *6)) (-5 *3 (-633 (-402 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-4 *5 (-1208 *4)) (-5 *2 (-625 (-633 (-402 *5))))
+ (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-402 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-625 (-652 *4)))
+ (-5 *1 (-652 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-552)) (-5 *2 (-625 *3)) (-5 *1 (-676 *3))
+ (-4 *3 (-1208 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-344)) (-5 *2 (-413 *3))
+ (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-925 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-344))
+ (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-413 (-1145 *7)))
+ (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1145 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-773))
+ (-4 *5
+ (-13 (-827)
+ (-10 -8 (-15 -2042 ((-1149) $))
+ (-15 -2195 ((-3 $ "failed") (-1149))))))
+ (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-711 *4 *5 *6 *3))
+ (-4 *3 (-925 (-928 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-773))
+ (-4 *5 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *6 (-544))
+ (-5 *2 (-413 *3)) (-5 *1 (-713 *4 *5 *6 *3))
+ (-4 *3 (-925 (-402 (-928 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-13 (-302) (-145)))
+ (-5 *2 (-413 *3)) (-5 *1 (-714 *4 *5 *6 *3))
+ (-4 *3 (-925 (-402 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145)))
+ (-5 *2 (-413 *3)) (-5 *1 (-722 *4 *5 *6 *3))
+ (-4 *3 (-925 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145)))
+ (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-413 (-1145 *7)))
+ (-5 *1 (-722 *4 *5 *6 *7)) (-5 *3 (-1145 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-413 *3)) (-5 *1 (-983 *3))
+ (-4 *3 (-1208 (-402 (-552))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-413 *3)) (-5 *1 (-1017 *3))
+ (-4 *3 (-1208 (-402 (-928 (-552)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1208 (-402 (-552))))
+ (-4 *5 (-13 (-358) (-145) (-705 (-402 (-552)) *4)))
+ (-5 *2 (-413 *3)) (-5 *1 (-1052 *4 *5 *3)) (-4 *3 (-1208 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1208 (-402 (-928 (-552)))))
+ (-4 *5 (-13 (-358) (-145) (-705 (-402 (-928 (-552))) *4)))
+ (-5 *2 (-413 *3)) (-5 *1 (-1054 *4 *5 *3)) (-4 *3 (-1208 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446))
+ (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 (-402 *7))))
+ (-5 *1 (-1144 *4 *5 *6 *7)) (-5 *3 (-1145 (-402 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1190))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-413 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-897)) (-5 *2 (-1145 *3)) (-5 *1 (-1160 *3))
+ (-4 *3 (-358)))))
+(((*1 *2) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *5)) (-5 *4 (-897)) (-4 *5 (-827))
+ (-5 *2 (-58 (-625 (-652 *5)))) (-5 *1 (-652 *5)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344))
+ (-5 *2 (-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-867 *4 *5)) (-4 *5 (-1185))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1139)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-149 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 (-2 (|:| -2493 (-751)) (|:| -4132 *4) (|:| |num| *4))))
- (-4 *4 (-1207 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void")))
- (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-112)) (-5 *1 (-431))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *3 (-622 (-1149)))
- (-5 *4 (-112)) (-5 *1 (-431))))
- ((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170))))
+ (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-827))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-571 *4)) (-4 *4 (-13 (-29 *3) (-1171)))
+ (-4 *3 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552))))
+ (-5 *1 (-569 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-571 (-402 (-928 *3))))
+ (-4 *3 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552))))
+ (-5 *1 (-574 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358))
+ (-5 *2 (-2 (|:| -2992 *3) (|:| |special| *3))) (-5 *1 (-708 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1232 *5)) (-4 *5 (-358)) (-4 *5 (-1025))
+ (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5))
+ (-5 *3 (-625 (-669 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1232 (-1232 *5))) (-4 *5 (-358)) (-4 *5 (-1025))
+ (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5))
+ (-5 *3 (-625 (-669 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-625 *1)) (-4 *1 (-1117))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-625 *1)) (-4 *1 (-1117)))))
+(((*1 *1 *1 *1) (-4 *1 (-742))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-625 (-919 (-221)))))
+ (-5 *2 (-625 (-1067 (-221)))) (-5 *1 (-904)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1145 *7)) (-4 *5 (-1025))
+ (-4 *7 (-1025)) (-4 *2 (-1208 *5)) (-5 *1 (-494 *5 *2 *6 *7))
+ (-4 *6 (-1208 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025))
+ (-4 *4 (-1208 *5)) (-5 *2 (-1145 *7)) (-5 *1 (-494 *5 *4 *6 *7))
+ (-4 *6 (-1208 *4)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-188)))))
+(((*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-5 *1 (-1160 *2)) (-4 *2 (-358)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-302))
+ (-5 *2 (-402 (-413 (-928 *4)))) (-5 *1 (-1018 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *5)) (-5 *4 (-897)) (-4 *5 (-827))
+ (-5 *2 (-625 (-652 *5))) (-5 *1 (-652 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-344)) (-5 *3 (-552)) (-5 *2 (-1159 (-897) (-751))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-402 (-552))) (-4 *4 (-1014 (-552)))
+ (-4 *4 (-13 (-827) (-544))) (-5 *1 (-32 *4 *2)) (-4 *2 (-425 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-133)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-221)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-552))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-402 (-552))) (-4 *4 (-358)) (-4 *4 (-38 *3))
+ (-4 *5 (-1223 *4)) (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1194 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-402 (-552))) (-4 *4 (-358)) (-4 *4 (-38 *3))
+ (-4 *5 (-1192 *4)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1215 *4 *5))
+ (-4 *6 (-959 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-279)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-356 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *1) (-5 *1 (-374)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-381 *2)) (-4 *2 (-1073))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 (-622 (-622 *3)))) (-4 *3 (-1074)) (-5 *1 (-655 *3))))
+ (-12 (-5 *2 (-751)) (-4 *1 (-425 *3)) (-4 *3 (-827)) (-4 *3 (-1085))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-552))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1232 *4)) (-5 *3 (-552)) (-4 *4 (-344))
+ (-5 *1 (-521 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-528))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-528))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *4 (-1073))
+ (-5 *1 (-662 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-358))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025))
+ (-5 *1 (-670 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-552)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4))
+ (-4 *4 (-628 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-694 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-1074))
- (-14 *4
- (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *3))
- (-2 (|:| -2492 *2) (|:| -2493 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1185)) (-4 *3 (-1185))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 *4)))) (-4 *4 (-1074))
- (-5 *1 (-864 *3 *4)) (-4 *3 (-1074))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 *5)) (-4 *5 (-13 (-1074) (-34)))
- (-5 *2 (-622 (-1113 *3 *5))) (-5 *1 (-1113 *3 *5))
- (-4 *3 (-13 (-1074) (-34)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-2 (|:| |val| *4) (|:| -1660 *5))))
- (-4 *4 (-13 (-1074) (-34))) (-4 *5 (-13 (-1074) (-34)))
- (-5 *2 (-622 (-1113 *4 *5))) (-5 *1 (-1113 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1660 *4))) (-4 *3 (-13 (-1074) (-34)))
- (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1113 *3 *4))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-552)) (-4 *4 (-1025))
+ (-5 *1 (-695 *4 *5)) (-4 *5 (-628 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-751))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-799 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-814 *3)) (-4 *3 (-1025))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34)))
- (-4 *3 (-13 (-1074) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34)))
- (-4 *3 (-13 (-1074) (-34)))))
- ((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-1074) (-34))) (-5 *1 (-1114 *2 *3))
- (-4 *2 (-13 (-1074) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-1113 *2 *3))) (-4 *2 (-13 (-1074) (-34)))
- (-4 *3 (-13 (-1074) (-34))) (-5 *1 (-1114 *2 *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-1114 *2 *3))) (-5 *1 (-1114 *2 *3))
- (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34)))
- (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1074)) (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3))))
- (-5 *1 (-1048 *3 *4 *2))
- (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3))))))
- ((*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-1138 *2 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1074)) (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3))))
- (-5 *1 (-1048 *3 *4 *2))
- (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3))))))
- ((*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-1138 *3 *2)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1185)) (-5 *2 (-622 *1)) (-4 *1 (-986 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895))
- (-4 *4 (-1025)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895))
- (-4 *4 (-1025))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *2 (-751)) (-5 *1 (-1137 *4 *5))
- (-14 *4 (-895))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5))
- (-14 *4 (-895)) (-4 *5 (-1025))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025))
- (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-919 *4)) (-4 *4 (-1025)) (-5 *1 (-1137 *3 *4))
- (-14 *3 (-895)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-919 *5)) (-5 *3 (-751)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5))
- (-14 *4 (-895)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-751)) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5))
- (-14 *4 (-895))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5))
- (-14 *4 (-895)) (-4 *5 (-1025))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025))
- (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-751))) (-5 *3 (-112)) (-5 *1 (-1137 *4 *5))
- (-14 *4 (-895)) (-4 *5 (-1025)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-751))) (-5 *3 (-169)) (-5 *1 (-1137 *4 *5))
- (-14 *4 (-895)) (-4 *5 (-1025)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895))
- (-4 *4 (-1025)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-919 *4)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895))
- (-4 *4 (-1025)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-169)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-307))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-919 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895))
- (-4 *4 (-1025)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-446))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1207 *2))
- (-4 *4 (-1207 (-402 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-552)) (-5 *1 (-814 *4)) (-4 *4 (-1025))))
+ ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-402 (-552)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1085)) (-5 *2 (-897))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))
- (-4 *3 (-446))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-446))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-302)) (-4 *3 (-545)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-934 *3)) (-5 *1 (-1136 *4 *3))
- (-4 *3 (-1207 *4)))))
+ (-12 (-5 *2 (-552)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *4 (-1025))
+ (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-740)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-902))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-902))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-903))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-903)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-669 *3))))
+ (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))))
+ (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2 (-374)) (-5 *1 (-188)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-625 (-625 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-625 (-625 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-625 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *7)) (-4 *7 (-827))
+ (-4 *8 (-925 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1232 (-402 *8)) "failed"))
+ (|:| -1270 (-625 (-1232 (-402 *8))))))
+ (-5 *1 (-649 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-835))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-941))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-965))))
+ ((*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1073) (-34))) (-5 *1 (-1113 *2 *3))
+ (-4 *3 (-13 (-1073) (-34))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-625 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186))
+ (-5 *2 (-625 *3)))))
+(((*1 *1) (-4 *1 (-344))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903))
+ (-5 *1 (-901 *3)) (-4 *3 (-598 (-528)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903))
+ (-5 *1 (-901 *3)) (-4 *3 (-598 (-528)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-902))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-902))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-903))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-903))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-625 (-1 (-221) (-221)))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-903))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-1 (-221) (-221)))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-903))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-903))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-903)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-669 *3))
+ (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))))
+ (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-188)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-596 *1)) (-4 *1 (-425 *4)) (-4 *4 (-827))
+ (-4 *4 (-544)) (-5 *2 (-402 (-1145 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-596 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1171)))
+ (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2 (-1145 (-402 (-1145 *3)))) (-5 *1 (-548 *6 *3 *7))
+ (-5 *5 (-1145 *3)) (-4 *7 (-1073))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1228 *5)) (-14 *5 (-1149)) (-4 *6 (-1025))
+ (-5 *2 (-1205 *5 (-928 *6))) (-5 *1 (-923 *5 *6)) (-5 *3 (-928 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-1145 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-1145 *1))
+ (-4 *1 (-925 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025))
+ (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-402 (-1145 *3)))
+ (-5 *1 (-926 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-358)
+ (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1145 *3))
+ (-4 *3
+ (-13 (-358)
+ (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $)))))
+ (-4 *7 (-925 *6 *5 *4)) (-4 *5 (-773)) (-4 *4 (-827))
+ (-4 *6 (-1025)) (-5 *1 (-926 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149)) (-4 *5 (-544))
+ (-5 *2 (-402 (-1145 (-402 (-928 *5))))) (-5 *1 (-1019 *5))
+ (-5 *3 (-402 (-928 *5))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1217 *3 *4 *5)) (-4 *3 (-13 (-358) (-827)))
+ (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-358))
+ (-5 *2 (-112)) (-5 *1 (-647 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354))))
+ (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-112))
+ (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-669 *3))
+ (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))))
+ (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-669 *3))
+ (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))))
+ (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-188)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-596 *1))) (-4 *1 (-297)))))
+(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-374)) (-5 *1 (-1016)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-625 (-1145 *4))) (-5 *3 (-1145 *4))
+ (-4 *4 (-885)) (-5 *1 (-643 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-897))
+ (-5 *2
+ (-3 (-1145 *4)
+ (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))))
+ (-5 *1 (-341 *4)) (-4 *4 (-344)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-297))))
+ ((*1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-5 *1 (-839))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-221)))) (-5 *1 (-902)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-751))
+ (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))))
+ (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-413 (-1145 (-552)))) (-5 *1 (-187)) (-5 *3 (-552)))))
+(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-639 *4 *2))
+ (-4 *2 (-636 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-897))
+ (-5 *2 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093))))))
+ (-5 *1 (-341 *4)) (-4 *4 (-344)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4))
+ (-4 *4 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751))))
+ ((*1 *1 *1) (-4 *1 (-229)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4))
+ (-4 *4 (-1208 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3))
+ (-4 *3 (-1208 *2))))
+ ((*1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 (-751))) (-4 *1 (-876 *4))
+ (-4 *4 (-1073))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-625 *7))) (-4 *1 (-1179 *4 *5 *6 *7))
+ (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-669 *2)) (-5 *4 (-552))
+ (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))))
+ (-4 *5 (-1208 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-404 *2 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-625 (-1145 (-552)))) (-5 *1 (-187)) (-5 *3 (-552)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-167 (-374))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-374)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-897)) (-5 *2 (-167 (-374))) (-5 *1 (-765 *3))
+ (-4 *3 (-598 (-374)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-598 (-374)))
+ (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-167 *5)) (-5 *4 (-897)) (-4 *5 (-170))
+ (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-928 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-374)))
+ (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-928 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-170))
+ (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-374)))
+ (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025))
+ (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 (-374)))
+ (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544))
+ (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-402 (-928 (-167 *4)))) (-4 *4 (-544))
+ (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 (-167 *5)))) (-5 *4 (-897)) (-4 *5 (-544))
+ (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827))
+ (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827))
+ (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-544)) (-4 *4 (-827))
+ (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-544))
+ (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374)))
+ (-5 *1 (-765 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))
+ ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-1071 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093))))))
+ (-4 *4 (-344)) (-5 *2 (-669 *4)) (-5 *1 (-341 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
+ ((*1 *1 *1) (-4 *1 (-486)))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-625 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1179 *5 *6 *7 *8)) (-4 *5 (-544))
+ (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-669 *2)) (-5 *4 (-751))
+ (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))))
+ (-4 *5 (-1208 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-404 *2 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-1151 (-402 (-552))))
+ (-5 *1 (-186)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))
+ (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-720 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344))
+ (-5 *2 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093))))))
+ (-5 *1 (-341 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *1 *1) (-4 *1 (-486)))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-751)) (-4 *5 (-344)) (-4 *6 (-1208 *5))
+ (-5 *2
+ (-625
+ (-2 (|:| -1270 (-669 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-669 *6)))))
+ (-5 *1 (-491 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -1270 (-669 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-669 *6))))
+ (-4 *7 (-1208 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-1151 (-402 (-552))))
+ (-5 *1 (-186)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *1) (-4 *1 (-943))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
- ((*1 *1 *1) (-4 *1 (-486)))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-718 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-1073))))
+ ((*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-934 (-1093)))
+ (-5 *1 (-341 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *1 *1) (-4 *1 (-486)))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-625
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-552)))))
+ (-5 *1 (-413 *3)) (-4 *3 (-544))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-751)) (-4 *3 (-344)) (-4 *5 (-1208 *3))
+ (-5 *2 (-625 (-1145 *3))) (-5 *1 (-491 *3 *5 *6))
+ (-4 *6 (-1208 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-600))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186))
+ (-5 *2 (-625 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-718 *3)) (-4 *3 (-1073)))))
+(((*1 *2)
+ (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-338 *3 *4)) (-14 *3 (-897))
+ (-14 *4 (-897))))
+ ((*1 *2)
+ (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-339 *3 *4)) (-4 *3 (-344))
+ (-14 *4 (-1145 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-340 *3 *4)) (-4 *3 (-344))
+ (-14 *4 (-897)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
((*1 *1 *1) (-4 *1 (-486)))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))
+ (-5 *2 (-751))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073))
+ (-5 *2 (-751))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-751)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-707)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5)))
+ (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-751)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
((*1 *1 *1) (-4 *1 (-486)))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1151 (-402 (-552)))) (-5 *2 (-402 (-552)))
+ (-5 *1 (-186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-596 *1))) (-4 *1 (-297)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-544)) (-4 *2 (-925 *3 *5 *4))
+ (-5 *1 (-713 *5 *4 *6 *2)) (-5 *3 (-402 (-928 *6))) (-4 *5 (-773))
+ (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-625
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221)))))
+ (-5 *1 (-547))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-5 *2 (-625 *3))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-625
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221)))))
+ (-5 *1 (-783)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5)))
+ (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
((*1 *1 *1) (-4 *1 (-486)))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1179 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-625 (-625 *4))) (-5 *2 (-625 *4)) (-4 *4 (-302))
+ (-5 *1 (-177 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-625 *8))
+ (-5 *4
+ (-625
+ (-2 (|:| -1270 (-669 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-669 *7)))))
+ (-5 *5 (-751)) (-4 *8 (-1208 *7)) (-4 *7 (-1208 *6)) (-4 *6 (-344))
+ (-5 *2
+ (-2 (|:| -1270 (-669 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-669 *7))))
+ (-5 *1 (-491 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 (-112) (-625 *1)))
+ (-4 *1 (-1045 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1145 (-928 *6))) (-4 *6 (-544))
+ (-4 *2 (-925 (-402 (-928 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2))
+ (-4 *5 (-773))
+ (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4))
+ (-4 *4 (-344))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4))
+ (-4 *4 (-344))))
+ ((*1 *1) (-4 *1 (-363)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4))
+ (-4 *4 (-344))))
+ ((*1 *1 *1) (-4 *1 (-537))) ((*1 *1) (-4 *1 (-537)))
+ ((*1 *1 *1) (-5 *1 (-552))) ((*1 *1 *1) (-5 *1 (-751)))
+ ((*1 *2 *1) (-12 (-5 *2 (-881 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-5 *2 (-881 *4)) (-5 *1 (-880 *4))
+ (-4 *4 (-1073))))
+ ((*1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-537)) (-4 *2 (-544)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1190)) (-4 *5 (-1208 *3)) (-4 *6 (-1208 (-402 *5)))
+ (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))))
(((*1 *1 *1) (-4 *1 (-94)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-596 *4)) (-5 *6 (-1145 *4))
+ (-4 *4 (-13 (-425 *7) (-27) (-1171)))
+ (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4))))
+ (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-596 *4)) (-5 *6 (-402 (-1145 *4)))
+ (-4 *4 (-13 (-425 *7) (-27) (-1171)))
+ (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4))))
+ (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *3 (-1039 *4 *5 *6))
+ (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *1))))
+ (-4 *1 (-1045 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1145 *2)) (-4 *2 (-925 (-402 (-928 *6)) *5 *4))
+ (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773))
+ (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)))))
+ (-4 *6 (-544)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186))
+ (-4 *4 (-368 *2)) (-4 *5 (-368 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1073))
+ (-4 *2 (-1186)))))
(((*1 *1 *1) (-4 *1 (-94)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 *10))
+ (-5 *1 (-606 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1045 *5 *6 *7 *8))
+ (-4 *10 (-1082 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
+ (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6)))
+ (-5 *1 (-610 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
+ (-14 *6 (-625 (-1149)))
+ (-5 *2
+ (-625 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6)))))
+ (-5 *1 (-610 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
+ (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6)))
+ (-5 *1 (-1022 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-1045 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-1179 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-596 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) (-5 *5 (-1145 *2))
+ (-4 *2 (-13 (-425 *6) (-27) (-1171)))
+ (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1073))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-596 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149)))
+ (-5 *5 (-402 (-1145 *2))) (-4 *2 (-13 (-425 *6) (-27) (-1171)))
+ (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1))
+ (-4 *1 (-1045 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-773))
+ (-4 *5 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *6 (-544))
+ (-5 *2 (-2 (|:| -1282 (-928 *6)) (|:| -3480 (-928 *6))))
+ (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-925 (-402 (-928 *6)) *4 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-483 *3))
+ (-4 *3 (-1186)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))))
(((*1 *1 *1) (-4 *1 (-94)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6))
+ (-5 *2 (-625 (-2 (|:| -1387 *1) (|:| -2508 (-625 *7)))))
+ (-5 *3 (-625 *7)) (-4 *1 (-1179 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3)) (-5 *6 (-1145 *3))
+ (-4 *3 (-13 (-425 *7) (-27) (-1171)))
+ (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1073))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3))
+ (-5 *6 (-402 (-1145 *3))) (-4 *3 (-13 (-425 *7) (-27) (-1171)))
+ (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))))
+(((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221))))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 *3 (-625 *1)))
+ (-4 *1 (-1045 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1208 *5))
+ (-5 *1 (-708 *5 *2)) (-4 *5 (-358)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-413 *3)) (-4 *3 (-544)))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-306))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-221)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
- ((*1 *1 *1 *1) (-5 *1 (-373)))
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
+ ((*1 *1 *1 *1) (-5 *1 (-374)))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
+ (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-590)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-1145 *3))
+ (-4 *3 (-13 (-425 *6) (-27) (-1171)))
+ (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3)))
+ (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-402 (-1145 *3)))
+ (-4 *3 (-13 (-425 *6) (-27) (-1171)))
+ (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3)))
+ (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))))
+(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1067 (-221)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-544)) (-4 *2 (-1025))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-544))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *3 (-1039 *4 *5 *6))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *1))))
+ (-4 *1 (-1045 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358))
+ (-5 *2 (-2 (|:| -2992 (-413 *3)) (|:| |special| (-413 *3))))
+ (-5 *1 (-708 *5 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-413 *4)) (-4 *4 (-544)))))
(((*1 *1 *1) (-4 *1 (-94)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *1)
+ (-12 (-4 *1 (-399)) (-2960 (|has| *1 (-6 -4344)))
+ (-2960 (|has| *1 (-6 -4336)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-827))))
+ ((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1 *1) (-4 *1 (-827))) ((*1 *1) (-5 *1 (-1093))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *1 *1) (-4 *1 (-611)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978) (-1171))))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-596 *3)) (-5 *5 (-1145 *3))
+ (-4 *3 (-13 (-425 *6) (-27) (-1171)))
+ (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2 (-571 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-596 *3)) (-5 *5 (-402 (-1145 *3)))
+ (-4 *3 (-13 (-425 *6) (-27) (-1171)))
+ (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2 (-571 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1067 (-221)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7))
+ (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1))
+ (-4 *1 (-1045 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
+ (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))))
(((*1 *1 *1) (-4 *1 (-94)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2))
- (-4 *2 (-1195 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-402 (-538))))
- (-5 *2 (-2 (|:| -3844 (-1126 *4)) (|:| -3845 (-1126 *4))))
- (-5 *1 (-1134 *4)) (-5 *3 (-1126 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-402 (-538))))
- (-5 *2 (-2 (|:| -4001 (-1126 *4)) (|:| -3997 (-1126 *4))))
- (-5 *1 (-1134 *4)) (-5 *3 (-1126 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-538))) (-5 *5 (-1 (-1126 *4))) (-4 *4 (-358))
- (-4 *4 (-1025)) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1126 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1025))
- (-5 *3 (-402 (-538))) (-5 *1 (-1133 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4))
- (-4 *4 (-38 (-402 (-538)))) (-4 *4 (-1025)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1126 *3))) (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3))
- (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4))
- (-4 *4 (-1025)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1207 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1126 *4)) (-5 *3 (-1 *4 (-538))) (-4 *4 (-1025))
- (-5 *1 (-1133 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149))
- (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-936)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1) (-5 *1 (-840)))
- ((*1 *2 *3) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-1133 *4)) (-4 *4 (-1025))
- (-5 *3 (-538)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-1133 *4)) (-4 *4 (-1025))
- (-5 *3 (-538)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-895)) (-4 *3 (-358))
- (-14 *4 (-969 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
- ((*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
- ((*1 *1 *1) (|partial| -4 *1 (-703))) ((*1 *1 *1) (|partial| -4 *1 (-707)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-756 *5 *6 *7 *3 *4))
- (-4 *4 (-1045 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358)))
- (-4 *2 (-1207 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-545))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))
- (-4 *2 (-545))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-545)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2)) (-4 *2 (-545))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-751)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-545))))
- ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-545))
- (-5 *1 (-945 *3 *4))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025))
- (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-545))))
- ((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-4 *4 (-1185)) (-5 *2 (-112))
- (-5 *1 (-1126 *4)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *5 (-363))
+ (-5 *2 (-751)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2925 (-751)) (|:| |period| (-751))))
- (-5 *1 (-1126 *4)) (-4 *4 (-1185)) (-5 *3 (-751)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-1126 *3))) (-5 *1 (-1126 *3)) (-4 *3 (-1185)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-1185)))))
-(((*1 *1) (-5 *1 (-565)))
- ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-836))))
- ((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1131)) (-5 *4 (-840)) (-5 *2 (-1237)) (-5 *1 (-836))))
+ (-5 *2
+ (-625
+ (-2
+ (|:| -2971
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (|:| -4120
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1129 (-221)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3315
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-547)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *2 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
+ (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1126 *4)) (-4 *4 (-1074))
- (-4 *4 (-1185)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-840)) (-5 *1 (-1126 *3)) (-4 *3 (-1074)) (-4 *3 (-1185)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1126 *3)) (-4 *3 (-1074)) (-4 *3 (-1185)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-751)) (-5 *2 (-1231 (-622 (-538)))) (-5 *1 (-474))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *4 (-13 (-545) (-145))) (-5 *1 (-529 *4 *2))
- (-4 *2 (-1224 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *4 (-13 (-358) (-363) (-598 *3))) (-4 *5 (-1207 *4))
- (-4 *6 (-705 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) (-4 *2 (-1224 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *4 (-13 (-358) (-363) (-598 *3)))
- (-5 *1 (-534 *4 *2)) (-4 *2 (-1224 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-13 (-545) (-145)))
- (-5 *1 (-1125 *4)))))
+ (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358)))
+ (-4 *3 (-1208 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1232 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358))
+ (-4 *1 (-705 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1208 *5))
+ (-5 *2 (-669 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3))
- (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2))
- (-4 *2 (-1224 *3))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3))
- (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2))
- (-4 *2 (-1224 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3))))
+ ((*1 *1 *1) (-4 *1 (-1174))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-625 (-1149)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-625 (-897))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5))
+ (-14 *4 (-897)) (-14 *5 (-969 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4))
+ (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-130))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1025))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-605 *2 *4))
+ (-4 *4 (-1208 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-707))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 *5)) (-5 *3 (-625 (-751))) (-4 *1 (-721 *4 *5))
+ (-4 *4 (-1025)) (-4 *5 (-827))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025))
+ (-4 *2 (-827))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 (-751))) (-4 *1 (-925 *4 *5 *6))
+ (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *1 (-925 *4 *5 *2)) (-4 *4 (-1025))
+ (-4 *5 (-773)) (-4 *2 (-827))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-751)) (-4 *2 (-925 *4 (-524 *5) *5))
+ (-5 *1 (-1099 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-827))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-928 *4)) (-5 *1 (-1180 *4))
+ (-4 *4 (-1025)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-625 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
+ (-4 *3 (-544)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-547)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2))
+ (-4 *3 (-13 (-827) (-544))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-306))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-946))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-970))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1012))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1047)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-368 *2))
+ (-4 *5 (-368 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7))
+ (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358)))
+ (-4 *3 (-1208 *4)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-552)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-413 *2)) (-4 *2 (-544)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3))
- (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2))
- (-4 *2 (-1224 *3))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))
- ((*1 *1) (-4 *1 (-1124))))
-(((*1 *1 *1) (|partial| -4 *1 (-1124))))
-(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1120 *3)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *2 (-622 (-1003 *5 *6 *7 *3))) (-5 *1 (-1003 *5 *6 *7 *3))
- (-4 *3 (-1039 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-622 *6)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *2 (-1039 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *2 (-622 (-1119 *5 *6 *7 *3))) (-5 *1 (-1119 *5 *6 *7 *3))
- (-4 *3 (-1039 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8)))
- (-5 *1 (-1003 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8)))
- (-5 *1 (-1119 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
- (-4 *8 (-1039 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-622 *8)) (|:| |towers| (-622 (-1003 *5 *6 *7 *8)))))
- (-5 *1 (-1003 *5 *6 *7 *8)) (-5 *3 (-622 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
- (-4 *8 (-1039 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-622 *8)) (|:| |towers| (-622 (-1119 *5 *6 *7 *8)))))
- (-5 *1 (-1119 *5 *6 *7 *8)) (-5 *3 (-622 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *4 (-751))
- (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237))
- (-5 *1 (-1043 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *4 (-751))
- (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237))
- (-5 *1 (-1118 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-622 *11))
- (|:| |todo| (-622 (-2 (|:| |val| *3) (|:| -1660 *11))))))
- (-5 *6 (-751)) (-5 *2 (-622 (-2 (|:| |val| (-622 *10)) (|:| -1660 *11))))
- (-5 *3 (-622 *10)) (-5 *4 (-622 *11)) (-4 *10 (-1039 *7 *8 *9))
- (-4 *11 (-1045 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827))
- (-5 *1 (-1043 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-622 *11))
- (|:| |todo| (-622 (-2 (|:| |val| *3) (|:| -1660 *11))))))
- (-5 *6 (-751)) (-5 *2 (-622 (-2 (|:| |val| (-622 *10)) (|:| -1660 *11))))
- (-5 *3 (-622 *10)) (-5 *4 (-622 *11)) (-4 *10 (-1039 *7 *8 *9))
- (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827))
- (-5 *1 (-1118 *7 *8 *9 *10 *11)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3))))
+ ((*1 *1 *1) (-4 *1 (-1174))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1099 *4 *3 *5))) (-4 *4 (-38 (-402 (-552))))
+ (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *1 (-1099 *4 *3 *5))
+ (-4 *5 (-925 *4 (-524 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1180 *4))) (-5 *3 (-1149)) (-5 *1 (-1180 *4))
+ (-4 *4 (-38 (-402 (-552)))) (-4 *4 (-1025)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-625 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
+ (-4 *3 (-544)))))
+(((*1 *1) (-5 *1 (-547))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2))
+ (-4 *3 (-13 (-827) (-544))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5))
- (-5 *2
- (-2 (|:| -2417 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| |poly| *6) (|:| -3425 (-402 *6)) (|:| |special| (-402 *6))))
- (-5 *1 (-708 *5 *6)) (-5 *3 (-402 *6))))
+ (-12 (-4 *1 (-1076 *3 *2 *4 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358)))
+ (-4 *3 (-1208 *4)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-258))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-598 (-868 *3))) (-4 *3 (-862 *3))
+ (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-598 (-868 *3))) (-4 *2 (-862 *3))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-803)) (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *4 *5))
+ (-4 *5 (-13 (-27) (-1171) (-425 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-872 *3 *4))
- (-4 *3 (-1207 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-751)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| -3473 *3) (|:| -3472 *3))) (-5 *1 (-872 *3 *5))
- (-4 *3 (-1207 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112))
- (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112))
- (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112))
- (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112))
- (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773))
- (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1045 *7 *8 *9 *3))))
+ (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *4 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-402 (-552)))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *5 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5)))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
- (-4 *3 (-1039 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773))
- (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1118 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3))))
+ (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-552)))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-310 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-289 *6))
+ (-4 *6 (-13 (-27) (-1171) (-425 *5)))
+ (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
- (-4 *3 (-1039 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
- (-4 *3 (-1039 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))
+ (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
- (-4 *3 (-1039 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
- (-4 *3 (-1039 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-622 *4))
- (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))))
- (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7))
- (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7))
- (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7))
- (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7))
- (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
- ((*1 *1 *1) (-4 *1 (-1117))))
-(((*1 *1 *1) (-4 *1 (-1117))))
-(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
- ((*1 *1 *1) (-4 *1 (-1117))))
-(((*1 *1 *1) (-4 *1 (-1117))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-538)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *6)) (-4 *5 (-1074)) (-4 *6 (-1185))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-4 *5 (-1074)) (-4 *2 (-1185))
- (-5 *1 (-624 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 *5)) (-4 *6 (-1074)) (-4 *5 (-1185))
- (-5 *2 (-1 *5 *6)) (-5 *1 (-624 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-4 *5 (-1074)) (-4 *2 (-1185))
- (-5 *1 (-624 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-622 *5)) (-5 *4 (-622 *6)) (-4 *5 (-1074))
- (-4 *6 (-1185)) (-5 *1 (-624 *5 *6))))
+ (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-552)))
+ (-4 *7 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1074))
- (-4 *2 (-1185)) (-5 *1 (-624 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-751)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1198 (-538))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-751))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-538)) (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-1074))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-538))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1185))
- (-5 *2 (-538))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-538)) (-5 *3 (-139))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-538)))))
-(((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-827))))
+ (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-552)))
+ (-4 *3 (-13 (-27) (-1171) (-425 *7)))
+ (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-402 (-552)))) (-5 *4 (-289 *8))
+ (-5 *5 (-1199 (-402 (-552)))) (-5 *6 (-402 (-552)))
+ (-4 *8 (-13 (-27) (-1171) (-425 *7)))
+ (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-402 (-552))))
+ (-5 *7 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *8)))
+ (-4 *8 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-52)) (-5 *1 (-453 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3))))
+ (-4 *3 (-1025)) (-5 *1 (-580 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-581 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3))))
+ (-4 *3 (-1025)) (-4 *1 (-1192 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-751))
+ (-5 *3 (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| *4))))
+ (-4 *4 (-1025)) (-4 *1 (-1213 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-4 *1 (-1223 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1129 (-2 (|:| |k| (-751)) (|:| |c| *3))))
+ (-4 *3 (-1025)) (-4 *1 (-1223 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-5 *2 (-569 *4)) (-4 *4 (-13 (-29 *3) (-1171)))
- (-4 *3 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538))))
- (-5 *1 (-571 *3 *4))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-569 (-402 (-922 *3))))
- (-4 *3 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *1 (-574 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| -3425 *3) (|:| |special| *3))) (-5 *1 (-708 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-4 *5 (-1025))
- (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5))
- (-5 *3 (-622 (-669 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1231 (-1231 *5))) (-4 *5 (-358)) (-4 *5 (-1025))
- (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5))
- (-5 *3 (-622 (-669 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-622 *1)) (-4 *1 (-1117))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-622 *1)) (-4 *1 (-1117)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751))
- (-4 *5 (-170))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1025)) (-4 *1 (-666 *3 *2 *4)) (-4 *2 (-367 *3))
- (-4 *4 (-367 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-1115 *2 *3)) (-14 *2 (-751)) (-4 *3 (-1025)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1115 *3 *4))
- (-14 *3 (-751)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34)))
- (-4 *3 (-13 (-1074) (-34))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34)))
- (-4 *3 (-13 (-1074) (-34))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 *4)) (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1074) (-34)))
- (-4 *4 (-13 (-1074) (-34))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1114 *3 *4))
- (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1113 *4 *5)) (-4 *4 (-13 (-1074) (-34)))
- (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1113 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1074) (-34))) (-4 *6 (-13 (-1074) (-34))) (-5 *2 (-112))
- (-5 *1 (-1114 *5 *6)))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185))
- (-4 *2 (-1074))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3))
- (-4 *3 (-1185))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1185))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-538)) (-4 *4 (-1074))
- (-5 *1 (-717 *4))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-717 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34)))
- (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3))
- (-4 *3 (-1074))))
- ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-231 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-1074))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-538)) (-4 *4 (-1074))
- (-5 *1 (-717 *4))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-717 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34)))
- (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-1113 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1074) (-34))) (-4 *5 (-13 (-1074) (-34)))
- (-5 *1 (-1114 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-1113 *3 *4))) (-4 *3 (-13 (-1074) (-34)))
- (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112))
- (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34)))
- (-4 *4 (-13 (-1074) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-835))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-941))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-965))))
- ((*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1074) (-34))) (-5 *1 (-1113 *2 *3))
- (-4 *3 (-13 (-1074) (-34))))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3))))
+ ((*1 *1 *1) (-4 *1 (-1174))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112))
- (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4))))
+ (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-537)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-270)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1014 (-552))) (-4 *3 (-13 (-827) (-544)))
+ (-5 *1 (-32 *3 *2)) (-4 *2 (-425 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1145 *4)) (-5 *1 (-163 *3 *4))
+ (-4 *3 (-164 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1025)) (-4 *1 (-297))))
+ ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1145 *3))))
+ ((*1 *2) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34)))
- (-4 *4 (-13 (-1074) (-34))))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113)))
- ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-537)))
- ((*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34)))
- (-4 *3 (-13 (-1074) (-34))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34)))
- (-4 *3 (-13 (-1074) (-34))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1074) (-34)))
- (-4 *2 (-13 (-1074) (-34))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34)))
- (-4 *4 (-13 (-1074) (-34))))))
+ (-12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358)))
+ (-4 *2 (-1208 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34)))
- (-4 *3 (-13 (-1074) (-34))))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1074) (-34))) (-4 *6 (-13 (-1074) (-34))) (-5 *2 (-112))
- (-5 *1 (-1113 *5 *6)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5)) (-4 *4 (-13 (-1074) (-34))))))
-(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *1 *1) (-4 *1 (-1112))))
-(((*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544))))
+ ((*1 *1 *1) (|partial| -4 *1 (-703))))
+(((*1 *1 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-412 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *1 *1) (-4 *1 (-1112))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1112))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1112))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1112))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1112))))
-(((*1 *1 *1) (-5 *1 (-221))) ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *1 *1) (-4 *1 (-1112))) ((*1 *1 *1 *1) (-4 *1 (-1112))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-751)) (-5 *1 (-222))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-166 (-221))) (-5 *3 (-751)) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1112))))
-(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *1 *1) (-4 *1 (-1112))))
-(((*1 *1 *1 *1) (-5 *1 (-221)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017))))
- ((*1 *1 *1 *1) (-4 *1 (-1112))))
-(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1034))))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)) (-4 *2 (-1034))))
- ((*1 *1 *1) (-4 *1 (-825)))
- ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)) (-4 *2 (-1034))))
- ((*1 *1 *1) (-4 *1 (-1034))) ((*1 *1 *1) (-4 *1 (-1112))))
-(((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111)))))
-(((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-62 *3)) (-14 *3 (-1149))))
- ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-68 *3)) (-14 *3 (-1149))))
- ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-71 *3)) (-14 *3 (-1149))))
- ((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-390))))
- ((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1237))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1131)) (-5 *4 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111))))
- ((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-622 (-1154))) (-5 *1 (-1109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1137 3 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
- ((*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))))
-(((*1 *2)
- (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5)))
- (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 (-919 *4))) (-4 *1 (-1107 *4)) (-4 *4 (-1025))
- (-5 *2 (-751)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-919 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-622 (-622 (-919 *4)))) (-5 *3 (-112)) (-4 *4 (-1025))
- (-4 *1 (-1107 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 (-622 (-919 *3)))) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-622 (-622 (-622 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4))
- (-4 *4 (-1025))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-622 (-622 (-919 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4))
- (-4 *4 (-1025))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-622 (-622 (-622 *5)))) (-5 *3 (-622 (-169))) (-5 *4 (-169))
- (-4 *1 (-1107 *5)) (-4 *5 (-1025))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-622 (-622 (-919 *5)))) (-5 *3 (-622 (-169))) (-5 *4 (-169))
- (-4 *1 (-1107 *5)) (-4 *5 (-1025)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-622 (-751))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025))
- (-5 *2 (-622 (-622 (-622 (-919 *3))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-169)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-169))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025))
- (-5 *2
- (-2 (|:| -4210 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751))
- (|:| |constructs| (-751)))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 (-2 (|:| -4092 (-1143 *6)) (|:| -2493 (-538)))))
- (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
- (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-1105 *4 *2))
- (-4 *2 (-13 (-588 (-538) *4) (-10 -7 (-6 -4353) (-6 -4354))))))
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
((*1 *2 *2)
- (-12 (-4 *3 (-827)) (-4 *3 (-1185)) (-5 *1 (-1105 *3 *2))
- (-4 *2 (-13 (-588 (-538) *3) (-10 -7 (-6 -4353) (-6 -4354)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-1105 *4 *2))
- (-4 *2 (-13 (-588 (-538) *4) (-10 -7 (-6 -4353) (-6 -4354))))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-827)) (-4 *3 (-1185)) (-5 *1 (-1105 *3 *2))
- (-4 *2 (-13 (-588 (-538) *3) (-10 -7 (-6 -4353) (-6 -4354)))))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3))))
+ ((*1 *1 *1) (-4 *1 (-1174))))
+(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-625 (-625 (-919 (-221)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-625 (-625 (-919 (-221))))))))
+(((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))))
+(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-270)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-286)))
+ ((*1 *1) (-5 *1 (-839)))
+ ((*1 *1)
+ (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773))
+ (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1058)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34)))
+ (-4 *3 (-13 (-1073) (-34)))))
+ ((*1 *1) (-5 *1 (-1152))) ((*1 *1) (-5 *1 (-1153))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1231 *4)) (-4 *4 (-1025)) (-4 *2 (-1207 *4))
- (-5 *1 (-438 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-402 (-1143 (-309 *5)))) (-5 *3 (-1231 (-309 *5)))
- (-5 *4 (-538)) (-4 *5 (-13 (-545) (-827))) (-5 *1 (-1103 *5)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-402 (-1143 (-309 *3)))) (-4 *3 (-13 (-545) (-827)))
- (-5 *1 (-1103 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-288 (-402 (-922 *5)))) (-5 *4 (-1149))
- (-4 *5 (-13 (-302) (-827) (-145)))
- (-5 *2 (-1138 (-622 (-309 *5)) (-622 (-288 (-309 *5)))))
- (-5 *1 (-1102 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149))
- (-4 *5 (-13 (-302) (-827) (-145)))
- (-5 *2 (-1138 (-622 (-309 *5)) (-622 (-288 (-309 *5)))))
- (-5 *1 (-1102 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149))
- (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-309 *5)))
- (-5 *1 (-1102 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149)))
- (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-309 *5))))
- (-5 *1 (-1102 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149))
- (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *5))))
- (-5 *1 (-1102 *5))))
+ (-12 (-5 *3 (-928 (-552))) (-5 *2 (-625 *1)) (-4 *1 (-988))))
((*1 *2 *3)
- (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-13 (-302) (-827) (-145)))
- (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1102 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-288 (-402 (-922 *5)))) (-5 *4 (-1149))
- (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *5))))
- (-5 *1 (-1102 *5))))
+ (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *2 (-625 *1)) (-4 *1 (-988))))
+ ((*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-988)) (-5 *2 (-625 *1))))
((*1 *2 *3)
- (-12 (-5 *3 (-288 (-402 (-922 *4)))) (-4 *4 (-13 (-302) (-827) (-145)))
- (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1102 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149)))
- (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *5)))))
- (-5 *1 (-1102 *5))))
+ (-12 (-5 *3 (-1145 (-552))) (-5 *2 (-625 *1)) (-4 *1 (-988))))
((*1 *2 *3)
- (-12 (-5 *3 (-622 (-402 (-922 *4)))) (-4 *4 (-13 (-302) (-827) (-145)))
- (-5 *2 (-622 (-622 (-288 (-309 *4))))) (-5 *1 (-1102 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-288 (-402 (-922 *5))))) (-5 *4 (-622 (-1149)))
- (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *5)))))
- (-5 *1 (-1102 *5))))
+ (-12 (-5 *3 (-1145 (-402 (-552)))) (-5 *2 (-625 *1)) (-4 *1 (-988))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-988)) (-5 *2 (-625 *1))))
((*1 *2 *3)
- (-12 (-5 *3 (-622 (-288 (-402 (-922 *4)))))
- (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *4)))))
- (-5 *1 (-1102 *4)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))))
+ (-12 (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-625 *1))
+ (-4 *1 (-1042 *4 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544))))
+ ((*1 *1 *1) (|partial| -4 *1 (-703))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399))))
+ ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-114)) (-5 *4 (-751)) (-4 *5 (-446)) (-4 *5 (-827))
+ (-4 *5 (-1014 (-552))) (-4 *5 (-544)) (-5 *1 (-41 *5 *2))
+ (-4 *2 (-425 *5))
+ (-4 *2
+ (-13 (-358) (-297)
+ (-10 -8 (-15 -1356 ((-1098 *5 (-596 $)) $))
+ (-15 -1368 ((-1098 *5 (-596 $)) $))
+ (-15 -1683 ($ (-1098 *5 (-596 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-803)) (-5 *1 (-802)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3))))
+ ((*1 *1 *1) (-4 *1 (-1174))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772))
+ (-4 *5 (-827)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1149)) (-5 *6 (-625 (-596 *3)))
+ (-5 *5 (-596 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *7)))
+ (-4 *7 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3)))
+ (-5 *1 (-545 *7 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))))
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221)))
+ (|:| |lb| (-625 (-820 (-221))))
+ (|:| |cf| (-625 (-311 (-221))))
+ (|:| |ub| (-625 (-820 (-221))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-625 (-311 (-221))))
+ (|:| -2071 (-625 (-221)))))))
+ (-5 *2 (-625 (-1131))) (-5 *1 (-262)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-432)) (-5 *1 (-1153)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1145 *1)) (-5 *3 (-1149)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-928 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-544)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-544)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1145 *2)) (-5 *4 (-1149)) (-4 *2 (-425 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-827) (-544)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1145 *1)) (-5 *3 (-897)) (-4 *1 (-988))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1145 *1)) (-5 *3 (-897)) (-5 *4 (-839))
+ (-4 *1 (-988))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-897)) (-4 *4 (-13 (-825) (-358)))
+ (-4 *1 (-1042 *4 *2)) (-4 *2 (-1208 *4)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4))))
+ (-12 (-5 *3 (-552)) (|has| *1 (-6 -4344)) (-4 *1 (-399))
+ (-5 *2 (-897)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552)))
+ (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3))
+ (-4 *2
+ (-13 (-358) (-297)
+ (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $))
+ (-15 -1368 ((-1098 *3 (-596 $)) $))
+ (-15 -1683 ($ (-1098 *3 (-596 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-803)) (-5 *1 (-802)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *2 (-1237))
+ (-5 *1 (-462))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-919 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-919 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-919 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *2
- (-2 (|:| |solns| (-622 *5))
- (|:| |maps| (-622 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1101 *3 *5)) (-4 *3 (-1207 *5)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-358)) (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4354))))
- (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))) (-5 *1 (-647 *4 *5 *2 *3))
- (-4 *3 (-666 *4 *5 *2))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1231 *4)) (-5 *3 (-669 *4)) (-4 *4 (-358))
- (-5 *1 (-648 *4))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-622 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358))
- (-5 *1 (-794 *2 *3)) (-4 *3 (-638 *2))))
+ (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)) (-5 *3 (-221)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3))))
+ ((*1 *1 *1) (-4 *1 (-1174))))
+(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538)))))))
- (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-1126 *7))) (-4 *6 (-827))
- (-4 *7 (-926 *5 (-524 *6) *6)) (-4 *5 (-1025)) (-5 *2 (-1 (-1126 *7) *7))
- (-5 *1 (-1099 *5 *6 *7)))))
+ (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))
+ ((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1) (-4 *1 (-845 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772))
+ (-4 *4 (-827)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-302)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2128 (-622 *4))))
- (-5 *1 (-1097 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))))
+ (-12 (-5 *4 (-1149))
+ (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-571 *3)) (-5 *1 (-545 *5 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1153)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-262)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-1000 *3))
+ (-4 *3 (-13 (-825) (-358) (-998)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3))
+ (-4 *3 (-1208 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358)))
+ (-4 *3 (-1208 *2)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-302)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))
- (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))))
+ (-12 (-5 *3 (-552)) (|has| *1 (-6 -4344)) (-4 *1 (-399))
+ (-5 *2 (-897)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-302)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))
- (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-302)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1097 *4 *5 *6 *3))
- (-4 *3 (-666 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538))))
+ (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552)))
+ (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3))
+ (-4 *2
+ (-13 (-358) (-297)
+ (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $))
+ (-15 -1368 ((-1098 *3 (-596 $)) $))
+ (-15 -1683 ($ (-1098 *3 (-596 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-801)))))
+(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-947)))))
+(((*1 *1 *1) (-4 *1 (-611)))
((*1 *2 *2)
- (-12 (-4 *3 (-302)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))
- (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1025)) (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
- (-4 *5 (-234 *3 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-622 *1)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5))
- (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5))
- (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1025)) (-5 *1 (-669 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 *4)) (-4 *4 (-1025)) (-4 *1 (-1096 *3 *4 *5 *6))
- (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978) (-1171))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-545 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-429))
+ (-5 *2
+ (-625
+ (-3 (|:| -1288 (-1149))
+ (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552)))))))))
+ (-5 *1 (-1153)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4))
- (-4 *2 (-234 *3 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-895)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))))
- ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358))))
- ((*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1231 *4)) (-5 *3 (-895)) (-4 *4 (-345)) (-5 *1 (-521 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2))
- (-4 *2 (-1025)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-669 *2)) (-4 *4 (-1207 *2))
- (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))))
- (-5 *1 (-492 *2 *4 *5)) (-4 *5 (-405 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2))
- (-4 *2 (-1025)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-358))
- (-5 *1 (-514 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2))
- (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-170))
- (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5))))
+ (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-1039 *3 *4 *2)) (-4 *2 (-827))))
((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2))
- (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))))
+ (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2))
- (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-170))
- (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5))))
+ (-12 (-5 *2 (-1217 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5))
+ (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552))))
+ ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-413 *3)) (-4 *3 (-544))))
+ ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-679))))
((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2))
- (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1) (-12 (-4 *1 (-1094 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))))
-(((*1 *1 *1 *1) (-4 *1 (-642))) ((*1 *1 *1 *1) (-5 *1 (-1093))))
-(((*1 *1 *1 *1) (-4 *1 (-642))) ((*1 *1 *1 *1) (-5 *1 (-1093))))
-(((*1 *1 *1) (-4 *1 (-642))) ((*1 *1 *1) (-5 *1 (-1093))))
-(((*1 *1)
- (-12 (-4 *1 (-399)) (-3676 (|has| *1 (-6 -4344)))
- (-3676 (|has| *1 (-6 -4336)))))
- ((*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-827))))
- ((*1 *1 *1 *1) (-4 *1 (-827)))
- ((*1 *2 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) ((*1 *1) (-5 *1 (-1093))))
-(((*1 *1)
- (-12 (-4 *1 (-399)) (-3676 (|has| *1 (-6 -4344)))
- (-3676 (|has| *1 (-6 -4336)))))
- ((*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-827))))
- ((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-827))))
- ((*1 *1 *1 *1) (-4 *1 (-827))) ((*1 *1) (-5 *1 (-1093))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1) (-4 *1 (-943))) ((*1 *1 *1) (-5 *1 (-1093))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1093))))
-(((*1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538))))
- ((*1 *1 *1) (-5 *1 (-1093))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538))))
- ((*1 *1 *1 *1) (-5 *1 (-1093))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538))))
- ((*1 *1 *1 *1) (-5 *1 (-1093))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-1088)) (-5 *1 (-1089)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-214))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-622 (-1154))) (-5 *3 (-1154)) (-5 *1 (-1088))))
- ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1089)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-178))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-661))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-946))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1047))))
- ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1088)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-661))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1088)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149))
- (-5 *2 (-538)) (-5 *1 (-1087 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149))
- (-5 *2 (-538)) (-5 *1 (-1087 *4 *5)))))
+ (-12 (-4 *2 (-1073)) (-5 *1 (-694 *3 *2 *4)) (-4 *3 (-827))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -3123 *3) (|:| -3564 *2))
+ (-2 (|:| -3123 *3) (|:| -3564 *2)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-751))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-751)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552)))
+ (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3))
+ (-4 *2
+ (-13 (-358) (-297)
+ (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $))
+ (-15 -1368 ((-1098 *3 (-596 $)) $))
+ (-15 -1683 ($ (-1098 *3 (-596 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-801)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538))
- (-5 *1 (-1087 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538))
- (-5 *1 (-1087 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 *4))
- (-5 *1 (-1087 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 (-1200 *5 *4)))
- (-5 *1 (-1087 *4 *5)) (-5 *3 (-1200 *5 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 (-1200 *5 *4)))
- (-5 *1 (-1087 *4 *5)) (-5 *3 (-1200 *5 *4)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1083)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1231 (-538))) (-5 *3 (-538)) (-5 *1 (-1083))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1231 (-538))) (-5 *3 (-622 (-538))) (-5 *4 (-538))
- (-5 *1 (-1083)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *3 (-112)) (-5 *1 (-1083)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-669 (-538))) (-5 *3 (-622 (-538))) (-5 *1 (-1083)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1083)))))
+ (-12 (-5 *2 (-625 (-625 (-552)))) (-5 *1 (-947))
+ (-5 *3 (-625 (-552))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-545 *6 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-625 (-311 (-221)))) (-5 *1 (-262)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-751)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-751))))
+ ((*1 *1 *1) (-4 *1 (-397))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-538))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-1083)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-622 (-538))) (-5 *3 (-669 (-538))) (-5 *1 (-1083)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1083)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4))
- (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4))
- (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4))
- (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
- (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4))))
- (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *5 (-112))
- (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446))
- (-4 *7 (-773)) (-4 *4 (-827))
- (-5 *2 (-622 (-2 (|:| |val| *8) (|:| -1660 *9))))
- (-5 *1 (-1081 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
- (-4 *9 (-1039 *6 *7 *8))
- (-5 *2 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *4) (|:| |ineq| (-622 *9))))
- (-5 *1 (-964 *6 *7 *8 *9 *4)) (-5 *3 (-622 *9))
- (-4 *4 (-1045 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
- (-4 *9 (-1039 *6 *7 *8))
- (-5 *2 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *4) (|:| |ineq| (-622 *9))))
- (-5 *1 (-1080 *6 *7 *8 *9 *4)) (-5 *3 (-622 *9))
- (-4 *4 (-1045 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-622 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9))
- (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8))
- (-5 *2
- (-622 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *10) (|:| |ineq| (-622 *9)))))
- (-5 *1 (-964 *6 *7 *8 *9 *10)) (-5 *3 (-622 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-622 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9))
- (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8))
- (-5 *2
- (-622 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *10) (|:| |ineq| (-622 *9)))))
- (-5 *1 (-1080 *6 *7 *8 *9 *10)) (-5 *3 (-622 *9)))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-1145 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-358) (-297)
+ (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $))
+ (-15 -1368 ((-1098 *4 (-596 $)) $))
+ (-15 -1683 ($ (-1098 *4 (-596 $))))))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-622 (-2 (|:| |val| (-622 *6)) (|:| -1660 *7))))
- (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-964 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-622 (-2 (|:| |val| (-622 *6)) (|:| -1660 *7))))
- (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8)))
- (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8)))
- (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
- (-5 *1 (-1080 *4 *5 *6 *7 *8)))))
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801)))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-947)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1149))
+ (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-545 *5 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-625 (-311 (-221)))) (-5 *1 (-262)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1073)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1073))
+ (-4 *4 (-646 *3))))
+ ((*1 *1) (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-686 *3 *4)) (-4 *3 (-1186)) (-4 *4 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214))))
+ ((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-656))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1025)) (-5 *2 (-1232 *3)) (-5 *1 (-693 *3 *4))
+ (-4 *4 (-1208 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-13 (-358) (-145)))
+ (-5 *1 (-394 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1073))
+ (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3))))
+ (-5 *2 (-625 (-1049 *3 *4 *5))) (-5 *1 (-1050 *3 *4 *5))
+ (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *1 (-964 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *1 (-1080 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-964 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1080 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3))
- (-4 *3 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3))
- (-4 *3 (-1045 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-358) (-297)
+ (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $))
+ (-15 -1368 ((-1098 *3 (-596 $)) $))
+ (-15 -1683 ($ (-1098 *3 (-596 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-358) (-297)
+ (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $))
+ (-15 -1368 ((-1098 *3 (-596 $)) $))
+ (-15 -1683 ($ (-1098 *3 (-596 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 *2))
+ (-4 *2
+ (-13 (-358) (-297)
+ (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $))
+ (-15 -1368 ((-1098 *4 (-596 $)) $))
+ (-15 -1683 ($ (-1098 *4 (-596 $)))))))
+ (-4 *4 (-544)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 (-596 *2)))
+ (-4 *2
+ (-13 (-358) (-297)
+ (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $))
+ (-15 -1368 ((-1098 *4 (-596 $)) $))
+ (-15 -1683 ($ (-1098 *4 (-596 $)))))))
+ (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *1 (-964 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *1 (-1080 *3 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *2 (-1237)) (-5 *1 (-964 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *2 (-1237)) (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-964 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1080 *4 *5 *6 *7 *8))
- (-4 *8 (-1045 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1149)) (-5 *3 (-429)) (-4 *5 (-827)) (-5 *1 (-1079 *5 *4))
- (-4 *4 (-416 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3207 *4)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-557 *3)) (-4 *3 (-1014 (-538)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-2 (|:| -3618 *1) (|:| -4340 *1) (|:| |associate| *1)))
+ (-4 *1 (-544)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *4 (-751))
+ (-5 *2 (-669 (-221))) (-5 *1 (-262)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1025)) (-5 *1 (-693 *3 *4))
+ (-4 *4 (-1208 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))))
+ (-12 (-4 *2 (-1208 *3)) (-5 *1 (-394 *3 *2))
+ (-4 *3 (-13 (-358) (-145))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-358) (-297)
+ (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $))
+ (-15 -1368 ((-1098 *3 (-596 $)) $))
+ (-15 -1683 ($ (-1098 *3 (-596 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-801)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3207 *4)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *1 *1) (-4 *1 (-544))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))))
+(((*1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 *4))))
- (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074))
- (-4 *7 (-1074)) (-5 *2 (-622 *1)) (-4 *1 (-1077 *3 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-1039 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *2 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))))
-(((*1 *2 *3) (-12 (-5 *2 (-538)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *2 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-895)) (-4 *1 (-399))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-538)) (-4 *1 (-399))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *2 *6)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))))
+ (-12 (-4 *3 (-1025)) (-5 *2 (-1232 *3)) (-5 *1 (-693 *3 *4))
+ (-4 *4 (-1208 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6 *2)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074))
- (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))))
+ (-12 (-4 *3 (-13 (-358) (-145)))
+ (-5 *2 (-625 (-2 (|:| -3564 (-751)) (|:| -2845 *4) (|:| |num| *4))))
+ (-5 *1 (-394 *3 *4)) (-4 *4 (-1208 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-4 *5 (-1208 *4)) (-5 *2 (-1237))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1208 (-402 *5))) (-14 *7 *6))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-801)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074))
- (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1075 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1075 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-651))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4))
+ (-4 *4 (-1208 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-392)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-799 *3)) (-4 *3 (-827)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3))
+ (-4 *3 (-1208 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895))
- (-14 *4 (-895)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895))
- (-14 *4 (-895)))))
+ (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-112)))))
(((*1 *2)
- (-12 (-5 *2 (-1231 (-1075 *3 *4))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895))
- (-14 *4 (-895)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-4 *3 (-1074))
- (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-881 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-895)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-751)) (-5 *1 (-1075 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-578 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1074)) (-5 *2 (-1093)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1074)) (-5 *2 (-1131)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))
- ((*1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-1072 *3))))
- ((*1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-1072 *3))))
- ((*1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))))
+ (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4))
+ (-4 *4 (-1208 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-625 (-625 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-625 (-3 (|:| |array| (-625 *3)) (|:| |scalar| (-1149)))))
+ (-5 *6 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1077))
+ (-5 *1 (-392))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-625 (-625 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-625 (-3 (|:| |array| (-625 *3)) (|:| |scalar| (-1149)))))
+ (-5 *6 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1077))
+ (-5 *1 (-392))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-625 (-1149))) (-5 *5 (-1152)) (-5 *3 (-1149))
+ (-5 *2 (-1077)) (-5 *1 (-392)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-751)) (-4 *3 (-544)) (-5 *1 (-945 *3 *2))
+ (-4 *2 (-1208 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-622 (-497 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5))
- (-4 *5 (-926 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7))
- (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))
- (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-622 (-595 *4))) (-4 *4 (-416 *3)) (-4 *3 (-827))
- (-5 *1 (-561 *3 *4))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-132))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-152))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-160))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-214))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-656))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1040))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1069)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1067 *3)) (-4 *3 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1185)) (-5 *2 (-538)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-965))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-1062 *4)) (-4 *4 (-1185)) (-5 *1 (-1065 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1064)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-256))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1231 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4))))
+ (-12 (-5 *2 (-402 (-552))) (-4 *1 (-542 *3))
+ (-4 *3 (-13 (-399) (-1171)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221)))
+ (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221))))
+ (|:| |ub| (-625 (-820 (-221))))))
+ (-5 *1 (-262)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *2 (-1025)) (-5 *1 (-693 *2 *3))
+ (-4 *3 (-1208 *2)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-600))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *2 (-544)) (-5 *1 (-945 *2 *4))
+ (-4 *4 (-1208 *2)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-820 (-221)))) (-5 *4 (-221)) (-5 *2 (-625 *4))
+ (-5 *1 (-262)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3))
+ (-4 *3 (-1186))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1186))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1231 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1207 *4)) (-5 *2 (-669 *4))))
+ (|partial| -12 (-4 *1 (-1179 *4 *5 *3 *2)) (-4 *4 (-544))
+ (-4 *5 (-773)) (-4 *3 (-827)) (-4 *2 (-1039 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1207 *4)) (-5 *2 (-1231 *4))))
+ (-12 (-5 *3 (-751)) (-5 *1 (-1183 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)))))
+(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))))
+(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-386)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-552)) (-4 *2 (-425 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1014 *4)) (-4 *3 (-13 (-827) (-544))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3))))
+ (-5 *1 (-381 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-799 *3)) (|:| |mm| (-799 *3)) (|:| |rm| (-799 *3))))
+ (-5 *1 (-799 *3)) (-4 *3 (-827)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-302))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3))))
+ (-5 *1 (-381 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3984 (-751)) (|:| -3645 (-751))))
+ (-5 *1 (-751))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-229)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4))
+ (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-405 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1207 *4)) (-5 *2 (-669 *4))))
+ (-12 (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773))
+ (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-261 *2)) (-4 *2 (-827)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)))))
+(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))))
+(((*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-827) (-544)))
+ (-5 *2 (-839)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-356 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-5 *2 (-751)) (-5 *1 (-381 *4)) (-4 *4 (-1073))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *2 (-23)) (-5 *1 (-629 *4 *2 *5))
+ (-4 *4 (-1073)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-5 *2 (-751)) (-5 *1 (-799 *4)) (-4 *4 (-827)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *4 (-544))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -3447 *4))) (-5 *1 (-945 *4 *3))
+ (-4 *3 (-1208 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827))
+ (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751))))
((*1 *2 *1)
- (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3))
- (-5 *2 (-1231 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-413 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-669 *5))) (-5 *3 (-669 *5)) (-4 *5 (-358))
- (-5 *2 (-1231 *5)) (-5 *1 (-1059 *5)))))
+ (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827))
+ (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751))))
+ ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839)))
+ (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839)))
+ (|:| |args| (-625 (-839)))))
+ (-5 *1 (-1149)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-1039 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))))
+(((*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1145 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544)))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130))
+ (-4 *2 (-1073))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-356 *2)) (-4 *2 (-1073))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-381 *2)) (-4 *2 (-1073))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *2 (-1073)) (-5 *1 (-629 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-799 *2)) (-4 *2 (-827)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *4 (-544))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3447 *4)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-112)) (-5 *1 (-541)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-374)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))))
+(((*1 *1) (-5 *1 (-182))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
- (-5 *2 (-1231 (-669 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1231 (-669 *4))) (-5 *1 (-412 *3 *4))
- (-4 *3 (-413 *4))))
- ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 (-669 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-1149))) (-4 *5 (-358))
- (-5 *2 (-1231 (-669 (-402 (-922 *5))))) (-5 *1 (-1059 *5))
- (-5 *4 (-669 (-402 (-922 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-1149))) (-4 *5 (-358)) (-5 *2 (-1231 (-669 (-922 *5))))
- (-5 *1 (-1059 *5)) (-5 *4 (-669 (-922 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-669 *4))) (-4 *4 (-358)) (-5 *2 (-1231 (-669 *4)))
- (-5 *1 (-1059 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-173))) (-5 *1 (-1058)))))
-(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-173))))
- ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-1058)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1058)))))
-(((*1 *1) (-5 *1 (-1058))))
-(((*1 *1) (-5 *1 (-1058))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-538) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))))
-(((*1 *2) (-12 (-5 *2 (-622 *3)) (-5 *1 (-1057 *3)) (-4 *3 (-131)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1057 *3)) (-4 *3 (-131)))))
-(((*1 *1) (-5 *1 (-1055))))
+ (-12 (-4 *4 (-1025))
+ (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))
+ (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4))))
+ ((*1 *1 *1) (-4 *1 (-537)))
+ ((*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-657 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-869 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-1186)) (-5 *2 (-751))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1183 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-978))
+ (-4 *2 (-1025)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827))
- (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-622 *3)) (-5 *1 (-576 *5 *6 *7 *8 *3))
- (-4 *3 (-1082 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145)))
- (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5))))))
- (-5 *1 (-1051 *5 *6)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149)))))
+ (-12 (-5 *4 (-897)) (-4 *6 (-13 (-544) (-827)))
+ (-5 *2 (-625 (-311 *6))) (-5 *1 (-217 *5 *6)) (-5 *3 (-311 *6))
+ (-4 *5 (-1025))))
+ ((*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-302) (-145)))
- (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4))))))
- (-5 *1 (-1051 *4 *5)) (-5 *3 (-622 (-922 *4))) (-14 *5 (-622 (-1149)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145)))
- (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5))))))
- (-5 *1 (-1051 *5 *6)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-622 (-1048 *3 *4 *5))) (-4 *3 (-1074))
- (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3))))
- (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3))))
- (-5 *1 (-1050 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3))))
- (-5 *2 (-622 (-1048 *3 *4 *5))) (-5 *1 (-1050 *3 *4 *5))
- (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-1074))
- (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4))))
- (-5 *1 (-1048 *4 *5 *2))
- (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3))))
- (-5 *1 (-1048 *3 *4 *2))
- (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-866 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1074)) (-4 *5 (-1185))
- (-5 *1 (-867 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-866 *4)) (-5 *3 (-622 (-1 (-112) *5))) (-4 *4 (-1074))
- (-4 *5 (-1185)) (-5 *1 (-867 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-866 *5)) (-5 *3 (-622 (-1149))) (-5 *4 (-1 (-112) (-622 *6)))
- (-4 *5 (-1074)) (-4 *6 (-1185)) (-5 *1 (-867 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1185))
- (-5 *2 (-309 (-538))) (-5 *1 (-913 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-622 (-1 (-112) *5))) (-4 *5 (-1185))
- (-5 *2 (-309 (-538))) (-5 *1 (-913 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1185)) (-4 *4 (-827))
- (-5 *1 (-914 *4 *2 *5)) (-4 *2 (-416 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 (-1 (-112) *5))) (-4 *5 (-1185)) (-4 *4 (-827))
- (-5 *1 (-914 *4 *2 *5)) (-4 *2 (-416 *4))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-1 (-112) (-622 *6)))
- (-4 *6 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))) (-4 *4 (-1074))
- (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4))))
- (-5 *1 (-1048 *4 *5 *6)))))
+ (-12 (-5 *3 (-571 *5)) (-4 *5 (-13 (-29 *4) (-1171)))
+ (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552))))
+ (-5 *2 (-625 *5)) (-5 *1 (-569 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-571 (-402 (-928 *4))))
+ (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552))))
+ (-5 *2 (-625 (-311 *4))) (-5 *1 (-574 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1122 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 *1)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825))
+ (-4 *2 (-1122 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1247 (-1149) *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-1025)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 *2)))
- (-5 *2 (-866 *3)) (-5 *1 (-1048 *3 *4 *5))
- (-4 *5 (-13 (-416 *4) (-862 *3) (-598 *2))))))
+ (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-1039 *3 *4 *5)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-625 (-1145 *13))) (-5 *3 (-1145 *13))
+ (-5 *4 (-625 *12)) (-5 *5 (-625 *10)) (-5 *6 (-625 *13))
+ (-5 *7 (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| *13)))))
+ (-5 *8 (-625 (-751))) (-5 *9 (-1232 (-625 (-1145 *10))))
+ (-4 *12 (-827)) (-4 *10 (-302)) (-4 *13 (-925 *10 *11 *12))
+ (-4 *11 (-773)) (-5 *1 (-688 *11 *12 *10 *13)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3))))
- (-5 *2 (-622 (-1149))) (-5 *1 (-1048 *3 *4 *5))
- (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-178))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-307))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-946))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-970))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1047)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4))))
- (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 *4)) (-5 *1 (-1046 *5 *6 *7 *3 *4))
- (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4))))
- (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4))))
- (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4))))
- (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
- (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4))))
- (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *5 (-112))
- (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446))
- (-4 *7 (-773)) (-4 *4 (-827))
- (-5 *2 (-622 (-2 (|:| |val| *8) (|:| -1660 *9))))
- (-5 *1 (-1046 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4))))
- (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-839)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751))
+ (-14 *4 (-751)) (-4 *5 (-170)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-928 (-552))) (-5 *3 (-1149))
+ (-5 *4 (-1067 (-402 (-552)))) (-5 *1 (-30)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))
- (-5 *2 (-3 (-112) (-622 *1))) (-4 *1 (-1045 *4 *5 *6 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))
- (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *1))))
- (-4 *1 (-1045 *4 *5 *6 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))
- (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))
- (-5 *2 (-3 *3 (-622 *1))) (-4 *1 (-1045 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-545)) (-4 *2 (-1025))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-545))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))
- (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *1))))
- (-4 *1 (-1045 *4 *5 *6 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7))
- (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))
- (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-552)))))
+ (-5 *1 (-356 *3)) (-4 *3 (-1073))))
((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
- (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4))
- (-5 *2 (-112)))))
+ (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-751)))))
+ (-5 *1 (-381 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-2 (|:| -3824 *3) (|:| -3564 (-552)))))
+ (-5 *1 (-413 *3)) (-4 *3 (-544))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-751)))))
+ (-5 *1 (-799 *3)) (-4 *3 (-827)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4))
- (-5 *2 (-112)))))
+ (-12 (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4))))
+ (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1073) (-34)))
+ (-4 *4 (-13 (-1073) (-34))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-544)) (-4 *2 (-446)) (-5 *1 (-945 *2 *3))
+ (-4 *3 (-1208 *2)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25))))))
+(((*1 *1) (-5 *1 (-182))))
(((*1 *2 *1)
- (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4))
- (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1014 (-538))) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-32 *3 *2))
- (-4 *2 (-416 *3))))
+ (-12 (-5 *2 (-751)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552))
+ (-14 *4 *2) (-4 *5 (-170))))
((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1143 *4)) (-5 *1 (-163 *3 *4))
+ (-12 (-4 *4 (-170)) (-5 *2 (-897)) (-5 *1 (-163 *3 *4))
(-4 *3 (-164 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1025)) (-4 *1 (-293))))
- ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1143 *3))))
- ((*1 *2) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) (-4 *2 (-1207 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-922 (-538))) (-5 *2 (-622 *1)) (-4 *1 (-988))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *2 (-622 *1)) (-4 *1 (-988))))
- ((*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-988)) (-5 *2 (-622 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1143 (-538))) (-5 *2 (-622 *1)) (-4 *1 (-988))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1143 (-402 (-538)))) (-5 *2 (-622 *1)) (-4 *1 (-988))))
- ((*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-988)) (-5 *2 (-622 *1))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-897))))
+ ((*1 *2)
+ (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3))
+ (-5 *2 (-897))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-622 *1))
- (-4 *1 (-1042 *4 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1143 *1)) (-5 *3 (-1149)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-922 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-545)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-545)))))
+ (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
+ (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1143 *2)) (-5 *4 (-1149)) (-4 *2 (-416 *5)) (-5 *1 (-32 *5 *2))
- (-4 *5 (-13 (-827) (-545)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1143 *1)) (-5 *3 (-895)) (-4 *1 (-988))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1143 *1)) (-5 *3 (-895)) (-5 *4 (-840))
- (-4 *1 (-988))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-895)) (-4 *4 (-13 (-825) (-358)))
- (-4 *1 (-1042 *4 *2)) (-4 *2 (-1207 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-402 (-538))) (-5 *1 (-1000 *3))
- (-4 *3 (-13 (-825) (-358) (-996)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1207 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-152))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1040)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
- (-4 *5 (-1039 *3 *4 *2)) (-4 *2 (-827))))
+ (-12 (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-358))
+ (-5 *2 (-751)) (-5 *1 (-647 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354))))
+ (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-751))
+ (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-751))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4))
+ (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3))
+ (-4 *3 (-667 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544))
(-5 *2 (-751)))))
-(((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214))))
- ((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-656))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-625 *11)) (-5 *5 (-625 (-1145 *9)))
+ (-5 *6 (-625 *9)) (-5 *7 (-625 *12)) (-5 *8 (-625 (-751)))
+ (-4 *11 (-827)) (-4 *9 (-302)) (-4 *12 (-925 *9 *10 *11))
+ (-4 *10 (-773)) (-5 *2 (-625 (-1145 *12)))
+ (-5 *1 (-688 *10 *11 *9 *12)) (-5 *3 (-1145 *12)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1))
- (-4 *1 (-1039 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))))
- ((*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-622 (-1149)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-309 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827)))
- (-14 *4 (-622 (-1149)))))
- ((*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1025))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-622 (-1149))) (-4 *5 (-234 (-4316 *3) (-751)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2492 *4) (|:| -2493 *5))
- (-2 (|:| -2492 *4) (|:| -2493 *5))))
- (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-827))
- (-4 *7 (-926 *2 *5 (-841 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1074))))
- ((*1 *2 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *3 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025))))
+ (-12 (-5 *2 (-839)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751))
+ (-14 *4 (-751)) (-4 *5 (-170)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1145 *1)) (-5 *4 (-1149)) (-4 *1 (-27))
+ (-5 *2 (-625 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-625 *1))
+ (-4 *1 (-29 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *3 (-772)) (-4 *4 (-827)) (-4 *2 (-1025))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-625 *4)) (-4 *4 (-358)) (-5 *2 (-1232 *4))
+ (-5 *1 (-794 *4 *3)) (-4 *3 (-636 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-625 (-751))) (-5 *1 (-945 *4 *3))
+ (-4 *3 (-1208 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541)))))
+(((*1 *1) (-5 *1 (-142)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-258)))))
+(((*1 *1) (-5 *1 (-182))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-625 (-1145 *11))) (-5 *3 (-1145 *11))
+ (-5 *4 (-625 *10)) (-5 *5 (-625 *8)) (-5 *6 (-625 (-751)))
+ (-5 *7 (-1232 (-625 (-1145 *8)))) (-4 *10 (-827))
+ (-4 *8 (-302)) (-4 *11 (-925 *8 *9 *10)) (-4 *9 (-773))
+ (-5 *1 (-688 *9 *10 *8 *11)))))
+(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1145 *1)) (-5 *3 (-1149)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-928 *1)) (-4 *1 (-27))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))))
+ (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-544)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-544))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1207 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1))
- (-4 *1 (-1039 *3 *4 *5)))))
+ (-12 (-5 *3 (-625 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4))
+ (-5 *1 (-794 *4 *5)) (-4 *5 (-636 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *5)) (-5 *4 (-751)) (-4 *5 (-358))
+ (-5 *2 (-669 *5)) (-5 *1 (-794 *5 *6)) (-4 *6 (-636 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-945 *4 *3))
+ (-4 *3 (-1208 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1208 *5))
+ (-4 *5 (-13 (-27) (-425 *4)))
+ (-4 *4 (-13 (-827) (-544) (-1014 (-552))))
+ (-4 *7 (-1208 (-402 *6))) (-5 *1 (-540 *4 *5 *6 *7 *2))
+ (-4 *2 (-337 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1))
- (-4 *1 (-1039 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-112)))))
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-325)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-1232 (-625 (-552)))) (-5 *1 (-474))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-374))))
+ ((*1 *1 *1 *1) (-4 *1 (-537)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
+ ((*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-751)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-625 (-596 *4))) (-4 *4 (-425 *3)) (-4 *3 (-827))
+ (-5 *1 (-561 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))))
+ (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *3 *5 *6 *7))
+ (-4 *3 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186))
+ (-4 *7 (-1186))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *3 *5 *6))
+ (-4 *3 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)))))
+(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) (-4 *5 (-544))
+ (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-750 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-544))
+ (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-750 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-669 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1270 (-625 *6)))
+ *7 *6))
+ (-4 *6 (-358)) (-4 *7 (-636 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1232 *6) "failed"))
+ (|:| -1270 (-625 (-1232 *6)))))
+ (-5 *1 (-793 *6 *7)) (-5 *4 (-1232 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3217 *4)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1208 *6))
+ (-4 *6 (-13 (-27) (-425 *5)))
+ (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) (-4 *8 (-1208 (-402 *7)))
+ (-5 *2 (-571 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3))
+ (-4 *3 (-337 *6 *7 *8)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))))
+ (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *4 *5 *6))
+ (-4 *4 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)))))
+(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-358))
+ (-5 *2
+ (-2 (|:| A (-669 *5))
+ (|:| |eqs|
+ (-625
+ (-2 (|:| C (-669 *5)) (|:| |g| (-1232 *5)) (|:| -2772 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *5)) (-5 *4 (-1232 *5))
+ (-4 *6 (-636 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-358)) (-4 *6 (-636 *5))
+ (-5 *2 (-2 (|:| -2351 (-669 *6)) (|:| |vec| (-1232 *5))))
+ (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *6)) (-5 *4 (-1232 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-544))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3217 *4)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1208 *6))
+ (-4 *6 (-13 (-27) (-425 *5)))
+ (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) (-4 *8 (-1208 (-402 *7)))
+ (-5 *2 (-571 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3))
+ (-4 *3 (-337 *6 *7 *8)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-850)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1011)) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-1011))) (-5 *2 (-1011)) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-631 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *1) (-5 *1 (-1037)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1126 *4))
+ (-4 *4 (-1186))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))))
+ (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-684 *3))
+ (-4 *3 (-598 (-528)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221) (-221)))
+ (-5 *1 (-684 *3)) (-4 *3 (-598 (-528))))))
+(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-625 *3)) (-5 *1 (-1057 *3)) (-4 *3 (-131)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-1 (-625 *5) *6))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-4 *6 (-1208 *5)) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-633 (-402 *7))) (-5 *4 (-1 (-625 *6) *7))
+ (-5 *5 (-1 (-413 *7) *7))
+ (-4 *6 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-4 *7 (-1208 *6)) (-5 *2 (-625 (-402 *7))) (-5 *1 (-792 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-1 (-625 *5) *6))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-4 *6 (-1208 *5)) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-634 *7 (-402 *7))) (-5 *4 (-1 (-625 *6) *7))
+ (-5 *5 (-1 (-413 *7) *7))
+ (-4 *6 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-4 *7 (-1208 *6)) (-5 *2 (-625 (-402 *7))) (-5 *1 (-792 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-633 (-402 *5))) (-4 *5 (-1208 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-5 *2 (-625 (-402 *5))) (-5 *1 (-792 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-1 (-413 *6) *6))
+ (-4 *6 (-1208 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-634 *5 (-402 *5))) (-4 *5 (-1208 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-5 *2 (-625 (-402 *5))) (-5 *1 (-792 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-1 (-413 *6) *6))
+ (-4 *6 (-1208 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2633 *3)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-596 *3)) (-5 *5 (-1 (-1145 *3) (-1145 *3)))
+ (-4 *3 (-13 (-27) (-425 *6))) (-4 *6 (-13 (-827) (-544)))
+ (-5 *2 (-571 *3)) (-5 *1 (-539 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-499))) (-5 *1 (-477)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-850)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-1158 *3)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))))
+ (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *4 *5 *6 *7))
+ (-4 *4 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186))
+ (-4 *7 (-1186)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-52)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-625 *5) *6))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5))
+ (-5 *2 (-625 (-2 (|:| |poly| *6) (|:| -2772 *3))))
+ (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-636 *6))
+ (-4 *7 (-636 (-402 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-625 *5) *6))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-4 *6 (-1208 *5))
+ (-5 *2 (-625 (-2 (|:| |poly| *6) (|:| -2772 (-634 *6 (-402 *6))))))
+ (-5 *1 (-792 *5 *6)) (-5 *3 (-634 *6 (-402 *6))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2633 *3)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-827)) (-5 *3 (-625 *6)) (-5 *5 (-625 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-625 *5)) (|:| |f3| *5)
+ (|:| |f4| (-625 *5))))
+ (-5 *1 (-1157 *6)) (-5 *4 (-625 *5)))))
(((*1 *2 *1 *1 *3)
(-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827))
- (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -3235 *1)))
+ (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3645 *1)))
(-4 *1 (-1039 *4 *5 *3))))
((*1 *2 *1 *1)
(-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -3235 *1)))
+ (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3645 *1)))
(-4 *1 (-1039 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-681))))
+ ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-681)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-625 (-402 (-928 (-552))))) (-5 *4 (-625 (-1149)))
+ (-5 *2 (-625 (-625 *5))) (-5 *1 (-375 *5))
+ (-4 *5 (-13 (-825) (-358)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 (-552)))) (-5 *2 (-625 *4)) (-5 *1 (-375 *4))
+ (-4 *4 (-13 (-825) (-358))))))
+(((*1 *1) (-5 *1 (-286))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-325))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-839) (-839) (-839))) (-5 *4 (-552)) (-5 *2 (-839))
+ (-5 *1 (-629 *5 *6 *7)) (-4 *5 (-1073)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-839)) (-5 *1 (-831 *3 *4 *5)) (-4 *3 (-1025))
+ (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-839))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-839))))
+ ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-839)) (-5 *1 (-1145 *3)) (-4 *3 (-1025)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-625 *7) *7 (-1145 *7))) (-5 *5 (-1 (-413 *7) *7))
+ (-4 *7 (-1208 *6)) (-4 *6 (-13 (-358) (-145) (-1014 (-402 (-552)))))
+ (-5 *2 (-625 (-2 (|:| |frac| (-402 *7)) (|:| -2772 *3))))
+ (-5 *1 (-789 *6 *7 *3 *8)) (-4 *3 (-636 *7))
+ (-4 *8 (-636 (-402 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-5 *2
+ (-625 (-2 (|:| |frac| (-402 *6)) (|:| -2772 (-634 *6 (-402 *6))))))
+ (-5 *1 (-792 *5 *6)) (-5 *3 (-634 *6 (-402 *6))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2633 *3)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-537))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1131)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-258)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -4313 *3) (|:| |gap| (-751)) (|:| -2096 (-761 *3))
- (|:| -3235 (-761 *3))))
- (-5 *1 (-761 *3)) (-4 *3 (-1025))))
+ (-2 (|:| -3340 *3) (|:| |gap| (-751)) (|:| -3984 (-762 *3))
+ (|:| -3645 (-762 *3))))
+ (-5 *1 (-762 *3)) (-4 *3 (-1025))))
((*1 *2 *1 *1 *3)
(-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827))
- (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -2096 *1) (|:| -3235 *1)))
+ (-5 *2
+ (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3984 *1)
+ (|:| -3645 *1)))
(-4 *1 (-1039 *4 *5 *3))))
((*1 *2 *1 *1)
(-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -2096 *1) (|:| -3235 *1)))
- (-4 *1 (-1039 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2 (-2 (|:| |polnum| (-761 *3)) (|:| |polden| *3) (|:| -3835 (-751))))
- (-5 *1 (-761 *3)) (-4 *3 (-1025))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3835 (-751))))
+ (-5 *2
+ (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3984 *1)
+ (|:| -3645 *1)))
(-4 *1 (-1039 *3 *4 *5)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-922 (-373))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149)))
- (-4 *5 (-382))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-402 (-922 (-373)))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149)))
- (-4 *5 (-382))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-309 (-373))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149)))
- (-4 *5 (-382))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-922 (-538))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149)))
- (-4 *5 (-382))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-402 (-922 (-538)))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149)))
- (-4 *5 (-382))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-309 (-538))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149)))
- (-4 *5 (-382))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 *2))
- (-14 *4 (-622 *2)) (-4 *5 (-382))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5))
- (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-669 (-402 (-922 (-538))))) (-4 *1 (-380))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-669 (-402 (-922 (-373))))) (-4 *1 (-380))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-922 (-538)))) (-4 *1 (-380))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-922 (-373)))) (-4 *1 (-380))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-309 (-538)))) (-4 *1 (-380))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-309 (-373)))) (-4 *1 (-380))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-538)))) (-4 *1 (-392))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-373)))) (-4 *1 (-392))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-538))) (-4 *1 (-392))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-373))) (-4 *1 (-392))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-538))) (-4 *1 (-392))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-373))) (-4 *1 (-392))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1231 (-402 (-922 (-538))))) (-4 *1 (-435))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1231 (-402 (-922 (-373))))) (-4 *1 (-435))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-922 (-538)))) (-4 *1 (-435))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-922 (-373)))) (-4 *1 (-435))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-309 (-538)))) (-4 *1 (-435))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-309 (-373)))) (-4 *1 (-435))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-345)) (-4 *5 (-324 *4)) (-4 *6 (-1207 *5))
- (-5 *2 (-1143 (-1143 *4))) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1207 *6))
- (-14 *7 (-895))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2)
- (|partial| -3891
- (-12 (-5 *2 (-922 *3))
- (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-3676 (-4 *3 (-38 (-538))))
- (-4 *5 (-598 (-1149))))
- (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)))
- (-12 (-5 *2 (-922 *3))
- (-12 (-3676 (-4 *3 (-537))) (-3676 (-4 *3 (-38 (-402 (-538)))))
- (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149))))
- (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)))
- (-12 (-5 *2 (-922 *3))
- (-12 (-3676 (-4 *3 (-967 (-538)))) (-4 *3 (-38 (-402 (-538))))
- (-4 *5 (-598 (-1149))))
- (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)))))
- ((*1 *1 *2)
- (|partial| -3891
- (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5))
- (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538)))
- (-4 *5 (-598 (-1149))))
- (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))
- (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5))
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5))
- (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-922 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373)))
- (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-402 (-922 (-373)))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149)))
- (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-309 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373)))
- (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-922 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538)))
- (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-402 (-922 (-538)))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149)))
- (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-309 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538)))
- (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 *2))
- (-14 *4 (-622 *2)) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-309 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5))
- (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149)))))
- ((*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-922 (-538))))) (-4 *1 (-380))))
- ((*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-922 (-373))))) (-4 *1 (-380))))
- ((*1 *1 *2) (-12 (-5 *2 (-669 (-922 (-538)))) (-4 *1 (-380))))
- ((*1 *1 *2) (-12 (-5 *2 (-669 (-922 (-373)))) (-4 *1 (-380))))
- ((*1 *1 *2) (-12 (-5 *2 (-669 (-309 (-538)))) (-4 *1 (-380))))
- ((*1 *1 *2) (-12 (-5 *2 (-669 (-309 (-373)))) (-4 *1 (-380))))
- ((*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-538)))) (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-373)))) (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-922 (-538))) (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-922 (-373))) (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-1231 (-402 (-922 (-538))))) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-1231 (-402 (-922 (-373))))) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-1231 (-922 (-538)))) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-1231 (-922 (-373)))) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-1231 (-309 (-538)))) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-1231 (-309 (-373)))) (-4 *1 (-435))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3)))
+ (-5 *1 (-668 *3 *4 *5 *6)) (-4 *6 (-667 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-680 *3))
+ (-4 *3 (-302)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 (-167 (-552))))) (-5 *2 (-625 (-167 *4)))
+ (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-625 (-402 (-928 (-167 (-552))))))
+ (-5 *4 (-625 (-1149))) (-5 *2 (-625 (-625 (-167 *5))))
+ (-5 *1 (-373 *5)) (-4 *5 (-13 (-358) (-825))))))
+(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12
+ (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-358)) (-4 *7 (-1208 *5)) (-4 *4 (-705 *5 *7))
+ (-5 *2 (-2 (|:| -2351 (-669 *6)) (|:| |vec| (-1232 *5))))
+ (-5 *1 (-791 *5 *6 *7 *4 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-537))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-1025)) (-5 *1 (-807 *2 *3)) (-4 *2 (-689 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-402 (-928 (-167 (-552))))))
+ (-5 *2 (-625 (-625 (-289 (-928 (-167 *4)))))) (-5 *1 (-373 *4))
+ (-4 *4 (-13 (-358) (-825)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-289 (-402 (-928 (-167 (-552)))))))
+ (-5 *2 (-625 (-625 (-289 (-928 (-167 *4)))))) (-5 *1 (-373 *4))
+ (-4 *4 (-13 (-358) (-825)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 (-167 (-552)))))
+ (-5 *2 (-625 (-289 (-928 (-167 *4))))) (-5 *1 (-373 *4))
+ (-4 *4 (-13 (-358) (-825)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-289 (-402 (-928 (-167 (-552))))))
+ (-5 *2 (-625 (-289 (-928 (-167 *4))))) (-5 *1 (-373 *4))
+ (-4 *4 (-13 (-358) (-825))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-633 (-402 *2))) (-4 *2 (-1208 *4)) (-5 *1 (-790 *4 *2))
+ (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-634 *2 (-402 *2))) (-4 *2 (-1208 *4))
+ (-5 *1 (-790 *4 *2))
+ (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544))
(-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221)))))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
- (-5 *1 (-749))))
- ((*1 *2 *1)
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-537))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-903))
+ (-5 *2
+ (-2 (|:| |brans| (-625 (-625 (-919 (-221)))))
+ (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))))
+ (-5 *1 (-151))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-903)) (-5 *4 (-402 (-552)))
+ (-5 *2
+ (-2 (|:| |brans| (-625 (-625 (-919 (-221)))))
+ (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))))
+ (-5 *1 (-151))))
+ ((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *1 (-788))))
- ((*1 *2 *1)
+ (-2 (|:| |brans| (-625 (-625 (-919 (-221)))))
+ (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))))
+ (-5 *1 (-151)) (-5 *3 (-625 (-919 (-221))))))
+ ((*1 *2 *3)
(-12
(-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221)))
- (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221))))
- (|:| |ub| (-622 (-819 (-221))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))))
- (-5 *1 (-818))))
- ((*1 *2 *1)
+ (-2 (|:| |brans| (-625 (-625 (-919 (-221)))))
+ (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))))
+ (-5 *1 (-151)) (-5 *3 (-625 (-625 (-919 (-221)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-622 (-309 (-221))))
- (|:| |constraints|
- (-622
- (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751))
- (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221)))
- (|:| |dFinish| (-669 (-221))))))
- (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131))
- (|:| |tol| (-221))))
- (-5 *1 (-874))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1185))))
- ((*1 *1 *2)
- (-3891
- (-12 (-5 *2 (-922 *3))
- (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-3676 (-4 *3 (-38 (-538))))
- (-4 *5 (-598 (-1149))))
- (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)))
- (-12 (-5 *2 (-922 *3))
- (-12 (-3676 (-4 *3 (-537))) (-3676 (-4 *3 (-38 (-402 (-538)))))
- (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149))))
- (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)))
- (-12 (-5 *2 (-922 *3))
- (-12 (-3676 (-4 *3 (-967 (-538)))) (-4 *3 (-38 (-402 (-538))))
- (-4 *5 (-598 (-1149))))
- (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)))))
- ((*1 *1 *2)
- (-3891
- (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5))
- (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538)))
- (-4 *5 (-598 (-1149))))
- (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))
- (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5))
- (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5))
- (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827)))))
+ (-2 (|:| |polnum| (-762 *3)) (|:| |polden| *3) (|:| -4321 (-751))))
+ (-5 *1 (-762 *3)) (-4 *3 (-1025))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4321 (-751))))
+ (-4 *1 (-1039 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-552)) (-5 *1 (-374)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1208 *5))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4))))
+ (-5 *1 (-790 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-633 (-402 *6))) (-4 *6 (-1208 *5))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-5 *2 (-2 (|:| -1270 (-625 (-402 *6))) (|:| -2351 (-669 *5))))
+ (-5 *1 (-790 *5 *6)) (-5 *4 (-625 (-402 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1208 *5))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4))))
+ (-5 *1 (-790 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-634 *6 (-402 *6))) (-4 *6 (-1208 *5))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-5 *2 (-2 (|:| -1270 (-625 (-402 *6))) (|:| -2351 (-669 *5))))
+ (-5 *1 (-790 *5 *6)) (-5 *4 (-625 (-402 *6))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-751)) (-4 *5 (-544))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-537))))
+(((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-258))))
+ ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-544)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
+ (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-545)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-544)))))
+(((*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-221))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-221))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-374))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-374)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1256 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-827))
+ (-4 *2 (-170))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-799 *4)) (-4 *1 (-1249 *4 *2)) (-4 *4 (-827))
+ (-4 *2 (-1025))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552)))))
+ (-4 *3 (-1208 *4)) (-5 *1 (-789 *4 *3 *2 *5)) (-4 *2 (-636 *3))
+ (-4 *5 (-636 (-402 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-402 *5))
+ (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4))
+ (-5 *1 (-789 *4 *5 *2 *6)) (-4 *2 (-636 *5)) (-4 *6 (-636 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-751)) (-4 *5 (-544))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-537))))
+(((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-258))))
+ ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-545)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-544)))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679))))
+ ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))))
+(((*1 *1)
+ (-12 (-4 *1 (-399)) (-2960 (|has| *1 (-6 -4344)))
+ (-2960 (|has| *1 (-6 -4336)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-827))))
+ ((*1 *1 *1 *1) (-4 *1 (-827)))
+ ((*1 *2 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827))))
+ ((*1 *1) (-5 *1 (-1093))))
+(((*1 *1 *1) (-5 *1 (-221))) ((*1 *1 *1) (-5 *1 (-374)))
+ ((*1 *1) (-5 *1 (-374))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-625 *5) *6))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5))
+ (-5 *2 (-625 (-2 (|:| -1426 *5) (|:| -2772 *3))))
+ (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-636 *6))
+ (-4 *7 (-636 (-402 *6))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *4 (-544)) (-5 *1 (-945 *4 *2))
+ (-4 *2 (-1208 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-537))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-258))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-258))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-258)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-545))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-544))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-545)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-544)))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679))))
+ ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))))
+(((*1 *1) (-5 *1 (-221))) ((*1 *1) (-5 *1 (-374))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1106 (-221))) (-5 *1 (-250))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1106 (-221))) (-5 *1 (-250))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1106 (-221))) (-5 *1 (-250))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1106 (-221))) (-5 *1 (-250))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1106 (-221))) (-5 *1 (-250))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258)))
+ (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221)))
+ (-5 *1 (-254 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-374)))
+ (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221)))
+ (-5 *1 (-254 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258)))
+ (-5 *2 (-1106 (-221))) (-5 *1 (-254 *3))
+ (-4 *3 (-13 (-598 (-528)) (-1073)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *3))
+ (-4 *3 (-13 (-598 (-528)) (-1073)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258)))
+ (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221)))
+ (-5 *1 (-254 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-374)))
+ (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221)))
+ (-5 *1 (-254 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-866 *4 *5)) (-4 *5 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1139)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1186)) (-5 *2 (-625 *1)) (-4 *1 (-986 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4))
+ (-14 *3 (-897)) (-4 *4 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552)))))
+ (-4 *5 (-1208 *4))
+ (-5 *2 (-625 (-2 (|:| |deg| (-751)) (|:| -2772 *5))))
+ (-5 *1 (-789 *4 *5 *3 *6)) (-4 *3 (-636 *5))
+ (-4 *6 (-636 (-402 *5))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-751)) (-4 *5 (-544))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-537))))
+(((*1 *1) (-5 *1 (-325))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-402 (-552))))) (-5 *1 (-258))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-545))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-544))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-545)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-544)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-221) (-221) (-221)))
+ (-5 *4 (-1 (-221) (-221) (-221) (-221)))
+ (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *1 (-677)))))
+(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374))))
+ ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552))))
+ (-5 *2 (-167 (-311 *4))) (-5 *1 (-184 *4 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-167 *3)) (-5 *1 (-1175 *4 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1208 *4)) (-5 *1 (-789 *4 *2 *3 *5))
+ (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2))
+ (-4 *5 (-636 (-402 *2))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-751)) (-4 *5 (-544))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-552) "failed") *5)) (-4 *5 (-1025))
+ (-5 *2 (-552)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1208 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1025))
+ (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1208 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1025))
+ (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) (-5 *2 (-112))
+ (-5 *1 (-258)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -3495 (-761 *3)) (|:| |coef1| (-761 *3)) (|:| |coef2| (-761 *3))))
- (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025))))
+ (-2 (|:| -2633 (-762 *3)) (|:| |coef1| (-762 *3))
+ (|:| |coef2| (-762 *3))))
+ (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *2 (-2 (|:| -2633 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
(-4 *1 (-1039 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221)))
+ (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221)))
+ (-5 *1 (-677)))))
+(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374))))
+ ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-112))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-112)) (-5 *1 (-1175 *4 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *4))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1208 *4)) (-5 *1 (-787 *4 *2 *3 *5))
+ (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2))
+ (-4 *5 (-636 (-402 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1208 *4)) (-5 *1 (-787 *4 *2 *5 *3))
+ (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-636 *2))
+ (-4 *3 (-636 (-402 *2))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *4 (-544)) (-5 *1 (-945 *4 *2))
+ (-4 *2 (-1208 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1208 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1208 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-751)))
+ (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1208 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-252)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1186)) (-5 *2 (-552)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3495 (-761 *3)) (|:| |coef1| (-761 *3))))
- (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025))))
+ (-12 (-5 *2 (-2 (|:| -2633 (-762 *3)) (|:| |coef1| (-762 *3))))
+ (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1))) (-4 *1 (-1039 *3 *4 *5)))))
+ (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *2 (-2 (|:| -2633 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1039 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-221) (-221) (-221)))
+ (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined"))
+ (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221)))
+ (-5 *1 (-677)))))
+(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374))))
+ ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552)))))
+ (-4 *5 (-1208 *4)) (-5 *2 (-625 (-2 (|:| -2845 *5) (|:| -2438 *5))))
+ (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-636 *5))
+ (-4 *6 (-636 (-402 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552)))))
+ (-4 *4 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -2845 *4) (|:| -2438 *4))))
+ (-5 *1 (-787 *5 *4 *3 *6)) (-4 *3 (-636 *4))
+ (-4 *6 (-636 (-402 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552)))))
+ (-4 *5 (-1208 *4)) (-5 *2 (-625 (-2 (|:| -2845 *5) (|:| -2438 *5))))
+ (-5 *1 (-787 *4 *5 *6 *3)) (-4 *6 (-636 *5))
+ (-4 *3 (-636 (-402 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552)))))
+ (-4 *4 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -2845 *4) (|:| -2438 *4))))
+ (-5 *1 (-787 *5 *4 *6 *3)) (-4 *6 (-636 *4))
+ (-4 *3 (-636 (-402 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3207 *4)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-531 *4 *2 *5 *6))
+ (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751))))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-252)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3495 (-761 *3)) (|:| |coef2| (-761 *3))))
- (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025))))
+ (-12 (-5 *2 (-2 (|:| -2633 (-762 *3)) (|:| |coef2| (-762 *3))))
+ (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-2 (|:| -3495 *1) (|:| |coef2| *1))) (-4 *1 (-1039 *3 *4 *5)))))
+ (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *2 (-2 (|:| -2633 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1039 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-221) (-221) (-221)))
+ (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined"))
+ (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221)))
+ (-5 *1 (-677))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-221)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-677))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1 (-919 (-221)) (-221) (-221)))
+ (-5 *4 (-1067 (-221))) (-5 *5 (-625 (-258))) (-5 *1 (-677)))))
+(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-5 *2 (-1237)) (-5 *1 (-1152))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1149))
+ (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *2 (-1237))
+ (-5 *1 (-1152))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1149))
+ (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *2 (-1237))
+ (-5 *1 (-1152)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)) (-4 *2 (-827))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4))
+ (-14 *3 (-897)) (-4 *4 (-1025))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3207 *4)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1208 *5))
+ (-5 *1 (-787 *5 *2 *3 *6))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552)))))
+ (-4 *3 (-636 *2)) (-4 *6 (-636 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-402 *2))) (-4 *2 (-1208 *5))
+ (-5 *1 (-787 *5 *2 *3 *6))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2))
+ (-4 *6 (-636 (-402 *2))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-531 *4 *2 *5 *6))
+ (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751))))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-252)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-622 *1)) (-4 *1 (-1039 *3 *4 *5)))))
+ (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *2 (-625 *1)) (-4 *1 (-1039 *3 *4 *5)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2))
+ (-4 *2 (-1208 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2))
+ (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *2 (-751))
+ (-5 *1 (-1137 *4 *5)) (-14 *4 (-897))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5))
+ (-14 *4 (-897)) (-4 *5 (-1025))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025))
+ (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-633 *4)) (-4 *4 (-337 *5 *6 *7))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4))))
+ (-5 *1 (-786 *5 *6 *7 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3207 *4)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-1149))) (-4 *6 (-358))
+ (-5 *2 (-625 (-289 (-928 *6)))) (-5 *1 (-530 *5 *6 *7))
+ (-4 *5 (-446)) (-4 *7 (-13 (-358) (-825))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1067 (-221)))
+ (-5 *2 (-1234)) (-5 *1 (-252)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
- (-4 *5 (-827)) (-4 *3 (-545)))))
+ (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-544)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-2 (|:| |deg| (-751)) (|:| -2430 *5))))
+ (-4 *5 (-1208 *4)) (-4 *4 (-344)) (-5 *2 (-625 *5))
+ (-5 *1 (-212 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-2 (|:| -3824 *5) (|:| -4276 (-552)))))
+ (-5 *4 (-552)) (-4 *5 (-1208 *4)) (-5 *2 (-625 *5))
+ (-5 *1 (-676 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2))
+ (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1149))
+ (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *1 (-1152)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-919 *4)) (-4 *4 (-1025)) (-5 *1 (-1137 *3 *4))
+ (-14 *3 (-897)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-784 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1171) (-935))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-827))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) (-4 *6 (-446))
+ (-5 *2 (-625 (-625 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-358))
+ (-4 *5 (-13 (-358) (-825))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1067 (-221)))
+ (-5 *5 (-112)) (-5 *2 (-1234)) (-5 *1 (-252)))))
(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
- (-4 *5 (-827)) (-4 *3 (-545)))))
+ (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-544)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-552)) (-5 *2 (-625 (-2 (|:| -3824 *3) (|:| -4276 *4))))
+ (-5 *1 (-676 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2))
+ (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1152)) (-5 *3 (-1149)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-919 *5)) (-5 *3 (-751)) (-4 *5 (-1025))
+ (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-935))))))
+(((*1 *1 *1 *1) (-4 *1 (-943))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1145 *5)) (-4 *5 (-446)) (-5 *2 (-625 *6))
+ (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-928 *5)) (-4 *5 (-446)) (-5 *2 (-625 *6))
+ (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-919 (-221)) (-221) (-221)))
+ (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-250)))))
(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-545)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-446))))
- ((*1 *1 *1 *1) (-4 *1 (-446)))
- ((*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1207 (-538)))))
- ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-751)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2))
- (-4 *2 (-926 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-1143 *7))) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302))
- (-5 *2 (-1143 *7)) (-5 *1 (-892 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-895)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-446)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-544)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-4 *1 (-369 *3 *4))
+ (-4 *4 (-170)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1153)) (-5 *1 (-1152)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-751)) (-5 *3 (-919 *5)) (-4 *5 (-1025))
+ (-5 *1 (-1137 *4 *5)) (-14 *4 (-897))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5))
+ (-14 *4 (-897)) (-4 *5 (-1025))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025))
+ (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374))
+ (|:| |expense| (-374)) (|:| |accuracy| (-374))
+ (|:| |intermediateResults| (-374))))
+ (-5 *1 (-783)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1149)) (-5 *2 (-528)) (-5 *1 (-527 *4))
+ (-4 *4 (-1186)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-218 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-249 *3))))
+ ((*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-446)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-446)))))
+(((*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-1073))))
+ ((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-368 *3)) (-4 *3 (-1186)) (-4 *3 (-827)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-368 *4)) (-4 *4 (-1186))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *4)) (-4 *4 (-1025)) (-5 *2 (-1232 *4))
+ (-5 *1 (-1150 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-897)) (-5 *2 (-1232 *3)) (-5 *1 (-1150 *3))
+ (-4 *3 (-1025)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-751))) (-5 *3 (-112)) (-5 *1 (-1137 *4 *5))
+ (-14 *4 (-897)) (-4 *5 (-1025)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-625
+ (-2
+ (|:| -2971
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221))))
+ (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221)))
+ (|:| |g| (-311 (-221))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (|:| -4120
+ (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374))
+ (|:| |expense| (-374)) (|:| |accuracy| (-374))
+ (|:| |intermediateResults| (-374)))))))
+ (-5 *1 (-783)))))
+(((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))))
+(((*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-528))) (-5 *1 (-528)))))
+(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-446)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-446)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-675 *3)) (-4 *3 (-1073))
+ (-5 *2 (-625 (-2 (|:| -4120 *3) (|:| -2840 (-751))))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-552)) (|has| *1 (-6 -4354)) (-4 *1 (-368 *3))
+ (-4 *3 (-1186)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1149)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-528)))))
+(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1073)) (-5 *2 (-865 *3 *5)) (-5 *1 (-861 *3 *4 *5))
+ (-4 *3 (-1073)) (-4 *5 (-646 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-446)))))
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-446)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-751)) (-4 *6 (-1073)) (-4 *7 (-876 *6))
+ (-5 *2 (-669 *7)) (-5 *1 (-672 *6 *7 *3 *4)) (-4 *3 (-368 *7))
+ (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4353)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *2 (-446)))))
-(((*1 *1) (-5 *1 (-1037))))
-(((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-373)) (-5 *1 (-1037)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-373)) (-5 *1 (-1037)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-373)) (-5 *1 (-1037)))))
-(((*1 *2 *1 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1037)) (-5 *3 (-1131)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1037)))))
-(((*1 *1) (-5 *1 (-1037))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-1037)))))
-(((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1036))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827))))
- ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
- ((*1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827))))
- ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
- ((*1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1185)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5))
- (-4 *3 (-234 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)) (-5 *2 (-751))))
- ((*1 *2)
- (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-356 *3)) (-4 *3 (-1074))))
- ((*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-381 *3)) (-4 *3 (-1074))))
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-368 *2)) (-4 *2 (-1186))
+ (-4 *2 (-827))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4354))
+ (-4 *1 (-368 *3)) (-4 *3 (-1186)))))
+(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1208 *2))
+ (-4 *2 (-170))))
((*1 *2)
- (-12 (-4 *4 (-1074)) (-5 *2 (-751)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-751)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23))
- (-14 *5 *4)))
+ (-12 (-4 *4 (-1208 *2)) (-4 *2 (-170)) (-5 *1 (-403 *3 *2 *4))
+ (-4 *3 (-404 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-404 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170))))
((*1 *2)
- (-12 (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-751)) (-5 *1 (-704 *3 *4 *5))
- (-4 *3 (-705 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827))))
- ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-400 *4) *4)) (-4 *4 (-545)) (-5 *2 (-400 *4))
- (-5 *1 (-414 *4))))
- ((*1 *1 *1) (-5 *1 (-901)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901))))
- ((*1 *1 *1) (-5 *1 (-903)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))
- (-5 *4 (-402 (-538))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))
- (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))
- (-5 *4 (-402 (-538))) (-5 *1 (-998 *3)) (-4 *3 (-1207 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))
- (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-825) (-358))) (-5 *2 (-112)) (-5 *1 (-1035 *4 *3))
- (-4 *3 (-1207 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-595 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1143 (-48))) (-5 *3 (-622 (-595 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1143 (-48))) (-5 *3 (-595 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1207 (-166 *2)))))
+ (-12 (-4 *3 (-1208 *2)) (-5 *2 (-552)) (-5 *1 (-748 *3 *4))
+ (-4 *4 (-404 *2 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-895)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))))
- ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358))))
- ((*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1207 *2)) (-4 *2 (-967 *3)) (-5 *1 (-408 *3 *2 *4 *5))
- (-4 *3 (-302)) (-4 *5 (-13 (-405 *2 *4) (-1014 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1207 *2)) (-4 *2 (-967 *3)) (-5 *1 (-410 *3 *2 *4 *5 *6))
- (-4 *3 (-302)) (-4 *5 (-405 *2 *4)) (-14 *6 (-1231 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-895)) (-4 *5 (-1025))
- (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279)))
- (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1207 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-595 (-488)))) (-5 *1 (-488))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-488))) (-5 *1 (-488))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1143 (-488))) (-5 *3 (-622 (-595 (-488)))) (-5 *1 (-488))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1143 (-488))) (-5 *3 (-595 (-488))) (-5 *1 (-488))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1231 *4)) (-5 *3 (-895)) (-4 *4 (-345)) (-5 *1 (-521 *4))))
+ (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827)) (-4 *3 (-170))))
((*1 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-705 *4 *2)) (-4 *2 (-1207 *4))
- (-5 *1 (-755 *4 *2 *5 *3)) (-4 *3 (-1207 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170))))
- ((*1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-537))))
- ((*1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-537))))
- ((*1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))
- ((*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302))))
- ((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-302))))
- ((*1 *2 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-538)))))
-(((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481))))
- ((*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-302))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538))))
- ((*1 *1 *1) (-4 *1 (-1034))))
-(((*1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1185)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5))
- (-4 *3 (-234 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-827)) (-5 *2 (-751)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4))))
- ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-536 *3)) (-4 *3 (-537))))
- ((*1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-751))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-775 *3 *4)) (-4 *3 (-776 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-966 *3 *4)) (-4 *3 (-967 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-973 *3 *4)) (-4 *3 (-974 *4))))
- ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-987 *3)) (-4 *3 (-988))))
- ((*1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-751))))
- ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1033 *3)) (-4 *3 (-1034)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-669 *5)) (-4 *5 (-1025)) (-5 *1 (-1029 *3 *4 *5))
- (-14 *3 (-751)) (-14 *4 (-751)))))
+ (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-820 *3)) (-4 *3 (-1073)))))
+(((*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-528)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5))
- (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-840)))) (-5 *1 (-840))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1115 *3 *4)) (-5 *1 (-969 *3 *4)) (-14 *3 (-895))
- (-4 *4 (-358))))
+ (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025))
+ (-14 *4 (-625 (-1149)))))
((*1 *1 *2)
- (-12 (-5 *2 (-622 (-622 *5))) (-4 *5 (-1025)) (-4 *1 (-1028 *3 *4 *5 *6 *7))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-751)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827)))
+ (-14 *4 (-625 (-1149)))))
+ ((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358))))
((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-112))))
+ (|partial| -12 (-4 *1 (-330 *3 *4 *5 *2)) (-4 *3 (-358))
+ (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4)))
+ (-4 *2 (-337 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-170))))
+ ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-705 *2 *3)) (-4 *3 (-1208 *2)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-446)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *4 (-625 (-1149)))
+ (-5 *2 (-669 (-311 (-221)))) (-5 *1 (-201))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1073)) (-4 *6 (-876 *5)) (-5 *2 (-669 *6))
+ (-5 *1 (-672 *5 *6 *3 *4)) (-4 *3 (-368 *6))
+ (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))))
+(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1232 *1)) (-4 *1 (-362 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827)) (-4 *3 (-170))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-544))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))))
+(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-311 (-374)))) (-5 *4 (-625 (-374)))
+ (-5 *2 (-1011)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-669 *6)) (-5 *5 (-1 (-413 (-1145 *6)) (-1145 *6)))
+ (-4 *6 (-358))
+ (-5 *2
+ (-625
+ (-2 (|:| |outval| *7) (|:| |outmult| (-552))
+ (|:| |outvect| (-625 (-669 *7))))))
+ (-5 *1 (-525 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-825))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-751)) (-5 *2 (-625 (-1149))) (-5 *1 (-206))
+ (-5 *3 (-1149))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-311 (-221))) (-5 *4 (-751)) (-5 *2 (-625 (-1149)))
+ (-5 *1 (-262))))
((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))
+ (-5 *2 (-625 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-538))))
+ (-12 (-5 *2 (-625 *3)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
+ (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-799 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827))))
((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))))
+ (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
+ (-5 *2 (-625 *3)))))
+(((*1 *1) (-5 *1 (-1037))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-751)) (-4 *6 (-1073)) (-4 *3 (-876 *6))
+ (-5 *2 (-669 *3)) (-5 *1 (-672 *6 *3 *7 *4)) (-4 *7 (-368 *3))
+ (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4353)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
+(((*1 *1) (-5 *1 (-325))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-544))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-816))
+ (-5 *3
+ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221)))
+ (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221))))
+ (|:| |ub| (-625 (-820 (-221))))))
+ (-5 *2 (-1011))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-816))
+ (-5 *3
+ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))
+ (-5 *2 (-1011)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-538))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))))
+ (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3))
+ (-4 *3 (-943)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1145 *5)) (-4 *5 (-358)) (-5 *2 (-625 *6))
+ (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))))
+(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1186)) (-4 *3 (-1025))
+ (-5 *2 (-669 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1208 *3)) (-4 *3 (-1025))
+ (-4 *3 (-544))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1131)) (-5 *2 (-210 (-495))) (-5 *1 (-815)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *2 (-1145 *4))
+ (-5 *1 (-525 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-825))))))
+(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773))
+ (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2772 (-625 *9)) (|:| -3715 *4) (|:| |ineq| (-625 *9))))
+ (-5 *1 (-964 *6 *7 *8 *9 *4)) (-5 *3 (-625 *9))
+ (-4 *4 (-1045 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773))
+ (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2772 (-625 *9)) (|:| -3715 *4) (|:| |ineq| (-625 *9))))
+ (-5 *1 (-1080 *6 *7 *8 *9 *4)) (-5 *3 (-625 *9))
+ (-4 *4 (-1045 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-732)))))
+(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-625 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))))
+(((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4))
+ (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3))
+ (-4 *3 (-628 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3))
+ (-4 *3 (-628 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025))))
+ ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-538))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))))
+ (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3))
+ (-4 *3 (-943)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-538))))
+ (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827))
+ (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-625 *4)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-625 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9))
+ (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-4 *9 (-1039 *6 *7 *8))
+ (-5 *2
+ (-625
+ (-2 (|:| -2772 (-625 *9)) (|:| -3715 *10) (|:| |ineq| (-625 *9)))))
+ (-5 *1 (-964 *6 *7 *8 *9 *10)) (-5 *3 (-625 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-625 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9))
+ (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-4 *9 (-1039 *6 *7 *8))
+ (-5 *2
+ (-625
+ (-2 (|:| -2772 (-625 *9)) (|:| -3715 *10) (|:| |ineq| (-625 *9)))))
+ (-5 *1 (-1080 *6 *7 *8 *9 *10)) (-5 *3 (-625 *9)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-732)))))
+(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544))
+ (-5 *2 (-2 (|:| -3340 *4) (|:| -3984 *3) (|:| -3645 *3)))
+ (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1039 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-544)) (-4 *3 (-1025))
+ (-5 *2 (-2 (|:| -3340 *3) (|:| -3984 *1) (|:| -3645 *1)))
+ (-4 *1 (-1208 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3))
+ (-4 *3 (-628 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-522))))
+ ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-522)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827))
+ (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-625 (-751)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-751))))
+ (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827))
+ (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-625 (-751))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 (-2 (|:| |val| (-625 *6)) (|:| -3715 *7))))
+ (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-964 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-625 (-2 (|:| |val| (-625 *6)) (|:| -3715 *7))))
+ (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-732)))))
+(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1145 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-358)) (-4 *4 (-544)) (-4 *5 (-1208 *4))
+ (-5 *2 (-2 (|:| -3533 (-605 *4 *5)) (|:| -3523 (-402 *5))))
+ (-5 *1 (-605 *4 *5)) (-5 *3 (-402 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))))
+ (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4))
+ (-14 *3 (-897)) (-4 *4 (-1025))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-446)) (-4 *3 (-1025))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1208 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-625 *2)) (-5 *1 (-113 *2))
+ (-4 *2 (-1073))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-625 *4))) (-4 *4 (-1073))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1073))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-625 *4)))
+ (-5 *1 (-113 *4)) (-4 *4 (-1073))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025))
+ (-5 *1 (-695 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))))
+(((*1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-751))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2))
- (-4 *5 (-367 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2))
- (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1185)) (-4 *5 (-367 *4))
- (-4 *2 (-367 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *6 *2 *7)) (-4 *6 (-1025))
- (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1185)) (-4 *5 (-367 *4))
- (-4 *2 (-367 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *6 *7 *2)) (-4 *6 (-1025))
- (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6)))))
+ (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827))
+ (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8)))
+ (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-964 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8)))
+ (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-1080 *4 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-732)))))
+(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1145 *3)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-1204 *4 *2))
+ (-4 *2 (-1208 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025))
+ (-5 *1 (-695 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1186)) (-4 *3 (-1186)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827))
+ (-4 *4 (-261 *3)) (-4 *5 (-773)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *1) (-4 *1 (-943))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
+ (-5 *1 (-964 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
+ (-5 *1 (-1080 *3 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))
- (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))
+ (|partial| -12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
+ (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-967 *4))
- (-4 *2 (-666 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2))
- (-4 *3 (-666 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7))))
+ (|partial| -12 (-4 *4 (-544)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
+ (-4 *7 (-968 *4)) (-4 *2 (-667 *7 *8 *9))
+ (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-667 *4 *5 *6))
+ (-4 *8 (-368 *7)) (-4 *9 (-368 *7))))
((*1 *1 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2)) (-4 *2 (-302))))
+ (|partial| -12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025))
+ (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358))))
((*1 *2 *2)
- (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))
- (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3))))
+ (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2))
+ (-4 *2 (-667 *3 *4 *5))))
((*1 *1 *1)
- (-12 (-4 *1 (-1028 *2 *3 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4))
- (-4 *6 (-234 *2 *4)) (-4 *4 (-302)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-751)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 *2)
- (-4 *5 (-170))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-895)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-895))))
- ((*1 *2)
- (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-895))))
+ (|partial| -12 (-5 *1 (-669 *2)) (-4 *2 (-358)) (-4 *2 (-1025))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1096 *2 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358))))
+ ((*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-1157 *3)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-732)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1025)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-1208 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-114)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *2))
+ (-4 *2 (-628 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-814 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537))))
((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751))
- (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6))))
+ (-12 (-5 *2 (-2 (|:| -3929 *3) (|:| -3564 (-751)))) (-5 *1 (-572 *3))
+ (-4 *3 (-537)))))
+(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-244)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-625 (-258))) (-5 *4 (-1149))
+ (-5 *1 (-257 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) (-5 *2 (-52))
+ (-5 *1 (-258)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354))))
- (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-751))
- (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4))))
+ (-12 (-5 *4 (-625 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446))
+ (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-964 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-5 *2 (-751))
- (-5 *1 (-648 *5))))
+ (-12 (-5 *4 (-625 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446))
+ (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1080 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-827)) (-5 *2 (-625 (-625 *4))) (-5 *1 (-1157 *4))
+ (-5 *3 (-625 *4)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-732)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
+ (-4 *3 (-362 *4))))
+ ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1025)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-1208 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-356 (-114))) (-4 *2 (-1025)) (-5 *1 (-695 *2 *4))
+ (-4 *4 (-628 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-356 (-114))) (-5 *1 (-814 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-751)) (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537)))))
+(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-244)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-655 (-221)))
+ (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-731)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-544))
+ (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-1203 *4 *3))
+ (-4 *3 (-1208 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-1237)) (-5 *1 (-811)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-625
+ (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 *2))
+ (|:| |logand| (-1145 *2)))))
+ (-5 *4 (-625 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-358)) (-5 *1 (-571 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-363))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4))
+ (-4 *4 (-344))))
((*1 *2 *1)
- (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-751))))
+ (-12 (-4 *2 (-827)) (-5 *1 (-694 *2 *3 *4)) (-4 *3 (-1073))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *3))
+ (-2 (|:| -3123 *2) (|:| -3564 *3)))))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-751))
+ (-4 *3 (-13 (-707) (-363) (-10 -7 (-15 ** (*3 *3 (-552))))))
+ (-5 *1 (-242 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-1131))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1011))
+ (-5 *1 (-731)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2462 (-552)) (|:| -3449 (-625 *3))))
+ (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-544) (-145))) (-5 *2 (-625 *3))
+ (-5 *1 (-1202 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-801)) (-5 *4 (-52)) (-5 *2 (-1237)) (-5 *1 (-811)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *1) (-12 (-5 *1 (-571 *2)) (-4 *2 (-358)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-731)))))
+(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-413 *3)) (-4 *3 (-544))))
((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))
- (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-751)))))
+ (-12 (-5 *3 (-625 (-2 (|:| -3824 *4) (|:| -4276 (-552)))))
+ (-4 *4 (-1208 (-552))) (-5 *2 (-751)) (-5 *1 (-436 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751))
- (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-751))))
+ (|partial| -12 (-4 *4 (-13 (-544) (-145)))
+ (-5 *2 (-2 (|:| -2290 *3) (|:| -2303 *3))) (-5 *1 (-1202 *4 *3))
+ (-4 *3 (-1208 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-801)) (-5 *2 (-52)) (-5 *1 (-811)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-625
+ (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 *3))
+ (|:| |logand| (-1145 *3)))))
+ (-5 *1 (-571 *3)) (-4 *3 (-358)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 G JACOBG JACGEP))))
+ (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))))
+(((*1 *2)
+ (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-129)))
+ ((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751))
+ (-4 *4 (-170))))
+ ((*1 *1) (-4 *1 (-707))) ((*1 *1) (-5 *1 (-1149))))
+(((*1 *1 *1) (-5 *1 (-528))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-1202 *3 *2))
+ (-4 *2 (-1208 *3)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-809)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-571 *3)) (-4 *3 (-358)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))))
+ (-5 *2 (-1011)) (-5 *1 (-730))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))))
+ (-5 *8 (-383)) (-5 *2 (-1011)) (-5 *1 (-730)))))
+(((*1 *2)
+ (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-544) (-145)))
+ (-5 *1 (-1202 *4 *2)) (-4 *2 (-1208 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-358)))))
+(((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-730)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-625
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-552)))))
+ (-4 *2 (-544)) (-5 *1 (-413 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))
- (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-751)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-552))
+ (|:| -3449 (-625 (-2 (|:| |irr| *4) (|:| -3515 (-552)))))))
+ (-4 *4 (-1208 (-552))) (-5 *2 (-413 *4)) (-5 *1 (-436 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-544) (-145)))
+ (-5 *1 (-1202 *4 *2)) (-4 *2 (-1208 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-751)) (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-568)))))
+(((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
+ (-5 *1 (-964 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
+ (-5 *1 (-1080 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1011))
+ (-5 *1 (-730)))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4354)) (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))
- (-5 *2 (-622 *6)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6))))
+ (-12 (-4 *4 (-544)) (-4 *5 (-968 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3))
+ (-4 *3 (-368 *5))))
((*1 *2 *3)
- (-12 (|has| *9 (-6 -4354)) (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))
- (-4 *7 (-967 *4)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)) (-5 *2 (-622 *6))
- (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-666 *4 *5 *6))
- (-4 *10 (-666 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-622 *5))))
+ (-12 (-4 *4 (-544)) (-4 *5 (-968 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-496 *4 *5 *6 *3)) (-4 *6 (-368 *4)) (-4 *3 (-368 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))
- (-5 *2 (-622 *6)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-622 *7)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1200 *4 *5)) (-5 *3 (-622 *5)) (-14 *4 (-1149)) (-4 *5 (-358))
- (-5 *1 (-898 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *5)) (-4 *5 (-358)) (-5 *2 (-1143 *5)) (-5 *1 (-898 *4 *5))
- (-14 *4 (-1149))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-622 *6)) (-5 *4 (-751)) (-4 *6 (-358)) (-5 *2 (-402 (-922 *6)))
- (-5 *1 (-1026 *5 *6)) (-14 *5 (-1149)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1023)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023)))))
-(((*1 *1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))
- ((*1 *1 *1 *1) (-5 *1 (-840)))
+ (-12 (-5 *3 (-669 *5)) (-4 *5 (-968 *4)) (-4 *4 (-544))
+ (-5 *2 (-2 (|:| |num| (-669 *4)) (|:| |den| *4)))
+ (-5 *1 (-673 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023))
- (-5 *3 (-538)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1070 *4)) (-4 *4 (-1074)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4))))
- ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373))))
- ((*1 *2 *3) (-12 (-5 *3 (-1062 (-538))) (-5 *2 (-1 (-538))) (-5 *1 (-1023)))))
-(((*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))))
+ (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552)))))
+ (-4 *6 (-1208 *5))
+ (-5 *2 (-2 (|:| -2772 *7) (|:| |rh| (-625 (-402 *6)))))
+ (-5 *1 (-787 *5 *6 *7 *3)) (-5 *4 (-625 (-402 *6)))
+ (-4 *7 (-636 *6)) (-4 *3 (-636 (-402 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *5 (-968 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1201 *4 *5 *3))
+ (-4 *3 (-1208 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-302)) (-5 *2 (-402 (-400 (-922 *4))))
- (-5 *1 (-1019 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))))
-(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149))
- (-14 *5 *3) (-5 *1 (-314 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373)))))
-(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-373)) (-5 *1 (-1017)))))
-(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017)))))
-(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017)))))
-(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1143 (-402 (-1143 *2)))) (-5 *4 (-595 *2))
- (-4 *2 (-13 (-416 *5) (-27) (-1171)))
- (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *1 (-549 *5 *2 *6)) (-4 *6 (-1074))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1143 *1)) (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025))
- (-4 *5 (-773)) (-4 *3 (-827))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1143 *4)) (-4 *4 (-1025)) (-4 *1 (-926 *4 *5 *3))
- (-4 *5 (-773)) (-4 *3 (-827))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-1143 *2))) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025))
- (-4 *2
- (-13 (-358)
- (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))
- (-5 *1 (-927 *5 *4 *6 *7 *2)) (-4 *7 (-926 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-1143 (-402 (-922 *5))))) (-5 *4 (-1149))
- (-5 *2 (-402 (-922 *5))) (-5 *1 (-1016 *5)) (-4 *5 (-545)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *1)) (-4 *1 (-416 *4)) (-4 *4 (-827)) (-4 *4 (-545))
- (-5 *2 (-402 (-1143 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *6) (-27) (-1171)))
- (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-1143 (-402 (-1143 *3)))) (-5 *1 (-549 *6 *3 *7)) (-5 *5 (-1143 *3))
- (-4 *7 (-1074))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1228 *5)) (-14 *5 (-1149)) (-4 *6 (-1025))
- (-5 *2 (-1200 *5 (-922 *6))) (-5 *1 (-924 *5 *6)) (-5 *3 (-922 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-1143 *3))))
+ (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-809)) (-5 *3 (-1131)))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-850))))
+ ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
+(((*1 *1) (-5 *1 (-565))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4))
+ (-4 *4 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751))))
+ ((*1 *1 *1) (-4 *1 (-229)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-261 *3)) (-4 *3 (-827))))
+ ((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190))
+ (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4))
+ (-4 *4 (-1208 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3))
+ (-4 *3 (-1208 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-1143 *1))
- (-4 *1 (-926 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *5 *4))
- (-5 *2 (-402 (-1143 *3))) (-5 *1 (-927 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1143 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))
- (-4 *7 (-926 *6 *5 *4)) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025))
- (-5 *1 (-927 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-402 (-1143 (-402 (-922 *5)))))
- (-5 *1 (-1016 *5)) (-5 *3 (-402 (-922 *5))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
- (-4 *2 (-827))))
+ (-12 (-4 *2 (-358)) (-4 *2 (-876 *3)) (-5 *1 (-571 *2))
+ (-5 *3 (-1149))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-571 *2)) (-4 *2 (-358))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 (-751))) (-4 *1 (-876 *4))
+ (-4 *4 (-1073))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1208 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-707)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-827)) (-5 *1 (-1157 *3)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-552)) (-5 *5 (-1131)) (-5 *6 (-669 (-221)))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))))
+ (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))
+ (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-431)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-544)) (-4 *4 (-968 *3)) (-5 *1 (-140 *3 *4 *2))
+ (-4 *2 (-368 *4))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-773)) (-4 *5 (-1025)) (-4 *6 (-926 *5 *4 *2))
- (-4 *2 (-827)) (-5 *1 (-927 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -4317 ($ *6)) (-15 -3331 (*6 $)) (-15 -3330 (*6 $)))))))
+ (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) (-4 *2 (-368 *4))
+ (-5 *1 (-496 *4 *5 *2 *3)) (-4 *3 (-368 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-1149))
- (-5 *1 (-1016 *4)))))
+ (-12 (-5 *3 (-669 *5)) (-4 *5 (-968 *4)) (-4 *4 (-544))
+ (-5 *2 (-669 *4)) (-5 *1 (-673 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-544)) (-4 *4 (-968 *3)) (-5 *1 (-1201 *3 *4 *2))
+ (-4 *2 (-1208 *4)))))
+(((*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-809)))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-850))))
+ ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-563 *4 *2))
+ (-4 *2 (-13 (-1171) (-935) (-1112) (-29 *4))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1232 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-707)) (-4 *2 (-1186)))))
+(((*1 *2)
+ (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237))
+ (-5 *1 (-964 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237))
+ (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))
- (-5 *2 (-622 (-1149))) (-5 *1 (-262))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1143 *7)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1025)) (-5 *2 (-622 *5)) (-5 *1 (-316 *4 *5 *6 *7))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-382))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-827)) (-5 *2 (-622 (-1149)))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-622 *5))))
+ (-12 (-4 *4 (-827)) (-5 *2 (-1158 (-625 *4))) (-5 *1 (-1157 *4))
+ (-5 *3 (-625 *4)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-552)) (-5 *5 (-1131)) (-5 *6 (-669 (-221)))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))))
+ (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))
+ (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-431)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-140 *2 *4 *3))
+ (-4 *3 (-368 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5))
- (-5 *2 (-622 *5)) (-5 *1 (-927 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1070 (-1149))) (-5 *1 (-942 *3)) (-4 *3 (-943))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827))
- (-5 *2 (-622 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5))))
+ (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-496 *2 *4 *5 *3))
+ (-4 *5 (-368 *2)) (-4 *3 (-368 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-622 (-1149)))
- (-5 *1 (-1016 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149)))
- (-4 *6 (-13 (-545) (-1014 *5))) (-4 *5 (-545))
- (-5 *2 (-622 (-622 (-288 (-402 (-922 *6)))))) (-5 *1 (-1015 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 *6)) (-4 *6 (-13 (-416 *5) (-27) (-1171)))
- (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-1143 (-402 (-1143 *6)))) (-5 *1 (-549 *5 *6 *7)) (-5 *3 (-1143 *6))
- (-4 *7 (-1074))))
- ((*1 *2 *1) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025))))
- ((*1 *2 *1) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1143 *11)) (-5 *6 (-622 *10)) (-5 *7 (-622 (-751)))
- (-5 *8 (-622 *11)) (-4 *10 (-827)) (-4 *11 (-302)) (-4 *9 (-773))
- (-4 *5 (-926 *11 *9 *10)) (-5 *2 (-622 (-1143 *5)))
- (-5 *1 (-723 *9 *10 *11 *5)) (-5 *3 (-1143 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-926 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *3 (-358))
- (-4 *4 (-773)) (-4 *5 (-827)) (-14 *6 (-622 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *1 (-1008 *2))
- (-4 *2 (-13 (-1074) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-895)) (-5 *1 (-1007 *2))
- (-4 *2 (-13 (-1074) (-10 -8 (-15 -4199 ($ $ $))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-1231 *5))) (-5 *4 (-538)) (-5 *2 (-1231 *5))
- (-5 *1 (-1006 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-538)) (-4 *6 (-358)) (-4 *6 (-363))
- (-4 *6 (-1025)) (-5 *2 (-622 (-622 (-669 *6)))) (-5 *1 (-1006 *6))
- (-5 *3 (-622 (-669 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1025))
- (-5 *2 (-622 (-622 (-669 *4)))) (-5 *1 (-1006 *4))
- (-5 *3 (-622 (-669 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025))
- (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5))
- (-5 *3 (-622 (-669 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-895)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025))
- (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5))
- (-5 *3 (-622 (-669 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-538)) (-4 *5 (-358)) (-4 *5 (-1025))
- (-5 *2 (-112)) (-5 *1 (-1006 *5))))
+ (-12 (-5 *3 (-669 *4)) (-4 *4 (-968 *2)) (-4 *2 (-544))
+ (-5 *1 (-673 *2 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-622 (-669 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) (-5 *2 (-112))
- (-5 *1 (-1006 *4)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-622 (-669 *6))) (-5 *4 (-112)) (-5 *5 (-538)) (-5 *2 (-669 *6))
- (-5 *1 (-1006 *6)) (-4 *6 (-358)) (-4 *6 (-1025))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 (-669 *4))) (-5 *2 (-669 *4)) (-5 *1 (-1006 *4))
- (-4 *4 (-358)) (-4 *4 (-1025))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-538)) (-5 *2 (-669 *5))
- (-5 *1 (-1006 *5)) (-4 *5 (-358)) (-4 *5 (-1025)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-1231 *5)) (-4 *5 (-302))
- (-4 *5 (-1025)) (-5 *2 (-669 *5)) (-5 *1 (-1006 *5)))))
+ (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-1201 *2 *4 *3))
+ (-4 *3 (-1208 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-809)))))
+(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-155))))
+ ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-669 *5))) (-4 *5 (-302)) (-4 *5 (-1025))
- (-5 *2 (-1231 (-1231 *5))) (-5 *1 (-1006 *5)) (-5 *4 (-1231 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-622 (-669 *4))) (-5 *2 (-669 *4)) (-4 *4 (-1025))
- (-5 *1 (-1006 *4)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-562 *5 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-289 *3))) (-5 *1 (-289 *3)) (-4 *3 (-544))
+ (-4 *3 (-1186)))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237))
+ (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237))
+ (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1231 (-1231 *4))) (-4 *4 (-1025)) (-5 *2 (-669 *4))
- (-5 *1 (-1006 *4)))))
+ (-12 (-4 *4 (-827)) (-5 *2 (-625 (-625 (-625 *4))))
+ (-5 *1 (-1157 *4)) (-5 *3 (-625 (-625 *4))))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *3 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-730)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-431)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-751)) (-5 *1 (-762 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-939 *3 *2)) (-4 *2 (-130)) (-4 *3 (-544))
+ (-4 *3 (-1025)) (-4 *2 (-772))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-751)) (-5 *1 (-1145 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-947)) (-4 *2 (-130)) (-5 *1 (-1151 *3)) (-4 *3 (-544))
+ (-4 *3 (-1025))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-751)) (-5 *1 (-1205 *4 *3)) (-14 *4 (-1149))
+ (-4 *3 (-1025)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-809)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-878 (-538))) (-5 *4 (-538)) (-5 *2 (-669 *4))
- (-5 *1 (-1005 *5)) (-4 *5 (-1025))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1005 *4))
- (-4 *4 (-1025))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-878 (-538)))) (-5 *4 (-538)) (-5 *2 (-622 (-669 *4)))
- (-5 *1 (-1005 *5)) (-4 *5 (-1025))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-622 (-538)))) (-5 *2 (-622 (-669 (-538))))
- (-5 *1 (-1005 *4)) (-4 *4 (-1025)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1005 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-622 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1005 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1005 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-622 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-669 *4)) (-5 *3 (-895)) (-4 *4 (-1025)) (-5 *1 (-1005 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-622 (-669 *4))) (-5 *3 (-895)) (-4 *4 (-1025))
- (-5 *1 (-1005 *4)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358))
+ (-5 *2
+ (-2 (|:| |ir| (-571 (-402 *6))) (|:| |specpart| (-402 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-751)) (-5 *2 (-669 (-922 *4))) (-5 *1 (-1005 *4))
- (-4 *4 (-1025)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-669 *4)) (-5 *3 (-895)) (|has| *4 (-6 (-4355 "*")))
- (-4 *4 (-1025)) (-5 *1 (-1005 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-622 (-669 *4))) (-5 *3 (-895)) (|has| *4 (-6 (-4355 "*")))
- (-4 *4 (-1025)) (-5 *1 (-1005 *4)))))
+ (-12 (-4 *4 (-446))
+ (-5 *2
+ (-625
+ (-2 (|:| |eigval| (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4))))
+ (|:| |eigmult| (-751))
+ (|:| |eigvec| (-625 (-669 (-402 (-928 *4))))))))
+ (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-928 *4)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-669 (-309 (-538)))))
- (-5 *1 (-1004)))))
-(((*1 *2 *2) (-12 (-5 *2 (-622 (-669 (-309 (-538))))) (-5 *1 (-1004)))))
-(((*1 *2 *2) (-12 (-5 *2 (-669 (-309 (-538)))) (-5 *1 (-1004)))))
+ (-12 (-5 *3 (-1158 (-625 *4))) (-4 *4 (-827))
+ (-5 *2 (-625 (-625 *4))) (-5 *1 (-1157 *4)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))
+ (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-5 *1 (-432)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199 *3)) (-4 *3 (-1186)))))
+(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-52)) (-5 *1 (-809)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-605 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -2303 *4) (|:| |sol?| (-112)))
+ (-552) *4))
+ (-4 *4 (-358)) (-4 *5 (-1208 *4)) (-5 *1 (-562 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552))))
+ ((*1 *1 *1) (-5 *1 (-1093))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-669 (-402 (-922 (-538)))))
- (-5 *2 (-669 (-309 (-538)))) (-5 *1 (-1004)))))
+ (-12 (-4 *4 (-446))
+ (-5 *2
+ (-625
+ (-2 (|:| |eigval| (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4))))
+ (|:| |geneigvec| (-625 (-669 (-402 (-928 *4))))))))
+ (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-928 *4)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-309 (-538))))
- (-5 *1 (-1004)))))
+ (-12 (-5 *3 (-625 (-625 (-625 *4)))) (-5 *2 (-625 (-625 *4)))
+ (-5 *1 (-1157 *4)) (-4 *4 (-827)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN))))
+ (-5 *2 (-1011)) (-5 *1 (-729)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-432)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-754)) (-5 *1 (-114)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-669 (-309 (-538)))))
- (-5 *1 (-1004)) (-5 *3 (-309 (-538))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-669 (-402 (-922 (-538)))))
+ (-12 (-5 *4 (-112))
(-5 *2
- (-622
- (-2 (|:| |radval| (-309 (-538))) (|:| |radmult| (-538))
- (|:| |radvect| (-622 (-669 (-309 (-538))))))))
- (-5 *1 (-1004)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))
- ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1002 *3)) (-4 *3 (-1185)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-638 *3))))
+ (-2 (|:| |contp| (-552))
+ (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552)))))))
+ (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -3617 *3) (|:| -2836 (-622 *5))))
- (-5 *1 (-1001 *5 *3)) (-5 *4 (-622 *5)) (-4 *3 (-638 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1035 (-1000 *4) (-1143 (-1000 *4)))) (-5 *3 (-840))
- (-5 *1 (-1000 *4)) (-4 *4 (-13 (-825) (-358) (-996))))))
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-552))
+ (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552)))))))
+ (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-689 *3)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1025)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-358)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1208 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552))))
+ ((*1 *1 *1 *1) (-5 *1 (-1093))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-402 (-928 *6)) (-1138 (-1149) (-928 *6))))
+ (-5 *5 (-751)) (-4 *6 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *6)))))
+ (-5 *1 (-287 *6)) (-5 *4 (-669 (-402 (-928 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-402 (-928 *5)) (-1138 (-1149) (-928 *5))))
+ (|:| |eigmult| (-751)) (|:| |eigvec| (-625 *4))))
+ (-4 *5 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *5)))))
+ (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-928 *5)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1131)) (-5 *2 (-625 (-1154))) (-5 *1 (-1109)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1035 (-1000 *3) (-1143 (-1000 *3))))
- (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-996))))))
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 (-625 (-625 *4)))) (-5 *2 (-625 (-625 *4)))
+ (-4 *4 (-827)) (-5 *1 (-1157 *4)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011))
+ (-5 *1 (-729)))))
+(((*1 *1) (-5 *1 (-432))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1131) (-754))) (-5 *1 (-114)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))
- (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538)))))
+ (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3))
+ (-4 *3 (-1208 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))
- (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538)))
- (-5 *4 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))))
+ (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
+ (-4 *3 (-1208 (-552)))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))
- (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))) (-5 *4 (-402 (-538)))))
+ (-12 (-5 *4 (-625 (-751))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
+ (-4 *3 (-1208 (-552)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *5) (|:| -3472 *5))))
- (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538)))
- (-5 *4 (-2 (|:| -3473 *5) (|:| -3472 *5)))))
+ (-12 (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *2 (-413 *3))
+ (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
+ (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-413 *3)) (-5 *1 (-983 *3))
+ (-4 *3 (-1208 (-402 (-552))))))
((*1 *2 *3)
- (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))
- (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538))))))
+ (-12 (-5 *2 (-413 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-311 *4)) (-4 *4 (-13 (-808) (-827) (-1025)))
+ (-5 *2 (-1131)) (-5 *1 (-806 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))
- (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538))))
- (-5 *4 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))))
+ (-12 (-5 *3 (-311 *5)) (-5 *4 (-112))
+ (-4 *5 (-13 (-808) (-827) (-1025))) (-5 *2 (-1131))
+ (-5 *1 (-806 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *4) (|:| -3472 *4))))
- (-5 *1 (-998 *3)) (-4 *3 (-1207 *4))))
+ (-12 (-5 *3 (-802)) (-5 *4 (-311 *5))
+ (-4 *5 (-13 (-808) (-827) (-1025))) (-5 *2 (-1237))
+ (-5 *1 (-806 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *5) (|:| -3472 *5))))
- (-5 *1 (-998 *3)) (-4 *3 (-1207 *5))
- (-5 *4 (-2 (|:| -3473 *5) (|:| -3472 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))
- (-5 *2 (-622 (-402 (-538)))) (-5 *1 (-997 *4)) (-4 *4 (-1207 (-538))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))
- (-5 *2 (-402 (-538))) (-5 *1 (-997 *4)) (-4 *4 (-1207 (-538))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-32 *3 *4))
- (-4 *4 (-416 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *1 (-113))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-113))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *4))
- (-4 *4 (-416 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-113)) (-5 *1 (-161))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *4))
- (-4 *4 (-13 (-416 *3) (-978)))))
- ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-292 *3)) (-4 *3 (-293))))
- ((*1 *2 *2) (-12 (-4 *1 (-293)) (-5 *2 (-113))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *4 (-827)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *4))
- (-4 *4 (-416 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-595 *3)) (-4 *3 (-827))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *4))
- (-4 *4 (-13 (-416 *3) (-978) (-1171)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995)))))
+ (-12 (-5 *3 (-802)) (-5 *4 (-311 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-808) (-827) (-1025))) (-5 *2 (-1237))
+ (-5 *1 (-806 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-808)) (-5 *2 (-1131))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-808)) (-5 *3 (-112)) (-5 *2 (-1131))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-808)) (-5 *3 (-802)) (-5 *2 (-1237))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-808)) (-5 *3 (-802)) (-5 *4 (-112)) (-5 *2 (-1237)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1231 *6)) (-5 *4 (-1231 (-538))) (-5 *5 (-538)) (-4 *6 (-1074))
- (-5 *2 (-1 *6)) (-5 *1 (-993 *6)))))
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-625 (-402 *7)))
+ (-4 *7 (-1208 *6)) (-5 *3 (-402 *7)) (-4 *6 (-358))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-562 *6 *7)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552))))
+ ((*1 *1 *1 *1) (-5 *1 (-1093))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-402 (-928 *5)) (-1138 (-1149) (-928 *5))))
+ (-4 *5 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *5)))))
+ (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-928 *5)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-625 (-625 (-625 *4)))) (-5 *3 (-625 *4)) (-4 *4 (-827))
+ (-5 *1 (-1157 *4)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN))))
+ (-5 *2 (-1011)) (-5 *1 (-729)))))
+(((*1 *1) (-5 *1 (-432))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-109)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1223 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358))
+ (-5 *2 (-2 (|:| -3114 (-402 *6)) (|:| |coeff| (-402 *6))))
+ (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-2 (|:| -3761 *4) (|:| -1577 (-538))))) (-4 *4 (-1074))
- (-5 *2 (-1 *4)) (-5 *1 (-993 *4)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4))
- (-5 *2 (-622 (-402 *5))) (-5 *1 (-992 *4 *5)) (-5 *3 (-402 *5)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6) (|:| |c1| (-402 *6))
- (|:| |c2| (-402 *6)) (|:| -3429 *6)))
- (-5 *1 (-992 *5 *6)) (-5 *3 (-402 *6)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1207 *6))
- (-4 *6 (-13 (-358) (-145) (-1014 *4))) (-5 *4 (-538))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -3617
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-991 *6 *3)))))
+ (-12 (-5 *3 (-669 (-402 (-928 *4)))) (-4 *4 (-446))
+ (-5 *2 (-625 (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4)))))
+ (-5 *1 (-287 *4)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4))
- (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112)))) (-5 *1 (-991 *4 *5))
- (-5 *3 (-402 *5)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538))))
+ (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-625 (-625 (-625 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-625 *5)) (-4 *5 (-827)) (-5 *1 (-1157 *5)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-729)))))
+(((*1 *1) (-5 *1 (-432))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-941))) (-5 *1 (-108)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-552))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-847 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-14 *2 (-552))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-552)) (-14 *3 *2) (-5 *1 (-848 *3 *4))
+ (-4 *4 (-845 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-552)) (-5 *1 (-848 *2 *3)) (-4 *3 (-845 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-552)) (-4 *1 (-1194 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-1223 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1194 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1223 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -2303 *7) (|:| |sol?| (-112)))
+ (-552) *7))
+ (-5 *6 (-625 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1208 *7))
+ (-5 *3 (-402 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-562 *7 *8)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-1230 *3)) (-4 *3 (-23)) (-4 *3 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1058))) (-5 *1 (-286)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-827)) (-5 *4 (-625 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-625 *4))))
+ (-5 *1 (-1157 *6)) (-5 *5 (-625 *4)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011))
+ (-5 *1 (-729)))))
+(((*1 *1) (-5 *1 (-432))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-106 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025))
+ (-4 *2 (-1223 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-358))
+ (-5 *2 (-625 (-2 (|:| C (-669 *5)) (|:| |g| (-1232 *5)))))
+ (-5 *1 (-954 *5)) (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -3114 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-625 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1208 *7))
+ (-5 *3 (-402 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-562 *7 *8)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-1077)) (-5 *1 (-286)))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-462))))
+ ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1233))))
+ ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1234)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-557 *3)) (-4 *3 (-1014 (-552)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011))
+ (-5 *1 (-729)))))
+(((*1 *1) (-5 *1 (-432))))
+(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-1192 *4)) (-4 *4 (-1025)) (-4 *4 (-544))
+ (-5 *2 (-402 (-928 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-1192 *4)) (-4 *4 (-1025)) (-4 *4 (-544))
+ (-5 *2 (-402 (-928 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-897)) (-5 *1 (-679))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-669 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-358)) (-5 *1 (-954 *5)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -2303 *6) (|:| |sol?| (-112))) (-552)
+ *6))
+ (-4 *6 (-358)) (-4 *7 (-1208 *6))
(-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6)) (|:| -3429 *6)))
- (-5 *1 (-991 *5 *6)) (-5 *3 (-402 *6)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1149))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-622 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1171) (-27) (-416 *8)))
- (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-538))
- (-5 *2 (-622 *4)) (-5 *1 (-990 *8 *4)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1149))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-622 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1171) (-27) (-416 *8)))
- (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-538))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3472 *4) (|:| |sol?| (-112))))
- (-5 *1 (-989 *8 *4)))))
+ (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6))
+ (-2 (|:| -3114 (-402 *7)) (|:| |coeff| (-402 *7))) "failed"))
+ (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1077)) (-5 *1 (-286)))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1) (-4 *1 (-943))) ((*1 *1 *1) (-5 *1 (-1093))))
(((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538))))
- ((*1 *1 *1) (-4 *1 (-978))) ((*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-988))))
- ((*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-4 *1 (-988))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-895))))
- ((*1 *1 *1) (-4 *1 (-988))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-988)) (-5 *2 (-840)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1143 *1)) (-4 *1 (-988)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1143 *1)) (-4 *1 (-988)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-840)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-840)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1185)) (-5 *2 (-622 *1)) (-4 *1 (-986 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-622 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-538)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 *1)) (|has| *1 (-6 -4354)) (-4 *1 (-986 *3))
- (-4 *3 (-1185)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1185)))))
+ (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186))
+ (-4 *2 (-1073)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537))
- (-5 *2 (-402 (-538)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-400 *3)) (-4 *3 (-537))
- (-4 *3 (-545))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-402 (-538)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537))
- (-5 *2 (-402 (-538)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-812 *3)) (-4 *3 (-537))
- (-4 *3 (-1074))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-819 *3)) (-4 *3 (-537))
- (-4 *3 (-1074))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537))
- (-5 *2 (-402 (-538)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2)))))
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011))
+ (-5 *1 (-729)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-719)))))
+(((*1 *1) (-5 *1 (-432))))
+(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-400 *3)) (-4 *3 (-537)) (-4 *3 (-545))))
- ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-537)) (-4 *3 (-1074))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-537)) (-4 *3 (-1074))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-167 (-552))) (-5 *2 (-112)) (-5 *1 (-440))))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-1014 (-402 (-538)))))))
+ (-12
+ (-5 *3
+ (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4)
+ (-243 *4 (-402 (-552)))))
+ (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112))
+ (-5 *1 (-498 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-537))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1190)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-805)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-358))
+ (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *1 (-444 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358))
+ (-5 *2
+ (-2 (|:| R (-669 *6)) (|:| A (-669 *6)) (|:| |Ainv| (-669 *6))))
+ (-5 *1 (-954 *6)) (-5 *3 (-669 *6)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -3114 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-358)) (-4 *7 (-1208 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6))
+ (-2 (|:| -3114 (-402 *7)) (|:| |coeff| (-402 *7))) "failed"))
+ (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-625 (-941))) (-5 *1 (-286)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1073)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-897)) (-5 *1 (-1074 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011))
+ (-5 *1 (-729)))))
+(((*1 *1) (-5 *1 (-432))))
+(((*1 *2) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-104)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1188)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-805)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145))
+ (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-953 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-625 *6) "failed") (-552) *6 *6)) (-4 *6 (-358))
+ (-4 *7 (-1208 *6))
+ (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6)))
+ (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-941))) (-5 *1 (-286)))))
+(((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1179 *2 *3 *4 *5)) (-4 *2 (-544))
+ (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-897)) (-5 *1 (-1074 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))
+ (-5 *2 (-1011)) (-5 *1 (-729)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1014 (-48)))
+ (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4))
+ (-5 *2 (-413 (-1145 (-48)))) (-5 *1 (-430 *4 *5 *3))
+ (-4 *3 (-1208 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-5 *2
+ (-2 (|:| |zeros| (-1129 (-221))) (|:| |ones| (-1129 (-221)))
+ (|:| |singularities| (-1129 (-221)))))
+ (-5 *1 (-104)))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -2800 (-625 (-1149))) (|:| -2811 (-625 (-1149)))))
+ (-5 *1 (-1188)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-804)) (-5 *3 (-625 (-1149))) (-5 *1 (-805)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145))
+ (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-953 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -2303 *6) (|:| |sol?| (-112))) (-552)
+ *6))
+ (-4 *6 (-358)) (-4 *7 (-1208 *6))
+ (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6)))
+ (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-61 *3)) (-14 *3 (-1149))))
+ ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-68 *3)) (-14 *3 (-1149))))
+ ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-71 *3)) (-14 *3 (-1149))))
+ ((*1 *2 *1) (-12 (-4 *1 (-390)) (-5 *2 (-1237))))
+ ((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-392))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111))))
+ ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111)))))
+(((*1 *1) (-5 *1 (-286))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-1073))
+ (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4))))
+ (-5 *1 (-1049 *4 *5 *2))
+ (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1073))
+ (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3))))
+ (-5 *1 (-1049 *3 *4 *2))
+ (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-402 (-538))) (-5 *1 (-400 *3)) (-4 *3 (-537)) (-4 *3 (-545))))
- ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-402 (-538)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538)))))
+ (-12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1073)) (-4 *3 (-827))
+ (-4 *2 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
+ ((*1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
((*1 *2 *1)
- (-12 (-5 *2 (-402 (-538))) (-5 *1 (-812 *3)) (-4 *3 (-537)) (-4 *3 (-1074))))
+ (-12 (-4 *2 (-1186)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827))))
((*1 *2 *1)
- (-12 (-5 *2 (-402 (-538))) (-5 *1 (-819 *3)) (-4 *3 (-537)) (-4 *3 (-1074))))
+ (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-651))))
((*1 *2 *1)
- (-12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538)))))
- ((*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))))
-(((*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-982)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982))))
- ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-538))) (-5 *4 (-538)) (-5 *2 (-51)) (-5 *1 (-981)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))))
+ (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-897))
+ (-14 *4 (-897)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *3 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-729)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1145 (-402 (-552))))
+ (|:| |overan| (-1145 (-48))) (|:| -3547 (-112))))
+ (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2))
+ (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1208 *2))
+ (-4 *4 (-667 *2 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188)))))
+(((*1 *1) (-5 *1 (-803))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145))
+ (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-953 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -3114 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-358)) (-4 *7 (-1208 *6))
+ (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6)))
+ (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-386)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 *5)) (-4 *5 (-545))
- (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *5) (|:| |radicand| (-622 *5))))
- (-5 *1 (-315 *5)) (-5 *4 (-751))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-538)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-976 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
- ((*1 *1 *1 *1) (-4 *1 (-467)))
- ((*1 *1 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))
- ((*1 *2 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-859))))
- ((*1 *1 *1) (-5 *1 (-947)))
- ((*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))))
+ (-12 (-4 *4 (-358)) (-5 *2 (-625 (-1129 *4))) (-5 *1 (-280 *4 *5))
+ (-5 *3 (-1129 *4)) (-4 *5 (-1223 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1115 *3 *4)) (-14 *3 (-895)) (-4 *4 (-358))
- (-5 *1 (-969 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6))
- (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-595 *1)))
- (-4 *1 (-416 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-601 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-707) *3))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-170)) (-4 *2 (-698 *3)) (-5 *1 (-632 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-707) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-967 *2)) (-4 *4 (-1207 *3)) (-4 *2 (-302))
- (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1014 *3)))))
+ (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-897))
+ (-14 *4 (-897)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))
+ (-5 *2 (-1011)) (-5 *1 (-729)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-544) (-827) (-1014 (-552))))
+ (-4 *5 (-425 *4)) (-5 *2 (-413 (-1145 (-402 (-552)))))
+ (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2))
+ (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1208 *2))
+ (-4 *4 (-667 *2 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-827))
+ (-4 *3 (-1073)))))
+(((*1 *1) (-5 *1 (-803))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446))
+ (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-953 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-571 *3) *3 (-1149)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1149)))
+ (-4 *3 (-279)) (-4 *3 (-611)) (-4 *3 (-1014 *4)) (-4 *3 (-425 *7))
+ (-5 *4 (-1149)) (-4 *7 (-598 (-868 (-552)))) (-4 *7 (-446))
+ (-4 *7 (-862 (-552))) (-4 *7 (-827)) (-5 *2 (-571 *3))
+ (-5 *1 (-561 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-386))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-386)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1232 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4))
+ (-14 *3 (-897)) (-14 *4 (-897)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))
+ (-5 *2 (-1011)) (-5 *1 (-729)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4))
+ (-5 *2 (-413 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1025)) (-4 *2 (-667 *4 *5 *6))
+ (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1208 *4)) (-4 *5 (-368 *4))
+ (-4 *6 (-368 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1187 *2))
+ (-4 *2 (-1073))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-827))
+ (-5 *1 (-1187 *2)))))
+(((*1 *1) (-5 *1 (-803))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446))
+ (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-953 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149)) (-4 *4 (-446)) (-4 *4 (-827))
+ (-5 *1 (-561 *4 *2)) (-4 *2 (-279)) (-4 *2 (-425 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1186)) (-5 *2 (-751))
+ (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *3 (-545)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-595 *1)))
- (-4 *1 (-416 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488))))
+ (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130))
+ (-5 *2 (-751))))
+ ((*1 *2)
+ (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4))
+ (-4 *3 (-324 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-356 *3)) (-4 *3 (-1073))))
+ ((*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-751))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-381 *3)) (-4 *3 (-1073))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1073)) (-5 *2 (-751)) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
((*1 *2 *1)
- (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4))
- (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-5 *2 (-751)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-751))
+ (-5 *1 (-704 *3 *4 *5)) (-4 *3 (-705 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827))))
+ ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982))))
((*1 *2 *1)
- (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4))
- (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-698 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))))
-(((*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-1025))))
- ((*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))))
-(((*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-545))))
- ((*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345))))
+ (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3))
+ (-4 *3 (-1208 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186))
+ (-4 *3 (-1073)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-112))
+ (-5 *1 (-880 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-897)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-728)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1025)) (-4 *2 (-667 *4 *5 *6))
+ (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1208 *4)) (-4 *5 (-368 *4))
+ (-4 *6 (-368 *4)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1073)))))
+(((*1 *1) (-5 *1 (-803))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446))
+ (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-953 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149)) (-4 *4 (-544)) (-4 *4 (-827))
+ (-5 *1 (-561 *4 *2)) (-4 *2 (-425 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-432)))))
+ (-5 *1 (-1153)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-277 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-1131)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-728)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
+(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-102 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345))))
- ((*1 *1) (-4 *1 (-363)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345))))
- ((*1 *1 *1) (-4 *1 (-537))) ((*1 *1) (-4 *1 (-537)))
- ((*1 *1 *1) (-5 *1 (-538))) ((*1 *1 *1) (-5 *1 (-751)))
- ((*1 *2 *1) (-12 (-5 *2 (-878 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-5 *2 (-878 *4)) (-5 *1 (-881 *4)) (-4 *4 (-1074))))
- ((*1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-537)) (-4 *2 (-545)))))
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1073)) (-5 *2 (-112))
+ (-5 *1 (-1187 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-802)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-962 (-402 (-538)) (-841 *3) (-235 *4 (-751)) (-243 *3 (-402 (-538)))))
- (-14 *3 (-622 (-1149))) (-14 *4 (-751)) (-5 *1 (-963 *3 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-622 *3)) (-4 *3 (-926 *4 *6 *5)) (-4 *4 (-446)) (-4 *5 (-827))
- (-4 *6 (-773)) (-5 *1 (-962 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446))
+ (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-953 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-625 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6))
+ (-4 *4 (-446)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *1 (-953 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *6)) (-5 *4 (-1149)) (-4 *6 (-425 *5))
+ (-4 *5 (-827)) (-5 *2 (-625 (-596 *6))) (-5 *1 (-561 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-117 *4)) (-14 *4 *3)
+ (-5 *3 (-552))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-847 *4)) (-14 *4 *3)
+ (-5 *3 (-552))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-402 (-552))) (-5 *1 (-848 *4 *5))
+ (-5 *3 (-552)) (-4 *5 (-845 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-988)) (-5 *2 (-402 (-552)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358)))
+ (-4 *3 (-1208 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1683 (*2 (-1149))))
+ (-4 *2 (-1025)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3))
+ (-4 *3 (-1073))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-628 *5)) (-4 *5 (-1025))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-829 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-669 *3)) (-4 *1 (-412 *3)) (-4 *3 (-170))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1025))
+ (-5 *1 (-830 *2 *3)) (-4 *3 (-829 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-728)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-827))
- (-4 *5 (-773)) (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-622 *6))
- (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))))
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-102 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -2811 (-625 *3)) (|:| -2800 (-625 *3))))
+ (-5 *1 (-1187 *3)) (-4 *3 (-1073)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-962 *3 *4 *5 *2)) (-4 *3 (-446))
- (-4 *4 (-827)) (-4 *5 (-773)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5))
- (-4 *5 (-926 *2 *4 *3)))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1131)) (|:| -1288 (-1131))))
+ (-5 *1 (-802)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1207 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-961 *4 *2 *3 *5))
- (-4 *4 (-345)) (-4 *5 (-705 *2 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)))))
- (-4 *5 (-545)) (-5 *1 (-713 *4 *3 *5 *2))
- (-4 *2 (-926 (-402 (-922 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1025)) (-4 *5 (-773))
- (-4 *3
- (-13 (-827)
- (-10 -8 (-15 -4330 ((-1149) $))
- (-15 -4191 ((-3 $ #1="failed") (-1149))))))
- (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-926 (-922 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 *6))
- (-4 *6
- (-13 (-827)
- (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149))))))
- (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2))
- (-4 *2 (-926 (-922 *4) *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)))))
- (-4 *5 (-545)) (-5 *1 (-713 *4 *3 *5 *2))
- (-4 *2 (-926 (-402 (-922 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1025)) (-4 *5 (-773))
- (-4 *3
- (-13 (-827)
- (-10 -8 (-15 -4330 ((-1149) $))
- (-15 -4191 ((-3 $ #1="failed") (-1149))))))
- (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-926 (-922 *4) *5 *3))))
+ (-12 (-4 *4 (-446)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *2 (-625 *3)) (-5 *1 (-953 *4 *5 *6 *3))
+ (-4 *3 (-1039 *4 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-596 *6))) (-5 *4 (-1149)) (-5 *2 (-596 *6))
+ (-4 *6 (-425 *5)) (-4 *5 (-827)) (-5 *1 (-561 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025))
+ (-14 *4 (-625 (-1149)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
+ ((*1 *1 *1) (-4 *1 (-279)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-5 *1 (-609 *3 *4 *5))
+ (-14 *5 (-897))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 *6))
- (-4 *6
- (-13 (-827)
- (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149))))))
- (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2))
- (-4 *2 (-926 (-922 *4) *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-751)) (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-850))))
- ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-850))))
- ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
-(((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-155))))
- ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))))
+ (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552)))))
+ (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4))
+ (-4 *4 (-698 (-402 (-552)))) (-4 *3 (-827)) (-4 *4 (-170)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-275)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-497 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827))
+ (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7))
+ (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1))
+ (-4 *1 (-1045 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-728)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-102 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-5 *2 (-1237))
+ (-5 *1 (-1187 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-5 *2 (-1237))
+ (-5 *1 (-1187 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-802)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544))
+ (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-953 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-596 *5))) (-4 *4 (-827)) (-5 *2 (-596 *5))
+ (-5 *1 (-561 *4 *5)) (-4 *5 (-425 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))))
+(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-751)))
+ ((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221)))
+ (-5 *2 (-1011)) (-5 *1 (-728)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-625 *2) *2 *2 *2)) (-4 *2 (-1073))
+ (-5 *1 (-102 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1073)) (-5 *1 (-102 *2)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-237))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-625 (-1131))) (-5 *3 (-552)) (-5 *4 (-1131))
+ (-5 *1 (-237))))
+ ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-358))
- (-5 *2 (-622 (-2 (|:| C (-669 *5)) (|:| |g| (-1231 *5))))) (-5 *1 (-954 *5))
- (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-895)) (-5 *1 (-679))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-669 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358))
- (-5 *1 (-954 *5)))))
+ (-12 (-5 *4 (-552)) (-4 *5 (-344)) (-5 *2 (-413 (-1145 (-1145 *5))))
+ (-5 *1 (-1184 *5)) (-5 *3 (-1145 (-1145 *5))))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-625 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-773))
+ (-4 *8 (-827)) (-5 *1 (-953 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-802)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-358)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358))
- (-5 *2 (-2 (|:| R (-669 *6)) (|:| A (-669 *6)) (|:| |Ainv| (-669 *6))))
- (-5 *1 (-954 *6)) (-5 *3 (-669 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302))
- (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302))
- (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-625 (-596 *5))) (-5 *3 (-1149)) (-4 *5 (-425 *4))
+ (-4 *4 (-827)) (-5 *1 (-561 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186))
+ (-4 *3 (-1073)) (-5 *2 (-751))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4))
+ (-4 *4 (-1186)) (-5 *2 (-751)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221)))
+ (-5 *2 (-1011)) (-5 *1 (-728)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-1237))
+ (-5 *1 (-428 *3 *4)) (-4 *4 (-425 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-413 *3))
+ (-5 *1 (-99 *4 *3)) (-4 *3 (-1208 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-13 (-446) (-145)))
+ (-5 *2 (-413 *3)) (-5 *1 (-99 *5 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1145 (-1145 *4))))
+ (-5 *1 (-1184 *4)) (-5 *3 (-1145 (-1145 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-802)))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-578 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-1093)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302))
- (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545))
- (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545))
- (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545))
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
(-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1149))
+ (-4 *5 (-13 (-544) (-1014 (-552)) (-145)))
+ (-5 *2
+ (-2 (|:| -3114 (-402 (-928 *5))) (|:| |coeff| (-402 (-928 *5)))))
+ (-5 *1 (-558 *5)) (-5 *3 (-402 (-928 *5))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-402 (-552)))
+ (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))))
+(((*1 *1 *1 *1) (-4 *1 (-641))) ((*1 *1 *1 *1) (-5 *1 (-1093))))
+(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-751)))
+ ((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073))
+ (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))))
+(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221)))
+ (-5 *2 (-1011)) (-5 *1 (-728)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-402 (-552)))
+ (-5 *1 (-428 *4 *3)) (-4 *3 (-425 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-596 *3)) (-4 *3 (-425 *5))
+ (-4 *5 (-13 (-827) (-544) (-1014 (-552))))
+ (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-428 *5 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-552))) (-4 *3 (-1025)) (-5 *1 (-98 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1145 (-1145 *4))))
+ (-5 *1 (-1184 *4)) (-5 *3 (-1145 (-1145 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-802)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -1549 (-625 *7))))
+ (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 (-402 (-928 *6))))
+ (-5 *3 (-402 (-928 *6)))
+ (-4 *6 (-13 (-544) (-1014 (-552)) (-145)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-558 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4)))
+ (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-272 *4 *2)))))
+(((*1 *1 *1 *1) (-4 *1 (-641))) ((*1 *1 *1 *1) (-5 *1 (-1093))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |rm| (-799 *3))))
+ (-5 *1 (-799 *3)) (-4 *3 (-827))))
+ ((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073))
+ (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221)))
+ (-5 *2 (-1011)) (-5 *1 (-728)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545))
- (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-625 (-625 (-221)))) (-5 *4 (-221))
+ (-5 *2 (-625 (-919 *4))) (-5 *1 (-1182)) (-5 *3 (-919 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-402 (-928 *4))) (-5 *3 (-1149))
+ (-4 *4 (-13 (-544) (-1014 (-552)) (-145))) (-5 *1 (-558 *4)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-625 (-596 *2))) (-5 *4 (-1149))
+ (-4 *2 (-13 (-27) (-1171) (-425 *5)))
+ (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-272 *5 *2)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-544))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))
+ (-4 *2 (-544))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-544)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025))
+ (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-544))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-751)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-544))))
+ ((*1 *1 *1 *1) (-5 *1 (-839)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-622 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
- (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827))
- (-5 *2 (-622 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8))
- (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *1 (-953 *5 *6 *7 *8)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-622 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773))
- (-4 *8 (-827)) (-5 *1 (-953 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-544))
+ (-5 *1 (-945 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025))
+ (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-544))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))))
+(((*1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1149)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-728)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -3683 (-622 *7))))
- (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-552)) (-5 *2 (-625 (-625 (-221)))) (-5 *1 (-1182)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-1039 *4 *5 *6)) (-4 *4 (-544))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149))
+ (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-571 *3)) (-5 *1 (-421 *5 *3))
+ (-4 *3 (-13 (-1171) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-1014 (-552)) (-145)))
+ (-5 *2 (-571 (-402 (-928 *5)))) (-5 *1 (-558 *5))
+ (-5 *3 (-402 (-928 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1063)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-728)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-552)))))
+ (-4 *2 (-13 (-827) (-21))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-897)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1025))
+ (-4 *4 (-1186))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170))
+ (-4 *5 (-234 (-1471 *3) (-751)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *5))
+ (-2 (|:| -3123 *2) (|:| -3564 *5))))
+ (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-827))
+ (-4 *7 (-925 *4 *5 (-841 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-622 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-625 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6))
+ (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *1 (-953 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7))))
- (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))))
+ (|partial| -12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-751)) (-4 *2 (-1073))
+ (-5 *1 (-658 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149))
+ (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-625 (-596 *3)))
+ (|:| |vals| (-625 *3))))
+ (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))))
+(((*1 *1) (-5 *1 (-1237))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-258))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358))
+ (-5 *2 (-669 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1232 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
+ (-5 *2 (-669 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
+ (-5 *2 (-1232 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1208 *4)) (-5 *2 (-669 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1208 *4)) (-5 *2 (-1232 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-404 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1208 *4)) (-5 *2 (-669 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3))
+ (-5 *2 (-1232 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-412 *4)) (-4 *4 (-170))
+ (-5 *2 (-669 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-669 *5))) (-5 *3 (-669 *5)) (-4 *5 (-358))
+ (-5 *2 (-1232 *5)) (-5 *1 (-1059 *5)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-728)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-552)))))
+ (-4 *2 (-13 (-827) (-21))))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-96)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-221)) (-5 *5 (-552)) (-5 *2 (-1181 *3))
+ (-5 *1 (-770 *3)) (-4 *3 (-950))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-112))
+ (-5 *1 (-1181 *2)) (-4 *2 (-950)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
- (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))))
+ (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7))))
+ (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-625 (-402 *6))) (-5 *3 (-402 *6))
+ (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-556 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7))))
- (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *2 (-112)) (-5 *1 (-262))))
- ((*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-112)) (-5 *1 (-262))))
+ (-12 (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3))
+ (-4 *3 (-13 (-425 *4) (-978))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
+ (-5 *2 (-1232 (-669 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1232 (-669 *4))) (-5 *1 (-411 *3 *4))
+ (-4 *3 (-412 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 (-669 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-1149))) (-4 *5 (-358))
+ (-5 *2 (-1232 (-669 (-402 (-928 *5))))) (-5 *1 (-1059 *5))
+ (-5 *4 (-669 (-402 (-928 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-1149))) (-4 *5 (-358))
+ (-5 *2 (-1232 (-669 (-928 *5)))) (-5 *1 (-1059 *5))
+ (-5 *4 (-669 (-928 *5)))))
((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-12 (-5 *3 (-625 (-669 *4))) (-4 *4 (-358))
+ (-5 *2 (-1232 (-669 *4))) (-5 *1 (-1059 *4)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-728)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149))
+ (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-571 *3)) (-5 *1 (-421 *5 *3))
+ (-4 *3 (-13 (-1171) (-29 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-96)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
(-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-552))))
+ (-4 *5 (-1208 *4))
+ (-5 *2 (-2 (|:| -3114 (-402 *5)) (|:| |coeff| (-402 *5))))
+ (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-625 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-425 *4) (-978))) (-4 *4 (-13 (-827) (-544)))
+ (-5 *1 (-271 *4 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-173))) (-5 *1 (-1058)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1011))
+ (-5 *1 (-727)))))
+(((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-1073)) (-5 *2 (-751)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1131)) (-5 *1 (-96))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1131)) (-5 *1 (-96)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7))))
- (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))))
+ (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7))))
+ (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3))
+ (-4 *3 (-13 (-358) (-145) (-1014 (-552)))) (-5 *1 (-556 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-173))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-1058)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1011))
+ (-5 *1 (-727)))))
+(((*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-363)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-90 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262))))
+ ((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
(-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7))))
- (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545))
- (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8))))
- (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8)))))
+ (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-868 (-552))))
+ (-4 *5 (-862 (-552)))
+ (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-555 *5 *3)) (-4 *3 (-611))
+ (-4 *3 (-13 (-27) (-1171) (-425 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1149)) (-5 *4 (-820 *2)) (-4 *2 (-1112))
+ (-4 *2 (-13 (-27) (-1171) (-425 *5)))
+ (-4 *5 (-598 (-868 (-552)))) (-4 *5 (-862 (-552)))
+ (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552))))
+ (-5 *1 (-555 *5 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1058)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))
+ (-5 *2 (-1011)) (-5 *1 (-727)))))
+(((*1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-363)) (-4 *2 (-1073)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545))
- (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8))))
- (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8)))))
+ (-12 (-4 *5 (-358)) (-4 *5 (-544))
+ (-5 *2
+ (-2 (|:| |minor| (-625 (-897))) (|:| -2772 *3)
+ (|:| |minors| (-625 (-625 (-897)))) (|:| |ops| (-625 *3))))
+ (-5 *1 (-89 *5 *3)) (-5 *4 (-897)) (-4 *3 (-636 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-1181 *3))
+ (-4 *3 (-950)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7))))
+ (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1199 *2)) (-4 *2 (-1186)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545))
- (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8))))
- (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8)))))
+ (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-868 (-552))))
+ (-4 *5 (-862 (-552)))
+ (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-555 *5 *3)) (-4 *3 (-611))
+ (-4 *3 (-13 (-27) (-1171) (-425 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *1) (-5 *1 (-1058))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-112))
+ (-5 *2 (-1011)) (-5 *1 (-726)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-415 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1171) (-425 *3)))
+ (-14 *4 (-1149)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-4 *2 (-13 (-27) (-1171) (-425 *3) (-10 -8 (-15 -1683 ($ *4)))))
+ (-4 *4 (-825))
+ (-4 *5
+ (-13 (-1210 *2 *4) (-358) (-1171)
+ (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $)))))
+ (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-959 *5)) (-14 *7 (-1149)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-1232 (-669 *4))) (-5 *1 (-89 *4 *5))
+ (-5 *3 (-669 *4)) (-4 *5 (-636 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-950)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-622 *8))) (-5 *3 (-622 *8)) (-4 *8 (-1039 *5 *6 *7))
- (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-112))
- (-5 *1 (-953 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))))
+ (-12 (-5 *4 (-1149))
+ (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552))))
+ (-5 *2 (-2 (|:| -4075 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *5))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *1) (-5 *1 (-1058))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-112))
+ (-5 *2 (-1011)) (-5 *1 (-726)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112))
+ (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6) (-10 -8 (-15 -1683 ($ *7)))))
+ (-4 *7 (-825))
+ (-4 *8
+ (-13 (-1210 *3 *7) (-358) (-1171)
+ (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))))
+ (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8))
+ (-14 *10 (-1149)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-544))
+ (-5 *2 (-2 (|:| -2351 (-669 *5)) (|:| |vec| (-1232 (-625 (-897))))))
+ (-5 *1 (-89 *5 *3)) (-5 *4 (-897)) (-4 *3 (-636 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *3))
- (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7))))
+ (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-596 *4)) (-5 *6 (-1149))
+ (-4 *4 (-13 (-425 *7) (-27) (-1171)))
+ (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4))))
+ (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073)))))
+(((*1 *1 *1) (-4 *1 (-537))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-622 *3)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-622 *7) (-622 *7))) (-5 *2 (-622 *7))
- (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827))
- (-5 *1 (-953 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *3))
- (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))))
+ (-12 (-5 *3 (-1 (-552) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-725 *3)) (-4 *3 (-170)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112))
+ (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6) (-10 -8 (-15 -1683 ($ *7)))))
+ (-4 *7 (-825))
+ (-4 *8
+ (-13 (-1210 *3 *7) (-358) (-1171)
+ (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))))
+ (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8))
+ (-14 *10 (-1149)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-58 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-58 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-773))
+ (-4 *8 (-827)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1549 (-625 *9))))
+ (-5 *3 (-625 *9)) (-4 *1 (-1179 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -1549 (-625 *8))))
+ (-5 *3 (-625 *8)) (-4 *1 (-1179 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8))))
+ (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-596 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149)))
+ (-4 *2 (-13 (-425 *5) (-27) (-1171)))
+ (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1073)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *1) (-5 *1 (-1055))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1145 *6)) (-5 *3 (-552)) (-4 *6 (-302)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-308 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))))
+ (-5 *1 (-415 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1171) (-425 *5)))
+ (-14 *6 (-1149)) (-14 *7 *3))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1186))
+ (-4 *3 (-368 *4)) (-4 *5 (-368 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-952 *4 *5 *3 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827))
- (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))
- (-4 *5 (-1039 *3 *4 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))
- (-4 *5 (-1039 *3 *4 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))
- (-4 *5 (-1039 *3 *4 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3465 *1) (|:| |upper| *1)))
- (-4 *1 (-952 *4 *5 *3 *6)))))
+ (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7))
+ (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8))))
+ (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3))
+ (-4 *3 (-13 (-425 *6) (-27) (-1171)))
+ (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1073)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773))
+ (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-625 *3))
+ (-5 *1 (-576 *5 *6 *7 *8 *3)) (-4 *3 (-1082 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145)))
+ (-5 *2
+ (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5))))))
+ (-5 *1 (-1051 *5 *6)) (-5 *3 (-625 (-928 *5)))
+ (-14 *6 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-302) (-145)))
+ (-5 *2
+ (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4))))))
+ (-5 *1 (-1051 *4 *5)) (-5 *3 (-625 (-928 *4)))
+ (-14 *5 (-625 (-1149)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145)))
+ (-5 *2
+ (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5))))))
+ (-5 *1 (-1051 *5 *6)) (-5 *3 (-625 (-928 *5)))
+ (-14 *6 (-625 (-1149))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-4 *7 (-827))
+ (-4 *9 (-925 *8 *6 *7)) (-4 *6 (-773)) (-4 *8 (-302))
+ (-5 *2 (-625 (-751))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *5 (-751)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827))
+ (-5 *2 (-2 (|:| -3340 (-552)) (|:| |var| (-596 *1))))
+ (-4 *1 (-425 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1186))
+ (-4 *5 (-368 *4)) (-4 *3 (-368 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-625 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-622 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-622 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)))))
+ (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
+ (-5 *2 (-2 (|:| -1387 (-625 *6)) (|:| -2508 (-625 *6)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544))
+ (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8))))
+ (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-596 *3))
+ (-4 *3 (-13 (-425 *5) (-27) (-1171)))
+ (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3)))
+ (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1073)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-622 (-622 (-919 (-221)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-622 (-622 (-919 (-221))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1062 (-221)))))
- ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221))))))
-(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1062 (-221)))))
- ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221))))))
-(((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221))))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1074))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-4316 *3) (-751)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6))
- (-2 (|:| -2492 *5) (|:| -2493 *6))))
- (-5 *2 (-694 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8)) (-4 *5 (-827))
- (-4 *8 (-926 *4 *6 (-841 *3)))))
+ (-12 (-4 *3 (-1073))
+ (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3))))
+ (-5 *2 (-625 (-1149))) (-5 *1 (-1049 *3 *4 *5))
+ (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-552)) (-5 *4 (-413 *2)) (-4 *2 (-925 *7 *5 *6))
+ (-5 *1 (-723 *5 *6 *7 *2)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-302)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-413 *3)) (-4 *3 (-544)) (-5 *1 (-414 *3)))))
+(((*1 *1 *1) (-5 *1 (-112))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-1073))
+ (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *2 (-707)) (-4 *2 (-827)) (-5 *1 (-716 *3 *2)) (-4 *3 (-1025))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))))
+ (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-953 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-596 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1171)))
+ (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2 (-571 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1073)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1186)) (-5 *1 (-849 *3 *2)) (-4 *3 (-1186))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4))))
+ (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-5 *5 (-625 (-625 *8)))
+ (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-925 *8 *6 *7)) (-4 *6 (-773))
+ (-5 *2
+ (-2 (|:| |upol| (-1145 *8)) (|:| |Lval| (-625 *8))
+ (|:| |Lfact|
+ (-625 (-2 (|:| -3824 (-1145 *8)) (|:| -3564 (-552)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-723 *6 *7 *8 *9)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-622 (-895))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-895))
- (-4 *2 (-358)) (-14 *5 (-969 *4 *2))))
+ (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1208 *4)) (-4 *4 (-1190))
+ (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1208 (-402 *3)))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-694 *5 *6 *7)) (-4 *5 (-827)) (-4 *6 (-234 (-4316 *4) (-751)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6))
- (-2 (|:| -2492 *5) (|:| -2493 *6))))
- (-14 *4 (-622 (-1149))) (-4 *2 (-170)) (-5 *1 (-455 *4 *2 *5 *6 *7 *8))
- (-4 *8 (-926 *2 *6 (-841 *4)))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-827))))
+ (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1232 *1)) (-4 *4 (-170))
+ (-4 *1 (-362 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-538)) (-4 *2 (-545)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1207 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-707))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 *5)) (-5 *3 (-622 (-751))) (-4 *1 (-721 *4 *5))
- (-4 *4 (-1025)) (-4 *5 (-827))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 (-751))) (-4 *1 (-926 *4 *5 *6))
- (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *1 (-926 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773))
- (-4 *2 (-827))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 *5)) (-4 *1 (-949 *4 *5 *6))
- (-4 *4 (-1025)) (-4 *5 (-772)) (-4 *6 (-827))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-949 *4 *3 *2)) (-4 *4 (-1025)) (-4 *3 (-772)) (-4 *2 (-827)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))
+ (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1232 *1)) (-4 *4 (-170))
+ (-4 *1 (-365 *4 *5)) (-4 *5 (-1208 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4))
+ (-4 *4 (-1208 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-625 (-1049 *4 *5 *2))) (-4 *4 (-1073))
+ (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4))))
+ (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-625 (-1049 *5 *6 *2))) (-5 *4 (-897)) (-4 *5 (-1073))
+ (-4 *6 (-13 (-1025) (-862 *5) (-827) (-598 (-868 *5))))
+ (-4 *2 (-13 (-425 *6) (-862 *5) (-598 (-868 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1179 *5 *6 *7 *3))
+ (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-625 *8))) (-5 *3 (-625 *8))
+ (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773))
+ (-4 *7 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *5 *6 *7 *8)))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-432)) (-5 *3 (-625 (-1149))) (-5 *4 (-1149))
+ (-5 *1 (-1152))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1153))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-432)) (-5 *3 (-625 (-1149))) (-5 *1 (-1153)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-802)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358))
+ (-4 *7 (-1208 (-402 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -3106 *3)))
+ (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358))
+ (-5 *2
+ (-2 (|:| |answer| (-402 *6)) (|:| -3106 (-402 *6))
+ (|:| |specpart| (-402 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-551 *5 *6)) (-5 *3 (-402 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608))))
((*1 *2 *1)
- (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827))
- (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))
- ((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538))))
- ((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1) (-4 *1 (-846 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827)))))
-(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-947)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-622 (-622 (-538)))) (-5 *1 (-947)) (-5 *3 (-622 (-538))))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-947)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4116 *4)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
+ (-12 (-4 *3 (-1073))
+ (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3))))
+ (-5 *1 (-1049 *3 *4 *2))
+ (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1073)) (-5 *1 (-1138 *3 *2)) (-4 *3 (-1073)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4))
+ (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-625 *7)) (-5 *5 (-625 (-625 *8))) (-4 *7 (-827))
+ (-4 *8 (-302)) (-4 *6 (-773)) (-4 *9 (-925 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-625 (-2 (|:| -3824 (-1145 *9)) (|:| -3564 (-552)))))))
+ (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1145 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170))))
+ ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2))))
+ ((*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-52)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-802)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4116 *4)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-751)) (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *2 (-545)) (-5 *1 (-945 *2 *4)) (-4 *4 (-1207 *2)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-302))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3))))
- (-5 *1 (-381 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2096 (-751)) (|:| -3235 (-751)))) (-5 *1 (-751))))
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
+ (-5 *1 (-953 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-751)) (-5 *1 (-549)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1073))
+ (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3))))
+ (-5 *1 (-1049 *3 *4 *2))
+ (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1073)) (-5 *1 (-1138 *2 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4))))
+ (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-552)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-302))
+ (-4 *9 (-925 *8 *6 *7))
+ (-5 *2 (-2 (|:| -4256 (-1145 *9)) (|:| |polval| (-1145 *8))))
+ (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1145 *9)) (-5 *4 (-1145 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170))))
+ ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2))))
+ ((*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-52)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *4 (-545))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3211 *4))) (-5 *1 (-945 *4 *3))
- (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *4 (-545))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3211 *4)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-545)) (-4 *2 (-446)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-622 (-751))) (-5 *1 (-945 *4 *3))
- (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-945 *4 *3))
- (-4 *3 (-1207 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4117 *4)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
+ (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *3))
+ (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-625 *7) (-625 *7))) (-5 *2 (-625 *7))
+ (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773))
+ (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-600))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4))))
+ (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3))
+ (-5 *1 (-723 *5 *4 *6 *3)) (-4 *3 (-925 *6 *5 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4117 *4)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3495 *3)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3495 *3)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3495 *3)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
+ (-5 *2 (-669 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-411 *3 *4))
+ (-4 *3 (-412 *4))))
+ ((*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1131)) (-5 *1 (-52)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-978))
+ (-4 *2 (-1025)))))
+(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-751)) (-4 *5 (-545))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3))
- (-4 *3 (-1207 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-751)) (-4 *5 (-545))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *4 (-545)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1207 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-751)) (-4 *5 (-545))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3))
- (-4 *3 (-1207 *5)))))
+ (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *3))
+ (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-446))))
+ ((*1 *1 *1 *1) (-4 *1 (-446)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1208 (-552)))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-751)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302))
+ (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-925 *5 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *6 *4 *5))
+ (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *6 (-302))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-1145 *7))) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *6 (-302)) (-5 *2 (-1145 *7)) (-5 *1 (-892 *4 *5 *6 *7))
+ (-4 *7 (-925 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-897)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-446)) (-4 *3 (-544)) (-5 *1 (-945 *3 *2))
+ (-4 *2 (-1208 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-446)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-751)) (-4 *5 (-545))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *4 (-545)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4116 *4)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4116 *4)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-545))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4116 *4)))
- (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-827))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1 *1) (-4 *1 (-943))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1 *1) (-4 *1 (-943))))
-(((*1 *1 *1 *1) (-4 *1 (-943))))
-(((*1 *1 *1 *1) (-4 *1 (-943))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-753)) (-5 *1 (-113))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1076)) (-5 *1 (-941)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-940 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-940 *3 *2)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-840))))
- ((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-939)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-622 *3)) (-5 *1 (-938 *3)) (-4 *3 (-537)))))
-(((*1 *2 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-537)))))
-(((*1 *2 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-537)))))
-(((*1 *1) (-4 *1 (-345)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 *5)) (-4 *5 (-416 *4)) (-4 *4 (-13 (-545) (-827) (-145)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-622 (-1143 *5)))
- (|:| |prim| (-1143 *5))))
- (-5 *1 (-427 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-545) (-827) (-145)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1143 *3)) (|:| |pol2| (-1143 *3))
- (|:| |prim| (-1143 *3))))
- (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-416 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-922 *5)) (-5 *4 (-1149)) (-4 *5 (-13 (-358) (-145)))
- (-5 *2
- (-2 (|:| |coef1| (-538)) (|:| |coef2| (-538)) (|:| |prim| (-1143 *5))))
- (-5 *1 (-937 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149)))
- (-4 *5 (-13 (-358) (-145)))
- (-5 *2
- (-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 *5)))
- (|:| |prim| (-1143 *5))))
- (-5 *1 (-937 *5))))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4))))
+ (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-740)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-2 (|:| -3824 (-1145 *6)) (|:| -3564 (-552)))))
+ (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-552))
+ (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
+ (-5 *2 (-669 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-411 *3 *4))
+ (-4 *3 (-412 *4))))
+ ((*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-412 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-402 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-544))
+ (-4 *4 (-1025)) (-4 *2 (-1223 *4)) (-5 *1 (-1226 *4 *5 *6 *2))
+ (-4 *6 (-636 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-4 *3 (-1039 *6 *7 *8))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4))))
+ (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) (-5 *5 (-1149))
- (-4 *6 (-13 (-358) (-145)))
- (-5 *2
- (-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 *6)))
- (|:| |prim| (-1143 *6))))
- (-5 *1 (-937 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1149)) (-5 *1 (-569 *2)) (-4 *2 (-1014 *3)) (-4 *2 (-358))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-569 *2)) (-4 *2 (-358))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-611 *4 *2))
- (-4 *2 (-13 (-416 *4) (-978) (-1171)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-416 *4) (-978) (-1171)))
- (-4 *4 (-13 (-827) (-545))) (-5 *1 (-611 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-936)) (-5 *2 (-1149))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-936)))))
+ (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8))
+ (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827))
+ (-5 *2 (-625 (-2 (|:| |val| *8) (|:| -3715 *9))))
+ (-5 *1 (-1046 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3))
+ (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-925 *6 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
+ (-5 *2 (-669 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-412 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1025)) (-4 *5 (-1208 *4)) (-5 *2 (-1 *6 (-625 *6)))
+ (-5 *1 (-1226 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-1223 *4)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
+ (-5 *2 (-669 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-412 *3)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-895)) (-4 *5 (-545)) (-5 *2 (-669 *5))
- (-5 *1 (-933 *5 *3)) (-4 *3 (-638 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-930)))))
+ (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-4 *2 (-1208 *5))
+ (-5 *1 (-1226 *5 *2 *6 *3)) (-4 *6 (-636 *2)) (-4 *3 (-1223 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))
+ ((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-952 *4 *5 *3 *6)) (-4 *4 (-1025)) (-4 *5 (-773))
+ (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-446))))
+ ((*1 *1 *1 *1) (-4 *1 (-446))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-167 (-221)))) (-5 *2 (-1011))
+ (-5 *1 (-737)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1014 *4)) (-4 *3 (-302))
+ (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-4 *6 (-404 *4 *5))
+ (-14 *7 (-1232 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 *6)) (-4 *6 (-404 *4 *5)) (-4 *4 (-968 *3))
+ (-4 *5 (-1208 *4)) (-4 *3 (-302)) (-5 *1 (-409 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))))
+(((*1 *2)
+ (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-412 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1025)) (-4 *3 (-1208 *4)) (-4 *2 (-1223 *4))
+ (-5 *1 (-1226 *4 *3 *5 *2)) (-4 *5 (-636 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2))
+ (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))
+ ((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-897)) (-5 *1 (-1006 *2))
+ (-4 *2 (-13 (-1073) (-10 -8 (-15 -2382 ($ $ $))))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552))))
+ ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-679)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-112)) (-5 *5 (-669 (-167 (-221))))
+ (-5 *2 (-1011)) (-5 *1 (-736)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-302)) (-4 *3 (-968 *2)) (-4 *4 (-1208 *3))
+ (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1014 *3))))))
+(((*1 *2)
+ (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-412 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545)) (-4 *3 (-926 *7 *5 *6))
- (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| (-622 *3))))
- (-5 *1 (-929 *5 *6 *7 *3 *8)) (-5 *4 (-751))
- (-4 *8
- (-13 (-358)
- (-10 -8 (-15 -3331 (*3 $)) (-15 -3330 (*3 $)) (-15 -4317 ($ *3))))))))
+ (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 (-1 *6 (-625 *6))))
+ (-4 *5 (-38 (-402 (-552)))) (-4 *6 (-1223 *5)) (-5 *2 (-625 *6))
+ (-5 *1 (-1225 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2))
+ (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552))))
+ (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-112)) (-5 *5 (-669 (-221)))
+ (-5 *2 (-1011)) (-5 *1 (-736)))))
(((*1 *2 *3 *4)
- (-12 (-4 *7 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545))
- (-4 *8 (-926 *7 *5 *6))
- (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| *3)))
- (-5 *1 (-929 *5 *6 *7 *8 *3)) (-5 *4 (-751))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -3331 (*8 $)) (-15 -3330 (*8 $)) (-15 -4317 ($ *8))))))))
+ (-12 (-5 *3 (-751)) (-5 *4 (-1232 *2)) (-4 *5 (-302))
+ (-4 *6 (-968 *5)) (-4 *2 (-13 (-404 *6 *7) (-1014 *6)))
+ (-5 *1 (-408 *5 *6 *7 *2)) (-4 *7 (-1208 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-827))
+ (-4 *5 (-773)) (-4 *2 (-261 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-412 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-538))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545))
- (-4 *8 (-926 *7 *5 *6))
- (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *9) (|:| |radicand| *9)))
- (-5 *1 (-929 *5 *6 *7 *8 *9)) (-5 *4 (-751))
- (-4 *9
- (-13 (-358)
- (-10 -8 (-15 -3331 (*8 $)) (-15 -3330 (*8 $)) (-15 -4317 ($ *8))))))))
+ (-12 (-5 *3 (-1 *2 (-625 *2))) (-5 *4 (-625 *5))
+ (-4 *5 (-38 (-402 (-552)))) (-4 *2 (-1223 *5))
+ (-5 *1 (-1225 *5 *2)))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-528))) (-5 *2 (-1149)) (-5 *1 (-528)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-736))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-383))
+ (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1208 *4)) (-5 *2 (-669 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4))
+ (-5 *1 (-403 *3 *4 *5)) (-4 *3 (-404 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3))
+ (-5 *2 (-669 *3)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839)))
+ (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839)))
+ (|:| |args| (-625 (-839)))))
+ (-5 *1 (-1149))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-625 (-839)))) (-5 *1 (-1149)))))
+(((*1 *2)
+ (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-412 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1223 *4)) (-5 *1 (-1225 *4 *2))
+ (-4 *4 (-38 (-402 (-552)))))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186))
+ (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-552)) (-5 *5 (-112)) (-5 *6 (-669 (-221)))
+ (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1208 *4)) (-5 *2 (-669 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3))
+ (-5 *2 (-669 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-412 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-545)) (-4 *7 (-926 *3 *5 *6))
- (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *8) (|:| |radicand| *8)))
- (-5 *1 (-929 *5 *6 *3 *7 *8)) (-5 *4 (-751))
- (-4 *8
- (-13 (-358)
- (-10 -8 (-15 -3331 (*7 $)) (-15 -3330 (*7 $)) (-15 -4317 ($ *7))))))))
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1223 *4)) (-5 *1 (-1225 *4 *2))
+ (-4 *4 (-38 (-402 (-552)))))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-827))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2493 (-538)))) (-4 *1 (-416 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -2493 (-866 *3))))
- (-5 *1 (-866 *3)) (-4 *3 (-1074))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025))
- (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2493 (-538))))
- (-5 *1 (-927 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-1025)) (-4 *4 (-827))
- (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1025)) (-4 *4 (-827))
- (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *4))))
+ (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537))
+ (-5 *2 (-402 (-552)))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827))
- (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *3))))
+ (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-413 *3)) (-4 *3 (-537))
+ (-4 *3 (-544))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-402 (-552)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -2493 (-751))))
- (-5 *1 (-866 *3)) (-4 *3 (-1074))))
+ (|partial| -12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537))
+ (-5 *2 (-402 (-552)))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *2 (-2 (|:| |var| *5) (|:| -2493 (-751))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025))
- (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2493 (-538))))
- (-5 *1 (-927 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-622 *1))
- (-4 *1 (-416 *3))))
+ (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-813 *3)) (-4 *3 (-537))
+ (-4 *3 (-1073))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))
+ (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-820 *3)) (-4 *3 (-537))
+ (-4 *3 (-1073))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537))
+ (-5 *2 (-402 (-552)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025))
- (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-622 *3)) (-5 *1 (-927 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))))
+ (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-984 *3))
+ (-4 *3 (-1014 *2)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-622 *1))
- (-4 *1 (-416 *3))))
+ (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186))
+ (-5 *2 (-625 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-736)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))))
+(((*1 *2)
+ (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-412 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1225 *3 *2))
+ (-4 *2 (-1223 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-413 *3)) (-4 *3 (-537)) (-4 *3 (-544))))
+ ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025))
- (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-622 *3)) (-5 *1 (-927 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-622 *1)) (-4 *1 (-379 *3 *4))))
+ (-12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-622 (-716 *3 *4))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025))
- (-4 *4 (-707))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-537)) (-4 *3 (-1073))))
((*1 *2 *1)
- (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1))
- (-4 *1 (-926 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-622 (-751)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827))
- (-5 *2 (-751)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-751))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-537)) (-4 *3 (-1073))))
((*1 *2 *1)
- (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-751)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1))
- (-4 *1 (-926 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)) (-4 *2 (-446))))
+ (-12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-622 *4)) (-4 *4 (-1207 (-538))) (-5 *2 (-622 (-538)))
- (-5 *1 (-480 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))
- (-4 *3 (-446)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-622 *5)) (-5 *4 (-538)) (-4 *5 (-825)) (-4 *5 (-358))
- (-5 *2 (-751)) (-5 *1 (-921 *5 *6)) (-4 *6 (-1207 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *4)) (-4 *4 (-825)) (-4 *4 (-358)) (-5 *2 (-751))
- (-5 *1 (-921 *4 *5)) (-4 *5 (-1207 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-358)) (-4 *2 (-825)) (-5 *1 (-921 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-921 *4 *3))
- (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-921 *4 *3))
- (-4 *3 (-1207 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-922 *5)) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5))
- (-5 *1 (-920 *4 *5)) (-14 *4 (-622 (-1149))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025))
- (-5 *2 (-922 *5)) (-5 *1 (-920 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025))
- (-5 *2 (-922 *5)) (-5 *1 (-920 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-922 *5)) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5))
- (-5 *1 (-920 *4 *5)) (-14 *4 (-622 (-1149))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025))
- (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025))
- (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550))))
- ((*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1143 (-538))) (-5 *2 (-538)) (-5 *1 (-918)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550))))
- ((*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-187)) (-5 *3 (-538))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-170))))
- ((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))
- ((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))
- ((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))))
-(((*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-550)) (-5 *3 (-538))))
- ((*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 (-866 *6)))
- (-5 *5 (-1 (-864 *6 *8) *8 (-866 *6) (-864 *6 *8))) (-4 *6 (-1074))
- (-4 *8 (-13 (-1025) (-598 (-866 *6)) (-1014 *7))) (-5 *2 (-864 *6 *8))
- (-4 *7 (-13 (-1025) (-827))) (-5 *1 (-917 *6 *7 *8)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-864 *5 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *3 (-164 *6))
- (-4 (-922 *6) (-862 *5)) (-4 *6 (-13 (-862 *5) (-170)))
- (-5 *1 (-176 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-864 *4 *1)) (-5 *3 (-866 *4)) (-4 *1 (-862 *4))
- (-4 *4 (-1074))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-864 *5 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1074))
- (-4 *6 (-13 (-1074) (-1014 *3))) (-4 *3 (-862 *5)) (-5 *1 (-907 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074))
- (-4 *3 (-13 (-416 *6) (-598 *4) (-862 *5) (-1014 (-595 $))))
- (-5 *4 (-866 *5)) (-4 *6 (-13 (-545) (-827) (-862 *5)))
- (-5 *1 (-908 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-864 (-538) *3)) (-5 *4 (-866 (-538))) (-4 *3 (-537))
- (-5 *1 (-909 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-864 *5 *6)) (-5 *3 (-595 *6)) (-4 *5 (-1074))
- (-4 *6 (-13 (-827) (-1014 (-595 $)) (-598 *4) (-862 *5))) (-5 *4 (-866 *5))
- (-5 *1 (-910 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-861 *5 *6 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1074))
- (-4 *6 (-862 *5)) (-4 *3 (-646 *6)) (-5 *1 (-911 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-864 *6 *3) *8 (-866 *6) (-864 *6 *3))) (-4 *8 (-827))
- (-5 *2 (-864 *6 *3)) (-5 *4 (-866 *6)) (-4 *6 (-1074))
- (-4 *3 (-13 (-926 *9 *7 *8) (-598 *4))) (-4 *7 (-773))
- (-4 *9 (-13 (-1025) (-827) (-862 *6))) (-5 *1 (-912 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074))
- (-4 *3 (-13 (-926 *8 *6 *7) (-598 *4))) (-5 *4 (-866 *5)) (-4 *7 (-862 *5))
- (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-13 (-1025) (-827) (-862 *5)))
- (-5 *1 (-912 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074)) (-4 *3 (-967 *6))
- (-4 *6 (-13 (-545) (-862 *5) (-598 *4))) (-5 *4 (-866 *5))
- (-5 *1 (-915 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-864 *5 (-1149))) (-5 *3 (-1149)) (-5 *4 (-866 *5))
- (-4 *5 (-1074)) (-5 *1 (-916 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-622 (-866 *7))) (-5 *5 (-1 *9 (-622 *9)))
- (-5 *6 (-1 (-864 *7 *9) *9 (-866 *7) (-864 *7 *9))) (-4 *7 (-1074))
- (-4 *9 (-13 (-1025) (-598 (-866 *7)) (-1014 *8))) (-5 *2 (-864 *7 *9))
- (-5 *3 (-622 *9)) (-4 *8 (-13 (-1025) (-827))) (-5 *1 (-917 *7 *8 *9)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-1014 (-402 (-552)))))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4353)) (-4 *1 (-588 *4 *3)) (-4 *4 (-1073))
+ (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-625 *5))
+ (|:| |maps| (-625 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1101 *3 *5)) (-4 *3 (-1208 *5)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011))
+ (-5 *1 (-736)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1074) (-1014 *5)))
- (-4 *5 (-862 *4)) (-4 *4 (-1074)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-907 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905))))
- ((*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905))))
- ((*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-113))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-1131)) (-5 *2 (-309 (-538))) (-5 *1 (-905))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1131)) (-4 *4 (-827)) (-5 *1 (-906 *4 *2)) (-4 *2 (-416 *4)))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-412 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-622 (-1062 (-221))))
- (-5 *1 (-904)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221)))
- (-5 *1 (-901))))
+ (-12 (-5 *3 (-1 *5 (-625 *5))) (-4 *5 (-1223 *4))
+ (-4 *4 (-38 (-402 (-552))))
+ (-5 *2 (-1 (-1129 *4) (-625 (-1129 *4)))) (-5 *1 (-1225 *4 *5)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552))))
+ (-5 *4 (-311 (-167 (-374)))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552))))
+ (-5 *4 (-311 (-374))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552))))
+ (-5 *4 (-311 (-552))) (-5 *1 (-325))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221)))
- (-5 *1 (-901))))
- ((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221)))
- (-5 *1 (-903))))
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-167 (-374)))))
+ (-5 *1 (-325))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221)))
- (-5 *1 (-903)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-622 (-1 (-221) (-221)))) (-5 *3 (-1062 (-221)))
- (-5 *1 (-901))))
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-374)))) (-5 *1 (-325))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-1 (-221) (-221)))) (-5 *3 (-1062 (-221)))
- (-5 *1 (-901))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901))))
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-552)))) (-5 *1 (-325))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3))
- (-4 *3 (-598 (-527)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3))
- (-4 *3 (-598 (-527)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901))))
- ((*1 *2 *1) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-221)))) (-5 *1 (-903)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-901))))
+ (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-167 (-374)))))
+ (-5 *1 (-325))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3))
- (-4 *3 (-598 (-527)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-5 *2 (-901)) (-5 *1 (-902 *3)) (-4 *3 (-598 (-527))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461))))
- ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461))))
- ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461))))
- ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112))
- (-5 *1 (-900 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-374)))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-552)))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-167 (-374)))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-374))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-552))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552))))
+ (-5 *4 (-311 (-674))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552))))
+ (-5 *4 (-311 (-679))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552))))
+ (-5 *4 (-311 (-681))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-674)))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-679)))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-681)))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-674)))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-679)))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-681)))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-674))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-679))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-681))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-674))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-679))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-681))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-674))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-679))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-681))) (-5 *1 (-325))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-325))))
+ ((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537))
+ (-5 *2 (-402 (-552)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-413 *3)) (-4 *3 (-537))
+ (-4 *3 (-544))))
+ ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-402 (-552)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537))
+ (-5 *2 (-402 (-552)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-813 *3)) (-4 *3 (-537))
+ (-4 *3 (-1073))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-820 *3)) (-4 *3 (-537))
+ (-4 *3 (-1073))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537))
+ (-5 *2 (-402 (-552)))))
((*1 *2 *3)
- (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112))
- (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149))))
- (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *2 (-926 *3 *5 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))
- (-5 *4 (-669 *12)) (-5 *5 (-622 (-402 (-922 *9)))) (-5 *6 (-622 (-622 *12)))
- (-5 *7 (-751)) (-5 *8 (-538)) (-4 *9 (-13 (-302) (-145)))
- (-4 *12 (-926 *9 *11 *10)) (-4 *10 (-13 (-827) (-598 (-1149))))
- (-4 *11 (-773))
- (-5 *2
- (-2 (|:| |eqzro| (-622 *12)) (|:| |neqzro| (-622 *12))
- (|:| |wcond| (-622 (-922 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1231 (-402 (-922 *9))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *9)))))))))
- (-5 *1 (-900 *9 *10 *11 *12)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-669 *7)) (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5))
- (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
- (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *8)) (-5 *4 (-751)) (-4 *8 (-926 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
- (-4 *7 (-773))
- (-5 *2
- (-622
- (-2 (|:| |det| *8) (|:| |rows| (-622 (-538)))
- (|:| |cols| (-622 (-538))))))
- (-5 *1 (-900 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-622 *8))) (-5 *3 (-622 *8)) (-4 *8 (-926 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
- (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
- (-4 *6 (-773)) (-5 *2 (-622 (-622 (-538)))) (-5 *1 (-900 *4 *5 *6 *7))
- (-5 *3 (-538)) (-4 *7 (-926 *4 *6 *5)))))
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1186)) (-4 *2 (-1073))
+ (-4 *2 (-827)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-622 (-622 *6))) (-4 *6 (-926 *3 *5 *4))
- (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149))))
- (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1232 *4)) (-5 *3 (-669 *4)) (-4 *4 (-358))
+ (-5 *1 (-647 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-358))
+ (-4 *5 (-13 (-368 *4) (-10 -7 (-6 -4354))))
+ (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354))))
+ (-5 *1 (-648 *4 *5 *2 *3)) (-4 *3 (-667 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-625 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358))
+ (-5 *1 (-794 *2 *3)) (-4 *3 (-636 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-736)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-622
- (-2 (|:| -3444 (-751))
- (|:| |eqns|
- (-622
- (-2 (|:| |det| *7) (|:| |rows| (-622 (-538)))
- (|:| |cols| (-622 (-538))))))
- (|:| |fgb| (-622 *7)))))
- (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751))
- (-5 *1 (-900 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
+ (-5 *2 (-625 (-928 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-625 (-928 *4))) (-5 *1 (-411 *3 *4))
+ (-4 *3 (-412 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-625 (-928 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-625 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1232 (-447 *4 *5 *6 *7))) (-5 *2 (-625 (-928 *4)))
+ (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *4 (-170))
+ (-14 *5 (-897)) (-14 *6 (-625 (-1149))) (-14 *7 (-1232 (-669 *4))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1120 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-622
- (-2 (|:| -3444 (-751))
- (|:| |eqns|
- (-622
- (-2 (|:| |det| *7) (|:| |rows| (-622 (-538)))
- (|:| |cols| (-622 (-538))))))
- (|:| |fgb| (-622 *7)))))
- (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751))
- (-5 *1 (-900 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-412 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
- (-4 *6 (-773)) (-5 *2 (-622 *3)) (-5 *1 (-900 *4 *5 *6 *3))
- (-4 *3 (-926 *4 *6 *5)))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1223 *4))
+ (-4 *4 (-38 (-402 (-552))))
+ (-5 *2 (-1 (-1129 *4) (-1129 *4) (-1129 *4))) (-5 *1 (-1225 *4 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1186)) (-4 *2 (-1073))
+ (-4 *2 (-827)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-1129 *7))) (-4 *6 (-827))
+ (-4 *7 (-925 *5 (-524 *6) *6)) (-4 *5 (-1025))
+ (-5 *2 (-1 (-1129 *7) *7)) (-5 *1 (-1099 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-736)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1700 (-669 (-402 (-922 *4)))) (|:| |vec| (-622 (-402 (-922 *4))))
- (|:| -3444 (-751)) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))
- (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
- (-4 *6 (-773))
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751))
+ (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-412 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1223 *4))
+ (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-1 (-1129 *4) (-1129 *4)))
+ (-5 *1 (-1225 *4 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-982)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1186)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *2)) (-4 *3 (-1073))
+ (-4 *2 (-1186)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-302)) (-4 *6 (-368 *5)) (-4 *4 (-368 *5))
(-5 *2
- (-2 (|:| |partsol| (-1231 (-402 (-922 *4))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *4)))))))
- (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))))
-(((*1 *2 *2 *3)
- (-12
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4))))
+ (-5 *1 (-1097 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-736)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-751)) (|:| -4256 *4))) (-5 *5 (-751))
+ (-4 *4 (-925 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
(-5 *2
- (-2 (|:| |partsol| (-1231 (-402 (-922 *4))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *4)))))))
- (-5 *3 (-622 *7)) (-4 *4 (-13 (-302) (-145))) (-4 *7 (-926 *4 *6 *5))
- (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773))
- (-5 *1 (-900 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *8)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145)))
- (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773))
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-443 *6 *7 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-412 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))
+ (-5 *2 (-625 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073))
+ (-5 *2 (-625 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1129 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 *3)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-625 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1025)) (-5 *2 (-1129 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982))))
+ ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1186)) (-5 *2 (-1237)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1131)) (-4 *1 (-359 *2 *4)) (-4 *2 (-1073))
+ (-4 *4 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
(-5 *2
- (-622
- (-2 (|:| -3444 (-751))
- (|:| |eqns|
- (-622
- (-2 (|:| |det| *8) (|:| |rows| (-622 (-538)))
- (|:| |cols| (-622 (-538))))))
- (|:| |fgb| (-622 *8)))))
- (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-751)))))
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-736)))))
+(((*1 *2 *3) (-12 (-5 *3 (-625 (-52))) (-5 *2 (-1237)) (-5 *1 (-840)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
- (-4 *6 (-773)) (-4 *7 (-926 *4 *6 *5))
- (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-622 *7)) (|:| |n0| (-622 *7))))
- (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-622 *7)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-773)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827))
+ (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-922 *4)) (-4 *4 (-13 (-302) (-145))) (-4 *2 (-926 *4 *6 *5))
- (-5 *1 (-900 *4 *5 *6 *2)) (-4 *5 (-13 (-827) (-598 (-1149))))
- (-4 *6 (-773)))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-412 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-552))) (-5 *4 (-552)) (-5 *2 (-52))
+ (-5 *1 (-981)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-596 *2))) (-5 *4 (-625 (-1149)))
+ (-4 *2 (-13 (-425 (-167 *5)) (-978) (-1171)))
+ (-4 *5 (-13 (-544) (-827))) (-5 *1 (-584 *5 *6 *2))
+ (-4 *6 (-13 (-425 *5) (-978) (-1171))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1145 *6)) (-4 *6 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *2 (-1145 *7)) (-5 *1 (-316 *4 *5 *6 *7))
+ (-4 *7 (-925 *6 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
+ (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-736)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773))
- (-5 *2 (-622 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7))
- (-4 *7 (-926 *4 *6 *5)))))
+ (-12 (-5 *3 (-552)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *2 (-1237)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
- (-4 *6 (-773)) (-5 *2 (-402 (-922 *4))) (-5 *1 (-900 *4 *5 *6 *3))
- (-4 *3 (-926 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-669 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773))
- (-5 *2 (-669 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773))
- (-5 *2 (-622 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-669 *11)) (-5 *4 (-622 (-402 (-922 *8)))) (-5 *5 (-751))
- (-5 *6 (-1131)) (-4 *8 (-13 (-302) (-145))) (-4 *11 (-926 *8 *10 *9))
- (-4 *9 (-13 (-827) (-598 (-1149)))) (-4 *10 (-773))
- (-5 *2
- (-2
- (|:| |rgl|
- (-622
- (-2 (|:| |eqzro| (-622 *11)) (|:| |neqzro| (-622 *11))
- (|:| |wcond| (-622 (-922 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1231 (-402 (-922 *8))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *8))))))))))
- (|:| |rgsz| (-538))))
- (-5 *1 (-900 *8 *9 *10 *11)) (-5 *7 (-538)))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-412 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-552))) (-4 *3 (-1025)) (-5 *1 (-580 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1192 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1223 *3)) (-4 *3 (-1025)))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773))
- (-5 *2
- (-622
- (-2 (|:| |eqzro| (-622 *7)) (|:| |neqzro| (-622 *7))
- (|:| |wcond| (-622 (-922 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1231 (-402 (-922 *4))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *4))))))))))
- (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-622
- (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8))
- (|:| |wcond| (-622 (-922 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1231 (-402 (-922 *5))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *5))))))))))
- (-5 *4 (-1131)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-926 *5 *7 *6))
- (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-538))
- (-5 *1 (-900 *5 *6 *7 *8)))))
+ (-12 (-4 *4 (-13 (-544) (-827))) (-5 *2 (-167 *5))
+ (-5 *1 (-584 *4 *5 *3)) (-4 *5 (-13 (-425 *4) (-978) (-1171)))
+ (-4 *3 (-13 (-425 (-167 *4)) (-978) (-1171))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1145 *7)) (-4 *7 (-925 *6 *4 *5)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-1145 *6))
+ (-5 *1 (-316 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-4 *1 (-641))) ((*1 *1 *1) (-5 *1 (-1093))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-1149)) (-5 *1 (-528))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-625 (-1149))) (-5 *2 (-1149)) (-5 *1 (-685 *3))
+ (-4 *3 (-598 (-528))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-736)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237))
+ (-5 *1 (-443 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-751))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-552)) (-4 *1 (-368 *3)) (-4 *3 (-1186))
+ (-4 *3 (-1073))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-368 *3)) (-4 *3 (-1186)) (-4 *3 (-1073))
+ (-5 *2 (-552))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-368 *4)) (-4 *4 (-1186))
+ (-5 *2 (-552))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-552)) (-5 *3 (-139))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-552)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-412 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *8)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145)))
- (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773))
- (-5 *2
- (-622
- (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8))
- (|:| |wcond| (-622 (-922 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1231 (-402 (-922 *5))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *5))))))))))
- (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-622 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *8)) (-5 *4 (-622 (-1149))) (-4 *8 (-926 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
- (-4 *7 (-773))
- (-5 *2
- (-622
- (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8))
- (|:| |wcond| (-622 (-922 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1231 (-402 (-922 *5))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *5))))))))))
- (-5 *1 (-900 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-669 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773))
+ (-12 (-5 *4 (-1065 (-820 *3))) (-4 *3 (-13 (-1171) (-935) (-29 *5)))
+ (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
(-5 *2
- (-622
- (-2 (|:| |eqzro| (-622 *7)) (|:| |neqzro| (-622 *7))
- (|:| |wcond| (-622 (-922 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1231 (-402 (-922 *4))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *4))))))))))
- (-5 *1 (-900 *4 *5 *6 *7))))
+ (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-215 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-669 *9)) (-5 *5 (-895)) (-4 *9 (-926 *6 *8 *7))
- (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149))))
- (-4 *8 (-773))
+ (-12 (-5 *4 (-1065 (-820 *3))) (-5 *5 (-1131))
+ (-4 *3 (-13 (-1171) (-935) (-29 *6)))
+ (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
(-5 *2
- (-622
- (-2 (|:| |eqzro| (-622 *9)) (|:| |neqzro| (-622 *9))
- (|:| |wcond| (-622 (-922 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1231 (-402 (-922 *6))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *6))))))))))
- (-5 *1 (-900 *6 *7 *8 *9)) (-5 *4 (-622 *9))))
+ (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-215 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1065 (-820 (-311 *5))))
+ (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *2
+ (-3 (|:| |f1| (-820 (-311 *5))) (|:| |f2| (-625 (-820 (-311 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-216 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 (-1149))) (-5 *5 (-895))
- (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
- (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773))
+ (-12 (-5 *3 (-402 (-928 *6))) (-5 *4 (-1065 (-820 (-311 *6))))
+ (-5 *5 (-1131))
+ (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
(-5 *2
- (-622
- (-2 (|:| |eqzro| (-622 *9)) (|:| |neqzro| (-622 *9))
- (|:| |wcond| (-622 (-922 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1231 (-402 (-922 *6))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *6))))))))))
- (-5 *1 (-900 *6 *7 *8 *9))))
+ (-3 (|:| |f1| (-820 (-311 *6))) (|:| |f2| (-625 (-820 (-311 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-216 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *8)) (-5 *4 (-895)) (-4 *8 (-926 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
- (-4 *7 (-773))
+ (-12 (-5 *4 (-1065 (-820 (-402 (-928 *5))))) (-5 *3 (-402 (-928 *5)))
+ (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
(-5 *2
- (-622
- (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8))
- (|:| |wcond| (-622 (-922 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1231 (-402 (-922 *5))))
- (|:| -2128 (-622 (-1231 (-402 (-922 *5))))))))))
- (-5 *1 (-900 *5 *6 *7 *8))))
+ (-3 (|:| |f1| (-820 (-311 *5))) (|:| |f2| (-625 (-820 (-311 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-216 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 *9)) (-5 *5 (-1131))
- (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
- (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-538))
- (-5 *1 (-900 *6 *7 *8 *9))))
+ (-12 (-5 *4 (-1065 (-820 (-402 (-928 *6))))) (-5 *5 (-1131))
+ (-5 *3 (-402 (-928 *6)))
+ (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *2
+ (-3 (|:| |f1| (-820 (-311 *6))) (|:| |f2| (-625 (-820 (-311 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-216 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149))
+ (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-3 *3 (-625 *3))) (-5 *1 (-423 *5 *3))
+ (-4 *3 (-13 (-1171) (-935) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374))))
+ (-5 *5 (-374)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553))))
+ ((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1011)) (-5 *1 (-553))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374))))
+ (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 (-1149))) (-5 *5 (-1131))
- (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
- (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-538))
- (-5 *1 (-900 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374))))
+ (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *8)) (-5 *4 (-1131)) (-4 *8 (-926 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
- (-4 *7 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-669 *10)) (-5 *4 (-622 *10)) (-5 *5 (-895)) (-5 *6 (-1131))
- (-4 *10 (-926 *7 *9 *8)) (-4 *7 (-13 (-302) (-145)))
- (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-538))
- (-5 *1 (-900 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-669 *10)) (-5 *4 (-622 (-1149))) (-5 *5 (-895)) (-5 *6 (-1131))
- (-4 *10 (-926 *7 *9 *8)) (-4 *7 (-13 (-302) (-145)))
- (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-538))
- (-5 *1 (-900 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374))))
+ (-5 *2 (-1011)) (-5 *1 (-553))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374)))))
+ (-5 *2 (-1011)) (-5 *1 (-553))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-669 *9)) (-5 *4 (-895)) (-5 *5 (-1131)) (-4 *9 (-926 *6 *8 *7))
- (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149))))
- (-4 *8 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 *4)) (-4 *4 (-358)) (-4 *2 (-1207 *4))
- (-5 *1 (-899 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-897)) (-5 *2 (-2 (|:| -4313 (-622 *1)) (|:| -2501 *1)))
- (-5 *3 (-622 *1)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-897)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-622 (-922 *4))) (-5 *3 (-622 (-1149))) (-4 *4 (-446))
- (-5 *1 (-894 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-622 (-922 *4))) (-5 *3 (-622 (-1149))) (-4 *4 (-446))
- (-5 *1 (-894 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-895))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2))
- (-4 *2 (-926 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6))))
+ (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374)))))
+ (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374)))))
+ (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374)))))
+ (-5 *5 (-374)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1065 (-820 (-374))))
+ (-5 *5 (-1131)) (-5 *2 (-1011)) (-5 *1 (-553))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1065 (-820 (-374))))
+ (-5 *5 (-1149)) (-5 *2 (-1011)) (-5 *1 (-553))))
((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2))
- (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-400 *2)) (-4 *2 (-302)) (-5 *1 (-890 *2))))
+ (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4))
+ (-5 *2 (-571 (-402 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-145)))
- (-5 *2 (-51)) (-5 *1 (-891 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-400 (-922 *6))) (-5 *5 (-1149)) (-5 *3 (-922 *6))
- (-4 *6 (-13 (-302) (-145))) (-5 *2 (-51)) (-5 *1 (-891 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))))
-(((*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))))
-(((*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-890 *3)) (-4 *3 (-302)))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-890 *3)) (-4 *3 (-302)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))))
-(((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1207 (-402 (-538)))) (-5 *1 (-889 *3 *2))
- (-4 *2 (-1207 (-402 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *3))
- (-4 *3 (-1207 (-402 *4))))))
+ (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-145))
+ (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552))))
+ (-5 *2 (-3 (-311 *5) (-625 (-311 *5)))) (-5 *1 (-574 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827))
+ (-4 *3 (-38 (-402 (-552))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1149)) (-5 *1 (-928 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-4 *3 (-1025))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-4 *2 (-827))
+ (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-925 *3 (-524 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025))
+ (-5 *1 (-1133 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *1 (-1180 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-1523
+ (-12 (-5 *2 (-1149)) (-4 *1 (-1192 *3)) (-4 *3 (-1025))
+ (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171))
+ (-4 *3 (-38 (-402 (-552))))))
+ (-12 (-5 *2 (-1149)) (-4 *1 (-1192 *3)) (-4 *3 (-1025))
+ (-12 (|has| *3 (-15 -3982 ((-625 *2) *3)))
+ (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1192 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552))))))
+ ((*1 *1 *1 *2)
+ (-1523
+ (-12 (-5 *2 (-1149)) (-4 *1 (-1213 *3)) (-4 *3 (-1025))
+ (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171))
+ (-4 *3 (-38 (-402 (-552))))))
+ (-12 (-5 *2 (-1149)) (-4 *1 (-1213 *3)) (-4 *3 (-1025))
+ (-12 (|has| *3 (-15 -3982 ((-625 *2) *3)))
+ (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-1523
+ (-12 (-5 *2 (-1149)) (-4 *1 (-1223 *3)) (-4 *3 (-1025))
+ (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171))
+ (-4 *3 (-38 (-402 (-552))))))
+ (-12 (-5 *2 (-1149)) (-4 *1 (-1223 *3)) (-4 *3 (-1025))
+ (-12 (|has| *3 (-15 -3982 ((-625 *2) *3)))
+ (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538)))))
- (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *5))
- (-4 *5 (-1207 (-402 *4))))))
+ (-12 (-4 *4 (-13 (-544) (-827)))
+ (-4 *2 (-13 (-425 (-167 *4)) (-978) (-1171)))
+ (-5 *1 (-584 *4 *3 *2)) (-4 *3 (-13 (-425 *4) (-978) (-1171))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-5 *5 (-625 *8))
+ (-4 *7 (-827)) (-4 *8 (-1025)) (-4 *9 (-925 *8 *6 *7))
+ (-4 *6 (-773)) (-5 *2 (-1145 *8)) (-5 *1 (-316 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1207 (-402 (-538))))
- (-5 *2 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538)))) (-5 *1 (-889 *3 *4))
- (-4 *4 (-1207 (-402 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *3))
- (-4 *3 (-1207 (-402 *4))))))
+ (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
+ (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-736)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-552))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-773)) (-4 *4 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827))
+ (-5 *1 (-443 *5 *6 *7 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-1205 *5 *4)) (-5 *1 (-1147 *4 *5 *6))
+ (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-1205 *5 *4)) (-5 *1 (-1224 *4 *5 *6))
+ (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))))
+(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-538)) (-4 *4 (-1207 (-402 *3))) (-5 *2 (-895))
- (-5 *1 (-889 *4 *5)) (-4 *5 (-1207 (-402 *4))))))
+ (-12 (-4 *4 (-13 (-544) (-827)))
+ (-4 *2 (-13 (-425 *4) (-978) (-1171))) (-5 *1 (-584 *4 *2 *3))
+ (-4 *3 (-13 (-425 (-167 *4)) (-978) (-1171))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1025)) (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
+ (-4 *5 (-234 *3 *2)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011))
+ (-5 *1 (-736)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-552))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-773)) (-4 *4 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827))
+ (-5 *1 (-443 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4))
- (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7))
- (-4 *4 (-13 (-827) (-545) (-1014 (-538))))
- (-5 *2 (-2 (|:| -4131 (-751)) (|:| -2475 *8)))
- (-5 *1 (-887 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6))
- (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-1207 (-402 *4)))
- (-4 *6 (-337 (-402 (-538)) *4 *5))
- (-5 *2 (-2 (|:| -4131 (-751)) (|:| -2475 *6))) (-5 *1 (-888 *4 *5 *6)))))
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-827) (-544))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149))
+ (-14 *4 *2))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839))))
+ ((*1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4)) (-4 *6 (-1207 *5))
- (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7))
- (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-112))
- (-5 *1 (-887 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-425 *4) (-978) (-1171)))
+ (-4 *4 (-13 (-544) (-827)))
+ (-4 *2 (-13 (-425 (-167 *4)) (-978) (-1171)))
+ (-5 *1 (-584 *4 *5 *2)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221)))
+ (-5 *5 (-1067 (-221))) (-5 *6 (-552)) (-5 *2 (-1181 (-902)))
+ (-5 *1 (-313))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221)))
+ (-5 *5 (-1067 (-221))) (-5 *6 (-552)) (-5 *7 (-1131))
+ (-5 *2 (-1181 (-902))) (-5 *1 (-313))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221)))
+ (-5 *5 (-1067 (-221))) (-5 *6 (-221)) (-5 *7 (-552))
+ (-5 *2 (-1181 (-902))) (-5 *1 (-313))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221)))
+ (-5 *5 (-1067 (-221))) (-5 *6 (-221)) (-5 *7 (-552)) (-5 *8 (-1131))
+ (-5 *2 (-1181 (-902))) (-5 *1 (-313)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3))
+ (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3))
+ (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))
+ ((*1 *1 *1) (-4 *1 (-279)))
((*1 *2 *3)
- (-12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6)) (-4 *4 (-1207 (-402 (-538))))
- (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 (-402 (-538)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-888 *4 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-446))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827))
- (-4 *5 (-886)) (-5 *1 (-451 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-886)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-400 (-1143 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1143 *1))
- (-4 *4 (-446)) (-4 *4 (-545)) (-4 *4 (-827))))
- ((*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-400 (-1143 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1143 *1))
- (-4 *4 (-446)) (-4 *4 (-545)) (-4 *4 (-827))))
- ((*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1)))))
-(((*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-622 (-1143 *5))) (-5 *3 (-1143 *5)) (-4 *5 (-164 *4))
- (-4 *4 (-537)) (-5 *1 (-147 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-1207 *4))
- (-4 *4 (-345)) (-5 *1 (-353 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-622 (-1143 (-538)))) (-5 *3 (-1143 (-538)))
- (-5 *1 (-560))))
+ (-12 (-5 *3 (-413 *4)) (-4 *4 (-544))
+ (-5 *2 (-625 (-2 (|:| -3340 (-751)) (|:| |logand| *4))))
+ (-5 *1 (-315 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-644 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
+ (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1134 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552))))
+ (-5 *1 (-1135 *3))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-622 (-1143 *1))) (-5 *3 (-1143 *1)) (-4 *1 (-886)))))
+ (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552)))))
+ (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4))
+ (-4 *4 (-698 (-402 (-552)))) (-4 *3 (-827)) (-4 *4 (-170)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 *1)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1025)) (-5 *1 (-669 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *4)) (-4 *4 (-1025)) (-4 *1 (-1096 *3 *4 *5 *6))
+ (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-736)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-345)) (-5 *2 (-1231 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-143)) (-4 *1 (-886))
- (-5 *2 (-1231 *1)))))
-(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-345)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-886)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-827)) (-4 *5 (-886)) (-4 *6 (-773))
- (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-400 (-1143 *8))) (-5 *1 (-883 *5 *6 *7 *8))
- (-5 *4 (-1143 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5)))
- (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-886)) (-5 *1 (-451 *3 *4 *2 *5))
- (-4 *5 (-926 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-886)) (-5 *1 (-883 *2 *3 *4 *5))
- (-4 *5 (-926 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-886)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1207 *2)))))
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237))
+ (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6))
- (-5 *2 (-400 (-1143 *7))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-1143 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5)))
- (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5)))))
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-827) (-544))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-429)) (-4 *5 (-827))
+ (-5 *1 (-1079 *5 *4)) (-4 *4 (-425 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149))
+ (-14 *4 *2))))
+(((*1 *1 *1) (-5 *1 (-839))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1002 (-820 (-552))))
+ (-5 *3 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *4)))) (-4 *4 (-1025))
+ (-5 *1 (-580 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6))
- (-5 *2 (-400 (-1143 *7))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-1143 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5)))
- (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-622 (-1143 *7))) (-5 *3 (-1143 *7))
- (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827))
- (-5 *1 (-883 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-622 (-1143 *5))) (-5 *3 (-1143 *5))
- (-4 *5 (-1207 *4)) (-4 *4 (-886)) (-5 *1 (-884 *4 *5)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-622 (-1143 *7))) (-5 *3 (-1143 *7))
- (-4 *7 (-926 *5 *6 *4)) (-4 *5 (-886)) (-4 *6 (-773)) (-4 *4 (-827))
- (-5 *1 (-883 *5 *6 *4 *7)))))
+ (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *6))
- (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) ((*1 *1) (-4 *1 (-537)))
- ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-622 (-751)))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-878 *3))) (-4 *3 (-1074)) (-5 *1 (-881 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-880 *3)) (-4 *3 (-1074)) (-5 *2 (-1070 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1074)) (-5 *2 (-1070 (-622 *4))) (-5 *1 (-881 *4))
- (-5 *3 (-622 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1074)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-881 *4))
- (-5 *3 (-1070 *4))))
- ((*1 *2 *1 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))))
+ (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4))
+ (-4 *2 (-234 *3 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-167 (-221))))
+ (-5 *2 (-1011)) (-5 *1 (-735)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-552))
+ (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-827) (-544))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-552) (-221) (-1149) (-1131) (-1154)))
+ (-5 *1 (-1154)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149))
+ (-14 *4 *2))))
+(((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-965))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1067 *4)) (-4 *4 (-1186))
+ (-5 *1 (-1065 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1070 (-1070 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-622 (-751)))
- (-5 *1 (-881 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-622 (-751)))
- (-5 *1 (-881 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-880 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-881 *4)) (-4 *4 (-1074))))
- ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-880 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-4 *1 (-880 *3)))))
+ (-12 (-5 *2 (-1002 (-820 (-552)))) (-5 *1 (-580 *3)) (-4 *3 (-1025)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-289 *6)) (-5 *4 (-114)) (-4 *6 (-425 *5))
+ (-4 *5 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52))
+ (-5 *1 (-312 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-625 *7))
+ (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528))))
+ (-5 *2 (-52)) (-5 *1 (-312 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-625 (-289 *7))) (-5 *4 (-625 (-114))) (-5 *5 (-289 *7))
+ (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528))))
+ (-5 *2 (-52)) (-5 *1 (-312 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-625 (-289 *8))) (-5 *4 (-625 (-114))) (-5 *5 (-289 *8))
+ (-5 *6 (-625 *8)) (-4 *8 (-425 *7))
+ (-4 *7 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52))
+ (-5 *1 (-312 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-625 *7)) (-5 *4 (-625 (-114))) (-5 *5 (-289 *7))
+ (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528))))
+ (-5 *2 (-52)) (-5 *1 (-312 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 (-114))) (-5 *6 (-625 (-289 *8)))
+ (-4 *8 (-425 *7)) (-5 *5 (-289 *8))
+ (-4 *7 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52))
+ (-5 *1 (-312 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-289 *5)) (-5 *4 (-114)) (-4 *5 (-425 *6))
+ (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52))
+ (-5 *1 (-312 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6))
+ (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52))
+ (-5 *1 (-312 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6))
+ (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52))
+ (-5 *1 (-312 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-5 *6 (-625 *3))
+ (-4 *3 (-425 *7)) (-4 *7 (-13 (-827) (-544) (-598 (-528))))
+ (-5 *2 (-52)) (-5 *1 (-312 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1115 *4 *2)) (-14 *4 (-895))
- (-4 *2 (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) (-5 *1 (-879 *4 *2)))))
+ (-12 (-5 *3 (-669 *2)) (-4 *4 (-1208 *2))
+ (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))))
+ (-5 *1 (-492 *2 *4 *5)) (-4 *5 (-404 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
+ (-4 *5 (-234 *3 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-167 (-221))))
+ (-5 *2 (-1011)) (-5 *1 (-735)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-443 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-425 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149))
+ (-14 *4 *2))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-413 *5)) (-4 *5 (-544))
+ (-5 *2
+ (-2 (|:| -3564 (-751)) (|:| -3340 *5) (|:| |radicand| (-625 *5))))
+ (-5 *1 (-315 *5)) (-5 *4 (-751))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-552)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-622 *3)) (|:| |image| (-622 *3))))
- (-5 *1 (-878 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1014 (-538))) (-4 *1 (-293)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1014 (-538))) (-4 *1 (-293)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))))
+ (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3))))
+ (-5 *1 (-580 *3)) (-4 *3 (-1025)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-363)) (-4 *3 (-1074)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-878 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1074)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751))))
- ((*1 *1 *1) (-4 *1 (-229)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4))
- (-4 *4 (-1207 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1207 *2))))
- ((*1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 (-751))) (-4 *1 (-876 *4))
- (-4 *4 (-1074))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1074))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1074)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-311 *3)) (-4 *3 (-544)) (-4 *3 (-827)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-749))
- (-5 *2
- (-2 (|:| -3001 (-373)) (|:| -3905 (-1131))
- (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))))
- (-5 *1 (-553))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-749)) (-5 *4 (-1037))
- (-5 *2
- (-2 (|:| -3001 (-373)) (|:| -3905 (-1131))
- (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))))
- (-5 *1 (-553))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-767)) (-5 *3 (-1037))
- (-5 *4
- (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221)))))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2
- (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))
- (|:| |extra| (-1011))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-767)) (-5 *3 (-1037))
- (-5 *4
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2
- (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))
- (|:| |extra| (-1011))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-780)) (-5 *3 (-1037))
- (-5 *4
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-788))
- (-5 *2
- (-2 (|:| -3001 (-373)) (|:| -3905 (-1131))
- (|:| |explanations| (-622 (-1131)))))
- (-5 *1 (-785))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-788)) (-5 *4 (-1037))
- (-5 *2
- (-2 (|:| -3001 (-373)) (|:| -3905 (-1131))
- (|:| |explanations| (-622 (-1131)))))
- (-5 *1 (-785))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-816)) (-5 *3 (-1037))
- (-5 *4 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))
- (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-816)) (-5 *3 (-1037))
- (-5 *4
- (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221)))
- (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221))))
- (|:| |ub| (-622 (-819 (-221))))))
- (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-818))
- (-5 *2
- (-2 (|:| -3001 (-373)) (|:| -3905 (-1131))
- (|:| |explanations| (-622 (-1131)))))
- (-5 *1 (-817))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-818)) (-5 *4 (-1037))
- (-5 *2
- (-2 (|:| -3001 (-373)) (|:| -3905 (-1131))
- (|:| |explanations| (-622 (-1131)))))
- (-5 *1 (-817))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-871)) (-5 *3 (-1037))
- (-5 *4
- (-2 (|:| |pde| (-622 (-309 (-221))))
- (|:| |constraints|
- (-622
- (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751))
- (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221)))
- (|:| |dFinish| (-669 (-221))))))
- (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131))
- (|:| |tol| (-221))))
- (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))))))
+ (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-358))
+ (-5 *1 (-514 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2))
+ (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025))))
((*1 *2 *3)
- (-12 (-5 *3 (-874))
- (-5 *2
- (-2 (|:| -3001 (-373)) (|:| -3905 (-1131))
- (|:| |explanations| (-622 (-1131)))))
- (-5 *1 (-873))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-874)) (-5 *4 (-1037))
- (-5 *2
- (-2 (|:| -3001 (-373)) (|:| -3905 (-1131))
- (|:| |explanations| (-622 (-1131)))))
- (-5 *1 (-873)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-5 *1 (-872 *2 *4)) (-4 *2 (-1207 *4)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-358)) (-5 *1 (-872 *2 *3)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-871))
- (-5 *3
- (-2 (|:| |pde| (-622 (-309 (-221))))
- (|:| |constraints|
- (-622
- (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751))
- (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221)))
- (|:| |dFinish| (-669 (-221))))))
- (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131))
- (|:| |tol| (-221))))
- (-5 *2 (-1011)))))
-(((*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-527))) ((*1 *1) (-4 *1 (-703))) ((*1 *1) (-4 *1 (-707)))
- ((*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074))))
- ((*1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074))
- (-5 *2 (-622 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170))
+ (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| |k| (-869 *3)) (|:| |c| *4))))
- (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
- (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-652 *3))) (-5 *1 (-869 *3)) (-4 *3 (-827)))))
+ (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
+ (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-167 (-221)))) (-5 *2 (-1011))
+ (-5 *1 (-735)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-625
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-773)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827))
+ (-5 *1 (-443 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-462)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))))
+(((*1 *1) (-5 *1 (-155))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025))
+ (-5 *1 (-1133 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025))
+ (-14 *4 (-1149)) (-14 *5 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))
+ ((*1 *1 *1) (-5 *1 (-839))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-976 *3)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-552)) (-5 *1 (-311 *3)) (-4 *3 (-544)) (-4 *3 (-827)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025))
- (-14 *4 (-622 (-1149)))))
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2))
+ (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025))))
((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1185))))
+ (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170))
+ (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827)))
- (-14 *4 (-622 (-1149)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869 *3)) (-4 *3 (-827)))))
+ (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
+ (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *2 (-1011)) (-5 *1 (-735)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-622 *5)) (-5 *1 (-867 *4 *5))
- (-4 *5 (-1185)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1185)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-112))
- (-5 *1 (-864 *4 *5)) (-4 *5 (-1074))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-867 *5 *3))
- (-4 *3 (-1185))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-1185))
- (-5 *2 (-112)) (-5 *1 (-867 *5 *6)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-527))) ((*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| -2836 (-113)) (|:| |arg| (-622 (-866 *3)))))
- (-5 *1 (-866 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-113)) (-5 *2 (-622 (-866 *4))) (-5 *1 (-866 *4))
- (-4 *4 (-1074)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-221))) (-5 *1 (-298))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |num| (-866 *3)) (|:| |den| (-866 *3))))
- (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-112)) (-5 *1 (-866 *4)) (-4 *4 (-1074)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-51)) (-5 *1 (-866 *4)) (-4 *4 (-1074)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-622 (-1149))) (|:| |pred| (-51))))
- (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-773)) (-4 *2 (-925 *4 *5 *6)) (-5 *1 (-443 *4 *5 *6 *2))
+ (-4 *4 (-446)) (-4 *6 (-827)))))
+(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-155)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))))
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149))
+ (-14 *4 *2))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-297))))
+ ((*1 *1 *1) (-4 *1 (-297)))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))
+ ((*1 *1 *1) (-5 *1 (-839))))
+(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ ((*1 *1 *1 *1) (-4 *1 (-467)))
+ ((*1 *1 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))
+ ((*1 *2 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-859))))
+ ((*1 *1 *1) (-5 *1 (-947)))
+ ((*1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))))
+(((*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1153)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *2 (-1011)) (-5 *1 (-735)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))
+ (-4 *2 (-358))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-221))))
+ ((*1 *1 *1 *1)
+ (-1523 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1186)))
+ (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1186)))))
+ ((*1 *1 *1 *1) (-4 *1 (-358)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-374))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1098 *3 (-596 *1))) (-4 *3 (-544)) (-4 *3 (-827))
+ (-4 *1 (-425 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-467)))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-528)))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-170)) (-5 *1 (-603 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-707) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-170)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-707) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-170)) (-4 *2 (-358))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-170)) (-5 *1 (-642 *2 *4 *3)) (-4 *2 (-698 *4))
+ (-4 *3 (|SubsetCategory| (-707) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-170)) (-5 *1 (-642 *3 *4 *2)) (-4 *3 (-698 *4))
+ (-4 *2 (|SubsetCategory| (-707) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2)) (-4 *2 (-358))))
+ ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-842 *2 *3 *4 *5)) (-4 *2 (-358))
+ (-4 *2 (-1025)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-751)))
+ (-14 *5 (-751))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025))
+ (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-358))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-358))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-827))
+ (-4 *4 (-773)) (-14 *6 (-625 *3))
+ (-5 *1 (-1244 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-925 *2 *4 *3))
+ (-14 *7 (-625 (-751))) (-14 *8 (-751))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1025))
+ (-4 *3 (-823)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 *3))))
+ (-5 *4 (-751)) (-4 *3 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773))
+ (-4 *7 (-827)) (-5 *1 (-443 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-221))
+ (-5 *2
+ (-2 (|:| |brans| (-625 (-625 (-919 *4))))
+ (|:| |xValues| (-1067 *4)) (|:| |yValues| (-1067 *4))))
+ (-5 *1 (-151)) (-5 *3 (-625 (-625 (-919 *4)))))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025))
+ (-5 *1 (-1133 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025))
+ (-14 *4 (-1149)) (-14 *5 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-751)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1074))
- (-4 *5 (-646 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
-(((*1 *1)
- (-12 (-4 *3 (-1074)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1074))
- (-4 *4 (-646 *3))))
- ((*1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))))
+ (-12
+ (-5 *2
+ (-625
+ (-625
+ (-3 (|:| -1288 (-1149))
+ (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552))))))))))
+ (-5 *1 (-1153)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-735)))))
+(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-133)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-210 *2))
+ (-4 *2
+ (-13 (-827)
+ (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $))
+ (-15 -3867 ((-1237) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2))))
+ ((*1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-21)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-903))
+ (-5 *2
+ (-2 (|:| |brans| (-625 (-625 (-919 (-221)))))
+ (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))))
+ (-5 *1 (-151))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-903)) (-5 *4 (-402 (-552)))
+ (-5 *2
+ (-2 (|:| |brans| (-625 (-625 (-919 (-221)))))
+ (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))))
+ (-5 *1 (-151)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025))
+ (-5 *1 (-1133 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025))
+ (-14 *4 (-1149)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1094 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-188))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *6))))
+ (-5 *4 (-1002 (-820 (-552)))) (-5 *5 (-1149)) (-5 *7 (-402 (-552)))
+ (-4 *6 (-1025)) (-5 *2 (-839)) (-5 *1 (-580 *6)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-302))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1)))
+ (-4 *1 (-302)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-1091)) (-5 *1 (-1088)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552))
+ (-5 *2 (-1011)) (-5 *1 (-735)))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-210 *2))
+ (-4 *2
+ (-13 (-827)
+ (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $))
+ (-15 -3867 ((-1237) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1186))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1186))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-130))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2))
+ (-4 *2 (-1208 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827))
+ (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-528)))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-25)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 *3)) (-4 *3 (-925 *5 *6 *7)) (-4 *5 (-446))
+ (-4 *6 (-773)) (-4 *7 (-827))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-443 *5 *6 *7 *3)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-4 *2 (-1074))
- (-5 *1 (-864 *4 *2)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074)))))
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2))
+ (-4 *2 (-1186)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-302)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1153)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800))
+ (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-625 (-112))) (-5 *5 (-669 (-221)))
+ (-5 *6 (-669 (-552))) (-5 *7 (-221)) (-5 *3 (-552)) (-5 *2 (-1011))
+ (-5 *1 (-735)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-625
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-751)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-773)) (-4 *6 (-925 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-827))
+ (-5 *1 (-443 *4 *3 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1074)) (-4 *6 (-862 *5)) (-5 *2 (-861 *5 *6 (-622 *6)))
- (-5 *1 (-863 *5 *6 *4)) (-5 *3 (-622 *6)) (-4 *4 (-598 (-866 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1074)) (-5 *2 (-622 (-288 *3))) (-5 *1 (-863 *5 *3 *4))
- (-4 *3 (-1014 (-1149))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-866 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1074)) (-5 *2 (-622 (-288 (-922 *3)))) (-5 *1 (-863 *5 *3 *4))
- (-4 *3 (-1025)) (-3676 (-4 *3 (-1014 (-1149)))) (-4 *3 (-862 *5))
- (-4 *4 (-598 (-866 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1074)) (-5 *2 (-864 *5 *3)) (-5 *1 (-863 *5 *3 *4))
- (-3676 (-4 *3 (-1014 (-1149)))) (-3676 (-4 *3 (-1025))) (-4 *3 (-862 *5))
- (-4 *4 (-598 (-866 *5))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-113))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1149)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-113)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-595 *4)) (-4 *4 (-827))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-595 *4)) (-4 *4 (-827))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-862 *5))
- (-4 *4 (-598 (-866 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *6)) (-4 *6 (-862 *5)) (-4 *5 (-1074)) (-5 *2 (-112))
- (-5 *1 (-863 *5 *6 *4)) (-4 *4 (-598 (-866 *5))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-864 *4 *5)) (-5 *3 (-864 *4 *6)) (-4 *4 (-1074))
- (-4 *5 (-1074)) (-4 *6 (-646 *5)) (-5 *1 (-861 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1074)) (-5 *2 (-864 *3 *4)) (-5 *1 (-861 *3 *4 *5))
- (-4 *3 (-1074)) (-4 *5 (-646 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1074)) (-5 *2 (-864 *3 *5)) (-5 *1 (-861 *3 *4 *5))
- (-4 *3 (-1074)) (-4 *5 (-646 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))))
+ (-12 (-5 *3 (-625 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-552))
+ (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170))
+ (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *9)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773))
+ (-4 *8 (-1025)) (-4 *2 (-925 *9 *7 *5))
+ (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773))
+ (-4 *4 (-925 *8 *6 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *3 (-622 (-538))) (-5 *1 (-859)))))
+ (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5))
+ (|:| |c2| (-402 *5)) (|:| |deg| (-751))))
+ (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1220 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-580 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1025)))))
+(((*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-825)) (-5 *1 (-298 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1153)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538))))
- ((*1 *2 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-853 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-855 *2)) (-4 *2 (-1185))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-858 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-622 (-1154))) (-5 *1 (-856)))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
-(((*1 *2 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-237)) (-5 *3 (-1131))))
- ((*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1185)) (-4 *3 (-1185)))))
+ (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800))
+ (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-669 (-552))) (-5 *5 (-112)) (-5 *7 (-669 (-221)))
+ (-5 *3 (-552)) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-735)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-625
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-773)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827))
+ (-5 *1 (-443 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1208 *2)) (-4 *2 (-1190)) (-5 *1 (-146 *2 *4 *3))
+ (-4 *3 (-1208 (-402 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-117 *3)) (-14 *3 (-538))))
- ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1126 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3))))
- ((*1 *2 *3) (-12 (-5 *2 (-172 (-538))) (-5 *1 (-746 *3)) (-4 *3 (-399))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-847 *3)) (-14 *3 (-538))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-538)) (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-848 *3 *4))
- (-4 *4 (-846 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-398 *3)) (-4 *3 (-399))))
- ((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-398 *3)) (-4 *3 (-399))))
- ((*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399))))
- ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895))))
- ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-1126 (-538))))))
+ (-12 (-5 *2 (-625 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552))
+ (-14 *4 (-751)) (-4 *5 (-170)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1156)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-838))))
+ ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-838)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1129 (-221)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3315
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-547)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-221))) (-5 *4 (-751)) (-5 *2 (-669 (-221)))
+ (-5 *1 (-300)))))
+(((*1 *1) (-5 *1 (-1152))))
+(((*1 *1 *1) (-4 *1 (-611)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978) (-1171))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149))
+ (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-625 (-112))) (-5 *7 (-669 (-221)))
+ (-5 *8 (-669 (-552))) (-5 *3 (-552)) (-5 *4 (-221)) (-5 *5 (-112))
+ (-5 *2 (-1011)) (-5 *1 (-735)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-625
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-773)) (-4 *3 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827))
+ (-5 *1 (-443 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *6)) (-4 *5 (-1073))
+ (-4 *6 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-4 *5 (-1073))
+ (-4 *2 (-1186)) (-5 *1 (-622 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 *5)) (-4 *6 (-1073))
+ (-4 *5 (-1186)) (-5 *2 (-1 *5 *6)) (-5 *1 (-622 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-4 *5 (-1073))
+ (-4 *2 (-1186)) (-5 *1 (-622 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-625 *5)) (-5 *4 (-625 *6))
+ (-4 *5 (-1073)) (-4 *6 (-1186)) (-5 *1 (-622 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1073)) (-4 *2 (-1186)) (-5 *1 (-622 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-751)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 *6)) (-4 *5 (-1190)) (-4 *6 (-1208 *5))
+ (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| *6)))
+ (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-751)) (-4 *7 (-1208 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838)))))
+(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3) (-12 (-5 *3 (-402 (-552))) (-5 *2 (-221)) (-5 *1 (-300)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))
+ ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149))
+ (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-734)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
+ (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-925 *4 *3 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1207 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-696 *3 *2 *4 *5 *6)) (-4 *3 (-170))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))))
-(((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))))
-(((*1 *1 *1) (-4 *1 (-846 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *3 (-538)) (-4 *1 (-846 *4)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-402 *6))
- (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1224 *5)) (-4 *6 (-1207 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1221 *5 *6 *7)) (-4 *5 (-358))
- (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1200 *6 *5)))
- (-5 *1 (-844 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1221 *5 *6 *7)) (-4 *5 (-358))
- (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1200 *6 *5)))
- (-5 *1 (-844 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-172 *6))
- (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1224 *5)) (-4 *6 (-1207 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-840)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840)))))
-(((*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171)))))
- ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840))))
- ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1185)) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-751))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))
- (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-595 *3)) (-4 *3 (-827))))
- ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840))))
- ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))))
-(((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))))
-(((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))
- ((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))
- ((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840)))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-293))))
- ((*1 *1 *1) (-4 *1 (-293))) ((*1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538))))
- (-5 *4 (-309 (-166 (-373)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-373)))
- (-5 *1 (-325))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-538)))
- (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-166 (-373))))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-373)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-538)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-166 (-373))))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-373)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-538)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-166 (-373)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-373))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-538))) (-5 *1 (-325))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-674)))
- (-5 *1 (-325))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-679)))
- (-5 *1 (-325))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-681)))
- (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-674)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-679)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-681)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-674)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-679)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-681)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-674))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-679))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-681))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-674))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-679))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-681))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-674))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-679))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-681))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-325))))
- ((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840))))
- ((*1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) (-5 *1 (-840)))
- ((*1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))
- ((*1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-293))))
- ((*1 *1 *1) (-4 *1 (-293)))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))
- ((*1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-188))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-840))))
+ (-12 (-5 *2 (-625 *4)) (-5 *1 (-1114 *3 *4))
+ (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 *4))
+ (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-751))))
+ (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5))))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2))
+ (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552))))
+ (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-129)) (-5 *2 (-1093)))))
+(((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-311 (-374))) (-5 *1 (-300)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-244)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149))
+ (-5 *2 (-625 *4)) (-5 *1 (-1087 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221))
+ (-5 *7 (-669 (-552)))
+ (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN))))
+ (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-734)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-840))))
+ ((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
+ (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-925 *4 *3 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4))
+ (-5 *2 (-2 (|:| -3340 (-402 *5)) (|:| |poly| *3)))
+ (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5))))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-128)) (-5 *2 (-1093)))))
+(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))))
+(((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374)))
+ (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148))))
+ (-5 *1 (-1148)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-625 (-1205 *5 *4)))
+ (-5 *1 (-1087 *4 *5)) (-5 *3 (-1205 *5 *4)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-669 (-221))) (-5 *6 (-112)) (-5 *7 (-669 (-552)))
+ (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS))))
+ (-5 *3 (-552)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |rm| (-799 *3))))
- (-5 *1 (-799 *3)) (-4 *3 (-827))))
- ((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-751)))
- ((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-751)))
- ((*1 *1 *1 *1) (-5 *1 (-840))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839))))
- ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-128)) (-5 *2 (-1093)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-129)) (-5 *2 (-1093)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-51))) (-5 *2 (-1237)) (-5 *1 (-836)))))
+ ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-879 *3)) (-4 *3 (-1073)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))))
+(((*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-38 (-402 (-538))))
+ (-12 (-5 *1 (-659 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-773)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827))
+ (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3))
+ (-4 *3 (-1208 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-142)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-552)) (-5 *1 (-1129 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-38 (-402 (-552))))
(-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-928 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374)))
+ (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148))))
+ (-5 *1 (-1148)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-625 (-1205 *5 *4)))
+ (-5 *1 (-1087 *4 *5)) (-5 *3 (-1205 *5 *4)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-112))
+ (-5 *2 (-1011)) (-5 *1 (-734)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-625 *7)) (-5 *3 (-552)) (-4 *7 (-925 *4 *5 *6))
+ (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *1 (-443 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-659 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3))
+ (-4 *3 (-1208 *2)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))
- ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1115 *3 *4)) (-14 *3 (-897)) (-4 *4 (-358))
+ (-5 *1 (-969 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374))
+ (|:| |expense| (-374)) (|:| |accuracy| (-374))
+ (|:| |intermediateResults| (-374))))
+ (-5 *2 (-1011)) (-5 *1 (-300)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374)))
+ (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148))))
+ (-5 *1 (-1148)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221)))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1))))
+ (-5 *2 (-1011)) (-5 *1 (-734)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))
+ ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1002 *3)) (-4 *3 (-1186)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-552)) (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3))
+ (-4 *3 (-1186)))))
(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))))
+(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-1025))))
+ ((*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1129 (-221)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3315
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1011)) (-5 *1 (-300)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374)))
+ (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148))))
+ (-5 *1 (-1148)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1149)) (-5 *1 (-325)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221)))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-62 LSFUN2))))
+ (-5 *2 (-1011)) (-5 *1 (-734)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446)))
+ (-5 *2 (-820 *4)) (-5 *1 (-308 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446)))
+ (-5 *2 (-820 *4)) (-5 *1 (-1218 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149))
+ (-14 *6 *4))))
(((*1 *2 *1 *1)
(-12 (-4 *3 (-358)) (-4 *3 (-1025))
- (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3))))
+ (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3))))
((*1 *2 *3 *3 *4)
(-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025))
- (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3))
+ (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3))
(-4 *3 (-829 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-544))))
+ ((*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3890 (-374)) (|:| -1288 (-1131))
+ (|:| |explanations| (-625 (-1131)))))
+ (-5 *2 (-1011)) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3890 (-374)) (|:| -1288 (-1131))
+ (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))))
+ (-5 *2 (-1011)) (-5 *1 (-300)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221)))
+ (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1))))
+ (-5 *2 (-1011)) (-5 *1 (-734)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3)))
+ (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7)))
+ (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773))
+ (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8)))
+ (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7)))
+ (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773))
+ (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8)))
+ (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1217 *4 *5 *6))
+ (|:| |%expon| (-314 *4 *5 *6))
+ (|:| |%expTerms|
+ (-625 (-2 (|:| |k| (-402 (-552))) (|:| |c| *4))))))
+ (|:| |%type| (-1131))))
+ (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3)))
+ (-14 *5 (-1149)) (-14 *6 *4))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3)))
(-5 *1 (-747 *3 *4)) (-4 *3 (-689 *4))))
((*1 *2 *1 *1)
(-12 (-4 *3 (-358)) (-4 *3 (-1025))
- (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3))))
+ (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3))))
((*1 *2 *3 *3 *4)
(-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025))
- (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3))
+ (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3))
(-4 *3 (-829 *5)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-963 (-402 (-552)) (-841 *3) (-236 *4 (-751))
+ (-243 *3 (-402 (-552)))))
+ (-14 *3 (-625 (-1149))) (-14 *4 (-751)) (-5 *1 (-962 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1131)) (-5 *1 (-300)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1083)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-552)) (-5 *5 (-112)) (-5 *6 (-669 (-221)))
+ (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN))))
+ (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7)))
+ (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773))
+ (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8)))
+ (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1192 *3))
+ (-5 *2 (-402 (-552))))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-545)) (-4 *3 (-1025))
- (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3))))
+ (-12 (-4 *3 (-544)) (-4 *3 (-1025))
+ (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1025))
- (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3))
+ (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1025))
+ (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3))
(-4 *3 (-829 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-925 *4 *6 *5)) (-4 *4 (-446))
+ (-4 *5 (-827)) (-4 *6 (-773)) (-5 *1 (-963 *4 *5 *6 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-188))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-295))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1093))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1073))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-552)) (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3))
+ (-4 *3 (-1025))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-799 *4)) (-4 *4 (-827)) (-4 *1 (-1249 *4 *3))
+ (-4 *3 (-1025)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1232 (-552))) (-5 *3 (-552)) (-5 *1 (-1083))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1232 (-552))) (-5 *3 (-625 (-552))) (-5 *4 (-552))
+ (-5 *1 (-1083)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-733)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-302))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-441 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6))
+ (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *1 (-441 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6))
+ (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *1 (-441 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1192 *3)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-545)) (-4 *3 (-1025))
- (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3))))
+ (-12 (-4 *3 (-544)) (-4 *3 (-1025))
+ (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1025))
- (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3))
+ (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1025))
+ (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3))
(-4 *3 (-829 *5)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-628 *5)) (-4 *5 (-1025))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-829 *5))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-669 *3)) (-4 *1 (-413 *3)) (-4 *3 (-170))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1025)) (-5 *1 (-830 *2 *3))
- (-4 *3 (-829 *2)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1025)) (-5 *1 (-830 *5 *2))
- (-4 *2 (-829 *5)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-827))
+ (-4 *5 (-773)) (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-188))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-295))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-625 (-552))) (-5 *3 (-112)) (-5 *1 (-1083)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-733)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-302))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-142))) (-5 *1 (-139))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-139)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773))
+ (-5 *2 (-112)) (-5 *1 (-963 *3 *4 *5 *6))
+ (-4 *6 (-925 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34)))
+ (-4 *4 (-13 (-1073) (-34))))))
+(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-1172 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-625 (-1172 *2))) (-5 *1 (-1172 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025))
+ (-4 *2 (-1192 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3))))
((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-625 *6))
+ (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-188))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-295))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-300)))))
+(((*1 *1 *1 *1) (-4 *1 (-943))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-669 (-552))) (-5 *3 (-625 (-552))) (-5 *1 (-1083)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-733)))))
+(((*1 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-440)) (-5 *3 (-552)))))
+(((*1 *1) (-5 *1 (-139))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-897)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-772))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-402 (-552))) (-4 *1 (-1213 *3)) (-4 *3 (-1025)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3))))
((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-925 *3 *5 *4)) (-5 *1 (-963 *3 *4 *5 *2))
+ (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-188))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-295))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-300)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1083)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-733)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025))))
+ ((*1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))))
+(((*1 *1) (-5 *1 (-139))))
+(((*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1186)) (-5 *2 (-751))))
+ ((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-751))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1025))
+ (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))
+ (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-596 *3)) (-4 *3 (-827))))
+ ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839))))
+ ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-152))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1040)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-552))))
+ (-4 *4 (-13 (-1208 *3) (-544) (-10 -8 (-15 -2633 ($ $ $)))))
+ (-4 *3 (-544)) (-5 *1 (-1211 *3 *4)))))
(((*1 *2 *2 *2)
(|partial| -12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3))))
((*1 *1 *1 *1)
(|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773))
+ (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1131)) (-5 *1 (-300)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1025))
+ (-5 *1 (-830 *5 *2)) (-4 *2 (-829 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-625 (-669 (-552))))
+ (-5 *1 (-1083)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-552)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))))
+(((*1 *1) (-5 *1 (-139))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-841 *3)) (-14 *3 (-625 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-965))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1065 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))
+ (-5 *2 (-1149))))
+ ((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-925 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-446))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *3 (-1039 *4 *5 *6))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *1))))
+ (-4 *1 (-1045 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1190)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-544)) (-5 *1 (-1211 *3 *2))
+ (-4 *2 (-13 (-1208 *3) (-544) (-10 -8 (-15 -2633 ($ $ $))))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3))))
((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1208 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-961 *4 *2 *3 *5))
+ (-4 *4 (-344)) (-4 *5 (-705 *2 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-188))))
+ ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-295))))
+ ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-300)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-897)) (-4 *1 (-399))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-399))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *2 *6)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-625 (-552))) (-5 *3 (-669 (-552))) (-5 *1 (-1083)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221))
+ (-5 *7 (-669 (-552))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-733)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-552)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))))
+(((*1 *1) (-5 *1 (-139))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-751)) (-4 *3 (-1186)) (-4 *1 (-56 *3 *4 *5))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1) (-5 *1 (-169)))
+ ((*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1073))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384))))
+ ((*1 *1) (-5 *1 (-389)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *1 (-631 *3)) (-4 *3 (-1186))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1073)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1073))
+ (-4 *4 (-646 *3))))
+ ((*1 *1) (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-1115 *3 *2)) (-14 *3 (-751)) (-4 *2 (-1025))))
+ ((*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025))))
+ ((*1 *1 *1) (-5 *1 (-1149))) ((*1 *1) (-5 *1 (-1149)))
+ ((*1 *1) (-5 *1 (-1166))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130))
+ (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-2 (|:| -3340 *3) (|:| -2243 *4))))
+ (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))
+ (-5 *2 (-1129 (-2 (|:| |k| *4) (|:| |c| *3)))))))
(((*1 *2 *1 *1)
(-12 (-4 *3 (-358)) (-4 *3 (-1025))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1)))
- (-4 *1 (-829 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-358)) (-4 *3 (-1025))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1)))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1)))
(-4 *1 (-829 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5))
- (-14 *4 (-751)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5))
- (-14 *4 (-751)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5))
- (-14 *4 (-751)))))
-(((*1 *2) (-12 (-5 *2 (-819 (-538))) (-5 *1 (-526))))
- ((*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1074)))))
-(((*1 *2) (-12 (-5 *2 (-819 (-538))) (-5 *1 (-526))))
- ((*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-819 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-309 (-373)))) (-5 *4 (-622 (-373))) (-5 *2 (-1011))
- (-5 *1 (-817)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-817))))
- ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-622 (-373))) (-5 *5 (-622 (-819 (-373))))
- (-5 *6 (-622 (-309 (-373)))) (-5 *3 (-309 (-373))) (-5 *2 (-1011))
- (-5 *1 (-817))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-373))) (-5 *5 (-622 (-819 (-373))))
- (-5 *2 (-1011)) (-5 *1 (-817))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-373))) (-5 *2 (-1011))
- (-5 *1 (-817))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-309 (-373)))) (-5 *4 (-622 (-373))) (-5 *2 (-1011))
- (-5 *1 (-817)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-773))
+ (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *5 (-544))
+ (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-925 (-402 (-928 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1025)) (-4 *5 (-773))
+ (-4 *3
+ (-13 (-827)
+ (-10 -8 (-15 -2042 ((-1149) $))
+ (-15 -2195 ((-3 $ "failed") (-1149))))))
+ (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-925 (-928 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 *6))
+ (-4 *6
+ (-13 (-827)
+ (-10 -8 (-15 -2042 ((-1149) $))
+ (-15 -2195 ((-3 $ "failed") (-1149))))))
+ (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2))
+ (-4 *2 (-925 (-928 *4) *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-816))
- (-5 *3
- (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221)))
- (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221))))
- (|:| |ub| (-622 (-819 (-221))))))
- (-5 *2 (-1011))))
+ (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *2 (-1232 (-311 (-374))))
+ (-5 *1 (-300)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1083)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *6 (-221))
+ (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-733)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552))
+ (-14 *4 (-751)) (-4 *5 (-170)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-2 (|:| -2971 *3) (|:| -4120 *4))))
+ (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *1 (-1162 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827))
+ (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827))
+ (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751))))
+ ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751))))
+ ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-897))))
((*1 *2 *3)
- (-12 (-4 *1 (-816))
- (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))
- (-5 *2 (-1011)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-210 (-495))) (-5 *1 (-815)))))
-(((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025))))
+ (-12 (-5 *3 (-331 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358)))
+ (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-4 *7 (-337 *4 *5 *6))
+ (-5 *2 (-751)) (-5 *1 (-387 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-813 (-897)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-605 *3 *4))
+ (-4 *4 (-1208 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-721 *4 *3)) (-4 *4 (-1025))
+ (-4 *3 (-827))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827))
+ (-5 *2 (-751))))
+ ((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-751))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-880 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073))))
((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))
- (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-668 *4 *5 *6 *3))
- (-4 *3 (-666 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025))))
- ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-113)) (-5 *4 (-622 *2)) (-5 *1 (-114 *2))
- (-4 *2 (-1074))))
+ (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4))
+ (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6)))
+ (-4 *8 (-337 *5 *6 *7))
+ (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-751))
+ (-5 *1 (-887 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6))
+ (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4)))
+ (-4 *6 (-337 (-402 (-552)) *4 *5)) (-5 *2 (-751))
+ (-5 *1 (-888 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-331 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358))
+ (-4 *7 (-1208 *6)) (-4 *4 (-1208 (-402 *7))) (-4 *8 (-337 *6 *7 *4))
+ (-4 *9 (-13 (-363) (-358))) (-5 *2 (-751))
+ (-5 *1 (-994 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-4 *3 (-544))
+ (-5 *2 (-751))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-773))
+ (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *5 (-544))
+ (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-925 (-402 (-928 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-622 *4))) (-4 *4 (-1074))
- (-5 *1 (-114 *4))))
+ (-12 (-4 *4 (-1025)) (-4 *5 (-773))
+ (-4 *3
+ (-13 (-827)
+ (-10 -8 (-15 -2042 ((-1149) $))
+ (-15 -2195 ((-3 $ "failed") (-1149))))))
+ (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-925 (-928 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1074)) (-5 *1 (-114 *4))))
+ (-12 (-5 *3 (-625 *6))
+ (-4 *6
+ (-13 (-827)
+ (-10 -8 (-15 -2042 ((-1149) $))
+ (-15 -2195 ((-3 $ "failed") (-1149))))))
+ (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2))
+ (-4 *2 (-925 (-928 *4) *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4))))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221))
+ (-5 *7 (-669 (-552))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-733)))))
+(((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))))
+(((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751))
+ (-4 *4 (-170)))))
+(((*1 *1 *1) (-5 *1 (-48)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1186))
+ (-4 *2 (-1186)) (-5 *1 (-57 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1073)) (|has| *1 (-6 -4353))
+ (-4 *1 (-149 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2))
+ (-4 *2 (-1186))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2))
+ (-4 *2 (-1186))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-622 *4))) (-5 *1 (-114 *4))
- (-4 *4 (-1074))))
+ (-12 (-4 *4 (-1025))
+ (-5 *2 (-2 (|:| -4256 (-1145 *4)) (|:| |deg| (-897))))
+ (-5 *1 (-217 *4 *5)) (-5 *3 (-1145 *4)) (-4 *5 (-13 (-544) (-827)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-236 *5 *6)) (-14 *5 (-751))
+ (-4 *6 (-1186)) (-4 *2 (-1186)) (-5 *1 (-235 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1208 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-311 *2)) (-4 *2 (-544)) (-4 *2 (-827))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-330 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1208 *2))
+ (-4 *4 (-1208 (-402 *3))) (-4 *5 (-337 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1186)) (-4 *2 (-1186))
+ (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1073)) (-4 *2 (-1073))
+ (-5 *1 (-418 *5 *4 *2 *6)) (-4 *4 (-420 *5)) (-4 *6 (-420 *2))))
+ ((*1 *1 *1) (-5 *1 (-488)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-625 *5)) (-4 *5 (-1186))
+ (-4 *2 (-1186)) (-5 *1 (-623 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1025)) (-4 *2 (-1025))
+ (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *8 (-368 *2))
+ (-4 *9 (-368 *2)) (-5 *1 (-665 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-667 *5 *6 *7)) (-4 *10 (-667 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-358))
+ (-4 *3 (-170)) (-4 *1 (-705 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1208 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-934 *5)) (-4 *5 (-1186))
+ (-4 *2 (-1186)) (-5 *1 (-933 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-925 *3 *4 *5))
+ (-14 *6 (-625 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1025)) (-4 *2 (-1025))
+ (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7))
+ (-4 *9 (-234 *5 *7)) (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2))
+ (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *12 (-1028 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1129 *5)) (-4 *5 (-1186))
+ (-4 *2 (-1186)) (-5 *1 (-1127 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
+ (-4 *1 (-1179 *5 *6 *7 *2)) (-4 *5 (-544)) (-4 *6 (-773))
+ (-4 *7 (-827)) (-4 *2 (-1039 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1232 *5)) (-4 *5 (-1186))
+ (-4 *2 (-1186)) (-5 *1 (-1231 *5 *2)))))
+(((*1 *1 *1) (-4 *1 (-1034)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025))
- (-5 *1 (-695 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025))
- (-5 *1 (-695 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-113)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *2)) (-4 *2 (-628 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-814 *2)) (-4 *2 (-1025)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-356 (-113))) (-4 *2 (-1025)) (-5 *1 (-695 *2 *4))
- (-4 *4 (-628 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-356 (-113))) (-5 *1 (-814 *2)) (-4 *2 (-1025)))))
-(((*1 *2) (-12 (-5 *2 (-812 (-538))) (-5 *1 (-526))))
- ((*1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1074)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-1237)) (-5 *1 (-811)))))
+ (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1232 (-679))) (-5 *1 (-300)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-655 *2)) (-4 *2 (-1025)) (-4 *2 (-1073)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-802)) (-5 *4 (-51)) (-5 *2 (-1237)) (-5 *1 (-811)))))
-(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-51)) (-5 *1 (-811)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-809)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))))
-(((*1 *2 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-809)) (-5 *3 (-1131)))))
-(((*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-809)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-809)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-809)))))
-(((*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-51)) (-5 *1 (-809)))))
-(((*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-808 *2 *3)) (-4 *2 (-689 *3)))))
-(((*1 *2 *1) (-12 (-4 *2 (-689 *3)) (-5 *1 (-808 *2 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *1) (-12 (-4 *1 (-801)) (-5 *2 (-1131))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-801)) (-5 *3 (-112)) (-5 *2 (-1131))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-801)) (-5 *3 (-803)) (-5 *2 (-1237))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-801)) (-5 *3 (-803)) (-5 *4 (-112)) (-5 *2 (-1237))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-801) (-827) (-1025))) (-5 *2 (-1131))
- (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-801) (-827) (-1025)))
- (-5 *2 (-1131)) (-5 *1 (-807 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-803)) (-5 *4 (-309 *5)) (-4 *5 (-13 (-801) (-827) (-1025)))
- (-5 *2 (-1237)) (-5 *1 (-807 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-803)) (-5 *4 (-309 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-801) (-827) (-1025))) (-5 *2 (-1237)) (-5 *1 (-807 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))))
-(((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-805)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-805)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-622 (-1149))) (-5 *1 (-805)))))
-(((*1 *1) (-5 *1 (-804))))
-(((*1 *1) (-5 *1 (-804))))
-(((*1 *1) (-5 *1 (-804))))
-(((*1 *1) (-5 *1 (-804))))
-(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-803)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1131)) (|:| -3905 (-1131)))) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-804)) (-5 *1 (-803)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-804)) (-5 *1 (-803)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-802)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1131)) (-5 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-802)))))
-(((*1 *2 *1) (-12 (-5 *2 (-803)) (-5 *1 (-802)))))
-(((*1 *2 *1) (-12 (-5 *2 (-803)) (-5 *1 (-802)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-802)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-799 *3)) (-4 *3 (-827)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3))))
- (-5 *1 (-381 *3)) (-4 *3 (-1074))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |mm| (-799 *3)) (|:| |rm| (-799 *3))))
- (-5 *1 (-799 *3)) (-4 *3 (-827)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-356 *3)) (-4 *3 (-1074))))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-733)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186))
+ (-4 *4 (-368 *2)) (-4 *5 (-368 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-368 *2))
+ (-4 *5 (-368 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1186))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-5 *2 (-751)) (-5 *1 (-381 *4)) (-4 *4 (-1074))))
+ (-12 (-5 *3 (-625 (-552))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 (-552)) (-14 *5 (-751))))
+ ((*1 *2 *1 *3 *3 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-751))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-751))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-751))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *2 (-23)) (-5 *1 (-629 *4 *2 *5)) (-4 *4 (-1074))
- (-14 *5 *2)))
+ (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-751))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-552))
+ (-14 *4 (-751))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-5 *2 (-751)) (-5 *1 (-799 *4)) (-4 *4 (-827)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1074))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-356 *2)) (-4 *2 (-1074))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-381 *2)) (-4 *2 (-1074))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545))))
+ (-12 (-5 *3 (-751)) (-4 *2 (-1073)) (-5 *1 (-209 *4 *2))
+ (-14 *4 (-897))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1149)) (-5 *2 (-241 (-1131))) (-5 *1 (-210 *4))
+ (-4 *4
+ (-13 (-827)
+ (-10 -8 (-15 -2154 ((-1131) $ *3)) (-15 -1407 ((-1237) $))
+ (-15 -3867 ((-1237) $)))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-965)) (-5 *1 (-210 *3))
+ (-4 *3
+ (-13 (-827)
+ (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $))
+ (-15 -3867 ((-1237) $)))))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "count") (-5 *2 (-751)) (-5 *1 (-241 *4)) (-4 *4 (-827))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-827))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7))
+ (-4 *2 (-1208 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 *1)) (-4 *1 (-297))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
+ ((*1 *2 *1 *2 *2)
+ (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1208 *2))
+ (-4 *4 (-1208 (-402 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-412 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1131)) (-5 *1 (-495))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-52)) (-5 *1 (-614))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-631 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-625 (-552))) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-625 (-868 *4))) (-5 *1 (-868 *4))
+ (-4 *4 (-1073))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1073))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-881 *4)) (-5 *1 (-880 *4))
+ (-4 *4 (-1073))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-236 *4 *2)) (-14 *4 (-897)) (-4 *2 (-358))
+ (-5 *1 (-969 *4 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "value") (-4 *1 (-986 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *2 (-1025))
+ (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7))
+ (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-897)) (-4 *4 (-1073))
+ (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4))))
+ (-5 *1 (-1049 *4 *5 *2))
+ (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-897)) (-4 *4 (-1073))
+ (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4))))
+ (-5 *1 (-1050 *4 *5 *2))
+ (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-552))) (-4 *1 (-1076 *3 *4 *5 *6 *7))
+ (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073))
+ (-4 *7 (-1073))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-552)) (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073))
+ (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073))))
+ ((*1 *1 *1 *1) (-4 *1 (-1117)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-402 *1)) (-4 *1 (-1208 *2)) (-4 *2 (-1025))
+ (-4 *2 (-358))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-402 *1)) (-4 *1 (-1208 *3)) (-4 *3 (-1025))
+ (-4 *3 (-544))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *2 (-1074)) (-5 *1 (-629 *2 *4 *5)) (-4 *4 (-23))
- (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-799 *2)) (-4 *2 (-827)))))
+ (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "last") (-4 *1 (-1220 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "rest") (-4 *1 (-1220 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "first") (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025))))
+ ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))))
+(((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751))
+ (-4 *4 (-170)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-300))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-868 *3)) (|:| |den| (-868 *3))))
+ (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *2) (-12 (-5 *1 (-662 *2)) (-4 *2 (-1073)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-538))))) (-5 *1 (-356 *3))
- (-4 *3 (-1074))))
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *2)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-596 *6)) (-4 *6 (-13 (-425 *5) (-27) (-1171)))
+ (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))))
+ (-5 *2 (-1145 (-402 (-1145 *6)))) (-5 *1 (-548 *5 *6 *7))
+ (-5 *3 (-1145 *6)) (-4 *7 (-1073))))
((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-751))))) (-5 *1 (-381 *3))
- (-4 *3 (-1074))))
+ (-12 (-4 *2 (-1208 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025))))
((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| -4092 *3) (|:| -2493 (-538))))) (-5 *1 (-400 *3))
- (-4 *3 (-545))))
+ (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1145 *11)) (-5 *6 (-625 *10))
+ (-5 *7 (-625 (-751))) (-5 *8 (-625 *11)) (-4 *10 (-827))
+ (-4 *11 (-302)) (-4 *9 (-773)) (-4 *5 (-925 *11 *9 *10))
+ (-5 *2 (-625 (-1145 *5))) (-5 *1 (-723 *9 *10 *11 *5))
+ (-5 *3 (-1145 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-751))))) (-5 *1 (-799 *3))
- (-4 *3 (-827)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-622 *4)) (-4 *4 (-358)) (-5 *2 (-1231 *4))
- (-5 *1 (-794 *4 *3)) (-4 *3 (-638 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)) (-5 *1 (-794 *4 *5))
- (-4 *5 (-638 *4))))
+ (-12 (-4 *2 (-925 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *2 *6))
+ (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-14 *6 (-625 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-172 *3)) (-4 *3 (-302))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-654 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-721 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-827))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *1 (-956 *3)) (-4 *3 (-1025))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7))
+ (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1))
+ (-4 *1 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1))
+ (-4 *1 (-1045 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773))
+ (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-679)) (-5 *1 (-300)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *5)) (-5 *4 (-751)) (-4 *5 (-358)) (-5 *2 (-669 *5))
- (-5 *1 (-794 *5 *6)) (-4 *6 (-638 *5)))))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4))))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-733)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) (-4 *5 (-545))
- (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-750 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-545))
- (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-750 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-669 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2128 (-622 *6))) *7 *6))
- (-4 *6 (-358)) (-4 *7 (-638 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1231 *6) "failed"))
- (|:| -2128 (-622 (-1231 *6)))))
- (-5 *1 (-793 *6 *7)) (-5 *4 (-1231 *6)))))
+ (-12 (-5 *3 (-751)) (-5 *4 (-552)) (-5 *1 (-439 *2)) (-4 *2 (-1025)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-552)) (-14 *4 (-751)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-751)) (-4 *1 (-1208 *4)) (-4 *4 (-1025))
+ (-5 *2 (-1232 *4)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))
+ (-5 *2 (-625 (-221))) (-5 *1 (-300)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-142))))
+ ((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-142)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-358))
- (-5 *2
- (-2 (|:| A (-669 *5))
- (|:| |eqs|
- (-622
- (-2 (|:| C (-669 *5)) (|:| |g| (-1231 *5)) (|:| -3617 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *5)) (-5 *4 (-1231 *5))
- (-4 *6 (-638 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *6 (-638 *5))
- (-5 *2 (-2 (|:| -1700 (-669 *6)) (|:| |vec| (-1231 *5))))
- (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *6)) (-5 *4 (-1231 *5)))))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-733)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-1 (-622 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-4 *6 (-1207 *5)) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 (-402 *7))) (-5 *4 (-1 (-622 *6) *7))
- (-5 *5 (-1 (-400 *7) *7))
- (-4 *6 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-4 *7 (-1207 *6)) (-5 *2 (-622 (-402 *7))) (-5 *1 (-792 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-1 (-622 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-4 *6 (-1207 *5)) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-636 *7 (-402 *7))) (-5 *4 (-1 (-622 *6) *7))
- (-5 *5 (-1 (-400 *7) *7))
- (-4 *6 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-4 *7 (-1207 *6)) (-5 *2 (-622 (-402 *7))) (-5 *1 (-792 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-402 *5))) (-4 *5 (-1207 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-5 *2 (-622 (-402 *5))) (-5 *1 (-792 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5))
- (-4 *5 (-27))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-636 *5 (-402 *5))) (-4 *5 (-1207 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-5 *2 (-622 (-402 *5))) (-5 *1 (-792 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5))
- (-4 *5 (-27))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))))
+ (-12 (-5 *3 (-897)) (-5 *4 (-413 *6)) (-4 *6 (-1208 *5))
+ (-4 *5 (-1025)) (-5 *2 (-625 *6)) (-5 *1 (-438 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-133)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-5 *2 (-1145 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-622 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5))
- (-5 *2 (-622 (-2 (|:| |poly| *6) (|:| -3617 *3))))
- (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-402 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-622 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-4 *6 (-1207 *5))
- (-5 *2 (-622 (-2 (|:| |poly| *6) (|:| -3617 (-636 *6 (-402 *6))))))
- (-5 *1 (-792 *5 *6)) (-5 *3 (-636 *6 (-402 *6))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-622 *7) *7 (-1143 *7))) (-5 *5 (-1 (-400 *7) *7))
- (-4 *7 (-1207 *6)) (-4 *6 (-13 (-358) (-145) (-1014 (-402 (-538)))))
- (-5 *2 (-622 (-2 (|:| |frac| (-402 *7)) (|:| -3617 *3))))
- (-5 *1 (-789 *6 *7 *3 *8)) (-4 *3 (-638 *7)) (-4 *8 (-638 (-402 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-5 *2 (-622 (-2 (|:| |frac| (-402 *6)) (|:| -3617 (-636 *6 (-402 *6))))))
- (-5 *1 (-792 *5 *6)) (-5 *3 (-636 *6 (-402 *6))))))
+ (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9))))
+ (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8))
+ (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237))
+ (-5 *1 (-1043 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9))))
+ (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8))
+ (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237))
+ (-5 *1 (-1118 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1067 (-820 (-221)))) (-5 *1 (-300)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *7 (-1207 *5)) (-4 *4 (-705 *5 *7))
- (-5 *2 (-2 (|:| -1700 (-669 *6)) (|:| |vec| (-1231 *5))))
- (-5 *1 (-791 *5 *6 *7 *4 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 *4)))))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4))))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-733)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-897)) (-5 *1 (-436 *2))
+ (-4 *2 (-1208 (-552)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-897)) (-5 *4 (-751)) (-5 *1 (-436 *2))
+ (-4 *2 (-1208 (-552)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *1 (-436 *2))
+ (-4 *2 (-1208 (-552)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *5 (-751))
+ (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *5 (-751))
+ (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-413 *2)) (-4 *2 (-1208 *5))
+ (-5 *1 (-438 *5 *2)) (-4 *5 (-1025)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1145 *3)) (-4 *3 (-1025)) (-4 *1 (-1208 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-358)) (-4 *3 (-1025))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1)))
+ (-4 *1 (-829 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-790 *4 *2))
- (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))))
+ (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-402 (-552))))
+ (-5 *1 (-300)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-733)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-2 (|:| -3824 *4) (|:| -4276 (-552)))))
+ (-4 *4 (-1208 (-552))) (-5 *2 (-718 (-751))) (-5 *1 (-436 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-636 *2 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-790 *4 *2))
- (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))))))
+ (-12 (-5 *3 (-413 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-1025))
+ (-5 *2 (-718 (-751))) (-5 *1 (-438 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1232 (-311 (-221))))
+ (-5 *2
+ (-2 (|:| |additions| (-552)) (|:| |multiplications| (-552))
+ (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))))
+ (-5 *1 (-300)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1207 *5))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4))))
- (-5 *1 (-790 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-402 *6))) (-4 *6 (-1207 *5))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-5 *2 (-2 (|:| -2128 (-622 (-402 *6))) (|:| -1700 (-669 *5))))
- (-5 *1 (-790 *5 *6)) (-5 *4 (-622 (-402 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1207 *5))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2128 (-622 *4))))
- (-5 *1 (-790 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-636 *6 (-402 *6))) (-4 *6 (-1207 *5))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-5 *2 (-2 (|:| -2128 (-622 (-402 *6))) (|:| -1700 (-669 *5))))
- (-5 *1 (-790 *5 *6)) (-5 *4 (-622 (-402 *6))))))
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4))))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-733)))))
+(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-528))) ((*1 *1) (-4 *1 (-703)))
+ ((*1 *1) (-4 *1 (-707)))
+ ((*1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073))))
+ ((*1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-1207 *4))
- (-5 *1 (-789 *4 *3 *2 *5)) (-4 *2 (-638 *3)) (-4 *5 (-638 (-402 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-402 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538)))))
- (-4 *5 (-1207 *4)) (-5 *1 (-789 *4 *5 *2 *6)) (-4 *2 (-638 *5))
- (-4 *6 (-638 *3)))))
+ (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827))
+ (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-925 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1)))
+ (-4 *1 (-1208 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112))
+ (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))
+ (-5 *2 (-374)) (-5 *1 (-262))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-300)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 *2)))
+ (-5 *2 (-868 *3)) (-5 *1 (-1049 *3 *4 *5))
+ (-4 *5 (-13 (-425 *4) (-862 *3) (-598 *2))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4))))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-733)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-528)))
+ ((*1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-751)) (-5 *2 (-1237)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-751)) (-4 *4 (-1025))
+ (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1208 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112))
+ (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4))))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-669 (-221))) (-5 *6 (-669 (-552))) (-5 *3 (-552))
+ (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -3732)) (-5 *2 (-112)) (-5 *1 (-600))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -3494)) (-5 *2 (-112)) (-5 *1 (-600))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -2643)) (-5 *2 (-112)) (-5 *1 (-600))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -3163)) (-5 *2 (-112)) (-5 *1 (-671 *4))
+ (-4 *4 (-597 (-839)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-597 (-839))) (-5 *2 (-112))
+ (-5 *1 (-671 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1139))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-946))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1012))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-306))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-651))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1243))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1242))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-656))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)) (-5 *1 (-1154))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1149))) (-5 *2 (-112)) (-5 *1 (-1154))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1154))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-112)) (-5 *1 (-1154)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1025))
+ (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))
+ (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112))
+ (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-311 (-221))) (-5 *2 (-402 (-552))) (-5 *1 (-300)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827))))
+ ((*1 *1) (-4 *1 (-1124))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-4 *3 (-1039 *6 *7 *8))
+ (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4))))
+ (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8))
+ (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827))
+ (-5 *2 (-625 (-2 (|:| |val| *8) (|:| -3715 *9))))
+ (-5 *1 (-1081 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-733)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1186)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1025))
+ (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))
+ (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-129)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 *3)) (-4 *3 (-1082 *5 *6 *7 *8))
+ (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-576 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-552))) (-5 *1 (-300)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-552)) (-4 *1 (-1066 *3)) (-4 *3 (-1186)))))
+(((*1 *1 *1) (-4 *1 (-537))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
+ (-4 *3 (-1039 *5 *6 *7))
+ (-5 *2 (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4))))
+ (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-733)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-622 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5))
- (-5 *2 (-622 (-2 (|:| -4311 *5) (|:| -3617 *3)))) (-5 *1 (-789 *5 *6 *3 *7))
- (-4 *3 (-638 *6)) (-4 *7 (-638 (-402 *6))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4))
- (-5 *2 (-622 (-2 (|:| |deg| (-751)) (|:| -3617 *5))))
- (-5 *1 (-789 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-402 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1207 *4)) (-5 *1 (-789 *4 *2 *3 *5))
- (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2))
- (-4 *5 (-638 (-402 *2))))))
+ (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-5 *2 (-552))
+ (-5 *1 (-437 *5 *3 *6)) (-4 *3 (-1208 *5))
+ (-4 *6 (-13 (-399) (-1014 *5) (-358) (-1171) (-279)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5))
+ (-4 *3 (-1208 *4))
+ (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-214))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1088))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-1154))) (-5 *3 (-1154)) (-5 *1 (-1091)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1073)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-754)) (-5 *1 (-52)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1207 *4)) (-5 *1 (-787 *4 *2 *3 *5))
- (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2))
- (-4 *5 (-638 (-402 *2)))))
+ (-12 (-5 *3 (-625 (-552))) (-5 *4 (-881 (-552)))
+ (-5 *2 (-669 (-552))) (-5 *1 (-575))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-625 (-669 (-552))))
+ (-5 *1 (-575))))
((*1 *2 *3 *4)
- (-12 (-4 *2 (-1207 *4)) (-5 *1 (-787 *4 *2 *5 *3))
- (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-638 *2))
- (-4 *3 (-638 (-402 *2))))))
+ (-12 (-5 *3 (-625 (-552))) (-5 *4 (-625 (-881 (-552))))
+ (-5 *2 (-625 (-669 (-552)))) (-5 *1 (-575)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4))
- (-5 *2 (-622 (-2 (|:| -4132 *5) (|:| -3577 *5)))) (-5 *1 (-787 *4 *5 *3 *6))
- (-4 *3 (-638 *5)) (-4 *6 (-638 (-402 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *4 (-1207 *5))
- (-5 *2 (-622 (-2 (|:| -4132 *4) (|:| -3577 *4)))) (-5 *1 (-787 *5 *4 *3 *6))
- (-4 *3 (-638 *4)) (-4 *6 (-638 (-402 *4)))))
+ (-12 (-5 *3 (-1067 (-820 (-374)))) (-5 *2 (-1067 (-820 (-221))))
+ (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839)))))
+(((*1 *2)
+ (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237))
+ (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237))
+ (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-732)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5))
+ (-4 *3 (-1208 *4))
+ (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-126 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-598 *2) (-170))) (-5 *2 (-868 *4))
+ (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1073)) (-4 *3 (-164 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4))
- (-5 *2 (-622 (-2 (|:| -4132 *5) (|:| -3577 *5)))) (-5 *1 (-787 *4 *5 *6 *3))
- (-4 *6 (-638 *5)) (-4 *3 (-638 (-402 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *4 (-1207 *5))
- (-5 *2 (-622 (-2 (|:| -4132 *4) (|:| -3577 *4)))) (-5 *1 (-787 *5 *4 *6 *3))
- (-4 *6 (-638 *4)) (-4 *3 (-638 (-402 *4))))))
+ (-12 (-5 *3 (-625 (-1067 (-820 (-374)))))
+ (-5 *2 (-625 (-1067 (-820 (-221))))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-374))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-389))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4))
+ (-4 *4 (-1208 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3))
+ (-5 *2 (-1232 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-413 *1)) (-4 *1 (-425 *3)) (-4 *3 (-544))
+ (-4 *3 (-827))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-457 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-528))))
+ ((*1 *2 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1208 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5))
+ (-4 *5 (-598 (-1149))) (-4 *4 (-773)) (-4 *5 (-827))))
+ ((*1 *1 *2)
+ (-1523
+ (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5))
+ (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552)))
+ (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))
+ (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025))
+ (-4 *4 (-773)) (-4 *5 (-827))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8)))
+ (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131))
+ (-5 *1 (-1043 *4 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1055))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *2)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *2 *6)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *2 (-1073)) (-4 *6 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1076 *3 *4 *2 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *2 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1076 *3 *2 *4 *5 *6)) (-4 *3 (-1073)) (-4 *2 (-1073))
+ (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073))
+ (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *1)) (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073))
+ (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8)))
+ (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-446))
+ (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131))
+ (-5 *1 (-1118 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1154))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-1166))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-1166))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-760 *4 (-841 *5)))
+ (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149)))
+ (-5 *2 (-760 *4 (-841 *6))) (-5 *1 (-1258 *4 *5 *6))
+ (-14 *6 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-928 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-928 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-760 *4 (-841 *6)))
+ (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *6 (-625 (-1149)))
+ (-5 *2 (-928 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6))
+ (-14 *5 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1145 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-1145 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6))))
+ (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *6 (-625 (-1149)))
+ (-5 *2 (-625 (-760 *4 (-841 *6)))) (-5 *1 (-1258 *4 *5 *6))
+ (-14 *5 (-625 (-1149))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-751)) (-5 *1 (-575)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-820 (-374))) (-5 *2 (-820 (-221))) (-5 *1 (-300)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1207 *5))
- (-5 *1 (-787 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538)))))
- (-4 *3 (-638 *2)) (-4 *6 (-638 *4))))
+ (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-817))))
+ ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-625 (-374))) (-5 *5 (-625 (-820 (-374))))
+ (-5 *6 (-625 (-311 (-374)))) (-5 *3 (-311 (-374))) (-5 *2 (-1011))
+ (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-374)))
+ (-5 *5 (-625 (-820 (-374)))) (-5 *2 (-1011)) (-5 *1 (-817))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-402 *2))) (-4 *2 (-1207 *5)) (-5 *1 (-787 *5 *2 *3 *6))
- (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2))
- (-4 *6 (-638 (-402 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-337 *5 *6 *7))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6)))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2128 (-622 *4))))
- (-5 *1 (-786 *5 *6 *7 *4)))))
+ (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-374))) (-5 *2 (-1011))
+ (-5 *1 (-817))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-311 (-374)))) (-5 *4 (-625 (-374)))
+ (-5 *2 (-1011)) (-5 *1 (-817)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237))
+ (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237))
+ (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-732)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1149))
- (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-784 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1171) (-936))))))
+ (-12 (-4 *4 (-1025))
+ (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))
+ (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-897)) (-4 *5 (-1025))
+ (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279)))
+ (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1208 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073))
+ (-5 *2 (-625 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-2 (|:| |k| (-869 *3)) (|:| |c| *4))))
+ (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
+ (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-652 *3))) (-5 *1 (-869 *3)) (-4 *3 (-827)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
(((*1 *2 *2 *3)
(-12 (-5 *3 (-1149))
- (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-936))))))
+ (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1171) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-145))
+ (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552))))
+ (-5 *2 (-311 *5)) (-5 *1 (-574 *5)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2
- (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373))
- (|:| |expense| (-373)) (|:| |accuracy| (-373))
- (|:| |intermediateResults| (-373))))
- (-5 *1 (-783)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-622
- (-2
- (|:| -4220
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (|:| -2191
- (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373))
- (|:| |expense| (-373)) (|:| |accuracy| (-373))
- (|:| |intermediateResults| (-373)))))))
- (-5 *1 (-783)))))
+ (-12 (-5 *3 (-311 (-374))) (-5 *2 (-311 (-221))) (-5 *1 (-300)))))
+(((*1 *2)
+ (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237))
+ (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237))
+ (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *6 (-221))
+ (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-732)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5))
+ (-4 *3 (-1208 *4))
+ (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235))))
+ ((*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-622
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221)))))
- (-5 *1 (-548))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-622 *3))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025))
+ (-14 *4 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1186))))
((*1 *2 *1)
- (-12
+ (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827)))
+ (-14 *4 (-625 (-1149)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869 *3)) (-4 *3 (-827)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-571 *2)) (-4 *2 (-13 (-29 *4) (-1171)))
+ (-5 *1 (-569 *4 *2))
+ (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-571 (-402 (-928 *4))))
+ (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552))))
+ (-5 *2 (-311 *4)) (-5 *1 (-574 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-300)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237))
+ (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237))
+ (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-732)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1075 (-751))) (-5 *6 (-751))
(-5 *2
- (-622
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221)))))
- (-5 *1 (-783)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-783)))))
-(((*1 *1) (-5 *1 (-783))))
+ (-2 (|:| |contp| (-552))
+ (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552)))))))
+ (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-121 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1235)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-625 *5))
+ (-5 *1 (-866 *4 *5)) (-4 *5 (-1186)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-573 *4))
+ (-4 *4 (-344)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1149))
- (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)))
- (-4 *4 (-13 (-29 *6) (-1171) (-936)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2128 (-622 *4))))
- (-5 *1 (-781 *6 *4 *3)) (-4 *3 (-638 *4)))))
+ (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *4 (-1149))
+ (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-295)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))))
+(((*1 *2) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1235))))
+ ((*1 *2 *2) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1235)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-866 *4 *3))
+ (-4 *3 (-1186))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *2) (-12 (-5 *1 (-572 *2)) (-4 *2 (-537)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-780))
+ (-12
(-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-1011)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-170)) (-5 *1 (-778 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))))
-(((*1 *1 *1) (-4 *1 (-239)))
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2 (-1129 (-221))) (-5 *1 (-188))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-311 (-221))) (-5 *4 (-625 (-1149)))
+ (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *4 (-625 (-1149)))
+ (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-751)) (-4 *5 (-170))))
((*1 *1 *1)
- (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *2))
- (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751))
+ (-4 *4 (-170))))
((*1 *1 *1)
- (-3891 (-12 (-5 *1 (-288 *2)) (-4 *2 (-358)) (-4 *2 (-1185)))
- (-12 (-5 *1 (-288 *2)) (-4 *2 (-467)) (-4 *2 (-1185)))))
- ((*1 *1 *1) (-4 *1 (-467)))
- ((*1 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3))))
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1025)) (-4 *1 (-667 *3 *2 *4)) (-4 *2 (-368 *3))
+ (-4 *4 (-368 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)) (-4 *2 (-358)))))
-(((*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171)))))
- ((*1 *1 *1 *1) (-4 *1 (-773))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373))
- (-5 *2
- (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538))
- (|:| |success| (-112))))
- (-5 *1 (-769)) (-5 *5 (-538)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373))
- (-5 *2
- (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538))
- (|:| |success| (-112))))
- (-5 *1 (-769)) (-5 *5 (-538)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373))
- (-5 *2
- (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538))
- (|:| |success| (-112))))
- (-5 *1 (-769)) (-5 *5 (-538)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373))
- (-5 *2
- (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538))
- (|:| |success| (-112))))
- (-5 *1 (-769)) (-5 *5 (-538)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373))
- (-5 *2
- (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538))
- (|:| |success| (-112))))
- (-5 *1 (-769)) (-5 *5 (-538)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373))
- (-5 *2
- (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538))
- (|:| |success| (-112))))
- (-5 *1 (-769)) (-5 *5 (-538)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373))
- (-5 *2
- (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538))
- (|:| |success| (-112))))
- (-5 *1 (-769)) (-5 *5 (-538)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373))
- (-5 *2
- (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538))
- (|:| |success| (-112))))
- (-5 *1 (-769)) (-5 *5 (-538)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373))
- (-5 *2
- (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538))
- (|:| |success| (-112))))
- (-5 *1 (-769)) (-5 *5 (-538)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373)))
- (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-538))
- (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))))
- (-5 *7 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373)))
- (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-538))
- (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))))
- (-5 *7 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373)))
- (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373)))
- (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373)))
- (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373)))
- (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-767)) (-5 *2 (-1011))
- (-5 *3
- (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221)))))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-767)) (-5 *2 (-1011))
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221)))))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-766)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-766)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-895)) (-5 *1 (-766)))))
-(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1131)) (-5 *1 (-766)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-895)) (-5 *1 (-766)))))
-(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1131)) (-5 *1 (-766)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-922 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *1 (-1115 *2 *3)) (-14 *2 (-751)) (-4 *3 (-1025)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-928 (-552)))) (-5 *1 (-432))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-922 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-170))
- (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-221))) (-5 *2 (-1077))
+ (-5 *1 (-740))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025))
- (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
+ (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-552))) (-5 *2 (-1077))
+ (-5 *1 (-740)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2) (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1235))))
+ ((*1 *2 *2) (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1235)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-112))
+ (-5 *1 (-865 *4 *5)) (-4 *5 (-1073))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545))
- (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-402 (-922 (-166 *4)))) (-4 *4 (-545))
- (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-5 *2 (-112))
+ (-5 *1 (-866 *5 *3)) (-4 *3 (-1186))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-402 (-922 (-166 *5)))) (-5 *4 (-895)) (-4 *5 (-545))
- (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827))
- (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-625 *6)) (-5 *4 (-868 *5)) (-4 *5 (-1073))
+ (-4 *6 (-1186)) (-5 *2 (-112)) (-5 *1 (-866 *5 *6)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-772))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-625 (-1149)))))
+ ((*1 *1 *2 *1 *1 *3)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827))
- (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-309 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-827))
- (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-309 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-545))
- (-4 *5 (-827)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373)))
- (-5 *1 (-765 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2))
- (-5 *2 (-373)) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-552))
+ (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170))
+ (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025))
- (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 *2))
- (-5 *2 (-373)) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170))
+ (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-311 *3) (-311 *3))) (-4 *3 (-13 (-1025) (-827)))
+ (-5 *1 (-219 *3 *4)) (-14 *4 (-625 (-1149)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545))
- (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827))
- (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-236 *5 *6)) (-14 *5 (-751))
+ (-4 *6 (-1186)) (-4 *7 (-1186)) (-5 *2 (-236 *5 *7))
+ (-5 *1 (-235 *5 *6 *7))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827))
- (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-166 (-373))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-373)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-289 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-289 *6)) (-5 *1 (-288 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-289 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1131)) (-5 *5 (-596 *6))
+ (-4 *6 (-297)) (-4 *2 (-1186)) (-5 *1 (-292 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-895)) (-5 *2 (-166 (-373))) (-5 *1 (-765 *3))
- (-4 *3 (-598 (-373)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-596 *5)) (-4 *5 (-297))
+ (-4 *2 (-297)) (-5 *1 (-293 *5 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-596 *1)) (-4 *1 (-297))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-166 *5)) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-922 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-669 *5)) (-4 *5 (-1025))
+ (-4 *6 (-1025)) (-5 *2 (-669 *6)) (-5 *1 (-299 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-922 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-170))
- (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-311 *5)) (-4 *5 (-827))
+ (-4 *6 (-827)) (-5 *2 (-311 *6)) (-5 *1 (-309 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-331 *5 *6 *7 *8)) (-4 *5 (-358))
+ (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7))
+ (-4 *9 (-358)) (-4 *10 (-1208 *9)) (-4 *11 (-1208 (-402 *10)))
+ (-5 *2 (-331 *9 *10 *11 *12))
+ (-5 *1 (-328 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-337 *9 *10 *11))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1073))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545))
- (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-402 (-922 (-166 *4)))) (-4 *4 (-545)) (-4 *4 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1190)) (-4 *8 (-1190))
+ (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *9 (-1208 *8))
+ (-4 *2 (-337 *8 *9 *10)) (-5 *1 (-335 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-337 *5 *6 *7)) (-4 *10 (-1208 (-402 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 (-166 *5)))) (-5 *4 (-895)) (-4 *5 (-545))
- (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 (-373)))
- (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1186)) (-4 *6 (-1186))
+ (-4 *2 (-368 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-368 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-1073))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827))
- (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-309 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-827))
- (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-544))
+ (-4 *6 (-544)) (-5 *2 (-413 *6)) (-5 *1 (-400 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827))
- (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-544))
+ (-4 *6 (-544)) (-5 *2 (-402 *6)) (-5 *1 (-401 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-895)) (-5 *2 (-373)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) (-5 *2 (-373))
- (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302))
+ (-4 *6 (-968 *5)) (-4 *7 (-1208 *6))
+ (-4 *8 (-13 (-404 *6 *7) (-1014 *6))) (-4 *9 (-302))
+ (-4 *10 (-968 *9)) (-4 *11 (-1208 *10))
+ (-5 *2 (-408 *9 *10 *11 *12))
+ (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-404 *10 *11) (-1014 *10)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
+ (-4 *2 (-412 *6)) (-5 *1 (-410 *4 *5 *2 *6)) (-4 *4 (-412 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-544)) (-5 *1 (-413 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 *2))
- (-5 *2 (-373)) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 *2)) (-5 *2 (-373))
- (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1025) (-827)))
+ (-4 *6 (-13 (-1025) (-827))) (-4 *2 (-425 *6))
+ (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-425 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 *2))
- (-5 *2 (-373)) (-5 *1 (-765 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 *2))
- (-5 *2 (-373)) (-5 *1 (-765 *4))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073))
+ (-4 *2 (-420 *6)) (-5 *1 (-418 *5 *4 *6 *2)) (-4 *4 (-420 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-827))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827))
- (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-538))))
- (-4 *2 (-170)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-538))))
- (-4 *2 (-170)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-622 (-761 *3))) (-5 *1 (-761 *3)) (-4 *3 (-545))
- (-4 *3 (-1025)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2 (-2 (|:| -4116 *3) (|:| |coef1| (-761 *3)) (|:| |coef2| (-761 *3))))
- (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4116 *3) (|:| |coef1| (-761 *3)))) (-5 *1 (-761 *3))
- (-4 *3 (-545)) (-4 *3 (-1025)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4116 *3) (|:| |coef2| (-761 *3)))) (-5 *1 (-761 *3))
- (-4 *3 (-545)) (-4 *3 (-1025)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-571 *5)) (-4 *5 (-358))
+ (-4 *6 (-358)) (-5 *2 (-571 *6)) (-5 *1 (-570 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4 (-3 (-2 (|:| -3114 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-358)) (-4 *6 (-358))
+ (-5 *2 (-2 (|:| -3114 *6) (|:| |coeff| *6)))
+ (-5 *1 (-570 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
+ (-4 *5 (-358)) (-4 *2 (-358)) (-5 *1 (-570 *5 *2))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4
+ (-3
+ (-2 (|:| |mainpart| *5)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ "failed"))
+ (-4 *5 (-358)) (-4 *6 (-358))
+ (-5 *2
+ (-2 (|:| |mainpart| *6)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-570 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-585 *6)) (-5 *1 (-582 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7))
+ (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-585 *8))
+ (-5 *1 (-583 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1129 *6)) (-5 *5 (-585 *7))
+ (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8))
+ (-5 *1 (-583 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-1129 *7))
+ (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8))
+ (-5 *1 (-583 *6 *7 *8))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-625 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-625 *6)) (-5 *1 (-623 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-625 *6)) (-5 *5 (-625 *7))
+ (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-625 *8))
+ (-5 *1 (-624 *6 *7 *8))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-631 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1025)) (-4 *8 (-1025))
+ (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-667 *8 *9 *10))
+ (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-667 *5 *6 *7))
+ (-4 *9 (-368 *8)) (-4 *10 (-368 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1025))
+ (-4 *8 (-1025)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5))
+ (-4 *2 (-667 *8 *9 *10)) (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-667 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-544)) (-4 *7 (-544))
+ (-4 *6 (-1208 *5)) (-4 *2 (-1208 (-402 *8)))
+ (-5 *1 (-690 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1208 (-402 *6)))
+ (-4 *8 (-1208 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1025)) (-4 *9 (-1025))
+ (-4 *5 (-827)) (-4 *6 (-773)) (-4 *2 (-925 *9 *7 *5))
+ (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773))
+ (-4 *4 (-925 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-4 *7 (-773))
+ (-4 *9 (-1025)) (-4 *2 (-925 *9 *8 *6))
+ (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-773))
+ (-4 *4 (-925 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-716 *5 *7)) (-4 *5 (-1025))
+ (-4 *6 (-1025)) (-4 *7 (-707)) (-5 *2 (-716 *6 *7))
+ (-5 *1 (-715 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-716 *3 *4))
+ (-4 *4 (-707))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1025))
+ (-4 *6 (-1025)) (-5 *2 (-762 *6)) (-5 *1 (-761 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
+ (-4 *2 (-777 *6)) (-5 *1 (-778 *4 *5 *2 *6)) (-4 *4 (-777 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1073))
+ (-4 *6 (-1073)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-813 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *1 (-812 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1073))
+ (-4 *6 (-1073)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))
+ ((*1 *2 *3 *4 *2 *2)
+ (-12 (-5 *2 (-820 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *1 (-819 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-865 *5 *6)) (-4 *5 (-1073))
+ (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-865 *5 *7))
+ (-5 *1 (-864 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-868 *5)) (-4 *5 (-1073))
+ (-4 *6 (-1073)) (-5 *2 (-868 *6)) (-5 *1 (-867 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-928 *5)) (-4 *5 (-1025))
+ (-4 *6 (-1025)) (-5 *2 (-928 *6)) (-5 *1 (-922 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-827))
+ (-4 *8 (-1025)) (-4 *6 (-773))
+ (-4 *2
+ (-13 (-1073)
+ (-10 -8 (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751))))))
+ (-5 *1 (-927 *6 *7 *8 *5 *2)) (-4 *5 (-925 *8 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-934 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-934 *6)) (-5 *1 (-933 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-919 *5)) (-4 *5 (-1025))
+ (-4 *6 (-1025)) (-5 *2 (-919 *6)) (-5 *1 (-957 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 *2 (-928 *4))) (-4 *4 (-1025))
+ (-4 *2 (-925 (-928 *4) *5 *6)) (-4 *5 (-773))
+ (-4 *6
+ (-13 (-827)
+ (-10 -8 (-15 -2042 ((-1149) $))
+ (-15 -2195 ((-3 $ "failed") (-1149))))))
+ (-5 *1 (-960 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-544)) (-4 *6 (-544))
+ (-4 *2 (-968 *6)) (-5 *1 (-966 *5 *6 *4 *2)) (-4 *4 (-968 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
+ (-4 *2 (-973 *6)) (-5 *1 (-974 *4 *5 *2 *6)) (-4 *4 (-973 *5))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7))
+ (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7))
+ (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1025)) (-4 *10 (-1025))
+ (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7))
+ (-4 *9 (-234 *5 *7)) (-4 *2 (-1028 *5 *6 *10 *11 *12))
+ (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10))
+ (-4 *12 (-234 *5 *10))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-1067 *6)) (-5 *1 (-1062 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-825))
+ (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-625 *6))
+ (-5 *1 (-1062 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-1065 *6)) (-5 *1 (-1064 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825))
+ (-4 *2 (-1122 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1129 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-1129 *6)) (-5 *1 (-1127 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1129 *6)) (-5 *5 (-1129 *7))
+ (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8))
+ (-5 *1 (-1128 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1025))
+ (-4 *6 (-1025)) (-5 *2 (-1145 *6)) (-5 *1 (-1143 *5 *6))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1073))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5 *7 *9)) (-4 *5 (-1025))
+ (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1196 *6 *8 *10)) (-5 *1 (-1191 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1149))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-1199 *6)) (-5 *1 (-1198 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5)) (-4 *5 (-825))
+ (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1129 *6))
+ (-5 *1 (-1198 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1205 *5 *6)) (-14 *5 (-1149))
+ (-4 *6 (-1025)) (-4 *8 (-1025)) (-5 *2 (-1205 *7 *8))
+ (-5 *1 (-1200 *5 *6 *7 *8)) (-14 *7 (-1149))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025))
+ (-4 *2 (-1208 *6)) (-5 *1 (-1206 *5 *4 *6 *2)) (-4 *4 (-1208 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1217 *5 *7 *9)) (-4 *5 (-1025))
+ (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1217 *6 *8 *10)) (-5 *1 (-1212 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1149))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025))
+ (-4 *2 (-1223 *6)) (-5 *1 (-1221 *5 *6 *4 *2)) (-4 *4 (-1223 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-1186))
+ (-4 *6 (-1186)) (-5 *2 (-1232 *6)) (-5 *1 (-1231 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1232 *5))
+ (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1232 *6))
+ (-5 *1 (-1231 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-1025))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-1255 *3 *4))
+ (-4 *4 (-823)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-572 *2)) (-4 *2 (-537)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 (-402 (-538))))
+ (-12 (-5 *3 (-1145 *1)) (-5 *4 (-1149)) (-4 *1 (-27))
+ (-5 *2 (-625 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-625 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-311 (-221))) (-5 *4 (-625 (-1149)))
+ (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1115 *3 *4))
+ (-14 *3 (-751)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235))))
+ ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3362 (-114)) (|:| |arg| (-625 (-868 *3)))))
+ (-5 *1 (-868 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-625 (-868 *4)))
+ (-5 *1 (-868 *4)) (-4 *4 (-1073)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1149))
+ (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-188))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1149))
+ (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-295)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34)))
+ (-4 *3 (-13 (-1073) (-34))))))
+(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3))
+ (-4 *3 (-1073)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *2 (-112)) (-5 *1 (-295)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34)))
+ (-4 *3 (-13 (-1073) (-34))))))
+(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *1 *1) (-4 *1 (-537))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-622
- (-2 (|:| |outval| *4) (|:| |outmult| (-538))
- (|:| |outvect| (-622 (-669 *4))))))
- (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 (-622 *4)) (-5 *1 (-759 *4))
- (-4 *4 (-13 (-358) (-825))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-669 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-170)) (-4 *2 (-1207 *4)) (-5 *1 (-175 *4 *2 *3))
- (-4 *3 (-705 *4 *2))))
+ (-497 (-402 (-552)) (-236 *4 (-751)) (-841 *3)
+ (-243 *3 (-402 (-552)))))
+ (-14 *3 (-625 (-1149))) (-14 *4 (-751)) (-5 *1 (-498 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-636 *3)) (-4 *3 (-1025)) (-4 *3 (-358))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-751)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358))
+ (-5 *1 (-639 *5 *2)) (-4 *2 (-636 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-4 *1 (-297))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1113 *4 *5)) (-4 *4 (-13 (-1073) (-34)))
+ (-4 *5 (-13 (-1073) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
+(((*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 (-402 (-922 *5)))) (-5 *4 (-1149)) (-5 *2 (-922 *5))
- (-5 *1 (-287 *5)) (-4 *5 (-446))))
+ (-12 (-5 *4 (-897)) (-5 *2 (-374)) (-5 *1 (-765 *3))
+ (-4 *3 (-598 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-669 (-402 (-922 *4)))) (-5 *2 (-922 *4)) (-5 *1 (-287 *4))
- (-4 *4 (-446))))
- ((*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3))))
+ (-12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2))
+ (-5 *2 (-374)) (-5 *1 (-765 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025))
+ (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 (-922 (-166 (-402 (-538)))))
- (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825)))))
+ (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 *2))
+ (-5 *2 (-374)) (-5 *1 (-765 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *4 (-1149))
- (-5 *2 (-922 (-166 (-402 (-538))))) (-5 *1 (-745 *5))
- (-4 *5 (-13 (-358) (-825)))))
+ (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544))
+ (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 (-922 (-402 (-538))))
- (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825)))))
+ (-12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827))
+ (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *4 (-1149))
- (-5 *2 (-922 (-402 (-538)))) (-5 *1 (-759 *5)) (-4 *5 (-13 (-358) (-825))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-622 (-751)))
- (-5 *1 (-758 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *6)) (-4 *7 (-926 *6 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1207 *9)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-302))
- (-4 *10 (-926 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-622 (-1143 *10)))
- (|:| |dterm| (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-622 *6)) (|:| |nlead| (-622 *10))))
- (-5 *1 (-758 *6 *7 *8 *9 *10)) (-5 *3 (-1143 *10)) (-5 *4 (-622 *6))
- (-5 *5 (-622 *10)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-4 *5 (-324 *4)) (-4 *6 (-1207 *5)) (-5 *2 (-622 *3))
- (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1207 *6)) (-14 *7 (-895)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4))))
- (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1131)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
- (-4 *4 (-1039 *6 *7 *8)) (-5 *2 (-1237)) (-5 *1 (-756 *6 *7 *8 *4 *5))
- (-4 *5 (-1045 *6 *7 *8 *4)))))
+ (-12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827))
+ (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1186)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3)))))
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-639 *4 *2))
+ (-4 *2 (-636 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-596 *1)) (-4 *1 (-297)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-552)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-114))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4)))))
- ((*1 *1 *1) (-5 *1 (-373)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7))
- (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4))))
- (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *2 (-1039 *4 *5 *6))
- (-5 *1 (-756 *4 *5 *6 *2 *3)) (-4 *3 (-1045 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-373))))
- ((*1 *1 *1 *1) (-4 *1 (-537)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
- ((*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-751)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 (-166 (-402 (-538)))))
- (-5 *2
- (-622
- (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-538))
- (|:| |outvect| (-622 (-669 (-166 *4)))))))
- (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 (-622 (-166 *4)))
- (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-742))))
-(((*1 *1 *1 *1) (-4 *1 (-467))) ((*1 *1 *1 *1) (-4 *1 (-742))))
-(((*1 *1 *1 *1) (-4 *1 (-742))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-740)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-740)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-922 (-538)))) (-5 *1 (-431))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-221))) (-5 *2 (-1076)) (-5 *1 (-740))))
+ (-12 (-5 *3 (-1131)) (-4 *4 (-827)) (-5 *1 (-905 *4 *2))
+ (-4 *2 (-425 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-538))) (-5 *2 (-1076)) (-5 *1 (-740)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))))
-(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))))
-(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221))
- (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221))
- (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-538)) (-5 *5 (-166 (-221))) (-5 *6 (-1131)) (-5 *4 (-221))
- (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1131)) (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *2 (-1011))
- (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1131)) (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *2 (-1011))
- (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221))
- (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221))
- (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-166 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011))
- (-5 *1 (-738)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011))
- (-5 *1 (-738)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538)))
- (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-738)))))
+ (-12 (-5 *3 (-1149)) (-5 *4 (-1131)) (-5 *2 (-311 (-552)))
+ (-5 *1 (-906)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1113 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1073) (-34))) (-4 *6 (-13 (-1073) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1114 *5 *6)))))
(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) (-5 *4 (-221))
- (-5 *2 (-1011)) (-5 *1 (-737)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538))
- (-5 *2 (-1011)) (-5 *1 (-737)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))))
- (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1011))
- (-5 *1 (-737)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538))
- (-5 *2 (-1011)) (-5 *1 (-737)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011))
- (-5 *1 (-737)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538))
- (-5 *2 (-1011)) (-5 *1 (-737)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-737)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-166 (-221)))) (-5 *2 (-1011))
- (-5 *1 (-737)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-112)) (-5 *5 (-669 (-166 (-221))))
- (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-112)) (-5 *5 (-669 (-221))) (-5 *2 (-1011))
- (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-221))
- (-5 *2 (-1011)) (-5 *1 (-736))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-383))
- (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-538)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) (-5 *4 (-221))
- (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011))
- (-5 *1 (-736)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-166 (-221))))
- (-5 *2 (-1011)) (-5 *1 (-735)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-166 (-221))))
- (-5 *2 (-1011)) (-5 *1 (-735)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-166 (-221)))) (-5 *2 (-1011))
- (-5 *1 (-735)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011))
- (-5 *1 (-735)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011))
- (-5 *1 (-735)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538))
- (-5 *2 (-1011)) (-5 *1 (-735)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-622 (-112))) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538)))
- (-5 *7 (-221)) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-735)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-669 (-538))) (-5 *5 (-112)) (-5 *7 (-669 (-221)))
- (-5 *3 (-538)) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-735)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-622 (-112))) (-5 *7 (-669 (-221))) (-5 *8 (-669 (-538)))
- (-5 *3 (-538)) (-5 *4 (-221)) (-5 *5 (-112)) (-5 *2 (-1011))
- (-5 *1 (-735)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011))
- (-5 *1 (-734)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3
- *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9)
- (-12 (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221))
- (-5 *7 (-669 (-538))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-538))
- (-5 *2 (-1011)) (-5 *1 (-734)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3
- *8)
- (-12 (-5 *5 (-669 (-221))) (-5 *6 (-112)) (-5 *7 (-669 (-538)))
- (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-538))
- (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *2 (-1011))
- (-5 *1 (-734)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221)))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1011))
- (-5 *1 (-734)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221)))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1011))
- (-5 *1 (-734)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221)))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1011))
- (-5 *1 (-734)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-538)) (-5 *5 (-112)) (-5 *6 (-669 (-221)))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-221))
- (-5 *2 (-1011)) (-5 *1 (-734)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011))
- (-5 *1 (-733)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-221))
- (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221))
- (-5 *7 (-669 (-538))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *6 (-221))
- (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221))
- (-5 *7 (-669 (-538))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011))
- (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011))
- (-5 *1 (-733)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011))
- (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011))
- (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011))
- (-5 *1 (-733)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538))) (-5 *3 (-538))
- (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011))
- (-5 *1 (-733)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011))
- (-5 *1 (-732)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011))
- (-5 *1 (-732)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *6 (-221))
- (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-732)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011))
- (-5 *1 (-732)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6
- *4)
- (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-655 (-221)))
- (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-731)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-1131))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1011))
- (-5 *1 (-731)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011))
- (-5 *1 (-731)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1011))
- (-5 *1 (-730))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-383))
- (-5 *2 (-1011)) (-5 *1 (-730)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-221))
- (-5 *2 (-1011)) (-5 *1 (-730)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1011))
- (-5 *1 (-730)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-538)) (-5 *5 (-1131)) (-5 *6 (-669 (-221)))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))))
- (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))
- (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221))
- (-5 *2 (-1011)) (-5 *1 (-730)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-538)) (-5 *5 (-1131)) (-5 *6 (-669 (-221)))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))))
- (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))
- (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221))
- (-5 *2 (-1011)) (-5 *1 (-730)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *3 (-221))
- (-5 *2 (-1011)) (-5 *1 (-730)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221))
- (-5 *2 (-1011)) (-5 *1 (-730)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1011))
- (-5 *1 (-729)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-729)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1011))
- (-5 *1 (-729)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-729)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-538))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011))
- (-5 *1 (-729)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-538))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011))
- (-5 *1 (-729)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-538))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011))
- (-5 *1 (-729)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-538))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011))
- (-5 *1 (-729)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-538))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011))
- (-5 *1 (-729)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *3 (-221))
- (-5 *2 (-1011)) (-5 *1 (-729)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-538))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011))
- (-5 *1 (-729)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-538))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011))
- (-5 *1 (-729)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011))
- (-5 *1 (-728)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011))
- (-5 *1 (-728)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011))
- (-5 *1 (-728)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011))
- (-5 *1 (-728)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1011))
- (-5 *1 (-727)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1011))
- (-5 *1 (-727)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-538))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011))
- (-5 *1 (-727)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-112)) (-5 *2 (-1011))
- (-5 *1 (-726)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-112)) (-5 *2 (-1011))
- (-5 *1 (-726)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-725 *3)) (-4 *3 (-170)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1143 *6)) (-5 *3 (-538)) (-4 *6 (-302)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-4 *7 (-827))
- (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-4 *8 (-302)) (-5 *2 (-622 (-751)))
- (-5 *1 (-723 *6 *7 *8 *9)) (-5 *5 (-751)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-538)) (-5 *4 (-400 *2)) (-4 *2 (-926 *7 *5 *6))
- (-5 *1 (-723 *5 *6 *7 *2)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-302)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-5 *5 (-622 (-622 *8)))
- (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773))
- (-5 *2
- (-2 (|:| |upol| (-1143 *8)) (|:| |Lval| (-622 *8))
- (|:| |Lfact| (-622 (-2 (|:| -4092 (-1143 *8)) (|:| -2493 (-538)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-723 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-622 *7)) (-5 *5 (-622 (-622 *8))) (-4 *7 (-827)) (-4 *8 (-302))
- (-4 *6 (-773)) (-4 *9 (-926 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart| (-622 (-2 (|:| -4092 (-1143 *9)) (|:| -2493 (-538)))))))
- (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1143 *9)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-538)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-302))
- (-4 *9 (-926 *8 *6 *7))
- (-5 *2 (-2 (|:| -2120 (-1143 *9)) (|:| |polval| (-1143 *8))))
- (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1143 *9)) (-5 *4 (-1143 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3))
- (-5 *1 (-723 *5 *4 *6 *3)) (-4 *3 (-926 *6 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-2 (|:| -4092 (-1143 *6)) (|:| -2493 (-538)))))
- (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-538))
- (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3))
- (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-926 *6 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-720 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-719)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-717 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-717 *2)) (-4 *2 (-1074))))
- ((*1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-1074)))))
+ (-12 (-4 *4 (-13 (-358) (-1014 (-402 *2)))) (-5 *2 (-552))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185))
- (-5 *2 (-622 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-717 *3)) (-4 *3 (-1074)))))
+ (|partial| -12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-773)) (-4 *5 (-1025)) (-4 *6 (-925 *5 *4 *2))
+ (-4 *2 (-827)) (-5 *1 (-926 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-358)
+ (-10 -8 (-15 -1683 ($ *6)) (-15 -1356 (*6 $))
+ (-15 -1368 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544))
+ (-5 *2 (-1149)) (-5 *1 (-1019 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-4 *5 (-1208 *4)) (-5 *2 (-625 (-633 (-402 *5))))
+ (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-402 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-625 (-114))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-291))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-307)) (-5 *1 (-291))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-291))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-1131))) (-5 *3 (-1131)) (-5 *2 (-307))
+ (-5 *1 (-291)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3))
+ (-4 *3 (-1073))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4353)) (-4 *1 (-231 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-1073))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-552)) (-4 *4 (-1073))
+ (-5 *1 (-718 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-5 *1 (-718 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34)))
+ (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1073)) (-4 *2 (-827))
+ (-5 *1 (-113 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234))))
+ ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-827))
+ (-4 *4 (-773)) (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-311 (-552))) (-5 *1 (-1092))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-1171))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149)))
+ (-4 *6 (-13 (-544) (-1014 *5))) (-4 *5 (-544))
+ (-5 *2 (-625 (-625 (-289 (-402 (-928 *6)))))) (-5 *1 (-1015 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
+(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1149)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-1113 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1073) (-34))) (-4 *5 (-13 (-1073) (-34)))
+ (-5 *1 (-1114 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-1113 *3 *4))) (-4 *3 (-13 (-1073) (-34)))
+ (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-488)))))
+(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171)))))
+ ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839))))
+ ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399))))
+ ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897))))
+ ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679))))
+ ((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-827)) (-4 *3 (-1073)))))
+(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234))))
+ ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-751))))
+ (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4))))
+ (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-596 *5)) (-4 *5 (-425 *4)) (-4 *4 (-1014 (-552)))
+ (-4 *4 (-13 (-827) (-544))) (-5 *2 (-1145 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-596 *1)) (-4 *1 (-1025)) (-4 *1 (-297))
+ (-5 *2 (-1145 *1)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-751))))
+ (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112))
+ (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-751)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-545)) (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-713 *5 *4 *6 *2))
- (-5 *3 (-402 (-922 *6))) (-4 *5 (-773))
- (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34)))
+ (-4 *4 (-13 (-1073) (-34))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1143 (-922 *6))) (-4 *6 (-545))
- (-4 *2 (-926 (-402 (-922 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2))
- (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1143 *2)) (-4 *2 (-926 (-402 (-922 *6)) *5 *4))
- (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773))
- (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *6 (-545)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)))))
- (-4 *6 (-545)) (-5 *2 (-2 (|:| -2733 (-922 *6)) (|:| -2173 (-922 *6))))
- (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-926 (-402 (-922 *6)) *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-538))
- (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8))
- (-5 *1 (-135 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *9)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773))
- (-4 *8 (-1025)) (-4 *2 (-926 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-773)) (-4 *4 (-926 *8 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1207 *5))
- (-5 *1 (-708 *5 *2)) (-4 *5 (-358)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-181)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-625 (-1 *4 (-625 *4)))) (-4 *4 (-1073))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1073))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-625 (-1 *4 (-625 *4))))
+ (-5 *1 (-113 *4)) (-4 *4 (-1073)))))
+(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234))))
+ ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-275)))))
+(((*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-552))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1131))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-499))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-577))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-472))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-136))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1139))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-608))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1069))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1063))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1047))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-946))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-178))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1012))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-306))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-651))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-152))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-518))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1243))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1040))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-510))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-661))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-95))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1088))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-132))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1242))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-656))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-214))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-517))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1154)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1025)) (-4 *4 (-1208 *3)) (-5 *1 (-162 *3 *4 *2))
+ (-4 *2 (-1208 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34)))
+ (-4 *3 (-13 (-1073) (-34))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| -3425 (-400 *3)) (|:| |special| (-400 *3))))
- (-5 *1 (-708 *5 *3)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4))
+ (-4 *4 (-1186)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234))))
+ ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
- (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025))
- (-14 *4 (-622 (-1149)))))
+ (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1186))))
((*1 *1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827)))
- (-14 *4 (-622 (-1149)))))
- ((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-331 *3 *4 *5 *2)) (-4 *3 (-358)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-4 *2 (-337 *3 *4 *5))))
+ (-12 (-5 *2 (-928 (-374))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
((*1 *1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-170))))
- ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-705 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1231 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358))
- (-4 *1 (-705 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1207 *5)) (-5 *2 (-669 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545))))
- ((*1 *1 *1) (|partial| -4 *1 (-703))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545))))
- ((*1 *1 *1) (|partial| -4 *1 (-703))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1212 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5))
- (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538))))
- ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-400 *3)) (-4 *3 (-545))))
- ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-679))))
+ (-12 (-5 *2 (-402 (-928 (-374)))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-928 (-552))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-402 (-928 (-552)))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-311 (-552))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 *2))
+ (-14 *4 (-625 *2)) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5))
+ (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-928 (-552))))) (-4 *1 (-379))))
+ ((*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-928 (-374))))) (-4 *1 (-379))))
+ ((*1 *1 *2) (-12 (-5 *2 (-669 (-928 (-552)))) (-4 *1 (-379))))
+ ((*1 *1 *2) (-12 (-5 *2 (-669 (-928 (-374)))) (-4 *1 (-379))))
+ ((*1 *1 *2) (-12 (-5 *2 (-669 (-311 (-552)))) (-4 *1 (-379))))
+ ((*1 *1 *2) (-12 (-5 *2 (-669 (-311 (-374)))) (-4 *1 (-379))))
+ ((*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-552)))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-374)))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-928 (-552))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-928 (-374))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1232 (-402 (-928 (-552))))) (-4 *1 (-435))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1232 (-402 (-928 (-374))))) (-4 *1 (-435))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1232 (-928 (-552)))) (-4 *1 (-435))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1232 (-928 (-374)))) (-4 *1 (-435))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1232 (-311 (-552)))) (-4 *1 (-435))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1232 (-311 (-374)))) (-4 *1 (-435))))
((*1 *2 *1)
- (-12 (-4 *2 (-1074)) (-5 *1 (-694 *3 *2 *4)) (-4 *3 (-827))
- (-14 *4
- (-1 (-112) (-2 (|:| -2492 *3) (|:| -2493 *2))
- (-2 (|:| -2492 *3) (|:| -2493 *2)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-363))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345))))
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-625 (-1067 (-820 (-221)))))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
+ (-5 *1 (-749))))
((*1 *2 *1)
- (-12 (-4 *2 (-827)) (-5 *1 (-694 *2 *3 *4)) (-4 *3 (-1074))
- (-14 *4
- (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *3))
- (-2 (|:| -2492 *2) (|:| -2493 *3)))))))
-(((*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1025)) (-5 *2 (-1231 *3)) (-5 *1 (-693 *3 *4))
- (-4 *4 (-1207 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1025)) (-5 *1 (-693 *3 *4))
- (-4 *4 (-1207 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1025)) (-5 *2 (-1231 *3)) (-5 *1 (-693 *3 *4))
- (-4 *4 (-1207 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4))
- (-4 *4 (-1207 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4))
- (-4 *4 (-1207 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-345)) (-4 *2 (-1025)) (-5 *1 (-693 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-622 (-1143 *13))) (-5 *3 (-1143 *13))
- (-5 *4 (-622 *12)) (-5 *5 (-622 *10)) (-5 *6 (-622 *13))
- (-5 *7 (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| *13)))))
- (-5 *8 (-622 (-751))) (-5 *9 (-1231 (-622 (-1143 *10)))) (-4 *12 (-827))
- (-4 *10 (-302)) (-4 *13 (-926 *10 *11 *12)) (-4 *11 (-773))
- (-5 *1 (-688 *11 *12 *10 *13)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-622 *11)) (-5 *5 (-622 (-1143 *9))) (-5 *6 (-622 *9))
- (-5 *7 (-622 *12)) (-5 *8 (-622 (-751))) (-4 *11 (-827)) (-4 *9 (-302))
- (-4 *12 (-926 *9 *10 *11)) (-4 *10 (-773)) (-5 *2 (-622 (-1143 *12)))
- (-5 *1 (-688 *10 *11 *9 *12)) (-5 *3 (-1143 *12)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-622 (-1143 *11))) (-5 *3 (-1143 *11))
- (-5 *4 (-622 *10)) (-5 *5 (-622 *8)) (-5 *6 (-622 (-751)))
- (-5 *7 (-1231 (-622 (-1143 *8)))) (-4 *10 (-827)) (-4 *8 (-302))
- (-4 *11 (-926 *8 *9 *10)) (-4 *9 (-773)) (-5 *1 (-688 *9 *10 *8 *11)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *3 *5 *6 *7))
- (-4 *3 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *7 (-1185))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *3 *5 *6))
- (-4 *3 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-5 *1 (-788))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221)))
+ (|:| |lb| (-625 (-820 (-221))))
+ (|:| |cf| (-625 (-311 (-221))))
+ (|:| |ub| (-625 (-820 (-221))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-625 (-311 (-221))))
+ (|:| -2071 (-625 (-221)))))))
+ (-5 *1 (-818))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-625 (-311 (-221))))
+ (|:| |constraints|
+ (-625
+ (-2 (|:| |start| (-221)) (|:| |finish| (-221))
+ (|:| |grid| (-751)) (|:| |boundaryType| (-552))
+ (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221))))))
+ (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131))
+ (|:| |tol| (-221))))
+ (-5 *1 (-874))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2)
+ (-1523
+ (-12 (-5 *2 (-928 *3))
+ (-12 (-2960 (-4 *3 (-38 (-402 (-552)))))
+ (-2960 (-4 *3 (-38 (-552)))) (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773))
+ (-4 *5 (-827)))
+ (-12 (-5 *2 (-928 *3))
+ (-12 (-2960 (-4 *3 (-537))) (-2960 (-4 *3 (-38 (-402 (-552)))))
+ (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773))
+ (-4 *5 (-827)))
+ (-12 (-5 *2 (-928 *3))
+ (-12 (-2960 (-4 *3 (-968 (-552)))) (-4 *3 (-38 (-402 (-552))))
+ (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773))
+ (-4 *5 (-827)))))
+ ((*1 *1 *2)
+ (-1523
+ (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5))
+ (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552)))
+ (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))
+ (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025))
+ (-4 *4 (-773)) (-4 *5 (-827)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-897)) (-5 *1 (-1008 *2))
+ (-4 *2 (-13 (-1073) (-10 -8 (-15 * ($ $ $))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *4 *5 *6))
- (-4 *4 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)))))
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-928 (-374))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-402 (-928 (-374)))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-928 (-552))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-402 (-928 (-552)))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-311 (-552))) (-5 *1 (-334 *3 *4 *5))
+ (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5))
+ (-14 *3 (-625 *2)) (-14 *4 (-625 *2)) (-4 *5 (-382))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-311 *5)) (-4 *5 (-382))
+ (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-669 (-402 (-928 (-552))))) (-4 *1 (-379))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-669 (-402 (-928 (-374))))) (-4 *1 (-379))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-669 (-928 (-552)))) (-4 *1 (-379))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-669 (-928 (-374)))) (-4 *1 (-379))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-669 (-311 (-552)))) (-4 *1 (-379))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-669 (-311 (-374)))) (-4 *1 (-379))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-402 (-928 (-552)))) (-4 *1 (-391))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-402 (-928 (-374)))) (-4 *1 (-391))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-552))) (-4 *1 (-391))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-374))) (-4 *1 (-391))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-552))) (-4 *1 (-391))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-4 *1 (-391))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1232 (-402 (-928 (-552))))) (-4 *1 (-435))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1232 (-402 (-928 (-374))))) (-4 *1 (-435))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1232 (-928 (-552)))) (-4 *1 (-435))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1232 (-928 (-374)))) (-4 *1 (-435))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1232 (-311 (-552)))) (-4 *1 (-435))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1232 (-311 (-374)))) (-4 *1 (-435))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1208 *5))
+ (-5 *2 (-1145 (-1145 *4))) (-5 *1 (-757 *4 *5 *6 *3 *7))
+ (-4 *3 (-1208 *6)) (-14 *7 (-897))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5))
+ (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *1 (-952 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2)
+ (|partial| -1523
+ (-12 (-5 *2 (-928 *3))
+ (-12 (-2960 (-4 *3 (-38 (-402 (-552)))))
+ (-2960 (-4 *3 (-38 (-552)))) (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773))
+ (-4 *5 (-827)))
+ (-12 (-5 *2 (-928 *3))
+ (-12 (-2960 (-4 *3 (-537))) (-2960 (-4 *3 (-38 (-402 (-552)))))
+ (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773))
+ (-4 *5 (-827)))
+ (-12 (-5 *2 (-928 *3))
+ (-12 (-2960 (-4 *3 (-968 (-552)))) (-4 *3 (-38 (-402 (-552))))
+ (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773))
+ (-4 *5 (-827)))))
+ ((*1 *1 *2)
+ (|partial| -1523
+ (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5))
+ (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552)))
+ (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))
+ (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))))
+ (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5))
+ (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))
+ (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4))))
+ (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1073) (-34)))
+ (-4 *2 (-13 (-1073) (-34))))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-686 *3 *4))
- (-4 *3 (-1185)) (-4 *4 (-1185)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-1149)) (-5 *1 (-527))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-622 (-1149))) (-5 *2 (-1149)) (-5 *1 (-685 *3))
- (-4 *3 (-598 (-527))))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4))
+ (-4 *4 (-1186)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234))))
+ ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-684 *3))
- (-4 *3 (-598 (-527)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-684 *3))
- (-4 *3 (-598 (-527))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *4 *5 *6 *7))
- (-4 *4 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *7 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-681))))
- ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-681)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))
- (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-668 *3 *4 *5 *6))
- (-4 *6 (-666 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-680 *3))
- (-4 *3 (-302)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538))))
- ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-679)))))
-(((*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399))))
- ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895))))
- ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679))))
- ((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679))))
- ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))))
-(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679))))
- ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-221) (-221) (-221)))
- (-5 *4 (-1 (-221) (-221) (-221) (-221)))
- (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *1 (-677)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221)))
- (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-221) (-221) (-221)))
- (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined"))
- (-5 *5 (-1062 (-221))) (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221)))
- (-5 *1 (-677)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-221) (-221) (-221)))
- (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined"))
- (-5 *5 (-1062 (-221))) (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221)))
- (-5 *1 (-677))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-221)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1 (-919 (-221)) (-221) (-221)))
- (-5 *4 (-1062 (-221))) (-5 *5 (-622 (-256))) (-5 *1 (-677)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-2 (|:| |deg| (-751)) (|:| -2905 *5)))) (-4 *5 (-1207 *4))
- (-4 *4 (-345)) (-5 *2 (-622 *5)) (-5 *1 (-212 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-2 (|:| -4092 *5) (|:| -4307 (-538))))) (-5 *4 (-538))
- (-4 *5 (-1207 *4)) (-5 *2 (-622 *5)) (-5 *1 (-676 *5)))))
+ (-12 (-5 *3 (-625 (-1232 *5))) (-5 *4 (-552)) (-5 *2 (-1232 *5))
+ (-5 *1 (-1005 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)))))
+(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-368 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34)))
+ (-4 *4 (-13 (-1073) (-34))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-538)) (-5 *2 (-622 (-2 (|:| -4092 *3) (|:| -4307 *4))))
- (-5 *1 (-676 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-1074))))
- ((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1074)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-675 *3)) (-4 *3 (-1074))
- (-5 *2 (-622 (-2 (|:| -2191 *3) (|:| -2069 (-751))))))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))))
+(((*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *1) (-5 *1 (-1234))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-751)) (-4 *6 (-1074)) (-4 *7 (-876 *6)) (-5 *2 (-669 *7))
- (-5 *1 (-672 *6 *7 *3 *4)) (-4 *3 (-367 *7))
- (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4353)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *4 (-622 (-1149)))
- (-5 *2 (-669 (-309 (-221)))) (-5 *1 (-201))))
+ (-12 (-5 *4 (-112)) (-5 *5 (-552)) (-4 *6 (-358)) (-4 *6 (-363))
+ (-4 *6 (-1025)) (-5 *2 (-625 (-625 (-669 *6)))) (-5 *1 (-1005 *6))
+ (-5 *3 (-625 (-669 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1025))
+ (-5 *2 (-625 (-625 (-669 *4)))) (-5 *1 (-1005 *4))
+ (-5 *3 (-625 (-669 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1074)) (-4 *6 (-876 *5)) (-5 *2 (-669 *6))
- (-5 *1 (-672 *5 *6 *3 *4)) (-4 *3 (-367 *6))
- (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-751)) (-4 *6 (-1074)) (-4 *3 (-876 *6)) (-5 *2 (-669 *3))
- (-5 *1 (-672 *6 *3 *7 *4)) (-4 *7 (-367 *3))
- (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4353)))))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025))
+ (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5))
+ (-5 *3 (-625 (-669 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-897)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025))
+ (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5))
+ (-5 *3 (-625 (-669 *5))))))
+(((*1 *1)
+ (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4))
+ (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
+ ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-537)))
+ ((*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34)))
+ (-4 *3 (-13 (-1073) (-34))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34)))
+ (-4 *3 (-13 (-1073) (-34))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1074)) (-4 *3 (-876 *5)) (-5 *2 (-669 *3))
- (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-367 *3))
- (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1074)) (-4 *2 (-876 *4)) (-5 *1 (-672 *4 *2 *5 *3))
- (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4353)))))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-552)) (-5 *1 (-480 *4))
+ (-4 *4 (-1208 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-625 (-258))) (-5 *1 (-1234))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1131)) (-5 *1 (-1234))))
+ ((*1 *1 *1) (-5 *1 (-1234))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-112)) (-5 *1 (-868 *4))
+ (-4 *4 (-1073)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1074)) (-4 *2 (-876 *5)) (-5 *1 (-672 *5 *2 *3 *4))
- (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))))
+ (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-552)) (-4 *5 (-358))
+ (-4 *5 (-1025)) (-5 *2 (-112)) (-5 *1 (-1005 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-669 *4))) (-4 *4 (-358)) (-4 *4 (-1025))
+ (-5 *2 (-112)) (-5 *1 (-1005 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1073) (-34))) (-4 *6 (-13 (-1073) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1113 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1074)) (-4 *3 (-876 *5)) (-5 *2 (-1231 *3))
- (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-367 *3))
- (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))))
-(((*1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))
- ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903))
+ (-5 *1 (-901 *3)) (-4 *3 (-598 (-528)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149)) (-5 *2 (-903)) (-5 *1 (-901 *3))
+ (-4 *3 (-598 (-528)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-903))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221)))
+ (-5 *1 (-903)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-545)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))
- (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-538)) (-4 *3 (-170)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3))
- (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-666 *3 *5 *6)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-538)) (-4 *3 (-170)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3))
- (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-666 *3 *5 *6)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-538)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))
- (-5 *1 (-668 *4 *5 *6 *2)) (-4 *2 (-666 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074))
- (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-664 *4 *5 *6)))))
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1208 (-552))) (-5 *1 (-480 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-1137 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1234))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1234)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-52)) (-5 *1 (-868 *4))
+ (-4 *4 (-1073)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-625 (-669 *6))) (-5 *4 (-112)) (-5 *5 (-552))
+ (-5 *2 (-669 *6)) (-5 *1 (-1005 *6)) (-4 *6 (-358)) (-4 *6 (-1025))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 (-669 *4))) (-5 *2 (-669 *4)) (-5 *1 (-1005 *4))
+ (-4 *4 (-358)) (-4 *4 (-1025))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-552)) (-5 *2 (-669 *5))
+ (-5 *1 (-1005 *5)) (-4 *5 (-358)) (-4 *5 (-1025)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-664 *4 *5 *6)) (-4 *4 (-1074)))))
+ (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4))
+ (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186))
+ (-4 *4 (-368 *2)) (-4 *5 (-368 *2))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3))
+ (-4 *3 (-1186))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3))
+ (-4 *3 (-1186))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-751)) (-5 *1 (-209 *4 *2)) (-14 *4 (-897))
+ (-4 *2 (-1073))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1073))
+ (-4 *2 (-1186))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1149)) (-5 *1 (-614))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1199 (-552))) (|has| *1 (-6 -4354)) (-4 *1 (-631 *2))
+ (-4 *2 (-1186))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-625 (-552))) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4354)) (-4 *1 (-986 *2))
+ (-4 *2 (-1186))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2))
+ (-4 *2 (-1186))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3))
+ (-4 *3 (-1186))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2))
+ (-4 *2 (-1186)))))
+(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1073) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-13 (-1073) (-34))))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131))
+ (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1208 (-552))) (-5 *1 (-480 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-664 *4 *5 *6)) (-4 *5 (-1074)))))
+ (-12 (-5 *3 (-1232 (-669 *4))) (-4 *4 (-170))
+ (-5 *2 (-1232 (-669 (-928 *4)))) (-5 *1 (-185 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-751)) (-5 *3 (-919 *4)) (-4 *1 (-1107 *4))
+ (-4 *4 (-1025))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-751)) (-5 *4 (-919 (-221))) (-5 *2 (-1237))
+ (-5 *1 (-1234)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-625 (-1149))) (|:| |pred| (-52))))
+ (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6)))))
+ (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-1232 *5)) (-4 *5 (-302))
+ (-4 *5 (-1025)) (-5 *2 (-669 *5)) (-5 *1 (-1005 *5)))))
+(((*1 *2) (-12 (-5 *2 (-820 (-552))) (-5 *1 (-526))))
+ ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1074)) (-4 *4 (-1074)) (-4 *6 (-1074))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *5 *4 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-663 *4 *5)))))
+ (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149)))
+ (-4 *5 (-544)) (-5 *2 (-625 (-625 (-928 *5)))) (-5 *1 (-1155 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1057 *3)) (-4 *3 (-131)))))
+(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *1 *1) (-4 *1 (-1112))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131))
+ (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461))))
+ ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461))))
+ ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1208 (-552))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-751)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-183)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-5 *2 (-1 *5))
- (-5 *1 (-663 *4 *5)))))
+ (-12 (-5 *3 (-625 (-669 *5))) (-4 *5 (-302)) (-4 *5 (-1025))
+ (-5 *2 (-1232 (-1232 *5))) (-5 *1 (-1005 *5)) (-5 *4 (-1232 *5)))))
+(((*1 *2) (-12 (-5 *2 (-820 (-552))) (-5 *1 (-526))))
+ ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1073)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-552) (-552))) (-5 *1 (-356 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-751) (-751))) (-5 *1 (-381 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-663 *4 *3)) (-4 *4 (-1074))
- (-4 *3 (-1074)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-751) *2)) (-5 *4 (-751)) (-4 *2 (-1074))
- (-5 *1 (-658 *2))))
- ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-751) *3)) (-4 *3 (-1074)) (-5 *1 (-662 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-662 *2)) (-4 *2 (-1074)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-662 *2)) (-4 *2 (-1074))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-622 *5) (-622 *5))) (-5 *4 (-538)) (-5 *2 (-622 *5))
- (-5 *1 (-662 *5)) (-4 *5 (-1074)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-622 (-1186))) (-5 *3 (-1186)) (-5 *1 (-661)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074))
- (-4 *2 (-1074)) (-5 *1 (-660 *5 *6 *2)))))
-(((*1 *2 *3 *2) (-12 (-5 *1 (-659 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))))
-(((*1 *2 *2 *3) (-12 (-5 *1 (-659 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-751)) (-4 *2 (-1074)) (-5 *1 (-658 *2)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-1065 (-922 (-538)))) (-5 *2 (-325))
- (-5 *1 (-327))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1074)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1074)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1025)) (-4 *2 (-1074)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1074)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-655 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1231 (-751))) (-5 *1 (-655 *3)) (-4 *3 (-1074)))))
-(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-112)) (-5 *1 (-652 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *5)) (-5 *4 (-895)) (-4 *5 (-827))
- (-5 *2 (-57 (-622 (-652 *5)))) (-5 *1 (-652 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *5)) (-5 *4 (-895)) (-4 *5 (-827)) (-5 *2 (-622 (-652 *5)))
- (-5 *1 (-652 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *7)) (-4 *7 (-827))
- (-4 *8 (-926 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1231 (-402 *8)) "failed"))
- (|:| -2128 (-622 (-1231 (-402 *8))))))
- (-5 *1 (-649 *5 *6 *7 *8)))))
+ (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4))
+ (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *1 *1) (-4 *1 (-1112))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354))))
- (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-112))
- (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-5 *2 (-112))
- (-5 *1 (-648 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-622 (-1143 *4))) (-5 *3 (-1143 *4)) (-4 *4 (-886))
- (-5 *1 (-643 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-640 *4 *2))
- (-4 *2 (-638 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-638 *3)) (-4 *3 (-1025)) (-4 *3 (-358))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-751)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-640 *5 *2))
- (-4 *2 (-638 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-640 *4 *2))
- (-4 *2 (-638 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-4 *5 (-1207 *4)) (-5 *2 (-622 (-635 (-402 *5)))) (-5 *1 (-639 *4 *5))
- (-5 *3 (-635 (-402 *5))))))
-(((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-631 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-631 *3)) (-4 *3 (-1185))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-631 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4))))
- (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4)))) (-4 *3 (-1074))
- (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185))))
- ((*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-367 *2)) (-4 *2 (-1185))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1)
- (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23))
- (-14 *5 *4))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-478 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1186)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-625 (-669 *4))) (-5 *2 (-669 *4)) (-4 *4 (-1025))
+ (-5 *1 (-1005 *4)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-538) (-538))) (-5 *1 (-356 *3)) (-4 *3 (-1074))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-130))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-751) (-751))) (-5 *1 (-381 *3)) (-4 *3 (-1074))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-356 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5))
- (-4 *3 (-1074)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-356 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-381 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-381 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-629 *3 *4 *5)) (-4 *4 (-23))
- (-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1074)))))
-(((*1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-622 *3)) (-4 *3 (-1185)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-669 *1)) (-5 *4 (-1231 *1)) (-4 *1 (-621 *5)) (-4 *5 (-1025))
- (-5 *2 (-2 (|:| -1700 (-669 *5)) (|:| |vec| (-1231 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-669 *1)) (-4 *1 (-621 *4)) (-4 *4 (-1025)) (-5 *2 (-669 *4)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-629 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2)
+ (-12 (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4)))
+ (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1112))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 *5)) (-4 *5 (-358))
- (-4 *5 (-545)) (-5 *2 (-1231 *5)) (-5 *1 (-620 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 *5)) (-3676 (-4 *5 (-358)))
- (-4 *5 (-545)) (-5 *2 (-1231 (-402 *5))) (-5 *1 (-620 *5 *4)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461))))
+ ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461))))
+ ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-625 (-499))) (-5 *2 (-499)) (-5 *1 (-477)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1231 *5)) (-4 *5 (-621 *4)) (-4 *4 (-545))
- (-5 *2 (-1231 *4)) (-5 *1 (-620 *4 *5)))))
+ (-12 (-4 *4 (-1186)) (-5 *2 (-751)) (-5 *1 (-180 *4 *3))
+ (-4 *3 (-654 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-625 (-275))) (-5 *1 (-275))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1154)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-751)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-751)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1231 *5)) (-4 *5 (-621 *4)) (-4 *4 (-545)) (-5 *2 (-112))
- (-5 *1 (-620 *4 *5)))))
+ (-12 (-5 *3 (-1232 (-1232 *4))) (-4 *4 (-1025)) (-5 *2 (-669 *4))
+ (-5 *1 (-1005 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1112))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-288 (-819 *3))) (-4 *3 (-13 (-27) (-1171) (-416 *5)))
- (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-243 *3 *4))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-552))) (-14 *3 (-625 (-1149)))
+ (-5 *1 (-448 *3 *4 *5)) (-4 *4 (-1025))
+ (-4 *5 (-234 (-1471 *3) (-751)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-552))) (-5 *1 (-475 *3 *4))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-1025)))))
+(((*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)) (-4 *2 (-827))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827))
+ (-4 *6 (-1039 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -4189 *1) (|:| |upper| *1)))
+ (-4 *1 (-952 *4 *5 *3 *6)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1186)) (-5 *1 (-180 *3 *2))
+ (-4 *2 (-654 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
- (-3 (-819 *3)
- (-2 (|:| |leftHandLimit| (-3 (-819 *3) #1="failed"))
- (|:| |rightHandLimit| (-3 (-819 *3) #1#)))
- "failed"))
- (-5 *1 (-618 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1131))
- (-4 *3 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-819 *3))
- (-5 *1 (-618 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-288 (-819 (-922 *5)))) (-4 *5 (-446))
+ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221))
+ (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
+ (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
+ (-5 *3 (-625 (-258))) (-5 *1 (-256))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-3 (-819 (-402 (-922 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 *5))) #2="failed"))
- (|:| |rightHandLimit| (-3 (-819 (-402 (-922 *5))) #2#)))
- #3="failed"))
- (-5 *1 (-619 *5)) (-5 *3 (-402 (-922 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-288 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-446))
+ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221))
+ (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
+ (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
+ (-5 *1 (-258))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-552)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221))
+ (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
+ (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
+ (-5 *2 (-1237)) (-5 *1 (-1234))))
+ ((*1 *2 *1)
+ (-12
(-5 *2
- (-3 (-819 *3)
- (-2 (|:| |leftHandLimit| (-3 (-819 *3) #2#))
- (|:| |rightHandLimit| (-3 (-819 *3) #2#)))
- #3#))
- (-5 *1 (-619 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-288 (-402 (-922 *6)))) (-5 *5 (-1131))
- (-5 *3 (-402 (-922 *6))) (-4 *6 (-446)) (-5 *2 (-819 *3))
- (-5 *1 (-619 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-288 (-812 *3)))
- (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-812 *3))
- (-5 *1 (-618 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-288 (-812 (-922 *5)))) (-4 *5 (-446))
- (-5 *2 (-812 (-402 (-922 *5)))) (-5 *1 (-619 *5)) (-5 *3 (-402 (-922 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-288 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-446))
- (-5 *2 (-812 *3)) (-5 *1 (-619 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-614)))))
-(((*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1074))))
- ((*1 *1 *1) (-5 *1 (-614))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-446))
- (-5 *2 (-475 *4 *5)) (-5 *1 (-613 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 (-243 *4 *5))) (-5 *2 (-243 *4 *5)) (-14 *4 (-622 (-1149)))
- (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-622 (-475 *4 *5))) (-5 *3 (-841 *4)) (-14 *4 (-622 (-1149)))
- (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-243 *5 *6))) (-4 *6 (-446))
- (-5 *2 (-243 *5 *6)) (-14 *5 (-622 (-1149))) (-5 *1 (-613 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-256))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *3 (-622 (-256)))
- (-5 *1 (-257))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-475 *5 *6))) (-5 *3 (-475 *5 *6)) (-14 *5 (-622 (-1149)))
- (-4 *6 (-446)) (-5 *2 (-1231 *6)) (-5 *1 (-613 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-622 (-475 *3 *4))) (-14 *3 (-622 (-1149))) (-4 *4 (-446))
- (-5 *1 (-613 *3 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-622 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-622 (-1149)))
- (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-622 (-1149)))
- (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-475 *4 *5))) (-14 *4 (-622 (-1149))) (-4 *5 (-446))
- (-5 *2 (-622 (-243 *4 *5))) (-5 *1 (-613 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-622 (-1149))) (-4 *5 (-446))
- (-5 *2 (-2 (|:| |glbase| (-622 (-243 *4 *5))) (|:| |glval| (-622 (-538)))))
- (-5 *1 (-613 *4 *5)) (-5 *3 (-622 (-243 *4 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-475 *4 *5))) (-14 *4 (-622 (-1149))) (-4 *5 (-446))
- (-5 *2 (-2 (|:| |gblist| (-622 (-243 *4 *5))) (|:| |gvlist| (-622 (-538)))))
- (-5 *1 (-613 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978) (-1171)))))
- ((*1 *1 *1) (-4 *1 (-612))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978) (-1171)))))
- ((*1 *1 *1) (-4 *1 (-612))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978) (-1171)))))
- ((*1 *1 *1) (-4 *1 (-612))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978) (-1171)))))
- ((*1 *1 *1) (-4 *1 (-612))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978) (-1171)))))
- ((*1 *1 *1) (-4 *1 (-612))))
+ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221))
+ (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
+ (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
+ (-5 *1 (-1234))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978) (-1171)))))
- ((*1 *1 *1) (-4 *1 (-612))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112))
- (-5 *1 (-32 *4 *5)) (-4 *5 (-416 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112))
- (-5 *1 (-156 *4 *5)) (-4 *5 (-416 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112))
- (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-416 *4) (-978)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-292 *4)) (-4 *4 (-293))))
- ((*1 *2 *3) (-12 (-4 *1 (-293)) (-5 *3 (-113)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-415 *4 *5))
- (-4 *4 (-416 *5))))
+ (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3))
+ (-4 *3 (-1073)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-881 (-552))) (-5 *4 (-552)) (-5 *2 (-669 *4))
+ (-5 *1 (-1004 *5)) (-4 *5 (-1025))))
((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112))
- (-5 *1 (-426 *4 *5)) (-4 *5 (-416 *4))))
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1004 *4))
+ (-4 *4 (-1025))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-881 (-552)))) (-5 *4 (-552))
+ (-5 *2 (-625 (-669 *4))) (-5 *1 (-1004 *5)) (-4 *5 (-1025))))
((*1 *2 *3)
- (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112))
- (-5 *1 (-611 *4 *5)) (-4 *5 (-13 (-416 *4) (-978) (-1171))))))
+ (-12 (-5 *3 (-625 (-625 (-552)))) (-5 *2 (-625 (-669 (-552))))
+ (-5 *1 (-1004 *4)) (-4 *4 (-1025)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
- (-14 *6 (-622 (-1149)))
- (-5 *2 (-622 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6)))))
- (-5 *1 (-610 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
- (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-610 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-622 (-922 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4))
- (-14 *4 (-622 (-1149)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-441 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5))
- (-4 *5 (-926 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-622 (-760 *3 (-841 *4)))) (-4 *3 (-446))
- (-14 *4 (-622 (-1149))) (-5 *1 (-610 *3 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-622 (-922 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4))
- (-14 *4 (-622 (-1149)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-622 (-760 *3 (-841 *4)))) (-4 *3 (-446))
- (-14 *4 (-622 (-1149))) (-5 *1 (-610 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-446)) (-5 *2 (-112))
- (-5 *1 (-355 *4 *5)) (-14 *5 (-622 (-1149)))))
+ (-12 (-5 *3 (-669 *1)) (-5 *4 (-1232 *1)) (-4 *1 (-621 *5))
+ (-4 *5 (-1025))
+ (-5 *2 (-2 (|:| -2351 (-669 *5)) (|:| |vec| (-1232 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-622 (-760 *4 (-841 *5)))) (-4 *4 (-446))
- (-14 *5 (-622 (-1149))) (-5 *2 (-112)) (-5 *1 (-610 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *4)) (-4 *4 (-827)) (-5 *2 (-622 (-644 *4 *5)))
- (-5 *1 (-609 *4 *5 *6)) (-4 *5 (-13 (-170) (-698 (-402 (-538)))))
- (-14 *6 (-895)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| |k| (-652 *3)) (|:| |c| *4))))
- (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
- (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-622 (-288 *4))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
- (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -2767 (-622 (-2 (|:| |irr| *10) (|:| -2487 (-538)))))))
- (-5 *6 (-622 *3)) (-5 *7 (-622 *8)) (-4 *8 (-827)) (-4 *3 (-302))
- (-4 *10 (-926 *3 *9 *8)) (-4 *9 (-773))
- (-5 *2
- (-2 (|:| |polfac| (-622 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-622 (-1143 *3)))))
- (-5 *1 (-607 *8 *9 *3 *10)) (-5 *4 (-622 (-1143 *3))))))
+ (-12 (-5 *3 (-669 *1)) (-4 *1 (-621 *4)) (-4 *4 (-1025))
+ (-5 *2 (-669 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4))
+ (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1112))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-751)) (-5 *5 (-622 *3)) (-4 *3 (-302)) (-4 *6 (-827))
- (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-607 *6 *7 *3 *8))
- (-4 *8 (-926 *3 *7 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5))
- (-5 *1 (-606 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1045 *3 *4 *5 *6))
- (-4 *2 (-1082 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2)))))
-(((*1 *2 *2 *3 *3)
+ (-12 (-5 *5 (-1067 *3)) (-4 *3 (-925 *7 *6 *4)) (-4 *6 (-773))
+ (-4 *4 (-827)) (-4 *7 (-544))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552))))
+ (-5 *1 (-579 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-544))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552))))
+ (-5 *1 (-579 *5 *4 *6 *3)) (-4 *3 (-925 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *2 *2 *3)
(-12 (-5 *3 (-1149))
- (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-604 *4 *2)) (-4 *2 (-13 (-1171) (-936) (-29 *4))))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-600))))
-(((*1 *1) (-5 *1 (-600))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-600))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-145) (-27) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-4 *5 (-1207 *4)) (-5 *2 (-1143 (-402 *5))) (-5 *1 (-599 *4 *5))
- (-5 *3 (-402 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5))
- (-4 *5 (-13 (-145) (-27) (-1014 (-538)) (-1014 (-402 (-538)))))
- (-5 *2 (-1143 (-402 *6))) (-5 *1 (-599 *5 *6)) (-5 *3 (-402 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-595 *4)) (-4 *4 (-827)) (-4 *2 (-827))
- (-5 *1 (-596 *2 *4)))))
+ (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1171)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1171)))
+ (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-1141 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-827) (-1014 (-552))))
+ (-5 *2 (-402 (-928 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-928 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-827) (-1014 (-552))))
+ (-5 *2 (-3 (-402 (-928 *5)) (-311 *5))) (-5 *1 (-1142 *5))
+ (-5 *3 (-402 (-928 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1065 (-928 *5))) (-5 *3 (-928 *5))
+ (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-402 *3))
+ (-5 *1 (-1142 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1065 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5)))
+ (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-3 *3 (-311 *5)))
+ (-5 *1 (-1142 *5)))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461))))
+ ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461))))
+ ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-552)) (-5 *2 (-112)) (-5 *1 (-474)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-595 *4)) (-5 *1 (-596 *3 *4)) (-4 *3 (-827)) (-4 *4 (-827)))))
-(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1171))))
- ((*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-595 *3)) (-4 *3 (-827)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 *1)) (-4 *1 (-293))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-113)) (-5 *3 (-622 *5)) (-5 *4 (-751)) (-4 *5 (-827))
- (-5 *1 (-595 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-590)))))
+ (-12 (-4 *4 (-13 (-358) (-825)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -3449 (-413 *3))))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-622
- (-2
- (|:| -4220
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (|:| -2191
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1126 (-221)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1561
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-548))))
+ (-12 (-4 *4 (-1073)) (-5 *2 (-112)) (-5 *1 (-861 *3 *4 *5))
+ (-4 *3 (-1073)) (-4 *5 (-646 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-622 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-1073)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-622 *3)))))
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-751))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1004 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-625 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1004 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1004 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-625 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 *5)) (-4 *5 (-358))
+ (-4 *5 (-544)) (-5 *2 (-1232 *5)) (-5 *1 (-620 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 *5))
+ (-2960 (-4 *5 (-358))) (-4 *5 (-544)) (-5 *2 (-1232 (-402 *5)))
+ (-5 *1 (-620 *5 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190))
+ (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1112))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-552)) (-5 *5 (-167 (-221))) (-5 *6 (-1131))
+ (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-474)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1208 (-167 *2))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4353)) (-4 *1 (-588 *4 *3)) (-4 *4 (-1074))
- (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1185)) (-4 *2 (-1074)) (-4 *2 (-827)))))
+ (|partial| -12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-4 *2 (-1073))
+ (-5 *1 (-865 *4 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1185)) (-4 *2 (-1074)) (-4 *2 (-827)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1185)) (-4 *3 (-367 *2))
- (-4 *4 (-367 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *2)) (-4 *3 (-1074))
- (-4 *2 (-1185)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *4)) (-4 *3 (-1074))
- (-4 *4 (-1185)) (-5 *2 (-1237)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-622 (-595 *2))) (-5 *4 (-622 (-1149)))
- (-4 *2 (-13 (-416 (-166 *5)) (-978) (-1171))) (-4 *5 (-13 (-545) (-827)))
- (-5 *1 (-584 *5 *6 *2)) (-4 *6 (-13 (-416 *5) (-978) (-1171))))))
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3))
+ (-4 *5 (-368 *3)) (-5 *2 (-751))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025))
+ (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-669 *4)) (-5 *3 (-897)) (-4 *4 (-1025))
+ (-5 *1 (-1004 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-625 (-669 *4))) (-5 *3 (-897)) (-4 *4 (-1025))
+ (-5 *1 (-1004 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-545) (-827))) (-5 *2 (-166 *5)) (-5 *1 (-584 *4 *5 *3))
- (-4 *5 (-13 (-416 *4) (-978) (-1171)))
- (-4 *3 (-13 (-416 (-166 *4)) (-978) (-1171))))))
+ (|partial| -12 (-5 *3 (-1232 *5)) (-4 *5 (-621 *4)) (-4 *4 (-544))
+ (-5 *2 (-1232 *4)) (-5 *1 (-620 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190))
+ (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))))
+(((*1 *1 *1) (-5 *1 (-221)))
+ ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *1 *1) (-4 *1 (-1112))) ((*1 *1 *1 *1) (-4 *1 (-1112))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-167 (-221))) (-5 *5 (-552))
+ (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-841 *5))) (-14 *5 (-625 (-1149))) (-4 *6 (-446))
+ (-5 *2
+ (-2 (|:| |dpolys| (-625 (-243 *5 *6)))
+ (|:| |coords| (-625 (-552)))))
+ (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-625 (-243 *5 *6))) (-4 *7 (-446)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-545) (-827)))
- (-4 *2 (-13 (-416 (-166 *4)) (-978) (-1171))) (-5 *1 (-584 *4 *3 *2))
- (-4 *3 (-13 (-416 *4) (-978) (-1171))))))
+ (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3))
+ (-4 *4 (-13 (-358) (-825))) (-4 *3 (-1208 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3))
+ (-4 *3 (-1073)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-545) (-827))) (-4 *2 (-13 (-416 *4) (-978) (-1171)))
- (-5 *1 (-584 *4 *2 *3)) (-4 *3 (-13 (-416 (-166 *4)) (-978) (-1171))))))
+ (-12 (-5 *3 (-751)) (-5 *2 (-669 (-928 *4))) (-5 *1 (-1004 *4))
+ (-4 *4 (-1025)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-416 *4) (-978) (-1171)))
- (-4 *4 (-13 (-545) (-827))) (-4 *2 (-13 (-416 (-166 *4)) (-978) (-1171)))
- (-5 *1 (-584 *4 *5 *2)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1002 (-819 (-538))))
- (-5 *3 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *4)))) (-4 *4 (-1025))
- (-5 *1 (-580 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1002 (-819 (-538)))) (-5 *1 (-580 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-5 *1 (-580 *3))
- (-4 *3 (-1025)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))))
-(((*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *6))))
- (-5 *4 (-1002 (-819 (-538)))) (-5 *5 (-1149)) (-5 *7 (-402 (-538)))
- (-4 *6 (-1025)) (-5 *2 (-840)) (-5 *1 (-580 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-402 (-538))) (-5 *1 (-580 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 *3)) (-4 *3 (-1082 *5 *6 *7 *8))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827))
- (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-576 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-538))) (-5 *4 (-878 (-538))) (-5 *2 (-669 (-538)))
- (-5 *1 (-575))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-538))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-575))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-538))) (-5 *4 (-622 (-878 (-538))))
- (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-575)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-751)) (-5 *1 (-575)))))
+ (-12 (-5 *3 (-1232 *5)) (-4 *5 (-621 *4)) (-4 *4 (-544))
+ (-5 *2 (-112)) (-5 *1 (-620 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190))
+ (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-751)) (-5 *1 (-222))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-167 (-221))) (-5 *3 (-751)) (-5 *1 (-222))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1112))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-167 (-221))) (-5 *5 (-552))
+ (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149))
- (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-423 *4 *2)) (-4 *2 (-13 (-1171) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-145))
- (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-309 *5))
- (-5 *1 (-574 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-569 *2)) (-4 *2 (-13 (-29 *4) (-1171))) (-5 *1 (-571 *4 *2))
- (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538))))))
+ (|partial| -12 (-5 *2 (-625 (-475 *4 *5))) (-5 *3 (-625 (-841 *4)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6))
+ (-4 *6 (-446)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1208 (-167 *2)))))
((*1 *2 *3)
- (-12 (-5 *3 (-569 (-402 (-922 *4))))
- (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-309 *4))
- (-5 *1 (-574 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-573 *4)) (-4 *4 (-345)))))
-(((*1 *2 *2) (-12 (-5 *1 (-572 *2)) (-4 *2 (-537)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-572 *2)) (-4 *2 (-537)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))))
+ (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1208 (-167 *2))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3))
+ (-4 *3 (-1073)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3027 *3) (|:| -2493 (-751)))) (-5 *1 (-572 *3))
- (-4 *3 (-537)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-751)) (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-622
- (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 *2))
- (|:| |logand| (-1143 *2)))))
- (-5 *4 (-622 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-358))
- (-5 *1 (-569 *2)))))
-(((*1 *2 *1) (-12 (-5 *1 (-569 *2)) (-4 *2 (-358)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-622
- (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 *3))
- (|:| |logand| (-1143 *3)))))
- (-5 *1 (-569 *3)) (-4 *3 (-358)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-569 *3)) (-4 *3 (-358)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-358)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-568)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-527) (-622 (-527)))) (-5 *1 (-113))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-527) (-622 (-527)))) (-5 *1 (-113))))
- ((*1 *1) (-5 *1 (-565))))
-(((*1 *1) (-5 *1 (-565))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1149))
- (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1171) (-936) (-1112) (-29 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-562 *5 *3)))))
+ (-12 (-5 *2 (-669 *4)) (-5 *3 (-897)) (|has| *4 (-6 (-4355 "*")))
+ (-4 *4 (-1025)) (-5 *1 (-1004 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-625 (-669 *4))) (-5 *3 (-897))
+ (|has| *4 (-6 (-4355 "*"))) (-4 *4 (-1025)) (-5 *1 (-1004 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358))
+ (-12 (-5 *4 (-289 (-820 *3))) (-4 *3 (-13 (-27) (-1171) (-425 *5)))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
(-5 *2
- (-2 (|:| |ir| (-569 (-402 *6))) (|:| |specpart| (-402 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-605 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3472 *4) (|:| |sol?| (-112))) (-538) *4))
- (-4 *4 (-358)) (-4 *5 (-1207 *4)) (-5 *1 (-562 *4 *5)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-358)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1207 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-622 (-402 *7))) (-4 *7 (-1207 *6))
- (-5 *3 (-402 *7)) (-4 *6 (-358))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-562 *6 *7)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| -2251 (-402 *6)) (|:| |coeff| (-402 *6))))
- (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3472 *7) (|:| |sol?| (-112))) (-538) *7))
- (-5 *6 (-622 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1207 *7)) (-5 *3 (-402 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-562 *7 *8)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5 (-1 (-3 (-2 (|:| -2251 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-622 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1207 *7)) (-5 *3 (-402 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-562 *7 *8)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3472 *6) (|:| |sol?| (-112))) (-538) *6))
- (-4 *6 (-358)) (-4 *7 (-1207 *6))
+ (-3 (-820 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-820 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-820 *3) "failed")))
+ "failed"))
+ (-5 *1 (-618 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-289 *3)) (-5 *5 (-1131))
+ (-4 *3 (-13 (-27) (-1171) (-425 *6)))
+ (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-820 *3)) (-5 *1 (-618 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-289 (-820 (-928 *5)))) (-4 *5 (-446))
(-5 *2
- (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6))
- (-2 (|:| -2251 (-402 *7)) (|:| |coeff| (-402 *7))) "failed"))
- (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2251 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-358)) (-4 *7 (-1207 *6))
+ (-3 (-820 (-402 (-928 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-820 (-402 (-928 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-619 *5)) (-5 *3 (-402 (-928 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-289 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5)))
+ (-4 *5 (-446))
(-5 *2
- (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6))
- (-2 (|:| -2251 (-402 *7)) (|:| |coeff| (-402 *7))) "failed"))
- (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-622 *6) "failed") (-538) *6 *6))
- (-4 *6 (-358)) (-4 *7 (-1207 *6))
- (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6)))
- (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3472 *6) (|:| |sol?| (-112))) (-538) *6))
- (-4 *6 (-358)) (-4 *7 (-1207 *6))
- (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6)))
- (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2251 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-358)) (-4 *7 (-1207 *6))
- (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6)))
- (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-569 *3) *3 (-1149)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1149)))
- (-4 *3 (-279)) (-4 *3 (-612)) (-4 *3 (-1014 *4)) (-4 *3 (-416 *7))
- (-5 *4 (-1149)) (-4 *7 (-598 (-866 (-538)))) (-4 *7 (-446))
- (-4 *7 (-862 (-538))) (-4 *7 (-827)) (-5 *2 (-569 *3))
- (-5 *1 (-561 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-446)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2))
- (-4 *2 (-279)) (-4 *2 (-416 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-545)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2))
- (-4 *2 (-416 *4)))))
+ (-3 (-820 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-820 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-820 *3) "failed")))
+ "failed"))
+ (-5 *1 (-619 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-289 (-402 (-928 *6)))) (-5 *5 (-1131))
+ (-5 *3 (-402 (-928 *6))) (-4 *6 (-446)) (-5 *2 (-820 *3))
+ (-5 *1 (-619 *6)))))
+(((*1 *2)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *1 *1) (-4 *1 (-1112))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131))
+ (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *6)) (-5 *4 (-1149)) (-4 *6 (-416 *5)) (-4 *5 (-827))
- (-5 *2 (-622 (-595 *6))) (-5 *1 (-561 *5 *6)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-622 (-595 *6))) (-5 *4 (-1149)) (-5 *2 (-595 *6))
- (-4 *6 (-416 *5)) (-4 *5 (-827)) (-5 *1 (-561 *5 *6)))))
+ (-12 (-5 *4 (-625 (-841 *5))) (-14 *5 (-625 (-1149))) (-4 *6 (-446))
+ (-5 *2 (-625 (-625 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7))
+ (-5 *3 (-625 (-243 *5 *6))) (-4 *7 (-446)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2))
+ (-4 *2 (-1208 (-167 *3))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3))
+ (-4 *3 (-1073)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-595 *5))) (-4 *4 (-827)) (-5 *2 (-595 *5))
- (-5 *1 (-561 *4 *5)) (-4 *5 (-416 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-622 (-595 *5))) (-5 *3 (-1149)) (-4 *5 (-416 *4))
- (-4 *4 (-827)) (-5 *1 (-561 *4 *5)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-1014 (-538)) (-145)))
- (-5 *2 (-2 (|:| -2251 (-402 (-922 *5))) (|:| |coeff| (-402 (-922 *5)))))
- (-5 *1 (-558 *5)) (-5 *3 (-402 (-922 *5))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 (-402 (-922 *6))))
- (-5 *3 (-402 (-922 *6))) (-4 *6 (-13 (-545) (-1014 (-538)) (-145)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-558 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-402 (-922 *4))) (-5 *3 (-1149))
- (-4 *4 (-13 (-545) (-1014 (-538)) (-145))) (-5 *1 (-558 *4)))))
+ (-12 (-5 *3 (-669 (-402 (-928 (-552)))))
+ (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149))
- (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-569 *3)) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5)))))
+ (|partial| -12 (-5 *4 (-289 (-813 *3)))
+ (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))))
+ (-5 *2 (-813 *3)) (-5 *1 (-618 *5 *3))
+ (-4 *3 (-13 (-27) (-1171) (-425 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-1014 (-538)) (-145)))
- (-5 *2 (-569 (-402 (-922 *5)))) (-5 *1 (-558 *5)) (-5 *3 (-402 (-922 *5))))))
+ (-12 (-5 *4 (-289 (-813 (-928 *5)))) (-4 *5 (-446))
+ (-5 *2 (-813 (-402 (-928 *5)))) (-5 *1 (-619 *5))
+ (-5 *3 (-402 (-928 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-289 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5)))
+ (-4 *5 (-446)) (-5 *2 (-813 *3)) (-5 *1 (-619 *5)))))
+(((*1 *2)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))))
+(((*1 *1 *1 *1) (-5 *1 (-221)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016))))
+ ((*1 *1 *1 *1) (-4 *1 (-1112))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131))
+ (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-538)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-622 (-402 *6))) (-5 *3 (-402 *6)) (-4 *6 (-1207 *5))
- (-4 *5 (-13 (-358) (-145) (-1014 (-538))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-556 *5 *6)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4))
- (-5 *2 (-2 (|:| -2251 (-402 *5)) (|:| |coeff| (-402 *5))))
- (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3))
- (-4 *3 (-13 (-358) (-145) (-1014 (-538)))) (-5 *1 (-556 *3 *4)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-866 (-538))))
- (-4 *5 (-862 (-538)))
- (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3))
- (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1149)) (-5 *4 (-819 *2)) (-4 *2 (-1112))
- (-4 *2 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-598 (-866 (-538))))
- (-4 *5 (-862 (-538)))
- (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538))))
- (-5 *1 (-555 *5 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-866 (-538))))
- (-4 *5 (-862 (-538)))
- (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3))
- (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))))
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5))
+ (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-13 (-302) (-145)))
+ (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112))
+ (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))))
+(((*1 *1) (-5 *1 (-462))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1234))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538))))
- (-5 *2 (-2 (|:| -2419 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3))
- (-4 *3 (-13 (-27) (-1171) (-416 *5))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-595 *4)) (-5 *6 (-1149)) (-4 *4 (-13 (-416 *7) (-27) (-1171)))
- (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2128 (-622 *4))))
- (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149)))
- (-4 *2 (-13 (-416 *5) (-27) (-1171)))
- (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1074)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3))
- (-4 *3 (-13 (-416 *6) (-27) (-1171)))
- (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1074)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *5) (-27) (-1171)))
- (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3 *6))
- (-4 *6 (-1074)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *5) (-27) (-1171)))
- (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-569 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1074)))))
+ (-12 (-4 *5 (-1073)) (-4 *6 (-862 *5)) (-5 *2 (-861 *5 *6 (-625 *6)))
+ (-5 *1 (-863 *5 *6 *4)) (-5 *3 (-625 *6)) (-4 *4 (-598 (-868 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1073)) (-5 *2 (-625 (-289 *3))) (-5 *1 (-863 *5 *3 *4))
+ (-4 *3 (-1014 (-1149))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1073)) (-5 *2 (-625 (-289 (-928 *3))))
+ (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-1025))
+ (-2960 (-4 *3 (-1014 (-1149)))) (-4 *3 (-862 *5))
+ (-4 *4 (-598 (-868 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1073)) (-5 *2 (-865 *5 *3)) (-5 *1 (-863 *5 *3 *4))
+ (-2960 (-4 *3 (-1014 (-1149)))) (-2960 (-4 *3 (-1025)))
+ (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007)))))
+(((*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *1) (-5 *1 (-614))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))))
+(((*1 *2)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358))
- (-4 *7 (-1207 (-402 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2250 *3)))
- (-5 *1 (-551 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7))))
+ (-12 (-5 *3 (-625 (-402 (-928 (-552)))))
+ (-5 *2 (-625 (-625 (-289 (-928 *4))))) (-5 *1 (-375 *4))
+ (-4 *4 (-13 (-825) (-358)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358))
- (-5 *2
- (-2 (|:| |answer| (-402 *6)) (|:| -2250 (-402 *6))
- (|:| |specpart| (-402 *6)) (|:| |polypart| *6)))
- (-5 *1 (-552 *5 *6)) (-5 *3 (-402 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-751)) (-5 *1 (-550)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))))
-(((*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-550)) (-5 *3 (-538)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))))
-(((*1 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-550)) (-5 *3 (-538)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-622 (-622 *4))) (-5 *2 (-622 *4)) (-4 *4 (-302))
- (-5 *1 (-177 *4))))
+ (-12 (-5 *3 (-625 (-289 (-402 (-928 (-552))))))
+ (-5 *2 (-625 (-625 (-289 (-928 *4))))) (-5 *1 (-375 *4))
+ (-4 *4 (-13 (-825) (-358)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 (-552)))) (-5 *2 (-625 (-289 (-928 *4))))
+ (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-289 (-402 (-928 (-552)))))
+ (-5 *2 (-625 (-289 (-928 *4)))) (-5 *1 (-375 *4))
+ (-4 *4 (-13 (-825) (-358)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-622 *8))
- (-5 *4
- (-622
- (-2 (|:| -2128 (-669 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-669 *7)))))
- (-5 *5 (-751)) (-4 *8 (-1207 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-345))
- (-5 *2
- (-2 (|:| -2128 (-669 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-669 *7))))
- (-5 *1 (-491 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-595 *4)) (-5 *6 (-1143 *4))
- (-4 *4 (-13 (-416 *7) (-27) (-1171)))
- (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4))))
- (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-595 *4)) (-5 *6 (-402 (-1143 *4)))
- (-4 *4 (-13 (-416 *7) (-27) (-1171)))
- (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2128 (-622 *4))))
- (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-595 *2))
- (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1149))) (-5 *5 (-1143 *2))
- (-4 *2 (-13 (-416 *6) (-27) (-1171)))
- (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1074))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1149)))
- (-5 *5 (-402 (-1143 *2))) (-4 *2 (-13 (-416 *6) (-27) (-1171)))
- (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1074)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) (-5 *6 (-1143 *3))
- (-4 *3 (-13 (-416 *7) (-27) (-1171)))
- (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
+ (|partial| -12 (-5 *5 (-1149))
+ (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-4 *4 (-13 (-29 *6) (-1171) (-935)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -1270 (-625 *4))))
+ (-5 *1 (-632 *6 *4 *3)) (-4 *3 (-636 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 *2))
+ (-4 *2 (-13 (-29 *6) (-1171) (-935)))
+ (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *1 (-632 *6 *2 *3)) (-4 *3 (-636 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 *5)) (-4 *5 (-358))
(-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1074))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) (-5 *6 (-402 (-1143 *3)))
- (-4 *3 (-13 (-416 *7) (-27) (-1171)))
- (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
+ (-2 (|:| |particular| (-3 (-1232 *5) "failed"))
+ (|:| -1270 (-625 (-1232 *5)))))
+ (-5 *1 (-647 *5)) (-5 *4 (-1232 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-625 *5))) (-4 *5 (-358))
(-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1074)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-1143 *3))
- (-4 *3 (-13 (-416 *6) (-27) (-1171)))
- (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-549 *6 *3 *7))
- (-4 *7 (-1074))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-402 (-1143 *3)))
- (-4 *3 (-13 (-416 *6) (-27) (-1171)))
- (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-549 *6 *3 *7))
- (-4 *7 (-1074)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-595 *3)) (-5 *5 (-1143 *3))
- (-4 *3 (-13 (-416 *6) (-27) (-1171)))
- (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-569 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-595 *3)) (-5 *5 (-402 (-1143 *3)))
- (-4 *3 (-13 (-416 *6) (-27) (-1171)))
- (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))))
- (-5 *2 (-569 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
+ (-2 (|:| |particular| (-3 (-1232 *5) "failed"))
+ (|:| -1270 (-625 (-1232 *5)))))
+ (-5 *1 (-647 *5)) (-5 *4 (-1232 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 *5)) (-4 *5 (-358))
(-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1126 (-221)))
- (|:| |notEvaluated| "Internal singularities not yet evaluated")))
- (|:| -1561
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-548)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
+ (-625
+ (-2 (|:| |particular| (-3 (-1232 *5) "failed"))
+ (|:| -1270 (-625 (-1232 *5))))))
+ (-5 *1 (-647 *5)) (-5 *4 (-625 (-1232 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-625 *5))) (-4 *5 (-358))
(-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1126 (-221)))
- (|:| |notEvaluated| "Internal singularities not yet evaluated")))
- (|:| -1561
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-548)))))
-(((*1 *1 *2)
- (-12
+ (-625
+ (-2 (|:| |particular| (-3 (-1232 *5) "failed"))
+ (|:| -1270 (-625 (-1232 *5))))))
+ (-5 *1 (-647 *5)) (-5 *4 (-625 (-1232 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354))))
+ (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354))))
(-5 *2
- (-622
- (-2
- (|:| -4220
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (|:| -2191
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1126 (-221)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1561
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-548)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-548)))))
-(((*1 *1) (-5 *1 (-548))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-547 *2)) (-4 *2 (-537)))))
-(((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1149)) (-5 *6 (-622 (-595 *3))) (-5 *5 (-595 *3))
- (-4 *3 (-13 (-27) (-1171) (-416 *7)))
- (-4 *7 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-546 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149))
- (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-569 *3)) (-5 *1 (-546 *5 *3))
- (-4 *3 (-13 (-27) (-1171) (-416 *5))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1149))
- (-4 *4 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-546 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 *3))
- (-4 *3 (-13 (-27) (-1171) (-416 *6)))
- (-4 *6 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4))))
+ (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354))))
+ (-4 *7 (-13 (-368 *5) (-10 -7 (-6 -4354))))
(-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-546 *6 *3)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1149))
- (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-546 *5 *3))
- (-4 *3 (-13 (-27) (-1171) (-416 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1892 *1) (|:| -4340 *1) (|:| |associate| *1)))
- (-4 *1 (-545)))))
-(((*1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-402 (-538))) (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171)))))
- ((*1 *1 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))))
-(((*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-112)) (-5 *1 (-542)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-542)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-542)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1207 *5))
- (-4 *5 (-13 (-27) (-416 *4))) (-4 *4 (-13 (-827) (-545) (-1014 (-538))))
- (-4 *7 (-1207 (-402 *6))) (-5 *1 (-541 *4 *5 *6 *7 *2))
- (-4 *2 (-337 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-13 (-27) (-416 *5)))
- (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-4 *8 (-1207 (-402 *7)))
- (-5 *2 (-569 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-13 (-27) (-416 *5)))
- (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-4 *8 (-1207 (-402 *7)))
- (-5 *2 (-569 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-595 *3)) (-5 *5 (-1 (-1143 *3) (-1143 *3)))
- (-4 *3 (-13 (-27) (-416 *6))) (-4 *6 (-13 (-827) (-545))) (-5 *2 (-569 *3))
- (-5 *1 (-540 *6 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-537))))
-(((*1 *1 *1 *1) (-4 *1 (-537))))
-(((*1 *1 *1) (-4 *1 (-537))))
-(((*1 *1 *1) (-4 *1 (-537))))
-(((*1 *1 *1) (-4 *1 (-537))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-537))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-537))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-537))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-537))))
-(((*1 *1 *1 *1) (-4 *1 (-537))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-538) #1="failed") *5)) (-4 *5 (-1025))
- (-5 *2 (-538)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1207 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-538) #1#) *4)) (-4 *4 (-1025)) (-5 *2 (-538))
- (-5 *1 (-535 *4 *3)) (-4 *3 (-1207 *4))))
+ (-625
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1270 (-625 *7)))))
+ (-5 *1 (-648 *5 *6 *7 *3)) (-5 *4 (-625 *7))
+ (-4 *3 (-667 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) (-4 *5 (-544))
+ (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-750 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-544))
+ (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-750 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1149))
+ (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *1 (-752 *5 *2)) (-4 *2 (-13 (-29 *5) (-1171) (-935)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-538) #1#) *4)) (-4 *4 (-1025)) (-5 *2 (-538))
- (-5 *1 (-535 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1207 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-751)))
- (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-531 *4 *2 *5 *6))
- (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-531 *4 *2 *5 *6))
- (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-1149))) (-4 *6 (-358))
- (-5 *2 (-622 (-288 (-922 *6)))) (-5 *1 (-530 *5 *6 *7)) (-4 *5 (-446))
- (-4 *7 (-13 (-358) (-825))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) (-4 *6 (-446))
- (-5 *2 (-622 (-622 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-358))
- (-4 *5 (-13 (-358) (-825))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1143 *5)) (-4 *5 (-446)) (-5 *2 (-622 *6))
- (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825)))))
+ (|partial| -12 (-5 *3 (-669 *7)) (-5 *5 (-1149))
+ (-4 *7 (-13 (-29 *6) (-1171) (-935)))
+ (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2
+ (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7)))))
+ (-5 *1 (-782 *6 *7)) (-5 *4 (-1232 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-922 *5)) (-4 *5 (-446)) (-5 *2 (-622 *6))
- (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))))
-(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-527))))
- ((*1 *2 *3) (-12 (-5 *3 (-527)) (-5 *1 (-528 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1149)) (-5 *2 (-527)) (-5 *1 (-528 *4)) (-4 *4 (-1185)))))
-(((*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-527))) (-5 *1 (-527)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-527)))))
-(((*1 *1 *1) (-5 *1 (-527))))
-(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-527)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-527)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-527))) (-5 *2 (-1149)) (-5 *1 (-527)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-527))) (-5 *1 (-527)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-669 *6)) (-5 *5 (-1 (-400 (-1143 *6)) (-1143 *6)))
- (-4 *6 (-358))
+ (|partial| -12 (-5 *3 (-669 *6)) (-5 *4 (-1149))
+ (-4 *6 (-13 (-29 *5) (-1171) (-935)))
+ (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2 (-625 (-1232 *6))) (-5 *1 (-782 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-625 (-289 *7))) (-5 *4 (-625 (-114)))
+ (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935)))
+ (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2
+ (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7)))))
+ (-5 *1 (-782 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-625 *7)) (-5 *4 (-625 (-114)))
+ (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935)))
+ (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2
+ (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7)))))
+ (-5 *1 (-782 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-1149))
+ (-4 *7 (-13 (-29 *6) (-1171) (-935)))
+ (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
(-5 *2
- (-622
- (-2 (|:| |outval| *7) (|:| |outmult| (-538))
- (|:| |outvect| (-622 (-669 *7))))))
- (-5 *1 (-525 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-825))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1143 *5)) (-4 *5 (-358)) (-5 *2 (-622 *6))
- (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *2 (-1143 *4))
- (-5 *1 (-525 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-825))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25))))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-522))))
- ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-522)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-895)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1143 *1))
- (-4 *1 (-324 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1143 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358)) (-4 *2 (-1207 *3))))
+ (-3 (-2 (|:| |particular| *7) (|:| -1270 (-625 *7))) *7 "failed"))
+ (-5 *1 (-782 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-1149))
+ (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -1270 (-625 *3))) *3 "failed"))
+ (-5 *1 (-782 *6 *3)) (-4 *3 (-13 (-29 *6) (-1171) (-935)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-289 *2)) (-5 *4 (-114)) (-5 *5 (-625 *2))
+ (-4 *2 (-13 (-29 *6) (-1171) (-935))) (-5 *1 (-782 *6 *2))
+ (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-289 *2)) (-5 *5 (-625 *2))
+ (-4 *2 (-13 (-29 *6) (-1171) (-935)))
+ (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *1 (-782 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1011)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4))
+ (-5 *2 (-1011)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4))
+ (-5 *2 (-1011)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374)))
+ (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4))
+ (-5 *2 (-1011)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374)))
+ (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374)))
+ (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -1270 (-625 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-358)) (-4 *7 (-636 *6))
+ (-5 *2 (-2 (|:| |particular| (-1232 *6)) (|:| -1270 (-669 *6))))
+ (-5 *1 (-793 *6 *7)) (-5 *3 (-669 *6)) (-5 *4 (-1232 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1011)) (-5 *1 (-873))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-873))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-751)) (-5 *6 (-625 (-625 (-311 *3)))) (-5 *7 (-1131))
+ (-5 *8 (-221)) (-5 *5 (-625 (-311 (-374)))) (-5 *3 (-374))
+ (-5 *2 (-1011)) (-5 *1 (-873))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-751)) (-5 *6 (-625 (-625 (-311 *3)))) (-5 *7 (-1131))
+ (-5 *5 (-625 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1011))
+ (-5 *1 (-873))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *2 (-625 (-374)))
+ (-5 *1 (-999)) (-5 *4 (-374))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-928 (-552))) (-5 *2 (-625 (-374))) (-5 *1 (-999))
+ (-5 *4 (-374))))
((*1 *2 *3)
- (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4)))))
-(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358))))
+ (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1231 *4)) (-4 *4 (-413 *3)) (-4 *3 (-302)) (-4 *3 (-545))
- (-5 *1 (-43 *3 *4))))
+ (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1104 *4))
+ (-5 *3 (-311 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-4 *4 (-358)) (-5 *2 (-1231 *1)) (-4 *1 (-324 *4))))
- ((*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1231 *1)) (-4 *1 (-324 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-1231 *1))
- (-4 *1 (-405 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6))
- (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6))
- (-5 *1 (-410 *3 *4 *5 *6 *7)) (-4 *6 (-405 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1231 *1)) (-4 *1 (-413 *3))))
+ (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1104 *4))
+ (-5 *3 (-289 (-311 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149))
+ (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1104 *5))
+ (-5 *3 (-289 (-311 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149))
+ (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1104 *5))
+ (-5 *3 (-311 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-1149)))
+ (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1104 *5))
+ (-5 *3 (-625 (-289 (-311 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149)))
+ (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *5))))))
+ (-5 *1 (-1155 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-1149))) (-4 *5 (-544))
+ (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-1155 *5))
+ (-5 *3 (-625 (-289 (-402 (-928 *5)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1231 (-1231 *4))) (-5 *1 (-521 *4))
- (-4 *4 (-345)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-625 (-402 (-928 *4)))) (-4 *4 (-544))
+ (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-1155 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-351 *4))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *4))))))
+ (-5 *1 (-1155 *4)) (-5 *3 (-625 (-289 (-402 (-928 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149)) (-4 *5 (-544))
+ (-5 *2 (-625 (-289 (-402 (-928 *5))))) (-5 *1 (-1155 *5))
+ (-5 *3 (-402 (-928 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1149)) (-4 *5 (-544))
+ (-5 *2 (-625 (-289 (-402 (-928 *5))))) (-5 *1 (-1155 *5))
+ (-5 *3 (-289 (-402 (-928 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-521 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-895))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *4)))))
+ (-5 *1 (-1155 *4)) (-5 *3 (-402 (-928 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-895)) (-5 *1 (-521 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1231 *4)) (-5 *3 (-538)) (-4 *4 (-345)) (-5 *1 (-521 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1093)) (-4 *4 (-345)) (-5 *1 (-521 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1231 *4)) (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-521 *4)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1231 *5)) (-5 *3 (-751)) (-5 *4 (-1093)) (-4 *5 (-345))
- (-5 *1 (-521 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-751)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4)))))
+ (-12 (-4 *4 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *4)))))
+ (-5 *1 (-1155 *4)) (-5 *3 (-289 (-402 (-928 *4)))))))
+(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1034))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)) (-4 *2 (-1034))))
+ ((*1 *1 *1) (-4 *1 (-825)))
+ ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)) (-4 *2 (-1034))))
+ ((*1 *1 *1) (-4 *1 (-1034))) ((*1 *1 *1) (-4 *1 (-1112))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093))))))
- (-4 *4 (-345)) (-5 *2 (-1237)) (-5 *1 (-521 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-1093)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-520)) (-5 *3 (-129)) (-5 *2 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-518)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-518)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-517)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))
- (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-322 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-509 *3 *4)) (-14 *4 (-538)))))
-(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-322 *3)) (-4 *3 (-1185))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-751)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 (-538)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-322 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-538)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1185))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 (-538)))))
-(((*1 *2 *1) (-12 (-4 *1 (-502 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-827)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751))
- (-4 *5 (-170))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751))
- (-4 *5 (-170))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538)))))
- (-5 *3 (-622 (-841 *4))) (-14 *4 (-622 (-1149))) (-14 *5 (-751))
- (-5 *1 (-498 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-622 (-1149))) (-14 *5 (-751))
- (-5 *2
- (-622
- (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))))
- (-5 *1 (-498 *4 *5))
- (-5 *3
- (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))))))
+ (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149))))
+ (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *2 (-925 *3 *5 *4)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850)))
+ (-5 *4 (-625 (-897))) (-5 *5 (-625 (-258))) (-5 *1 (-462))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850)))
+ (-5 *4 (-625 (-897))) (-5 *1 (-462))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462))))
+ ((*1 *1 *1) (-5 *1 (-462))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-497 (-402 (-538)) (-235 *4 (-751)) (-841 *3) (-243 *3 (-402 (-538)))))
- (-14 *3 (-622 (-1149))) (-14 *4 (-751)) (-5 *1 (-498 *3 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538)))))
- (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112))
- (-5 *1 (-498 *4 *5)))))
+ (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2))
+ (-4 *2 (-1208 (-167 *3))))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1149)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-596 *4)) (-4 *4 (-827))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-596 *4)) (-4 *4 (-827))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1073)) (-5 *2 (-112)) (-5 *1 (-863 *5 *3 *4))
+ (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 *6)) (-4 *6 (-862 *5)) (-4 *5 (-1073))
+ (-5 *2 (-112)) (-5 *1 (-863 *5 *6 *4)) (-4 *4 (-598 (-868 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-669 (-311 (-552)))) (-5 *1 (-1007)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-446))
+ (-5 *2 (-475 *4 *5)) (-5 *1 (-613 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1154))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-1154))) (-5 *1 (-1154)))))
+(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538)))))
- (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112))
- (-5 *1 (-498 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
- (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-297 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1062 (-819 (-221)))) (-5 *3 (-221)) (-5 *2 (-112))
- (-5 *1 (-298))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
- (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112))
- (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
- (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773))
- (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2))
- (-4 *2 (-926 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5))
- (-4 *5 (-926 *2 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773))
- (-5 *2
- (-2 (|:| |mval| (-669 *4)) (|:| |invmval| (-669 *4))
- (|:| |genIdeal| (-497 *4 *5 *6 *7))))
- (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12
+ (-2 (|:| |det| *12) (|:| |rows| (-625 (-552)))
+ (|:| |cols| (-625 (-552)))))
+ (-5 *4 (-669 *12)) (-5 *5 (-625 (-402 (-928 *9))))
+ (-5 *6 (-625 (-625 *12))) (-5 *7 (-751)) (-5 *8 (-552))
+ (-4 *9 (-13 (-302) (-145))) (-4 *12 (-925 *9 *11 *10))
+ (-4 *10 (-13 (-827) (-598 (-1149)))) (-4 *11 (-773))
(-5 *2
- (-2 (|:| |mval| (-669 *3)) (|:| |invmval| (-669 *3))
- (|:| |genIdeal| (-497 *3 *4 *5 *6))))
- (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6))
- (-4 *6 (-926 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5))
- (-4 *5 (-926 *2 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5))
- (-5 *2 (-408 *4 (-402 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4)))
- (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-4 *3 (-302))
- (-5 *1 (-408 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
- (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773))
- (-5 *1 (-497 *4 *5 *6 *2)) (-4 *2 (-926 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2))
- (-4 *2 (-926 *3 *4 *5)))))
+ (-2 (|:| |eqzro| (-625 *12)) (|:| |neqzro| (-625 *12))
+ (|:| |wcond| (-625 (-928 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *9))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *9)))))))))
+ (-5 *1 (-900 *9 *10 *11 *12)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-825)))
+ (-5 *2 (-625 (-2 (|:| -3449 (-625 *3)) (|:| -1939 *5))))
+ (-5 *1 (-179 *5 *3)) (-4 *3 (-1208 (-167 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-358) (-825)))
+ (-5 *2 (-625 (-2 (|:| -3449 (-625 *3)) (|:| -1939 *4))))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-661))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-946))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1047))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1091)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-865 *4 *5)) (-5 *3 (-865 *4 *6)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-646 *5)) (-5 *1 (-861 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *5 *6)) (-4 *6 (-598 (-1149)))
- (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827))
- (-5 *2 (-1138 (-622 (-922 *4)) (-622 (-288 (-922 *4)))))
- (-5 *1 (-497 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-210 *4))
- (-4 *4
- (-13 (-827)
- (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $))
- (-15 -2087 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3))
- (-4 *3
- (-13 (-827)
- (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $))
- (-15 -2087 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *6 (-1207 *5))
- (-5 *2 (-1143 (-1143 *7))) (-5 *1 (-494 *5 *6 *4 *7)) (-4 *4 (-1207 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-669 (-1143 *8)))
- (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-1207 *5)) (-5 *2 (-669 *6))
- (-5 *1 (-494 *5 *6 *7 *8)) (-4 *7 (-1207 *6)))))
+ (|partial| -12 (-5 *3 (-669 (-402 (-928 (-552)))))
+ (-5 *2 (-669 (-311 (-552)))) (-5 *1 (-1007)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-625 (-243 *4 *5))) (-5 *2 (-243 *4 *5))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4)))
+ (-5 *2 (-2 (|:| |num| (-1232 *4)) (|:| |den| *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1143 *7))
- (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1207 *5))
- (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1207 *2)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-669 *7)) (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5))
+ (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *3 (-625 (-258)))
+ (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-462))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-462)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1143 *7)) (-4 *5 (-1025)) (-4 *7 (-1025))
- (-4 *2 (-1207 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1207 *2))))
+ (-12 (-5 *2 (-625 (-167 *4))) (-5 *1 (-153 *3 *4))
+ (-4 *3 (-1208 (-167 (-552)))) (-4 *4 (-13 (-358) (-825)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-625 (-167 *4)))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *4 (-1207 *5))
- (-5 *2 (-1143 *7)) (-5 *1 (-494 *5 *4 *6 *7)) (-4 *6 (-1207 *4)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3))))
- (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3))
- (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))))
- (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))))
- (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))))
- (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-751)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))))
- (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-669 *2)) (-5 *4 (-538))
- (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *5 (-1207 *2))
- (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-405 *2 *5)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-669 *2)) (-5 *4 (-751))
- (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *5 (-1207 *2))
- (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-405 *2 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-751)) (-4 *5 (-345)) (-4 *6 (-1207 *5))
- (-5 *2
- (-622
- (-2 (|:| -2128 (-669 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-669 *6)))))
- (-5 *1 (-491 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2128 (-669 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-669 *6))))
- (-4 *7 (-1207 *6)))))
+ (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-625 (-167 *4)))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-622
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-538)))))
- (-5 *1 (-400 *3)) (-4 *3 (-545))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-751)) (-4 *3 (-345)) (-4 *5 (-1207 *3))
- (-5 *2 (-622 (-1143 *3))) (-5 *1 (-491 *3 *5 *6)) (-4 *6 (-1207 *5)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-488)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-484)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185))
- (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-483 *3))
- (-4 *3 (-1185)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4))
- (-4 *4 (-1185)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4))
- (-4 *4 (-1185)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-4 *3 (-1074))
- (-5 *2 (-751))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4))
- (-4 *4 (-1185)) (-5 *2 (-751)))))
+ (-12 (-4 *4 (-1073)) (-5 *2 (-865 *3 *4)) (-5 *1 (-861 *3 *4 *5))
+ (-4 *3 (-1073)) (-4 *5 (-646 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-669 (-402 (-928 (-552))))) (-5 *2 (-625 (-311 (-552))))
+ (-5 *1 (-1007)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-625 (-475 *4 *5))) (-5 *3 (-841 *4))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3))
- (-4 *5 (-367 *3)) (-5 *2 (-622 *3))))
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4)))
+ (-5 *2 (-2 (|:| |num| (-1232 *4)) (|:| |den| *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-149 *3))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-625 (-2 (|:| -3564 (-751)) (|:| -2845 *4) (|:| |num| *4))))
+ (-4 *4 (-1208 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-112)) (-5 *1 (-432))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-5 *3 (-625 (-1149))) (-5 *4 (-112)) (-5 *1 (-432))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185))
- (-5 *2 (-622 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-538))) (-5 *2 (-538)) (-5 *1 (-480 *4))
- (-4 *4 (-1207 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1207 (-538))) (-5 *1 (-480 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1207 (-538))) (-5 *1 (-480 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1207 (-538))))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-478 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-622 (-499))) (-5 *2 (-499)) (-5 *1 (-477)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-499))) (-5 *1 (-477)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-538))) (-5 *1 (-243 *3 *4)) (-14 *3 (-622 (-1149)))
- (-4 *4 (-1025))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-538))) (-14 *3 (-622 (-1149))) (-5 *1 (-448 *3 *4 *5))
- (-4 *4 (-1025)) (-4 *5 (-234 (-4316 *3) (-751)))))
+ (-12 (-5 *2 (-1129 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-170))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-538))) (-5 *1 (-475 *3 *4)) (-14 *3 (-622 (-1149)))
- (-4 *4 (-1025)))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-112)) (-5 *1 (-474)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-474)))))
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4))
+ (-4 *4 (-170))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4))
+ (-4 *4 (-170))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4))
+ (-4 *4 (-170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 (-625 *3)))) (-4 *3 (-1073))
+ (-5 *1 (-655 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-694 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-1073))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *3))
+ (-2 (|:| -3123 *2) (|:| -3564 *3))))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1186)) (-4 *3 (-1186))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 *4))))
+ (-4 *4 (-1073)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1073))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 *5)) (-4 *5 (-13 (-1073) (-34)))
+ (-5 *2 (-625 (-1113 *3 *5))) (-5 *1 (-1113 *3 *5))
+ (-4 *3 (-13 (-1073) (-34)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-2 (|:| |val| *4) (|:| -3715 *5))))
+ (-4 *4 (-13 (-1073) (-34))) (-4 *5 (-13 (-1073) (-34)))
+ (-5 *2 (-625 (-1113 *4 *5))) (-5 *1 (-1113 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3715 *4)))
+ (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34)))
+ (-5 *1 (-1113 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34)))
+ (-4 *3 (-13 (-1073) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34)))
+ (-4 *3 (-13 (-1073) (-34)))))
+ ((*1 *1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-1073) (-34)))
+ (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-1113 *2 *3))) (-4 *2 (-13 (-1073) (-34)))
+ (-4 *3 (-13 (-1073) (-34))) (-5 *1 (-1114 *2 *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-1114 *2 *3))) (-5 *1 (-1114 *2 *3))
+ (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34)))
+ (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1137 3 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-841 *5))) (-14 *5 (-622 (-1149))) (-4 *6 (-446))
- (-5 *2 (-2 (|:| |dpolys| (-622 (-243 *5 *6))) (|:| |coords| (-622 (-538)))))
- (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-622 (-243 *5 *6))) (-4 *7 (-446)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-622 (-475 *4 *5))) (-5 *3 (-622 (-841 *4)))
- (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6))
- (-4 *6 (-446)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-841 *5))) (-14 *5 (-622 (-1149))) (-4 *6 (-446))
- (-5 *2 (-622 (-622 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7))
- (-5 *3 (-622 (-243 *5 *6))) (-4 *7 (-446)))))
-(((*1 *1) (-5 *1 (-462))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850)))
- (-5 *4 (-622 (-895))) (-5 *5 (-622 (-256))) (-5 *1 (-462))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850)))
- (-5 *4 (-622 (-895))) (-5 *1 (-462))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462))))
- ((*1 *1 *1) (-5 *1 (-462))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *3 (-622 (-256))) (-5 *1 (-257))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-462)))))
+ (-12 (-5 *3 (-669 *8)) (-5 *4 (-751)) (-4 *8 (-925 *5 *7 *6))
+ (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
+ (-4 *7 (-773))
+ (-5 *2
+ (-625
+ (-2 (|:| |det| *8) (|:| |rows| (-625 (-552)))
+ (|:| |cols| (-625 (-552))))))
+ (-5 *1 (-900 *5 *6 *7 *8)))))
(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *5 (-895)) (-5 *2 (-1237))
- (-5 *1 (-462))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462))))
+ (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *5 (-897))
+ (-5 *2 (-1237)) (-5 *1 (-462))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462))))
((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *4 (-850)) (-5 *5 (-895))
+ (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *4 (-850)) (-5 *5 (-897))
(-5 *2 (-1237)) (-5 *1 (-462)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-181)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850)))
- (-5 *1 (-462)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-622 (-221)))
- (-5 *1 (-462)))))
-(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1231 (-1231 (-538)))) (-5 *1 (-460)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1231 (-1231 (-538)))) (-5 *3 (-895)) (-5 *1 (-460)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-827)) (-4 *5 (-773)) (-4 *6 (-545))
- (-4 *7 (-926 *6 *5 *3)) (-5 *1 (-456 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1014 (-402 (-538))) (-358)
- (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170))
- (-14 *6
- (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *2))
- (-2 (|:| -2492 *5) (|:| -2493 *2))))
- (-4 *2 (-234 (-4316 *3) (-751))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-827)) (-4 *7 (-926 *4 *2 (-841 *3))))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-4316 *3) (-751)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *5))
- (-2 (|:| -2492 *2) (|:| -2493 *5))))
- (-4 *2 (-827)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-926 *4 *5 (-841 *3))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-622 (-1149))) (-4 *2 (-170)) (-4 *4 (-234 (-4316 *5) (-751)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2492 *3) (|:| -2493 *4))
- (-2 (|:| -2492 *3) (|:| -2493 *4))))
- (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-827))
- (-4 *7 (-926 *2 *4 (-841 *5))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-622 (-1149))) (-4 *2 (-170)) (-4 *3 (-234 (-4316 *4) (-751)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *3))
- (-2 (|:| -2492 *5) (|:| -2493 *3))))
- (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-827))
- (-4 *7 (-926 *2 *3 (-841 *4))))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-622 *3)) (-5 *5 (-895)) (-4 *3 (-1207 *4)) (-4 *4 (-302))
- (-5 *1 (-454 *4 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-895)) (-4 *5 (-302)) (-4 *3 (-1207 *5))
- (-5 *2 (-2 (|:| |plist| (-622 *3)) (|:| |modulo| *5))) (-5 *1 (-454 *5 *3))
- (-5 *4 (-622 *3)))))
+ (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 *5)) (-4 *5 (-1207 *3)) (-4 *3 (-302)) (-5 *2 (-112))
- (-5 *1 (-449 *3 *5)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1231 (-622 *3))) (-4 *4 (-302)) (-5 *2 (-622 *3))
- (-5 *1 (-449 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-751)) (-4 *4 (-302)) (-4 *6 (-1207 *4))
- (-5 *2 (-1231 (-622 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-622 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-302)) (-5 *2 (-751))
- (-5 *1 (-449 *5 *3)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2128 (-622 *1)))) (-4 *1 (-362 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-447 *3 *4 *5 *6))
- (|:| -2128 (-622 (-447 *3 *4 *5 *6)))))
- (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895))
- (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2128 (-622 *1)))) (-4 *1 (-362 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-447 *3 *4 *5 *6))
- (|:| -2128 (-622 (-447 *3 *4 *5 *6)))))
- (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895))
- (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))))
+ (-12 (-5 *4 (-669 (-402 (-928 (-552)))))
+ (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007))
+ (-5 *3 (-311 (-552))))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-243 *5 *6))) (-4 *6 (-446))
+ (-5 *2 (-243 *5 *6)) (-14 *5 (-625 (-1149))) (-5 *1 (-613 *5 *6)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1231 (-1149))) (-5 *3 (-1231 (-447 *4 *5 *6 *7)))
- (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895))
- (-14 *6 (-622 (-1149))) (-14 *7 (-1231 (-669 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-447 *4 *5 *6 *7)))
- (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-622 *2))
- (-14 *7 (-1231 (-669 *4)))))
+ (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1208 *4)) (-4 *4 (-1190))
+ (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1208 (-402 *3))))))
+(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))
((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3)))))
+ (-12 (-5 *2 (-1232 *3)) (-4 *3 (-358)) (-14 *6 (-1232 (-669 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-897)) (-14 *5 (-625 (-1149)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1186))))
((*1 *1 *2)
- (-12 (-5 *2 (-1231 (-1149))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170))
- (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3)))))
+ (-12 (-5 *2 (-1232 (-334 (-1695 'JINT 'X 'ELAM) (-1695) (-679))))
+ (-5 *1 (-60 *3)) (-14 *3 (-1149))))
((*1 *1 *2)
- (-12 (-5 *2 (-1149)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170))
- (-14 *4 (-895)) (-14 *5 (-622 *2)) (-14 *6 (-1231 (-669 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-895))
- (-14 *4 (-622 (-1149))) (-14 *5 (-1231 (-669 *2))))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1143 (-922 *4))) (-5 *1 (-412 *3 *4))
- (-4 *3 (-413 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-358))
- (-5 *2 (-1143 (-922 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545))
- (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545))
- (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1143 (-922 *4))) (-5 *1 (-412 *3 *4))
- (-4 *3 (-413 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-358))
- (-5 *2 (-1143 (-922 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545))
- (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545))
- (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545))
- (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2)
- (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545))
- (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545))
- (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2)
- (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545))
- (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
- (-5 *2 (-622 (-922 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-622 (-922 *4))) (-5 *1 (-412 *3 *4))
- (-4 *3 (-413 *4))))
- ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-622 (-922 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-622 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545))
- (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))
- (-14 *6 (-1231 (-669 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1231 (-447 *4 *5 *6 *7))) (-5 *2 (-622 (-922 *4)))
- (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-545)) (-4 *4 (-170)) (-14 *5 (-895))
- (-14 *6 (-622 (-1149))) (-14 *7 (-1231 (-669 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-446))))
- ((*1 *1 *1 *1) (-4 *1 (-446))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751))
- (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-751)) (|:| -2120 *4))) (-5 *5 (-751))
- (-4 *4 (-926 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827))
+ (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 'XC) (-679))))
+ (-5 *1 (-62 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-334 (-1695 'X) (-1695) (-679))) (-5 *1 (-63 *3))
+ (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-669 (-334 (-1695) (-1695 'X 'HESS) (-679))))
+ (-5 *1 (-64 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-334 (-1695) (-1695 'XC) (-679))) (-5 *1 (-65 *3))
+ (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-334 (-1695 'X) (-1695 '-1367) (-679))))
+ (-5 *1 (-70 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 'X) (-679))))
+ (-5 *1 (-73 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-334 (-1695 'X 'EPS) (-1695 '-1367) (-679))))
+ (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149))
+ (-14 *5 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-334 (-1695 'EPS) (-1695 'YA 'YB) (-679))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149))
+ (-14 *5 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-334 (-1695) (-1695 'X) (-679))) (-5 *1 (-76 *3))
+ (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-334 (-1695) (-1695 'X) (-679))) (-5 *1 (-77 *3))
+ (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 'XC) (-679))))
+ (-5 *1 (-78 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 'X) (-679))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 'X) (-679))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-334 (-1695 'X '-1367) (-1695) (-679))))
+ (-5 *1 (-81 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-669 (-334 (-1695 'X '-1367) (-1695) (-679))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-669 (-334 (-1695 'X) (-1695) (-679)))) (-5 *1 (-83 *3))
+ (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-334 (-1695 'X) (-1695) (-679))))
+ (-5 *1 (-84 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-334 (-1695 'X) (-1695 '-1367) (-679))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-669 (-334 (-1695 'XL 'XR 'ELAM) (-1695) (-679))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1149))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-334 (-1695 'X) (-1695 '-1367) (-679))) (-5 *1 (-88 *3))
+ (-14 *3 (-1149))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-92))))
+ ((*1 *2 *1) (-12 (-5 *2 (-980 2)) (-5 *1 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107))))
+ ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-129))))
+ ((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-129))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-552)) (-14 *4 (-751)) (-4 *5 (-170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-552)) (-14 *4 (-751))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1115 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170))
+ (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-236 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170))
+ (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1232 (-669 *4))) (-4 *4 (-170))
+ (-5 *2 (-1232 (-669 (-402 (-928 *4))))) (-5 *1 (-185 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *3))
+ (-4 *3
+ (-13 (-827)
+ (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $))
+ (-15 -3867 ((-1237) $)))))
+ (-5 *1 (-210 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-980 10)) (-5 *1 (-213))))
+ ((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-241 *3)) (-4 *3 (-827))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1065 (-311 *4)))
+ (-4 *4 (-13 (-827) (-544) (-598 (-374)))) (-5 *2 (-1065 (-374)))
+ (-5 *1 (-253 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-270))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1208 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7))
+ (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1217 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3)))
+ (-14 *5 (-1149)) (-14 *6 *4)
+ (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446)))
+ (-5 *1 (-308 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-325))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-311 *5)) (-5 *1 (-334 *3 *4 *5))
+ (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *3 *4 *2))
+ (-4 *3 (-324 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *2 *4 *3))
+ (-4 *3 (-324 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))
+ (-5 *2 (-1256 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))
+ (-5 *2 (-1247 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))
+ (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-669 (-679))) (-4 *1 (-378))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))
+ (-4 *1 (-379))))
+ ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-379))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-379))))
+ ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384))))
+ ((*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-388 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-389))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))
+ (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-391))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-289 (-311 (-167 (-374))))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-289 (-311 (-374)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-289 (-311 (-552)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-311 (-374))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-311 (-552))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-289 (-311 (-674)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-289 (-311 (-679)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-289 (-311 (-681)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-311 (-674))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-311 (-679))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-311 (-681))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))
+ (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
+ (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-325))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149))
+ (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void")))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-827) (-21)))
+ (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-402 (-552)))))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-552)))))
+ (-4 *3 (-13 (-827) (-21)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-402 (-928 (-402 *3)))) (-4 *3 (-544)) (-4 *3 (-827))
+ (-4 *1 (-425 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-928 (-402 *3))) (-4 *3 (-544)) (-4 *3 (-827))
+ (-4 *1 (-425 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-402 *3)) (-4 *3 (-544)) (-4 *3 (-827))
+ (-4 *1 (-425 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1098 *3 (-596 *1))) (-4 *3 (-1025)) (-4 *3 (-827))
+ (-4 *1 (-425 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-429))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-429))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-429))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-429))))
+ ((*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-432))))
+ ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-432))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))
+ (-4 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1232 (-679))) (-4 *1 (-434))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))
+ (-4 *1 (-435))))
+ ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-435))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-402 (-928 *3)))) (-4 *3 (-170))
+ (-14 *6 (-1232 (-669 *3))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-14 *4 (-897)) (-14 *5 (-625 (-1149)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462))))
+ ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-462))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1217 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149))
+ (-14 *5 *3) (-5 *1 (-468 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-5 *2 (-980 16)) (-5 *1 (-481))))
+ ((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-495))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-517))))
+ ((*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-589))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-590))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-170)) (-5 *1 (-591 *3 *2)) (-4 *2 (-725 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
+ (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
+ (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-170)) (-5 *1 (-617 *3 *2)) (-4 *2 (-725 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-5 *1 (-655 *3))
+ (-4 *3 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-4 *3 (-1073))
+ (-5 *1 (-655 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-661))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *2)) (-4 *4 (-368 *3))
+ (-4 *2 (-368 *3))))
+ ((*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839)))))
+ ((*1 *1 *2) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-674))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-681))) (-5 *1 (-674))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-679))) (-5 *1 (-674))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-552))) (-5 *1 (-674))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-674))))
+ ((*1 *1 *2) (-12 (-5 *2 (-681)) (-5 *1 (-679))))
+ ((*1 *2 *1) (-12 (-5 *2 (-374)) (-5 *1 (-679))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-311 (-552))) (-5 *2 (-311 (-681))) (-5 *1 (-681))))
+ ((*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1073))))
+ ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -3123 *3) (|:| -3564 *4)))
+ (-5 *1 (-694 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-1073))
+ (-14 *5 (-1 (-112) *2 *2))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| -3123 *3) (|:| -3564 *4))) (-4 *3 (-827))
+ (-4 *4 (-1073)) (-5 *1 (-694 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-170)) (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-2 (|:| -3340 *3) (|:| -2243 *4))))
+ (-4 *3 (-1025)) (-4 *4 (-707)) (-5 *1 (-716 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-744))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4)))
- (-5 *1 (-444 *6 *7 *8 *4)))))
-(((*1 *2 *3 *3)
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-625 (-1067 (-820 (-221)))))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
+ (-5 *1 (-749))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-773)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827))
- (-5 *2 (-112)) (-5 *1 (-444 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-538)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
- (-5 *2 (-1237)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-444 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-538))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-773)) (-4 *4 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827))
- (-5 *1 (-444 *5 *6 *7 *4)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-538))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-773)) (-4 *4 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827))
- (-5 *1 (-444 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237))
- (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-538))
- (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
+ (-5 *2
+ (-2 (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *1 (-749))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-622
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-773)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827))
- (-5 *1 (-444 *3 *4 *5 *6)))))
-(((*1 *2 *3)
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (-5 *1 (-749))))
+ ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-749))))
+ ((*1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-753 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-773)) (-4 *2 (-926 *4 *5 *6)) (-5 *1 (-444 *4 *5 *6 *2))
- (-4 *4 (-446)) (-4 *6 (-827)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 *3)))) (-5 *4 (-751))
- (-4 *3 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827))
- (-5 *1 (-444 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *2))
- (-4 *2 (-926 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 *3)) (-4 *3 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773))
- (-4 *7 (-827)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-444 *5 *6 *7 *3)))))
-(((*1 *2 *3 *2)
+ (-5 *2
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-5 *1 (-788))))
+ ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-788))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-876 *3)) (-5 *1 (-797 *3 *2 *4)) (-4 *3 (-1073))
+ (-14 *4 *3)))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1073)) (-14 *4 *3) (-5 *1 (-797 *3 *2 *4))
+ (-4 *2 (-876 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-804))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-622
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-751)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-773)) (-4 *6 (-926 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-827))
- (-5 *1 (-444 *4 *3 *5 *6)))))
-(((*1 *2 *2)
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221)))
+ (|:| |lb| (-625 (-820 (-221))))
+ (|:| |cf| (-625 (-311 (-221))))
+ (|:| |ub| (-625 (-820 (-221))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-625 (-311 (-221))))
+ (|:| -2071 (-625 (-221)))))))
+ (-5 *1 (-818))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-622
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-773)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827))
- (-5 *1 (-444 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2)
+ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))
+ (-5 *1 (-818))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-622
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-773)) (-4 *3 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827))
- (-5 *1 (-444 *4 *5 *6 *3)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
- (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-926 *4 *3 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
- (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-926 *4 *3 *5)))))
-(((*1 *2 *3)
+ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221)))
+ (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221))))
+ (|:| |ub| (-625 (-820 (-221))))))
+ (-5 *1 (-818))))
+ ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-818))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-832 *3 *4 *5 *6))
+ (-4 *4 (-1025)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-835))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-5 *1 (-842 *3 *4 *5 *6))
+ (-14 *4 (-625 (-1149))) (-14 *5 (-625 (-751))) (-14 *6 (-751))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-928 *3)) (-5 *1 (-842 *3 *4 *5 *6)) (-4 *3 (-1025))
+ (-14 *4 (-625 (-1149))) (-14 *5 (-625 (-751))) (-14 *6 (-751))))
+ ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-928 (-48))) (-5 *2 (-311 (-552))) (-5 *1 (-851))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-402 (-928 (-48)))) (-5 *2 (-311 (-552)))
+ (-5 *1 (-851))))
+ ((*1 *1 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-773)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827))
- (-5 *2 (-112)) (-5 *1 (-444 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-622 *7)) (-5 *3 (-538)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7))
- (-5 *3 (-622 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827))
- (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8))
- (-5 *3 (-622 *8))))
+ (-5 *2
+ (-2 (|:| |pde| (-625 (-311 (-221))))
+ (|:| |constraints|
+ (-625
+ (-2 (|:| |start| (-221)) (|:| |finish| (-221))
+ (|:| |grid| (-751)) (|:| |boundaryType| (-552))
+ (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221))))))
+ (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131))
+ (|:| |tol| (-221))))
+ (-5 *1 (-874))))
+ ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-874))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1172 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-881 *3))) (-4 *3 (-1073)) (-5 *1 (-880 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-881 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-402 (-413 *3))) (-4 *3 (-302)) (-5 *1 (-890 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7))
- (-5 *3 (-622 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827))
- (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8))
- (-5 *3 (-622 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827))
- (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7))
- (-5 *3 (-622 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827))
- (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8))
- (-5 *3 (-622 *8)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-302)) (-4 *4 (-773))
- (-4 *5 (-827)) (-5 *1 (-442 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-302))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-302))
- (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773))
- (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-440)) (-5 *3 (-538)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025))))
+ (-12 (-5 *3 (-471)) (-5 *2 (-311 *4)) (-5 *1 (-895 *4))
+ (-4 *4 (-13 (-827) (-544)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943))))
+ ((*1 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-947))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-402 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1237)) (-5 *1 (-1009 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *3) (-12 (-5 *3 (-307)) (-5 *1 (-1009 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-925 *3 *4 *5))
+ (-14 *6 (-625 *2))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-1019 *3)) (-4 *3 (-544))))
+ ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-669 *5)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751))
+ (-14 *4 (-751)) (-4 *5 (-1025))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2))
+ (-4 *2 (-925 *3 (-524 *4) *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4))
+ (-4 *4 (-925 *3 (-524 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-839))))
+ ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1117))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1205 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149))
+ (-14 *5 *3) (-5 *1 (-1147 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1148))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1149))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1159 (-1149) (-432))) (-5 *1 (-1153))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154))))
+ ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1154))))
+ ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1158 *3)) (-4 *3 (-1073))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *1 (-1165 *3)) (-4 *3 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1166))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-5 *1 (-1180 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1180 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-934 *3)) (-4 *3 (-1186)) (-5 *1 (-1183 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1025)) (-4 *1 (-1194 *3 *2)) (-4 *2 (-1223 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1067 *3)) (-4 *3 (-1186)) (-5 *1 (-1199 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-1205 *3 *4))
+ (-4 *4 (-1025))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1025)) (-4 *1 (-1215 *3 *2)) (-4 *2 (-1192 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5))
+ (-4 *3 (-1025)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1205 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149))
+ (-14 *5 *3) (-5 *1 (-1224 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1233))))
+ ((*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1233)) (-5 *1 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1237))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-625 *4))
+ (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-925 *3 *5 *4))
+ (-14 *7 (-625 (-751))) (-14 *8 (-751))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-925 *3 *5 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-625 *4))
+ (-14 *7 (-625 (-751))) (-14 *8 (-751))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-170))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))
+ (-5 *1 (-1252 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-823)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5)))
+ (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))
((*1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-538)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-538)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))))
-(((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025))))
- ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))))
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-5 *2 (-751))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-751)) (-5 *4 (-538)) (-5 *1 (-439 *2)) (-4 *2 (-1025)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-400 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-1025))
- (-5 *2 (-622 *6)) (-5 *1 (-438 *5 *6)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-895)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-895)) (-5 *4 (-751)) (-5 *1 (-436 *2))
- (-4 *2 (-1207 (-538)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *1 (-436 *2))
- (-4 *2 (-1207 (-538)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *5 (-751))
- (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *5 (-751))
- (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-400 *2)) (-4 *2 (-1207 *5)) (-5 *1 (-438 *5 *2))
- (-4 *5 (-1025)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-2 (|:| -4092 *4) (|:| -4307 (-538)))))
- (-4 *4 (-1207 (-538))) (-5 *2 (-717 (-751))) (-5 *1 (-436 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-400 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-1025))
- (-5 *2 (-717 (-751))) (-5 *1 (-438 *4 *5)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))
- (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))
- (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *5 *3 *6))
- (-4 *3 (-1207 *5)) (-4 *6 (-13 (-399) (-1014 *5) (-358) (-1171) (-279)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5))
- (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5))
- (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))
- (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-895)) (-4 *5 (-1025))
- (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279)))
- (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1207 *5)))))
+ (-12 (-5 *4 (-625 (-625 *8))) (-5 *3 (-625 *8))
+ (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145)))
+ (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-112))
+ (-5 *1 (-900 *5 *6 *7 *8)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5))
- (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1070 (-751))) (-5 *6 (-751))
+ (-12 (-4 *4 (-827))
(-5 *2
- (-2 (|:| |contp| (-538))
- (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538)))))))
- (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2908 (-538)) (|:| -2767 (-622 *3)))) (-5 *1 (-436 *3))
- (-4 *3 (-1207 (-538))))))
-(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-400 *3)) (-4 *3 (-545))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-622 (-2 (|:| -4092 *4) (|:| -4307 (-538)))))
- (-4 *4 (-1207 (-538))) (-5 *2 (-751)) (-5 *1 (-436 *4)))))
-(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))
- ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))
- ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-622
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-538)))))
- (-4 *2 (-545)) (-5 *1 (-400 *2))))
+ (-2 (|:| |f1| (-625 *4)) (|:| |f2| (-625 (-625 (-625 *4))))
+ (|:| |f3| (-625 (-625 *4))) (|:| |f4| (-625 (-625 (-625 *4))))))
+ (-5 *1 (-1157 *4)) (-5 *3 (-625 (-625 (-625 *4)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859))
+ (-5 *3 (-625 (-552)))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-538))
- (|:| -2767 (-622 (-2 (|:| |irr| *4) (|:| -2487 (-538)))))))
- (-4 *4 (-1207 (-538))) (-5 *2 (-400 *4)) (-5 *1 (-436 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-432))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-432)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-432)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-432)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-432)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 "void"))) (-5 *1 (-431)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-431)))))
-(((*1 *1) (-5 *1 (-431))))
-(((*1 *1) (-5 *1 (-431))))
-(((*1 *1) (-5 *1 (-431))))
-(((*1 *1) (-5 *1 (-431))))
-(((*1 *1) (-5 *1 (-431))))
-(((*1 *1) (-5 *1 (-431))))
-(((*1 *1) (-5 *1 (-431))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1014 (-48)))
- (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4))
- (-5 *2 (-400 (-1143 (-48)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5)))))
+ (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859))
+ (-5 *3 (-625 (-552))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4))
+ (-12 (-5 *3 (-669 (-402 (-928 (-552)))))
(-5 *2
- (-3 (|:| |overq| (-1143 (-402 (-538)))) (|:| |overan| (-1143 (-48)))
- (|:| -2970 (-112))))
- (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4))
- (-5 *2 (-400 (-1143 (-402 (-538))))) (-5 *1 (-430 *4 *5 *3))
- (-4 *3 (-1207 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4))
- (-5 *2 (-400 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-1237))
- (-5 *1 (-428 *3 *4)) (-4 *4 (-416 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-402 (-538)))
- (-5 *1 (-428 *4 *3)) (-4 *3 (-416 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 *3)) (-4 *3 (-416 *5))
- (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-1143 (-402 (-538))))
- (-5 *1 (-428 *5 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-424 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-538)))))
- (-4 *2 (-13 (-827) (-21))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-424 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-538)))))
- (-4 *2 (-13 (-827) (-21))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149))
- (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-569 *3)) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-1074)) (-5 *2 (-751)))))
-(((*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-363)))))
-(((*1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-363)) (-4 *2 (-1074)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-418 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1171) (-416 *3)))
- (-14 *4 (-1149)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-4 *2 (-13 (-27) (-1171) (-416 *3) (-10 -8 (-15 -4317 ($ *4)))))
- (-4 *4 (-825))
- (-4 *5
- (-13 (-1210 *2 *4) (-358) (-1171)
- (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $)))))
- (-5 *1 (-419 *3 *2 *4 *5 *6 *7)) (-4 *6 (-959 *5)) (-14 *7 (-1149)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-4 *3 (-13 (-27) (-1171) (-416 *6) (-10 -8 (-15 -4317 ($ *7)))))
- (-4 *7 (-825))
- (-4 *8
- (-13 (-1210 *3 *7) (-358) (-1171)
- (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))))
- (-5 *1 (-419 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8))
- (-14 *10 (-1149)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-4 *3 (-13 (-27) (-1171) (-416 *6) (-10 -8 (-15 -4317 ($ *7)))))
- (-4 *7 (-825))
- (-4 *8
- (-13 (-1210 *3 *7) (-358) (-1171)
- (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))))
- (-5 *1 (-419 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8))
- (-14 *10 (-1149)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *2
- (-3 (|:| |%expansion| (-308 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))))
- (-5 *1 (-418 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))
- (-14 *6 (-1149)) (-14 *7 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-827)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149)) (-5 *3 (-622 *1)) (-4 *1 (-416 *4)) (-4 *4 (-827))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827))))
- ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827))
- (-5 *2 (-2 (|:| -4313 (-538)) (|:| |var| (-595 *1)))) (-4 *1 (-416 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-545)) (-5 *1 (-414 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1207 *4)) (-4 *4 (-1190))
- (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1207 (-402 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1231 *1)) (-4 *4 (-170)) (-4 *1 (-362 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1231 *1)) (-4 *4 (-170))
- (-4 *1 (-365 *4 *5)) (-4 *5 (-1207 *4))))
+ (-625
+ (-2 (|:| |radval| (-311 (-552))) (|:| |radmult| (-552))
+ (|:| |radvect| (-625 (-669 (-311 (-552))))))))
+ (-5 *1 (-1007)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *3 (-625 (-258)))
+ (-5 *1 (-256))))
((*1 *1 *2)
- (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4))
- (-4 *4 (-1207 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170))))
- ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2))))
- ((*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170))))
- ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2))))
- ((*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-412 *3 *4))
- (-4 *3 (-413 *4))))
- ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))))
+ (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-258))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 (-475 *5 *6))) (-5 *3 (-475 *5 *6))
+ (-14 *5 (-625 (-1149))) (-4 *6 (-446)) (-5 *2 (-1232 *6))
+ (-5 *1 (-613 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-412 *3 *4))
- (-4 *3 (-413 *4))))
- ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1014 *4)) (-4 *3 (-302))
- (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-4 *6 (-405 *4 *5))
- (-14 *7 (-1231 *6)) (-5 *1 (-410 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1231 *6)) (-4 *6 (-405 *4 *5)) (-4 *4 (-967 *3))
- (-4 *5 (-1207 *4)) (-4 *3 (-302)) (-5 *1 (-410 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-302)) (-4 *3 (-967 *2)) (-4 *4 (-1207 *3))
- (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1014 *3))))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190))
+ (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5)))
+ (-5 *2 (-2 (|:| |num| (-669 *5)) (|:| |den| *5))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-839))))
+(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-751)) (-5 *4 (-1231 *2)) (-4 *5 (-302)) (-4 *6 (-967 *5))
- (-4 *2 (-13 (-405 *6 *7) (-1014 *6))) (-5 *1 (-408 *5 *6 *7 *2))
- (-4 *7 (-1207 *6)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773)) (-5 *2 (-625 (-625 (-552))))
+ (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-552)) (-4 *7 (-925 *4 *6 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850)))
+ (-5 *1 (-462)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-358) (-1171) (-978))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *3 (-625 (-552)))
+ (-5 *1 (-859)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 (-475 *3 *4))) (-14 *3 (-625 (-1149)))
+ (-4 *4 (-446)) (-5 *1 (-613 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1207 *4)) (-5 *2 (-669 *4))))
+ (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-358) (-1171) (-978)))))
((*1 *2)
- (-12 (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4))
- (-5 *1 (-404 *3 *4 *5)) (-4 *3 (-405 *4 *5))))
+ (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 (-402 *2)))
+ (-4 *2 (-1208 *4)) (-5 *1 (-336 *3 *4 *2 *5))
+ (-4 *3 (-337 *4 *2 *5))))
((*1 *2)
- (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3))
- (-5 *2 (-669 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1207 *4)) (-5 *2 (-669 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3))
- (-5 *2 (-669 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-400 *3)) (-4 *3 (-545)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-400 *4)) (-4 *4 (-545)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-538)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-400 *2)) (-4 *2 (-545)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-256))))
- ((*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545)))))
-(((*1 *1 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399))))
- ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-538)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-895)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-538)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-895)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-751))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-751)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-751))))
- ((*1 *1 *1) (-4 *1 (-397))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-13 (-358) (-145)))
- (-5 *1 (-394 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1207 *3)) (-5 *1 (-394 *3 *2)) (-4 *3 (-13 (-358) (-145))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-358) (-145)))
- (-5 *2 (-622 (-2 (|:| -2493 (-751)) (|:| -4132 *4) (|:| |num| *4))))
- (-5 *1 (-394 *3 *4)) (-4 *4 (-1207 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-390)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-622 (-622 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-622 (-3 (|:| |array| (-622 *3)) (|:| |scalar| (-1149)))))
- (-5 *6 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-390))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-622 (-622 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-622 (-3 (|:| |array| (-622 *3)) (|:| |scalar| (-1149)))))
- (-5 *6 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-390))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-622 (-1149))) (-5 *5 (-1152)) (-5 *3 (-1149)) (-5 *2 (-1076))
- (-5 *1 (-390)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))))
-(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-386)))))
-(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-386))))
- ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-386)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-386)))))
-(((*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386)))))
-(((*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-840)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751))
- (-4 *5 (-170)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-840)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751))
- (-4 *5 (-170)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))))
+ (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190))
+ (-4 *4 (-1208 (-402 *2))) (-4 *2 (-1208 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-622 (-402 (-922 (-538))))) (-5 *4 (-622 (-1149)))
- (-5 *2 (-622 (-622 *5))) (-5 *1 (-375 *5)) (-4 *5 (-13 (-825) (-358)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 (-538)))) (-5 *2 (-622 *4)) (-5 *1 (-375 *4))
- (-4 *4 (-13 (-825) (-358))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 (-166 (-538))))) (-5 *2 (-622 (-166 *4)))
- (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-622 (-402 (-922 (-166 (-538)))))) (-5 *4 (-622 (-1149)))
- (-5 *2 (-622 (-622 (-166 *5)))) (-5 *1 (-374 *5))
- (-4 *5 (-13 (-358) (-825))))))
+ (-12 (-4 *3 (-1025)) (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-402 (-922 (-166 (-538))))))
- (-5 *2 (-622 (-622 (-288 (-922 (-166 *4)))))) (-5 *1 (-374 *4))
- (-4 *4 (-13 (-358) (-825)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-288 (-402 (-922 (-166 (-538)))))))
- (-5 *2 (-622 (-622 (-288 (-922 (-166 *4)))))) (-5 *1 (-374 *4))
- (-4 *4 (-13 (-358) (-825)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-922 (-166 (-538)))))
- (-5 *2 (-622 (-288 (-922 (-166 *4))))) (-5 *1 (-374 *4))
- (-4 *4 (-13 (-358) (-825)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 (-625 *6))) (-4 *6 (-925 *3 *5 *4))
+ (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149))))
+ (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *2 (-625 (-221)))
+ (-5 *1 (-462)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-358) (-1171) (-978))))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-661))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1091)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859))
+ (-5 *3 (-625 (-552))))))
+(((*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-625 (-475 *5 *6))) (-5 *4 (-841 *5))
+ (-14 *5 (-625 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6))
+ (-4 *6 (-446))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-288 (-402 (-922 (-166 (-538))))))
- (-5 *2 (-622 (-288 (-922 (-166 *4))))) (-5 *1 (-374 *4))
- (-4 *4 (-13 (-358) (-825))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-538)) (-5 *1 (-373)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-221))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-221))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-373))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-373)))))
-(((*1 *1 *1) (-5 *1 (-221))) ((*1 *1 *1) (-5 *1 (-373)))
- ((*1 *1) (-5 *1 (-373))))
-(((*1 *1 *1) (-5 *1 (-221)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149)))
- (-4 *4 (-382))))
- ((*1 *1 *1) (-5 *1 (-373))) ((*1 *1) (-5 *1 (-373))))
-(((*1 *1) (-5 *1 (-221))) ((*1 *1) (-5 *1 (-373))))
-(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373))))
- ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373)))))
-(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373))))
- ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373)))))
-(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373))))
- ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373)))))
-(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2))
- (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2))
- (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2))
- (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-4 *1 (-369 *3 *4)) (-4 *4 (-170)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-827)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1185))
- (-5 *2 (-112)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-538)) (|has| *1 (-6 -4354)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4354)) (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-367 *3))
- (-4 *3 (-1185)))))
-(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1231 *1)) (-4 *1 (-362 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1143 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1143 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-625 (-475 *5 *6))) (-5 *4 (-841 *5))
+ (-14 *5 (-625 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6))
+ (-4 *6 (-446)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-897)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))))
+ ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1232 *4)) (-5 *3 (-897)) (-4 *4 (-344))
+ (-5 *1 (-521 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
+ (-4 *5 (-234 *3 *2)) (-4 *2 (-1025)))))
(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-622 (-1231 *4))) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
+ (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 (-402 *2)))
+ (-4 *2 (-1208 *4)) (-5 *1 (-336 *3 *4 *2 *5))
+ (-4 *3 (-337 *4 *2 *5))))
((*1 *2)
- (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545))
- (-5 *2 (-622 (-1231 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) (-5 *2 (-1143 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) (-5 *2 (-1143 *3)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1131)) (-4 *1 (-360 *2 *4)) (-4 *2 (-1074)) (-4 *4 (-1074))))
- ((*1 *1 *2) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1131)) (-4 *1 (-360 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))))
-(((*1 *1 *1) (-4 *1 (-171)))
- ((*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))))
+ (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190))
+ (-4 *4 (-1208 (-402 *2))) (-4 *2 (-1208 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345))
- (-4 *2
- (-13 (-397)
- (-10 -7 (-15 -4317 (*2 *4)) (-15 -2126 ((-895) *2))
- (-15 -2128 ((-1231 *2) (-895))) (-15 -4288 (*2 *2)))))
- (-5 *1 (-352 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-5 *2 (-934 (-1143 *4))) (-5 *1 (-351 *4))
- (-5 *3 (-1143 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))))
+ (-12 (-4 *3 (-1025)) (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))))
+ (-12
+ (-5 *3
+ (-625
+ (-2 (|:| -3442 (-751))
+ (|:| |eqns|
+ (-625
+ (-2 (|:| |det| *7) (|:| |rows| (-625 (-552)))
+ (|:| |cols| (-625 (-552))))))
+ (|:| |fgb| (-625 *7)))))
+ (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145)))
+ (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751))
+ (-5 *1 (-900 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))))
+ (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-358) (-1171) (-978))))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))))
+ (-12 (-5 *3 (-625 (-475 *4 *5))) (-14 *4 (-625 (-1149)))
+ (-4 *5 (-446)) (-5 *2 (-625 (-243 *4 *5))) (-5 *1 (-613 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-1190))
+ (-4 *6 (-1208 (-402 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-337 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-625 (-919 *4))) (-4 *1 (-1107 *4)) (-4 *4 (-1025))
+ (-5 *2 (-751)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))))
+ (-12
+ (-5 *3
+ (-625
+ (-2 (|:| -3442 (-751))
+ (|:| |eqns|
+ (-625
+ (-2 (|:| |det| *7) (|:| |rows| (-625 (-552)))
+ (|:| |cols| (-625 (-552))))))
+ (|:| |fgb| (-625 *7)))))
+ (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145)))
+ (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751))
+ (-5 *1 (-900 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-552))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-751))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-897))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751))
+ (-4 *4 (-170))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-155))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171)))
+ (-5 *1 (-223 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-707))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-707))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *1 (-289 *2)) (-4 *2 (-1085)) (-4 *2 (-1186))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-289 *2)) (-4 *2 (-1085)) (-4 *2 (-1186))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-130))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-376 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1073))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2 *1)
+ (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170))
+ (-4 *6 (-234 (-1471 *3) (-751)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6))
+ (-2 (|:| -3123 *5) (|:| -3564 *6))))
+ (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-827))
+ (-4 *2 (-925 *4 *6 (-841 *3)))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827))
+ (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-528)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1032))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1073))
+ (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-664 *5 *6 *7))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-667 *3 *2 *4)) (-4 *3 (-1025)) (-4 *2 (-368 *3))
+ (-4 *4 (-368 *3))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-667 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-368 *3))
+ (-4 *2 (-368 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025))
+ (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2))
+ (-4 *4 (-368 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-701)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))
+ ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-544))
+ (-5 *1 (-945 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1032))))
+ ((*1 *1 *1 *1) (-4 *1 (-1085)))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *2 (-234 *3 *4))
+ (-4 *5 (-234 *3 *4))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4))
+ (-4 *2 (-234 *3 *4))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2))
+ (-4 *2 (-925 *3 (-524 *4) *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-919 (-221))) (-5 *3 (-221)) (-5 *1 (-1182))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-707))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-707))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-552)) (-4 *1 (-1230 *3)) (-4 *3 (-1186)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))))
-(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345)))))
-(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345)))))
-(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-358) (-1171) (-978))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552))))
((*1 *2 *3)
- (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-351 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 (-882 *3)) (|:| -2492 (-1093))))))
- (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895))))
- ((*1 *2)
- (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093))))))
- (-5 *1 (-348 *3 *4)) (-4 *3 (-345)) (-14 *4 (-3 (-1143 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093))))))
- (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895)))))
-(((*1 *2)
- (-12 (-5 *2 (-669 (-882 *3))) (-5 *1 (-347 *3 *4)) (-14 *3 (-895))
- (-14 *4 (-895))))
- ((*1 *2)
- (-12 (-5 *2 (-669 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-345))
- (-14 *4
- (-3 (-1143 *3) (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-669 *3)) (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093))))))
- (-4 *4 (-345)) (-5 *2 (-751)) (-5 *1 (-342 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895))))
- ((*1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-348 *3 *4)) (-4 *3 (-345))
- (-14 *4
- (-3 (-1143 *3) (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-751)) (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895)))))
-(((*1 *2)
- (-12 (-4 *1 (-345))
- (-5 *2 (-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))))))
-(((*1 *2 *3) (-12 (-4 *1 (-345)) (-5 *3 (-538)) (-5 *2 (-1158 (-895) (-751))))))
-(((*1 *1) (-4 *1 (-345))))
-(((*1 *2)
- (-12 (-4 *1 (-345)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+ (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-358)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-636 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -2772 *3) (|:| -3362 (-625 *5))))
+ (-5 *1 (-1001 *5 *3)) (-5 *4 (-625 *5)) (-4 *3 (-636 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-895))
+ (-12 (-14 *4 (-625 (-1149))) (-4 *5 (-446))
(-5 *2
- (-3 (-1143 *4) (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))))
- (-5 *1 (-342 *4)) (-4 *4 (-345)))))
+ (-2 (|:| |glbase| (-625 (-243 *4 *5))) (|:| |glval| (-625 (-552)))))
+ (-5 *1 (-613 *4 *5)) (-5 *3 (-625 (-243 *4 *5))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-895))
- (-5 *2 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093))))))
- (-5 *1 (-342 *4)) (-4 *4 (-345)))))
+ (-12 (-5 *3 (-1149)) (-4 *5 (-1190)) (-4 *6 (-1208 *5))
+ (-4 *7 (-1208 (-402 *6))) (-5 *2 (-625 (-928 *5)))
+ (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1149)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190))
+ (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-4 *4 (-358))
+ (-5 *2 (-625 (-928 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093))))))
- (-4 *4 (-345)) (-5 *2 (-669 *4)) (-5 *1 (-342 *4)))))
+ (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773)) (-5 *2 (-625 *3)) (-5 *1 (-900 *4 *5 *6 *3))
+ (-4 *3 (-925 *4 *6 *5)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345))
- (-5 *2 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093))))))
- (-5 *1 (-342 *4)))))
+ (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-358) (-1171) (-978))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-155)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-853 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-855 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-858 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1035 (-1000 *4) (-1145 (-1000 *4)))) (-5 *3 (-839))
+ (-5 *1 (-1000 *4)) (-4 *4 (-13 (-825) (-358) (-998))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-934 (-1093)))
- (-5 *1 (-342 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-339 *3 *4)) (-14 *3 (-895))
- (-14 *4 (-895))))
- ((*1 *2)
- (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-340 *3 *4)) (-4 *3 (-345))
- (-14 *4 (-1143 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-341 *3 *4)) (-4 *3 (-345))
- (-14 *4 (-895)))))
-(((*1 *2)
- (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5)))
- (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-751)))))
+ (-12 (-5 *3 (-625 (-475 *4 *5))) (-14 *4 (-625 (-1149)))
+ (-4 *5 (-446))
+ (-5 *2
+ (-2 (|:| |gblist| (-625 (-243 *4 *5)))
+ (|:| |gvlist| (-625 (-552)))))
+ (-5 *1 (-613 *4 *5)))))
(((*1 *2)
- (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5)))
- (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))
+ (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5)))
+ (-5 *2 (-625 (-625 *4))) (-5 *1 (-336 *3 *4 *5 *6))
+ (-4 *3 (-337 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1190)) (-4 *5 (-1207 *3)) (-4 *6 (-1207 (-402 *5)))
- (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-625 (-625 *3))))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4))
- (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))))
+ (-12
+ (-5 *3
+ (-2 (|:| -2351 (-669 (-402 (-928 *4))))
+ (|:| |vec| (-625 (-402 (-928 *4)))) (|:| -3442 (-751))
+ (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))
+ (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773))
+ (-5 *2
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *4))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *4)))))))
+ (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4))
- (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-897)) (-5 *2 (-1232 (-1232 (-552)))) (-5 *1 (-460)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4))
- (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4)))
- (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)))))
+ (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-358) (-1171) (-978))))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-919 (-221)))) (-5 *1 (-1233)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1186)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4))
- (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190))
- (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190))
- (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))))
+ (|partial| -12 (-5 *2 (-1035 (-1000 *3) (-1145 (-1000 *3))))
+ (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-998))))))
+(((*1 *1 *1) (-4 *1 (-611)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978) (-1171))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190))
- (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4)))
- (-5 *2 (-2 (|:| |num| (-1231 *4)) (|:| |den| *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4)))
- (-5 *2 (-2 (|:| |num| (-1231 *4)) (|:| |den| *4))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1207 *4)) (-4 *4 (-1190))
- (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1207 (-402 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190))
- (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5)))
- (-5 *2 (-2 (|:| |num| (-669 *5)) (|:| |den| *5))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149)))
+ (-14 *4 (-625 (-1149))) (-4 *5 (-382)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-941))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1131) (-754))) (-5 *1 (-114)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *4))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *4)))))))
+ (-5 *3 (-625 *7)) (-4 *4 (-13 (-302) (-145)))
+ (-4 *7 (-925 *4 *6 *5)) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1232 (-1232 (-552)))) (-5 *3 (-897)) (-5 *1 (-460)))))
(((*1 *2 *3)
(-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1171) (-978)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 (-402 *2))) (-4 *2 (-1207 *4))
- (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190))
- (-4 *4 (-1207 (-402 *2))) (-4 *2 (-1207 *3)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 (-402 *2))) (-4 *2 (-1207 *4))
- (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190))
- (-4 *4 (-1207 (-402 *2))) (-4 *2 (-1207 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-1190))
- (-4 *6 (-1207 (-402 *5)))
- (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5)))
- (-4 *1 (-337 *4 *5 *6)))))
+ (-4 *3 (-13 (-358) (-1171) (-978))))))
+(((*1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1169)))))
+(((*1 *1) (-5 *1 (-1233))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *5 (-1190)) (-4 *6 (-1207 *5))
- (-4 *7 (-1207 (-402 *6))) (-5 *2 (-622 (-922 *5)))
- (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7))))
+ (-12
+ (-5 *2
+ (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))
+ (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))
+ (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552)))
+ (-5 *4 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))
+ (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))) (-5 *4 (-402 (-552)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-402 (-552)))
+ (-5 *2 (-625 (-2 (|:| -2290 *5) (|:| -2303 *5)))) (-5 *1 (-996 *3))
+ (-4 *3 (-1208 (-552))) (-5 *4 (-2 (|:| -2290 *5) (|:| -2303 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190))
- (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-4 *4 (-358))
- (-5 *2 (-622 (-922 *4))))))
-(((*1 *2)
- (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5)))
- (-5 *2 (-622 (-622 *4))) (-5 *1 (-336 *3 *4 *5 *6))
- (-4 *3 (-337 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-622 (-622 *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149)))
- (-14 *4 (-622 (-1149))) (-4 *5 (-382))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149)))
- (-14 *4 (-622 (-1149))) (-4 *5 (-382)))))
+ (-12
+ (-5 *2
+ (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))
+ (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))
+ (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552))))
+ (-5 *4 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-402 (-552)))
+ (-5 *2 (-625 (-2 (|:| -2290 *4) (|:| -2303 *4)))) (-5 *1 (-997 *3))
+ (-4 *3 (-1208 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-402 (-552)))
+ (-5 *2 (-625 (-2 (|:| -2290 *5) (|:| -2303 *5)))) (-5 *1 (-997 *3))
+ (-4 *3 (-1208 *5)) (-5 *4 (-2 (|:| -2290 *5) (|:| -2303 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1131)) (-5 *2 (-625 (-1154))) (-5 *1 (-856)))))
+(((*1 *1 *1) (-4 *1 (-611)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978) (-1171))))))
(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-358)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3)))
- (-4 *1 (-331 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5))))
+ (-12 (-4 *4 (-358)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3)))
+ (-4 *1 (-330 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5))))
((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-538)) (-4 *2 (-358)) (-4 *4 (-1207 *2))
- (-4 *5 (-1207 (-402 *4))) (-4 *1 (-331 *2 *4 *5 *6))
+ (-12 (-5 *3 (-552)) (-4 *2 (-358)) (-4 *4 (-1208 *2))
+ (-4 *5 (-1208 (-402 *4))) (-4 *1 (-330 *2 *4 *5 *6))
(-4 *6 (-337 *2 *4 *5))))
((*1 *1 *2 *2)
- (-12 (-4 *2 (-358)) (-4 *3 (-1207 *2)) (-4 *4 (-1207 (-402 *3)))
- (-4 *1 (-331 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4))))
+ (-12 (-4 *2 (-358)) (-4 *3 (-1208 *2)) (-4 *4 (-1208 (-402 *3)))
+ (-4 *1 (-330 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4)))
- (-4 *1 (-331 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5))))
+ (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4)))
+ (-4 *1 (-330 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358))
- (-4 *1 (-331 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3))
- (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4)))
- (-5 *2 (-1231 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))))
+ (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358))
+ (-4 *1 (-330 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4)))
- (-5 *2 (-1231 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))))
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-827)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1065 (-922 (-538)))) (-5 *3 (-922 (-538))) (-5 *1 (-325))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1065 (-922 (-538)))) (-5 *1 (-325)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))))
-(((*1 *1 *2) (-12 (-5 *2 (-309 (-166 (-373)))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-674))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-681))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-325))))
- ((*1 *1) (-5 *1 (-325))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-5 *1 (-325)))))
-(((*1 *1) (-5 *1 (-325))))
-(((*1 *1) (-5 *1 (-325))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-325)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1149)) (-5 *1 (-325)))))
-(((*1 *2 *1)
- (-12
+ (-12 (-5 *3 (-669 *8)) (-4 *8 (-925 *5 *7 *6))
+ (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
+ (-4 *7 (-773))
(-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call")
- (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat")
- (|:| |Goto| "goto") (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-325)))))
-(((*1 *2 *1)
+ (-625
+ (-2 (|:| -3442 (-751))
+ (|:| |eqns|
+ (-625
+ (-2 (|:| |det| *8) (|:| |rows| (-625 (-552)))
+ (|:| |cols| (-625 (-552))))))
+ (|:| |fgb| (-625 *8)))))
+ (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-751)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-827)) (-4 *5 (-773))
+ (-4 *6 (-544)) (-4 *7 (-925 *6 *5 *3))
+ (-5 *1 (-456 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1014 (-402 (-552))) (-358)
+ (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $))
+ (-15 -1368 (*7 $))))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
+ (-5 *1 (-174 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1129 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1131)) (-5 *2 (-552)) (-5 *1 (-1168 *4))
+ (-4 *4 (-1025)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-462)) (-5 *3 (-625 (-258))) (-5 *1 (-1233))))
+ ((*1 *1 *1) (-5 *1 (-1233))))
+(((*1 *2 *3)
(-12
+ (-5 *3
+ (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))
+ (-5 *2 (-625 (-402 (-552)))) (-5 *1 (-996 *4))
+ (-4 *4 (-1208 (-552))))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
+(((*1 *1 *1) (-4 *1 (-611)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2))
+ (-4 *2 (-13 (-425 *3) (-978) (-1171))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3))
+ (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773)) (-4 *7 (-925 *4 *6 *5))
(-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-622 (-922 (-538))))
- (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1149)) (|:| |rand| (-840))
- (|:| |ints2Floats?| (-112))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1148)) (|:| |thenClause| (-325))
- (|:| |elseClause| (-325))))
- (|:| |returnBranch|
- (-2 (|:| -3762 (-112))
- (|:| -3761 (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840))))))
- (|:| |blockBranch| (-622 (-325))) (|:| |commentBranch| (-622 (-1131)))
- (|:| |callBranch| (-1131))
- (|:| |forBranch|
- (-2 (|:| -1561 (-1065 (-922 (-538)))) (|:| |span| (-922 (-538)))
- (|:| -3584 (-325))))
- (|:| |labelBranch| (-1093))
- (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -3584 (-325))))
- (|:| |commonBranch|
- (-2 (|:| -3905 (-1149)) (|:| |contents| (-622 (-1149)))))
- (|:| |printBranch| (-622 (-840)))))
- (-5 *1 (-325)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-325)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-325)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))))
-(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3)) (-4 *3 (-358)))))
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-625 *7)) (|:| |n0| (-625 *7))))
+ (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-625 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1143 *3)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))
- (-5 *2 (-1143 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1143 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-751)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))
- (-4 *3 (-170)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-538)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1074)) (-4 *2 (-130)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-130)) (-4 *3 (-772)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-538)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1025))
- (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-926 *2 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1143 *7)) (-5 *3 (-538)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773))
- (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *1 (-316 *4 *5 *6 *7)))))
+ (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *2))
+ (-2 (|:| -3123 *5) (|:| -3564 *2))))
+ (-4 *2 (-234 (-1471 *3) (-751))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-827)) (-4 *7 (-925 *4 *2 (-841 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-897)) (-5 *4 (-221)) (-5 *5 (-552)) (-5 *6 (-850))
+ (-5 *2 (-1237)) (-5 *1 (-1233)))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1143 *6)) (-4 *6 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
- (-5 *2 (-1143 *7)) (-5 *1 (-316 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))))
+ (-12 (-5 *3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))
+ (-5 *2 (-402 (-552))) (-5 *1 (-996 *4)) (-4 *4 (-1208 (-552))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1143 *7)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))
- (-4 *6 (-1025)) (-5 *2 (-1143 *6)) (-5 *1 (-316 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-5 *5 (-622 *8)) (-4 *7 (-827))
- (-4 *8 (-1025)) (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 (-1143 *8))
- (-5 *1 (-316 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112))
+ (-5 *1 (-32 *4 *5)) (-4 *5 (-425 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112))
+ (-5 *1 (-156 *4 *5)) (-4 *5 (-425 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112))
+ (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-425 *4) (-978)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297))))
+ ((*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *5 (-827)) (-5 *2 (-112))
+ (-5 *1 (-424 *4 *5)) (-4 *4 (-425 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112))
+ (-5 *1 (-426 *4 *5)) (-4 *5 (-425 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112))
+ (-5 *1 (-612 *4 *5)) (-4 *5 (-13 (-425 *4) (-978) (-1171))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-402 (-538))) (-5 *1 (-314 *3 *4 *5))
- (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221)))
- (-5 *6 (-538)) (-5 *2 (-1181 (-903))) (-5 *1 (-313))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221)))
- (-5 *6 (-538)) (-5 *7 (-1131)) (-5 *2 (-1181 (-903))) (-5 *1 (-313))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221)))
- (-5 *6 (-221)) (-5 *7 (-538)) (-5 *2 (-1181 (-903))) (-5 *1 (-313))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221)))
- (-5 *6 (-221)) (-5 *7 (-538)) (-5 *8 (-1131)) (-5 *2 (-1181 (-903)))
- (-5 *1 (-313)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-416 *5))
- (-4 *5 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51))
- (-5 *1 (-312 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-622 *7)) (-4 *7 (-416 *6))
- (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51))
- (-5 *1 (-312 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-622 (-288 *7))) (-5 *4 (-622 (-113))) (-5 *5 (-288 *7))
- (-4 *7 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51))
- (-5 *1 (-312 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-622 (-288 *8))) (-5 *4 (-622 (-113))) (-5 *5 (-288 *8))
- (-5 *6 (-622 *8)) (-4 *8 (-416 *7))
- (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51))
- (-5 *1 (-312 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-622 *7)) (-5 *4 (-622 (-113))) (-5 *5 (-288 *7))
- (-4 *7 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51))
- (-5 *1 (-312 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 (-113))) (-5 *6 (-622 (-288 *8)))
- (-4 *8 (-416 *7)) (-5 *5 (-288 *8))
- (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51))
- (-5 *1 (-312 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-416 *6))
- (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51))
- (-5 *1 (-312 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-416 *6))
- (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51))
- (-5 *1 (-312 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-416 *6))
- (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51))
- (-5 *1 (-312 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-622 *3)) (-4 *3 (-416 *7))
- (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51))
- (-5 *1 (-312 *7 *3)))))
+ (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4)))
+ (-5 *2 (-1232 *6)) (-5 *1 (-331 *3 *4 *5 *6))
+ (-4 *6 (-337 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-545)) (-4 *3 (-827)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-538)) (-5 *1 (-309 *3)) (-4 *3 (-545)) (-4 *3 (-827)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-751)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-302))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1)))
- (-4 *1 (-302)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-302)))))
-(((*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-825)) (-5 *1 (-299 *3)))))
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-221))) (-5 *4 (-751)) (-5 *2 (-669 (-221)))
- (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-402 (-538))) (-5 *2 (-221)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-309 (-373))) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-922 (-221))) (-5 *2 (-221)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-922 (-221))) (-5 *2 (-309 (-373))) (-5 *1 (-298)))))
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-928 *4)) (-4 *4 (-13 (-302) (-145)))
+ (-4 *2 (-925 *4 *6 *5)) (-5 *1 (-900 *4 *5 *6 *2))
+ (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170))
+ (-4 *5 (-234 (-1471 *3) (-751)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *5))
+ (-2 (|:| -3123 *2) (|:| -3564 *5))))
+ (-4 *2 (-827)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-925 *4 *5 (-841 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373))
- (|:| |expense| (-373)) (|:| |accuracy| (-373))
- (|:| |intermediateResults| (-373))))
- (-5 *2 (-1011)) (-5 *1 (-298)))))
+ (-5 *2
+ (-1232
+ (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221))
+ (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1521 (-552))
+ (|:| -1497 (-552)) (|:| |spline| (-552)) (|:| -1775 (-552))
+ (|:| |axesColor| (-850)) (|:| -4124 (-552))
+ (|:| |unitsColor| (-850)) (|:| |showing| (-552)))))
+ (-5 *1 (-1233)))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-425 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *4))
+ (-4 *4 (-425 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-114)) (-5 *1 (-161))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *4))
+ (-4 *4 (-13 (-425 *3) (-978)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-296 *3)) (-4 *3 (-297))))
+ ((*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *4 (-827)) (-5 *1 (-424 *3 *4))
+ (-4 *3 (-425 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *4))
+ (-4 *4 (-425 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-596 *3)) (-4 *3 (-827))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *4))
+ (-4 *4 (-13 (-425 *3) (-978) (-1171)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
+ (-14 *6 (-625 (-1149)))
+ (-5 *2
+ (-625 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6)))))
+ (-5 *1 (-610 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4)))
+ (-5 *2 (-1232 *6)) (-5 *1 (-331 *3 *4 *5 *6))
+ (-4 *6 (-337 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1126 (-221)))
- (|:| |notEvaluated| "Internal singularities not yet evaluated")))
- (|:| -1561
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1011)) (-5 *1 (-298)))))
+ (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-13 (-302) (-145)))
+ (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773))
+ (-5 *2 (-625 (-402 (-928 *4)))) (-5 *1 (-900 *4 *5 *6 *7))
+ (-4 *7 (-925 *4 *6 *5)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-625 (-1149))) (-4 *2 (-170))
+ (-4 *4 (-234 (-1471 *5) (-751)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3123 *3) (|:| -3564 *4))
+ (-2 (|:| -3123 *3) (|:| -3564 *4))))
+ (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-827))
+ (-4 *7 (-925 *2 *4 (-841 *5))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
+ (-5 *1 (-174 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3001 (-373)) (|:| -3905 (-1131))
- (|:| |explanations| (-622 (-1131)))))
- (-5 *2 (-1011)) (-5 *1 (-298))))
+ (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1232 (-3 (-462) "undefined"))) (-5 *1 (-1233)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-172 (-402 (-552)))) (-5 *1 (-117 *3)) (-14 *3 (-552))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1129 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3001 (-373)) (|:| -3905 (-1131))
- (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))))
- (-5 *2 (-1011)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1131)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-188))))
- ((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-296))))
- ((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-188))))
- ((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-296))))
- ((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-188))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-296))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-188))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-296))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1131)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-188))))
- ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-296))))
- ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 (-1231 (-309 (-373))))
- (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-309 (-373))) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1231 (-679))) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-679)) (-5 *1 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))
- (-5 *2 (-622 (-221))) (-5 *1 (-298)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1062 (-819 (-221)))) (-5 *1 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-309 (-221))) (-5 *2 (-309 (-402 (-538)))) (-5 *1 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1231 (-309 (-221))))
- (-5 *2
- (-2 (|:| |additions| (-538)) (|:| |multiplications| (-538))
- (|:| |exponentiations| (-538)) (|:| |functionCalls| (-538))))
- (-5 *1 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))
- (-5 *2 (-373)) (-5 *1 (-262))))
- ((*1 *2 *3) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 (-373)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-221)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-402 (-538))) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-538))) (-5 *1 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1062 (-819 (-373)))) (-5 *2 (-1062 (-819 (-221))))
- (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-819 (-373))) (-5 *2 (-819 (-221))) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-309 (-373))) (-5 *2 (-309 (-221))) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-221)) (-5 *1 (-298)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *4 (-1149))
- (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-622 (-221))) (-5 *1 (-296)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-1126 (-221))) (-5 *1 (-188))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-221))) (-5 *4 (-622 (-1149)))
- (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *4 (-622 (-1149)))
- (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1143 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-622 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-622 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-5 *2 (-172 (-552))) (-5 *1 (-746 *3)) (-4 *3 (-399))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-221))) (-5 *4 (-622 (-1149)))
- (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296)))))
+ (-12 (-5 *2 (-172 (-402 (-552)))) (-5 *1 (-847 *3)) (-14 *3 (-552))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-552)) (-5 *2 (-172 (-402 (-552))))
+ (-5 *1 (-848 *3 *4)) (-4 *4 (-845 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-221))) (-5 *4 (-1149)) (-5 *5 (-1062 (-819 (-221))))
- (-5 *2 (-622 (-221))) (-5 *1 (-188))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-221))) (-5 *4 (-1149)) (-5 *5 (-1062 (-819 (-221))))
- (-5 *2 (-622 (-221))) (-5 *1 (-296)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-112)) (-5 *1 (-296)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-293)) (-4 *2 (-1185))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-622 (-595 *1))) (-5 *3 (-622 *1)) (-4 *1 (-293))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-288 *1))) (-4 *1 (-293))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-293)))))
-(((*1 *1 *1 *1) (-4 *1 (-293))) ((*1 *1 *1) (-4 *1 (-293))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-595 *1)) (-4 *1 (-293)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-595 *1))) (-4 *1 (-293)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-595 *1))) (-4 *1 (-293)))))
-(((*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-622 (-113))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1149)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *5)) (-4 *5 (-416 *4)) (-4 *4 (-1014 (-538)))
- (-4 *4 (-13 (-827) (-545))) (-5 *2 (-1143 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *1)) (-4 *1 (-1025)) (-4 *1 (-293)) (-5 *2 (-1143 *1)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-306)) (-5 *1 (-291))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 (-1131))) (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1025)) (-4 *4 (-1207 *3)) (-5 *1 (-162 *3 *4 *2))
- (-4 *2 (-1207 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-707)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-707)) (-4 *2 (-1185)))))
+ (-12 (-5 *3 (-1232 *6)) (-5 *4 (-1232 (-552))) (-5 *5 (-552))
+ (-4 *6 (-1073)) (-5 *2 (-1 *6)) (-5 *1 (-993 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
+ (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6)))
+ (-5 *1 (-610 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325))
+ (-5 *1 (-327)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-622 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-545))
- (-4 *3 (-1185)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-446))
- (-5 *2
- (-622
- (-2 (|:| |eigval| (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4))))
- (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 *4))))))))
- (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-922 *4)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-446))
- (-5 *2
- (-622
- (-2 (|:| |eigval| (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4))))
- (|:| |geneigvec| (-622 (-669 (-402 (-922 *4))))))))
- (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-922 *4)))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-402 (-922 *6)) (-1138 (-1149) (-922 *6)))) (-5 *5 (-751))
- (-4 *6 (-446)) (-5 *2 (-622 (-669 (-402 (-922 *6))))) (-5 *1 (-287 *6))
- (-5 *4 (-669 (-402 (-922 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-402 (-922 *5)) (-1138 (-1149) (-922 *5))))
- (|:| |eigmult| (-751)) (|:| |eigvec| (-622 *4))))
- (-4 *5 (-446)) (-5 *2 (-622 (-669 (-402 (-922 *5))))) (-5 *1 (-287 *5))
- (-5 *4 (-669 (-402 (-922 *5)))))))
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025))
+ (-5 *2 (-625 (-625 (-919 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-625 (-625 (-919 *4)))) (-5 *3 (-112)) (-4 *4 (-1025))
+ (-4 *1 (-1107 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-625 (-625 (-919 *3)))) (-4 *3 (-1025))
+ (-4 *1 (-1107 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-625 (-625 (-625 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1107 *4)) (-4 *4 (-1025))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-625 (-625 (-919 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1107 *4)) (-4 *4 (-1025))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-625 (-625 (-625 *5)))) (-5 *3 (-625 (-169)))
+ (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-625 (-625 (-919 *5)))) (-5 *3 (-625 (-169)))
+ (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-402 (-922 *5)) (-1138 (-1149) (-922 *5)))) (-4 *5 (-446))
- (-5 *2 (-622 (-669 (-402 (-922 *5))))) (-5 *1 (-287 *5))
- (-5 *4 (-669 (-402 (-922 *5)))))))
+ (-12 (-5 *3 (-167 (-221))) (-5 *4 (-552)) (-5 *2 (-1011))
+ (-5 *1 (-739)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-669 (-402 (-922 *4)))) (-4 *4 (-446))
- (-5 *2 (-622 (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4)))))
- (-5 *1 (-287 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1058))) (-5 *1 (-286)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-286)))))
-(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-1076)) (-5 *1 (-286)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-622 (-941))) (-5 *1 (-286)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-941))) (-5 *1 (-286)))))
-(((*1 *1) (-5 *1 (-286))))
-(((*1 *1) (-5 *1 (-286))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2))
- (-4 *5 (-367 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1074))
- (-4 *2 (-1185)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-358)) (-5 *2 (-622 (-1126 *4))) (-5 *1 (-280 *4 *5))
- (-5 *3 (-1126 *4)) (-4 *5 (-1224 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-277 *3)) (-4 *3 (-1185))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3))
- (-4 *3 (-1074))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-275)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1076)) (-5 *1 (-275)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-402 (-538)))
- (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4)))
- (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-272 *4 *2)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-622 (-595 *2))) (-5 *4 (-1149))
- (-4 *2 (-13 (-27) (-1171) (-416 *5)))
- (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-272 *5 *2)))))
+ (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773)) (-5 *2 (-402 (-928 *4))) (-5 *1 (-900 *4 *5 *6 *3))
+ (-4 *3 (-925 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-669 *7)) (-4 *7 (-925 *4 *6 *5))
+ (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773)) (-5 *2 (-669 (-402 (-928 *4))))
+ (-5 *1 (-900 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5))
+ (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773)) (-5 *2 (-625 (-402 (-928 *4))))
+ (-5 *1 (-900 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-625 (-1149))) (-4 *2 (-170))
+ (-4 *3 (-234 (-1471 *4) (-751)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *3))
+ (-2 (|:| -3123 *5) (|:| -3564 *3))))
+ (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-827))
+ (-4 *7 (-925 *2 *3 (-841 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3)))))
+ (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-462)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))))
+(((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-398 *3)) (-4 *3 (-399))))
+ ((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-398 *3)) (-4 *3 (-399))))
+ ((*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399))))
+ ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897))))
+ ((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-1129 (-552))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-2 (|:| -3800 *4) (|:| -3469 (-552)))))
+ (-4 *4 (-1073)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-625 (-928 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4))
+ (-14 *4 (-625 (-1149)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))))
+ (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6))
+ (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *1 (-444 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6))
+ (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827))
+ (-5 *1 (-444 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827))
+ (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-625 (-760 *3 (-841 *4)))) (-4 *3 (-446))
+ (-14 *4 (-625 (-1149))) (-5 *1 (-610 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))))
+ (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325))
+ (-5 *1 (-327)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *2 (-1011)) (-5 *1 (-738)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-669 *11)) (-5 *4 (-625 (-402 (-928 *8))))
+ (-5 *5 (-751)) (-5 *6 (-1131)) (-4 *8 (-13 (-302) (-145)))
+ (-4 *11 (-925 *8 *10 *9)) (-4 *9 (-13 (-827) (-598 (-1149))))
+ (-4 *10 (-773))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-622 (-595 *3))) (|:| |vals| (-622 *3))))
- (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3))
- (-4 *3 (-13 (-416 *4) (-978))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-622 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-416 *4) (-978))) (-4 *4 (-13 (-827) (-545)))
- (-5 *1 (-271 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
+ (-2
+ (|:| |rgl|
+ (-625
+ (-2 (|:| |eqzro| (-625 *11)) (|:| |neqzro| (-625 *11))
+ (|:| |wcond| (-625 (-928 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *8))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *8))))))))))
+ (|:| |rgsz| (-552))))
+ (-5 *1 (-900 *8 *9 *10 *11)) (-5 *7 (-552)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-625 *3)) (-5 *5 (-897)) (-4 *3 (-1208 *4))
+ (-4 *4 (-302)) (-5 *1 (-454 *4 *3)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374)))
+ (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148))))
+ (-5 *1 (-1148)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
+ (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-897)) (-5 *2 (-462)) (-5 *1 (-1233)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1208 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1208 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-696 *3 *2 *4 *5 *6)) (-4 *3 (-170))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-552))))
+ (-4 *5 (-1208 *4)) (-5 *2 (-625 (-402 *5))) (-5 *1 (-992 *4 *5))
+ (-5 *3 (-402 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-416 *3) (-978))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2))
- (-4 *3 (-13 (-827) (-545))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2))
- (-4 *3 (-13 (-827) (-545))))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-270)))))
-(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-270)))))
+ (|partial| -12 (-5 *2 (-625 (-928 *3))) (-4 *3 (-446))
+ (-5 *1 (-355 *3 *4)) (-14 *4 (-625 (-1149)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-625 (-760 *3 (-841 *4)))) (-4 *3 (-446))
+ (-14 *4 (-625 (-1149))) (-5 *1 (-610 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325))
+ (-5 *1 (-327)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025))
+ (-5 *2 (-625 (-625 (-625 (-751))))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *2 (-1011)) (-5 *1 (-738)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-302) (-145)))
+ (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773))
+ (-5 *2
+ (-625
+ (-2 (|:| |eqzro| (-625 *7)) (|:| |neqzro| (-625 *7))
+ (|:| |wcond| (-625 (-928 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *4))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *4))))))))))
+ (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-897)) (-4 *5 (-302)) (-4 *3 (-1208 *5))
+ (-5 *2 (-2 (|:| |plist| (-625 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-454 *5 *3)) (-5 *4 (-625 *3)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374)))
+ (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148))))
+ (-5 *1 (-1148)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))))
+(((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6)
+ (|:| |c1| (-402 *6)) (|:| |c2| (-402 *6)) (|:| -2228 *6)))
+ (-5 *1 (-992 *5 *6)) (-5 *3 (-402 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-446)) (-5 *2 (-112))
+ (-5 *1 (-355 *4 *5)) (-14 *5 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-760 *4 (-841 *5)))) (-4 *4 (-446))
+ (-14 *5 (-625 (-1149))) (-5 *2 (-112)) (-5 *1 (-610 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-1071 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025))
+ (-5 *2 (-625 (-625 (-625 (-919 *3))))))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-552)))
+ (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-738)))))
+(((*1 *2 *3 *4)
(-12
(-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221)))
- (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221))))
- (|:| |ub| (-622 (-819 (-221))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))))
- (-5 *2 (-622 (-1131))) (-5 *1 (-262)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-262)))))
-(((*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))))
-(((*1 *2 *2) (-12 (-5 *2 (-622 (-309 (-221)))) (-5 *1 (-262)))))
-(((*1 *2 *2) (-12 (-5 *2 (-622 (-309 (-221)))) (-5 *1 (-262)))))
+ (-625
+ (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8))
+ (|:| |wcond| (-625 (-928 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *5))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *5))))))))))
+ (-5 *4 (-1131)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-925 *5 *7 *6))
+ (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-552))
+ (-5 *1 (-900 *5 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *4 (-751)) (-5 *2 (-669 (-221)))
- (-5 *1 (-262)))))
-(((*1 *2 *3) (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))))
-(((*1 *2 *2) (-12 (-5 *2 (-309 (-221))) (-5 *1 (-262)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-221))) (-5 *1 (-262)))))
-(((*1 *2 *2)
+ (-12 (-5 *4 (-625 *5)) (-4 *5 (-1208 *3)) (-4 *3 (-302))
+ (-5 *2 (-112)) (-5 *1 (-449 *3 *5)))))
+(((*1 *1 *1) (-5 *1 (-1148)))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221)))
- (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221))))
- (|:| |ub| (-622 (-819 (-221))))))
- (-5 *1 (-262)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-819 (-221)))) (-5 *4 (-221)) (-5 *2 (-622 *4))
- (-5 *1 (-262)))))
+ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374)))
+ (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148))))
+ (-5 *1 (-1148)))))
+(((*1 *2 *1) (-12 (-5 *2 (-625 (-108))) (-5 *1 (-173)))))
+(((*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-527 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-528)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))))
+(((*1 *1 *1) (-4 *1 (-845 *2))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1208 *6))
+ (-4 *6 (-13 (-358) (-145) (-1014 *4))) (-5 *4 (-552))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -2772
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-991 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 *4)) (-4 *4 (-827)) (-5 *2 (-625 (-644 *4 *5)))
+ (-5 *1 (-609 *4 *5 *6)) (-4 *5 (-13 (-170) (-698 (-402 (-552)))))
+ (-14 *6 (-897)))))
+(((*1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1199 *2)) (-4 *2 (-1186)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1065 (-928 (-552)))) (-5 *3 (-928 (-552)))
+ (-5 *1 (-325))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1065 (-928 (-552)))) (-5 *1 (-325)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-229)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4))
- (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773))
- (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-261 *2)) (-4 *2 (-827)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-113))))
- ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-113))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827))
- (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827))
- (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751))))
- ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))))
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-625 (-169)))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-738)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *2 (-51))
- (-5 *1 (-256))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *1 (-258 *2))
- (-4 *2 (-1185)))))
-(((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))))
-(((*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))))
-(((*1 *1) (-5 *1 (-142)))
- ((*1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-256))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-257)))))
-(((*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))))
-(((*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))))
-(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-256))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-901))
+ (-12 (-5 *3 (-669 *8)) (-4 *8 (-925 *5 *7 *6))
+ (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
+ (-4 *7 (-773))
(-5 *2
- (-2 (|:| |brans| (-622 (-622 (-919 (-221)))))
- (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))))
- (-5 *1 (-151))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-901)) (-5 *4 (-402 (-538)))
+ (-625
+ (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8))
+ (|:| |wcond| (-625 (-928 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *5))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *5))))))))))
+ (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-625 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-669 *8)) (-5 *4 (-625 (-1149))) (-4 *8 (-925 *5 *7 *6))
+ (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
+ (-4 *7 (-773))
(-5 *2
- (-2 (|:| |brans| (-622 (-622 (-919 (-221)))))
- (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))))
- (-5 *1 (-151))))
+ (-625
+ (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8))
+ (|:| |wcond| (-625 (-928 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *5))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *5))))))))))
+ (-5 *1 (-900 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12
+ (-12 (-5 *3 (-669 *7)) (-4 *7 (-925 *4 *6 *5))
+ (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149))))
+ (-4 *6 (-773))
(-5 *2
- (-2 (|:| |brans| (-622 (-622 (-919 (-221)))))
- (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))))
- (-5 *1 (-151)) (-5 *3 (-622 (-919 (-221))))))
- ((*1 *2 *3)
- (-12
+ (-625
+ (-2 (|:| |eqzro| (-625 *7)) (|:| |neqzro| (-625 *7))
+ (|:| |wcond| (-625 (-928 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *4))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *4))))))))))
+ (-5 *1 (-900 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-669 *9)) (-5 *5 (-897)) (-4 *9 (-925 *6 *8 *7))
+ (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149))))
+ (-4 *8 (-773))
(-5 *2
- (-2 (|:| |brans| (-622 (-622 (-919 (-221)))))
- (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))))
- (-5 *1 (-151)) (-5 *3 (-622 (-622 (-919 (-221)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))))
-(((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256)))))
-(((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-256)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-402 (-538))))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *2 (-112)) (-5 *1 (-256)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1234))
- (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074)))))
+ (-625
+ (-2 (|:| |eqzro| (-625 *9)) (|:| |neqzro| (-625 *9))
+ (|:| |wcond| (-625 (-928 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *6))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *6))))))))))
+ (-5 *1 (-900 *6 *7 *8 *9)) (-5 *4 (-625 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 (-1149))) (-5 *5 (-897))
+ (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
+ (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773))
+ (-5 *2
+ (-625
+ (-2 (|:| |eqzro| (-625 *9)) (|:| |neqzro| (-625 *9))
+ (|:| |wcond| (-625 (-928 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *6))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *6))))))))))
+ (-5 *1 (-900 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1234)) (-5 *1 (-250 *3))
- (-4 *3 (-13 (-598 (-527)) (-1074)))))
+ (-12 (-5 *3 (-669 *8)) (-5 *4 (-897)) (-4 *8 (-925 *5 *7 *6))
+ (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
+ (-4 *7 (-773))
+ (-5 *2
+ (-625
+ (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8))
+ (|:| |wcond| (-625 (-928 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1232 (-402 (-928 *5))))
+ (|:| -1270 (-625 (-1232 (-402 (-928 *5))))))))))
+ (-5 *1 (-900 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 *9)) (-5 *5 (-1131))
+ (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
+ (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552))
+ (-5 *1 (-900 *6 *7 *8 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-853 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256)))
- (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1234)) (-5 *1 (-250 *6))))
+ (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 (-1149))) (-5 *5 (-1131))
+ (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
+ (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552))
+ (-5 *1 (-900 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-853 *5)) (-5 *4 (-1065 (-373)))
- (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1234)) (-5 *1 (-250 *5))))
+ (-12 (-5 *3 (-669 *8)) (-5 *4 (-1131)) (-4 *8 (-925 *5 *7 *6))
+ (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149))))
+ (-4 *7 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-669 *10)) (-5 *4 (-625 *10)) (-5 *5 (-897))
+ (-5 *6 (-1131)) (-4 *10 (-925 *7 *9 *8)) (-4 *7 (-13 (-302) (-145)))
+ (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-552))
+ (-5 *1 (-900 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-669 *10)) (-5 *4 (-625 (-1149))) (-5 *5 (-897))
+ (-5 *6 (-1131)) (-4 *10 (-925 *7 *9 *8)) (-4 *7 (-13 (-302) (-145)))
+ (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-552))
+ (-5 *1 (-900 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256)))
- (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *6))))
+ (-12 (-5 *3 (-669 *9)) (-5 *4 (-897)) (-5 *5 (-1131))
+ (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
+ (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552))
+ (-5 *1 (-900 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1232 (-625 *3))) (-4 *4 (-302))
+ (-5 *2 (-625 *3)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1208 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))))
+(((*1 *1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1145 (-552))) (-5 *3 (-552)) (-4 *1 (-845 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4))
+ (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-991 *4 *5)) (-5 *3 (-402 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-2 (|:| |k| (-652 *3)) (|:| |c| *4))))
+ (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
+ (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-169))))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221)))
+ (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) (-5 *4 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-737)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 *4)) (-4 *4 (-358)) (-4 *2 (-1208 *4))
+ (-5 *1 (-898 *4 *2)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-751)) (-4 *4 (-302)) (-4 *6 (-1208 *4))
+ (-5 *2 (-1232 (-625 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-625 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1129 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
+ ((*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-897)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1233)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-402 *6))
+ (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1223 *5)) (-4 *6 (-1208 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1224 *5 *6 *7)) (-4 *5 (-358))
+ (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1205 *6 *5)))
+ (-5 *1 (-844 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1224 *5 *6 *7)) (-4 *5 (-358))
+ (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1205 *6 *5)))
+ (-5 *1 (-844 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5))
+ (-4 *5 (-13 (-358) (-145) (-1014 (-552))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6))
+ (|:| -2228 *6)))
+ (-5 *1 (-991 *5 *6)) (-5 *3 (-402 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-625 (-289 *4))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827))
+ (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 (-2 (|:| -3824 (-1145 *6)) (|:| -3564 (-552)))))
+ (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))
+ (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552))
+ (-5 *2 (-1011)) (-5 *1 (-737)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-896)) (-5 *2 (-2 (|:| -3340 (-625 *1)) (|:| -3212 *1)))
+ (-5 *3 (-625 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-625 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-302))
+ (-5 *2 (-751)) (-5 *1 (-449 *5 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-850))
+ (-5 *5 (-897)) (-5 *6 (-625 (-258))) (-5 *2 (-1233))
+ (-5 *1 (-1236))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-373)))
- (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235))
- (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1235)) (-5 *1 (-250 *3))
- (-4 *3 (-13 (-598 (-527)) (-1074)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256)))
- (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-373)))
- (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *5))))
+ (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-625 (-258)))
+ (-5 *2 (-1233)) (-5 *1 (-1236)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-172 *6))
+ (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1223 *5)) (-4 *6 (-1208 *5)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1149))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-625 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1171) (-27) (-425 *8)))
+ (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3)))
+ (-5 *3 (-552)) (-5 *2 (-625 *4)) (-5 *1 (-990 *8 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -3449 (-625 (-2 (|:| |irr| *10) (|:| -3515 (-552)))))))
+ (-5 *6 (-625 *3)) (-5 *7 (-625 *8)) (-4 *8 (-827)) (-4 *3 (-302))
+ (-4 *10 (-925 *3 *9 *8)) (-4 *9 (-773))
+ (-5 *2
+ (-2 (|:| |polfac| (-625 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-625 (-1145 *3)))))
+ (-5 *1 (-607 *8 *9 *3 *10)) (-5 *4 (-625 (-1145 *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-614)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-34)) (-5 *2 (-751))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-552))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-751)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-823)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-1105 *4 *2))
+ (-4 *2 (-13 (-588 (-552) *4) (-10 -7 (-6 -4353) (-6 -4354))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-827)) (-4 *3 (-1186)) (-5 *1 (-1105 *3 *2))
+ (-4 *2 (-13 (-588 (-552) *3) (-10 -7 (-6 -4353) (-6 -4354)))))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-112))
+ (-5 *6 (-221)) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE))))
+ (-5 *2 (-1011)) (-5 *1 (-737)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-896)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -1270 (-625 *1))))
+ (-4 *1 (-362 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-447 *3 *4 *5 *6))
+ (|:| -1270 (-625 (-447 *3 *4 *5 *6)))))
+ (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-850))
+ (-5 *5 (-897)) (-5 *6 (-625 (-258))) (-5 *2 (-462)) (-5 *1 (-1236))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *2 (-462))
+ (-5 *1 (-1236))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-625 (-258)))
+ (-5 *2 (-462)) (-5 *1 (-1236)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-839)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1149))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-625 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-625 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1171) (-27) (-425 *8)))
+ (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3)))
+ (-5 *3 (-552))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -2303 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-989 *8 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-751)) (-5 *5 (-625 *3)) (-4 *3 (-302)) (-4 *6 (-827))
+ (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-607 *6 *7 *3 *8))
+ (-4 *8 (-925 *3 *7 *6)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-528) (-625 (-528)))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-528) (-625 (-528)))) (-5 *1 (-114))))
+ ((*1 *1) (-5 *1 (-565))))
+(((*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-325))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-5 *1 (-325))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-325))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311 (-674))) (-5 *1 (-325))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311 (-681))) (-5 *1 (-325))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311 (-679))) (-5 *1 (-325))))
+ ((*1 *1) (-5 *1 (-325))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-1105 *4 *2))
+ (-4 *2 (-13 (-588 (-552) *4) (-10 -7 (-6 -4353) (-6 -4354))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-827)) (-4 *3 (-1186)) (-5 *1 (-1105 *3 *2))
+ (-4 *2 (-13 (-588 (-552) *3) (-10 -7 (-6 -4353) (-6 -4354)))))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552))
+ (-5 *2 (-1011)) (-5 *1 (-737)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-625 (-928 *4))) (-5 *3 (-625 (-1149))) (-4 *4 (-446))
+ (-5 *1 (-894 *4)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -1270 (-625 *1))))
+ (-4 *1 (-362 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-447 *3 *4 *5 *6))
+ (|:| -1270 (-625 (-447 *3 *4 *5 *6)))))
+ (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1186))
+ (-4 *5 (-1186)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-236 *6 *7)) (-14 *6 (-751))
+ (-4 *7 (-1186)) (-4 *5 (-1186)) (-5 *2 (-236 *6 *5))
+ (-5 *1 (-235 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1186)) (-4 *5 (-1186))
+ (-4 *2 (-368 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-368 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256)))
- (-5 *2 (-1234)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1073)) (-4 *5 (-1073))
+ (-4 *2 (-420 *5)) (-5 *1 (-418 *6 *4 *5 *2)) (-4 *4 (-420 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-625 *6)) (-4 *6 (-1186))
+ (-4 *5 (-1186)) (-5 *2 (-625 *5)) (-5 *1 (-623 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-934 *6)) (-4 *6 (-1186))
+ (-4 *5 (-1186)) (-5 *2 (-934 *5)) (-5 *1 (-933 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1129 *6)) (-4 *6 (-1186))
+ (-4 *3 (-1186)) (-5 *2 (-1129 *3)) (-5 *1 (-1127 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1232 *6)) (-4 *6 (-1186))
+ (-4 *5 (-1186)) (-5 *2 (-1232 *5)) (-5 *1 (-1231 *6 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-988)) (-5 *2 (-839)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-606 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *2 (-1082 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-5 *1 (-325)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *4)) (-4 *4 (-1025)) (-4 *2 (-1208 *4))
+ (-5 *1 (-438 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-402 (-1145 (-311 *5)))) (-5 *3 (-1232 (-311 *5)))
+ (-5 *4 (-552)) (-4 *5 (-13 (-544) (-827))) (-5 *1 (-1103 *5)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221))
+ (-5 *2 (-1011)) (-5 *1 (-737)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-625 (-928 *4))) (-5 *3 (-625 (-1149))) (-4 *4 (-446))
+ (-5 *1 (-894 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1232 (-1149))) (-5 *3 (-1232 (-447 *4 *5 *6 *7)))
+ (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-897))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-1232 (-669 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-447 *4 *5 *6 *7)))
+ (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-897))
+ (-14 *6 (-625 *2)) (-14 *7 (-1232 (-669 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149)))
+ (-14 *6 (-1232 (-669 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 (-1149))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149)))
+ (-14 *6 (-1232 (-669 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1149)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170))
+ (-14 *4 (-897)) (-14 *5 (-625 *2)) (-14 *6 (-1232 (-669 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-897))
+ (-14 *4 (-625 (-1149))) (-14 *5 (-1232 (-669 *2))))))
+(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-5 *2 (-2 (|:| -2971 *3) (|:| -4120 *4))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839))))
+ ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-919 (-221))) (-5 *2 (-221)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-1025)))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1145 *1)) (-4 *1 (-988)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-325)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-250))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1234))
- (-5 *1 (-251))))
+ (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1233)) (-5 *1 (-250))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-250))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1234))
- (-5 *1 (-251))))
+ (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1233)) (-5 *1 (-250))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235))
- (-5 *1 (-251))))
+ (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1234)) (-5 *1 (-250))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235))
- (-5 *1 (-251))))
+ (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1234)) (-5 *1 (-250))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235))
- (-5 *1 (-251))))
+ (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1234)) (-5 *1 (-250))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373)))
- (-5 *2 (-1235)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1234)) (-5 *1 (-250))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374)))
+ (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373)))
- (-5 *2 (-1235)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374)))
+ (-5 *2 (-1234)) (-5 *1 (-250))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-288 *7)) (-5 *4 (-1149)) (-5 *5 (-622 (-256)))
- (-4 *7 (-416 *6)) (-4 *6 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-1234))
- (-5 *1 (-252 *6 *7))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1234)) (-5 *1 (-255))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-622 (-221))) (-5 *4 (-622 (-256))) (-5 *2 (-1234))
- (-5 *1 (-255))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *2 (-1234)) (-5 *1 (-255))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *4 (-622 (-256))) (-5 *2 (-1234))
- (-5 *1 (-255))))
- ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1235)) (-5 *1 (-255))))
- ((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-622 (-221))) (-5 *4 (-622 (-256))) (-5 *2 (-1235))
- (-5 *1 (-255)))))
-(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-253)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-253)))))
-(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-253)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-166 (-221)) (-166 (-221)))) (-5 *4 (-1062 (-221)))
- (-5 *2 (-1235)) (-5 *1 (-253)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-166 (-221)) (-166 (-221)))) (-5 *4 (-1062 (-221)))
- (-5 *5 (-112)) (-5 *2 (-1235)) (-5 *1 (-253)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-919 (-221)) (-221) (-221)))
- (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-251)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256)))
- (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221)))
- (-5 *1 (-250 *6))))
+ (-12 (-5 *3 (-289 *7)) (-5 *4 (-1149)) (-5 *5 (-625 (-258)))
+ (-4 *7 (-425 *6)) (-4 *6 (-13 (-544) (-827) (-1014 (-552))))
+ (-5 *2 (-1233)) (-5 *1 (-251 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1233))
+ (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-373)))
- (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221)))
- (-5 *1 (-250 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221)))
- (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *3))
- (-4 *3 (-13 (-598 (-527)) (-1074)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256)))
- (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221)))
- (-5 *1 (-250 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-373)))
- (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221)))
- (-5 *1 (-250 *5))))
+ (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1233)) (-5 *1 (-254 *3))
+ (-4 *3 (-13 (-598 (-528)) (-1073)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251))))
+ (-12 (-5 *3 (-853 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258)))
+ (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1233))
+ (-5 *1 (-254 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373)))
- (-5 *2 (-1106 (-221))) (-5 *1 (-251))))
+ (-12 (-5 *3 (-853 *5)) (-5 *4 (-1065 (-374)))
+ (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1233))
+ (-5 *1 (-254 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251))))
+ (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258)))
+ (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234))
+ (-5 *1 (-254 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373)))
- (-5 *2 (-1106 (-221))) (-5 *1 (-251))))
+ (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-374)))
+ (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234))
+ (-5 *1 (-254 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251))))
+ (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234))
+ (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373)))
- (-5 *2 (-1106 (-221))) (-5 *1 (-251))))
+ (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1234)) (-5 *1 (-254 *3))
+ (-4 *3 (-13 (-598 (-528)) (-1073)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251))))
+ (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258)))
+ (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234))
+ (-5 *1 (-254 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373)))
- (-5 *2 (-1106 (-221))) (-5 *1 (-251))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373)))
- (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373)))
- (-5 *2 (-1106 (-221))) (-5 *1 (-251)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-218 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-249 *3))))
- ((*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827))
- (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-622 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827))
- (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-622 (-751)))))
+ (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-374)))
+ (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234))
+ (-5 *1 (-254 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1233)) (-5 *1 (-255))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-625 (-221))) (-5 *4 (-625 (-258))) (-5 *2 (-1233))
+ (-5 *1 (-255))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *2 (-1233)) (-5 *1 (-255))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *4 (-625 (-258)))
+ (-5 *2 (-1233)) (-5 *1 (-255))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1234)) (-5 *1 (-255))))
+ ((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-625 (-221))) (-5 *4 (-625 (-258))) (-5 *2 (-1234))
+ (-5 *1 (-255)))))
+(((*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1069))))
((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827))
- (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-622 (-751))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827))
- (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773))
- (-4 *2 (-261 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827))
- (-4 *4 (-261 *3)) (-4 *5 (-773)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827))
- (-4 *4 (-261 *3)) (-4 *5 (-773)))))
-(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-244)))))
-(((*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-244)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-244)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-751))
- (-4 *3 (-13 (-707) (-363) (-10 -7 (-15 ** (*3 *3 (-538))))))
- (-5 *1 (-242 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-538)) (-5 *1 (-237))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-538)) (-5 *1 (-237)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-237))))
- ((*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1237)) (-5 *1 (-237)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-237)))))
-(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-237)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1185)) (-4 *1 (-234 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-288 (-922 (-538))))
- (-5 *2
- (-2 (|:| |varOrder| (-622 (-1149)))
- (|:| |inhom| (-3 (-622 (-1231 (-751))) "failed"))
- (|:| |hom| (-622 (-1231 (-751))))))
- (-5 *1 (-232)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-231 *3))))
- ((*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1074)))))
-(((*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))))
-(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))))
-(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))))
-(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-922 *6)) (-5 *4 (-1149))
- (-5 *5 (-819 *7)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-4 *7 (-13 (-1171) (-29 *6))) (-5 *1 (-220 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1143 *6)) (-5 *4 (-819 *6))
- (-4 *6 (-13 (-1171) (-29 *5)))
- (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-220 *5 *6)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-819 *4)) (-5 *3 (-595 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1171) (-29 *6)))
- (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *1 (-220 *6 *4)))))
+ (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-402 (-1145 (-311 *3)))) (-4 *3 (-13 (-544) (-827)))
+ (-5 *1 (-1103 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))))
- (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1171) (-29 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-622 (-1149)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827)))
- (-14 *3 (-622 (-1149))))))
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-737)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1145 (-928 *4))) (-5 *1 (-411 *3 *4))
+ (-4 *3 (-412 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358))
+ (-5 *2 (-1145 (-928 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025))
- (-14 *4 (-622 (-1149)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827)))
- (-14 *4 (-622 (-1149))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1025) (-827))) (-5 *1 (-219 *3 *4))
- (-14 *4 (-622 (-1149))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827)))
- (-14 *3 (-622 (-1149))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1149)) (-5 *6 (-112))
- (-4 *7 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))))
- (-4 *3 (-13 (-1171) (-936) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| "failed")
- (|:| |pole| "potentialPole")))
- (-5 *1 (-215 *7 *3)) (-5 *5 (-819 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4)))))
+ (-12 (-5 *2 (-1129 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1025))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-1025)))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1145 *1)) (-4 *1 (-988)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1149))
+ (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))))
+ (-5 *1 (-604 *4 *2)) (-4 *2 (-13 (-1171) (-935) (-29 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-325)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-345)) (-5 *2 (-622 (-2 (|:| |deg| (-751)) (|:| -2905 *3))))
- (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-345))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538)))))))
- (-5 *1 (-212 *5 *3)) (-4 *3 (-1207 *5)))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1073)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-663 *4 *5)) (-4 *4 (-1073))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 *1)) (-4 *1 (-297))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-114)) (-5 *3 (-625 *5)) (-5 *4 (-751)) (-4 *5 (-827))
+ (-5 *1 (-596 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1207 (-402 *2)))
- (-4 *2 (-1207 *5)) (-5 *1 (-211 *5 *2 *6 *3)) (-4 *3 (-337 *5 *2 *6)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-622 (-309 (-221))))
- (|:| |constraints|
- (-622
- (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751))
- (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221)))
- (|:| |dFinish| (-669 (-221))))))
- (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131))
- (|:| |tol| (-221))))
- (-5 *2 (-112)) (-5 *1 (-206)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-622 (-309 (-221)))) (-5 *3 (-221)) (-5 *2 (-112))
- (-5 *1 (-206)))))
-(((*1 *2 *2) (-12 (-5 *2 (-309 (-221))) (-5 *1 (-206)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-373)) (-5 *1 (-201)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-373)) (-5 *1 (-201)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-373)) (-5 *1 (-201)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-373)) (-5 *1 (-201)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221)))
- (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))))
- (-5 *1 (-201)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-669 (-309 (-221))))
- (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))))
- (-5 *1 (-201)))))
-(((*1 *2 *3) (-12 (-5 *3 (-669 (-309 (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-201))))
- ((*1 *2 *2 *3) (-12 (-5 *3 (-622 (-373))) (-5 *2 (-373)) (-5 *1 (-201)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-538)) (-5 *1 (-200)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-622 (-221))) (-5 *1 (-200)))))
-(((*1 *2 *3)
+ (-12 (-5 *3 (-289 (-402 (-928 *5)))) (-5 *4 (-1149))
+ (-4 *5 (-13 (-302) (-827) (-145)))
+ (-5 *2 (-1138 (-625 (-311 *5)) (-625 (-289 (-311 *5)))))
+ (-5 *1 (-1102 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149))
+ (-4 *5 (-13 (-302) (-827) (-145)))
+ (-5 *2 (-1138 (-625 (-311 *5)) (-625 (-289 (-311 *5)))))
+ (-5 *1 (-1102 *5)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552))
+ (-5 *2 (-1011)) (-5 *1 (-737)))))
+(((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1129 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-839)))))
+(((*1 *2 *3 *3 *3)
(|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-2 (|:| -2836 (-113)) (|:| |w| (-221)))) (-5 *1 (-200)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-188)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-373)) (-5 *1 (-188)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular| "There is a singularity at the lower end point")
- (|:| |upperSingular| "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-188)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221)))
- (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-188)))))
-(((*1 *2 *3) (-12 (-5 *2 (-400 (-1143 (-538)))) (-5 *1 (-187)) (-5 *3 (-538)))))
-(((*1 *2 *3) (-12 (-5 *2 (-622 (-1143 (-538)))) (-5 *1 (-187)) (-5 *3 (-538)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-622 (-538))) (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 (-538))) (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1151 (-402 (-538)))) (-5 *2 (-402 (-538))) (-5 *1 (-186)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1231 (-669 *4))) (-4 *4 (-170))
- (-5 *2 (-1231 (-669 (-922 *4)))) (-5 *1 (-185 *4)))))
-(((*1 *1) (-5 *1 (-183))))
-(((*1 *1) (-5 *1 (-183))))
-(((*1 *1) (-5 *1 (-183))))
-(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-182)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-182)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-181)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-751)) (-5 *1 (-113))))
- ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-181)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1185)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1185)) (-5 *2 (-751)) (-5 *1 (-180 *4 *3)) (-4 *3 (-654 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1185)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3)))))
+ (-4 *4 (-13 (-145) (-27) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-4 *5 (-1208 *4)) (-5 *2 (-1145 (-402 *5))) (-5 *1 (-599 *4 *5))
+ (-5 *3 (-402 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5))
+ (-4 *5 (-13 (-145) (-27) (-1014 (-552)) (-1014 (-402 (-552)))))
+ (-5 *2 (-1145 (-402 *6))) (-5 *1 (-599 *5 *6)) (-5 *3 (-402 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-325)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186))
+ (-4 *2 (-1073))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3))
+ (-4 *3 (-1186))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1186))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-552)) (-4 *4 (-1073))
+ (-5 *1 (-718 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-5 *1 (-718 *2)) (-4 *2 (-1073))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34)))
+ (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149))
+ (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-311 *5)))
+ (-5 *1 (-1102 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149)))
+ (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-311 *5))))
+ (-5 *1 (-1102 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-825)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -2767 (-400 *3)))) (-5 *1 (-179 *4 *3))
- (-4 *3 (-1207 (-166 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1207 (-166 *2))))))
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011))
+ (-5 *1 (-737)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-839)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-358) (-825)))
- (-4 *3 (-1207 *2)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1207 (-166 *2)))))
+ (|partial| -12 (-5 *3 (-596 *4)) (-4 *4 (-827)) (-4 *2 (-827))
+ (-5 *1 (-595 *2 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-839) (-839))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-839) (-625 (-839)))) (-5 *1 (-114))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-839) (-625 (-839)))) (-5 *1 (-114))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3))
+ (-4 *3
+ (-13 (-827)
+ (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $))
+ (-15 -3867 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-389))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-389))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-691))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1166)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149))
+ (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *5))))
+ (-5 *1 (-1102 *5))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1207 (-166 *2))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2))
- (-4 *2 (-1207 (-166 *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4)))))
+ (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-13 (-302) (-827) (-145)))
+ (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1102 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3))
- (-4 *3 (-1207 (-166 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2))
- (-4 *2 (-1207 (-166 *3))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-825)))
- (-5 *2 (-622 (-2 (|:| -2767 (-622 *3)) (|:| -1656 *5))))
- (-5 *1 (-179 *5 *3)) (-4 *3 (-1207 (-166 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-358) (-825)))
- (-5 *2 (-622 (-2 (|:| -2767 (-622 *3)) (|:| -1656 *4))))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-622 (-166 *4))) (-5 *1 (-153 *3 *4))
- (-4 *3 (-1207 (-166 (-538)))) (-4 *4 (-13 (-358) (-825)))))
+ (-12 (-5 *3 (-289 (-402 (-928 *5)))) (-5 *4 (-1149))
+ (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *5))))
+ (-5 *1 (-1102 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-622 (-166 *4)))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4)))))
+ (-12 (-5 *3 (-289 (-402 (-928 *4))))
+ (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *4))))
+ (-5 *1 (-1102 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-622 (-166 *4)))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-622 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1171) (-978))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1171) (-978))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1171) (-978))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1171) (-978))))))
+ (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149)))
+ (-4 *5 (-13 (-302) (-827) (-145)))
+ (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-402 (-928 *4))))
+ (-4 *4 (-13 (-302) (-827) (-145)))
+ (-5 *2 (-625 (-625 (-289 (-311 *4))))) (-5 *1 (-1102 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-289 (-402 (-928 *5))))) (-5 *4 (-625 (-1149)))
+ (-4 *5 (-13 (-302) (-827) (-145)))
+ (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-289 (-402 (-928 *4)))))
+ (-4 *4 (-13 (-302) (-827) (-145)))
+ (-5 *2 (-625 (-625 (-289 (-311 *4))))) (-5 *1 (-1102 *4)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-737)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1171) (-978))))))
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302))
+ (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-925 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *6 *4 *5))
+ (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-4 *6 (-302)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1186)) (-5 *2 (-625 *1)) (-4 *1 (-986 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1171) (-978))))))
+ (-12 (-5 *2 (-596 *4)) (-5 *1 (-595 *3 *4)) (-4 *3 (-827))
+ (-4 *4 (-827)))))
+(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))))
+(((*1 *2) (-12 (-5 *2 (-813 (-552))) (-5 *1 (-526))))
+ ((*1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1073)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552)))))))
+ (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011))
+ (-5 *1 (-737)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1171) (-978))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-108))) (-5 *1 (-173)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1126 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1126 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1126 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1145 (-928 *4))) (-5 *1 (-411 *3 *4))
+ (-4 *3 (-412 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358))
+ (-5 *2 (-1145 (-928 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-413 *2)) (-4 *2 (-302)) (-5 *1 (-890 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149))
+ (-4 *5 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-891 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-413 (-928 *6))) (-5 *5 (-1149)) (-5 *3 (-928 *6))
+ (-4 *6 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-891 *6)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-552)))))
+(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-596 *3)) (-4 *3 (-827)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1145 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3))
+ (-4 *3 (-358)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2))
+ (-4 *3 (-13 (-827) (-544)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149)))
+ (-14 *3 (-625 (-1149))) (-4 *4 (-382))))
+ ((*1 *1) (-5 *1 (-471))) ((*1 *1) (-4 *1 (-1171))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))))
+(((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-4 *3 (-1073))
+ (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))
+ (-5 *2 (-1145 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-625 (-751))) (-5 *3 (-169)) (-5 *1 (-1137 *4 *5))
+ (-14 *4 (-897)) (-4 *5 (-1025)))))
+(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-783)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-4 *3 (-1073))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073))
+ (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))
+ (-5 *2 (-1145 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))
+ (-5 *2 (-1145 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-968 *2)) (-4 *4 (-1208 *3)) (-4 *2 (-302))
+ (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1014 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-544)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-596 *1)))
+ (-4 *1 (-425 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4))
+ (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4))
+ (-5 *1 (-642 *3 *4 *2)) (-4 *3 (-698 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1129 *4) (-1129 *4))) (-5 *2 (-1129 *4))
+ (-5 *1 (-1257 *4)) (-4 *4 (-1186))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-625 (-1129 *5)) (-625 (-1129 *5)))) (-5 *4 (-552))
+ (-5 *2 (-625 (-1129 *5))) (-5 *1 (-1257 *5)) (-4 *5 (-1186)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *1) (-5 *1 (-783))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
(((*1 *2 *1)
(-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1034)) (-4 *3 (-1171))
(-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *1 *1) (-5 *1 (-159)))
- ((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-159)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552)))
+ (-5 *2 (-1232 (-402 (-552)))) (-5 *1 (-1259 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-625 *1)) (|has| *1 (-6 -4354)) (-4 *1 (-986 *3))
+ (-4 *3 (-1186)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-625
+ (-2
+ (|:| -2971
+ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221)))
+ (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221))
+ (|:| |relerr| (-221))))
+ (|:| -4120
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1129 (-221)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3315
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-547))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186))
+ (-5 *2 (-625 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4))
+ (-5 *2 (-1232 *6)) (-5 *1 (-408 *3 *4 *5 *6))
+ (-4 *6 (-13 (-404 *4 *5) (-1014 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-596 *1)))
+ (-4 *1 (-425 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-603 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-707) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-170)) (-4 *2 (-698 *3)) (-5 *1 (-642 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-707) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-919 *4)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1149))
+ (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)))
+ (-4 *4 (-13 (-29 *6) (-1171) (-935)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -1270 (-625 *4))))
+ (-5 *1 (-781 *6 *4 *3)) (-4 *3 (-636 *4)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1199 (-552))))))
+(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
+(((*1 *1 *1 *1) (-5 *1 (-160)))
+ ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-160)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552)))
+ (-5 *2 (-1232 (-552))) (-5 *1 (-1259 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-890 *3)) (-4 *3 (-302)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-780))
+ (-5 *3
+ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
+ (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221)))
+ (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221)))
+ (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-5 *2 (-1011)))))
+(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2)
+ (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-425 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2))
- (-4 *2 (-416 *4))))
+ (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2))
+ (-4 *2 (-425 *4))))
((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149))))
((*1 *1 *1) (-4 *1 (-158))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552))) (-5 *2 (-112))
+ (-5 *1 (-1259 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-890 *3)) (-4 *3 (-302)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1234))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))))
+(((*1 *1 *1) (-5 *1 (-1037))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1073)) (-4 *3 (-876 *5)) (-5 *2 (-669 *3))
+ (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-368 *3))
+ (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-751)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025))
+ (-4 *4 (-772)) (-4 *3 (-170)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-975 *3)) (-4 *3 (-170)) (-5 *1 (-779 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-897))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2))
- (-4 *2 (-416 *4))))
+ (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2))
+ (-4 *2 (-425 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1065 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545)))
+ (-12 (-5 *3 (-1065 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544)))
(-5 *1 (-156 *4 *2))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158))))
((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))))
+(((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3))
+ (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-925 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302))
+ (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 *7)))
+ (-5 *1 (-723 *4 *5 *6 *7)) (-5 *3 (-1145 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))
+ (-5 *2 (-413 *1)) (-4 *1 (-925 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-446)) (-5 *2 (-413 *3))
+ (-5 *1 (-955 *4 *5 *6 *3)) (-4 *3 (-925 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446))
+ (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 (-402 *7))))
+ (-5 *1 (-1144 *4 *5 *6 *7)) (-5 *3 (-1145 (-402 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1190))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-413 *3)) (-5 *1 (-1211 *4 *3))
+ (-4 *3 (-13 (-1208 *4) (-544) (-10 -8 (-15 -2633 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998)))
+ (-14 *5 (-625 (-1149)))
+ (-5 *2
+ (-625 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6)))))
+ (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1145 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))))
+(((*1 *1 *1) (-5 *1 (-1037))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1073)) (-4 *2 (-876 *4)) (-5 *1 (-672 *4 *2 *5 *3))
+ (-4 *5 (-368 *2)) (-4 *3 (-13 (-368 *4) (-10 -7 (-6 -4353)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-552)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1073))
+ (-4 *2 (-130)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-169)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))))
+(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))))
+(((*1 *2)
+ (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6))
+ (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))))
(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998)))
+ (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-625 (-1000 (-402 *4)))))
+ (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-928 *4)))
+ (-4 *4 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))))
+(((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1233))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))))
+(((*1 *1 *1) (-5 *1 (-1037))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1073)) (-4 *2 (-876 *5)) (-5 *1 (-672 *5 *2 *3 *4))
+ (-4 *3 (-368 *2)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1073))
+ (-4 *4 (-130)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))))
(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-625 (-1149)))
+ (-5 *2 (-625 (-625 (-374)))) (-5 *1 (-999)) (-5 *5 (-374))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998)))
+ (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-625 (-1000 (-402 *4)))))
+ (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-928 *4)))
+ (-4 *4 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1208 (-402 (-552)))) (-5 *1 (-889 *3 *2))
+ (-4 *2 (-1208 (-402 *3))))))
+(((*1 *1 *1) (-5 *1 (-1037))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1073)) (-4 *3 (-876 *5)) (-5 *2 (-1232 *3))
+ (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-368 *3))
+ (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-130))
+ (-4 *3 (-772)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-919 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897))
+ (-4 *4 (-1025)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3))
+ (-4 *3 (-943)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522)))))
(((*1 *1 *1 *1) (-4 *1 (-141)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3))))
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-425 *3))))
((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-537)) (-5 *1 (-157 *2)))))
-(((*1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-827) (-545))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-827) (-545))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-827) (-545))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-827) (-545))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-827) (-545))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-827) (-545))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))))
-(((*1 *1) (-5 *1 (-155))))
-(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-155)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-221))
+ (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998)))
+ (-14 *5 (-625 (-1149)))
(-5 *2
- (-2 (|:| |brans| (-622 (-622 (-919 *4)))) (|:| |xValues| (-1062 *4))
- (|:| |yValues| (-1062 *4))))
- (-5 *1 (-151)) (-5 *3 (-622 (-622 (-919 *4)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-901))
+ (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4))))))
+ (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998)))
(-5 *2
- (-2 (|:| |brans| (-622 (-622 (-919 (-221)))))
- (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))))
- (-5 *1 (-151))))
+ (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5))))))
+ (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5)))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-901)) (-5 *4 (-402 (-538)))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998)))
(-5 *2
- (-2 (|:| |brans| (-622 (-622 (-919 (-221)))))
- (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))))
- (-5 *1 (-151)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-895)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-358))
- (-14 *5 (-969 *3 *4)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185))
- (-4 *2 (-1074)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4))
+ (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5))))))
+ (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5)))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998)))
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5))
- (|:| |c2| (-402 *5)) (|:| |deg| (-751))))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1207 (-402 *5))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1207 *2)) (-4 *2 (-1190)) (-5 *1 (-146 *2 *4 *3))
- (-4 *3 (-1207 (-402 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 *6)) (-4 *5 (-1190)) (-4 *6 (-1207 *5))
- (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| *6)))
- (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-751)) (-4 *7 (-1207 *3)))))
+ (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5))))))
+ (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5)))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2
+ (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4))))))
+ (-5 *1 (-1258 *4 *5 *6)) (-5 *3 (-625 (-928 *4)))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-152))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-159))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-214))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-656))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1040))))
+ ((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1069)))))
+(((*1 *1 *1) (-5 *1 (-1037))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 *4))
- (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-751))))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1207 (-402 *5))))))
+ (-12 (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *3))
+ (-4 *3 (-1208 (-402 *4))))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025))
+ (-5 *1 (-670 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4))
- (-5 *2 (-2 (|:| -4313 (-402 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3))
- (-4 *3 (-1207 (-402 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-142)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-142))))
- ((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-142)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 (-142))) (-5 *1 (-139))))
- ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-139)))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 (-538))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538))
- (-14 *4 (-751)) (-4 *5 (-170)))))
-(((*1 *1)
- (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))))
-(((*1 *1)
- (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-622 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538))
- (-14 *4 (-751)) (-4 *5 (-170)))))
+ (-12 (-5 *3 (-552)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1025))
+ (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-925 *2 *4 *5)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-622 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538))
- (-14 *4 (-751)))))
-(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-133)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-751)) (-5 *2 (-1237)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-128)))))
-(((*1 *1 *1 *1) (-5 *1 (-128))))
-(((*1 *1 *1 *1) (-5 *1 (-128))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1074))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1074)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-126 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1074)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-121 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538)))))
- ((*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538)))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-1014 (-402 *2)))) (-5 *2 (-538))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1207 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1074)) (-4 *2 (-827))
- (-5 *1 (-114 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-827)) (-4 *3 (-1074)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-622 (-1 *4 (-622 *4)))) (-4 *4 (-1074))
- (-5 *1 (-114 *4))))
+ (-12 (-5 *2 (-897)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-358)) (-14 *5 (-969 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))
+ (-4 *2 (-446))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1208 *2))
+ (-4 *4 (-1208 (-402 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773))
+ (-4 *2 (-827)) (-4 *3 (-446))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-925 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773))
+ (-4 *4 (-827)) (-4 *2 (-446))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1074)) (-5 *1 (-114 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-113)) (-5 *2 (-622 (-1 *4 (-622 *4))))
- (-5 *1 (-114 *4)) (-4 *4 (-1074)))))
-(((*1 *2 *1) (-12 (-5 *2 (-622 (-941))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1131) (-753))) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-113)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-113)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-753)) (-5 *1 (-113)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1131) (-753))) (-5 *1 (-113)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-109)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-941))) (-5 *1 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-106 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-104)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1149))
- (-5 *2
- (-2 (|:| |zeros| (-1126 (-221))) (|:| |ones| (-1126 (-221)))
- (|:| |singularities| (-1126 (-221)))))
- (-5 *1 (-104)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2))
- (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1207 *2))
- (-4 *4 (-666 *2 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2))
- (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1207 *2))
- (-4 *4 (-666 *2 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1025)) (-4 *2 (-666 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6))
- (-4 *3 (-1207 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1025)) (-4 *2 (-666 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6))
- (-4 *3 (-1207 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-102 *3)) (-4 *3 (-1074)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-102 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-102 *3))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1074)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-622 *2) *2 *2 *2)) (-4 *2 (-1074)) (-5 *1 (-102 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1074)) (-5 *1 (-102 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-400 *3)) (-5 *1 (-99 *4 *3))
- (-4 *3 (-1207 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-13 (-446) (-145)))
- (-5 *2 (-400 *3)) (-5 *1 (-99 *5 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-538))) (-4 *3 (-1025)) (-5 *1 (-98 *3))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))))
-(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-96)))))
-(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1131)) (-5 *1 (-96))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1131)) (-5 *1 (-96)))))
-(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-90 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *5 (-545))
- (-5 *2
- (-2 (|:| |minor| (-622 (-895))) (|:| -3617 *3)
- (|:| |minors| (-622 (-622 (-895)))) (|:| |ops| (-622 *3))))
- (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-638 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-1231 (-669 *4))) (-5 *1 (-89 *4 *5))
- (-5 *3 (-669 *4)) (-4 *5 (-638 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-545))
- (-5 *2 (-2 (|:| -1700 (-669 *5)) (|:| |vec| (-1231 (-622 (-895))))))
- (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-638 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-57 *3)) (-4 *3 (-1185))))
- ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-57 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-538)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-367 *4))
- (-4 *5 (-367 *4)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-538)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1185)) (-4 *5 (-367 *4))
- (-4 *3 (-367 *4)))))
+ (-12 (-4 *3 (-302)) (-4 *3 (-544)) (-5 *1 (-1136 *3 *2))
+ (-4 *2 (-1208 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-897)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1145 *1))
+ (-4 *1 (-324 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1145 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358))
+ (-4 *2 (-1208 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-1145 *4))
+ (-5 *1 (-521 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-1074))
- (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4))))
- (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-622 (-1048 *4 *5 *2))) (-4 *4 (-1074))
- (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4))))
- (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))) (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-622 (-1048 *5 *6 *2))) (-5 *4 (-895)) (-4 *5 (-1074))
- (-4 *6 (-13 (-1025) (-862 *5) (-827) (-598 (-866 *5))))
- (-4 *2 (-13 (-416 *6) (-862 *5) (-598 (-866 *5)))) (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-753)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-51)))))
-(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1131)) (-5 *1 (-51)))))
-(((*1 *2)
- (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-413 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-413 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-413 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))))
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-537)) (-5 *1 (-157 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7))
+ (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-928 *4)))
+ (-4 *4 (-13 (-825) (-302) (-145) (-998)))
+ (-5 *2 (-625 (-1022 *4 *5))) (-5 *1 (-1258 *4 *5 *6))
+ (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-95))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-183))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-359 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1073))))
+ ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-433 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-477))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-941))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1048 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1088))))
+ ((*1 *1 *1) (-5 *1 (-1149))))
+(((*1 *1 *1) (-5 *1 (-1037))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))))
+ (-12 (-5 *3 (-625 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))
+ (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *5))
+ (-4 *5 (-1208 (-402 *4))))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1145 *7)) (-5 *3 (-552)) (-4 *7 (-925 *6 *4 *5))
+ (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025))
+ (-5 *1 (-316 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-544)) (-5 *2 (-934 *3)) (-5 *1 (-1136 *4 *3))
+ (-4 *3 (-1208 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171)))))
+ ((*1 *1 *1 *1) (-4 *1 (-773))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3))
+ (-4 *3 (-943)))))
+(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4))
+ (-4 *4 (-344)))))
+(((*1 *1 *1) (-4 *1 (-141)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-425 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1247 (-1149) *3)) (-4 *3 (-1025)) (-5 *1 (-1254 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))
+ (-5 *1 (-1256 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-113)) (-5 *4 (-751)) (-4 *5 (-446)) (-4 *5 (-827))
- (-4 *5 (-1014 (-538))) (-4 *5 (-545)) (-5 *1 (-41 *5 *2)) (-4 *2 (-416 *5))
- (-4 *2
- (-13 (-358) (-293)
- (-10 -8 (-15 -3331 ((-1098 *5 (-595 $)) $))
- (-15 -3330 ((-1098 *5 (-595 $)) $))
- (-15 -4317 ($ (-1098 *5 (-595 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3))
- (-4 *2
- (-13 (-358) (-293)
- (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $))
- (-15 -3330 ((-1098 *3 (-595 $)) $))
- (-15 -4317 ($ (-1098 *3 (-595 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3))
- (-4 *2
- (-13 (-358) (-293)
- (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $))
- (-15 -3330 ((-1098 *3 (-595 $)) $))
- (-15 -4317 ($ (-1098 *3 (-595 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3))
- (-4 *2
- (-13 (-358) (-293)
- (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $))
- (-15 -3330 ((-1098 *3 (-595 $)) $))
- (-15 -4317 ($ (-1098 *3 (-595 $))))))))))
+ (-12 (-4 *3 (-1208 (-402 (-552))))
+ (-5 *2 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))
+ (-5 *1 (-889 *3 *4)) (-4 *4 (-1208 (-402 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *3))
+ (-4 *3 (-1208 (-402 *4))))))
+(((*1 *1 *1) (-5 *1 (-1037))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-237))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1237)) (-5 *1 (-237)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-545)) (-5 *2 (-1143 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-358) (-293)
- (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $))
- (-15 -3330 ((-1098 *4 (-595 $)) $))
- (-15 -4317 ($ (-1098 *4 (-595 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-358) (-293)
- (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $))
- (-15 -3330 ((-1098 *3 (-595 $)) $))
- (-15 -4317 ($ (-1098 *3 (-595 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-358) (-293)
- (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $))
- (-15 -3330 ((-1098 *3 (-595 $)) $))
- (-15 -4317 ($ (-1098 *3 (-595 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 *2))
- (-4 *2
- (-13 (-358) (-293)
- (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $))
- (-15 -3330 ((-1098 *4 (-595 $)) $))
- (-15 -4317 ($ (-1098 *4 (-595 $)))))))
- (-4 *4 (-545)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 (-595 *2)))
- (-4 *2
- (-13 (-358) (-293)
- (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $))
- (-15 -3330 ((-1098 *4 (-595 $)) $))
- (-15 -4317 ($ (-1098 *4 (-595 $)))))))
- (-4 *4 (-545)) (-5 *1 (-41 *4 *2)))))
+ (-12 (-4 *4 (-38 (-402 (-552))))
+ (-5 *2 (-2 (|:| -3710 (-1129 *4)) (|:| -3721 (-1129 *4))))
+ (-5 *1 (-1135 *4)) (-5 *3 (-1129 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
+ (-5 *2
+ (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552))
+ (|:| |success| (-112))))
+ (-5 *1 (-769)) (-5 *5 (-552)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-940 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-358) (-293)
- (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $))
- (-15 -3330 ((-1098 *3 (-595 $)) $))
- (-15 -4317 ($ (-1098 *3 (-595 $))))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-4 *5 (-1207 *4)) (-5 *2 (-1237))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1207 (-402 *5))) (-14 *7 *6))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48))))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))
- (-5 *2 (-2 (|:| -4220 *3) (|:| -2191 *4))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-538)) (-4 *2 (-416 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1014 *4))
- (-4 *3 (-13 (-827) (-545))))))
+ (-12 (-5 *2 (-1232 *4)) (-4 *4 (-412 *3)) (-4 *3 (-302))
+ (-4 *3 (-544)) (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-897)) (-4 *4 (-358)) (-5 *2 (-1232 *1))
+ (-4 *1 (-324 *4))))
+ ((*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1232 *1)) (-4 *1 (-324 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-1232 *1))
+ (-4 *1 (-404 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4))
+ (-5 *2 (-1232 *6)) (-5 *1 (-408 *3 *4 *5 *6))
+ (-4 *6 (-13 (-404 *4 *5) (-1014 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4))
+ (-5 *2 (-1232 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7))
+ (-4 *6 (-404 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1232 *1)) (-4 *1 (-412 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-897)) (-5 *2 (-1232 (-1232 *4))) (-5 *1 (-521 *4))
+ (-4 *4 (-344)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-622 *5)) (-4 *5 (-416 *4)) (-4 *4 (-13 (-827) (-545)))
- (-5 *2 (-840)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1143 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545)))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-922 (-538))) (-5 *3 (-1149)) (-5 *4 (-1062 (-402 (-538))))
- (-5 *1 (-30)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1143 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-622 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-622 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-827) (-544))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-625 (-2 (|:| |k| (-1149)) (|:| |c| (-1254 *3)))))
+ (-5 *1 (-1254 *3)) (-4 *3 (-1025))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1143 *1)) (-5 *3 (-1149)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-922 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-545)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-545))))))
-((-1265 . 730363) (-1266 . 729936) (-1267 . 729815) (-1268 . 729700)
- (-1269 . 729574) (-1270 . 729444) (-1271 . 729375) (-1272 . 729321)
- (-1273 . 729186) (-1274 . 729110) (-1275 . 728954) (-1276 . 728726)
- (-1277 . 727762) (-1278 . 727515) (-1279 . 727213) (-1280 . 726911)
- (-1281 . 726609) (-1282 . 726271) (-1283 . 726179) (-1284 . 726087)
- (-1285 . 725995) (-1286 . 725903) (-1287 . 725811) (-1288 . 725719)
- (-1289 . 725624) (-1290 . 725529) (-1291 . 725437) (-1292 . 725345)
- (-1293 . 725253) (-1294 . 725161) (-1295 . 725069) (-1296 . 724967)
- (-1297 . 724865) (-1298 . 724763) (-1299 . 724671) (-1300 . 724604)
- (-1301 . 724553) (-1302 . 724501) (-1303 . 724450) (-1304 . 724399)
- (-1305 . 724329) (-1306 . 723891) (-1307 . 723689) (-1308 . 723566)
- (-1309 . 723443) (-1310 . 723299) (-1311 . 723129) (-1312 . 723005)
- (-1313 . 722766) (-1314 . 722693) (-1315 . 722552) (-1316 . 722501)
- (-1317 . 722452) (-1318 . 722382) (-1319 . 722247) (-1320 . 722112)
- (-1321 . 721884) (-1322 . 721638) (-1323 . 721458) (-1324 . 721287)
- (-1325 . 721210) (-1326 . 721136) (-1327 . 720981) (-1328 . 720826)
- (-1329 . 720640) (-1330 . 720457) (-1331 . 720280) (-1332 . 720223)
- (-1333 . 720167) (-1334 . 720111) (-1335 . 720037) (-1336 . 719959)
- (-1337 . 719903) (-1338 . 719872) (-1339 . 719803) (-1340 . 719729)
- (-1341 . 719673) (-1342 . 719602) (-1343 . 719528) (-1344 . 719454)
- (-1345 . 719402) (-1346 . 719350) (-1347 . 719298) (-1348 . 719175)
- (-1349 . 718853) (-1350 . 718765) (-1351 . 718664) (-1352 . 718543)
- (-1353 . 718462) (-1354 . 718381) (-1355 . 718224) (-1356 . 718073)
- (-1357 . 717995) (-1358 . 717937) (-1359 . 717864) (-1360 . 717799)
- (-1361 . 717734) (-1362 . 717672) (-1363 . 717599) (-1364 . 717483)
- (-1365 . 717449) (-1366 . 717415) (-1367 . 717363) (-1368 . 717319)
- (-1369 . 717248) (-1370 . 717196) (-1371 . 717147) (-1372 . 717095)
- (-1373 . 717043) (-1374 . 716927) (-1375 . 716811) (-1376 . 716719)
- (-1377 . 716627) (-1378 . 716504) (-1379 . 716476) (-1380 . 716448)
- (-1381 . 716420) (-1382 . 716392) (-1383 . 716282) (-1384 . 716230)
- (-1385 . 716178) (-1386 . 716126) (-1387 . 716074) (-1388 . 716022)
- (-1389 . 715970) (-1390 . 715942) (-1391 . 715839) (-1392 . 715787)
- (-1393 . 715621) (-1394 . 715437) (-1395 . 715226) (-1396 . 715111)
- (-1397 . 714878) (-1398 . 714779) (-1399 . 714685) (-1400 . 714570)
- (-1401 . 714172) (-1402 . 713954) (-1403 . 713905) (-1404 . 713877)
- (-1405 . 713786) (-1406 . 713674) (-1407 . 713562) (-1408 . 713450)
- (-1409 . 713338) (-1410 . 713226) (-1411 . 713114) (-1412 . 712941)
- (-1413 . 712865) (-1414 . 712683) (-1415 . 712625) (-1416 . 712567)
- (-1417 . 712229) (-1418 . 711944) (-1419 . 711860) (-1420 . 711727)
- (-1421 . 711669) (-1422 . 711617) (-1423 . 711562) (-1424 . 711510)
- (-1425 . 711436) (-1426 . 711362) (-1427 . 711281) (-1428 . 711200)
- (-1429 . 711145) (-1430 . 711071) (-1431 . 710997) (-1432 . 710923)
- (-1433 . 710846) (-1434 . 710791) (-1435 . 710732) (-1436 . 710633)
- (-1437 . 710534) (-1438 . 710435) (-1439 . 710336) (-1440 . 710237)
- (-1441 . 710138) (-1442 . 710039) (-1443 . 709925) (-1444 . 709811)
- (-1445 . 709697) (-1446 . 709583) (-1447 . 709469) (-1448 . 709355)
- (-1449 . 709238) (-1450 . 709162) (-1451 . 709086) (-1452 . 708699)
- (-1453 . 708353) (-1454 . 708251) (-1455 . 707989) (-1456 . 707887)
- (-1457 . 707682) (-1458 . 707569) (-1459 . 707467) (-1460 . 707310)
- (-1461 . 707221) (-1462 . 707127) (-1463 . 707047) (-1464 . 706934)
- (-1465 . 706831) (-1466 . 706771) (-1467 . 706718) (-7 . 706690) (-8 . 706662)
- (-9 . 706634) (-1471 . 706515) (-1472 . 706433) (-1473 . 706351)
- (-1474 . 706269) (-1475 . 706187) (-1476 . 706105) (-1477 . 706011)
- (-1478 . 705941) (-1479 . 705871) (-1480 . 705780) (-1481 . 705686)
- (-1482 . 705604) (-1483 . 705522) (-1484 . 705031) (-1485 . 704478)
- (-1486 . 704268) (-1487 . 704193) (-1488 . 703939) (-1489 . 703712)
- (-1490 . 703502) (-1491 . 703372) (-1492 . 703291) (-1493 . 703142)
- (-1494 . 702787) (-1495 . 702495) (-1496 . 702203) (-1497 . 701911)
- (-1498 . 701619) (-1499 . 701560) (-1500 . 701453) (-1501 . 701025)
- (-1502 . 700865) (-1503 . 700666) (-1504 . 700530) (-1505 . 700430)
- (-1506 . 700330) (-1507 . 700236) (-1508 . 700177) (-1509 . 699835)
- (-1510 . 699734) (-1511 . 699615) (-1512 . 699399) (-1513 . 699218)
- (-1514 . 699051) (-1515 . 698836) (-1516 . 698397) (-1517 . 698288)
- (-1518 . 698173) (-1519 . 698104) (-1520 . 698035) (-1521 . 697966)
- (-1522 . 697900) (-1523 . 697775) (-1524 . 697558) (-1525 . 697480)
- (-1526 . 697430) (-1527 . 697359) (-1528 . 697216) (-1529 . 697075)
- (-1530 . 696994) (-1531 . 696913) (-1532 . 696857) (-1533 . 696801)
- (-1534 . 696728) (-1535 . 696588) (-1536 . 696535) (-1537 . 696483)
- (-1538 . 696431) (-1539 . 696313) (-1540 . 696195) (-1541 . 696077)
- (-1542 . 695944) (-1543 . 695663) (-1544 . 695527) (-1545 . 695471)
- (-1546 . 695415) (-1547 . 695356) (-1548 . 695297) (-1549 . 695241)
- (-1550 . 695185) (-1551 . 694988) (-1552 . 692646) (-1553 . 692519)
- (-1554 . 692373) (-1555 . 692245) (-1556 . 692193) (-1557 . 692141)
- (-1558 . 692089) (-1559 . 688050) (-1560 . 687955) (-1561 . 687816)
- (-1562 . 687607) (-1563 . 687505) (-1564 . 687403) (-1565 . 686487)
- (-1566 . 686410) (-1567 . 686281) (-1568 . 686154) (-1569 . 686077)
- (-1570 . 686000) (-1571 . 685873) (-1572 . 685746) (-1573 . 685580)
- (-1574 . 685453) (-1575 . 685326) (-1576 . 685109) (-1577 . 684671)
- (-1578 . 684305) (-1579 . 684198) (-1580 . 683979) (-1581 . 683910)
- (-1582 . 683851) (-1583 . 683770) (-1584 . 683659) (-1585 . 683593)
- (-1586 . 683527) (-1587 . 683453) (-1588 . 683381) (-1589 . 683004)
- (-1590 . 682952) (-1591 . 682893) (-1592 . 682789) (-1593 . 682685)
- (-1594 . 682578) (-1595 . 682471) (-1596 . 682364) (-1597 . 682257)
- (-1598 . 682150) (-1599 . 682043) (-1600 . 681936) (-1601 . 681829)
- (-1602 . 681722) (-1603 . 681615) (-1604 . 681508) (-1605 . 681401)
- (-1606 . 681294) (-1607 . 681187) (-1608 . 681080) (-1609 . 680973)
- (-1610 . 680866) (-1611 . 680759) (-1612 . 680652) (-1613 . 680545)
- (-1614 . 680438) (-1615 . 680331) (-1616 . 680224) (-1617 . 680117)
- (-1618 . 680010) (-1619 . 679903) (-1620 . 679724) (-1621 . 679602)
- (-1622 . 679351) (-1623 . 679048) (-1624 . 678842) (-1625 . 678675)
- (-1626 . 678504) (-1627 . 678452) (-1628 . 678389) (-1629 . 678326)
- (-1630 . 678274) (-1631 . 678085) (-1632 . 677931) (-1633 . 677851)
- (-1634 . 677771) (-1635 . 677691) (-1636 . 677561) (-1637 . 677329)
- (-1638 . 677301) (-1639 . 677273) (-1640 . 677192) (-1641 . 677102)
- (-1642 . 677024) (-1643 . 676937) (-1644 . 676877) (-1645 . 676719)
- (-1646 . 676526) (-1647 . 676041) (-1648 . 675799) (-1649 . 675537)
- (-1650 . 675436) (-1651 . 675355) (-1652 . 675274) (-1653 . 675204)
- (-1654 . 675134) (-1655 . 674975) (-1656 . 674671) (-1657 . 674428)
- (-1658 . 674304) (-1659 . 674245) (-1660 . 674183) (-1661 . 674121)
- (-1662 . 674056) (-1663 . 673994) (-1664 . 673715) (-1665 . 673505)
- (-1666 . 673231) (-1667 . 672660) (-1668 . 672146) (-1669 . 672001)
- (-1670 . 671934) (-1671 . 671853) (-1672 . 671772) (-1673 . 671670)
- (-1674 . 671596) (-1675 . 671515) (-1676 . 671441) (-1677 . 671232)
- (-1678 . 671019) (-1679 . 670929) (-1680 . 670862) (-1681 . 670726)
- (-1682 . 670659) (-1683 . 670577) (-1684 . 670496) (-1685 . 670394)
- (-1686 . 670194) (-1687 . 670126) (-1688 . 669884) (-1689 . 669633)
- (-1690 . 669391) (-1691 . 669149) (-1692 . 669081) (-1693 . 668745)
- (-1694 . 667744) (-1695 . 667524) (-1696 . 667443) (-1697 . 667369)
- (-1698 . 667295) (-1699 . 667221) (-1700 . 667117) (-1701 . 667044)
- (-1702 . 666976) (-1703 . 666766) (-1704 . 666714) (-1705 . 666659)
- (-1706 . 666569) (-1707 . 666482) (-1708 . 664631) (-1709 . 664552)
- (-1710 . 663807) (-1711 . 663677) (-1712 . 663470) (-1713 . 663308)
- (-1714 . 663146) (-1715 . 662985) (-1716 . 662846) (-1717 . 662752)
- (-1718 . 662654) (-1719 . 662560) (-1720 . 662445) (-1721 . 662360)
- (-1722 . 662262) (-1723 . 662066) (-1724 . 661975) (-1725 . 661881)
- (-1726 . 661814) (-1727 . 661761) (-1728 . 661708) (-1729 . 661655)
- (-1730 . 660517) (-1731 . 660007) (-1732 . 659928) (-1733 . 659869)
- (-1734 . 659841) (-1735 . 659813) (-1736 . 659754) (-1737 . 659641)
- (-1738 . 659264) (-1739 . 659211) (-1740 . 659100) (-1741 . 659047)
- (-1742 . 658994) (-1743 . 658938) (-1744 . 658882) (-1745 . 658717)
- (-1746 . 658647) (-1747 . 658552) (-1748 . 658457) (-1749 . 658362)
- (-1750 . 658205) (-1751 . 658048) (-1752 . 657895) (-1753 . 657137)
- (-1754 . 656884) (-1755 . 656573) (-1756 . 656221) (-1757 . 656004)
- (-1758 . 655741) (-1759 . 655366) (-1760 . 655182) (-1761 . 655048)
- (-1762 . 654882) (-1763 . 654716) (-1764 . 654582) (-1765 . 654448)
- (-1766 . 654314) (-1767 . 654180) (-1768 . 654049) (-1769 . 653918)
- (-1770 . 653787) (-1771 . 653404) (-1772 . 653277) (-1773 . 653149)
- (-1774 . 652897) (-1775 . 652773) (-1776 . 652521) (-1777 . 652397)
- (-1778 . 652145) (-1779 . 652021) (-1780 . 651736) (-1781 . 651463)
- (-1782 . 651190) (-1783 . 650892) (-1784 . 650790) (-1785 . 650645)
- (-1786 . 650504) (-1787 . 650353) (-1788 . 650192) (-1789 . 650104)
- (-1790 . 650076) (-1791 . 649994) (-1792 . 649897) (-1793 . 649429)
- (-1794 . 649078) (-1795 . 648645) (-1796 . 648504) (-1797 . 648434)
- (-1798 . 648364) (-1799 . 648294) (-1800 . 648203) (-1801 . 648112)
- (-1802 . 648021) (-1803 . 647930) (-1804 . 647839) (-1805 . 647753)
- (-1806 . 647667) (-1807 . 647581) (-1808 . 647495) (-1809 . 647409)
- (-1810 . 647335) (-1811 . 647230) (-1812 . 647004) (-1813 . 646926)
- (-1814 . 646851) (-1815 . 646758) (-1816 . 646654) (-1817 . 646558)
- (-1818 . 646389) (-1819 . 646312) (-1820 . 646235) (-1821 . 646144)
- (-1822 . 646053) (-1823 . 645853) (-1824 . 645698) (-1825 . 645543)
- (-1826 . 645388) (-1827 . 645233) (-1828 . 645078) (-1829 . 644923)
- (-1830 . 644856) (-1831 . 644701) (-1832 . 644546) (-1833 . 644391)
- (-1834 . 644236) (-1835 . 644081) (-1836 . 643926) (-1837 . 643771)
- (-1838 . 643616) (-1839 . 643542) (-1840 . 643468) (-1841 . 643413)
- (-1842 . 643358) (-1843 . 643303) (-1844 . 643248) (-1845 . 643177)
- (-1846 . 642972) (-1847 . 642871) (-1848 . 642680) (-1849 . 642587)
- (-1850 . 642450) (-1851 . 642313) (-1852 . 642176) (-1853 . 642108)
- (-1854 . 641992) (-1855 . 641876) (-1856 . 641760) (-1857 . 641707)
- (-1858 . 641510) (-1859 . 641425) (-1860 . 641117) (-1861 . 641062)
- (-1862 . 640410) (-1863 . 640095) (-1864 . 639811) (-1865 . 639692)
- (-1866 . 639640) (-1867 . 639588) (-1868 . 639536) (-1869 . 639483)
- (-1870 . 639430) (-1871 . 639371) (-1872 . 639258) (-1873 . 639145)
- (-1874 . 639087) (-1875 . 639029) (-1876 . 638979) (-1877 . 638844)
- (-1878 . 638794) (-1879 . 638731) (-1880 . 638671) (-1881 . 638074)
- (-1882 . 638014) (-1883 . 637847) (-1884 . 637755) (-1885 . 637642)
- (-1886 . 637558) (-1887 . 637443) (-1888 . 637352) (-1889 . 637261)
- (-1890 . 637072) (-1891 . 637017) (-1892 . 636830) (-1893 . 636707)
- (-1894 . 636634) (-1895 . 636561) (-1896 . 636441) (-1897 . 636368)
- (-1898 . 636295) (-1899 . 636222) (-1900 . 636002) (-1901 . 635669)
- (-1902 . 635485) (-1903 . 635341) (-1904 . 634980) (-1905 . 634812)
- (-1906 . 634644) (-1907 . 634388) (-1908 . 634132) (-1909 . 633937)
- (-1910 . 633742) (-1911 . 633148) (-1912 . 633072) (-1913 . 632934)
- (-1914 . 632532) (-1915 . 632405) (-1916 . 632246) (-1917 . 631920)
- (-1918 . 631431) (-1919 . 630942) (-1920 . 630424) (-1921 . 630356)
- (-1922 . 630285) (-1923 . 630214) (-1924 . 630031) (-1925 . 629912)
- (-1926 . 629793) (-1927 . 629702) (-1928 . 629611) (-1929 . 629319)
- (-1930 . 629197) (-1931 . 629145) (-1932 . 629093) (-1933 . 629041)
- (-1934 . 628989) (-1935 . 628937) (-1936 . 628788) (-1937 . 628607)
- (-1938 . 628367) (-1939 . 628172) (-1940 . 628144) (-1941 . 628116)
- (-1942 . 628088) (-1943 . 628060) (-1944 . 628032) (-1945 . 628004)
- (-1946 . 627976) (-1947 . 627924) (-1948 . 627834) (-1949 . 627784)
- (-1950 . 627715) (-1951 . 627646) (-1952 . 627541) (-1953 . 627170)
- (-1954 . 627019) (-1955 . 626868) (-1956 . 626663) (-1957 . 626541)
- (-1958 . 626466) (-1959 . 626388) (-1960 . 626313) (-1961 . 626235)
- (-1962 . 626157) (-1963 . 626082) (-1964 . 626004) (-1965 . 625770)
- (-1966 . 625615) (-1967 . 625316) (-1968 . 625161) (-1969 . 624835)
- (-1970 . 624695) (-1971 . 624555) (-1972 . 624474) (-1973 . 624393)
- (-1974 . 624128) (-1975 . 623395) (-1976 . 623258) (-1977 . 623167)
- (-1978 . 623030) (-1979 . 622962) (-1980 . 622893) (-1981 . 622805)
- (-1982 . 622717) (-1983 . 622546) (-1984 . 622472) (-1985 . 622328)
- (-1986 . 621868) (-1987 . 621488) (-1988 . 620724) (-1989 . 620580)
- (-1990 . 620436) (-1991 . 620274) (-1992 . 620036) (-1993 . 619895)
- (-1994 . 619748) (-1995 . 619509) (-1996 . 619273) (-1997 . 619034)
- (-1998 . 618842) (-1999 . 618719) (-2000 . 618515) (-2001 . 618292)
- (-2002 . 618053) (-2003 . 617912) (-2004 . 617774) (-2005 . 617635)
- (-2006 . 617382) (-2007 . 617126) (-2008 . 616969) (-2009 . 616815)
- (-2010 . 616574) (-2011 . 616289) (-2012 . 616151) (-2013 . 616064)
- (-2014 . 615398) (-2015 . 615222) (-2016 . 615040) (-2017 . 614864)
- (-2018 . 614682) (-2019 . 614503) (-2020 . 614324) (-2021 . 614137)
- (-2022 . 613755) (-2023 . 613576) (-2024 . 613397) (-2025 . 613210)
- (-2026 . 612828) (-2027 . 611835) (-2028 . 611451) (-2029 . 611067)
- (-2030 . 610949) (-2031 . 610792) (-2032 . 610650) (-2033 . 610532)
- (-2034 . 610350) (-2035 . 610226) (-2036 . 609936) (-2037 . 609646)
- (-2038 . 609362) (-2039 . 609078) (-2040 . 608799) (-2041 . 608711)
- (-2042 . 608626) (-2043 . 608527) (-2044 . 608428) (-2045 . 608204)
- (-2046 . 608104) (-2047 . 608001) (-2048 . 607923) (-2049 . 607598)
- (-2050 . 607306) (-2051 . 607233) (-2052 . 606848) (-2053 . 606820)
- (-2054 . 606621) (-2055 . 606447) (-2056 . 606206) (-2057 . 606151)
- (-2058 . 606075) (-2059 . 605704) (-2060 . 605588) (-2061 . 605511)
- (-2062 . 605438) (-2063 . 605357) (-2064 . 605276) (-2065 . 605195)
- (-2066 . 605094) (-2067 . 605035) (-2068 . 604816) (-2069 . 604577)
- (-2070 . 604453) (-2071 . 604329) (-2072 . 604102) (-2073 . 604049)
- (-2074 . 603994) (-2075 . 603662) (-2076 . 603338) (-2077 . 603150)
- (-2078 . 602959) (-2079 . 602795) (-2080 . 602460) (-2081 . 602293)
- (-2082 . 602052) (-2083 . 601724) (-2084 . 601532) (-2085 . 601315)
- (-2086 . 601142) (-2087 . 600720) (-2088 . 600493) (-2089 . 600222)
- (-2090 . 600084) (-2091 . 599943) (-2092 . 599465) (-2093 . 599342)
- (-2094 . 599106) (-2095 . 598852) (-2096 . 598602) (-2097 . 598307)
- (-2098 . 598166) (-2099 . 597822) (-2100 . 597681) (-2101 . 597488)
- (-2102 . 597295) (-2103 . 597120) (-2104 . 596846) (-2105 . 596411)
- (-2106 . 596337) (-2107 . 596176) (-2108 . 596013) (-2109 . 595852)
- (-2110 . 595685) (-2111 . 595632) (-2112 . 595579) (-2113 . 595450)
- (-2114 . 595390) (-2115 . 595337) (-2116 . 595284) (-2117 . 595213)
- (-2118 . 595160) (-2119 . 595018) (-2120 . 594923) (-2121 . 594832)
- (-2122 . 594716) (-2123 . 594622) (-2124 . 594524) (-2125 . 594430)
- (-2126 . 594289) (-2127 . 594024) (-2128 . 593167) (-2129 . 593011)
- (-2130 . 592642) (-2131 . 592590) (-2132 . 592487) (-2133 . 592402)
- (-2134 . 592314) (-2135 . 592168) (-2136 . 592019) (-2137 . 591729)
- (-2138 . 591651) (-2139 . 591576) (-2140 . 591523) (-2141 . 591470)
- (-2142 . 591439) (-2143 . 591376) (-2144 . 591257) (-2145 . 591168)
- (-2146 . 591048) (-2147 . 590753) (-2148 . 590559) (-2149 . 590371)
- (-2150 . 590226) (-2151 . 590081) (-2152 . 589795) (-2153 . 589350)
- (-2154 . 589316) (-2155 . 589279) (-2156 . 589242) (-2157 . 589205)
- (-2158 . 589168) (-2159 . 589137) (-2160 . 589106) (-2161 . 589075)
- (-2162 . 589041) (-2163 . 589007) (-2164 . 588952) (-2165 . 588763)
- (-2166 . 588521) (-2167 . 588279) (-2168 . 588042) (-2169 . 587990)
- (-2170 . 587935) (-2171 . 587865) (-2172 . 587776) (-2173 . 587707)
- (-2174 . 587635) (-2175 . 587405) (-2176 . 587353) (-2177 . 587298)
- (-2178 . 587267) (-2179 . 587161) (-2180 . 586928) (-2181 . 586610)
- (-2182 . 586428) (-2183 . 586235) (-2184 . 585956) (-2185 . 585883)
- (-2186 . 585818) (-2187 . 585790) (-2188 . 585740) (-2189 . 584317)
- (-2190 . 583169) (-2191 . 582031) (-2192 . 581539) (-2193 . 580961)
- (-2194 . 580219) (-2195 . 579642) (-2196 . 578998) (-2197 . 578419)
- (-2198 . 578345) (-2199 . 578293) (-2200 . 578241) (-2201 . 578167)
- (-2202 . 578112) (-2203 . 578060) (-2204 . 578008) (-2205 . 577956)
- (-2206 . 577886) (-2207 . 577438) (-2208 . 577224) (-2209 . 576967)
- (-2210 . 576625) (-2211 . 576363) (-2212 . 576053) (-2213 . 575842)
- (-2214 . 575542) (-2215 . 574972) (-2216 . 574834) (-2217 . 574631)
- (-2218 . 574350) (-2219 . 574264) (-2220 . 573919) (-2221 . 573777)
- (-2222 . 573485) (-2223 . 573264) (-2224 . 573139) (-2225 . 573015)
- (-2226 . 572869) (-2227 . 572726) (-2228 . 572611) (-2229 . 572481)
- (-2230 . 572109) (-2231 . 571849) (-2232 . 571574) (-2233 . 571334)
- (-2234 . 571004) (-2235 . 570659) (-2236 . 570251) (-2237 . 569828)
- (-2238 . 569631) (-2239 . 569356) (-2240 . 569188) (-2241 . 568987)
- (-2242 . 568765) (-2243 . 568610) (-2244 . 568417) (-2245 . 568389)
- (-2246 . 568210) (-2247 . 568141) (-2248 . 568071) (-2249 . 567952)
- (-2250 . 567774) (-2251 . 567719) (-2252 . 567473) (-2253 . 567383)
- (-2254 . 567193) (-2255 . 567120) (-2256 . 567050) (-2257 . 566985)
- (-2258 . 566930) (-2259 . 566839) (-2260 . 566532) (-2261 . 566187)
- (-2262 . 566113) (-2263 . 565791) (-2264 . 565584) (-2265 . 565498)
- (-2266 . 565412) (-2267 . 565326) (-2268 . 565240) (-2269 . 565154)
- (-2270 . 565068) (-2271 . 564982) (-2272 . 564896) (-2273 . 564810)
- (-2274 . 564724) (-2275 . 564638) (-2276 . 564552) (-2277 . 564466)
- (-2278 . 564380) (-2279 . 564294) (-2280 . 564208) (-2281 . 564122)
- (-2282 . 564036) (-2283 . 563950) (-2284 . 563864) (-2285 . 563778)
- (-2286 . 563692) (-2287 . 563606) (-2288 . 563520) (-2289 . 563434)
- (-2290 . 563348) (-2291 . 563245) (-2292 . 563156) (-2293 . 562946)
- (-2294 . 562887) (-2295 . 562831) (-2296 . 562742) (-2297 . 562630)
- (-2298 . 562542) (-2299 . 562394) (-2300 . 562209) (-2301 . 562045)
- (-2302 . 561878) (-2303 . 561693) (-2304 . 561472) (-2305 . 561348)
- (-2306 . 561140) (-2307 . 561048) (-2308 . 560956) (-2309 . 560820)
- (-2310 . 560725) (-2311 . 560630) (-2312 . 559114) (-2313 . 559054)
- (-2314 . 558964) (-2315 . 558869) (-2316 . 558788) (-2317 . 558481)
- (-2318 . 558286) (-2319 . 558193) (-2320 . 558087) (-2321 . 557669)
- (-2322 . 557616) (-2323 . 557588) (-2324 . 557535) (-2325 . 557360)
- (-2326 . 557283) (-2327 . 557094) (-2328 . 556914) (-2329 . 556490)
- (-2330 . 556338) (-2331 . 556158) (-2332 . 555985) (-2333 . 555723)
- (-2334 . 555471) (-2335 . 554660) (-2336 . 554491) (-2337 . 554272)
- (-2338 . 553368) (-2339 . 553224) (-2340 . 553080) (-2341 . 552936)
- (-2342 . 552792) (-2343 . 552648) (-2344 . 552504) (-2345 . 552309)
- (-2346 . 552115) (-2347 . 551972) (-2348 . 551657) (-2349 . 551542)
- (-2350 . 551202) (-2351 . 551042) (-2352 . 550903) (-2353 . 550764)
- (-2354 . 550635) (-2355 . 550550) (-2356 . 550498) (-2357 . 550010)
- (-2358 . 548732) (-2359 . 548617) (-2360 . 548488) (-2361 . 548181)
- (-2362 . 547930) (-2363 . 547855) (-2364 . 547780) (-2365 . 547705)
- (-2366 . 547646) (-2367 . 547575) (-2368 . 547522) (-2369 . 547460)
- (-2370 . 547389) (-2371 . 547026) (-2372 . 546739) (-2373 . 546628)
- (-2374 . 546535) (-2375 . 546442) (-2376 . 546355) (-2377 . 546135)
- (-2378 . 545915) (-2379 . 545772) (-2380 . 545679) (-2381 . 545536)
- (-2382 . 545384) (-2383 . 545230) (-2384 . 545159) (-2385 . 544950)
- (-2386 . 544772) (-2387 . 544562) (-2388 . 544384) (-2389 . 544266)
- (-2390 . 543951) (-2391 . 543673) (-2392 . 543552) (-2393 . 543425)
- (-2394 . 543340) (-2395 . 543267) (-2396 . 543177) (-2397 . 543106)
- (-2398 . 543050) (-2399 . 542994) (-2400 . 542938) (-2401 . 542867)
- (-2402 . 542796) (-2403 . 542725) (-2404 . 542646) (-2405 . 542568)
- (-2406 . 542483) (-2407 . 542223) (-2408 . 542134) (-2409 . 541836)
- (-2410 . 541738) (-2411 . 541660) (-2412 . 541582) (-2413 . 541439)
- (-2414 . 541360) (-2415 . 541288) (-2416 . 541085) (-2417 . 541029)
- (-2418 . 540841) (-2419 . 540742) (-2420 . 540624) (-2421 . 540503)
- (-2422 . 540360) (-2423 . 540217) (-2424 . 540077) (-2425 . 539937)
- (-2426 . 539794) (-2427 . 539667) (-2428 . 539537) (-2429 . 539413)
- (-2430 . 539289) (-2431 . 539183) (-2432 . 539077) (-2433 . 538974)
- (-2434 . 538824) (-2435 . 538671) (-2436 . 538518) (-2437 . 538374)
- (-2438 . 538220) (-2439 . 538143) (-2440 . 538063) (-2441 . 537908)
- (-2442 . 537828) (-2443 . 537748) (-2444 . 537668) (-2445 . 537565)
- (-2446 . 537506) (-2447 . 537331) (-2448 . 537178) (-2449 . 537025)
- (-2450 . 536851) (-2451 . 536659) (-2452 . 536360) (-2453 . 536165)
- (-2454 . 536050) (-2455 . 535924) (-2456 . 535847) (-2457 . 535715)
- (-2458 . 535409) (-2459 . 535226) (-2460 . 534681) (-2461 . 534461)
- (-2462 . 534287) (-2463 . 534117) (-2464 . 534018) (-2465 . 533919)
- (-2466 . 533701) (-2467 . 533599) (-2468 . 533526) (-2469 . 533450)
- (-2470 . 533371) (-2471 . 533074) (-2472 . 532975) (-2473 . 532813)
- (-2474 . 532579) (-2475 . 532137) (-2476 . 532007) (-2477 . 531867)
- (-2478 . 531558) (-2479 . 531256) (-2480 . 530940) (-2481 . 530534)
- (-2482 . 530466) (-2483 . 530398) (-2484 . 530330) (-2485 . 530235)
- (-2486 . 530127) (-2487 . 530019) (-2488 . 529917) (-2489 . 529815)
- (-2490 . 529713) (-2491 . 529635) (-2492 . 529311) (-2493 . 528830)
- (-2494 . 528203) (-2495 . 528139) (-2496 . 528020) (-2497 . 527901)
- (-2498 . 527793) (-2499 . 527685) (-2500 . 527529) (-2501 . 526927)
- (-2502 . 526689) (-2503 . 526521) (-2504 . 526399) (-2505 . 526001)
- (-2506 . 525765) (-2507 . 525564) (-2508 . 525356) (-2509 . 525163)
- (-2510 . 524893) (-2511 . 524720) (-2512 . 524541) (-2513 . 524472)
- (-2514 . 524396) (-2515 . 524255) (-2516 . 524052) (-2517 . 523908)
- (-2518 . 523658) (-2519 . 523350) (-2520 . 522994) (-2521 . 522835)
- (-2522 . 522629) (-2523 . 522469) (-2524 . 522396) (-2525 . 522277)
- (-2526 . 522158) (-2527 . 521998) (-2528 . 521818) (-2529 . 521635)
- (-2530 . 521537) (-2531 . 521439) (-2532 . 521338) (-2533 . 521234)
- (-2534 . 521108) (-2535 . 520982) (-2536 . 520853) (-2537 . 520721)
- (-2538 . 520623) (-2539 . 520525) (-2540 . 520424) (-2541 . 520323)
- (-2542 . 520157) (-2543 . 519991) (-2544 . 519797) (-2545 . 519631)
- (-2546 . 519463) (-2547 . 519292) (-2548 . 519127) (-2549 . 518962)
- (-2550 . 518862) (-2551 . 518670) (-2552 . 518569) (-2553 . 518374)
- (-2554 . 518124) (-2555 . 517879) (-2556 . 517557) (-2557 . 517169)
- (-2558 . 516968) (-2559 . 516704) (-2560 . 516161) (-2561 . 515867)
- (-2562 . 515730) (-2563 . 515484) (-2564 . 515280) (-2565 . 515173)
- (-2566 . 515072) (-2567 . 514962) (-2568 . 514852) (-2569 . 514724)
- (-2570 . 514617) (-2571 . 514513) (-2572 . 514357) (-2573 . 514223)
- (-2574 . 514089) (-2575 . 513979) (-2576 . 513860) (-2577 . 513683)
- (-2578 . 513549) (-2579 . 513412) (-2580 . 513281) (-2581 . 513171)
- (-2582 . 513049) (-2583 . 512924) (-2584 . 512823) (-2585 . 512639)
- (-2586 . 512465) (-2587 . 512266) (-2588 . 512092) (-2589 . 511976)
- (-2590 . 511851) (-2591 . 511723) (-2592 . 511604) (-2593 . 511379)
- (-2594 . 511208) (-2595 . 511037) (-2596 . 510860) (-2597 . 510708)
- (-2598 . 510431) (-2599 . 510039) (-2600 . 509908) (-2601 . 509703)
- (-2602 . 509520) (-2603 . 509336) (-2604 . 509207) (-2605 . 509103)
- (-2606 . 508962) (-2607 . 508830) (-2608 . 508716) (-2609 . 508568)
- (-2610 . 508429) (-2611 . 508328) (-2612 . 508224) (-2613 . 508117)
- (-2614 . 508007) (-2615 . 507906) (-2616 . 507799) (-2617 . 507692)
- (-2618 . 507579) (-2619 . 507472) (-2620 . 507359) (-2621 . 507228)
- (-2622 . 507079) (-2623 . 506541) (-2624 . 506398) (-2625 . 506248)
- (-2626 . 506125) (-2627 . 506021) (-2628 . 505917) (-2629 . 505810)
- (-2630 . 505672) (-2631 . 505565) (-2632 . 505434) (-2633 . 505278)
- (-2634 . 505005) (-2635 . 504858) (-2636 . 504655) (-2637 . 504554)
- (-2638 . 504400) (-2639 . 504280) (-2640 . 504151) (-2641 . 504056)
- (-2642 . 503968) (-2643 . 503880) (-2644 . 503792) (-2645 . 503704)
- (-2646 . 503616) (-2647 . 503522) (-2648 . 503434) (-2649 . 503346)
- (-2650 . 503258) (-2651 . 503170) (-2652 . 503082) (-2653 . 502994)
- (-2654 . 502906) (-2655 . 502818) (-2656 . 502730) (-2657 . 502642)
- (-2658 . 502504) (-2659 . 502366) (-2660 . 502246) (-2661 . 502126)
- (-2662 . 501985) (-2663 . 501897) (-2664 . 501809) (-2665 . 501721)
- (-2666 . 501633) (-2667 . 501495) (-2668 . 501357) (-2669 . 501269)
- (-2670 . 501181) (-2671 . 501093) (-2672 . 501005) (-2673 . 500917)
- (-2674 . 500829) (-2675 . 500738) (-2676 . 500644) (-2677 . 500550)
- (-2678 . 500453) (-2679 . 500403) (-2680 . 500353) (-2681 . 500300)
- (-2682 . 500046) (-2683 . 499997) (-2684 . 499947) (-2685 . 499913)
- (-2686 . 499848) (-2687 . 499811) (-2688 . 499674) (-2689 . 499436)
- (-2690 . 499187) (-2691 . 499029) (-2692 . 498488) (-2693 . 498289)
- (-2694 . 498074) (-2695 . 497912) (-2696 . 497513) (-2697 . 497346)
- (-2698 . 496271) (-2699 . 496148) (-2700 . 495931) (-2701 . 495800)
- (-2702 . 495669) (-2703 . 495511) (-2704 . 495407) (-2705 . 495348)
- (-2706 . 495289) (-2707 . 495183) (-2708 . 495077) (-2709 . 494159)
- (-2710 . 492030) (-2711 . 491214) (-2712 . 489409) (-2713 . 489341)
- (-2714 . 489273) (-2715 . 489205) (-2716 . 489137) (-2717 . 489069)
- (-2718 . 488991) (-2719 . 488589) (-2720 . 488233) (-2721 . 488051)
- (-2722 . 487522) (-2723 . 487346) (-2724 . 487124) (-2725 . 486902)
- (-2726 . 486680) (-2727 . 486461) (-2728 . 486242) (-2729 . 486023)
- (-2730 . 485804) (-2731 . 485585) (-2732 . 485366) (-2733 . 485265)
- (-2734 . 484532) (-2735 . 484477) (-2736 . 484422) (-2737 . 484367)
- (-2738 . 484312) (-2739 . 484162) (-2740 . 483869) (-2741 . 483610)
- (-2742 . 483582) (-2743 . 483532) (-2744 . 482940) (-2745 . 482406)
- (-2746 . 481957) (-2747 . 481785) (-2748 . 481594) (-2749 . 481305)
- (-2750 . 480917) (-2751 . 480041) (-2752 . 479699) (-2753 . 479530)
- (-2754 . 479307) (-2755 . 479056) (-2756 . 478706) (-2757 . 477688)
- (-2758 . 477373) (-2759 . 477161) (-2760 . 476594) (-2761 . 476078)
- (-2762 . 474300) (-2763 . 473828) (-2764 . 473229) (-2765 . 472979)
- (-2766 . 472845) (-2767 . 472393) (-2768 . 471904) (-2769 . 471544)
- (-2770 . 471261) (-2771 . 471146) (-2772 . 471031) (-2773 . 470816)
- (-2774 . 470763) (-2775 . 470710) (-2776 . 470658) (-2777 . 470606)
- (-2778 . 470514) (-2779 . 470443) (-2780 . 470369) (-2781 . 470298)
- (-2782 . 470245) (-2783 . 470174) (-2784 . 470121) (-2785 . 470068)
- (-2786 . 470015) (-2787 . 469962) (-2788 . 469909) (-2789 . 469856)
- (-2790 . 469803) (-2791 . 469750) (-2792 . 469697) (-2793 . 469644)
- (-2794 . 469591) (-2795 . 469538) (-2796 . 469485) (-2797 . 469432)
- (-2798 . 469361) (-2799 . 469290) (-2800 . 469218) (-2801 . 469146)
- (-2802 . 469071) (-2803 . 469018) (-2804 . 468965) (-2805 . 468912)
- (-2806 . 468859) (-2807 . 468806) (-2808 . 468753) (-2809 . 468700)
- (-2810 . 468647) (-2811 . 468594) (-2812 . 468541) (-2813 . 468488)
- (-2814 . 468435) (-2815 . 468382) (-2816 . 468329) (-2817 . 468277)
- (-2818 . 468225) (-2819 . 468172) (-2820 . 468119) (-2821 . 468028)
- (-2822 . 467975) (-2823 . 467947) (-2824 . 467919) (-2825 . 467891)
- (-2826 . 467863) (-2827 . 467785) (-2828 . 467725) (-2829 . 467673)
- (-2830 . 467621) (-2831 . 467569) (-2832 . 467517) (-2833 . 467465)
- (-2834 . 466661) (-2835 . 466584) (-2836 . 466507) (-2837 . 466441)
- (-2838 . 466374) (-2839 . 466307) (-2840 . 466250) (-2841 . 466174)
- (-2842 . 466106) (-2843 . 466035) (-2844 . 465964) (-2845 . 465898)
- (-2846 . 465811) (-2847 . 465739) (-2848 . 465632) (-2849 . 465446)
- (-2850 . 465277) (-2851 . 465097) (-2852 . 464506) (-2853 . 464343)
- (-2854 . 463765) (-2855 . 463690) (-2856 . 463324) (-2857 . 462645)
- (-2858 . 462467) (-2859 . 462395) (-2860 . 462255) (-2861 . 462065)
- (-2862 . 461958) (-2863 . 461851) (-2864 . 461735) (-2865 . 461619)
- (-2866 . 461503) (-2867 . 461352) (-2868 . 461208) (-2869 . 461134)
- (-2870 . 461048) (-2871 . 460974) (-2872 . 460900) (-2873 . 460826)
- (-2874 . 460682) (-2875 . 460531) (-2876 . 460356) (-2877 . 460205)
- (-2878 . 460054) (-2879 . 459927) (-2880 . 459538) (-2881 . 459252)
- (-2882 . 458966) (-2883 . 458555) (-2884 . 458269) (-2885 . 458196)
- (-2886 . 458049) (-2887 . 457943) (-2888 . 457869) (-2889 . 457798)
- (-2890 . 457727) (-2891 . 457625) (-2892 . 457522) (-2893 . 457425)
- (-2894 . 457328) (-2895 . 457168) (-2896 . 457081) (-2897 . 456994)
- (-2898 . 456907) (-2899 . 456848) (-2900 . 456789) (-2901 . 456656)
- (-2902 . 456597) (-2903 . 456427) (-2904 . 456339) (-2905 . 456242)
- (-2906 . 456208) (-2907 . 456177) (-2908 . 456093) (-2909 . 456037)
- (-2910 . 455975) (-2911 . 455941) (-2912 . 455907) (-2913 . 455873)
- (-2914 . 455839) (-2915 . 455805) (-2916 . 453052) (-2917 . 453018)
- (-2918 . 452984) (-2919 . 452950) (-2920 . 452838) (-2921 . 452804)
- (-2922 . 452752) (-2923 . 452718) (-2924 . 452621) (-2925 . 452559)
- (-2926 . 452468) (-2927 . 452377) (-2928 . 452322) (-2929 . 452270)
- (-2930 . 452218) (-2931 . 452166) (-2932 . 452114) (-2933 . 451690)
- (-2934 . 451524) (-2935 . 451471) (-2936 . 451402) (-2937 . 451349)
- (-2938 . 451193) (-2939 . 450672) (-2940 . 450531) (-2941 . 450497)
- (-2942 . 450442) (-2943 . 449731) (-2944 . 449416) (-2945 . 448911)
- (-2946 . 448833) (-2947 . 448781) (-2948 . 448729) (-2949 . 448545)
- (-2950 . 448493) (-2951 . 448441) (-2952 . 448365) (-2953 . 448303)
- (-2954 . 448085) (-2955 . 447830) (-2956 . 447763) (-2957 . 447669)
- (-2958 . 447575) (-2959 . 447392) (-2960 . 447310) (-2961 . 447188)
- (-2962 . 447066) (-2963 . 446920) (-2964 . 446265) (-2965 . 445558)
- (-2966 . 445454) (-2967 . 445353) (-2968 . 445252) (-2969 . 445141)
- (-2970 . 444973) (-2971 . 444767) (-2972 . 444674) (-2973 . 444597)
- (-2974 . 444541) (-2975 . 444470) (-2976 . 444350) (-2977 . 444249)
- (-2978 . 444151) (-2979 . 444071) (-2980 . 443991) (-2981 . 443914)
- (-2982 . 443843) (-2983 . 443772) (-2984 . 443701) (-2985 . 443630)
- (-2986 . 443559) (-2987 . 443488) (-2988 . 443395) (-2989 . 443200)
- (-2990 . 442956) (-2991 . 442786) (-2992 . 442414) (-2993 . 442245)
- (-2994 . 442129) (-2995 . 441625) (-2996 . 441243) (-2997 . 440997)
- (-2998 . 440568) (-2999 . 440476) (-3000 . 440379) (-3001 . 437089)
- (-3002 . 436269) (-3003 . 436156) (-3004 . 436082) (-3005 . 435990)
- (-3006 . 435796) (-3007 . 435602) (-3008 . 435531) (-3009 . 435460)
- (-3010 . 435379) (-3011 . 435298) (-3012 . 435173) (-3013 . 435039)
- (-3014 . 434958) (-3015 . 434884) (-3016 . 434719) (-3017 . 434560)
- (-3018 . 434329) (-3019 . 434181) (-3020 . 434077) (-3021 . 433973)
- (-3022 . 433888) (-3023 . 433520) (-3024 . 433439) (-3025 . 433352)
- (-3026 . 433271) (-3027 . 433025) (-3028 . 432805) (-3029 . 432618)
- (-3030 . 432296) (-3031 . 432003) (-3032 . 431710) (-3033 . 431400)
- (-3034 . 431083) (-3035 . 430954) (-3036 . 430766) (-3037 . 430293)
- (-3038 . 430211) (-3039 . 429996) (-3040 . 429781) (-3041 . 429522)
- (-3042 . 429091) (-3043 . 428570) (-3044 . 428440) (-3045 . 428166)
- (-3046 . 427987) (-3047 . 427872) (-3048 . 427768) (-3049 . 427713)
- (-3050 . 427636) (-3051 . 427566) (-3052 . 427493) (-3053 . 427438)
- (-3054 . 427365) (-3055 . 427310) (-3056 . 426955) (-3057 . 426547)
- (-3058 . 426394) (-3059 . 426241) (-3060 . 426160) (-3061 . 426007)
- (-3062 . 425854) (-3063 . 425719) (-3064 . 425584) (-3065 . 425449)
- (-3066 . 425314) (-3067 . 425179) (-3068 . 425044) (-3069 . 424988)
- (-3070 . 424835) (-3071 . 424724) (-3072 . 424613) (-3073 . 424545)
- (-3074 . 424435) (-3075 . 424332) (-3076 . 420181) (-3077 . 419733)
- (-3078 . 419306) (-3079 . 418689) (-3080 . 418088) (-3081 . 417870)
- (-3082 . 417692) (-3083 . 417432) (-3084 . 417021) (-3085 . 416727)
- (-3086 . 416284) (-3087 . 416106) (-3088 . 415713) (-3089 . 415320)
- (-3090 . 415135) (-3091 . 414928) (-3092 . 414707) (-3093 . 414401)
- (-3094 . 414202) (-3095 . 413573) (-3096 . 413416) (-3097 . 413025)
- (-3098 . 412973) (-3099 . 412924) (-3100 . 412872) (-3101 . 412823)
- (-3102 . 412771) (-3103 . 412625) (-3104 . 412573) (-3105 . 412427)
- (-3106 . 412375) (-3107 . 412229) (-3108 . 412177) (-3109 . 411802)
- (-3110 . 411750) (-3111 . 411701) (-3112 . 411649) (-3113 . 411600)
- (-3114 . 411548) (-3115 . 411499) (-3116 . 411447) (-3117 . 411398)
- (-3118 . 411346) (-3119 . 411297) (-3120 . 411231) (-3121 . 411113)
- (-3122 . 409951) (-3123 . 409534) (-3124 . 409426) (-3125 . 409181)
- (-3126 . 409032) (-3127 . 408883) (-3128 . 408716) (-3129 . 406465)
- (-3130 . 406188) (-3131 . 406034) (-3132 . 405888) (-3133 . 405742)
- (-3134 . 405523) (-3135 . 405391) (-3136 . 405316) (-3137 . 405241)
- (-3138 . 405106) (-3139 . 404976) (-3140 . 404846) (-3141 . 404719)
- (-3142 . 404592) (-3143 . 404465) (-3144 . 404338) (-3145 . 404235)
- (-3146 . 404135) (-3147 . 404041) (-3148 . 403911) (-3149 . 403760)
- (-3150 . 403381) (-3151 . 403266) (-3152 . 403023) (-3153 . 402560)
- (-3154 . 402247) (-3155 . 401679) (-3156 . 401109) (-3157 . 400097)
- (-3158 . 399554) (-3159 . 399241) (-3160 . 398903) (-3161 . 398572)
- (-3162 . 398252) (-3163 . 398199) (-3164 . 398072) (-3165 . 397543)
- (-3166 . 396386) (-3167 . 396331) (-3168 . 396276) (-3169 . 396200)
- (-3170 . 396081) (-3171 . 396006) (-3172 . 395931) (-3173 . 395853)
- (-3174 . 395702) (-3175 . 395610) (-3176 . 395540) (-3177 . 395448)
- (-3178 . 395378) (-3179 . 395286) (-3180 . 395216) (-3181 . 395124)
- (-3182 . 395054) (-3183 . 394999) (-3184 . 394929) (-3185 . 394809)
- (-3186 . 394754) (-3187 . 394684) (-3188 . 394650) (-3189 . 394616)
- (-3190 . 394519) (-3191 . 394422) (-3192 . 394204) (-3193 . 394054)
- (-3194 . 393924) (-3195 . 393794) (-3196 . 393694) (-3197 . 393517)
- (-3198 . 393357) (-3199 . 393257) (-3200 . 393080) (-3201 . 392920)
- (-3202 . 392761) (-3203 . 392622) (-3204 . 392472) (-3205 . 392342)
- (-3206 . 392212) (-3207 . 392065) (-3208 . 391938) (-3209 . 391835)
- (-3210 . 391728) (-3211 . 391631) (-3212 . 391466) (-3213 . 391318)
- (-3214 . 390889) (-3215 . 390789) (-3216 . 390686) (-3217 . 390598)
- (-3218 . 390518) (-3219 . 390368) (-3220 . 390238) (-3221 . 390186)
- (-3222 . 390096) (-3223 . 389984) (-3224 . 389671) (-3225 . 389490)
- (-3226 . 387879) (-3227 . 387246) (-3228 . 387186) (-3229 . 387068)
- (-3230 . 386950) (-3231 . 386806) (-3232 . 386651) (-3233 . 386490)
- (-3234 . 386329) (-3235 . 386121) (-3236 . 385932) (-3237 . 385777)
- (-3238 . 385619) (-3239 . 385461) (-3240 . 385306) (-3241 . 385166)
- (-3242 . 384740) (-3243 . 384612) (-3244 . 384484) (-3245 . 384356)
- (-3246 . 384213) (-3247 . 384070) (-3248 . 383928) (-3249 . 383783)
- (-3250 . 383030) (-3251 . 382870) (-3252 . 382682) (-3253 . 382525)
- (-3254 . 382285) (-3255 . 382038) (-3256 . 381791) (-3257 . 381580)
- (-3258 . 381441) (-3259 . 381230) (-3260 . 380940) (-3261 . 380729)
- (-3262 . 380590) (-3263 . 380379) (-3264 . 380073) (-3265 . 379928)
- (-3266 . 379786) (-3267 . 379562) (-3268 . 379420) (-3269 . 379195)
- (-3270 . 378996) (-3271 . 378839) (-3272 . 378509) (-3273 . 378349)
- (-3274 . 378189) (-3275 . 378029) (-3276 . 377857) (-3277 . 377685)
- (-3278 . 377510) (-3279 . 377158) (-3280 . 376964) (-3281 . 376802)
- (-3282 . 376728) (-3283 . 376654) (-3284 . 376580) (-3285 . 376506)
- (-3286 . 376432) (-3287 . 376358) (-3288 . 376234) (-3289 . 376060)
- (-3290 . 375936) (-3291 . 375850) (-3292 . 375784) (-3293 . 375718)
- (-3294 . 375652) (-3295 . 375586) (-3296 . 375520) (-3297 . 375454)
- (-3298 . 375388) (-3299 . 375322) (-3300 . 375256) (-3301 . 375190)
- (-3302 . 375124) (-3303 . 375058) (-3304 . 374992) (-3305 . 374926)
- (-3306 . 374860) (-3307 . 374794) (-3308 . 374728) (-3309 . 374662)
- (-3310 . 374596) (-3311 . 374530) (-3312 . 374464) (-3313 . 374398)
- (-3314 . 374332) (-3315 . 374266) (-3316 . 374200) (-3317 . 374134)
- (-3318 . 373485) (-3319 . 372836) (-3320 . 372708) (-3321 . 372585)
- (-3322 . 372462) (-3323 . 372321) (-3324 . 372166) (-3325 . 372022)
- (-3326 . 371847) (-3327 . 371209) (-3328 . 371086) (-3329 . 370962)
- (-3330 . 370284) (-3331 . 369586) (-3332 . 369485) (-3333 . 369429)
- (-3334 . 369373) (-3335 . 369317) (-3336 . 369261) (-3337 . 369202)
- (-3338 . 369138) (-3339 . 369030) (-3340 . 368922) (-3341 . 368814)
- (-3342 . 368535) (-3343 . 368461) (-3344 . 368235) (-3345 . 368154)
- (-3346 . 368076) (-3347 . 367998) (-3348 . 367920) (-3349 . 367841)
- (-3350 . 367763) (-3351 . 367670) (-3352 . 367571) (-3353 . 367503)
- (-3354 . 367454) (-3355 . 366762) (-3356 . 366113) (-3357 . 365321)
- (-3358 . 365240) (-3359 . 365136) (-3360 . 365044) (-3361 . 364952)
- (-3362 . 364878) (-3363 . 364804) (-3364 . 364730) (-3365 . 364675)
- (-3366 . 364620) (-3367 . 364554) (-3368 . 364488) (-3369 . 364426)
- (-3370 . 364039) (-3371 . 363538) (-3372 . 363072) (-3373 . 362818)
- (-3374 . 362628) (-3375 . 362285) (-3376 . 361988) (-3377 . 361819)
- (-3378 . 361688) (-3379 . 361548) (-3380 . 360464) (-3381 . 360309)
- (-3382 . 360140) (-3383 . 358754) (-3384 . 358617) (-3385 . 358472)
- (-3386 . 358241) (-3387 . 357971) (-3388 . 357911) (-3389 . 357854)
- (-3390 . 357797) (-3391 . 357584) (-3392 . 357444) (-3393 . 357336)
- (-3394 . 357218) (-3395 . 357151) (-3396 . 357077) (-3397 . 356962)
- (-3398 . 356705) (-3399 . 356603) (-3400 . 356405) (-3401 . 356089)
- (-3402 . 355615) (-3403 . 355508) (-3404 . 355400) (-3405 . 355249)
- (-3406 . 355107) (-3407 . 354688) (-3408 . 354438) (-3409 . 353761)
- (-3410 . 353606) (-3411 . 353491) (-3412 . 353380) (-3413 . 352550)
- (-3414 . 352497) (-3415 . 352444) (-3416 . 352248) (-3417 . 350893)
- (-3418 . 350442) (-3419 . 349040) (-3420 . 348177) (-3421 . 348127)
- (-3422 . 348077) (-3423 . 348027) (-3424 . 347959) (-3425 . 347883)
- (-3426 . 347679) (-3427 . 347606) (-3428 . 347530) (-3429 . 347457)
- (-3430 . 347339) (-3431 . 347287) (-3432 . 347207) (-3433 . 347127)
- (-3434 . 347047) (-3435 . 346995) (-3436 . 346749) (-3437 . 346431)
- (-3438 . 346346) (-3439 . 346261) (-3440 . 346199) (-3441 . 345809)
- (-3442 . 344934) (-3443 . 344358) (-3444 . 343120) (-3445 . 342310)
- (-3446 . 342058) (-3447 . 341806) (-3448 . 341472) (-3449 . 341226)
- (-3450 . 340980) (-3451 . 340734) (-3452 . 340488) (-3453 . 340242)
- (-3454 . 339996) (-3455 . 339749) (-3456 . 339502) (-3457 . 339255)
- (-3458 . 339008) (-3459 . 338578) (-3460 . 338460) (-3461 . 337616)
- (-3462 . 337584) (-3463 . 337237) (-3464 . 337010) (-3465 . 336910)
- (-3466 . 336810) (-3467 . 335040) (-3468 . 334926) (-3469 . 333875)
- (-3470 . 333782) (-3471 . 332791) (-3472 . 332456) (-3473 . 332121)
- (-3474 . 332016) (-3475 . 331929) (-3476 . 331900) (-3477 . 331843)
- (-3478 . 331763) (-3479 . 331691) (-3480 . 331616) (-3481 . 331541)
- (-3482 . 331509) (-3483 . 331477) (-3484 . 331445) (-3485 . 331413)
- (-3486 . 331381) (-3487 . 331349) (-3488 . 331317) (-3489 . 331285)
- (-3490 . 331256) (-3491 . 331143) (-3492 . 331030) (-3493 . 330917)
- (-3494 . 330804) (-3495 . 329715) (-3496 . 329593) (-3497 . 329456)
- (-3498 . 329322) (-3499 . 329188) (-3500 . 328891) (-3501 . 328594)
- (-3502 . 328246) (-3503 . 328016) (-3504 . 327786) (-3505 . 327673)
- (-3506 . 327560) (-3507 . 322279) (-3508 . 317906) (-3509 . 317594)
- (-3510 . 317439) (-3511 . 316911) (-3512 . 316578) (-3513 . 316381)
- (-3514 . 316184) (-3515 . 315987) (-3516 . 315790) (-3517 . 315674)
- (-3518 . 315548) (-3519 . 315432) (-3520 . 315316) (-3521 . 315221)
- (-3522 . 315126) (-3523 . 315013) (-3524 . 314807) (-3525 . 313650)
- (-3526 . 313555) (-3527 . 313439) (-3528 . 313344) (-3529 . 313095)
- (-3530 . 312982) (-3531 . 312764) (-3532 . 312645) (-3533 . 312345)
- (-3534 . 311575) (-3535 . 310998) (-3536 . 310504) (-3537 . 310256)
- (-3538 . 310008) (-3539 . 309709) (-3540 . 309095) (-3541 . 308647)
- (-3542 . 308490) (-3543 . 308344) (-3544 . 308018) (-3545 . 307860)
- (-3546 . 307717) (-3547 . 307574) (-3548 . 307431) (-3549 . 307150)
- (-3550 . 306928) (-3551 . 306401) (-3552 . 306186) (-3553 . 305971)
- (-3554 . 305583) (-3555 . 305403) (-3556 . 305191) (-3557 . 304881)
- (-3558 . 304680) (-3559 . 304498) (-3560 . 303344) (-3561 . 302955)
- (-3562 . 302745) (-3563 . 302532) (-3564 . 301689) (-3565 . 301660)
- (-3566 . 301591) (-3567 . 301520) (-3568 . 301353) (-3569 . 301324)
- (-3570 . 301295) (-3571 . 301239) (-3572 . 301078) (-3573 . 301018)
- (-3574 . 300322) (-3575 . 299144) (-3576 . 299083) (-3577 . 298859)
- (-3578 . 298787) (-3579 . 298730) (-3580 . 298673) (-3581 . 298616)
- (-3582 . 298559) (-3583 . 298484) (-3584 . 297893) (-3585 . 297534)
- (-3586 . 297459) (-3587 . 297399) (-3588 . 297281) (-3589 . 296330)
- (-3590 . 296203) (-3591 . 295990) (-3592 . 295915) (-3593 . 295861)
- (-3594 . 295742) (-3595 . 295633) (-3596 . 295320) (-3597 . 295212)
- (-3598 . 295109) (-3599 . 294948) (-3600 . 294847) (-3601 . 294749)
- (-3602 . 294611) (-3603 . 294473) (-3604 . 294335) (-3605 . 294073)
- (-3606 . 293863) (-3607 . 293725) (-3608 . 293436) (-3609 . 293283)
- (-3610 . 293004) (-3611 . 292782) (-3612 . 292629) (-3613 . 292476)
- (-3614 . 292323) (-3615 . 292170) (-3616 . 292017) (-3617 . 291861)
- (-3618 . 291742) (-3619 . 291351) (-3620 . 291016) (-3621 . 290671)
- (-3622 . 290320) (-3623 . 289975) (-3624 . 289630) (-3625 . 289243)
- (-3626 . 288856) (-3627 . 288469) (-3628 . 288098) (-3629 . 287368)
- (-3630 . 287017) (-3631 . 286563) (-3632 . 286134) (-3633 . 285517)
- (-3634 . 284916) (-3635 . 284524) (-3636 . 284188) (-3637 . 283796)
- (-3638 . 283460) (-3639 . 283238) (-3640 . 282711) (-3641 . 282496)
- (-3642 . 282281) (-3643 . 282065) (-3644 . 281885) (-3645 . 281669)
- (-3646 . 281489) (-3647 . 281101) (-3648 . 280921) (-3649 . 280709)
- (-3650 . 280619) (-3651 . 280529) (-3652 . 280438) (-3653 . 280351)
- (-3654 . 280261) (-3655 . 280180) (-3656 . 279991) (-3657 . 279935)
- (-3658 . 279854) (-3659 . 279773) (-3660 . 279692) (-3661 . 279557)
- (-3662 . 279422) (-3663 . 279298) (-3664 . 279177) (-3665 . 279059)
- (-3666 . 278923) (-3667 . 278790) (-3668 . 278671) (-3669 . 278412)
- (-3670 . 278229) (-3671 . 278157) (-3672 . 278065) (-3673 . 277973)
- (-3674 . 277887) (-3675 . 277789) (-3676 . 277672) (-3677 . 277393)
- (-3678 . 277114) (-3679 . 277054) (-3680 . 276988) (-3681 . 276922)
- (-3682 . 276781) (-3683 . 276724) (-3684 . 276667) (-3685 . 276607)
- (-3686 . 276210) (-3687 . 275686) (-3688 . 275408) (-3689 . 274987)
- (-3690 . 274874) (-3691 . 274432) (-3692 . 274200) (-3693 . 273997)
- (-3694 . 273815) (-3695 . 273685) (-3696 . 273479) (-3697 . 273272)
- (-3698 . 273081) (-3699 . 272516) (-3700 . 272260) (-3701 . 271969)
- (-3702 . 271675) (-3703 . 271378) (-3704 . 271078) (-3705 . 270948)
- (-3706 . 270815) (-3707 . 270679) (-3708 . 270540) (-3709 . 269261)
- (-3710 . 268936) (-3711 . 268555) (-3712 . 268442) (-3713 . 268188)
- (-3714 . 267892) (-3715 . 267596) (-3716 . 267335) (-3717 . 267160)
- (-3718 . 267081) (-3719 . 266993) (-3720 . 266892) (-3721 . 266797)
- (-3722 . 266715) (-3723 . 266643) (-3724 . 265842) (-3725 . 265770)
- (-3726 . 265438) (-3727 . 265366) (-3728 . 265034) (-3729 . 264962)
- (-3730 . 264513) (-3731 . 264441) (-3732 . 264336) (-3733 . 264261)
- (-3734 . 264186) (-3735 . 264114) (-3736 . 263771) (-3737 . 263641)
- (-3738 . 263564) (-3739 . 263015) (-3740 . 262872) (-3741 . 262729)
- (-3742 . 262231) (-3743 . 261885) (-3744 . 261657) (-3745 . 261387)
- (-3746 . 261007) (-3747 . 260767) (-3748 . 260527) (-3749 . 260287)
- (-3750 . 260047) (-3751 . 259819) (-3752 . 259591) (-3753 . 259439)
- (-3754 . 259255) (-3755 . 259150) (-3756 . 259027) (-3757 . 258919)
- (-3758 . 258811) (-3759 . 258484) (-3760 . 258218) (-3761 . 257907)
- (-3762 . 257602) (-3763 . 257292) (-3764 . 256557) (-3765 . 255962)
- (-3766 . 255785) (-3767 . 255640) (-3768 . 255485) (-3769 . 255362)
- (-3770 . 255257) (-3771 . 255142) (-3772 . 255043) (-3773 . 254559)
- (-3774 . 254449) (-3775 . 254339) (-3776 . 254229) (-3777 . 253125)
- (-3778 . 252610) (-3779 . 252543) (-3780 . 252469) (-3781 . 251596)
- (-3782 . 251522) (-3783 . 251466) (-3784 . 251410) (-3785 . 251378)
- (-3786 . 251292) (-3787 . 251260) (-3788 . 251174) (-3789 . 250750)
- (-3790 . 250326) (-3791 . 249769) (-3792 . 248657) (-3793 . 246933)
- (-3794 . 245371) (-3795 . 244575) (-3796 . 244071) (-3797 . 243579)
- (-3798 . 243171) (-3799 . 242511) (-3800 . 242436) (-3801 . 242364)
- (-3802 . 242292) (-3803 . 242250) (-3804 . 242128) (-3805 . 241688)
- (-3806 . 241248) (-3807 . 240808) (-3808 . 240286) (-3809 . 240121)
- (-3810 . 239956) (-3811 . 239645) (-3812 . 239558) (-3813 . 239468)
- (-3814 . 239110) (-3815 . 238993) (-3816 . 238912) (-3817 . 238753)
- (-3818 . 238639) (-3819 . 238564) (-3820 . 237712) (-3821 . 236526)
- (-3822 . 236426) (-3823 . 236326) (-3824 . 235985) (-3825 . 235906)
- (-3826 . 235830) (-3827 . 235723) (-3828 . 235565) (-3829 . 235457)
- (-3830 . 235321) (-3831 . 235185) (-3832 . 235062) (-3833 . 234966)
- (-3834 . 234817) (-3835 . 234721) (-3836 . 234566) (-3837 . 234411)
- (-3838 . 233731) (-3839 . 233051) (-3840 . 232308) (-3841 . 231740)
- (-3842 . 231172) (-3843 . 230604) (-3844 . 229923) (-3845 . 229242)
- (-3846 . 228561) (-3847 . 227992) (-3848 . 227423) (-3849 . 226854)
- (-3850 . 226286) (-3851 . 225718) (-3852 . 225150) (-3853 . 224582)
- (-3854 . 224014) (-3855 . 223446) (-3856 . 223342) (-3857 . 222753)
- (-3858 . 222647) (-3859 . 222571) (-3860 . 222428) (-3861 . 222335)
- (-3862 . 222242) (-3863 . 222149) (-3864 . 222050) (-3865 . 221944)
- (-3866 . 221820) (-3867 . 221696) (-3868 . 221329) (-3869 . 221206)
- (-3870 . 221104) (-3871 . 220740) (-3872 . 220206) (-3873 . 220130)
- (-3874 . 220054) (-3875 . 219961) (-3876 . 219779) (-3877 . 219683)
- (-3878 . 219607) (-3879 . 219514) (-3880 . 219421) (-3881 . 219259)
- (-3882 . 218698) (-3883 . 218137) (-3884 . 215409) (-3885 . 215236)
- (-3886 . 213772) (-3887 . 213210) (-3888 . 213011) (-12 . 212839)
- (-3890 . 212667) (-3891 . 212495) (-3892 . 212323) (-3893 . 212151)
- (-3894 . 211979) (-3895 . 211807) (-3896 . 211589) (-3897 . 211474)
- (-3898 . 211204) (-3899 . 211141) (-3900 . 211078) (-3901 . 211015)
- (-3902 . 210737) (-3903 . 210470) (-3904 . 210417) (-3905 . 209706)
- (-3906 . 209655) (-3907 . 209462) (-3908 . 209389) (-3909 . 209309)
- (-3910 . 209196) (-3911 . 209006) (-3912 . 208642) (-3913 . 208370)
- (-3914 . 208319) (-3915 . 208268) (-3916 . 208198) (-3917 . 208079)
- (-3918 . 208050) (-3919 . 207948) (-3920 . 207826) (-3921 . 207772)
- (-3922 . 207595) (-3923 . 207534) (-3924 . 207353) (-3925 . 207292)
- (-3926 . 207220) (-3927 . 206745) (-3928 . 206370) (-3929 . 203086)
- (-3930 . 203033) (-3931 . 202905) (-3932 . 202753) (-3933 . 202700)
- (-3934 . 202558) (-3935 . 200700) (-3936 . 191345) (-3937 . 191194)
- (-3938 . 191143) (-3939 . 191092) (-3940 . 191041) (-3941 . 190971)
- (-3942 . 190773) (-3943 . 190630) (-3944 . 190516) (-3945 . 190395)
- (-3946 . 190277) (-3947 . 190165) (-3948 . 190047) (-3949 . 189942)
- (-3950 . 189861) (-3951 . 189757) (-3952 . 188820) (-3953 . 188600)
- (-3954 . 188363) (-3955 . 188281) (-3956 . 187934) (-3957 . 187860)
- (-3958 . 187765) (-3959 . 187691) (-3960 . 187489) (-3961 . 187398)
- (-3962 . 187282) (-3963 . 187169) (-3964 . 187078) (-3965 . 186987)
- (-3966 . 186897) (-3967 . 186807) (-3968 . 186717) (-3969 . 186629)
- (-3970 . 184267) (-3971 . 184199) (-3972 . 184145) (-3973 . 184020)
- (-3974 . 183956) (-3975 . 183831) (-3976 . 183712) (-3977 . 182944)
- (-3978 . 182883) (-3979 . 182764) (-3980 . 182012) (-3981 . 181959)
- (-3982 . 181770) (-3983 . 181706) (-3984 . 181652) (-3985 . 181543)
- (-3986 . 180220) (-3987 . 180138) (-3988 . 180048) (-3989 . 179990)
- (-3990 . 179725) (-3991 . 179640) (-3992 . 179565) (-3993 . 179480)
- (-3994 . 179423) (-3995 . 179207) (-3996 . 179066) (-3997 . 178331)
- (-3998 . 177761) (-3999 . 177191) (-4000 . 176621) (-4001 . 175886)
- (-4002 . 175204) (-4003 . 174612) (-4004 . 174020) (-4005 . 173742)
- (-4006 . 173287) (-4007 . 172938) (-4008 . 172580) (-4009 . 172256)
- (-4010 . 172123) (-4011 . 171990) (-4012 . 171658) (-4013 . 171549)
- (-4014 . 171440) (-4015 . 171331) (-4016 . 171222) (-4017 . 171113)
- (-4018 . 171004) (-4019 . 170895) (-4020 . 170786) (-4021 . 170677)
- (-4022 . 170568) (-4023 . 170459) (-4024 . 170350) (-4025 . 170241)
- (-4026 . 170132) (-4027 . 170023) (-4028 . 169914) (-4029 . 169805)
- (-4030 . 169696) (-4031 . 169587) (-4032 . 169478) (-4033 . 169369)
- (-4034 . 169260) (-4035 . 169151) (-4036 . 169042) (-4037 . 168933)
- (-4038 . 168735) (-4039 . 168420) (-4040 . 166849) (-4041 . 166694)
- (-4042 . 166556) (-4043 . 166413) (-4044 . 166210) (-4045 . 164255)
- (-4046 . 164127) (-4047 . 164002) (-4048 . 163874) (-4049 . 163650)
- (-4050 . 163426) (-4051 . 163298) (-4052 . 163095) (-4053 . 162916)
- (-4054 . 162389) (-4055 . 161862) (-4056 . 161581) (-4057 . 161163)
- (-4058 . 160636) (-4059 . 160451) (-4060 . 160308) (-4061 . 159808)
- (-4062 . 159166) (-4063 . 159110) (-4064 . 159016) (-4065 . 158895)
- (-4066 . 158824) (-4067 . 158750) (-4068 . 158519) (-4069 . 157894)
- (-4070 . 157462) (-4071 . 157380) (-4072 . 157238) (-4073 . 156760)
- (-4074 . 156638) (-4075 . 156516) (-4076 . 156376) (-4077 . 156189)
- (-4078 . 156073) (-4079 . 155812) (-4080 . 155743) (-4081 . 155544)
- (-4082 . 155385) (-4083 . 155230) (-4084 . 155123) (-4085 . 155072)
- (-4086 . 154688) (-4087 . 154447) (-4088 . 154356) (-4089 . 152541)
- (-4090 . 151952) (-4091 . 151873) (-4092 . 146405) (-4093 . 145615)
- (-4094 . 145236) (-4095 . 145164) (-4096 . 144975) (-4097 . 144800)
- (-4098 . 144310) (-4099 . 143888) (-4100 . 143448) (-4101 . 142584)
- (-4102 . 142460) (-4103 . 142333) (-4104 . 142224) (-4105 . 142072)
- (-4106 . 141958) (-4107 . 141819) (-4108 . 141737) (-4109 . 141655)
- (-4110 . 141547) (-4111 . 141127) (-4112 . 140703) (-4113 . 140628)
- (-4114 . 140362) (-4115 . 140095) (-4116 . 139712) (-4117 . 139011)
- (-4118 . 138951) (-4119 . 138876) (-4120 . 138801) (-4121 . 138678)
- (-4122 . 138426) (-4123 . 138339) (-4124 . 138263) (-4125 . 138187)
- (-4126 . 138091) (-4127 . 134127) (-4128 . 132945) (-4129 . 132282)
- (-4130 . 132095) (-4131 . 129873) (-4132 . 129547) (-4133 . 129166)
- (-4134 . 128722) (-4135 . 128487) (-4136 . 128239) (-4137 . 128148)
- (-4138 . 126652) (-4139 . 126573) (-4140 . 126467) (-4141 . 124931)
- (-4142 . 124518) (-4143 . 124101) (-4144 . 123999) (-4145 . 123917)
- (-4146 . 123759) (-4147 . 122365) (-4148 . 122283) (-4149 . 122204)
- (-4150 . 121849) (-4151 . 121792) (-4152 . 121720) (-4153 . 121663)
- (-4154 . 121606) (-4155 . 121476) (-4156 . 121272) (-4157 . 120903)
- (-4158 . 120481) (-4159 . 115316) (-4160 . 114713) (-4161 . 114085)
- (-4162 . 113870) (-4163 . 113655) (-4164 . 113487) (-4165 . 113272)
- (-4166 . 113104) (-4167 . 112936) (-4168 . 112768) (-4169 . 112600)
- (-4170 . 110457) (-4171 . 110185) (-4172 . 103248) (** . 100185)
- (-4174 . 99765) (-4175 . 99517) (-4176 . 99460) (-4177 . 98962)
- (-4178 . 96057) (-4179 . 95907) (-4180 . 95743) (-4181 . 95579)
- (-4182 . 95483) (-4183 . 95365) (-4184 . 95241) (-4185 . 95098)
- (-4186 . 94927) (-4187 . 94800) (-4188 . 94655) (-4189 . 94502)
- (-4190 . 94342) (-4191 . 93856) (-4192 . 93766) (-4193 . 93098)
- (-4194 . 92904) (-4195 . 92808) (-4196 . 92498) (-4197 . 91322)
- (-4198 . 91115) (-4199 . 89938) (-4200 . 89863) (-4201 . 88682)
- (-4202 . 85077) (-4203 . 84713) (-4204 . 84436) (-4205 . 84344)
- (-4206 . 84251) (-4207 . 83974) (-4208 . 83881) (-4209 . 83788)
- (-4210 . 83695) (-4211 . 83311) (-4212 . 83240) (-4213 . 83148)
- (-4214 . 82990) (-4215 . 82636) (-4216 . 82478) (-4217 . 82370)
- (-4218 . 82341) (-4219 . 82274) (-4220 . 82120) (-4221 . 81961)
- (-4222 . 81567) (-4223 . 81492) (-4224 . 81386) (-4225 . 81314)
- (-4226 . 81236) (-4227 . 81163) (-4228 . 81090) (-4229 . 81017)
- (-4230 . 80945) (-4231 . 80873) (-4232 . 80800) (-4233 . 80559)
- (-4234 . 80219) (-4235 . 80071) (-4236 . 79998) (-4237 . 79925)
- (-4238 . 79852) (-4239 . 79598) (-4240 . 79454) (-4241 . 78118)
- (-4242 . 77924) (-4243 . 77653) (-4244 . 77505) (-4245 . 77357)
- (-4246 . 77117) (-4247 . 76922) (-4248 . 76652) (-4249 . 76456)
- (-4250 . 76427) (-4251 . 76326) (-4252 . 76225) (-4253 . 76124)
- (-4254 . 76023) (-4255 . 75922) (-4256 . 75821) (-4257 . 75720)
- (-4258 . 75619) (-4259 . 75518) (-4260 . 75417) (-4261 . 75302)
- (-4262 . 75187) (-4263 . 75136) (-4264 . 75019) (-4265 . 74961)
- (-4266 . 74860) (-4267 . 74759) (-4268 . 74658) (-4269 . 74542)
- (-4270 . 74513) (-4271 . 73781) (-4272 . 73656) (-4273 . 73531)
- (-4274 . 73391) (-4275 . 73273) (-4276 . 73148) (-4277 . 72993)
- (-4278 . 72010) (-4279 . 71151) (-4280 . 71097) (-4281 . 71043)
- (-4282 . 70835) (-4283 . 70461) (-4284 . 70047) (-4285 . 69686)
- (-4286 . 69325) (-4287 . 69172) (-4288 . 68870) (-4289 . 68714)
- (-4290 . 68388) (-4291 . 68317) (-4292 . 68246) (-4293 . 68034)
- (-4294 . 67227) (-4295 . 67021) (-4296 . 66647) (-4297 . 66127)
- (-4298 . 65859) (-4299 . 65309) (-4300 . 64759) (-4301 . 64633)
- (-4302 . 63404) (-4303 . 62198) (-4304 . 61596) (-4305 . 61378)
- (-4306 . 61192) (-4307 . 59092) (-4308 . 56917) (-4309 . 56769)
- (-4310 . 56587) (-4311 . 56179) (-4312 . 55878) (-4313 . 55527)
- (-4314 . 55359) (-4315 . 55191) (-4316 . 54877) (-4317 . 31684)
- (-4318 . 17723) (-4319 . 16603) (* . 12107) (-4321 . 11851) (-4322 . 11665)
- (-4323 . 10660) (-4324 . 10391) (-4325 . 9759) (-4326 . 8482) (-4327 . 7229)
- (-4328 . 6353) (-4329 . 5088) (-4330 . 382) (-4331 . 280) (-4332 . 160)
- (-4333 . 30)) \ No newline at end of file
+ (-12 (-5 *2 (-625 (-2 (|:| |k| *3) (|:| |c| (-1256 *3 *4)))))
+ (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-552)) (-4 *4 (-1208 (-402 *3))) (-5 *2 (-897))
+ (-5 *1 (-889 *4 *5)) (-4 *5 (-1208 (-402 *4))))))
+(((*1 *1 *1) (-5 *1 (-1037))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))))
+((-1265 . 738665) (-1266 . 738633) (-1267 . 738503) (-1268 . 738247)
+ (-1269 . 738135) (-1270 . 737269) (-1271 . 737189) (-1272 . 736970)
+ (-1273 . 736815) (-1274 . 736670) (-1275 . 736588) (-1276 . 736556)
+ (-1277 . 736282) (-1278 . 736096) (-1279 . 735920) (-1280 . 735761)
+ (-1281 . 735666) (-1282 . 735565) (-1283 . 735461) (-1284 . 735297)
+ (-1285 . 735215) (-1286 . 735036) (-1287 . 735004) (-1288 . 734290)
+ (-1289 . 733649) (-1290 . 733571) (-1291 . 733196) (-1292 . 733126)
+ (-1293 . 733071) (-1294 . 732476) (-1295 . 732361) (-1296 . 732222)
+ (-1297 . 732116) (-1298 . 732001) (-1299 . 731969) (-1300 . 731378)
+ (-1301 . 730081) (-1302 . 729896) (-1303 . 729844) (-1304 . 729749)
+ (-1305 . 729694) (-1306 . 729588) (-1307 . 729491) (-1308 . 729316)
+ (-1309 . 729284) (-1310 . 729180) (-1311 . 727924) (-1312 . 727866)
+ (-1313 . 727811) (-1314 . 727733) (-1315 . 727632) (-1316 . 727479)
+ (-1317 . 727447) (-1318 . 727341) (-1319 . 727286) (-1320 . 726407)
+ (-1321 . 726349) (-1322 . 726173) (-1323 . 726018) (-1324 . 725963)
+ (-1325 . 725867) (-1326 . 725770) (-1327 . 725617) (-1328 . 725585)
+ (-1329 . 725506) (-1330 . 724234) (-1331 . 723896) (-1332 . 723714)
+ (-1333 . 723631) (-1334 . 723477) (-1335 . 723381) (-1336 . 723266)
+ (-1337 . 723092) (-1338 . 723060) (-1339 . 722666) (-1340 . 722596)
+ (-1341 . 722494) (-1342 . 722206) (-1343 . 722030) (-1344 . 721875)
+ (-1345 . 721582) (-1346 . 721486) (-1347 . 721401) (-1348 . 721328)
+ (-1349 . 721205) (-1350 . 721121) (-1351 . 720939) (-1352 . 720784)
+ (-1353 . 720717) (-1354 . 720458) (-1355 . 720359) (-1356 . 719658)
+ (-1357 . 719557) (-1358 . 718015) (-1359 . 717911) (-1360 . 717856)
+ (-1361 . 717723) (-1362 . 717590) (-1363 . 717411) (-1364 . 717274)
+ (-1365 . 717246) (-1366 . 717140) (-1367 . 716871) (-1368 . 716193)
+ (-1369 . 715991) (-1370 . 715893) (-1371 . 715798) (-1372 . 715725)
+ (-1373 . 715673) (-1374 . 715494) (-1375 . 715357) (-1376 . 715307)
+ (-1377 . 715183) (-1378 . 715089) (-1379 . 715006) (-1380 . 714911)
+ (-1381 . 714856) (-1382 . 714801) (-1383 . 714614) (-1384 . 714477)
+ (-1385 . 714212) (-1386 . 714115) (-1387 . 713956) (-1388 . 713761)
+ (-1389 . 713687) (-1390 . 713330) (-1391 . 713278) (-1392 . 712896)
+ (-1393 . 712759) (-1394 . 712652) (-1395 . 712513) (-1396 . 712406)
+ (-1397 . 712339) (-1398 . 712243) (-1399 . 712169) (-1400 . 711758)
+ (-1401 . 711684) (-1402 . 711505) (-1403 . 711368) (-1404 . 711261)
+ (-1405 . 709976) (-1406 . 709923) (-1407 . 709169) (-1408 . 709060)
+ (-1409 . 709005) (-1410 . 708850) (-1411 . 708776) (-1412 . 708597)
+ (-1413 . 708487) (-1414 . 708350) (-1415 . 708025) (-1416 . 707426)
+ (-1417 . 707373) (-1418 . 706940) (-1419 . 706885) (-1420 . 706802)
+ (-1421 . 706615) (-1422 . 706559) (-1423 . 706421) (-1424 . 706040)
+ (-1425 . 705733) (-1426 . 705317) (-1427 . 705264) (-1428 . 705089)
+ (-1429 . 705023) (-1430 . 704971) (-1431 . 704775) (-1432 . 704692)
+ (-1433 . 704310) (-1434 . 704200) (-1435 . 704045) (-1436 . 703932)
+ (-1437 . 703558) (-1438 . 699495) (-1439 . 699436) (-1440 . 699357)
+ (-1441 . 699291) (-1442 . 699239) (-1443 . 698923) (-1444 . 698785)
+ (-1445 . 698730) (-1446 . 697734) (-1447 . 697623) (-1448 . 697492)
+ (-1449 . 697238) (-1450 . 697179) (-1451 . 696990) (-1452 . 696928)
+ (-1453 . 696875) (-1454 . 695694) (-1455 . 695620) (-1456 . 695212)
+ (-1457 . 695101) (-1458 . 694945) (-1459 . 694649) (-1460 . 694272)
+ (-1461 . 694091) (-1462 . 693911) (-1463 . 693391) (-1464 . 693322)
+ (-1465 . 692955) (-1466 . 692881) (-1467 . 692473) (-1468 . 692405)
+ (-1469 . 692132) (-1470 . 691836) (-1471 . 691519) (-1472 . 691466)
+ (-1473 . 691414) (-1474 . 690963) (-1475 . 690442) (-1476 . 690283)
+ (-1477 . 690003) (-1478 . 689929) (-1479 . 689811) (-1480 . 689701)
+ (-1481 . 689554) (-1482 . 689293) (-1483 . 689237) (-1484 . 689085)
+ (-1485 . 688811) (-1486 . 688275) (-1487 . 687996) (-1488 . 687917)
+ (-1489 . 687757) (-1490 . 687654) (-1491 . 687451) (-1492 . 687370)
+ (-1493 . 687314) (-1494 . 687134) (-1495 . 686944) (-1496 . 686801)
+ (-1497 . 686708) (-1498 . 686653) (-1499 . 686508) (-1500 . 682348)
+ (-1501 . 682244) (-1502 . 682156) (-1503 . 681988) (-1504 . 681813)
+ (-1505 . 681640) (-1506 . 681297) (-1507 . 681263) (-1508 . 681170)
+ (-1509 . 681050) (-1510 . 680991) (-1511 . 680792) (-1512 . 680674)
+ (-1513 . 680226) (-1514 . 680072) (-1515 . 679971) (-1516 . 679901)
+ (-1517 . 679772) (-1518 . 679510) (-1519 . 679198) (-1520 . 679143)
+ (-1521 . 679050) (-1522 . 678951) (-1523 . 678779) (-1524 . 678597)
+ (-1525 . 678170) (-1526 . 678050) (-1527 . 677952) (-1528 . 677854)
+ (-1529 . 677596) (-1530 . 677418) (-1531 . 676705) (-1532 . 676634)
+ (-1533 . 676535) (-12 . 676363) (-1535 . 676239) (-1536 . 675619)
+ (-1537 . 675490) (-1538 . 675418) (-1539 . 675320) (-1540 . 674503)
+ (-1541 . 674372) (-1542 . 674057) (-1543 . 673965) (-1544 . 673866)
+ (-1545 . 673573) (-1546 . 672966) (-1547 . 672868) (-1548 . 672061)
+ (-1549 . 672004) (-1550 . 671906) (-1551 . 671734) (-1552 . 671594)
+ (-1553 . 671085) (-1554 . 670923) (-1555 . 670824) (-1556 . 670531)
+ (-1557 . 670313) (-1558 . 670225) (-1559 . 670153) (-1560 . 670100)
+ (-1561 . 669940) (-1562 . 669717) (-1563 . 668630) (-1564 . 668578)
+ (-1565 . 668218) (-1566 . 668119) (-1567 . 667832) (-1568 . 667654)
+ (-1569 . 667566) (-1570 . 667230) (-1571 . 667070) (-1572 . 666166)
+ (-1573 . 666011) (-1574 . 665959) (-1575 . 665801) (-1576 . 665702)
+ (-1577 . 665418) (-1578 . 665154) (-1579 . 665066) (-1580 . 664994)
+ (-1581 . 664841) (-1582 . 664697) (-1583 . 664645) (-1584 . 664466)
+ (-1585 . 664356) (-1586 . 664263) (-1587 . 664146) (-1588 . 664047)
+ (-1589 . 663741) (-1590 . 663327) (-1591 . 663239) (-1592 . 662903)
+ (-1593 . 662145) (-1594 . 662001) (-1595 . 661923) (-1596 . 660499)
+ (-1597 . 660470) (-1598 . 660412) (-1599 . 660298) (-1600 . 660210)
+ (-1601 . 659916) (-1602 . 659828) (-1603 . 659756) (-1604 . 659633)
+ (-1605 . 659380) (-1606 . 659236) (-1607 . 659096) (-1608 . 659034)
+ (-1609 . 658967) (-1610 . 658853) (-1611 . 658768) (-1612 . 658320)
+ (-1613 . 658226) (-1614 . 657773) (-1615 . 657462) (-1616 . 657255)
+ (-1617 . 657110) (-1618 . 656865) (-1619 . 656647) (-1620 . 656570)
+ (-1621 . 656456) (-1622 . 656357) (-1623 . 656179) (-1624 . 656091)
+ (-1625 . 656019) (-1626 . 655667) (-1627 . 655574) (-1628 . 655376)
+ (-1629 . 655143) (-1630 . 654886) (-1631 . 654814) (-1632 . 654700)
+ (* . 650154) (-1634 . 650055) (-1635 . 649662) (-1636 . 649574)
+ (-1637 . 649469) (-1638 . 649356) (-1639 . 649130) (-1640 . 648987)
+ (-1641 . 648927) (-1642 . 648860) (-1643 . 648780) (-1644 . 648666)
+ (-1645 . 648440) (-1646 . 648047) (-1647 . 647959) (-1648 . 647882)
+ (-1649 . 647607) (-1650 . 647181) (-1651 . 646860) (-1652 . 646803)
+ (-1653 . 646706) (-1654 . 646633) (-1655 . 646514) (-1656 . 646400)
+ (-1657 . 646300) (-1658 . 646115) (-1659 . 646027) (-1660 . 645950)
+ (-1661 . 645563) (-1662 . 645448) (-1663 . 645391) (-1664 . 645294)
+ (-1665 . 645221) (-1666 . 645104) (-1667 . 645001) (-1668 . 644794)
+ (-1669 . 644706) (-1670 . 644634) (-1671 . 644547) (-1672 . 644363)
+ (-1673 . 644018) (-1674 . 643805) (-1675 . 643616) (-1676 . 643543)
+ (-1677 . 643465) (-1678 . 643228) (-1679 . 643148) (-1680 . 642924)
+ (-1681 . 642836) (-1682 . 642493) (-1683 . 619120) (-1684 . 618986)
+ (-1685 . 618826) (-1686 . 618683) (-1687 . 618599) (-1688 . 618527)
+ (-1689 . 618449) (-1690 . 618396) (-1691 . 618069) (-1692 . 617763)
+ (-1693 . 617675) (-1694 . 617543) (-1695 . 614791) (-1696 . 614625)
+ (-1697 . 614486) (-1698 . 614378) (-1699 . 614256) (-1700 . 614184)
+ (-1701 . 613797) (-1702 . 613502) (-1703 . 613303) (-1704 . 613215)
+ (-1705 . 613070) (-1706 . 612904) (-1707 . 612765) (-1708 . 612644)
+ (-1709 . 612498) (-1710 . 612425) (-1711 . 612166) (-1712 . 611820)
+ (-1713 . 611747) (-1714 . 611113) (-1715 . 611025) (-1716 . 610880)
+ (-1717 . 610736) (-1718 . 610602) (-1719 . 610473) (-1720 . 610406)
+ (-1721 . 609751) (-1722 . 609409) (-1723 . 609307) (-1724 . 608922)
+ (-1725 . 608765) (-1726 . 608677) (-1727 . 608176) (-1728 . 598616)
+ (-1729 . 598482) (-1730 . 598422) (-1731 . 598337) (-1732 . 598263)
+ (-1733 . 597553) (-1734 . 597401) (-1735 . 597139) (-1736 . 597111)
+ (-1737 . 596720) (-1738 . 596582) (-1739 . 596231) (-1740 . 596097)
+ (-1741 . 595594) (-1742 . 595479) (-1743 . 595372) (-1744 . 595299)
+ (-1745 . 595197) (-1746 . 594998) (-1747 . 594949) (-1748 . 594811)
+ (-1749 . 594580) (-1750 . 594446) (-1751 . 593134) (-1752 . 592877)
+ (-1753 . 592773) (-1754 . 592700) (-1755 . 592495) (-1756 . 592315)
+ (-1757 . 592263) (-1758 . 592143) (-1759 . 591868) (-1760 . 591737)
+ (-1761 . 591622) (-1762 . 591520) (-1763 . 591416) (-1764 . 591343)
+ (-1765 . 591230) (-1766 . 590980) (-1767 . 590931) (-1768 . 590811)
+ (-1769 . 590424) (-1770 . 590293) (-1771 . 590161) (-1772 . 589960)
+ (-1773 . 589714) (-1774 . 589600) (-1775 . 589346) (-1776 . 589244)
+ (-1777 . 589189) (-1778 . 589137) (-1779 . 588996) (-1780 . 588753)
+ (-1781 . 588622) (-1782 . 588303) (-1783 . 587981) (-1784 . 587735)
+ (-1785 . 587526) (-1786 . 587382) (-1787 . 587225) (-1788 . 587147)
+ (-1789 . 587059) (-1790 . 586913) (-1791 . 585443) (-1792 . 585200)
+ (-1793 . 584817) (-1794 . 584560) (-1795 . 584086) (-1796 . 583987)
+ (-1797 . 582647) (-1798 . 582594) (-1799 . 582499) (-1800 . 582068)
+ (-1801 . 581694) (-1802 . 581642) (-1803 . 581554) (-1804 . 581311)
+ (-1805 . 581184) (-1806 . 581113) (-1807 . 581006) (-1808 . 580927)
+ (-1809 . 580733) (-1810 . 580605) (-1811 . 580508) (-1812 . 580429)
+ (-1813 . 580283) (-1814 . 580195) (-1815 . 579952) (-1816 . 579824)
+ (-1817 . 579454) (-1818 . 579346) (-1819 . 579290) (-1820 . 579138)
+ (-1821 . 579056) (-1822 . 578983) (-1823 . 578931) (-1824 . 578843)
+ (-1825 . 578612) (-1826 . 578360) (-1827 . 578073) (-1828 . 577966)
+ (-1829 . 577815) (-1830 . 577744) (-1831 . 577592) (-1832 . 577479)
+ (-1833 . 577396) (-1834 . 577250) (-1835 . 577112) (-1836 . 576881)
+ (-1837 . 576812) (-1838 . 576661) (-1839 . 576537) (-1840 . 576426)
+ (-1841 . 576319) (-1842 . 576177) (-1843 . 576057) (-1844 . 575856)
+ (-1845 . 575737) (-1846 . 575654) (-1847 . 575602) (-1848 . 575464)
+ (-1849 . 575312) (-1850 . 575261) (-1851 . 573859) (-1852 . 573607)
+ (-1853 . 573511) (-1854 . 573092) (-1855 . 572988) (-1856 . 572716)
+ (-1857 . 572633) (-1858 . 572252) (-1859 . 572164) (-1860 . 571980)
+ (-1861 . 571856) (-1862 . 571760) (-1863 . 571510) (-1864 . 571409)
+ (-1865 . 571211) (-1866 . 571137) (-1867 . 571036) (-1868 . 570984)
+ (-1869 . 570896) (-1870 . 570791) (-1871 . 570464) (-1872 . 570212)
+ (-1873 . 570122) (-1874 . 569445) (-1875 . 569363) (-1876 . 569334)
+ (-1877 . 569282) (-1878 . 569223) (-1879 . 569174) (-1880 . 569086)
+ (-1881 . 568963) (-1882 . 568839) (-1883 . 568614) (-1884 . 568459)
+ (-1885 . 568377) (-1886 . 568276) (-1887 . 568224) (-1888 . 568100)
+ (-1889 . 568048) (-1890 . 567960) (-1891 . 567852) (-1892 . 567709)
+ (-1893 . 563167) (-1894 . 563056) (-1895 . 557718) (-1896 . 557639)
+ (-1897 . 557538) (-1898 . 557486) (-1899 . 557412) (-1900 . 557288)
+ (-1901 . 557239) (-1902 . 557151) (-1903 . 557043) (-1904 . 556884)
+ (-1905 . 555026) (-1906 . 554974) (-1907 . 554878) (-1908 . 554825)
+ (-1909 . 554754) (-1910 . 554653) (-1911 . 554325) (-1912 . 554265)
+ (-1913 . 554212) (-1914 . 554160) (-1915 . 554072) (-1916 . 553767)
+ (-1917 . 553521) (-1918 . 553378) (-1919 . 553325) (-1920 . 553254)
+ (-1921 . 553153) (-1922 . 553065) (-1923 . 552847) (-1924 . 552681)
+ (-1925 . 552626) (-1926 . 552577) (-1927 . 552486) (-1928 . 552176)
+ (-1929 . 552052) (-1930 . 551999) (-1931 . 551928) (-1932 . 551732)
+ (-1933 . 551400) (-1934 . 551329) (-1935 . 551228) (-1936 . 551124)
+ (-1937 . 551030) (-1938 . 550287) (-1939 . 549978) (-1940 . 549919)
+ (-1941 . 549710) (-1942 . 549232) (-1943 . 549123) (-1944 . 549052)
+ (-1945 . 548951) (-1946 . 548830) (-1947 . 548753) (-1948 . 548659)
+ (-1949 . 548482) (-1950 . 548231) (-1951 . 548157) (-1952 . 548092)
+ (-1953 . 547914) (-1954 . 547864) (-1955 . 547755) (-1956 . 547684)
+ (-1957 . 547583) (-1958 . 547500) (-1959 . 546579) (-1960 . 546499)
+ (-1961 . 546402) (-1962 . 546257) (-1963 . 546195) (-1964 . 546112)
+ (-1965 . 545902) (-1966 . 545852) (-1967 . 545743) (-1968 . 545672)
+ (-1969 . 545571) (-1970 . 545391) (-1971 . 545360) (-1972 . 545283)
+ (-1973 . 545233) (-1974 . 545128) (-1975 . 545072) (-1976 . 544862)
+ (-1977 . 544763) (-1978 . 544662) (-1979 . 544501) (-1980 . 544421)
+ (-1981 . 544371) (-1982 . 544253) (-1983 . 543979) (-1984 . 543909)
+ (-1985 . 543843) (-1986 . 543587) (-1987 . 543486) (-1988 . 543331)
+ (-1989 . 543251) (-1990 . 543198) (-1991 . 543099) (-1992 . 543043)
+ (-1993 . 542469) (-1994 . 542404) (-1995 . 542338) (-1996 . 528224)
+ (-1997 . 527849) (-1998 . 527734) (-1999 . 527654) (-2000 . 527577)
+ (-2001 . 527424) (-2002 . 527164) (-2003 . 526675) (-2004 . 526161)
+ (-2005 . 526106) (-2006 . 526040) (-2007 . 525868) (-2008 . 525753)
+ (-2009 . 525695) (-2010 . 525615) (-2011 . 525470) (-2012 . 525376)
+ (-2013 . 525310) (-2014 . 525194) (-2015 . 525143) (-2016 . 525070)
+ (-2017 . 524836) (-2018 . 524729) (-2019 . 524337) (-2020 . 524270)
+ (-2021 . 523960) (-2022 . 523894) (-2023 . 523390) (-2024 . 523273)
+ (-2025 . 523208) (-2026 . 523050) (-2027 . 522894) (-2028 . 522552)
+ (-2029 . 522469) (-2030 . 522124) (-2031 . 522058) (-2032 . 521674)
+ (-2033 . 521616) (-2034 . 521551) (-2035 . 521249) (-2036 . 521115)
+ (-2037 . 520723) (-2038 . 520044) (-2039 . 519961) (-2040 . 519887)
+ (-2041 . 519821) (-2042 . 515099) (-2043 . 515026) (-2044 . 514868)
+ (-2045 . 514734) (-2046 . 514392) (-2047 . 514340) (-2048 . 514238)
+ (-2049 . 513913) (-2050 . 513847) (-2051 . 513707) (-2052 . 513647)
+ (-2053 . 513577) (-2054 . 513461) (-2055 . 513276) (-2056 . 512944)
+ (-2057 . 512831) (-2058 . 512606) (-2059 . 512575) (-2060 . 512498)
+ (-2061 . 512424) (-2062 . 512214) (-2063 . 512148) (-2064 . 511958)
+ (-2065 . 511881) (-2066 . 511829) (-2067 . 511686) (-2068 . 511615)
+ (-2069 . 511496) (-2070 . 510966) (-2071 . 510841) (-2072 . 510758)
+ (-2073 . 510672) (-2074 . 510606) (-2075 . 510490) (-2076 . 510413)
+ (-2077 . 510369) (-2078 . 510226) (-2079 . 506890) (-2080 . 506713)
+ (-2081 . 506495) (-2082 . 506421) (-2083 . 506335) (-2084 . 506269)
+ (-2085 . 506153) (-2086 . 506030) (-2087 . 505959) (-2088 . 505876)
+ (-2089 . 505705) (-2090 . 505571) (-2091 . 505353) (-2092 . 505171)
+ (-2093 . 504953) (-2094 . 504867) (-2095 . 504801) (-2096 . 504685)
+ (-2097 . 504433) (-2098 . 504381) (-2099 . 504298) (-2100 . 504051)
+ (-2101 . 503844) (-2102 . 503707) (-2103 . 503488) (-2104 . 503275)
+ (-2105 . 503189) (-2106 . 503123) (-2107 . 502970) (-2108 . 502883)
+ (-2109 . 502834) (-2110 . 502569) (-2111 . 502438) (-2112 . 502258)
+ (-2113 . 502165) (-2114 . 502079) (-2115 . 502013) (-2116 . 501869)
+ (-2117 . 501791) (-2118 . 501739) (-2119 . 500988) (-2120 . 500875)
+ (-2121 . 500656) (-2122 . 500589) (-2123 . 500503) (-2124 . 500437)
+ (-2125 . 499933) (-2126 . 499859) (-2127 . 499781) (-2128 . 499729)
+ (-2129 . 499592) (-2130 . 499470) (-2131 . 499290) (-2132 . 499187)
+ (-2133 . 499134) (-2134 . 498991) (-2135 . 498905) (-2136 . 498839)
+ (-2137 . 498753) (-2138 . 498654) (-2139 . 498538) (-2140 . 498447)
+ (-2141 . 498322) (-2142 . 497928) (-2143 . 497861) (-2144 . 497775)
+ (-2145 . 497709) (-2146 . 497635) (-2147 . 496437) (-2148 . 495588)
+ (-2149 . 495450) (-2150 . 495394) (-2151 . 495190) (-2152 . 495095)
+ (-2153 . 494958) (-2154 . 489750) (-2155 . 489646) (-2156 . 489466)
+ (-2157 . 489198) (-2158 . 489114) (-2159 . 489028) (-2160 . 488962)
+ (-2161 . 488888) (-2162 . 488697) (-2163 . 485076) (-2164 . 484981)
+ (-2165 . 484913) (-2166 . 484729) (-2167 . 484514) (-2168 . 484431)
+ (-2169 . 484345) (-2170 . 483688) (-2171 . 483614) (-2172 . 481346)
+ (-2173 . 481144) (-2174 . 481021) (-2175 . 480952) (-2176 . 480778)
+ (-2177 . 480688) (-2178 . 480586) (-2179 . 480500) (-2180 . 479843)
+ (-2181 . 479699) (-2182 . 479318) (-2183 . 478548) (-2184 . 478520)
+ (-2185 . 478407) (-2186 . 478319) (-2187 . 478120) (-2188 . 478030)
+ (-2189 . 477768) (-2190 . 477568) (-2191 . 477482) (-2192 . 477354)
+ (-2193 . 477201) (-2194 . 476754) (-2195 . 476265) (-2196 . 476237)
+ (-2197 . 476149) (-2198 . 475975) (-2199 . 475881) (-2200 . 475754)
+ (-2201 . 475686) (-2202 . 475600) (-2203 . 475477) (-2204 . 475302)
+ (-2205 . 475067) (-2206 . 474948) (-2207 . 474521) (-2208 . 474493)
+ (-2209 . 474322) (-2210 . 474203) (-2211 . 474116) (-2212 . 473868)
+ (-2213 . 473782) (-2214 . 473659) (-2215 . 473506) (-2216 . 473251)
+ (-2217 . 473223) (-2218 . 473149) (-2219 . 473021) (-2220 . 472931)
+ (-2221 . 472897) (-2222 . 472646) (-2223 . 472560) (-2224 . 472419)
+ (-2225 . 472266) (-2226 . 472169) (-2227 . 471951) (-2228 . 471878)
+ (-2229 . 471603) (-2230 . 471493) (-2231 . 471349) (-2232 . 471221)
+ (-2233 . 471138) (-2234 . 470890) (-2235 . 470804) (-2236 . 470649)
+ (-2237 . 470363) (-2238 . 470282) (-2239 . 470230) (-2240 . 469764)
+ (-2241 . 469642) (-2242 . 469451) (-2243 . 469175) (-2244 . 469077)
+ (-2245 . 468829) (-2246 . 468743) (-2247 . 468599) (-2248 . 468313)
+ (-2249 . 468207) (-2250 . 468155) (-2251 . 467775) (-2252 . 467550)
+ (-2253 . 467494) (-2254 . 467426) (-2255 . 467340) (-2256 . 467160)
+ (-2257 . 466749) (-2258 . 466273) (-2259 . 466221) (-2260 . 465457)
+ (-2261 . 465286) (-2262 . 465203) (-2263 . 464867) (-2264 . 464781)
+ (-2265 . 464658) (-2266 . 464372) (-2267 . 463919) (-2268 . 463867)
+ (-2269 . 463723) (-2270 . 463552) (-2271 . 463469) (-2272 . 463388)
+ (-2273 . 463216) (-2274 . 462151) (-2275 . 462065) (-2276 . 461941)
+ (-2277 . 461868) (-2278 . 461766) (-2279 . 461714) (-2280 . 461570)
+ (-2281 . 461298) (-2282 . 461121) (-2283 . 461038) (-2284 . 460866)
+ (-2285 . 460646) (-2286 . 460560) (-2287 . 460459) (-2288 . 460310)
+ (-2289 . 460226) (-2290 . 459888) (-2291 . 459860) (-2292 . 459780)
+ (-2293 . 459615) (-2294 . 459463) (-2295 . 459328) (-2296 . 459156)
+ (-2297 . 459073) (-2298 . 458987) (-2299 . 458931) (-2300 . 458825)
+ (-2301 . 458663) (-2302 . 458611) (-2303 . 458273) (-2304 . 458035)
+ (-2305 . 457955) (-2306 . 457730) (-2307 . 457499) (-2308 . 457219)
+ (-2309 . 457084) (-2310 . 456912) (-2311 . 456861) (-2312 . 456787)
+ (-2313 . 456701) (-2314 . 456645) (-2315 . 456574) (-2316 . 456433)
+ (-2317 . 456349) (-2318 . 456183) (-2319 . 456042) (-2320 . 455955)
+ (-2321 . 455551) (-2322 . 455427) (-2323 . 455374) (-2324 . 455304)
+ (-2325 . 455230) (-2326 . 455144) (-2327 . 455088) (-2328 . 455017)
+ (-2329 . 454422) (-2330 . 454341) (-2331 . 454151) (-2332 . 454028)
+ (-2333 . 453881) (-2334 . 453722) (-2335 . 453591) (-2336 . 453470)
+ (-2337 . 453351) (-2338 . 453277) (-2339 . 453191) (-2340 . 453135)
+ (-2341 . 453033) (-2342 . 452672) (-2343 . 452461) (-2344 . 451588)
+ (-2345 . 451349) (-2346 . 451262) (-2347 . 451057) (-2348 . 450939)
+ (-2349 . 450795) (-2350 . 450766) (-2351 . 450662) (-2352 . 449366)
+ (-2353 . 449280) (-2354 . 449221) (-2355 . 449118) (-2356 . 449061)
+ (-2357 . 448991) (-2358 . 448875) (-2359 . 448760) (-2360 . 448524)
+ (-2361 . 448341) (-2362 . 448205) (-2363 . 448083) (-2364 . 448010)
+ (-2365 . 447907) (-2366 . 447843) (-2367 . 447784) (-2368 . 447712)
+ (-2369 . 447479) (-2370 . 447078) (-2371 . 446839) (-2372 . 446652)
+ (-2373 . 446519) (-2374 . 446465) (-2375 . 446397) (-2376 . 446308)
+ (-2377 . 446200) (-2378 . 446141) (-2379 . 446084) (-2380 . 445984)
+ (-2381 . 445789) (-2382 . 444603) (-2383 . 444474) (-2384 . 444402)
+ (-2385 . 444189) (-2386 . 443979) (-2387 . 443871) (-2388 . 443736)
+ (-2389 . 443595) (-2390 . 443377) (-2391 . 442979) (-2392 . 442856)
+ (-2393 . 441674) (-2394 . 441567) (-2395 . 441510) (-2396 . 441333)
+ (-2397 . 441281) (-2398 . 441222) (-2399 . 441114) (-2400 . 441055)
+ (-2401 . 440837) (-2402 . 440619) (-2403 . 440415) (-2404 . 438209)
+ (-2405 . 438068) (-2406 . 438008) (-2407 . 437947) (-2408 . 437892)
+ (-2409 . 437836) (-2410 . 437557) (-2411 . 437387) (-2412 . 437214)
+ (-2413 . 437165) (-2414 . 436942) (-2415 . 436810) (-2416 . 436413)
+ (-2417 . 436323) (-2418 . 436234) (-2419 . 436160) (-2420 . 436072)
+ (-2421 . 435854) (-2422 . 435826) (-2423 . 435734) (-2424 . 435495)
+ (-2425 . 435381) (-2426 . 434857) (-2427 . 434770) (-2428 . 434658)
+ (-2429 . 434428) (-2430 . 434331) (-2431 . 434158) (-2432 . 434064)
+ (-2433 . 433923) (-2434 . 433775) (-2435 . 433497) (-2436 . 431646)
+ (-2437 . 431558) (-2438 . 431331) (-2439 . 431248) (-2440 . 431214)
+ (-2441 . 431041) (-2442 . 430886) (-2443 . 430774) (-2444 . 430636)
+ (-2445 . 430497) (-2446 . 430384) (-2447 . 430303) (-2448 . 430155)
+ (-2449 . 430075) (-2450 . 430044) (-2451 . 429871) (-2452 . 429752)
+ (-2453 . 429699) (-2454 . 429587) (-2455 . 429448) (-2456 . 429344)
+ (-2457 . 428900) (-2458 . 427662) (-2459 . 426908) (-2460 . 426720)
+ (-2461 . 426640) (-2462 . 426556) (-2463 . 426383) (-2464 . 426271)
+ (-2465 . 426018) (-2466 . 425911) (-2467 . 425679) (-2468 . 425549)
+ (-2469 . 425382) (-2470 . 425302) (-2471 . 425246) (-2472 . 424974)
+ (-2473 . 424718) (-2474 . 424608) (-2475 . 424403) (-2476 . 424351)
+ (-2477 . 424144) (-2478 . 423977) (-2479 . 423896) (-2480 . 423834)
+ (-2481 . 416835) (-2482 . 416740) (-2483 . 416219) (-2484 . 416059)
+ (-2485 . 415946) (-2486 . 415764) (-2487 . 415318) (-2488 . 415258)
+ (-2489 . 415093) (-2490 . 414908) (-2491 . 414828) (-2492 . 414794)
+ (-2493 . 414544) (-2494 . 414449) (-2495 . 414295) (-2496 . 414191)
+ (-2497 . 414061) (-2498 . 413896) (-2499 . 413672) (-2500 . 413576)
+ (-2501 . 413542) (-2502 . 413485) (-2503 . 413390) (-2504 . 413149)
+ (-2505 . 413075) (-2506 . 412965) (-2507 . 412755) (-2508 . 412581)
+ (-2509 . 412457) (-2510 . 412358) (-2511 . 412324) (-2512 . 411813)
+ (-2513 . 411718) (-2514 . 411428) (-2515 . 411318) (-2516 . 411107)
+ (-2517 . 411000) (-2518 . 410792) (-2519 . 410724) (-2520 . 410690)
+ (-2521 . 410537) (-2522 . 410442) (-2523 . 410304) (-2524 . 410188)
+ (-2525 . 409997) (-2526 . 409890) (-2527 . 409795) (-2528 . 409746)
+ (-2529 . 409712) (-2530 . 409545) (-2531 . 409447) (-2532 . 409370)
+ (-2533 . 408702) (-2534 . 408592) (-2535 . 408009) (-2536 . 407902)
+ (-2537 . 407807) (-2538 . 407095) (-2539 . 404314) (-2540 . 404147)
+ (-2541 . 404049) (-2542 . 403933) (-2543 . 403677) (-2544 . 403570)
+ (-2545 . 403434) (-2546 . 402785) (-2547 . 402751) (-2548 . 402652)
+ (-2549 . 402557) (-2550 . 402484) (-2551 . 402353) (-2552 . 402059)
+ (-2553 . 401952) (-2554 . 401854) (-2555 . 401038) (-2556 . 401004)
+ (-2557 . 400886) (-2558 . 400791) (-2559 . 400571) (-2560 . 400422)
+ (-2561 . 400125) (-2562 . 400073) (-2563 . 399966) (-2564 . 399868)
+ (-2565 . 399785) (-2566 . 399751) (-2567 . 399627) (-2568 . 399532)
+ (-2569 . 399254) (-2570 . 398921) (-2571 . 398383) (-2572 . 398083)
+ (-2573 . 397976) (-2574 . 397899) (-2575 . 397865) (-2576 . 397719)
+ (-2577 . 397624) (-2578 . 397506) (-2579 . 397322) (-2580 . 397179)
+ (-2581 . 397049) (-2582 . 396942) (-2583 . 396890) (-2584 . 396762)
+ (-2585 . 396665) (-2586 . 396070) (-2587 . 395899) (-2588 . 395804)
+ (-2589 . 395660) (-2590 . 395510) (-2591 . 395377) (-2592 . 395270)
+ (-2593 . 395218) (-2594 . 395116) (-2595 . 394988) (-2596 . 394873)
+ (-2597 . 394782) (-2598 . 394504) (-2599 . 394377) (-2600 . 394275)
+ (-2601 . 394214) (-2602 . 393853) (-2603 . 393730) (-2604 . 393594)
+ (-2605 . 393507) (-2606 . 393400) (-2607 . 393326) (-2608 . 393183)
+ (-2609 . 393092) (-2610 . 392947) (-2611 . 392845) (-2612 . 392674)
+ (-2613 . 392567) (-2614 . 392512) (-2615 . 392369) (-2616 . 392314)
+ (-2617 . 392161) (-2618 . 392059) (-2619 . 391888) (-2620 . 391747)
+ (-2621 . 391217) (-2622 . 391158) (-2623 . 391051) (-2624 . 390999)
+ (-2625 . 390857) (-2626 . 390805) (-2627 . 390642) (-2628 . 390547)
+ (-2629 . 390288) (-2630 . 390085) (-2631 . 390036) (-2632 . 389818)
+ (-2633 . 388716) (-2634 . 388609) (-2635 . 388557) (-2636 . 388412)
+ (-2637 . 388360) (-2638 . 388267) (-2639 . 388200) (-2640 . 387941)
+ (-2641 . 387797) (-2642 . 387579) (-2643 . 387526) (-2644 . 387419)
+ (-2645 . 387367) (-2646 . 386614) (-2647 . 386563) (-2648 . 386368)
+ (-2649 . 386118) (-2650 . 385724) (-2651 . 385158) (-2652 . 385051)
+ (-2653 . 384981) (-2654 . 384818) (-2655 . 384746) (-2656 . 384465)
+ (-2657 . 384414) (-2658 . 384219) (-2659 . 383901) (-2660 . 383721)
+ (-2661 . 383614) (-2662 . 383048) (-2663 . 382597) (-2664 . 382520)
+ (-2665 . 382034) (-2666 . 381846) (-2667 . 381784) (-2668 . 381363)
+ (-2669 . 380919) (-2670 . 380322) (-2671 . 379956) (-2672 . 379741)
+ (-2673 . 379609) (-2674 . 379502) (-2675 . 379288) (-2676 . 379128)
+ (-2677 . 379075) (-2678 . 378548) (-2679 . 378343) (-2680 . 378281)
+ (-2681 . 378250) (-2682 . 378172) (-2683 . 378010) (-2684 . 377806)
+ (-2685 . 377699) (-2686 . 377427) (-2687 . 377374) (-2688 . 377134)
+ (-2689 . 376949) (-2690 . 376864) (-2691 . 376741) (-2692 . 376594)
+ (-2693 . 376388) (-2694 . 375524) (-2695 . 375417) (-2696 . 375044)
+ (-2697 . 374991) (-2698 . 374744) (-2699 . 374601) (-2700 . 374524)
+ (-2701 . 374401) (-2702 . 374072) (-2703 . 373912) (-2704 . 373883)
+ (-2705 . 373776) (-2706 . 373499) (-2707 . 373252) (-2708 . 373199)
+ (-2709 . 372681) (-2710 . 372537) (-2711 . 372045) (-2712 . 371972)
+ (-2713 . 371803) (-2714 . 371696) (-2715 . 371665) (-2716 . 371348)
+ (-2717 . 371134) (-2718 . 371081) (-2719 . 370439) (-2720 . 370269)
+ (-2721 . 369777) (-2722 . 369658) (-2723 . 369629) (-2724 . 369522)
+ (-2725 . 369308) (-2726 . 369169) (-2727 . 369116) (-2728 . 369060)
+ (-2729 . 368936) (-2730 . 368418) (-2731 . 368299) (-2732 . 368270)
+ (-2733 . 368163) (-2734 . 367845) (-2735 . 367654) (-2736 . 367440)
+ (-2737 . 367387) (-2738 . 367290) (-2739 . 367051) (-2740 . 366983)
+ (-2741 . 366823) (-2742 . 366767) (-2743 . 366660) (-2744 . 366060)
+ (-2745 . 365768) (-2746 . 365715) (-2747 . 365594) (-2748 . 365521)
+ (-2749 . 365450) (-2750 . 365270) (-2751 . 365105) (-2752 . 364998)
+ (-2753 . 364857) (-2754 . 364643) (-2755 . 364590) (-2756 . 364519)
+ (-2757 . 364378) (-2758 . 364307) (-2759 . 364124) (-2760 . 364064)
+ (-2761 . 364011) (-2762 . 363820) (-2763 . 363605) (-2764 . 363466)
+ (-2765 . 363413) (-2766 . 363339) (-2767 . 363288) (-2768 . 363102)
+ (-2769 . 363001) (-2770 . 362300) (-2771 . 362178) (-2772 . 362022)
+ (-2773 . 361713) (-2774 . 361499) (-2775 . 361446) (-2776 . 361215)
+ (-2777 . 361166) (-2778 . 361047) (-2779 . 360946) (-2780 . 359754)
+ (-2781 . 359725) (-2782 . 359466) (-2783 . 359365) (-2784 . 359279)
+ (-2785 . 358970) (-2786 . 358917) (-2787 . 358479) (-2788 . 358409)
+ (-2789 . 358290) (-2790 . 358186) (-2791 . 358125) (-2792 . 357819)
+ (-2793 . 357468) (-2794 . 357323) (-2795 . 357270) (-2796 . 357186)
+ (-2797 . 357051) (-2798 . 356957) (-2799 . 356850) (-2800 . 356793)
+ (-2801 . 356678) (-2802 . 355817) (-2803 . 355602) (-2804 . 355457)
+ (-2805 . 355315) (-2806 . 355262) (-2807 . 355120) (-2808 . 354985)
+ (-2809 . 354891) (-2810 . 354765) (-2811 . 354708) (-2812 . 354570)
+ (-2813 . 354407) (-2814 . 354341) (-2815 . 354174) (-2816 . 353848)
+ (-2817 . 353615) (-2818 . 353563) (-2819 . 353441) (-2820 . 353209)
+ (-2821 . 352917) (-2822 . 352791) (-2823 . 352714) (-2824 . 352658)
+ (-2825 . 352520) (-2826 . 352423) (-2827 . 352357) (-2828 . 352186)
+ (-2829 . 351946) (-2830 . 351804) (-2831 . 351685) (-2832 . 351633)
+ (-2833 . 351511) (-2834 . 351265) (-2835 . 351143) (-2836 . 351014)
+ (-2837 . 350954) (-2838 . 350877) (-2839 . 350825) (-2840 . 350586)
+ (-2841 . 350461) (-2842 . 350408) (-2843 . 350180) (-2844 . 350040)
+ (-2845 . 349709) (-2846 . 349526) (-2847 . 349474) (-2848 . 349342)
+ (-2849 . 349224) (-2850 . 349147) (-2851 . 349050) (-2852 . 348987)
+ (-2853 . 348863) (-2854 . 348664) (-2855 . 348611) (-2856 . 348418)
+ (-2857 . 348245) (-2858 . 348193) (-2859 . 348092) (-2860 . 347132)
+ (-2861 . 347055) (-2862 . 346992) (-2863 . 345780) (-2864 . 345634)
+ (-2865 . 345474) (-2866 . 345380) (-2867 . 345264) (-2868 . 345185)
+ (-2869 . 345133) (-2870 . 345032) (-2871 . 344955) (-2872 . 344564)
+ (-2873 . 344373) (-2874 . 343698) (-2875 . 343555) (-2876 . 343219)
+ (-2877 . 343166) (-2878 . 342905) (-2879 . 342831) (-2880 . 342775)
+ (-2881 . 342723) (-2882 . 342619) (-2883 . 342565) (-2884 . 342409)
+ (-2885 . 342307) (-2886 . 342192) (-2887 . 342029) (-2888 . 342001)
+ (-2889 . 341932) (-2890 . 341774) (-2891 . 341722) (-2892 . 341618)
+ (-2893 . 341302) (-2894 . 340299) (-2895 . 340217) (-2896 . 340087)
+ (-2897 . 339924) (-2898 . 339896) (-2899 . 339694) (-2900 . 339536)
+ (-2901 . 339387) (-2902 . 339221) (-2903 . 339113) (-2904 . 339031)
+ (-2905 . 338896) (-2906 . 338519) (-2907 . 338356) (-2908 . 338328)
+ (-2909 . 338166) (-2910 . 337980) (-2911 . 337793) (-2912 . 337627)
+ (-2913 . 337524) (-2914 . 337394) (-2915 . 337344) (-2916 . 337084)
+ (-2917 . 336909) (-2918 . 336881) (-2919 . 336722) (-2920 . 336539)
+ (-2921 . 336299) (-2922 . 336105) (-2923 . 335944) (-2924 . 335331)
+ (-2925 . 334939) (-2926 . 334911) (-2927 . 334360) (-2928 . 334080)
+ (-2929 . 333905) (-2930 . 333825) (-2931 . 333715) (-2932 . 333538)
+ (-2933 . 333331) (-2934 . 333165) (-2935 . 333058) (-2936 . 332631)
+ (-2937 . 332548) (-2938 . 332305) (-2939 . 332127) (-2940 . 332067)
+ (-2941 . 332016) (-2942 . 331959) (-2943 . 331931) (-2944 . 331763)
+ (-2945 . 331659) (-2946 . 331597) (-2947 . 331507) (-2948 . 331177)
+ (-2949 . 330818) (-2950 . 330766) (-2951 . 330377) (-2952 . 330293)
+ (-2953 . 330237) (-2954 . 330209) (-2955 . 330140) (-2956 . 329969)
+ (-2957 . 329918) (-2958 . 329765) (-2959 . 329666) (-2960 . 329549)
+ (-2961 . 329469) (-2962 . 329119) (-2963 . 328925) (-2964 . 328873)
+ (-2965 . 328632) (-2966 . 328576) (-2967 . 328548) (-2968 . 328383)
+ (-2969 . 328332) (-2970 . 328051) (-2971 . 327897) (-2972 . 327810)
+ (-2973 . 327343) (-2974 . 327181) (-2975 . 327129) (-2976 . 327032)
+ (-2977 . 326958) (-2978 . 326930) (-2979 . 326765) (-2980 . 326567)
+ (-2981 . 326345) (-2982 . 326285) (-2983 . 326078) (-2984 . 325592)
+ (-2985 . 325518) (-2986 . 325466) (-2987 . 324870) (-2988 . 324790)
+ (-2989 . 324762) (-2990 . 324662) (-2991 . 324519) (-2992 . 324441)
+ (-2993 . 324288) (-2994 . 324229) (-2995 . 324071) (-2996 . 323868)
+ (-2997 . 323794) (-2998 . 323742) (-2999 . 323661) (-3000 . 323605)
+ (-3001 . 323577) (-3002 . 323385) (-3003 . 323271) (-3004 . 323118)
+ (-3005 . 323048) (-3006 . 322855) (-3007 . 322763) (-3008 . 322460)
+ (-3009 . 322386) (-3010 . 321573) (-3011 . 320776) (-3012 . 320707)
+ (-3013 . 320679) (-3014 . 320575) (-3015 . 320454) (-3016 . 320301)
+ (-3017 . 320222) (-3018 . 319737) (-3019 . 319645) (-3020 . 319464)
+ (-3021 . 319390) (-3022 . 319311) (-3023 . 318932) (-3024 . 318858)
+ (-3025 . 318806) (-3026 . 318611) (-3027 . 318493) (-3028 . 318340)
+ (-3029 . 318098) (-3030 . 318012) (-3031 . 317794) (-3032 . 317720)
+ (-3033 . 317654) (-3034 . 317582) (-3035 . 317526) (-3036 . 317433)
+ (-3037 . 317183) (-3038 . 317071) (-3039 . 316918) (-3040 . 316650)
+ (-3041 . 316428) (-3042 . 316354) (-3043 . 316287) (-3044 . 315790)
+ (-3045 . 315719) (-3046 . 315669) (-3047 . 315424) (-3048 . 315306)
+ (-3049 . 314915) (-3050 . 314881) (-3051 . 314780) (-3052 . 314622)
+ (-3053 . 314498) (-3054 . 314431) (-3055 . 314009) (-3056 . 313935)
+ (-3057 . 313866) (-3058 . 313544) (-3059 . 313439) (-3060 . 313098)
+ (-3061 . 313015) (-3062 . 312938) (-3063 . 312733) (-3064 . 312559)
+ (-3065 . 312502) (-3066 . 312062) (-3067 . 311993) (-3068 . 311605)
+ (-3069 . 311522) (-3070 . 311171) (-3071 . 311088) (-3072 . 308926)
+ (-3073 . 308898) (-3074 . 308774) (-3075 . 308696) (-3076 . 307826)
+ (-3077 . 307721) (-3078 . 307520) (-3079 . 307169) (-3080 . 307099)
+ (-3081 . 307030) (-3082 . 306944) (-3083 . 306876) (-3084 . 306749)
+ (-3085 . 306378) (-3086 . 306114) (-3087 . 305763) (-3088 . 305693)
+ (-3089 . 305623) (-3090 . 305557) (-3091 . 305486) (-3092 . 305356)
+ (-3093 . 305201) (-3094 . 304658) (-3095 . 304307) (-3096 . 304188)
+ (-3097 . 304122) (-3098 . 304051) (-3099 . 303939) (-3100 . 303908)
+ (-3101 . 303686) (-3102 . 303531) (-3103 . 303237) (-3104 . 302850)
+ (-3105 . 302767) (-3106 . 302589) (-3107 . 302523) (-3108 . 302457)
+ (-3109 . 302299) (-3110 . 302094) (-3111 . 301957) (-3112 . 301570)
+ (-3113 . 301487) (-3114 . 301432) (-3115 . 301366) (-3116 . 301279)
+ (-3117 . 301165) (-3118 . 301102) (-3119 . 300980) (-3120 . 300734)
+ (-3121 . 300347) (-3122 . 300201) (-3123 . 299874) (-3124 . 299628)
+ (-3125 . 299562) (-3126 . 299490) (-3127 . 299342) (-3128 . 299252)
+ (-3129 . 299045) (-3130 . 298662) (-3131 . 298610) (-3132 . 298520)
+ (-3133 . 298454) (-3134 . 298266) (-3135 . 298182) (-3136 . 298119)
+ (-3137 . 297961) (-3138 . 297851) (-3139 . 297747) (-3140 . 297011)
+ (-3141 . 296788) (-3142 . 296736) (-3143 . 296546) (-3144 . 296480)
+ (-3145 . 296308) (-3146 . 296224) (-3147 . 296161) (-3148 . 296003)
+ (-3149 . 295899) (-3150 . 294933) (-3151 . 294582) (-3152 . 294485)
+ (-3153 . 294367) (-3154 . 294287) (-3155 . 294214) (-3156 . 294148)
+ (-3157 . 293966) (-3158 . 293858) (-3159 . 293784) (-3160 . 293671)
+ (-3161 . 293214) (-3162 . 293081) (-3163 . 293022) (-3164 . 292420)
+ (-3165 . 291997) (-3166 . 291923) (-3167 . 291810) (-3168 . 291381)
+ (-3169 . 291100) (-3170 . 290997) (-3171 . 290927) (-3172 . 290761)
+ (-3173 . 290334) (-3174 . 290279) (-3175 . 290151) (-3176 . 289518)
+ (-3177 . 289382) (-3178 . 289297) (-3179 . 289202) (-3180 . 288618)
+ (-3181 . 288541) (-3182 . 288486) (-3183 . 288412) (-3184 . 288302)
+ (-3185 . 287663) (-3186 . 287607) (-3187 . 287461) (-3188 . 287391)
+ (-3189 . 287314) (-3190 . 287043) (-3191 . 286944) (-3192 . 286889)
+ (-3193 . 286833) (-3194 . 286684) (-3195 . 286589) (-3196 . 286219)
+ (-3197 . 285948) (-3198 . 285920) (-3199 . 285865) (-3200 . 285673)
+ (-3201 . 285644) (-3202 . 284828) (-3203 . 284769) (-3204 . 284479)
+ (-3205 . 284409) (-3206 . 284231) (-3207 . 283844) (-3208 . 283773)
+ (-3209 . 283663) (-3210 . 283364) (-3211 . 283251) (-3212 . 282640)
+ (-3213 . 282581) (-3214 . 282528) (-3215 . 282473) (-3216 . 282401)
+ (-3217 . 281698) (-3218 . 281490) (-3219 . 281437) (-3220 . 281242)
+ (-3221 . 281132) (-3222 . 281019) (-3223 . 280897) (-3224 . 280841)
+ (-3225 . 280788) (-3226 . 280668) (-3227 . 280617) (-3228 . 280513)
+ (-3229 . 280398) (-3230 . 280285) (-3231 . 280229) (-3232 . 280110)
+ (-3233 . 280055) (-3234 . 279509) (-3235 . 279385) (-3236 . 279189)
+ (-3237 . 278998) (-3238 . 278872) (-3239 . 278759) (-3240 . 278562)
+ (-3241 . 278470) (-3242 . 278400) (-3243 . 277921) (-3244 . 277554)
+ (-3245 . 277481) (-3246 . 277385) (-3247 . 277306) (-3248 . 277184)
+ (-3249 . 277057) (-3250 . 276762) (-3251 . 276728) (-3252 . 276556)
+ (-3253 . 276433) (-3254 . 276351) (-3255 . 276214) (-3256 . 276082)
+ (-3257 . 275945) (-3258 . 275799) (-3259 . 275605) (-3260 . 275387)
+ (-3261 . 275196) (-3262 . 275094) (-3263 . 274981) (-3264 . 274844)
+ (-3265 . 274532) (-3266 . 274398) (-3267 . 274270) (-3268 . 274082)
+ (-3269 . 273932) (-3270 . 273639) (-3271 . 273275) (-3272 . 273085)
+ (-3273 . 272948) (-3274 . 272762) (-3275 . 272628) (-3276 . 272576)
+ (-3277 . 272431) (-3278 . 272028) (-3279 . 271898) (-3280 . 271360)
+ (-3281 . 271282) (-3282 . 270909) (-3283 . 270841) (-3284 . 270296)
+ (-3285 . 269996) (-3286 . 269939) (-3287 . 269887) (-3288 . 269742)
+ (-3289 . 269612) (-3290 . 268724) (-3291 . 268646) (-3292 . 268530)
+ (-3293 . 268310) (-3294 . 268010) (-3295 . 267938) (-3296 . 267886)
+ (-3297 . 267596) (-3298 . 267493) (-3299 . 267151) (-3300 . 267073)
+ (-3301 . 266712) (-3302 . 266596) (-3303 . 266419) (-3304 . 266066)
+ (-3305 . 266009) (-3306 . 265911) (-3307 . 265450) (-3308 . 265269)
+ (-3309 . 265100) (-3310 . 265004) (-3311 . 264677) (-3312 . 264561)
+ (-3313 . 264391) (-3314 . 264161) (-3315 . 264022) (-3316 . 263994)
+ (-3317 . 263960) (-3318 . 263800) (-3319 . 263571) (-3320 . 263389)
+ (-3321 . 263216) (-3322 . 260871) (-3323 . 260818) (-3324 . 260719)
+ (-3325 . 260489) (-3326 . 260278) (-3327 . 260241) (-3328 . 260138)
+ (-3329 . 259884) (-3330 . 259785) (-3331 . 259700) (-3332 . 259420)
+ (-3333 . 259321) (-3334 . 259208) (-3335 . 259106) (-3336 . 259069)
+ (-3337 . 258888) (-3338 . 258535) (-3339 . 258457) (-3340 . 258099)
+ (-3341 . 257783) (-3342 . 257710) (-3343 . 257597) (-3344 . 257464)
+ (-3345 . 257362) (-3346 . 257325) (-3347 . 257165) (-3348 . 256137)
+ (-3349 . 256041) (-3350 . 255986) (-3351 . 255908) (-3352 . 255592)
+ (-3353 . 255489) (-3354 . 254573) (-3355 . 254536) (-3356 . 254373)
+ (-3357 . 254055) (-3358 . 253959) (-3359 . 253307) (-3360 . 253226)
+ (-3361 . 253068) (-3362 . 252989) (-3363 . 252910) (-3364 . 252876)
+ (-3365 . 252734) (-3366 . 252522) (-3367 . 252357) (-3368 . 252042)
+ (-3369 . 251745) (-3370 . 251199) (-3371 . 251068) (-3372 . 251034)
+ (-3373 . 250884) (-3374 . 250310) (-3375 . 249746) (-3376 . 249635)
+ (-3377 . 249607) (-3378 . 249320) (-3379 . 249221) (-3380 . 248888)
+ (-3381 . 248663) (-3382 . 248534) (-3383 . 248479) (-3384 . 248349)
+ (-3385 . 247830) (-3386 . 247721) (-3387 . 247670) (-3388 . 247551)
+ (-3389 . 247386) (-3390 . 247183) (-3391 . 247099) (-3392 . 247020)
+ (-3393 . 246904) (-3394 . 246715) (-3395 . 246585) (-3396 . 244807)
+ (-3397 . 244698) (-3398 . 244627) (-3399 . 244575) (-3400 . 244341)
+ (-3401 . 244138) (-3402 . 243508) (-3403 . 243429) (-3404 . 243181)
+ (-3405 . 243034) (-3406 . 242562) (-3407 . 242453) (-3408 . 242401)
+ (-3409 . 242261) (-3410 . 242058) (-3411 . 241929) (-3412 . 241681)
+ (-3413 . 241554) (-3414 . 240950) (-3415 . 240841) (-3416 . 240789)
+ (-3417 . 240477) (-3418 . 240274) (-3419 . 239913) (-3420 . 239664)
+ (-3421 . 239349) (-3422 . 239220) (-3423 . 238705) (-3424 . 238453)
+ (-3425 . 238350) (-3426 . 238100) (-3427 . 237991) (-3428 . 237661)
+ (-3429 . 237608) (-3430 . 237263) (-3431 . 237147) (-9 . 237119)
+ (-3433 . 236951) (-3434 . 236899) (-3435 . 236792) (-3436 . 236655)
+ (-3437 . 236546) (-3438 . 236116) (-3439 . 236003) (-3440 . 235672)
+ (-3441 . 235543) (-3442 . 234293) (-8 . 234265) (-3444 . 234177)
+ (-3445 . 234048) (-3446 . 233993) (-3447 . 233893) (-3448 . 233735)
+ (-3449 . 233283) (-3450 . 233174) (-3451 . 233053) (-3452 . 232940)
+ (-3453 . 232519) (-3454 . 232403) (-3455 . 231393) (-3456 . 230719)
+ (-7 . 230691) (-3458 . 230562) (-3459 . 230492) (-3460 . 230327)
+ (-3461 . 229835) (-3462 . 229726) (-3463 . 229611) (-3464 . 229553)
+ (-3465 . 229485) (-3466 . 229369) (-3467 . 229202) (-3468 . 228935)
+ (-3469 . 228497) (-3470 . 228408) (-3471 . 228260) (-3472 . 227900)
+ (-3473 . 227791) (-3474 . 227665) (-3475 . 227607) (-3476 . 227539)
+ (-3477 . 227441) (-3478 . 227274) (-3479 . 226908) (-3480 . 226839)
+ (-3481 . 226404) (-3482 . 226113) (-3483 . 226004) (-3484 . 225874)
+ (-3485 . 225824) (-3486 . 225756) (-3487 . 225658) (-3488 . 225171)
+ (-3489 . 225064) (-3490 . 224992) (-3491 . 224889) (-3492 . 224774)
+ (-3493 . 224665) (-3494 . 224637) (-3495 . 224568) (-3496 . 224505)
+ (-3497 . 224407) (-3498 . 224294) (-3499 . 224075) (-3500 . 223842)
+ (-3501 . 223736) (-3502 . 223621) (-3503 . 223512) (-3504 . 223458)
+ (-3505 . 222855) (-3506 . 222747) (-3507 . 222538) (-3508 . 222469)
+ (-3509 . 222417) (-3510 . 222329) (-3511 . 222114) (-3512 . 222005)
+ (-3513 . 221927) (-3514 . 221867) (-3515 . 221759) (-3516 . 221661)
+ (-3517 . 221602) (-3518 . 221547) (-3519 . 221465) (-3520 . 221412)
+ (-3521 . 221303) (-3522 . 221147) (-3523 . 220980) (-3524 . 220878)
+ (-3525 . 220762) (-3526 . 220709) (-3527 . 220626) (-3528 . 220595)
+ (-3529 . 220445) (-3530 . 220392) (-3531 . 220283) (-3532 . 220055)
+ (-3533 . 219960) (-3534 . 219858) (-3535 . 219760) (-3536 . 219649)
+ (-3537 . 219543) (-3538 . 219413) (-3539 . 219361) (-3540 . 219252)
+ (-3541 . 218288) (-3542 . 218075) (-3543 . 217962) (-3544 . 217860)
+ (-3545 . 217608) (-3546 . 217478) (-3547 . 217310) (-3548 . 217244)
+ (-3549 . 217002) (-3550 . 216950) (-3551 . 216898) (-3552 . 216789)
+ (-3553 . 216542) (-3554 . 216458) (-3555 . 216378) (-3556 . 216265)
+ (-3557 . 216199) (-3558 . 215850) (-3559 . 215757) (-3560 . 215665)
+ (-3561 . 215556) (-3562 . 215254) (-3563 . 215139) (-3564 . 214658)
+ (-3565 . 214437) (-3566 . 214256) (-3567 . 214182) (-3568 . 213994)
+ (-3569 . 213850) (-3570 . 213738) (-3571 . 213667) (-3572 . 213558)
+ (-3573 . 213256) (-3574 . 213162) (-3575 . 212502) (-3576 . 212196)
+ (-3577 . 212124) (-3578 . 212063) (-3579 . 211870) (-3580 . 211552)
+ (-3581 . 210811) (-3582 . 210173) (-3583 . 210099) (-3584 . 209990)
+ (-3585 . 209688) (-3586 . 209594) (-3587 . 209530) (-3588 . 208754)
+ (-3589 . 208682) (-3590 . 208283) (-3591 . 207989) (-3592 . 207808)
+ (-3593 . 207067) (-3594 . 206996) (-3595 . 206887) (-3596 . 206546)
+ (-3597 . 206357) (-3598 . 206236) (-3599 . 205655) (-3600 . 205279)
+ (-3601 . 205227) (-3602 . 205154) (-3603 . 205010) (-3604 . 204322)
+ (-3605 . 204269) (-3606 . 204160) (-3607 . 204065) (-3608 . 204010)
+ (-3609 . 203889) (-3610 . 203392) (-3611 . 203333) (-3612 . 203268)
+ (-3613 . 203110) (-3614 . 202534) (-3615 . 199607) (-3616 . 199536)
+ (-3617 . 199335) (-3618 . 199146) (-3619 . 199038) (-3620 . 198790)
+ (-3621 . 198652) (-3622 . 198548) (-3623 . 198520) (-3624 . 198356)
+ (-3625 . 198303) (-3626 . 197988) (-3627 . 197412) (-3628 . 197289)
+ (-3629 . 197181) (-3630 . 196933) (-3631 . 196597) (-3632 . 196287)
+ (-3633 . 196183) (-3634 . 196133) (-3635 . 195969) (-3636 . 195916)
+ (-3637 . 194328) (-3638 . 193752) (-3639 . 193679) (-3640 . 193520)
+ (-3641 . 193221) (-3642 . 193011) (-3643 . 192904) (-3644 . 191458)
+ (-3645 . 191250) (-3646 . 191197) (-3647 . 191039) (-3648 . 190353)
+ (-3649 . 190280) (-3650 . 190042) (-3651 . 189419) (-3652 . 189301)
+ (-3653 . 188809) (-3654 . 188665) (-3655 . 188476) (-3656 . 188423)
+ (-3657 . 188282) (-3658 . 188003) (-3659 . 187317) (-3660 . 187197)
+ (-3661 . 187029) (-3662 . 186576) (-3663 . 186458) (-3664 . 186374)
+ (-3665 . 185772) (-3666 . 185712) (-3667 . 185554) (-3668 . 185501)
+ (-3669 . 185358) (-3670 . 184609) (-3671 . 184463) (-3672 . 184390)
+ (-3673 . 184268) (-3674 . 184108) (-3675 . 184048) (-3676 . 183964)
+ (-3677 . 183160) (-3678 . 182999) (-3679 . 182946) (-3680 . 182740)
+ (-3681 . 182166) (-3682 . 182093) (-3683 . 181866) (-3684 . 181627)
+ (-3685 . 181478) (-3686 . 181394) (-3687 . 180788) (-3688 . 180627)
+ (-3689 . 180574) (-3690 . 178606) (-3691 . 178032) (-3692 . 177800)
+ (-3693 . 177596) (-3694 . 177267) (-3695 . 177183) (-3696 . 176529)
+ (-3697 . 176371) (-3698 . 176318) (-3699 . 176190) (-3700 . 175616)
+ (-3701 . 175331) (-3702 . 174681) (-3703 . 174470) (-3704 . 174309)
+ (-3705 . 174225) (-3706 . 173639) (-3707 . 173499) (-3708 . 173446)
+ (-3709 . 173321) (-3710 . 172634) (-3711 . 172361) (-3712 . 171766)
+ (-3713 . 171573) (-3714 . 171430) (-3715 . 171368) (-3716 . 171271)
+ (-3717 . 171197) (-3718 . 171069) (-3719 . 171016) (-3720 . 170888)
+ (-3721 . 170201) (-3722 . 169928) (-3723 . 169649) (-3724 . 169506)
+ (-3725 . 169436) (-3726 . 169383) (-3727 . 169156) (-3728 . 168469)
+ (-3729 . 168171) (-3730 . 167998) (-3731 . 167855) (-3732 . 167802)
+ (-3733 . 167732) (-3734 . 167397) (-3735 . 167345) (-3736 . 167292)
+ (-3737 . 167065) (-3738 . 166490) (-3739 . 166388) (-3740 . 166209)
+ (-3741 . 165928) (-3742 . 165354) (-3743 . 165257) (-3744 . 165163)
+ (-3745 . 164834) (-3746 . 164785) (-3747 . 164732) (-3748 . 164604)
+ (-3749 . 164029) (-3750 . 163884) (-3751 . 163806) (-3752 . 163581)
+ (-3753 . 163484) (-3754 . 163296) (-3755 . 163244) (-3756 . 163191)
+ (-3757 . 162988) (-3758 . 162936) (-3759 . 162361) (-3760 . 162220)
+ (-3761 . 162005) (-3762 . 159873) (-3763 . 159789) (-3764 . 159598)
+ (-3765 . 159549) (-3766 . 159478) (-3767 . 159299) (-3768 . 158467)
+ (-3769 . 157893) (-3770 . 157736) (-3771 . 157558) (-3772 . 157508)
+ (-3773 . 157424) (-3774 . 157257) (-3775 . 157191) (-3776 . 157120)
+ (-3777 . 156593) (-3778 . 156019) (-3779 . 155907) (-3780 . 155741)
+ (-3781 . 155620) (-3782 . 155552) (-3783 . 155490) (-3784 . 154999)
+ (-3785 . 154658) (-3786 . 154540) (-3787 . 154468) (-3788 . 153941)
+ (-3789 . 153367) (-3790 . 153276) (-3791 . 152961) (-3792 . 152757)
+ (-3793 . 151349) (-3794 . 150776) (-3795 . 150606) (-3796 . 149426)
+ (-3797 . 148852) (-3798 . 148824) (-3799 . 148605) (-3800 . 148294)
+ (-3801 . 148016) (-3802 . 147943) (-3803 . 147594) (-3804 . 147384)
+ (-3805 . 147138) (-3806 . 146721) (-3807 . 146671) (-3808 . 146561)
+ (-3809 . 145987) (** . 142898) (-3811 . 142814) (-3812 . 142693)
+ (-3813 . 142575) (-3814 . 142501) (-3815 . 142424) (-3816 . 142090)
+ (-3817 . 141982) (-3818 . 141948) (-3819 . 140839) (-3820 . 140742)
+ (-3821 . 140615) (-3822 . 140563) (-3823 . 140465) (-3824 . 134952)
+ (-3825 . 134683) (-3826 . 134485) (-3827 . 134318) (-3828 . 134253)
+ (-3829 . 134221) (-3830 . 134068) (-3831 . 133789) (-3832 . 133310)
+ (-3833 . 133225) (-3834 . 133144) (-3835 . 133070) (-3836 . 132828)
+ (-3837 . 132440) (-3838 . 132367) (-3839 . 132195) (-3840 . 131966)
+ (-3841 . 129703) (-3842 . 129666) (-3843 . 129580) (-3844 . 129171)
+ (-3845 . 128812) (-3846 . 128739) (-3847 . 128658) (-3848 . 128450)
+ (-3849 . 128356) (-3850 . 127927) (-3851 . 127826) (-3852 . 127371)
+ (-3853 . 127161) (-3854 . 126985) (-3855 . 126705) (-3856 . 126568)
+ (-3857 . 126536) (-3858 . 126478) (-3859 . 126038) (-3860 . 125945)
+ (-3861 . 125864) (-3862 . 125748) (-3863 . 125650) (-3864 . 125549)
+ (-3865 . 125200) (-3866 . 125068) (-3867 . 124646) (-3868 . 124490)
+ (-3869 . 124252) (-3870 . 124166) (-3871 . 124047) (-3872 . 123903)
+ (-3873 . 123832) (-3874 . 123780) (-3875 . 123667) (-3876 . 123567)
+ (-3877 . 123466) (-3878 . 123386) (-3879 . 123303) (-3880 . 123076)
+ (-3881 . 122928) (-3882 . 122767) (-3883 . 122343) (-3884 . 122130)
+ (-3885 . 121850) (-3886 . 121780) (-3887 . 121724) (-3888 . 121471)
+ (-3889 . 121377) (-3890 . 118078) (-3891 . 117962) (-3892 . 117809)
+ (-3893 . 117538) (-3894 . 117390) (-3895 . 116843) (-3896 . 116419)
+ (-3897 . 116362) (-3898 . 116311) (-3899 . 116241) (-3900 . 116185)
+ (-3901 . 115864) (-3902 . 115770) (-3903 . 115696) (-3904 . 114961)
+ (-3905 . 114672) (-3906 . 114313) (-3907 . 113880) (-3908 . 113742)
+ (-3909 . 113519) (-3910 . 113320) (-3911 . 112760) (-3912 . 112690)
+ (-3913 . 112634) (-3914 . 112549) (-3915 . 112374) (-3916 . 112281)
+ (-3917 . 112186) (-3918 . 112061) (-3919 . 111928) (-3920 . 111636)
+ (-3921 . 111495) (-3922 . 111361) (-3923 . 111143) (-3924 . 110025)
+ (-3925 . 108868) (-3926 . 108774) (-3927 . 108703) (-3928 . 108618)
+ (-3929 . 108372) (-3930 . 108279) (-3931 . 108093) (-3932 . 107897)
+ (-3933 . 107772) (-3934 . 107480) (-3935 . 107002) (-3936 . 106925)
+ (-3937 . 106760) (-3938 . 105030) (-3939 . 104936) (-3940 . 104865)
+ (-3941 . 104803) (-3942 . 104710) (-3943 . 104514) (-3944 . 104374)
+ (-3945 . 104082) (-3946 . 103959) (-3947 . 103550) (-3948 . 103473)
+ (-3949 . 103388) (-3950 . 101811) (-3951 . 101717) (-3952 . 101646)
+ (-3953 . 101256) (-3954 . 101168) (-3955 . 101097) (-3956 . 100979)
+ (-3957 . 99350) (-3958 . 99058) (-3959 . 98822) (-3960 . 98652)
+ (-3961 . 98515) (-3962 . 98458) (-3963 . 97656) (-3964 . 97562)
+ (-3965 . 97481) (-3966 . 95066) (-3967 . 94179) (-3968 . 94108)
+ (-3969 . 93983) (-3970 . 93117) (-3971 . 93058) (-3972 . 92804)
+ (-3973 . 92674) (-3974 . 91589) (-3975 . 91079) (-3976 . 90985)
+ (-3977 . 90905) (-3978 . 90837) (-3979 . 90255) (-3980 . 90172)
+ (-3981 . 90014) (-3982 . 88640) (-3983 . 88533) (-3984 . 88283)
+ (-3985 . 88153) (-3986 . 88030) (-3987 . 87622) (-3988 . 87536)
+ (-3989 . 87451) (-3990 . 87397) (-3991 . 86579) (-3992 . 86496)
+ (-3993 . 85498) (-3994 . 85342) (-3995 . 84914) (-3996 . 84619)
+ (-3997 . 84492) (-3998 . 84275) (-3999 . 83615) (-4000 . 83529)
+ (-4001 . 83373) (-4002 . 83281) (-4003 . 83156) (-4004 . 82904)
+ (-4005 . 82779) (-4006 . 81900) (-4007 . 81737) (-4008 . 81596)
+ (-4009 . 81469) (-4010 . 81338) (-4011 . 81266) (-4012 . 81180)
+ (-4013 . 80876) (-4014 . 80812) (-4015 . 80560) (-4016 . 80423)
+ (-4017 . 80369) (-4018 . 80170) (-4019 . 79826) (-4020 . 79699)
+ (-4021 . 79568) (-4022 . 79496) (-4023 . 79410) (-4024 . 79330)
+ (-4025 . 79249) (-4026 . 79124) (-4027 . 78878) (-4028 . 78795)
+ (-4029 . 78741) (-4030 . 78602) (-4031 . 78461) (-4032 . 78334)
+ (-4033 . 78172) (-4034 . 78130) (-4035 . 78044) (-4036 . 77972)
+ (-4037 . 77853) (-4038 . 77607) (-4039 . 77533) (-4040 . 77153)
+ (-4041 . 75315) (-4042 . 75212) (-4043 . 75014) (-4044 . 74911)
+ (-4045 . 74807) (-4046 . 74361) (-4047 . 74287) (-4048 . 74082)
+ (-4049 . 73963) (-4050 . 73717) (-4051 . 73549) (-4052 . 73132)
+ (-4053 . 71622) (-4054 . 71519) (-4055 . 71321) (-4056 . 71221)
+ (-4057 . 71112) (-4058 . 71053) (-4059 . 70607) (-4060 . 70502)
+ (-4061 . 70312) (-4062 . 70259) (-4063 . 70013) (-4064 . 69861)
+ (-4065 . 69485) (-4066 . 67937) (-4067 . 67840) (-4068 . 67555)
+ (-4069 . 67458) (-4070 . 67399) (-4071 . 66953) (-4072 . 66662)
+ (-4073 . 62664) (-4074 . 62438) (-4075 . 62339) (-4076 . 62150)
+ (-4077 . 61903) (-4078 . 61799) (-4079 . 61423) (-4080 . 61364)
+ (-4081 . 60924) (-4082 . 60794) (-4083 . 60688) (-4084 . 60163)
+ (-4085 . 60010) (-4086 . 59930) (-4087 . 59812) (-4088 . 59748)
+ (-4089 . 59501) (-4090 . 59397) (-4091 . 59244) (-4092 . 58508)
+ (-4093 . 58166) (-4094 . 58092) (-4095 . 57941) (-4096 . 57835)
+ (-4097 . 57745) (-4098 . 57319) (-4099 . 57242) (-4100 . 57121)
+ (-4101 . 57067) (-4102 . 56820) (-4103 . 56735) (-4104 . 56433)
+ (-4105 . 56271) (-4106 . 56170) (-4107 . 56006) (-4108 . 55624)
+ (-4109 . 54784) (-4110 . 54691) (-4111 . 54595) (-4112 . 54452)
+ (-4113 . 54343) (-4114 . 54096) (-4115 . 53724) (-4116 . 53565)
+ (-4117 . 53438) (-4118 . 53319) (-4119 . 53156) (-4120 . 51954)
+ (-4121 . 51711) (-4122 . 49855) (-4123 . 49772) (-4124 . 49388)
+ (-4125 . 49282) (-4126 . 49139) (-4127 . 47763) (-4128 . 47645)
+ (-4129 . 47562) (-4130 . 47231) (-4131 . 46587) (-4132 . 46371)
+ (-4133 . 46207) (-4134 . 45744) (-4135 . 45676) (-4136 . 45513)
+ (-4137 . 45414) (-4138 . 45217) (-4139 . 45077) (-4140 . 44993)
+ (-4141 . 44134) (-4142 . 44047) (-4143 . 43976) (-4144 . 42804)
+ (-4145 . 42621) (-4146 . 42451) (-4147 . 42388) (-4148 . 42072)
+ (-4149 . 42004) (-4150 . 41890) (-4151 . 41856) (-4152 . 41777)
+ (-4153 . 41637) (-4154 . 41605) (-4155 . 41522) (-4156 . 41451)
+ (-4157 . 41336) (-4158 . 41166) (-4159 . 41113) (-4160 . 40506)
+ (-4161 . 40438) (-4162 . 40361) (-4163 . 40327) (-4164 . 40248)
+ (-4165 . 40105) (-4166 . 39756) (-4167 . 39534) (-4168 . 39322)
+ (-4169 . 38185) (-4170 . 37961) (-4171 . 37908) (-4172 . 37299)
+ (-4173 . 37231) (-4174 . 36015) (-4175 . 35921) (-4176 . 35794)
+ (-4177 . 35567) (-4178 . 35374) (-4179 . 35165) (-4180 . 34705)
+ (-4181 . 34576) (-4182 . 33501) (-4183 . 33433) (-4184 . 33333)
+ (-4185 . 32152) (-4186 . 32034) (-4187 . 31940) (-4188 . 31810)
+ (-4189 . 31710) (-4190 . 31379) (-4191 . 31003) (-4192 . 30894)
+ (-4193 . 30834) (-4194 . 30249) (-4195 . 30169) (-4196 . 30069)
+ (-4197 . 29869) (-4198 . 29745) (-4199 . 29645) (-4200 . 29349)
+ (-4201 . 28814) (-4202 . 28699) (-4203 . 28646) (-4204 . 28330)
+ (-4205 . 27923) (-4206 . 27580) (-4207 . 27422) (-4208 . 27298)
+ (-4209 . 25515) (-4210 . 25219) (-4211 . 24662) (-4212 . 24593)
+ (-4213 . 24235) (-4214 . 24182) (-4215 . 23844) (-4216 . 23482)
+ (-4217 . 23401) (-4218 . 23243) (-4219 . 23137) (-4220 . 23023)
+ (-4221 . 22713) (-4222 . 22156) (-4223 . 22087) (-4224 . 22016)
+ (-4225 . 21685) (-4226 . 21500) (-4227 . 21422) (-4228 . 21264)
+ (-4229 . 21158) (-4230 . 20092) (-4231 . 19775) (-4232 . 19535)
+ (-4233 . 19409) (-4234 . 19340) (-4235 . 19287) (-4236 . 18960)
+ (-4237 . 18417) (-4238 . 18310) (-4239 . 18152) (-4240 . 18009)
+ (-4241 . 17906) (-4242 . 17810) (-4243 . 17681) (-4244 . 17071)
+ (-4245 . 17005) (-4246 . 16863) (-4247 . 16810) (-4248 . 16631)
+ (-4249 . 16469) (-4250 . 16311) (-4251 . 16158) (-4252 . 16053)
+ (-4253 . 15862) (-4254 . 15638) (-4255 . 15513) (-4256 . 15415)
+ (-4257 . 15285) (-4258 . 15063) (-4259 . 14955) (-4260 . 14873)
+ (-4261 . 14715) (-4262 . 14559) (-4263 . 14472) (-4264 . 13984)
+ (-4265 . 13714) (-4266 . 13522) (-4267 . 13305) (-4268 . 13211)
+ (-4269 . 12679) (-4270 . 12457) (-4271 . 12321) (-4272 . 12254)
+ (-4273 . 12098) (-4274 . 12069) (-4275 . 11985) (-4276 . 9871)
+ (-4277 . 9821) (-4278 . 9705) (-4279 . 8540) (-4280 . 8318)
+ (-4281 . 8182) (-4282 . 8130) (-4283 . 7972) (-4284 . 7825)
+ (-4285 . 7768) (-4286 . 7551) (-4287 . 7399) (-4288 . 7328)
+ (-4289 . 7231) (-4290 . 7176) (-4291 . 6957) (-4292 . 6834)
+ (-4293 . 6676) (-4294 . 6513) (-4295 . 6431) (-4296 . 6214)
+ (-4297 . 6026) (-4298 . 5883) (-4299 . 5782) (-4300 . 5727)
+ (-4301 . 5508) (-4302 . 5409) (-4303 . 5251) (-4304 . 5172)
+ (-4305 . 5100) (-4306 . 4841) (-4307 . 4534) (-4308 . 4437)
+ (-4309 . 4359) (-4310 . 4140) (-4311 . 3991) (-4312 . 3833)
+ (-4313 . 3751) (-4314 . 3674) (-4315 . 3240) (-4316 . 3067)
+ (-4317 . 2955) (-4318 . 2811) (-4319 . 2734) (-4320 . 2515)
+ (-4321 . 2416) (-4322 . 2258) (-4323 . 2099) (-4324 . 2022)
+ (-4325 . 1468) (-4326 . 1295) (-4327 . 1183) (-4328 . 912)
+ (-4329 . 835) (-4330 . 616) (-4331 . 461) (-4332 . 188) (-4333 . 30)) \ No newline at end of file